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A B S T R A C T

Travel demand models are a useful tool to assess transportation projects. Within travel demand, long-distance
trips represent a significant amount of the total vehicle-kilometers travelled, in contrast to commuting trips.
Consequently, they pay a relevant role in the economic, social and environmental impacts of transportation. This
paper describes the development of a microscopic long-distance travel demand model for the Province of Ontario
(Canada) and analyzes the sensitivity to the implementation of a new high speed rail corridor.

Trip generation, destination choice and mode choice models were developed for this research. Multinomial
logit models were estimated and calibrated using the Travel Survey for Residents in Canada (TSRC). It was
complemented with location-based social network data from Foursquare, improving the description of activities
and diverse land uses at the destinations. Level of service of the transit network was defined by downloading trip
time, frequency and fare using the planning service Rome2rio.

New scenarios were generated to simulate the impacts of a new high speed rail corridor by varying rail travel
times, frequencies and fares of the rail services. As a result, a significant increase of rail modal shares was
measured, directly proportional to speed and frequency and inversely proportional to price.

1. Introduction

The planning and the design of transportation infrastructure de-
pends on complex and interacting economic, social, environmental and
technical factors. An accurate knowledge of current and future trans-
portation demand is an important decision factor. With this purpose,
travel demand models predict the number, destination and modal
choice of trips. These characteristics depend, among other factors, on
the frequency and length of the trips. The travel demand may be seg-
mented into urban travel demand, such as short-distance daily com-
muting, and long-distance travel demand, such as overnight trips or
touristic trips.

Traditionally, transport modelers paid most attention to daily short-
distance urban traffic demand and their corresponding models, based
on the fact that the number of trips is much larger compared to long-
distance travel. The models for long-distance trips appeared later and
usually transferred parameters from urban models. Some studies
highlighted the importance of the long-distance travel demand market
(sometimes mixed with the so-called intercity travel demand), based on

their contribution to the vehicle kilometers travelled (Dargay & Clark,
2010), or motivated by the interest on analyzing high speed rail net-
works (Outwater et al., 2010). Data availability is reported generally as
the major concern for long-distance models (Miller, 2004), since
households travel surveys were typically designed for urban travel de-
mand.

This paper shows the development of a long-distance passenger
travel demand model for the province of Ontario (Canada) as part of a
province-wide transportation model. The paper summarizes the model
development, including the use of location-based big data and online
trip planning services for its estimation. Additionally, the paper ana-
lyzes the impacts of a new high speed rail corridor by testing the sen-
sitivity of the model to changes in travel time, price and frequency.

2. Literature review

Long-distance travel demand pays a significant role in the trans-
portation system. While around 75% of trips in US are less than 15 km,
they account for only 28.9% of vehicle-kilometers travelled (Schiffer,
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2012). On the contrary, trips over 150 km account for 1% of trips, but
represent 15.5% vehicle-miles travelled. Similarly, 50% of all passenger
kilometers in Europe corresponded to trips beyond 100 km (Rich &
Mabbit, 2011).

Two main approaches were found when modeling long-distance
travel demand. Some authors focused on the estimation of long-distance
demand as a required component for large scale models (state wide,
country wide or even larger scales) while others performed a wide
variety of case-specific studies, concentrated solely on specific corridors
(such as high speed rail lines) or certain demand or supply segments
(such as vacation trips).

2.1. Large scale long-distance travel demand models

The integration of long-distance demand into large scale models
started with very simple approaches. According to Giamo and Schiffer
(Giamo & Schiffer, 2005, pp. 2–212), some statewide travel demand
models did not even account for long-distance travel demand. Many
others only forecasted future trips based on trip tables, which cannot
capture sensibilities of person, environment or trip variables. However,
the recent statewide models contributed to the development of long-
distance travel demand sub-models (Miller, 2004).

An example in this direction was the long-distance model for Ohio
(US), as part of the statewide model (Erhardt, Freedman, Stryker,
Fujioka, & Anderson, 2007). Although the authors formulated a com-
plete framework for trip generation and trip destination, mode choice
modules could not be estimated because of the lack of air and transit
observations in the survey. Therefore, the impact of transit frequency
and schedules could not be considered. The TRANS-TOOLS project
proposed a long-distance travel demand model for Europe (Rich &
Mabbit, 2011). According to the authors, TRANS-TOOLS model was the
largest model ever with respect of population and covered area. This
resulted in a very coarse level of resolution, excessive complexity and
long runtimes, making it unable to test transport planning policies. Lu,
Zhu, Luo, and Lei (2015) developed a long-distance travel demand
model considering multinomial logit models for trip generation, desti-
nation choice and mode choice, built on a multi-level nested structure.
The model only applied to a small set of seven destination alternatives
in the province of Guangdong (China), focusing explicitly on intercity
travel and discarding rural areas. The Federal Highway Administration
(2015) proposed a national long-distance passenger travel demand
model combining different state long-distance travel surveys. The
model used multinomial logit models to predict the number of trips,
their duration and their travel party. Destination choice and mode
choices were jointly estimated as a nested logit model. The California
statewide model for High Speed Rail (Outwater et al., 2010) has tested
the impact of high speed rail, but considering the whole long-distance
transport demand. The high speed rail mode was defined as a new
modal alternative. Then, it was required to estimate a mode choice
model based on a stated preference survey. For the state of North
Carolina, a long-distance person travel demand model was developed
that explicitly accounted for the three closest transit stations to the
origin zone and the three closest transit stations to the destination zones
(Moeckel, Fussell, & Donnelly, 2015). The model was applied to test rail
and regional bus network improvements.

