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Abstract

The objective of this thesis is to simulate the propagation of sound waves in virtual environ-
ments, in order to enable the auralization of diffraction effects. To accomplish this efficiently,
without having to simulate each source signal individually, the acoustic domain can be treated
as a linear, time-invariant (LTI) system. As such, it is fully describable by its impulse response,
which embodies the reverberation characteristics of the simulated environment. These can then
be transferred to arbitrary source signals via a convolution operation, once the impulse response
has been simulated using the ADER Discontinuous Galerkin (DG) method. This approach not
only significantly accelerates the auralization, it also incorporates important physical effects,
such as refraction and diffraction. Furthermore, to feature the construction of rudimentary
environments, we implement reflecting and absorbing boundaries. Associated with this, our im-
plementation adapts the domain grid in such a way, that simple planar boundaries can be defined
everywhere within the domain. The results of our method are validated by convergence tests,
which base on simulations for which the analytical solution is known and can be compared to the
numerical measurements. Altogether, our experiments produced reasonably realistic sounding
results, which suggests that our method can be advanced to an applicable auralization system.
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1 Introduction

Simulating the propagation of acoustic waves, which is characterized by a hyperbolic partial
differential equation (PDE), is computational very expensive, especially in three-dimensional
space. This makes it impractical for applications that require or desire real-time performance,
like sound engines in video games or auralization systems.

Thus, the wave propagation is often expressed as a geometrical problem. As we will conclude in
chapter 6, acoustic waves propagate spherically and their intensities decrease proportionally to
the travelled distance. These properties follow directly from the analytical solution of the PDE,
and can therefore be exploited to simulate acoustics in rather simple virtual environments, where
only reflection effects occur.

More specifically, it is often sufficient to model sound waves as beams that get reflected and
partially attenuated at surfaces in the environment. This eliminates the need to simulate the
waves via a numerical PDE solver, as one can simply backtrace the reflections of the waves from
the receiver to the sound source. One popular auralization method, which accomplishes this,
utilizes the so-called image source model. There, the sound source is repeatedly mirrored along
the surface planes. These mirrored points can then, in simplified terms, be treated as virtual
sources, such that the line segments between those and the receiver intersect with the surfaces
exactly at the reflection points. Such a method is capable of producing highly realistic results
in real-time, provided that the number of considered reflections from the source to the receiver
is kept small enough. [1, sec. 11.1.3.1]

However, the main disadvantage with this approach is, that it cannot make diffraction effects
audible, or is at least not easily extensible to do so. Thus, we utilize the ADER-DG method, with
which hyperbolic PDEs such as the acoustic wave equation can be solved numerically, including
refraction and especially diffraction effects, if appropriate boundary conditions are applied. This
enables the auralization of more complex environments, which cannot be modeled appropriately
with the abovementioned geometrical approach. The accomplishment of our method in particular
is, that we do not have to simulate each source term, like a piece of music, individually, which
would require a lot of computational power. In fact, the acoustic domain behaves like a LTI
system, such that the received signal y(t) is exactly characterized by the convolution

y(t) = x(t) ∗ h(t),

where x(t) is an arbitrary source signal and h(t) is the measured signal generated by the Dirac
delta impulse. In acoustics, this procedure of determining the acoustic signal is referred to as
convolution reverberation, which is the key concept of our method. So first, we simulate an
impulse, using the ADER-DG method, in order to retrieve h(t) numerically. Once we know the
impulse response, we do not need to expensively invest in another simulation, as the received
signal can then be determined using discrete convolution, for which highly performant algorithms
already exist. Altogether, this makes our method not only physically highly accurate, but also
relatively efficient.

