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Abstract 
 
Dynamic Traffic Assignment (DTA) models are widely in used in transportation system 

management. Calibration is a crucial step to improve reliability and accuracy of DTA 

models. We present a systematic framework to offline calibrate the supply and demand 

component of a DTA model. The essence of DTA model calibration is an optimization 

problem, aiming to minimize the discrepancy between field conditions and simulated 

traffic measurements. Instead of relying on a single traffic measurement, a multi-

objective function is formulated with different traffic measurements for the supply and 

demand component respectively. As the calibration process is a nonlinear and stochastic 

problem, heuristic algorithms are implemented as solution techniques. To overcome the 

limitations of standard Genetic Algorithm (GA) such as high running time, we 

introduce the Islands Genetic Algorithm (IGA) to solve the calibration problem. We 

conduct case studies with a synthetic network and a network of Munich, Germany, to 

validate the proposed methodology. The promising results indicate that IGA 

outperforms standard GA in terms of convergence speed and solution quality. 

Furthermore, we explore the application of Blockchain technology in DTA model 

calibration. 
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Chapter 1 Introduction 

 
Transportation system is a complex system in which goods, individuals, and 

environment interact with each other. To manage and operate transportation system 

effectively, Dynamic Traffic Assignment (DTA) models are widely used to estimate and 

predict traffic state dynamically. Calibration is an essential step to improve reliability 

of DTA models. The calibration process can be performed in offline or online context. 

In offline context, calibrated DTA models represent historical traffic patterns. Online 

calibration uses real-time data to capture dynamic traffic state. In this chapter, we give 

the overview of the static traffic assignment model and discuss its drawbacks. Then, we 

summarize the development of DTA models from the earlier stage to the analytical and 

simulation-based model. In the end of the chapter, we explain the motivation of this 

research and demonstrate the outline of this thesis. 
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1.1 Static Traffic Assignment Model 

Static traffic assignment models are based on traditional four-step procedure: trip 

generation, trip distribution, mode choice, and route assignment. Trip generation 

predicts trip frequency of origin or destination for traffic analysis zones (TAZ), 

considering socio-economic data such demographic features and travel activities. The 

corresponding Origin-Destination (OD) pairs are matched in the trip distribution that 

displays travelers from each origin to each destination. Mode choice determines trips 

with specific transportation modes. The final step is route assignment that refers to 

selecting routes in the network. The underlying assumption for static traffic assignment 

models is the steady OD flows. Popular assignment techniques include All-or-Nothing 

assignment, User Equilibrium (UE), and System Optimum (SO). All-or-Nothing traffic 

assignment approach allocates each trip between OD pairs with minimum travel cost. 

This method assumes unchanged travel time, without considering link capacity. UE 

assumes that travelers in the network have perfect knowledge about the travel cost. 

Under this assumption, travelers cannot reduce travel cost through route change. Under 

SO assignment, total system cost is minimized by cooperation and communication 

between drivers. In transportation planning and management, static traffic assignment 

models can be useful in long-term projects such as transportation infrastructure 

construction and land use planning. To capture time-varying transportation network, 

static traffic assignment models are unbale to capture driver behaviors. The modeling 

result of static assignment models is unreliable in the real time traffic management. 
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1.2 Dynamic Traffic Assignment Model 

1.2.1 Early Development 

The earlier attempts of DTA model are referred as “quasi-dynamic” assignment. Peeta 

and Mahmassani (1995) presented two assignment models with the assumption that the 

OD demand under SO and UE were known. In their research, the planning horizons 

were divided into several time intervals in which static assignment models were 

deployed. The solution algorithms for the two assignment models were based on an 

iterative search approach to improve the overall system performance. However, the 

division of interval was arbitrary: short interval was computational inefficient and long 

interval failed to capture the change of the network effectively. The use of static model 

for divided time intervals ignored the interaction between time horizons.  

 

The earlier efforts of DTA model moves from static traffic assignment models one step 

forward. But these models are still unable to reflect real-time change in traffic network 

and cannot precisely represent traffic pattern in a dynamic context. 

 

1.2.2 Analytical DTA Model 

Analytical DTA models reply on mathematical formulations to reach equilibrium 

conditions such as UE and SO. The analytical DTA model is solved by conventional 

algorithms that involve gradient calculation. 

 

Merchant and Nemhauser (1978), the pioneers of analytical DTA model, developed its 

formal theory in initial stage. A piecewise linear model with a single destination was 

solved by decomposition techniques. The global optimum of the single OD model was 
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solved by one-pass simplex algorithm. However, such analytical model failed to deal 

with multiple destinations and solution techniques were not computational efficient.  

 

With increasing complexity of network scale, analytical DTA models fail to replicate 

real-world situation. Analytical models may suit for modelling small traffic network, 

but with the increasing scale of the traffic network, the mathematical formulation is 

hard to perform. The demand to fully capture the individual behaviors under dynamic 

conditions in real-world called the development of simulation based DTA model. 

 

1.2.3 Simulation Based DTA Model 

The state-of-art DTA models are simulation based. Based on resolution of simulation 

scale, simulation-based models are divided into three categories: microscopic models, 

mesoscopic models, and macroscopic models. Microscopic models simulate at the 

highest level of detail, modelling individual driving behaviors and interactions between 

drivers. Individual driving behaviors include car-flowing, lane-changing, and 

acceleration and deceleration. Car-flowing models represent vehicle positions in a 

continuous traffic stream and describe actions of drivers when follow other vehicles. 

Macroscopic models treat traffic stream as a whole, formulating homogeneous or 

heterogeneous traffic flow. Mesoscopic simulation models are combinations of 

microscopic and macroscopic models, describing individual vehicles in a continuum 

traffic flow. There are various simulation tools available. PTV AG developed VISSIM 

for microscopic simulation and VISUM for macroscopic simulation. Other popular 

simulation tools include SUMO, AIMSUN, and Dyno-MIT. 

 

The basic structure of a simulation based DTA model consists of a supply component 

and a demand component, as shown in Figure 1.1 (Balakrishna et al., 2007b). The 

supply component represents network characteristics and simulates individual 
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behaviors including lane changing and car following. The demand component includes 

Origin-Destination (OD) flows. 

 

 
 

Figure 1.1 DTA Structure 
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1.3 Motivation 

The motivation of this research is to provide a systematic framework for offline DTA 

model calibration and to give corresponding solution techniques. The purpose of DTA 

model calibration is to minimize the discrepancy between observed and simulated 

traffic measurements. Instead of relying on a single traffic measurement such as the 

speed density relationship (Chiappone et al., 2016), we intend to use different traffic 

measurements for the supply and demand component, respectively. We follow an 

iterative procedure to jointly calibrate supply and demand parameters. Considering the 

complex nature of DTA model calibration, a multi-objective function is formulated with 

supply parameters as driver behaviors and link speeds and demand parameters as OD 

flows. This research contributes to the literature by implementing the Islands Genetic 

Algorithm (IGA) as the solution algorithm for the supply calibration. The application 

of IGA in DTA model calibration is very sparse despite of advantages such as avoiding 

premature convergence and improving computational efficiency. In this research, we 

use the same configuration for both IGA and GA and evaluate the robustness of IGA 

regarding standard GA as a benchmark in terms of convergence speed and solution 

quality. Two case studies were used to demonstrate the proposed methodology. 