2.2. Case-specific studies

Despite those large scale examples, most of studies about long-dis-
tance travel demand could be classified as case-specific or corridor
specific, as they do not provide a framework for predicting the complete
long-distance travel demand in a certain state or province. Limtanakool,
Dijst, and Schwanen (2006) considered the effect of some land-use
factors, such as density and use specialization, on long-distance trips in
the Netherlands. They could only estimate a binary choice model con-
sidering the decision between car and train. Van Nostrand, Sivaraman,

and Pinjari (2012) proposed a model only for vacation trips in US,
without taking into account long-distance business demand. Other au-
thors (LaMondia, Fagnant, Qu, Barrett, & Kockelman, 2016) tested the
impact of automated vehicles in long-distance travel demand, reducing
the share of conventional cars and airplanes for trips under 500 km.

The prediction of the effects of building high speed rail networks
focused a significant number of case-specific models. Gutierrez (2001)
analyzed the changes in accessibility because of the implementation of
a new high speed rail in Spain. Different definitions of accessibility
were considered (by testing different distance decay functions and po-
tential attractors). The results identified significant impacts, not only in
the geographical area where the new line was going to be built, but also
in surrounding areas. However, the changes in accessibility increased
the inequality in accessibility between areas. Wong and Habib (2015)
explored the effects of accessibility to high speed rail stations in the
Windsor-Quebec corridor (Canada) using a joint revealed preference
and stated preference survey. The expected modal shares in this cor-
ridor were characterized by calibrating and validating a nested logit
mode choice model, where auto, rail, high speed rail, bus and air were
considered as choice alternatives. The effect of accessibility to stations
was found to be relevant for the success of a new high speed rail system.
Some studies have analyzed long-term passenger counts (and their
temporal variation) of high speed rail in Spain (Gundelfinger-Casar &
Coto-Millán, 2017), in Japan (Demizu, Li, Schmöcker, Nakamura, &
Uno, 2017) or in China and Taiwan (Li & Schmöcker, 2017). However,
these approaches did not provide an estimation of the potential usage of
the projected high speed rail infrastructure and the subsequent effects
over the rest of travel demand.

2.3. Research motivation

As a result of the abovementioned long-distance travel demand
approaches, previous research identified further data requirements and
research needs. Miller (2004) identified several unsolved issues re-
garding long-distance travel demand estimation. First, data collection
could be improved by facilitating access to private-operator transit
data. Secondly, Miller described the use of stated preference survey as
complicated, expensive and potentially biased, making the test of new
modes (such as high speed rail) extremely uncertain. Thirdly, the level
of aggregation of long-distance models was in general too coarse in
space, time and modes (especially regarding access and egress), thus a
finer resolution was recommended. Miller proposed additional model
capabilities that include non-resident visitors or long-distance through
traffic.

Additionally, the datasets used in destination choice models need
also further improvement. Van Nostrand et al. (2012) identified the
need of improving destination attractiveness data. The California Sta-
tewide Model for High Speed Rail failed when estimating trips to cer-
tain touristic regions, as only population and employments at a coarse
spatial resolution were considered as attractor (Outwater et al., 2010).
The Federal Highway Administration (2015) recommended collecting
better data of long-distance trips through household travel surveys or
using smartphone-based collection methodologies. Regarding transport
supply, the provision of transit network data at the country level was
recommended, especially for long-distances buses. Although the
amount of available data for the other modes was quite significant, its
conversion to a usable transit network required very long processing
times.

Based on the review of the existing literature, and motivated by the
previously mentioned data availability issues, this paper has the ob-
jective of developing a long-distance travel demand model for the
province of Ontario (Canada). The paper presents and discusses a
methodology to enrich available travel survey datasets with location-
based big data and trip planning services, as an additional data source
of both selected and non-selected destination and mode alternatives.
After implementing the model, the paper also explores its sensitivity to
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travel time, price and frequency, based on a scenario of a new high
speed rail corridor.

3. Materials and methods

This section describes the model development including its concept
and theoretical framework (subsection 3.1), the data collection (sub-
section 3.2) and the definition of scenarios (subsection 3.3).

3.1. Model framework

The model is designed as part of a four-step travel demand model
(although the last step, traffic assignment is not included here, since it is
covered within a province-wide model where the long- and short-dis-
tance travel is assigned at the same time).

Fig. 1 shows the structure of the long-distance travel demand model
for domestic trips. Ontario residents are represented by a synthetic
population. For visitors arriving from the rest of Canada, the same
structure was used, except socio-demography information about tra-
velers was not known. Moreover, international trips are explicitly
modelled using separate sub-models, which are not included in this
paper.

The proposed approach is microscopic (individual persons, house-
holds and trips are simulated) and the different stages are modelled
using a multinomial logit formulation (Erhardt et al., 2007; Rich &
Mabbit, 2011). Previous approaches, however, have used survey data
only and not the mix of data presented here. Logit models provide the
probability of selecting an alternative within a set of independent
choices, and are formulated as shown in equations (1) and (2) (Ben-
Akiva, 1974; Train, 2009).

=
=

=
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Where:

• Ppj is the probability of selecting the alternative j by the individual p.
• Upj is the utility of selecting the alternative j for the individual p,

described in equation (2).
• k=1, 2, …K is the set of alternatives.

=
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Where:

• s=1, 2, …S is a set of either individual-related, alternative-related
or exogenous explanatory variables.

• βs is the coefficient of the explanatory variable s.
• xs is the value of the explanatory variable s.

With respect of the domestic trip generation, a multinomial logit
model was proposed to predict individuals’ decisions whether to travel
or not. The alternative choice set is defined by four alternatives: “stay at
home”, “start a long-distance daytrip”, “be away in an overnight long-
distance trip” or “start or end an overnight long-distance trip”. This way
the model was able to select synthetic persons in Ontario to make a
long-distance trips or to stay at home and be available for other trip
types. The influence of person characteristics, household characteristics
and potential accessibility of the origin zone (as described by equation
(3)) was taken into account.