This thesis is organized as follows: In the following chapter, the basic concepts involved in a
Finite Volume Method (FVM) will be outlined, such as the PDE that describes the propagation
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Chapter 1. Introduction

of acoustic waves, and the Riemann problem, which is fundamental for FVMs. In chapter 3,
the implementation of boundary conditions, namely absorption, total and partial reflection, is
discussed. In order to impose aforementioned boundary conditions on arbitrary cuboidal cell
interfaces, the necessary spatial domain construction is discussed in chapter 4. The predominant
focus of this thesis is on the earlier mentioned convolution reverberation in chapter 5, where we
describe how an impulse response can be measured and used to transfer the simulated reverber-
ation to arbitrary acoustic signals. This is followed by a discussion in the sixth chapter, where
the impact of certain settings on the accuracy of the simulation is illustrated. In chapter 7, we
will present a collection of experiments to showcase diffraction effects and certain capabilities of
our simulation software. Finally, a general conclusion wraps up this thesis.

All implementations regarding the simulation are integrated into the existing ADER-DG code
for three-dimensional linear acoustics (LinA) from https://github.com/TUM-I5/LinA/tree/3D.
The convolution reverberation is implemented as a post-processing step in Python.

2
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2 Foundations

This chapter explores the basic concepts which are fundamental for any issue that has been im-
plemented in the course of this thesis. The methods proposed for imposing boundary conditions
(chapter 3), refining the simulation domain grid (chapter 4) and measuring an impulse response
for convolution reverberation (chapter 5) are mainly based on the following considerations. All
concepts will be described for the one-dimensional case, but can be generalized for higher di-
mensions as well. For additional information on that topic, the reader is directed to [3], which
has been the main source for this chapter.

2.1 Linear acoustics equation

From a physical point of view, acoustic waves arise due to the mechanical oscillation of an
elastic medium. In air, sound emerges from small disturbances in the atmospheric pressure that
propagate through the medium and balance out, both in space and time [4, p. 25] [3, sec. 2.7].
This behavior is described in the linear acoustics equation, for which we will derive a solution in
the following. Throughout this section, we will refer to equations and conclusions that can be
found in sections 2.7, 2.8 and 2.9 of [3].

Let q : R×R→ R2 be a function that maps a point x and time t to the pressure (p) and velocity
(u) perturbations of the medium:

q(x, t) =

[
p(x, t)
u(x, t)

]
. (2.1)

In a stationary gas, i.e. with no constant background velocity, the propagation of acoustic waves
can be expressed by the linear PDE

∂

∂t
q(x, t) +A

∂

∂x
q(x, t) = 0, (2.2)

where

A =

[
0 K0

1/ρ0 0

]
. (2.3)

Here, K0 denotes the bulk modulus of compressibility and ρ0 the density of the gas.

Intuitively, we would expect that the waves propagate to the left and right with some constant
speed s, such that q(x, t) only depends on the point x − st. Thus, we can introduce a function
q̄ : R→ R2 and use it in the ansatz

q(x, t) = q̄(x− st) (2.4)
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Chapter 2. Foundations

to solve the abovementioned PDE. It immediately follows that

∂

∂t
q(x, t) = −sq̄′(x− st), (2.5)

∂

∂x
q(x, t) = q̄′(x− st), (2.6)

hence, (2.2) can be transformed into an eigenvalue problem of the form

sq̄′(x− st) = Aq̄′(x− st). (2.7)

We see that the speed s has to be one of the eigenvalues of A, which can be derived by solving

det (A− λI2) = det

([
−λ K0

1/ρ0 −λ

])
= λ2 − K0

ρ0
= 0, (2.8)

where I2 denotes the 2-by-2 identity matrix. This leads to a left- and right-going wave with
speeds

λ− = −c0 and λ+ = +c0, (2.9)

where
c0 =

√
K0/ρ0 (2.10)

is the speed of sound. Given the ansatz from (2.4), we can thus assume that the solution for q
can be split into a superposition of those two waves with functions q−, q+ : R× R→ R2, i.e.

q(x, t) = q−(x, t) + q+(x, t). (2.11)

Furthermore, we know from (2.7) that q̄′(x − st) has to be an eigenvector of A. And as the
ansatz (2.4) decouples into a left- and right-going wave (2.11), the same must hold for q−(x, t)
and q+(x, t).