Furthermore, we propose a blockchain approach in DTA model calibration, involving 

emerging transportation modes. 
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1.4 Thesis Outline 

The thesis is organized as follows. The chapter 2 summarizes literatures in DTA model 

calibration by discussing the calibration scope and solution techniques. The chapter 3 

provides the methodology of the calibration approach. The chapter 4 introduces two 

case studies using a synthetic network and a real-world network respectively. The 

chapter 5 explores the application of the blockchain technology in the DTA model 

calibration. The chapter 6 concludes the research findings and gives future research 

ideas. 
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Chapter 2 Literature Review 

 
DTA model calibration involves determining the calibration framework, formulating 

the optimization problem, and the selecting optimization technique. Previous work 

focused on calibrating either supply parameters or demand parameters, while recent 

work deals with calibrating supply and demand parameters jointly. In jointly calibrating 

DTA model, either an iterative approach or a simultaneous approach can be followed. 

In this chapter, we first give the overview of DTA model calibration framework in three 

sections: supply-demand calibration, supply calibration, and demand calibration. 

 

The nature of DTA model calibration is a complex stochastic problem. Traditional 

optimization algorithms with gradient calculation are not appropriate for such 

application. Various solution techniques without calculating derivatives are used for 

solving calibration problem, including the Kalman filtering algorithm, heuristic 

algorithms, and their variants. Among various DTA solution algorithms, GA is widely 

used in solving the complex optimization problem. We give the overview of different 

calibration techniques, in which the applicability of GA and its drawbacks of the 

standard GA are discussed, and then move to the IGA.  
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2.1 Calibration Scope 

2.1.1 Supply-Demand Calibration 

To jointly calibrate supply and demand parameters, the calibration framework of a DTA 

model can follow either an iterative approach or a simultaneous approach. 

 

An iterative calibration approach proposed by Toledo et al. (2004) consisted of two 

steps, starting with using aggregate data to estimate individual parameters such as 

driving behavior and route choice parameters, and following by using aggregate data 

to calibrate the simulation model as a whole. In calibrating the whole simulation model, 

a sequential solution approach was used: calibration of OD flows with fixed individual 

parameters and recalibration of individual parameters with fixed OD matrix. 

 

Due to complex interactions among various parameters of DTA models, Balakrishna et 

al. (2007b) proposed a feasible methodology for offline calibration of DTA models, 

estimating supply and demand parameters simultaneously. The author calibrated the 

supply parameters including link capacities and speed–density relationships and the 

demand parameters including OD flows, based on a case study on a network of Los 

Angeles, USA. 

 

In the same year, Balakrishna et al. (2007a) presented a methodology to simultaneously 

calibrate supply (i.e., car-following and lane changing behaviors) and demand (i.e., OD 

flows) parameters of a microscopic simulation model. The systematic calibration 

process in a microscopic simulator worked like a black-box, not relying on the 

traditional four-step transportation model. A case study using a network in Lower 

Westchester Country, New York, in this research indicated that even with limited sensor 

data, the calibration framework estimated all parameters efficiently. 
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Vaze et al. (2009) calibrated DTA model using multiple data sources: conventional data 

from loop detector and disaggregated data from emerging Automatic Vehicle 

Identification (AVI) technology. The author employed a microscopic simulator and two 

solution techniques (GA and SPSA) to jointly calibrate supply and demand parameters. 

The methodology was validated by a small synthetic network and a real network in 

Lower Westchester Country, New York, demonstrating that using multiple data sources 

significantly improved model accuracy, compared with using only loop detector data. 

 

Antoniou et al. (2011) presented offline and online DTA model by calibrating supply 

and demand parameters to replicate travel behavior and traffic dynamics in real world. 

The offline DTA calibration generally required data in the previous such as archived 

sensor data and data from emerging technologies including AVI systems. Based on the 

calibration results of offline DTA model, online calibration used small amount of real 

time data and a few estimated parameters. The case studies with network in Los Angeles, 

USA and Southampton, UK identified the proposed methods. 

 

Seyedabrishami et al. (2014) calibrated a macroscopic DTA model in the off-line 

context with supply and demand parameters under an iterative approach. The demand 

parameter (time dependent OD matrix) was estimated by a bi-level optimization using 

an Extended Gradient Method (EGM). Then the fine-tuned supply parameters were 

adjusted by trial-and-error method to match the congestion pattern following a three-

stage approach: single segment, sub-network, and the entire network. The proposed 

methodology was applied in Ardebil, Iran. Two calibration scenarios were presented: 

demand calibration only and joint supply and demand calibration. The promising 

calibration results indicated that the offline calibrated OD matrix can be used as a priori 

estimators for online calibration and jointly supply-demand calibration outperformed 

the demand only calibration. 
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2.1.2 Supply Calibration 

Abundant literatures focused on calibrating supply parameters. Qin and Mahmassani 

(2004) presented an operational framework for DTA model calibration with a transfer 

function in which lagged response of speed-density relationship were recognized and 

system noises were autocorrelated. The model input was the differenced equilibrium 

speed given density level and the model output was the differenced speed. The 

calibration results of Irvine network showed that adaptive DTA model with a transfer 

function outperformed static model such as Greenshields model. In the context of real-

time estimation and prediction, adaptive DTA model was more preferable and reliable. 

 

Flötteröd et al. (2011) presented a framework for DTA demand model calibration in 

individual level with Bayesian estimation where traffic measurements (traffic counts) 

were combined with a dynamic simulator-based of the modeler’s prior knowledge. The 

proposed methodology overcomes limitations in DTA model calibration such as many 

oversimplified assumptions and is compatible with equilibrium-based model. A case 

study using Zurich, Switzerland with calibration parameters of individual behaviors 

validated the effectiveness of the proposed methodology. 

 

Gangi (2011) extended a mesoscopic DTA model in the context of emergency 

conditions. In the modified DTA model, various indicators to quantify risk exposures 

of hazardous event were developed and multimode network was introduced. The 

proposed DTA model was able to handle large capacities of queue spillover and was 

applicable under various scenarios in the urban area. The case study with a network 

from a southern city in Italy evaluated the proposed methodology and identified that 

the extended mesoscopic DTA model was useful in decision making process of urban 

planning and management in order to mitigate potential risks. 
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Ben-Akiva et al. (2012) enhanced a mesoscopic simulation based DTA model to 

replicate highly congested urban networks with short links, complex intersections, and 

long queues. Within the Case study in Beijing network, the author considered 

overlapping routes, queue length, and spillbacks and captured pedestrians and bicycles 

impacts of the DTA model, inputting surveillance traffic data such as traffic counts and 

travel times. The calibrated results showed that the enhanced DTA model improved 

efficiency in traffic management and traffic planning for transportation authorities. 

 

2.1.3 Demand Calibration 

Abundant literatures dealt with calibrating demand parameters. Mahut et al. (2004) 

presented a calibration methodology in which DTA model iteratively reassign flow to 

paths and OD matrix of DTA model was calculated by turning counts from a trip 

generation and trip distribution model. The case study network using Calgary, Canada 

with precise traffic signal plans was developed and calibrated. The corresponding 

results indicated that the proposed methodology enhanced turning movement flows and 

path flows. 

 

Zhou and Taylor (2014) presented a queue based mesoscopic DTA model to enable 

quick simulation of a highly congested network. The mesoscopic DTA model 

incorporated Newell’s simplified kinematic wave model and OD demand calibration 

system to estimate dynamic flow. The OD demand matrix was determined by aggregate 

flow counts from queue points. The test results of a triangle regional model from 

Raleigh, North Carolina showed that the queue based DTA model was highly potential 

to facilitate real-time prediction in traffic management. 