=
=

=
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j

j N

j ij
1 (3)

Where:

• Accessibilityi is the potential accessibility of zone i.
• j=1,2, …N are zones.
• Populationj is the population of zone j.
• ttij is the travel time (by car) between zone i and j.
• α: calibration parameter for population.
• β: calibration parameter for travel time.

The total number of trips made by visitors is obtained by multi-
plying observed trip rates by the population of the origin zone (see
definition of zones in section 3.2.2). Once trips are generated, the trip
party was randomly generated, based on observed trip party fre-
quencies (from travel surveys).

Domestic destination choice models were estimated as logit models
to predict the probability of selecting a destination zone, as a function
of its attraction, as well as logsums obtained from the mode choice

Fig. 1. Model framework.
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models (defined as shown in equation (4)). They described not only the
distance between origin and destination, but also the availability and
level of service of the travel modes. The destination choice model
considered single destination trips, as shown by more than 96% of the
survey records.

=
=

=

Logsum Uexp( )ij
m

m M

ij m
1

,
(4)

Where:

• Logsumij is the logsum between origin i and destination j.
• Uij,m is the utility of travelling from origin i to destination j using the

mode m, obtained from an estimated mode choice model.
• m=1, 2, …M is a set of alternative travel modes.

Lastly, mode choice models were defined as multinomial logit
models, were the set of alternatives corresponded with the available
modes: car, air, rail and bus. Apart from mode level of service measures,
personal and household attributes were included in the estimation for
domestic trips starting in Ontario. For travel behavior estimations for
Canadians who live outside of Ontario, socio-demographic attributes
could not be represented because those residents were not included in
the synthetic population for Ontario.

This model framework required the three sub-models (trip genera-
tion, destination choice and mode choice) to be econometrically esti-
mated. The software R and its packages mlogit (Croissant, 2017) and
mnlogit (Hasan, Wang, & Mahani, 2016) were used. subsection 3.2.
describes the process of collecting the data for such model estimation,
while subsection 4.1. will provide the estimation results.

3.2. Data collection

The estimation of the long-distance travel demand model is pri-
marily based on the use of two travel surveys. One was conducted for
domestic long-distance trips within Canada (Travel Survey of Residents
in Canada - TSRC) and the other one covered international to and from
Canada (International Travel Survey - ITS). The use of additional and
innovative data sources was required to complete the model estimation,
as explained later in subsection 3.2.3.

3.2.1. Travel surveys
Both TSRC and ITS travel surveys are designed primarily to measure

domestic and international tourism, including trip characteristics, ac-
tivities at the destination and trip expenditures. The TSRC for domestic
travel is conducted by telephone and includes information about all the
non-recurrent daily trips over 40 km and all overnight trips made by the
respondents during one month. The TSRC survey was the primary
source of data used for the model estimation. Data for the years
2011–2014 were used. Table 1 shows the main variables included in the
database. The ITS survey was used to estimate and calibrate the models
for international trips, which is not presented in this paper.

Lastly, Table 2 summarizes the number of survey records available
for model estimation, both in terms of survey records and expanded
using the survey weights to the total amount of trips in the period
2011–2014.

3.2.2. Zone system
The development of the long-distance travel demand model in-

herited the zoning system in which the synthetic population of Ontario
was georeferenced. This zoning system had more than 5000 raster cells.
Although trip generation is made at the person level, and the origin of
the trip was allocated in this fine zone system, the estimation of des-
tination choice models required a different aggregated zone system.
Two main reasons motivated the aggregation: first, as the model is
estimated based on survey data, the finest resolution is the one

provided by the survey; second, while using logit models for destination
choice, the number of alternatives should not be too big (as behavioral
models, the size should not exceed what a person can manage to
compare), so an aggregation or subsampling of alternatives is re-
commended (Rich & Mabbit, 2011). Therefore, an aggregated zone
system was defined from the topographical union between Census Di-
visions (CD, that cover the whole Ontario region) and Census Me-
tropolitan Area (CMA, only in dense urban areas). This resulted in 69
zones to be used for destination choice and mode choice (Molloy &
Moeckel, 2017a).

As a long-distance model, the locations outside Ontario needed to be
included in the zone system. The aggregation level of the external zones
increased with their distance from Ontario: The neighboring provinces
Quebec and Manitoba were represented by 38 different zones; the rest
of Canada was aggregated to provinces and territories (10 zones).

3.2.3. Foursquare and Rome2rio data
Although the TSRC survey provided worthy data to characterize

long-distance trips and travelers, the estimation of discrete choice
models required information about all the sets of alternatives, included
non-selected destinations, as well as the level of service of the alter-
native travel modes.

With respect of measures for destination attractiveness, population
and employment of the analysis zones were considered initially. These
variables provided a global approach of the importance of the desti-
nations but do not describe differences in land-uses of them, nor do they
consider special tourist or business attractors. To enrich the description
of destination alternatives, location based social network data (LBSN)
were obtained. Destination attractiveness data were obtained from the
Foursquare network (Foursquare, 2017).

The users of the Foursquare check-in their visits to venues (locations

Table 1
Variables in TSRC survey datasets.

Table Variable Description, range and levels

Person Person age
(respondent)

0–99 years

Person gender
(respondent)

Male
Female

Person education level
(respondent)

Under high-school
High school
Post-secondary
University

Person employment
status

Employed
Unemployed

Household size Number of adults
Number of kids

Household income Low (≤50,000 CAD*)
Medium low (50,000
CAD* < income ≤ 70,000 CAD*)
Medium high (70,000
CAD* < income ≤ 100,000 CAD*)
High (> 100,000 CAD*)

Trip Trip purpose Business
Leisure
Visit

Trip date Day, Month, Year
Trip mode Car

Air
Rail
Bus

Trip origin Province, CD**, CMA***
Trip destination If domestic: Province, CD and CMA

If to the U.S.: State
If overseas: Continental region

Trip duration Number of nights
Travel party Travel party size

*CAD: Canadian Dollars.
** CD: Census Division.
*** CMA: Census Metropolitan Area.
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such as airports, restaurants, parks, ski areas, etc.) with the goal of
providing other users information and recommendations of places to
go. The data stored in this LBSN was accessed through the Foursquare
public venue API, which returns a list of geo-located venues, their ca-
tegory, and their number of check-ins.