One can derive that any scalar multiple of

r− =

[
−Z0

1

]
and r+ =

[
+Z0

1

]
(2.12)

is a corresponding eigenvector for λ− and λ+, where Z0 = ρ0c0 denotes an important acoustic
property called the impedance. Consequently, there have to be scalar functions w−, w+ : R×R→
R, called characteristic variables, such that

q−(x, t) = w−(x, t)r− and q+(x, t) = w+(x, t)r+. (2.13)

Plugging (2.13) into (2.11) yields the linear system of equations (LSE)

q(x, t) = w−(x, t)r− + w+(x, t)r+ = Rw(x, t) (2.14)

with

R = [r− | r+] =

[
−Z0 +Z0

1 1

]
and w(x, t) =

[
w−(x, t)
w+(x, t)

]
. (2.15)

From (2.14) and (2.15), it immediately follows that

w(x, t) = R−1q(x, t), (2.16)
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2.2. Riemann problem

where the inverse of R can be determined, e.g. via Cramer’s rule for a 2-by-2 matrix:

R−1 = − 1

det(R)

[
−1 Z0

1 Z0

]
=

1

2Z0

[
−1 Z0

1 Z0

]
. (2.17)

We further exploit the hyperbolicity of the linear system (2.2). That is, we can apply a similarity
transformation in order to diagonalize A with real eigenvalues, such that

R−1AR = Λ and A = RΛR−1, (2.18)

where Λ = diag(λ−, λ+) is a matrix with the eigenvalues as diagonal components [3, p. 31, Def.
2.1]. This is of great importance, because by multiplying R−1 to (2.2), this results into a system
of advection equations for each characteristic variable:

0 = R−1qt(x, t) +R−1A(RR−1)qx(x, t)

= R−1qt(x, t) + (R−1AR)R−1qx(x, t)

= R−1qt(x, t) + ΛR−1qx(x, t)

(2.16)
= wt(x, t) + Λwx(x, t). (2.19)

From the general solution for advection equations given in [3, p. 18], we can conclude that

w∓(x, t) = w∓(x− λ∓t, 0). (2.20)

That is, the characteristic variables, and thus q itself, only depend on the initial state

q0(x) := q(x, 0) =

[
p0(x)
u0(x)

]
(2.21)

at t = 0, which gives [
w−0 (x)
w+

0 (x)

]
:=

[
w−(x, 0)
w+(x, 0)

]
= R−1q0(x). (2.22)

Inserting into (2.14) allows us to formulate a final solution, which is

q(x, t) = w−0 (x− λ−t)r− + w+
0 (x− λ+t)r+

=
1

2Z0
[−p0(x+ c0t) + Z0u0(x+ c0t)]

[
−Z0

1

]
+

1

2Z0
[p0(x− c0t) + Z0u0(x− c0t)]

[
Z0

1

]
. (2.23)

In conclusion, q(x, t) only depends on the initial values at points {x∓ c0t}, which is also called
the domain of dependence (DOD) for (x, t). Notice, that if the initial velocity u0(x) = 0 ∀x, the
pressure simplifies to a linear superposition of the initial pressures:

p(x, t) =
1

2
[p0(x+ c0t) + p0(x− c0t)] . (2.24)

2.2 Riemann problem

The issue with the analytical solution in (2.23) is, that it is only applicable for undisturbed wave
propagations in an infinitely large domain. Therefore, a numerical approach, like the FVM, is
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Chapter 2. Foundations

0X − c0T X + c0T

(X,T )

x = −c0t x = +c0t

ql

qm

qr

Figure 2.1: Solution of the Riemann problem for (X,T ), where one point of its DOD (indicated
by the dashed lines) is left and the other one right from the initial discontinuity
at x = 0. The solution is then based on both initial states ql and qr, instead of
just one of those. This establishes a new constant middle state qm between the two
wedges (gray area), which propagates in either direction with the speed of sound
∓c0. That is, the solution at each point (X,T ), for which |X| < c0T holds, is qm.
This illustration is based on [3, p. 54, Fig. 3.3].

more appropriate in order to simulate waves in finite spaces, including their interactions with
boundaries or other mediums. To understand how this is achieved, we first have to look at
a special initial value problem and derive the solution to these so-called Riemann problems.
These are pervasive in Finite Volume Methods, which will be discussed in the next section. The
concepts stated in the following are based on sections 3.8 and 3.9 from [3].