 

Lu et al. (2015) proposed Weighted SPSA (W-SPSA), incorporating a weight matrix 

with SPSA to add network information in terms of spatial and temporal correlations 
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between model parameters and observed traffic measurements. W-SPSA, with the 

added correlation weight matrix helps in reducing the noise due to uncorrelated 

measurements. The W-SPSA can reduce the noise of traditional SPSA by considering 

spatial-temporal correlation with a weighted matrix. A synthetic network and the 

expressway network of Singapore were used to compare the performance of traditional 

SPSA and W-SPSA. The results showed that W-SPSA outperformed traditional SPSA 

in terms of convergence rate, model accuracy, and robustness due to the presence of a 

weighted matrix which reduced the computational dimensions and gradient error. 

 

Cluster-wise SPSA (c-SPSA) proposed by Tympakianaki et al. (2015), clusters the OD 

flows to reduce the gradient biasness by estimating the gradient separately for each 

cluster. The author proposed clustering based on spatial interactions of OD pairs using 

free-flow travel times to combine uncorrelated OD flows in a cluster to reduce the non-

linearity in estimation problem. 

 

Recently, Qurashi et al. (2019) proposed PC-SPSA by combining SPSA with Principal 

Components Analysis (PCA) to reduce the estimation problem dimensions and non-

linearity significantly. Within PC-SPSA, the estimation variables are transformed into 

lower dimension PC-scores based on the PC-directions estimated from the historical 

estimates of OD flows. A case study used a network of Vitoria, Spain, where PC-SPSA 

was able to improve calibration results significantly in terms of having faster 

convergence and finding better solutions. 
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2.2 Calibration Techniques 

2.2.1 Kalman Filtering 

Antoniou et al. (2007) presented an online calibration approach involving the three 

extensions of the Kalman filtering algorithm including the extended Kalman filter 

(EKF), the limiting EKF (LimEKF), and the unscented Kalman filter (UKF). The 

calibration results of a Southampton network in UK demonstrated that LimEKF 

significantly improves modeling accuracy and outperforms both EKF and UKF.  

 

Zhang et al. (2017) extended this research by presenting a new Constrained Extended 

Kalman Filter (CEKF) which computes the maximum a posteriori (MAP) estimates, to 

overcome problems in large-scale network calibration.  

 

2.2.2 Simultaneous Perturbation Stochastic Approximation 

SPSA proposed by Spall (1998), is part of stochastic approximation algorithms which 

are majorly used for large-scale, non-linear and stochastic problems having expensive 

objective function evaluations and noisy measurements. Within SPSA, the estimation 

variables are perturbed simultaneously and only two objective function evaluations are 

required to estimate the gradient (Tympakianaki et al., 2018). Once the gradient is 

evaluated, it is used to minimize the estimation variables by predefined step size. 

 

Many variants of SPSA are used in DTA model calibration. For example, PC-SPSA, a 

Combination of  SPSA and Principal Components Analysis (PCA) (Qurashi et al., 

2019). First, a set of PC-directions are estimated using a data matrix of historical 

estimates using singular value decomposition. Then, a set of PC-directions were 

reduced due to a property of PCA capturing most of the variance within the first few 
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PC components. The reduced PC-directions were used to transform estimation 

variables to a set of PC-scores. These PC-scores are then estimated using SPSA instead 

of directly estimating the estimation variables. Also, to use PC-scores for estimation 

using SPSA the perturbation and minimization is done as a percentage change in PC-

scores instead of addition or subtraction in generic SPSA.  

 

2.2.3 Machine Learning Techniques 

Machine Learning techniques are used in DTA model calibration. Antoniou and 

Koutsopoulos (2006) used machine-learning techniques (k-means, clustering, k-

nearest-neighborhood classification, and locally weighted regression) in estimation of 

speed-density relationship in the DTA model, especially in the simulation-based DTA 

model. The proposed methodology overcomes the limitations of classic paradigm for 

estimation speed-density relationship which is based on traffic flow theory. The case 

study of Irvine, California demonstrated that although machine leaning based approach 

did not provide clear insight of the traffic flow theory, it was more practical and efficient 

than classic method and was more flexible in using multiple data sources. 

 

Flötteröd et al. (2011) presented a DTA calibration framework using machine learning 

techniques for the Melbourne, Australia network in the case study, simulating over 2 

million travelers. Machine Learning techniques was applied to calibrate the 

fundamental diagram of traffic flow with historical observation traffic data. Other 

factors that influenced simulation results such as pedestrians and cyclists in the Central 

Business District (CBD) were considered. The calibration results indicated that the 

proposed methodology largely improved calibration quality, as indicated by 30% 

improvement in Root Mean Squared Error (RMSE). Therefore, the calibrated DTA 

model can represent the real-world traffic state and can apply in traffic management 

and operation in Australia.  
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2.2.4 Genetic Algorithm 

Among various optimization techniques, GA is widely used in DTA model calibration 

(Kim et al., 2005). For example, Ma and Abdulhai (2002) applied GA as the solution 

technique for calibrating a microscopic model, aiming at minimizing discrepancy 

between observed and simulated measurements of traffic counts. The corresponding 

results in their research showed robustness of GA for solving calibration problem. 

 

Runmei Li and Wei Li (2005) explored the GA in DTA model with variational equality 

and physical queue in the early stage. The author indicated that GA was in advantage 

of other local search methods in terms of the simple application and not requiring 

preliminary knowledge about the optimization problem. The Dynamic User Optimal 

(DUO) model was used to validate the effectiveness of the GA. By comparing the 

optimization performance with F-W algorithm, the GA can achieve the equilibrium of 

the network quicker. 

 

Wismans et al. (2011) formulated the Dynamic Traffic Management problem as a multi-

objective optimization problem and applied three evolutional algorithms: 

nondominated sorting genetic algorithm II (NSGA-II), the strength Pareto evolutional 

algorithm II (SPEA2), and the strength Pareto evolutional algorithm II+ (SPEA 2+) to 

obtain optimal solutions. External factors such as noise, climate, and congestion were 

also optimized. In comparing the optimization results of three proposed algorithms 

thorough different metrics, SPEA 2+ outperforms SPEA 2 in terms of all applied fitness 

measurement. However, it was hard to compare the performance of SPEA 2+ and 

NAGA-II due to the insensitivity to mutation rate in the experiments. 

 

Omrani and Kattan (2013) presented multi-criteria framework for simultaneously 

calibrating supply and demand parameters using GA which was run in parallel in a 
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computational cluster. A multi-objective optimization problem was formulated, aiming 

to minimize the difference between estimated and priori OD matrix while involving 

other factors such as traffic counts, turn counts, and link speeds. The author applied the 

proposed methodology using a large size network in Toronto, Canada, with 67426 

number of supply and demand parameters to be calibrated. The calibration results 

indicated that GA in high computational cluster was eligible to improve calibration 

quality in terms of speed and fitness value. 

 

Varia et al. (2013) optimized a congested urban network with signal parameters and 

DUE traffic assignment. The GA was applied as the optimization technique to find 

optimal signal settings (signal cycle times, green times, and phase sequence) and 

distribution factors of traffic flow. In the case study of Mumbai, India, the author 

explored different GA parameters including crossover and mutation operators to obtain 

the best solutions. The application of GA successfully obtained DUE condition and 

optimized signal settings to achieve travel times in the network. 

 

Cobos et al. (2016) proposed a memetic algorithm using NSGA-II for performing 

global search and Simulated Annealing (SA) for performing local search, called NSGA-

II-SA. Based on their case study for calibrating microscopic traffic flow models, the 

proposed algorithm outperformed Genetic Algorithm with Simulating Annealing 

(GASA) in terms of runtime and calibration measurements. 