Venues were classified into five main categories and the number of
check-ins by category within each model zone. The five main categories
(medical, ski area, hotel, outdoors and sightseeing) were defined by
aggregating the original list of Foursquare venue categories and sub-
categories. A total of 34,041 venues and 7,981,458 check-ins were
collected. A previous research study provides more details on data
collection and processing (Molloy & Moeckel, 2017b).

Regarding the estimation of mode choice models, it was required to
obtain the level of service (supply) of the different trip alternatives. Trip
surveys do not include travel times, numbers of transfers, frequencies or
prices of neither the selected nor the non-selected modes. Therefore,
level of service of the available modes was obtained from the trip
planning service Rome2rio (Rome2Rio, 2017). Rome2rio is a multi-
modal transport origin-to-destination search engine designed for long-
distance and local journey planning.

Using the Rome2rio API, data for all origin and destination zones in
North America were queried (a total of 167 by 167 origin-destination
pairs). Origin and destination coordinates were located in the centroids
of the zones. Rome2rio provided different alternatives to travel from
each origin to each destination, described by the following variables.

• Total travel time from origin to destination.
• Travel time by segment (segment is defined as a part of the trip

using a single mode and vehicle; then, the number of transfers is
equal to the number of segments minus one).

• Segment mode.
• Frequency as number of services per week by segment.
• Price range and average price from origin to destination.

The data were processed according to the following criteria:

• A “main mode” was assigned based on the following hierarchy: air,
rail, bus and auto. Every alternative with a flying segment was then
coded as “air”. If there is no air segment, every alternative with a
rail segment was coded as rail, and so forth. Consecutive segments
using the main mode belong to the main trip, while everything
before or after main mode trip(s) was considered as “access trip” or
“egress trip”, respectively.

• Accordingly, “main mode travel time”, “access time” and “egress
time” were defined.

• If two alternatives using the same main mode are found, the faster
one was selected.

• The frequency was defined as the minimum frequency among all the
segments of the alternative, expressed in services per week.

• Driving costs were calculated by multiplying distance by fuel costs
(0.072 CAD/km) instead of using Rome2rio data, as it assumed only
taxi or shared vehicle costs.

Based on this post-processing, travel time, price, number of transfers
and frequencies were expressed in form of origin-destination matrices,
as detailed in previous work (Ji, 2017). Lastly, both the Foursquare and

Rome2rio datasets were merged with the travel surveys in order to
include them in the model estimation.

3.3. Scenarios

The developed model was applied to the demand prediction of a
new high speed rail along the Toronto-Windsor corridor (Collenette,
2016), which is currently under planning. The sensitivity of the desti-
nation choice model and the mode choice model was tested by means of
a set of scenarios that represented that high speed rail. A 300 km/h
maximum speed rail line is planned to connect six stations in the south
west area of Ontario, which concentrates 7 million people and 3.4
million jobs. The line is shown in the interactive map.

The implementation of the high speed rail line in the model was
defined by the modification in the rail mode level of service variables
(as defined from the Rome2rio datasets). Specifically, travel times were
reduced, while prices and service frequency were increased.
Consequently, and in contrast to previous examples, no new mode al-
ternative was implemented for high speed rail (Outwater et al., 2010;
Wong & Habib, 2015). The reason for this approach was that the pri-
mary goal was to test sensitivities of the estimated model, and the fact
of not having any information on stated preferences of travelers for the
use of high speed rail. Different scenarios were defined by varying the
above-mentioned level of service variables with different intensities.

Travel times by rail among the six planed new rail stations were
obtained from Collenette (2016). These six stations were georeferenced
to six model zones, and access and egress times to rail stations were
assumed. For these 30 origin-destination pairs (6 origins by 5 destina-
tion stations) the travel time using high speed rail was set as the new
travel time by rail.

The reduction in travel times from and to other locations near the
planned high speed rail was defined by using a simplified route choice
model that provided the minimum travel time by rail for every origin-
destination pair, as shown by equation (5). The approach found the
shortest path considering all the available high speed rail stations, de-
ducting access and egress times in the zones were travelers would only
need to transfer from conventional to high speed rail. This process was
repeated assuming different maximum speeds of 200, 300 and 400 km/
h, and their corresponding average speeds and travel times, as sum-
marized in Table 3.

With respect of price, a fare increase of 50, 100 and 150% in the
high speed rail segments compared to conventional rail services were
considered. For origin-destination pairs that started or ended in zones
not served by the high speed rail, the increase in fare was applied only
to the proportion of travel time on the high speed rail. Additionally, the
increase in frequency was applied to the origin-destination pairs among
the six high speed rail served zones. Increases of 25% and 50% were
considered together with the case of not increasing frequency. The
changes in frequency were not applied to trips that only used high
speed rail for a part of the segment, as their maximum frequency would
be constrained by other modes they use. Table 3 summarizes the
complete set of scenarios.

= + +tt tt tt tt tt egress access egress

access i j

min( ,

) ,
o d o d o i i j j d i i j

j

'

(5)

Table 2
Sample size by purpose (number of records and number of trips – expanded from weights).