Consider piecewise constant initial data of the form

q0(x) =



ql =

[
pl

ul

]
if x < 0

qr =

[
pr

ur

]
if x > 0

. (2.25)

Both, the left (ql) and right (qr) vectors can be decomposed as in (2.14) into left and right-going
waves

ql = w−l r
− + w+

l r
+ and qr = w−r r

− + w+
r r

+. (2.26)

Notice, that the characteristic variables w∓l , w
∓
r ∈ R are constant, just like ql, qr ∈ R2 are.

Furthermore, the waves still advect to the left and right with speeds ∓c0, and so does the
discontinuity at x = 0. This immediately follows from the fact, that q(x, t) only depends on its
DOD, as displayed in the previous section. But now, either both points of the DOD are left or
right from the discontinuity, or one point is left and the other one right from it (see Figure 2.1).

In the former case, the solution is just ql or qr, according to (2.26). In the latter case, however,
the solution becomes a new middle state qm. Thus, we have

q(x, t) =


ql if x+ c0t < 0

qm if |x| < c0t

qr if x− c0t > 0

, (2.27)
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2.3. Finite Volume Method

where qm still needs to be determined.

We know that

w∓0 (x) =

{
w∓l if x < 0

w∓r if x > 0
, (2.28)

and that the general solution for q according to (2.23) is

q(x, t) = w−0 (x+ c0t)r
− + w+

0 (x− c0t)r
+. (2.29)

In the case that x + c0t > 0 and x − c0t < 0, respectively |x| < c0t, we get w−0 (x) = w−r and
w+

0 (x) = w+
l . Plugging into (2.29) leads to the middle state

qm = w−r r
− + w+

l r
+

=
1

2Z0
(−pr + Z0ur)

[
−Z0

1

]
+

1

2Z0
(pl + Z0ul)

[
Z0

1

]
=

1

2

[
(pl + pr)− Z0(ur − ul)
(ul + ur)− (pr − pl)/Z0

]
. (2.30)

In consequence, two waves arise from the discontinuity, traveling to the left and right with speeds
∓c0. The jumps W−,W+ ∈ R2 across those waves are given as

W− = qm − ql = (w−r − w−l )r− and W+ = qr − qm = (w+
r − w+

l )r+. (2.31)

These can also be expressed by the so-called wave strengths α∓ = (w∓r − w∓l ), which solve the
LSE

Rα =

[
α−

α+

]
= qr − ql, (2.32)

such that the above defined wave jumps simplify to

W∓ = α∓r∓. (2.33)

Finally, with (2.31), we can rewrite (2.29) to

q(x, t) = ql +H(x+ c0t)W− +H(x− c0t)W+, (2.34)

where H(·) denotes the Heaviside step function. Furthermore, the middle state (2.30) can be
written as

qm = ql +W− or qm = qr −W+. (2.35)

2.3 Finite Volume Method

In order to solve the linear acoustics equation (2.2), we will utilize the ADER-DG method.
However, as the numerical fluxes and boundary conditions, which are most relevant to us, are
chosen equivalently as in the Finite Volume Method, it is sufficient and more comprehensible
to discuss the latter instead. Hence, we are going to describe the simulation of acoustic waves
using the one-dimensional FVM in this section.

For that, the domain is spatially discretized into, N ∈ N>0 cells, such that q is represented
by piecewise polynomial functions with discontinuities at the cell interfaces. We will consider

7



Chapter 2. Foundations

tn

tn+1

xi−1/2 xi+1/2

W+
i−1/2 W−i+1/2

c0∆t −c0∆t

Figure 2.2: Waves propagating from the left (xi−1/2) and right (xi+1/2) cell interfaces. Qni is

updated by the waves W+
i−1/2 and W−i+1/2 reaching into cell Ci after time ∆t. This

illustration is based on [3, p. 79, Fig. 4.7].

the simplest representation with a polynomial degree of 0, i.e. a piecewise constant function.
This essentially results into Riemann problems that have to be solved at each cell interface.
Throughout this section, we refer to sections 4.10 and 4.12 of [3].