 

2.2.5 Islands Genetic Algorithm 

Having realized the limitations of traditional GA including expensive computation 

(Henderson and Fu, 2004), various extensions of GA have been used to improve 

computational efficiency. Another limitation of standard GA is the premature 

convergence because individuals can be trapped in local dilemma. 
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IGA (Whitley et al., 1999) as a multi-population GA, has potential to overcome local 

hills and valleys and to provide the global optimum. The existence of semi-isolated 

islands contributes to genetic diversity due to independent evolution of each island and 

the migration process between islands to exchange information (Mühlenbein, 1992; 

Starkweather et al., 1991). The isolated islands avoid inbreeding, a biological behavior 

of producing off-springs from mating individuals with similar genes (Collins and 

Jefferson, 1991). Therefore, IGA can maintain genetic diversity in the population and 

prevent premature convergence compared to standard GA. 

 

However, there is no previous research using IGA for DTA model calibration. The 

applicability and scalability of IGA have been demonstrated in other fields, such as 

solving job scheduling problem (Kurdi, 2015) and optimizing the design of satellite 

separation systems (Hu et al., 2014).  

 

Calégari et al. (1997) applied island genetic algorithm in the field of telecommunication, 

aiming to optimize the setting cost of the transmitters within a given geographical area. 

The problem was formulated as an optimization problem to solve setting cover problem 

(i.e., usage of minimum transmitters to realize maximum area coverage). The IGA 

compared with standard GA, had advantages of fast execution and higher quality of 

results, as indicated in their research findings. 

 

Pereira and Lapa (2003a) applied IGA in optimization of nuclear reactor core design. 

The reactor cell parameters were dimensions, enrichment, and materials. And the 

restrictions of the optimization problem were thermal flux, criticality, and sub-

moderation. The aim of the optimization problem was to minimize the average peak-

factor of the nuclear reactor core. The author indicated that the implementation of the 

IGA can reduce computational effort without relying on high performance computer. 
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In the same year, Pereira and Lapa (2003b) applied IGA in the field of Nuclear Power 

Plant (NPP) Auxiliary Feedwater System (AFWS) surveillance tests policy. The aim 

was to optimize the system availability while considering several realistic factors: the 

aging effects, revealing failures, and distinct test parameters. The optimization results 

showed that IGA has excellent performance not only in computational time, but also 

the solution quality. 

 

Friend et al. (2008) presented an architecture to solve a channel allocation problem in 

the cognitive network design using IGA. The channel allocation problem was unique 

to Dynamic Spectrum Access (DSA). The heart of the cognitive problem was the 

cognitive controller and distributed optimization process. The IGA with the potential to 

solve computationally challenging problems in the cognitive architecture was used for 

distributed reasoning. The allocation results showed that the solution provided by IGA 

was close to the optimal solution in each simulation (25 repeated experiments).  

 

2.2.6 Simulated-Based Algorithm 

Many researchers in DTA model calibration applied several new techniques to address 

the complex problem. Zhang et al. (2017) applied metamodel Simulation-based 

optimization (SO) algorithms to address a calibration problem for a large-scale network. 

The metamodel included analytical structural problem-specific information. The 

proposed algorithm reduced 80% running time on average, validated by a synthetic toy 

network and a real network from Berlin, Germany. Osorio (2019) applied the SO 

algorithm to solve high dimensional calibration problem. The experiment results 

showed a 77% improvement of link counts compared with benchmark methods.   
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Chapter 3 Methodology 

 
In this chapter, a systematic framework for DTA model calibration with supply and 

demand parameters is presented. Due to the complexity of DTA model calibration 

problem, a multi-objective function is formulated to minimize discrepancy between 

simulation outputs and historical traffic data. Different traffic measurements are used 

for evaluation of the supply and demand component. The calibration process follows 

an iterative calibration process: calibration of supply parameters with fixed demand 

parameters, and recalibration of demand parameters (OD demand) with constant supply 

parameters. We also give the overview of SUMO, our DTA model simulator. 
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3.1 Calibration Framework 
We propose a systematic framework for offline DTA model calibration, as shown in 
Figure 3.1. We use archived traffic data to represent historical traffic patterns. A multi-
objective function is formulated to evaluate the calibration results (discrepancy 
between simulated and observed traffic measurements). Different traffic measurements 
are used for the supply and demand component. We follow an iterative calibration 
process: calibration of supply parameters with fixed demand parameters and 
recalibration of demand parameters with constant (calibrated values from previous step) 
supply parameters.  
 

 
Figure 3.1 DTA Model Calibration Framework 
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3.2 Problem Formulation 

The essence of DTA model calibration boils down to an optimization problem. The 

overall form of the objective function can be written as: 

𝑚𝑖𝑛
$,&

𝑧(𝑦$, 𝑦$*, 𝑦&, 𝑦&* , 𝑠, 𝑠,, 𝑑, 𝑑,) (1) 

s.t. 

𝑦$* = 𝑓2(𝑠, 𝑑, 𝑁) 

𝑦&* = 𝑓4(𝑠, 𝑑, 𝑁) 

where: 

𝑦$, 𝑦$*   = observed and simulated traffic measurements for the supply component 

𝑦&, 𝑦&*   = observed and simulated traffic measurements for the demand component 

𝑠, 𝑠, = current and prior supply parameters 

𝑑, 𝑑,  = current and prior demand parameters 

𝑓2	(·)  = simulation model that generates measurements for the supply component 

𝑓4	(·) = simulation model that generates measurements for the demand component 

N  = network 

 

The proposed Eq. (1) is a Non-deterministic Polynomial-time Hardness (NP-hard) 

problem. In computability and computational complex theory, Non-deterministic 

Polynomial (NP) is a complexity class including the complexity class P and the 

complexity class NP-complete (NPC) (Van Leeuwen and Leeuwen, 1990). In the 

complexity class P, problems can be solved in polynomial time, while in the complexity 

class NPC, problems cannot be solved in polynomial time. NP-hard is a complexity 

class in which problems are NPC or harder. Traditional optimization techniques which 

rely on gradient calculation are not appropriate for solving such problem. Heuristic 

algorithms which generate approximate optimum solutions, are viable options to solve 

the problem in an efficient (in polynomial time) manner.  
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3.3 Optimization Algorithm 

3.3.1 Genetic Algorithm 

A heuristic algorithm, GA, is employed as our solution technique with its applicability 

and scalability as discussed earlier.  

 

GA (Holland, 1975) is inspired by Darwin’s theory of natural selection. A population 

of individuals (solutions) is evolved in an iterative process through three genetic 

operators: selection, mutation, and crossover. Population size (number of individuals in 

each generation) depends on the complexity of the optimization problem. The Figure 

3.2 (Razali and Geraghty, 2011) presents how GA works. GA starts with a random 

initialization, a process that generates solutions in a predefined search space. An 

objective function is used to evaluate the fitness of each candidate solution. A selection 

operator enables selecting candidate solutions for the next generation, based on the 

fitness value of every solution in a population. Solutions with large fitness value have 

greater potential to be selected for a new generation.  

 

As a bio-inspired algorithm, a crossover operator and a mutation operator are used for 

a pair of parent solutions to generate off-springs (new solutions). At the crossover stage, 

off-springs inherit the genes from their parents. Crossover methods include single-point 

crossover, multi-point crossover, and uniform crossover. Single-point crossover choices 

the crossover point of both parents’ chromosomes randomly. Two off springs carry part 

of genetic information from parents’ chromosomes. Under multi-point crossover, there 

are several crossover points during genetic information exchange. Uniform crossover 

does not segment the chromosomes of the parent. Each gene of parents’ chromosomes 

treats separately to determine whether to include in the off springs.  
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At the mutation stage, genes are altered in a solution from their initial values, resulting 

in a different solution to improve diversity of genes. Mutation method include bit flip 

mutation, swap mutation, and inversion mutation. Bit flip mutation is a traditional 

method over bit strings. Each bit in a chromosome is acted independently with 

probability, a parameter of this operator. The common value for this parameter is 2
7
, 

where 𝑙 is the length of the bit string. Swap mutation selects randomly two positions 

of the parents’ chromosomes and interchanges the values. Inversion mutation select a 

section of the chromosome and inverts the section string. GA terminates when the best 

solution is found, or the maximum generations are reached. 