Type of trip Survey records for estimation Expanded average number of trips per day

business leisure visit Business leisure visit

Domestic from Ontario 4771 19,686 28,378 31,665 111,907 163,471
Domestic from rest of Canada* 1457 3223 5036 4165 8149 12,528
*trips starting in other Canadian provinces were only considered if they end in Ontario or cross Ontario.
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Where:

• tt'o-d is the travel time in the high speed rail scenario between o and
d.

• tto-d is the travel time in the base scenario between o and d.
• o and d are origin and destination zones (not served by high speed

rail).
• tt-i-j is the travel time in the high speed rail scenario between i and j.
• i and j are origin and destination zones (served by high speed rail).
• access and egress are access and egress times to rail stations at the

considered zone (i or j).

4. Calculation

This section describes firstly the estimation process of the trip
generation, destination choice and mode choice models, based on the
already collected data. Later, subsection 4.2. describes the im-
plementation of the model and its application to the scenarios.

4.1. Model estimation

Model estimation results for domestic trip generation, destination
choice and mode choice are presented in this section. Table 4 shows the
estimation results of the trip generation model. The columns show the
coefficients of the utility functions for the three trip alternatives, where
the base case (utility equal zero) is to “stay in town”. As can be de-
ducted from the negative values of the intercepts, starting a long-dis-
tance trip has a rather low probability. The impacts of person household
and location attributes varied across purposes, although in general a
higher income, a higher education level and a lower short-distance
accessibility was related with increased trip probabilities.

Table 5 shows the results of the estimation of domestic destination
choice models by purpose. Domestic destination alternatives are the
aggregated zones (as explained above, 69 zones in Ontario and 48 in the
rest of Canada). Table 5 shows the impact of distance between origin
and destination as a function of the mode choice logsums (note that
mode choice models were estimated before, although applied later) plus
an added term of the logarithm of travel distance by car. The effect of
logsums was different depending on whether the trip is a daytrip or an
overnight trip (as mentioned by the if-clause in the table). The higher
coefficient of logsums for daytrips explains that daytrips are more likely
to select a closer destination, while the very long trips are in almost all
cases, overnight trips.

Additionally, the impact of the type of origin and destination zone
(urban or rural) was captured using three additional dummy variables,
defined as follows:

• Intra-metro: the trip starts and ends at the same urban zone.
• Intra-rural: the trip starts and ends at the same rural zone.
• Inter-metro: the trip starts and ends in different urban zones.

Accordingly, it was found that intra-metro leisure and visit trips
were less common. On the contrary, intra-rural trips were likely for all
the purposes. As expected, trips between different urban zones (inter-
metro) were more likely for business purposes, but less likely for leisure
trips.

With respect of the destination attractiveness, the use of Foursquare
data increased the explanatory power. The number of hotel check-ins
was significant for all purposes, and sightseeing, outdoors and skiing
check-ins were significant for leisure trips. After comparing the models
with and without Foursquare data, an increase of Log-Likelihood of 1%
for business, 2% for visit, and 8% for leisure was found. Thus, adding
the dataset was especially relevant for leisure trips. Lastly, it was ne-
cessary to add a dummy variable for the Niagara destination, as pre-
viously the model had underestimated the number of trips to that
particular destination.

Lastly, mode choice models were estimated. During model estima-
tion, a strong positive correlation between mode price and mode travel
time (generally, longer trips are also more expensive) was observed. It
was decided to combined both variables into one generalized time by
using values of time, as shown in equation (6). Then, the generalized
time variable was converted to an exponential function, namely im-
pedance, as shown in equation (7). After testing different combinations,
it was decided to use one generic coefficient for impedance (one coef-
ficient for all the modes, but distinguished by purpose). The value of
time was equal to 32 CAD/h for visit and leisure trips and 65 CAD/$ for
business trips, as selected for the provincial model. The values of the
parameter α in equation (7) were selected through trial-and-error to
produce the better model in terms of log-likelihood and AIC (Akaike
Information Criterion). The chosen values for γ are shown in Table 6.

= +generalized time travel time travel cost value of time/ (6)

=impedance generalized timeexp( ) (7)

Where:

• γ is a weighting, negative parameter

As shown in Table 6, the impact of the impedance was found to be
always positive, decreasing the utility with increasing distance. The
frequency, defined as number of services per week, was found to be
significant in the case of domestic trips, too. Additional trip char-
acteristics were significant as well. Higher travel parties are related
with trips by car, while overnight trips increase the probability of se-
lecting air, which is correlated with the selection of further destina-
tions. In the case of domestic trips, the model is able to capture some
person-related and household-related preferences, such as the lower
probability of selecting bus and rail for high income groups, the higher
likelihood of young people to select bus or rail modes, or the smaller
likelihood of travelling by car for women.

The values of Log-Likelihood for the estimate with constants only is
shown in the table in row LL(interc. only). The comparison with the
Log-Likelihood of the full model LL(full model) showed a considerable
improvement, justifying the addition of mode level of service, person
attributes and trip characteristics. Furthermore, the sensitivity of the
model to changes in time, cost and frequency was captured by adding
those mode-specific variables. An alternative model without person
related attributes was used for those trips made by visitors (results are
similar and not shown here due to space limitation).

Table 3
Scenarios for high speed rail.

Scenario Travel time scenario Frequency
scenario (% of
increase*)

Price scenario
(% of
increase*)Maximum

speed (km/h)
Average speed in
the high speed
segments (km/h)

0 Unchanged
1a 200 130 Unchanged unchanged
1b +25% unchanged
1c +50% unchanged
2a 300 200 Unchanged unchanged
2b +25% unchanged
2c +50% unchanged
3a 400 260 Unchanged unchanged
3b +25% unchanged
3c +50% unchanged
3c.1 +50%
3c.2 +100%
3c.2 +150%

*Legend: the number represents an increase respect the original variable. I.e.
“+50%” of frequency means that the original frequency is increased by a 50%
or multiplied by 1.5.
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4.2. Model implementation, calibration and application

After the completing estimation, the model was implemented in a
JAVA program and calibrated to represent properly the observed trip
length frequency distribution and modal shares. Logsum coefficients of
destination choice and mode specific constants of mode choice were
adjusted (multiplied by calibration parameters) to match average trip
distances and modal shares with an error under 5% with respect of
observations.

