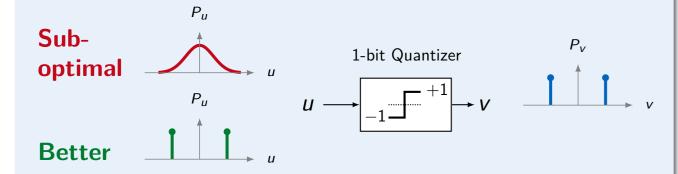
Linear Transmit Signal Processing in 1-Bit Quantized Massive MIMO Systems

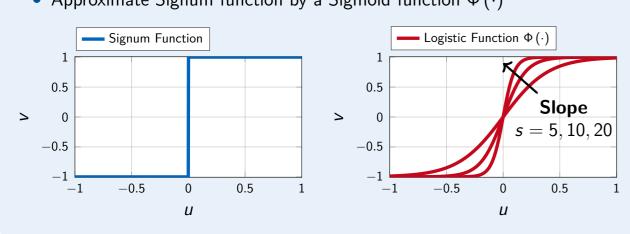
Daniel Plabst¹, Hela Jedda¹, Amine Mezghani²

Motivation • Goal: Low-complexity and power-efficient massive MIMO system Bottleneck: Hardware complexity and power-consumption of RF-chains [1] ⇔ Linearly operated Power Amplifiers (PAs) ⇔ High-resolution Digital-to-Analog Converters (DACs) • Does **not scale** for a **massive** MIMO system Bottleneck → RF-chain Downlink $2 \times DAC$ → RF-chain Base station K Mobile stations • Idea:

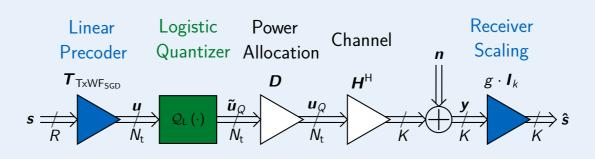

DAC Model (1-bit)

• **State-of-the-art**: Statistical model for quantizer \Rightarrow Assumes Gaussian u

Linear precoding ⇒ Find precoder **only** once per channel coherence time


1-bit DACs \Rightarrow simplifies complexity and efficiency of RF-chains

Our approach: Model quantizer by Sigmoid function



Smooth Approximation of 1-bit DAC

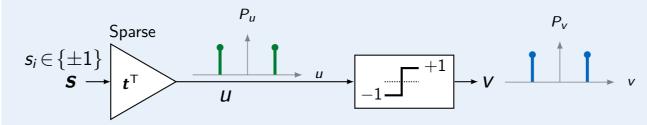
• Approximate Signum function by a Sigmoid function $\Phi(\cdot)$

System Model (flat fading)

- Of interest: $T_{TxWF_{SGD}}$, g
- Logistic quantizer: $Q_L(\cdot) = \Phi(\Re\{\cdot\}) + j \cdot \Phi(\Im\{\cdot\})$
- Power allocation: Equal $(\mathbf{D}_{EQ} = c \cdot \mathbf{I}_{N_t \times N_t})$, non-equal $(\mathbf{D}_{NEQ} = fct(\mathbf{T}))$
- TX-Power constraint: $E \left| \boldsymbol{u}_{Q}^{\mathsf{H}} \boldsymbol{u}_{Q} \right| \leq P_{\mathsf{tx}}$
- Noise: $\boldsymbol{n} \sim \mathcal{CN}\left(\boldsymbol{0}_{K}, \boldsymbol{C}_{\boldsymbol{n}\boldsymbol{n}}\right)$

Constrained Optimization Problem

$$MSE: \quad \epsilon = \frac{1}{N} \cdot \left\| \Pi S - \widehat{S} \right\|_{F}^{2}$$


- Data symbols s from QPSK
- Sample matrix $S \in \mathbb{C}^{R \times N}$: $[s_1, \dots, s_N]$, all combinations of s
- Receive symbol matrix $\hat{\mathbf{S}} \in \mathbb{C}^{K \times N}$: $[\hat{\mathbf{s}}_1, \dots, \hat{\mathbf{s}}_N]$
- Superposition matrix $\Pi \in \mathbb{C}^{K \times R} \Leftrightarrow \text{Higher-rank precoding } [2]$
- Normalization: 1/N

Finding $T_{TxWF_{SGD}}$ and g

MSE smooth and nonlinear in $T \Rightarrow$ (Stochastic) Gradient Algorithms

Complexity and Regularization

- Complexity per step $\mathcal{T} \propto N = |\mathcal{A}_{rx}|^{K}$
- Receiver alphabet $|A_{rx}| = 4$ (QPSK), 16 (16-QAM),...
 - \Rightarrow Reduce **S** and use regularization \Leftrightarrow **Overfitting**

Interpretation of Regularization

- **Sparsity**: I_1 -regularization of T [3] \Rightarrow reduces quantization error
- Quantization noise model: I₂-regularization of T [4]

Numerical results (5 users, 80 TX-antennas, perfect CSI) BER over SNR (16QAM) **Ergodic sum rate (16-QAM)** nncoded BER 10 12 14 10 12 14 P_{tx}/σ_n^2 [dB] P_{tx}/σ_n^2 [dB] BER over SNR (64QAM) **Ergodic sum rate (64-QAM)** BER P_{tx}/σ_n^2 [dB] P_{tx}/σ_n^2 [dB] → TxWFQ **→** TxWFQ-Π - SQUID (Nonlinear precoding) \rightarrow TxWF_{SGD} (\mathbf{D}_{EQ}) \rightarrow TxWF_{SGD} (\mathbf{D}_{NEQ}) \rightarrow TxWF (Unquantized)

Conclusion

- Improved rate and BER compared to state-of-the-art linear precoders
- TxWF_{SGD} (**D**_{EQ}) outperforms TxWFQ and TxWFQ-Π ⇒ Hardware simplification due to equal power allocation
- TxWF_{SGD} (\mathbf{D}_{NEQ}) reduces gap to nonlinear precoding methods
- Linear precoding (once per channel coherence time) ⇔ Nonlinear precoding (for each transmit vector)
- Further avenues: Imperfect CSI and complexity comparison

References

- [1] C. Mollén, High-end performance with low-end hardware: Analysis of massive mimo base station transceivers. Linköping University Electronic Press, 2019, vol. 1896.
- [2] O. De Candido, H. Jedda, A. Mezghani, A. L. Swindlehurst, and J. A. Nossek, "Reconsidering linear transmit signal processing in 1-bit quantized multi-user miso systems," IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 254–267, Jan 2019.
- [3] R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267-288, 1996.
- [4] A. Mezghani, R. Ghiat, and J. A. Nossek, "Transmit processing with low resolution d/a-converters," in 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009), Dec 2009, pp.