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ABSTRACT

With shrinking feature size, process variations are becoming more and more pro-

nounced and are affecting output yield of the manufactured chips. This makes it extremely

important to design circuits considering process variations. Static timing analysis is one

such approach that helps to consider these variations during design phase. However, these

variations are random in nature and therefore modeling them statistically is better given

their random nature. In recent years, it has become popular to compensate these variations

by inserting Post-Silicon Tunable (PST) buffers during design phase. These buffers can be

tuned after manufacturing to improve binning yield by compensating delay variations.

However, on design side it remains a challenge to optimize design statistically rather than

overdesigning. Also after manufacturing, buffer tuning requires testing of chips for target

clock frequency and then tuning. Each chip needs to be tested individually and has its

own settings for PST buffers. This testing is expensive because of tester time consumed

for each chip. In this work, a smart approach is proposed to limit statistical uncertainty in

path delays and bring them within safe limits by exploiting correlations among various

parameters. In addition, our problem formulation also gives parameters that are needed

to be measured to obtain optimal solution. A heuristic approach is also given.
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1 INTRODUCTION

W ITH advancements in technology, feature sizes are becoming smaller and smaller.

This is posing many difficulties in increasing system performance while main-

taining a desirable yield. Process variations and circuit aging effects require circuits to

be designed with large timing margins and therefore cause overdesign. Large margins

increase lower limit for clock period and make it further difficult to increase yield for high

performance designs. During last decade, researchers started to model delays as random

variables and this led to development of various Statistical Static Timing Analysis (SSTA)

methods. These methods helped to improve yield for high performance designs as they

significantly capture the variations which are random in nature.

Fig. 1: Post-Silicon Tunning (PST) buffer as in [3].

Several methods have been proposed for optimizing circuits before and after manu-

facturing. Using delay buffers to tune clock tree skews after manufacturing is one widely

adopted approach. Post-Silicon Tunable (PST) buffers are inserted into clock tree during

design phase. After manufacturing, delays of these buffers can be programmed to provide

some slack in critical paths. In [3], authors have proposed a delay buffer (clock vernier

device) design as shown in Figure 1. This buffer can be adjusted to different delay values

using configuration registers. Many researchers have worked on designing post-silicon

tunable clock trees using similar delay buffers.

Post-Silicon Tunable (PST) buffers are inserted into clock trees to balance clock skews

and thus clock scheduling as in [4]. Algorithms are developed in [5] to insert buffers in

clock trees that provide a guaranteed yield while minimizing buffers inserted or total

buffer area. The yield loss due to process variations and tuning buffer cost are considered

for gate sizing in [6]. In [7], a significant improvement is observed when clock tree designed

using proposed buffer placement and tuning system. In [8], searching a configuration tree

along with a graph pruning and buffer clustering using insertion algorithm is proposed for

efficient post-silicon tuning. In [12], efficient timing analysis for such circuits is proposed.
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Post-silicon testing methods are shown in [9] and [13] for circuits with tunable buffers.

Post-silicon tuning requires delays of critical paths to be measured. So far, this has

been done using frequency stepping methods as proposed in [4], [8], [9], and [13]. These

methods consume a lot of tester time and therefore are expensive. Liu and S. Spatnekar

in [10] have proposed an approach where some test structures are placed on the die

and delay variations measured from these test structures coupled with SSTA are used

to narrow down timing probability density function. In [1], a efficient framework (EffiTest)

is proposed to align delay measurements of critical paths and thereby enable parallel delay

measurements. It also proposes exploiting path correlations which allows us to measure

only some representative path delays and then determine delays of the remaining paths

using measured representative delays.

2 BACKGROUND AND PROBLEM FORMULATION

2.1 Background

Parameter variations are not completely random when considered in context with neigh-

boring elements. There is some spatial correlation among parameter variations depending

on their spacial proximity. Parameter variations can be generally categorized in two parts:

intradie variations and interdie variations. There are different techniques to incorporate

them when considering spatial correlation (as explained in [10]). The important aspect here

is that parameter variation in one circuit/gate can reveal some information about variations

in near by circuits/gates. Therefore, we do not need to measure delays of all critical paths

in a neighborhood if delay of one path in vicinity is measured. As long as our delays are

ensured to be within the bounds determined by clock period (Tclk), there is no need to

measure individual delays as in [1] and [10].