The developed and implemented model was applied to the set of
scenarios, by modifying the input datasets according to the definition of
scenarios (modified rail travel time, price and frequency). Every sce-
nario was replicated 10 times to average out stochastic variations in-
herent to the microsimulation approach.

5. Results

This section analyzes the sensitivity of the model to the im-
plementation of a high speed rail line, focusing on the variation of
modal shares and destination choices. By definition, the trip generation
model is not sensitive to changes in the transport supply, therefore, no
induced travel demand could be captured.

The presented results correspond to an average simulated day and
are describe separately for two different analysis areas: a) all domestic
trips in Ontario and b) domestic trips among the six zones served by
high speed rail.

Fig. 2 shows the changes in rail modal shares with the im-
plementation of the high speed rail scenarios varying travel time and
service frequency (without modifying the fare). The left side (Fig. 2a)
corresponds to the changes of all domestic trips, while the right
(Fig. 2b) corresponds to the trips among the zones which are served by

Table 4
Domestic trip generation of Ontario residents by purpose.

Variable Business Leisure Visit

away daytrip in/out daytrip away in/out Away daytrip in/out

(intercept) −7.929∗∗∗ −6.265∗∗∗ −7.707∗∗∗ −5.462∗∗∗ −5.236∗∗∗ −5.524∗∗∗ −4.691∗∗∗ −4.401∗∗∗ −4.448∗∗∗

isYoung (age≤25) – – – – – – 1.033∗∗∗ 0.356∗∗∗ 1.215∗∗∗

isRetired (age> 65) – – – – – – – – –
isFemale −0.610∗∗∗ −0.945∗∗∗ −0.628∗∗∗ – – – 0.338∗∗∗ −0.107∗ 0.158∗∗∗

#adultsInHousehold – – – −0.171∗∗∗ 0.127*** −0.060∗ −0.307∗∗∗ −0.111∗∗∗ −0.228∗∗∗

#kidsInHousehold – – – – – – −0.222∗∗∗ −0.119∗∗∗ −0.205∗∗∗

IsHighSchool – – – 0.540∗∗∗ 0.273∗∗ 0.542∗∗∗ – – –
isPostSecondary – – – 0.520∗∗∗ 0.323∗∗∗ 0.495∗∗∗ 0.147∗ 0.212∗∗∗ 0.221∗∗∗

isUniversity 0.783∗∗∗ 0.348∗∗ 0.874∗∗∗ 0.575*** 0.322∗∗ 0.490∗∗∗ 0.459∗∗∗ 0.176∗∗ 0.456∗∗∗

isEmployed 1.369∗∗∗ 0.923∗∗∗ 1.399∗∗∗ – – – – – –
hasIncomeMedLow – – – 0.598∗∗∗ 0.392∗∗∗ 0.535∗∗∗ 0.211∗ 0.374∗∗∗ 0.231∗∗

hasIncomeMedHigh – – – 0.701∗∗∗ 0.561∗∗∗ 0.7820∗∗∗ 0.345∗∗∗ 0.467∗∗∗ 0.464∗∗∗

hasIncomeHigh 0.641∗∗∗ 0.452∗∗∗ 0.807∗∗∗ 1.209∗∗∗ 0.701∗∗∗ 1.146∗∗∗ 0.408∗∗∗ 0.521∗∗∗ 0.443∗∗∗

accesibility −0.012∗∗ −0.014∗∗∗ −0.014∗∗ −0.005∗∗∗ −0.012∗∗∗ −0.004∗∗∗ −0.008∗∗∗ −0.009∗∗∗ −0.009∗∗∗

LL −3736 −20,438 −20,398

AIC 7557 40,960 40,880

LL: Log-Likelihood, AIC: Akaike Information Criterion.
Significance codes: ***: p-value< 0.001; **: p-value< 0.01; *: p-value< 0.05 .: p-value< 0.1, -: not significant.
Legend for variables: “isCondition” or “hasCondition” is a dummy variable equal to 1 if the condition is fulfilled, zero otherwise; “#countVariable” is the count of the
variable, “variable” is a continuous variable.

Table 5
Domestic destination choice by purpose.

Type of variable Variable Business Leisure Visit

Attraction Log(#population + #employment) 0.276∗∗∗ −0.193∗∗∗ 0.302∗∗∗

Log(#Foursquare_hotel) 0.147∗∗∗ 0.228∗∗∗ 0.138∗∗∗

Log(#Foursquare_sightseeing) 0.125∗∗∗ 0.112∗∗∗ 0.03∗∗∗

Log(#Foursquare_outdoors) – 0.132∗∗∗ –
Log(#Fousquare_skiing) – 0.073∗∗∗ –
isNiagara – 1.444∗∗∗ –

Origin-destination types isIntra-metro – −3.053∗∗∗ −1.843∗∗∗

isIntra-rural 0.98∗∗∗ 0.812∗∗∗ 0.293∗∗∗

isInter-metro 0.169∗∗∗ −1.223∗∗∗ –
Distance origin - destination [if daytrip] Logsum 3.615∗∗∗ 9.671∗∗∗ 4.384∗∗∗

[if overnight trip] Logsum 0.899∗∗∗ 2.461∗∗∗ 0.909∗∗∗

Log(tripDistance) – −0.267∗∗∗ −0.231∗∗∗

LL −17831 −73649 −110309

AIC 35,663 147,297 220,617

LL: Log-Likelihood, AIC: Akaike Information Criterion.
Significance codes: ***: p-value< 0.001; **: p-value< 0.01; *: p-value< 0.05 .: p-value< 0.1, -: not significant.
Legend for variables: “isCondition” or “hasCondition” is a dummy variable equal to 1 if the condition is fulfilled, zero otherwise; “#countVariable” is the count of the
variable, “variable” is a continuous variable.
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the high speed rail. Obviously, the impact was much stronger in the
second case, as all trips by rail benefited from the existence of high
speed rail. Moreover, the higher reduction of travel time (from sce-
narios at 200 km/h to 400 km/h), the higher the increase in rail modal
share.