 

 

Figure 3.2 Genetic Algorithm Procedure 
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3.3.2 Island Genetic Algorithm 

IGA is a distributed multi-population GA where individuals can migrate between 

islands (Whitley et al., 1999). The population in IGA is partitioned into subpopulations 

called islands, as presented in Figure 3.3 (Protopapadakis et al., 2012). In each island, 

a standard GA is executed in sequence or in parallel. In addition to three basic operators 

in the standard GA, a migration operator exchanges a proportion of population between 

islands during the evolution: migration interval determines the number of generations 

at which the migration occurs; migration size is the proportion of population that 

migrate between islands. There are various topological migration models, including 

fully connected models, ring-shaped models, and star-shaped models (Meng et al., 

2017). Figure 3.4 shows the traditional island model. Islands in the search space connect 

with each other. Individuals can move between islands without constraints. Figure 3.5 

presents three types of island models. A fully connected model allows individuals to 

migrate without trajectory constraints, while individuals can only migrate to neighbor 

islands in a ring-shaped model. A star-shaped model consists of a main island and 

subordinate islands. Individuals in a star-shaped model pass the main island in the 

migration. 

 

Keeping the demand component constant, the supply calibration problem 𝐶 solved by 

IGA is formulated as: 𝐶(𝑧(𝑦$, 𝑦$*, 𝑠, 𝑠,|𝑦&, 𝑦&* , 𝑑, 𝑑,), 𝑆) , where 𝑧  is the objective 

function to evaluate performance of each solution 𝑠 and 	𝑆 is a search space (𝑠	 ⊂ 	𝑆). 

A Population 𝑃  in IGA is divide into 𝑁  subpopulations (islands), 𝑃2	𝑃4 …𝑃? . In 

generation 𝑖, each subpopulation evolves independently using three basic operators 

(selection, crossover, and mutation) and exchanges 	@
A
	× 𝛾  individuals using a 

migration operator, where 𝛾 is migration size. The termination criteria used in this 

research is 𝑖𝑓	𝑖 = 	 𝑖DEF, where 	𝑖DEF is the maximum iteration number.  
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Figure 3.3 Islands Genetic Algorithm Flowchart 



 27 

 
 

Figure 3.4 Traditional Island Model 
 
 
 

 

 

Figure 3.5 Three Types of Island Model 
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3.4 Simulator 

The state-of-art DTA models are simulation based. We deploy Simulation of Urban 

Mobility (SUMO) (Lopez et al., 2018) as our DTA model simulator.  

 

3.4.1 Introduction of SUMO 

SUMO is a free, portable, and open-source software developed by German Aerospace 

Center (DLR) to simulate traffic network of any size. The purpose of SUMO is to 

simulate how individual vehicle travels through a network with a given traffic demand. 

Users can simulate multiple transportation modes including vehicles, public transport, 

and pedestrians. SUMO as a traffic simulation tool with the support of programming 

language Python, can be used in route assignment and emission calculation. With 

integrated Graphical User Interface (GUI) tool, users can visualize the simulation. 

SUMO provides various APIs which allow users to control the simulation remotely. 

Table 3.1 (Lopez et al., 2018) presents the basic components in SUMO. 

 

Table 3.1 SUMO Components 

SUMO  Simulation Command 

GUISIM  Simulation with GUI 

NETCONVERT Import and convert network 

NETGEN Network Generator 

OD2TRIPS Convert OD matrices to trip file 

JTRROUTER Route generator based on turning ratios at intersections 

DUAROUTER routes generator based on a dynamic user assignment 

DFROUTER route generator with use of detector data 

MAROUTER macroscopic user assignment based on capacity functions 

NETEDIT Visualization of the network 
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3.4.2 Features of SUMO 

The primary feature of SUMO is explicit microscopic simulation: each vehicle is 

modelled explicitly and travels through traffic network individually with its own route. 

Vehicle movement in SUMO is space-continuous and time-discrete. SUMO can 

simulate different vehicle types, multiple lanes, and different ROW rules. The 

simulation of SUMO is very fast and can work with other software during run-time, 

without limitations of the network size and vehicle numbers. SUMO can import 

network from other software such as PTV VISSIM, MATsim, and OSM. The module 

Traffic Control Interface (TraCI) can facilitate the online interaction for simulation 

control.  

 

3.4.3 Workflow of SUMO 

The workflow of SUMO in DTA model calibration is presented in Figure 3.6. There are 

three essential components in simulation: historical traffic data, OD demand, and urban 

network. The basic files required in DTA model calibration including a network file and 

a trip file are described below. 

 

Figure 3.6 SUMO Workflow 
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Network files in SUMO consist of nodes and edges to represent intersections and streets. 

The attributes of edges include number of lanes, width, and maximum speed. The right 

of way (ROW) rules are included in the SUMO network to determine the driver 

behavior. As described in Table 3.1, we use NETCONVERT to import networks from 

various sources such as Open Street Map (OSM) and other simulation software (i.e., 

PTV VISSIM and MATsim). In case of missing traffic data in the network, 

NETCONVERT can refine the network in the simulation. We use NETEDIT to create 

and edit road network. The basic functions of NETEDIT include editing junctions and 

links. However, even with the help of NETCONVERT and NETEDIT, a desirable 

network involves intensive manual editions. The result of this step is the network file 

in the format of xml. 

 

With a given network, traffic demand is essential in simulation. In SUMO, traffic 

demand contains information such as arrival and departure time, origin and destination, 

and transportation mode. We use OD matrix to describe traffic demand between traffic 

analysis zones, which is a required file in SUMO simulation. OD matrix can generate 

manually or import from other applications, but it cannot be directly used in SUMO 

and should be converted to trip files with the help of OD2TRIPS, a tool assigning 

individual trips in random or uniform distribution. Other methods in generating trips 

include agent-based demand model and randomTrips.py. With the given OD demand, 

we use DUAROUTER to facilitate the traffic assignment in the network. Traffic 

assignments are based on different principles, such as UE and Stochastic User 

Equilibrium (SUE), Dynamic User Equilibrium (DUE), and All-or-Nothing. The output 

of traffic assignment in SUMO is the route file. In summary, the results of this step are 

the trip file and the route file in format of xml. 
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Chapter 4 Case Study 

 
This chapter presents two case studies to demonstrate the proposed methodology. 

Specifically, our case studies mainly focus on supply calibration, with assumption of 

given demand. The first case study uses a synthetic network and the second case study 

uses a real-world network from Munich, Germany. The overview of the network 

properties is given, and the calibration process is described. We discuss the 

corresponding calibration results to compare the performance of IGA and the standard 

GA. 
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4.1 Synthetic Case Study 

The objective of the synthetic network is to validate the proposed methodology and to 

compare the calibration results of IGA and standard GA in terms of convergence speed 

and solution quality. After validating the robustness of IGA in DTA model calibration 

using this synthetic network, we extend network scale to the real-world case. 

 

4.1.1 Network Description 

The synthetic network was created by using NETEDIT in SUMO, is shown in Figure 

4.1. The network has a uniform pattern and a simply graph, consisting of 16 nodes and 

48 links. To simplify the traffic analysis, we regard each individual node as one traffic 

analysis zone (TAZ), with 256 TAZ in total. 