In high performance circuits, Post-Silicon Tunable buffers are used to provide room for

yield improvement after manufacturing. In such circuits, PST buffers are placed in clock

tree during design phase and are tuned after manufacturing to adjust clock delays. This

way circuits are given some slack to avoid timing violations. For example, Figure 2 shows

how PST buffer at D2 can be configured to reduce clock period (Tclk) from 5ns to 4ns. There

are various methods proposed for PST buffer tuning and [9] explains one such method.

2.2 Problem Formulation

SSTA is completed for the circuit before manufacturing. Due to practical constraints such

as area, power etc., the number of flip-flops having PST buffers is limited. The maximum

delay of circuit is represented by random variable x. Let vectorX = [x1, x2....xn] is the vector

of all circuit delays on a chip. Let S be the set of all representative paths that we need to

measure using tester and R is the set containing all remaining paths. The objective is to use

measurements from S to predict probability distribution of elements of R. In other words,
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Fig. 2: (a.) Clock Period (tclk) of circuit is 5ns. (b.) Clock Period (tclk) of circuit reduced to

4ns using PST buffer before D2 flip-flop.

the aim is to find probability distribution of R given S(P (R|S)) by exploiting correlation

information between parameters. We have parameter covariance matrix available as input.

In general, the kind of variation should be similar in all circuits in same neighborhood.

Using this technique, it is possible to predict parameter variation at different locations

as long as spatial correlation is provided by SSTA. There are, however, parameters such

as dopant concentration (NA) and oxide thickness (Tox), which do not show any spatial

correlation. Thus, prediction of such parameters is not possible. Splitting the set X into two

subsets R and S is also a major challenge. A potential approach to choose best possible S

set is also provided in this work.

3 STATISTICAL DELAY PREDICTION

3.1 SSTA Framework

STA provides single values for a delay using corner based method. However, this approach

is very pessimistic and results into overdesign. In contrast, SSTA provides probability dis-

tribution of the delay instead of a single value. Here, it is assumed that these distributions

are Gaussian defined by mean (µ) and variance (σ2) terms. However, later we will see

some equations for Skewed Gaussian distributions which also requires shape parameter

prediction.

Mean value (µ) is also called nominal value as it is the design value (i.e. value when

process variations are not present). We define µk as the mean vector and σ2
k as the variance

vector for all paths which need to be predicted (paths from set R). So we have mean and

variance vectors as
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µk =


µk1

µk2

...

µkn


and

σ2
k =


σ2
k1

σ2
k2

...

σ2
kn


Assume the number of elements of set S are N. All parameters from S are measured

using frequency stepping on tester as described in [9]. If Dt is the vector containing

measured delays and Dk is the delay vector to be predicted, then combined delay vector D

can be written as

D =

[
Dk

Dt

]

As these delays follow Gaussian distribution D ∼ N(µ, Σ2), where µ is the mean vector

of D and Σ is the covariance matrix of D. Individually, Dk ∼ N(µk, σ
2
k) and Dt ∼ N(µt, σ

2
t ).

Therefore µ and Σ can be written as

µ =

[
µk

µt

]

Σ =

[
σ2
k Σk,t

Σt,k Σt

]

with Σk,t = ΣT
t,k.

Dt can be measured by using frequency stepping methods and distribution for Dk given

Dt can be determined as another Gaussian distribution with mean and variance given as

µ′k = µk + Σk,tΣ
−1
t (dt − µt) (1)

σ′2k = σ2
k − Σk,tΣ

−1
t Σt,k (2)
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3.2 Objective Function and Challenges

While various techniques have been suggested to determined conditional distributions

using formulas given above, it is still challenging to split X into two parts: S and R.

It is possible that while some parameters are highly correlated and others have very

less correlation. Therefore, choosing which parameters should be measured and which

should be predicted is challenging for large number of parameters. Since our purpose

is to minimize the uncertainty associated with process variations, we need to focus

on variance(σ2) of predicted conditional distribution. Minimizing the variance means

reducing effects of process variations. In general, keeping variance within a certain bound

is acceptable and should result into significant yield improvement. We propose various

possible approaches to deal with this problem. These are explained below along with the

challenges that they pose. While first two methods are based on component selection,

remaining three are clustering based techniques.

3.2.1 Parameter Selection Method

In this approach, we predict distribution in terms of selection variable t′is. Assume ti is the

binary variable which represents whether a parameter xi is measured or not (predicted).