However, the reduction of travel time was found to be less sig-
nificant compared with the increase in service frequency. In fact, with
no increase in frequency, the modal share at zones served by high speed
rail increased between 0.4 and 0.6 percent points (around 2500 to 3500
additional trips by train per day – note that trip is a different measure
that may be smaller than passengers, due to multi-passenger trips), but
if the frequency was increased by 50%, the modal shares increased
between 3.5 and 4.3 percent points.

A deeper analysis of the limited impact of travel time revealed the
relative importance of access and egress times in the trip duration,
which reduced drastically the benefit achieved in the main (high speed
rail) segment of the trip for certain origin-destination pairs.

As expected, the changes in modal level of service had an impact on
destination choice (represented by the aggregated logsum terms in the
utility equations). The analysis detected an increase of 43% in the
number of trips between zones served by high speed rail.

For the scenarios where the frequency increased by 50% (re-
presented by the dashed line in Fig. 2) and maximum speed was equal
to 400 km/h, the sensitivity of the model to changes in fares was tested.
Fig. 3 shows the impact of different relative increases of the high speed
rail fare (with respect to the conventional rail fare). This comparison
has been also segmented by purpose (shown by line types in Fig. 3).

Fig. 3 shows the general trend of a decreasing rail share with an
increase in fares (while keeping frequency and travel times constant).
Although this effect was uniform, the decrease was stronger for business
trips, where the rail share was generally larger.

Table 6
Mode choice by purpose (for residents of Ontario).

Variable Business Leisure Visit

auto air bus rail auto air bus rail auto air bus rail

intercept 0 −7.235∗∗∗ −5.088∗∗∗ −6.646∗∗∗ 0 −7.773∗∗∗ −3.93∗∗∗ −4.457∗∗∗ 0 −5.15∗∗∗ −5.796∗∗∗ −5.824∗∗∗

impedance 2.696∗∗∗ 2.696∗∗∗ 2.696∗∗∗ 2.696∗∗∗ 6.659∗∗∗ 6.659∗∗∗ 6.659∗∗∗ 6.659∗∗∗ 2.601∗∗∗ 2.601∗∗∗ 2.601∗∗∗ 2.601∗∗∗

#frequency – 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ – 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ – 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗

isOvernight – 2.909∗∗∗ 0.387∗∗∗ 0.387∗∗∗ – 3.896∗∗∗ 1.356∗∗∗ 0.794∗∗∗ – 2.766∗∗∗ 1.072∗∗∗ 0.517∗∗∗

isInter_metro – 1.724∗∗∗ 1.199∗∗∗ 2.007∗∗∗ – 1.559∗∗∗ 1.49∗∗∗ 0.901∗∗∗ – 1.107∗∗∗ 0.842∗∗∗ 0.842∗∗∗

#tripParty – −0.153∗∗∗ 0.032∗∗∗ 0.032∗∗∗ – −0.055. −0.966∗∗∗ −0.494∗∗∗ – – – –
isIncomeLow – – – – – – – – – −0.878∗∗∗ – –
isIncomeHigh – – −0.931∗∗∗ −0.931∗∗∗ – 0.272∗∗∗ −0.944∗∗∗ −0.993∗∗∗ – – – –
isYoung – – 0.797∗∗∗ 0.797∗∗∗ – −0.378∗∗∗ 1.466∗∗∗ 1.682∗∗∗ – −1.39∗∗∗ 1.96∗∗∗ 1.05∗∗∗

isFemale −0.489∗∗∗ – – – – – – – −0.493∗∗∗ – – –
isUniversity – – – – – – – – – 0.47∗∗∗ 0.361. 1.072∗∗∗

γ −0.0015 (not estimated) −0.0004 (not estimated) −0.0004 (not estimated)

LL(interc. only) −3817 −5499 −12,880

LL(full model) −2568 −4481 −9152

AIC(full model) 5172 9018 18,346

LL: Log-Likelihood, AIC: Akaike Information Criterion.
Significance codes: ***: p-value< 0.001; **: p-value< 0.01; *: p-value< 0.05 .: p-value< 0.1, -: not significant.
Legend for variables: “isCondition” or “hasCondition” is a dummy variable equal to 1 if the condition is fulfilled, zero otherwise; “#countVariable” is the count of the
variable, “variable” is a continuous variable.

Fig. 2. Modal shares by scenario (varying travel time reduction and frequency) (*HSR: High Speed Rail).
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6. Discussion

This section describes firstly the implications of the use of alter-
native data sources for the model development. Secondly, the results of
sensitivity analyses for the assessment of a high speed rail project are
analyzed.

The estimation of discrete choice decisions required the availability
of alternative specific data, for both selected and non-selected choices.
Surveys are used as primary sources for the model estimation but rarely
contain data on non-selected choices.

For destination alternatives, the number of check-ins at the
Foursquare location-based social network was used to characterize
specific and diverse land uses across zones. Then, the goodness of fit of
the models (especially for leisure purposes) increased significantly
compared to models that only used population and employment. This
suggests that these types of data are suitable to trace leisure activities.
Population and employment are probably enough to predict visit or
business destinations. Although a significant improvement of model
was achieved, the use of location-based social network data also pre-
sents the challenge of being used for forecasts. Further work is needed
to link these data with land use, demographic or economic changes for
long-term predictions.