 

 
Figure 4.1 Synthetic Network 
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4.1.2 Calibration Parameter 

In our synthetic case study, we calibrate the car-following model with parameters of 

acceleration, deceleration, and driver imperfection. Krauß (1998) described various 

existing car-following models and developed Krauss car-following model. In traffic 

flow theory, there are three traffic states: free flow, synchronized flow, and jammed 

flow. The transition phase of different traffic states can be described as first order 

transition phase. The car following models capture the properties of phase transition 

first. The author classified different car-following models based on acceleration and 

deceleration characteristics into three categories. The macroscopic Kerner-Konhaeuser-

model and microscopic Bando-model were in category I with features including 

realistic acceleration and deceleration, correctly modeling of jams, and jamming 

transition is the first order phase transition. The Nagel-Schreckenberg model with 

features of unbounded deceleration and no phase transition in jamming phase was in 

category II. The Fukui-Ishibashi model with features of unbounded accelerations and 

no jams was in category III. The Krauss model considers the phenomenon of 

synchronized flow with assumptions that drivers can give up speed in case of highly 

jammed traffic state. Therefore, the Krauss model considers effects of limited 

acceleration and deceleration of vehicles. We use the Krauss model in SUMO to 

calibrate the synthetic network, aiming to reproduce travel times between OD pairs. 

 

4.1.3 Calibration Process 

We use a genetic algorithm function and an islands genetic algorithm function from the 

Package ‘GA’ in R (Scrucca, 2013). The calibration procedure for the supply 

component consists of four steps: 
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Step 1: Set configuration for IGA and GA 
Table 4.1 and 4.2 present configuration for IGA and GA in the supply calibration 
procedure respectively. For comparing the performance of IGA and GA in the case 
study, basic parameters such as population size, are same for both algorithms. IGA 
requires additional settings for a migration operator with parameters of migration rate 
and interval. In setting configuration for IGA and GA, there are no clear guidelines 
for an optimal combination. The rule of thumb is that the best and mean fitness value 
of IGA and GA should converge before termination. 
 

Table 4.1 IGA Configuration for Synthetic Network 

Number of islands 3 

Chromosome Acceleration, deceleration, and driver imperfection 

Population size 60 

Selection Fitness proportional selection with fitness linear scaling 

Crossover Local arithmetic crossover 

Mutation Uniform random mutation 

Crossover probability  0.8 

Mutation probability 0.1 

Migration rate 0.1 

Migration interval 5 

Maximum iteration 60 

 
 

Table 4.2 GA Configuration for Synthetic Network 

Chromosome Acceleration, deceleration, and driver mmperfection 

Population size 60 

Selection Fitness proportional selection with fitness linear scaling 

Crossover Local arithmetic crossover 

Mutation Uniform random mutation 

Crossover probability  0.8 

Mutation probability 0.1 

Maximum iteration 60 
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Step 2: Execute the microscopic simulation model in SUMO 

In the synthetic case study, we require a network file, a trip file, and an additional file 

for running microscopic simulations. The additional file encoded in XML format 

contains the calibrated parameters including acceleration, deceleration, and driver 

imperfection that are generated by IGA and GA. The trip file is converted from OD 

matrix that are calibrated in the demand component. The network file that describes 

network properties keeps constant in this case study. 

 

Step 3: Evaluate model output 

After running simulations, SUMO generates output files with OD travel time. In this 

case study, we use Mean Squared Error (MSE) to assess the fitness value of each 

solution generated by IGA and GA. The formulation of MSE is: 

𝑀𝑆𝐸 = 	 2
A
∑ (𝑦$* − 𝑦$)4	A
KL2 (2)  

where 𝑦$* and 𝑦$ are simulated and observed travel time, respectively. 

 

Step 4: Terminate calibration process 

The IGA and GA terminate when reaching the maximum iteration number (e.g., 60 

generations). 

 

4.1.4 Calibration Result 

Figure 4.2-4.6 present the calibration results of IGA and the standard GA as indicated 

by MSE, the fitness value. Figure 4.2 shows the fitness value of best solution (during 

60 generations) using IGA with three islands. In the process of evolution, three 

subpopulations converge in the generation of 42, with the fitness value of 13.93. When 

comparing the evolution speed of individual island, three islands find the best solution 

approximately at the same time with the island 1 slightly faster. Figure 4.3-4.5 show 
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the convergence of the best and mean fitness value of each island. All three islands 

converge their average and best fitness value before termination. 

 

Figure 4.6 shows the performance of standard GA with a single population using same 

configurations of IGA. The standard GA finds its best solution after 46 iterations which 

is 4 generation slower than the IGA. Overall, IGA outperforms the standard GA in terms 

of convergence speed.  

 

In our synthetic case study, however, the solution quality and the convergence speed of 

IGA and of the standard GA do not show large difference. The reason is probably due 

to the simplicity of the synthetic network. We explore the performance of IGA and the 

standard GA in the real-world network (the second case study) further.  
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Figure 4.2 The Synthetic Case Study: Performance of IGA 
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Figure 4.3 The Synthetic Case Study: Performance of Island 1 
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Figure 4.4 The Synthetic Case Study: Performance of Island 2 
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Figure 4.5 The Synthetic Case Study: Performance of Island 3 
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Figure 4.6 The Synthetic Case Study: Performance of Standard GA 
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4.2 Munich Network Case Study 

After calibrating the synthetic network, we conduct our second case study on a network 

of Munich, Germany. We give the description of the network feature and illustrate the 

calibration parameters and procedure. Afterwards, we discuss about the calibration 

results. 

 

4.2.1 Network Description 

A metropolitan urban network of Munich consists of a dense city center, surrounding 

arterials, and a highway bypass, as shown in Figure 4.7. There are 2408 links about 946 

km in length and 1475 nodes in the network model. For the traffic analysis purpose, the 

network is divided into 61 traffic analysis zones, generating an OD matrix with 3721 

OD pairs. 

 

 
Figure 4.7 Munich Network 



 43 

4.2.2 Calibration Parameter 

In this case study, we calibrate link speeds as the supply parameters and keep the 

demand parameters (OD flows) as fixed. The proposed methodology is to iteratively 

calibrate the supply and demand component with a multi-objective function, i.e., travel 

time for measuring the supply component and traffic counts for measuring the demand 

component. However, we focus mainly on the supply calibration with traffic 

measurement of travel time. Additionally, due to unavailability of real-world data, we 

build the experimental data synthetically, as suggested by Antoniou et al. (2016) 

 

4.2.3 Calibration Process 

Step 1: Set configuration for IGA and GA 

Table 4.3 and 4.4 present configuration for IGA and GA in the supply calibration 

procedure respectively. For comparing the performance of IGA and GA in the case 

study, basic parameters (e.g., population size) and basic operators (e.g., selection, 

mutation, and crossover), are same for both algorithms. IGA requires additional settings 

for a migration operator with parameters of migration rate and interval. Considering the 

increasing network size compared with the synthetic network, we increase the 

population size to 200 for both IGA and GA. We introduce four islands in this case 

study which means that each island contains 40 chromosomes in each generation. 