That means

ti =

1, if xi is measured

0, otherwise

Then we represent parameter set A as follows:

A =

[
K

T

]
=



x1(1− t1)
x2(1− t2)

..

xn(1− tn)

x1t1

x2t2

..

xntn


(3)

where K =


x1(1− t1)
x2(1− t2)

..

xn(1− tn)

 is the matrix of predicted parameters and T =


x1t1

x2t2

..

xntn

 is the

matrix of measured parameters.

Conditional variance (i.e. variance of probability distribution of K given T) can be

predicted using
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σ′2k = σ2
k − Σk,tΣ

−1
t Σt,k (4)

Now, we need to ensure that predicted variance is within a certain bound with

minimum number of parameters being measured. Mathematically,

minimize
n∑

i=1

ti such that σ′2k ≤ c ∀k ∈ [1, n]

where c is maximum variance threshold.

The challenge here is that finding matrix inverse Σ−1t as in equation (4) and therefore

variance prediction have to be done in terms of t′is to formulate constraints for SAT solver.

This results into very complex expressions where complexity increases exponentially as we

increase number of parameters.

3.2.2 Independent Component Analysis

In computational methods, Independent Component Analysis (ICA) is used to split a mul-

tivariate signal into several independent components. In one system, various parameters

have high probability of having some correlated components that influence the value

of parameters measured. Such components give rise to interdependence among various

parameters and result into high mutual information. However, to minimize measurement

efforts, it is desirable that only independent components are measured using tester and

correlation information of parameters can be used to estimate shared components. Each

component has its own variation and therefore, as uncertainty in individual components

reduces, variation in the parameter to be measured reduces.

Let us assume that a random variable x1 from parameter vector X is split into multiple

independent components [d1, d2...dn]T and coefficient vector C is [c1, c2...cn]T . Therefore,

parameter x can be determined from vectors C and D as shown below:

x1 = CTD = c1d1 + c2d2 + ...cndn

Now similarly, other parameters such as x2, x3... can also be split using ICA into a linear

combination of independent components. We know that, although individual components

from vector D are independent from each other (by definition), some of these components

are shared among various x’s as xi’s so that they become correlated. Therefore, if we can

measure these shared components (di’s), the variability of other parameters (x2, x3...) can

be reduced.

Here challenge of measuring independent components remains, because it is not clear

how to identify components (di’s) that are mutually shared among multiple parameters

and how to separately measure them.
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3.2.3 Minimum Clustering Method

In this method, covariance based clustering is done for each parameter. For each parameter,

we find a group of all other parameters having certain minimum covariance with this

parameter. Thus, we obtain n overlapping sets. Out of these n sets, we choose sets such

that whole parameter range is covered while minimizing the number of chosen sets. If ti is

the binary variable indicating the selection of a set such that

ti =

1, if set i is selected

0, otherwise.

Then our objective is to minimize
n∑

i=1

ti such that union of all selected sets gives

set A (∪ni=1 = A). This guarantees that we measure minimum number of variable such

that maximum coverage is obtained. Furthermore, from the cluster obtained, if there are

clusters with only one element, that implies that those parameters need to be measured

individually. Sufficient information about these parameters is not obtained from other

parameters (negligible correlation).

It is, however, possible that some variables show less correlation with other elements

and are not fit for cluster formation. Such outliers can deteriorate the results obtained from

above formulation. To handle such elements, we can further add constraint to maximize

the length of each cluster. To avoid scenario with all clusters having an average length,

penalty can be added to all clusters with less than a fixed number of elements.

3.2.4 Force Based Clustering

Force based clustering algorithm models the problem as a mechanical system where

various parameters are assumed as particles and covariance between two parameters

is a measure of attractive force among them. If we isolate all particles from external

environment and put them in a closed system, slowly all particles will arrange themselves

in a position of equilibrium where all forces will be balanced. That means total force

acting on each particle will be zero under equilibrium. This will result into clustering

as parameters with high covariance will stabilize closer together than ones with low

covariance.

This process will result into arrangement of all parameters into multiple clusters

depending upon covariance. In Figure3a, all particles are unorganized in the beginning

and in Figure 3b, all particles organize themselves in clusters. Some elements might not

fall within cluster thresholds and therefore need to be measured separately (e.g. node g in

Figure 3b). If a parameter has equal covariance with two other parameters belonging to

different clusters, they can be put in one group depending upon their vicinity with other

elements of that group.
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(a) (b)

Fig. 3: Force Based Clustering showing (a.) Initial placement of all parameters in system

irrespective of their covariance with other parameters. (b.) Final equilibrium position of

parameters classifying them in different clusters.