Regarding modal level of service, the use of trip planning services,
such as Rome2rio, was found to be a fast and reliable source of data.
Among other advantages, a service such as Rome2rio replicates the way
users plan their trips. Consequently, it seems to be an adequate tool to
estimate a discrete choice model as a representation of human deci-
sions, having the same information that the traveler would have. The
collection of Rome2rio data allowed the estimation and implementation
of the model without performing a traffic assignment (or route choice).
On the one hand, this simplified the model development. On the other
hand, this method cannot account for congestion issues, especially in
transit modes, as Rome2rio data are mainly based on schedules instead
of actual time travel times.

With respect of the sensitivity analysis of the developed model, and
in contrast to the use of stated preferences for a new mode, high speed
rail was implemented as an improvement of the current rail supply.

The sensitivity analysis showed reasonable positive impacts (i.e., an
increase of the rail mode shares) with a reduction of travel time and an
increase of service frequency. Negative impacts on rail shares due to
fare increases were found to be consistent as well. All these effects were
stronger for zones directly served by the new high speed rail, but could
be appreciated in its surroundings, too.

The model increased the number of trips to zones served by high
speed rail, extending the impact of mode choice decisions into desti-
nation choice. In addition, the model created additional trips by car,
plane or bus among locations with high speed rail. Theoretically, this
effect can be explained by the feedback from mode choice to destina-
tion choice through aggregated logsum terms. Such a behavior might
seem counter-intuitive but can be observed in reality by a small degree.
Once a high speed rail line opens between zone A and zone B, addi-
tional travelers may choose this origin-destination even if they do not
travel by rail. This might be due to two reasons. For one, having high
speed rail as a second alternative may serve as a back-up mode in case
the originally planned mode fails (i.e., flights could be cancelled due to
weather, which would case some travelers to switch to rail). Secondly,
origin-destination pairs with high speed rail may be better known than
other destinations, because travelers might have taken the train on this
trip before or because advertisements for the train might make people
more aware of that destination.

The methodology of this paper can be used by policy makers to
understand the changes of planned projects at a very early planning
stage. The model is able to define the influence area of the project and
identify its potential users within the global long-distance passenger
travel demand. In contrast to case-specific or corridor-based analyses,
and despite its coarser level of detail, this method does not ignore the
rest of the modes, and does not delimitate the influence area prior to
analyzing the impacts of the planned infrastructure.

The simulation of high speed rail as an enhanced rail service was
found to be simpler and relied on fewer assumptions than the stated
preferences survey method. This is supported by several reasons.
Firstly, to estimate the model, the mode-specific variables for rail (i.e.
time and price) were chosen as the fastest rail trip alternative.
Consequently, if high speed rail is considered as a rail service, the new
mode-specific variables had to be the high speed rail time and price, for
the origin-destination pairs where it is the fastest trip alternative.
Secondly, this assumption would be reasonable if the operator replaces
the current conventional services by high speed rail services. Lastly, it
implies that users’ perception of high speed rail is not very different
from the current feeling against conventional rail. On the contrary, if
some competition between conventional and high speed rail is ex-
pected, this approach might be failing at the prediction of modal shares.
Some studies also reported deeper changes in the demand, when the
new high speed rail is more than a new service but creates a new
“brand” (Cartenì, Pariota, & Henke, 2017). To overcome this issue, and
even without a stated preference survey, an incremental logit approach

Fig. 3. Modal shares by scenario (varying price) by trip purpose (*HSR: High Speed Rail).
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could help introducing a new mode, the coefficients of which cannot be
estimated based on the existing survey (Ameen & Kamga, 2013).
However, the need of additional assumptions regarding the new coef-
ficients may increase the uncertainty of the model. Whether the first
approach (substitution of conventional rail) or the second (add a new
mode) works better for the Toronto-Windsor corridor depends on the
new service characteristics and the reaction of users, which is still un-
known to the authors.

Although the developed model is a provincial model, this paper
tested their application to a corridor-specific case. At this point, the
results should be interpreted with caution. Firstly, the level of resolu-
tion at the destination choice and at the mode choice model was too
coarse to account for sufficient detail with access and egress times to
high speed rail stations (only aggregate values per zone were used).
Secondly, the estimation of the models was based on country-wide data.
It reflected properly the total amount of domestic trips in Canada, but
country-wide data may not be representative for this particular cor-
ridor. Thirdly, the model was unable to capture induced travel demand
because of the improvement of the transit network level of service.
Lastly, the obtained sensitivities were found to be reasonable, but
cannot be validated until real observations of such scenarios are
available.

7. Conclusions

This paper described the development of a long-distance travel de-
mand model for the province of Ontario (Canada). The major con-
tributions of the paper are the integration of alternative data sources for
destination alternatives and modal level-of service, as well as a sensi-
tivity analysis of the impact of high speed rail scenarios.

With respect of the first contribution, this research provided a
method to acquire additional data that complemented travel surveys
from both location-based social network and online trip planning ser-
vices. These data were useful to increase the goodness of fit of desti-
nation choice models (especially for leisure purposes) and to facilitate
and simplify the characterization of multimodal transport supply.

The second contribution of the paper included a sensitivity analysis
of the developed model and the assessment of a planned highs speed
rail project for the Toronto-Windsor corridor. The results provide a
quantitative prediction of the expected demand and a delineation of the
area of influence of the proposed project. The effects of the high speed
rail on the demand of other modes were quantified as well.

Consequently, and taking into account the limitations mentioned in
section 7, the large scale long-distance travel demand model developed
in this paper provides an adequate tool for planning agencies to rapidly
quantify the impacts of different project alternatives in the entire
transport system and to easily identify scenarios that warrant further
and more detailed examination.
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