 

In setting configuration for IGA and GA, there are no clear guidelines for an optimal 

combination. The purpose of our case study is to compare the performance of IGA and 

the standard GA in DTA model calibration. Therefore, we use the same settings for both 

algorithms. The rule of thumb for GA is that the best and mean value of GA should 

converge before termination of the evolution process. 
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Table 4.3 IGA Configuration for Munich Network 

 

Number of islands 4 

Chromosome Link speeds 

Population size 200 

Selection Fitness proportional selection with fitness linear scaling 

Crossover Local arithmetic crossover 

Mutation Uniform random mutation 

Crossover probability  0.8 

Mutation probability 0.1 

Migration rate 0.1 

Migration interval 5 

Maximum iteration 100 

 

Table 4.4 GA Configuration 

 
Chromosome Link speeds 

Population size 200 

Selection Fitness proportional selection with fitness linear scaling 

Crossover Local arithmetic crossover 

Mutation Uniform random mutation 

Crossover probability  0.8 

Mutation probability 0.1 

Maximum iteration 100 

 

Step 2: Execute the mesoscopic simulation model in SUMO 

In this case study, SUMO requires a network file and a trip file for running mesoscopic 

simulations. A Munich network file encoded in XML format contains the calibrated link 

speeds that are generated by IGA and GA. A trip file is converted from OD matrix that 

are calibrated in the demand component. The supply calibration is to find a set of speeds 

by IGA and GA for the network, while the trip OD matrix remains as constant.  
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Step 3: Evaluate model output 

After running simulations, SUMO generates output files with travel time. RMSE is 

used to assess the fitness value of each solution generated by IGA and GA. The 

formulation of RMSE is: 

𝑅𝑀𝑆𝐸 = O2
A
∑ (𝑦$* − 𝑦$)4A
KL2 	 (3)  

where 𝑦$* and 𝑦$ are simulated and observed travel time, respectively. 

 

Step 4: Terminate calibration process 

We use the maximum iteration number (e.g., 100 generations) as the termination 

criterion for both IGA and GA 

 

4.2.4 Calibration Result 

The results of the supply component calibration with Munich network are presented in 

Figure 4.8-4.13. Figure 4.8 illustrates the calibration results using IGA with 4 islands 

after 100 generation. In the process of evolution, four subpopulations converge in the 

generation of 62, with the fitness value of 13.26. The subpopulation 2 evolves the fastest, 

converging in the generation of 41, while subpopulation 1 converges the slowest, 

converging after 62 iterations. Figure 4.9-4.12 show the convergence of the best and 

mean fitness value of each island. All four islands converge their average and best 

fitness value before termination. 

 

The performance of standard GA with a single population is shown in Figure 4.13. The 

standard GA gives its best solution after 71 iterations. The mean and best fitness value 

converge in the generation of 79. When comparing the performance of IGA and 

standard GA in terms of convergence speed, IGA outperforms the standard GA which 

is 12.6% slower than IGA. In addition, the solution quality of IGA is slightly better than 
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standard GA, with fitness values of 13.26 and 14.67, respectively. Therefore, IGA 

improves efficiency and accuracy in DTA supply model calibration. 

 

 
Figure 4.8 The Munich Case Study: Performance of IGA 
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Figure 4.9 The Munich Case Study: Performance of Island 1 
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Figure 4.10 The Munich Case Study: Performance of Island 2 
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Figure 4.11 The Munich Case Study: Performance of Island 3 
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Figure 4.12 The Munich Case Study: Performance of Island 4 
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Figure 4.13 The Munich Case Study: Performance of Standard GA 
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Chapter 5 Blockchain 

 
In real time calibration of DTA model in the future, we will require traffic data from 

various mobility modes. The Blockchain technology provides a new way in traffic data 

management. First, we introduce three new transportation modes in this chapter: Urban 

Air Mobility (UAM), Autonomous Vehicle (AV), and Shared Mobility. Afterwards, we 

give the overview of Blockchain technology and its application to facilitate online 

calibration of DTA model. 
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5.1 New Mobility Mode 

New transportation modes will reshape the way of travelling in the future. We introduce 

three mobility modes: Urban Air Mobility, Autonomous Vehicle, and Shared Mobility. 

We give the overview of these new mobility modes regarding their features and market 

potentials. Afterwards, we focus on the modelling efforts on these new mobility 

concepts.  

 

5.1.1 Urban Air Mobility 

The increasing urbanization and congestion problems bring the emergence of Urban 

Air Mobility (UAM), a new solution for urban travel. The UAM serves as a flying taxi 

in the urban area, easing the congested urban network by adding a third dimension. The 

service provided by UAM is appealing because it saves a lot of time for commuters, 

compared with conventional transportation mode such as bus and train. UAM has 

potential to become the fastest transport option among others by getting rid of 

congestion. The on-demand service in UAM reduces waiting time and ensure a pleasant 

travel experience. UAM has large market potential, as predicted by Roland Berger 

(2018) that the estimated number of passenger drones worldwide would be 98,000 in 

2050 due to the implementation of electric propulsion, autonomous flight technology, 

and 5G technology. 

 

Modelling of UAM has received much attention. Rothfeld et al. (2018) presented a 

methodology for the multi-agent transport simulation, with two examples (as shown in 

Figure 5.1) of UAM network type used in their research. The two scenarios were built 

on Sinoux Falls under MATsim. The first example follows decentralized network 

structure in which UAM service is point to point. The network structure of the second 

scenario has a central station and UAM flights through the central station every time. 
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Figure 5.1 Two Scenarios of UAM Simulation 

 

Roland Berger (2018) provided a case study of UAM in Munich, Germany, as shown 

in Figure 5.2. The point of interests (POI) of their research include key traffic nodes 

such as airports and city centers in the Bavarian metropolitan area. Potential landing 

sites for UAM are identified depending on the population density and available 

infrastructure in four cities (Munich, Ingolstadt, Augsburg, and Rosenheim). The 

research findings indicated that there would be 100 drones in 2030 and 800 drones in 

2050 and the switching rate would be 5% an average in 2050. 
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Figure 5.2 UAM Structure of the Munich Case Study 

 

5.1.2 Autonomous Vehicle  

The progress of Autonomous Vehicle (AV) is promising worldwide. Many investors 

such as venture capitals regard AV as a highly potential market. For example, the 

American startup Nuro received nearly one billion US dollars from Japan’s Softbank 

(Roland Berger, 2019). In addition to investment activities, transport modelling of AV 

is an attractive area in academia. Hörl et al. (2018) conducted a case study in Zurich, 

Switzerland, simulating automated fleet vehicles in MATsim. 
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5.1.3 Shared Mobility 

Sharing is a new trend in the transportation industry. New business models involving 

bike sharing, ride sharing, and scooter sharing are transforming the traveling habits. 

The sharing mobility grows rapidly, with 20%-30% increase annually (Roland Berger, 

2014). 

 

Martinez et al. (2015) presented an agent-based simulation model to evaluate the shared 

mobility in a central dispatching system. The simulation model replicated a typical 

working day in real-time, by setting rules for spatial and temporal matching between 

passengers and shared vehicles. A case study in Lisbon, Portugal, was implemented to 

evaluate the simulation results of the shared mobility, with the measurements of waiting 

time and demand elasticity. The results recognized the effectiveness of the proposed 

model which was able to incorporate characteristics of involved agents.  
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5.2 Blockchain 

A Blockchain is a decentralized and distributed ledge that links by a list of blocks 

(Zyskind et al., 2015). The blockchain technology has been widely applied in the 

finance industry. Many companies are exploring the potential of Blockchain technology 

in the transportation industry. Roland Berger (2017) analyzed a case study in Belgium 

to facilitate multi-modality using Blockchain technology, as shown in Figure 5.3 

(Roland Berger, 2017). Belgium has the objective to achieve multi-modality in the 

entire country due to the increasing problem of traffic congestion. The difficulty to 

achieve the objective is that there are various companies providing transportation 

services such as public transportation companies (i.e., SNCB, STIB, Tec, and De Lijn) 

and numerous private companies (i.e., Drive Now and Cambio Car Sharing). Sharing 

data bases of these transportation service providers can be costly under other data 

management system. Blockchain as a decentralized system can be implemented to 

reduce operation and maintenance cost. 