3.2.5 Heuristics Based Method

In a heuristics based method, for each parameter, a list of all parameters with certain

minimum covariance is maintained. This gives n overlapping sets. First we select the cluster

with maximum coverage (largest set). Now remove this set and all the sets corresponding

to its elements from potential clusters. Repeat this process until full coverage is achieved,

i.e., all selected clusters when combined give set A.

n∑
i=1

ti ≤ c

∪ki=1 = A

Although this method does not guarantee optimal clustering, it provides a fairly small

number of clusters with very good coverage. This algorithm is fast and can handle large

number of parameters.

From all cluster based methods, we can find the parameters with maximum neighbors

and measure those parameters to predict all other parameters directly linked to them. Once

we have found the suitable parameters to be measured, other parameters can be predicted

using these parameters. For parameters with Gaussian distribution, mean (µ′k)and variance

(σ′2k ) can be predicted using following equations:

µ′k = µk + Σk,tΣ
−1
t (dt − µt) (5)

σ′2k = σ2
k − Σk,tΣ

−1
t Σt,k (6)
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For Skewed Gaussian Distribution, measurement of mean (µ′k)and variance (σ′2k ) re-

mains same, but we also need to find the skew parameter. However, for simplicity, we limit

our discussion to Gaussian Distributions only. If needed, prediction of skew parameter can

be done using formulas given in [11] where in addition to mean (µ) and variance (σ)

information, skew of measured parameters also needs to be determined beforehand. Refer

to appendix for more information.

4 EXPERIMENTS

We have implemented heuristic method using C++. Minimum clustering method can also

be easily implemented with the help of a SAT solver. Heuristic method implemented using

C++ is computational inexpensive and gives fairly good results. For some sample data,

Table 1 shows the number of clusters obtained.

TABLE 1: Number of clusters using Heuristic Clustering

Correlation Group Number of Parameters Number of Clusters

ac97 ctrl syn 464 7

mem ctrl syn 2706 8

pcibridge32 syn 2508 12

s9234 64 1

s13207 384 1

s15850 327 2

s38584 314 1

usbfunct syn 450 9

It must be noted that for each cluster we need to measure only one parameter.

Therefore, number of clusters obtained from a given set of parameters is also the number

of measurements we need to do using tester. From Table 1, we can see that we are left with

far less parameters to be measured than total number of parameters. Furthermore, it is also

identified that it is the first parameter of each cluster that exhibits a covariance greater than

our threshold value with all the other parameters of the same cluster. Therefore, we have

to measure only first parameter of each cluster using tester and all the other parameters of

the same cluster can be predicted.

5 CONCLUSION

There are various techniques suggested here in this report. However, actual implementa-

tion of these techniques poses certain challenges. Without solving these challenges, it is not

possible to implement these approaches. Due to time limitations, only work on clustering

has been furnished. From the Table 1, it can be seen that number of parameters that need to

be measured according to our proposal is much lower than total number of parameters in
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the chip. In future, these techniques can be appropriately modified to achieve the desired

objective. Also as far as parameter measurement using tester is concerned, delay alignment

can be used to reduce the number of measurements further.
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APPENDIX A

SKEWED GAUSSIAN CONDITIONAL DISTRIBUTIONS

This has been discussed in detail in [11]. Section 5.2 in [11] discusses conditional dis-

tributions with due consideration to shape parameter that appears in Skewed Gaussian

Distribution.

Suppose Y is a Skewed Gaussian distributed function with Y1 and Y2 components

having corresponding µ, σ and α partitions.

Now if Y1 is measured, then Y2 can be predicted if there is a correlation between them.

Therefore, distribution of Y2 conditioned on Y1 = y1 is given as:

µ′k = µk + Σk,tΣ
−1
t (dt − µt)

σ′2k = σ2
k − Σk,tΣ

−1
t Σt,k

α′k = (α1 + ω1Σ
−1
t Σt,kω

−1
2 α2)/(1 + αT

2 Σ̄k.1α2)
1/2

where

ω1 =
√

Σt

ω2 =
√

Σk

and

Σ̄k.1 = ω−12 Σk.1ω
−1
2

Here µ′k and σ′2k are determined by normal conditional formulas as shown various

sections. However, α′k is shape parameter needed for finding shape of marginal distribution

of Y1.

Refer to [11] for more detailed discussion and parameter handling.
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