 

 

 

Figure 5.3 A Blockchain Approach for Multi-Modality in Belgium 
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When considering DTA model for traffic management and operation, Blockchain 

technology provides a shared data bases involving different transportation mode 

provided by numerous service providers. The shared data base can be used for online 

calibration of the DTA model, as presented in Figure 5.4. 

 

 
Figure 5.4 Application of Blockchain in DTA Model Calibration 
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Chapter 6 Conclusion 

 
A systematic framework for offline DTA model calibration is presented. The calibration 

problem is formulated as a multi-objective function with different traffic measurements 

for the supply and demand component respectively. Considering that the nature of 

model calibration is a stochastic problem, we introduce IGA, a heuristic optimization 

algorithm, to facilitate the calibration process for the supply component.  

 

A synthetic case study and a case study on a network of Munich are used to validate the 

proposed methodology. We calibrate the car-following model for the synthetic network 

and the link speeds for the Munich network. The calibration results indicate that IGA 

significantly improve model accuracy. In addition, IGA outperforms standard GA with 

the same configuration. Thanks to the existence of the isolated islands, IGA maintains 

genetic diversity and therefore evolves much faster than the standard GA. With the 

enlarged search space, IGA overcomes the problem of trapping in local dilemma that 

often occurs to the standard GA, thus providing nearly global optimum solution. 

 

In this research, our case study is based on a synthetic scenario due to absence of 

observed traffic data. Further research is required to collect real traffic data and to 

extend the offline calibration framework to online context. Simultaneous calibration of 

DTA model using IGA is of our interest. In the future, various transportation modes are 

available. Blockchain technology provides a way for traffic data management. The 

Blockchain based traffic data system can be used for online DTA model calibration. 
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Appendix 

 
This appendix presents some codes used in DTA model calibration. We connect two 
programming languages R and Python in setting simulation. 
 
Python Script for Generation of the Synthetic Network 
 
#generate trips 
def van_trips(Paths,Network_char,Network_var,Network_no): 
 
    Network_path    = Paths["pathtoCaseOutput"] + str(Network_no) + '/' 
    Net_file_path   = Network_path + str(Network_no) + '.net.xml' 
    Van_Trip_file   = Network_path + str(Network_no) + 'van.trip.xml' 
    csv_file        = Network_path + str(Network_no) + 'van_trips.csv' 
     
    Van_Trips = 'python ' '"' + Paths["pathtoSUMO"] + 'tools/randomtrips.py" '\ 
            ' -n ' '"' + Net_file_path + '"'\ 
            ' -b ' + Network_var["beginSimtime"] + ' -e ' + 
Network_var["endSimtime"] +\ 
            ' --persontrips ' ' -p '+ Network_var["Random_van_trips"] + \ 
            ' -o ' '"' + Van_Trip_file + '"' 
     
    subprocess.run(Van_Trips, shell=True) 
    bs.xml2csv(Paths, Network_var, Van_Trip_file, csv_file) 
    van_trips = pd.read_csv(csv_file, sep = ';', skiprows =0, header=0) 
    return van_trips 
 
#generate routes 
def van_routes(Paths,Network_char,Network_var,Network_no): 
 
    Network_path    = Paths["pathtoCaseOutput"] + str(Network_no) + '/' 
    Net_file_path   = Network_path + str(Network_no) + '.net.xml' 
    Van_Trip_file   = Network_path + str(Network_no) + 'van.trip.xml' 
    Van_route_file  = Network_path + str(Network_no) + 'van.route.xml' 
    csv_file        = Network_path + str(Network_no) + 'van_routes.csv' 
     
    Van_route = '"' + Paths["pathtoSUMOBIN"] + 'duarouter" --no-step-log'\ 
            ' -n ' '"' + Net_file_path + '"' ' --route-files ' '"' + Van_Trip_file + '"'\ 
            ' -o ' '"' + Van_route_file + '"' 
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    subprocess.run(Van_route, shell=True) 
    bs.xml2csv(Paths, Network_var, Van_route_file, csv_file) 
    van_routes = pd.read_csv(csv_file, sep = ';', skiprows =0, header=0) 

return van_routes 
 

 
 
Python Script for Execution of SUMO Simulation 
 
#convert net.csv to net.xml 
    xml_output = Paths['ScenarioDataFolder'] + str(i) + '.net.xml' 
    csv_input = Paths['ScenarioDataFolder']  + str(i) + '_net.csv' 
    xml_schema = 'net_file.xsd' 
    bs.csv2xml(Paths, Network_var, xml_output, xml_schema, csv_input) 
 
#run sumo and generate vehroutes.xml 
    Net_file_path= Paths['ScenarioDataFolder'] + str(i) + '.net.xml' 
    Trip_file_path= Paths['ScenarioDataFolder'] + 'Munich.trips.xml' 
    VehRoutes_file_path= Paths['ScenarioDataFolder'] + str(i) + '.vehroutes.xml' 
     
    Routes = 'sumo' + ' -n ' '"' + Net_file_path + '"' \ 
            ' -r ' '"' + Trip_file_path + '"'\ 
            ' --vehroutes ' '"' + VehRoutes_file_path + '"'\ 
            ' --mesosim ' 
 
    subprocess.run(Routes, shell=True) 
 
#convert vehroutes.xml to vehroutes.csv 
    xml_file = Paths['ScenarioDataFolder'] + str(i) + '.vehroutes.xml' 
    csv_file = Paths['ScenarioDataFolder'] + str(i) + '_vehroutes.csv' 
    bs.xml2csv(Paths, Network_var, xml_file, csv_file) 
 
if __name__ == "__main__": 
   main(sys.argv[1]) 
 
 
Rscript for DTA Model Calibration 
 
f <-  function(x){ 
  i<- rnorm(1) 
  net2c$lane_speed <- as.character(ceiling(x)) 
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  net<-rbind(net2c,netX) 
  file_net<-paste(i,"_net.csv",sep = "") 
  write.csv2(net,file= file_net ,row.names = F) 
  sumo <- paste("python Munich.py", i) 
  system(sumo) 
  file_vehroutes<-paste(i,"_vehroutes.csv",sep = "") 
  simulated_vehroutes<-read.csv2(file = file_vehroutes, colClasses = 'character') 
  simulated_vehroutes$travel_time <- 
as.numeric(simulated_vehroutes$vehicle_arrival) - 
as.numeric(simulated_vehroutes$vehicle_depart) 
  sim <- simulated_vehroutes %>% 
    group_by(vehicle_fromTaz, vehicle_toTaz) %>% 
    summarize(t = mean (as.numeric(travel_time))) 
  RMSE<-rmse(sim$t, obs$t) 
  file_vehroutesxml<-paste(i,".vehroutes.xml",sep = "") 
  file_netxml<-paste(i,".net.xml",sep = "") 
  file.remove(file_net) 
  file.remove(file_vehroutes) 
  file.remove(file_vehroutesxml) 
  file.remove(file_netxml) 
  return(-RMSE) 
} 
 
 
Rscript for Execution of GA and IGA 
 
GA <- ga(type = "real-valued", fitness = f, 
          lower = low, upper = up,  
          popSize = 200, maxiter = 100, 
          parallel = T) 
 
IGA <- gaisl(type = "real-valued", fitness = f, 
          lower = low, upper = up,  
          popSize = 50, maxiter = 50, 
          numIslands = 4) 
 