Let ∆x be the cell width and ∆t be the timestep of the simulation. Then, Qni ∈ R2 denotes the
quantity vector in cell

Ci := (xi−1/2, xi+1/2) = ((i− 1/2)∆x, (i+ 1/2)∆x) (2.36)

for i ∈ [N ] at time tn := n ·∆t.

In general, the aim is to update the cell values gradually in each timestep (Qni → Qn+1
i ), which

can be realized using the so-called reconstruct-evolve-average (REA) algorithm. It consists of
the following three steps, which repeat themselves after each iteration:

1. Reconstruct a piecewise constant function q̃ : R× R→ R2 from the cell averages, i.e.

q̃n(x, tn) = Qni ∀x ∈ Ci. (2.37)

2. Evolve the hyperbolic PDE a time ∆t further by solving the Riemann problems at each
cell interface to obtain q̃n(x, tn+1).

3. Average the resulting solution within each cell to get the new cell averages

Qn+1
i =

1

∆x

∫
Ci
q̃n(x, tn+1) dx. (2.38)

Suppose the cell averages, and thus q̃n(x, tn), are known for the current timestep. In the previous
section, we found out that the solution which arises from a discontinuity between two cells
consists of two waves propagating to the left and right (2.34). To be more precise, at the left
interface of a cell Ci, the right-going wave W+

i−1/2 interfers with Qni , as well as the left-going

wave W−i+1/2 from the right interface (see Figure 2.2). We also know, that the waves move with
velocities ∓c0, thus, after a time ∆t, they travelled ∓c0∆t far. This exactly describes how the
piecewise constant function (2.37) evolves, so we can now elaborate on the last step of the REA

8



2.3. Finite Volume Method

algorithm.

Following (2.35), the middle states that evolve from the cell interfaces are given as

Qni −W+
i−1/2 and Qni +W−i+1/2, (2.39)

but the waves only effect the cell’s total average Qni by the fraction c0∆t/∆x. Thus, we can
conclude that the updated cell value is

Qn+1
i = Qni −

c0∆t

∆x

[
W+
i−1/2 −W

−
i+1/2

]
. (2.40)

Note, that Qn+1
i only depends on its own cell value and the values of its neighboring cells from

the last timestep. The important consequence which follows from that is specified by the so-
called CFL condition, which requires that the true solution for Qn+1

i must not depend on cells
other than the three mentioned ones. This can only be ensured if the waves propagate at most
the distance equal to the cell widths during one timestep, i.e.

C :=
c0∆t

∆x
≤ 1, (2.41)

where C is called the Courant or CFL number. [3, sec. 4.4]

Although these considerations are already sufficient to implement the REA algorithm, it will be
convenient for the next chapter to investigate in an alternative formulation of (2.40). It is clear
that W−i−1/2 and W+

i+1/2 do not influence the cell Ci at all, because those waves move apart from
it. So

Qn+1
i = Qni −

c0∆t

∆x

[(
0 · W−i−1/2 +W+

i−1/2

)
−
(
W−i+1/2 + 0 · W+

i+1/2

)]
(2.42)

is equivalent to (2.40). If we split Λ from (2.18) into two diagonal matrices, for which one
contains only the negative and the other one the positive eigenvalues

Λ− = diag(−c0, 0) and Λ+ = diag(0,+c0), (2.43)

we also obtain a splitting of the coefficient matrix A into

A− = RΛ−R−1 and A+ = RΛ+R−1. (2.44)

This is useful, as multiplying these matrices to the differences between two cell values ∆Qi−1/2 :=
Qi −Qi−1 yields

A−∆Qi+1/2 = RΛ−R−1(Qi+1 −Qi)
(2.32)

= RΛ−αi+1/2

= −c0α
−
i+1/2r

− + 0 · α+
i+1/2r

+

(2.33)
= −c0W−i+1/2 + 0 · W+

i+1/2 (2.45)

and analogously
A+∆Qi−1/2 = 0 · W−i−1/2 + c0W+

i−1/2. (2.46)

Now, the idea behind the reformulation in (2.42) emerges, as we can simply write

Qn+1
i = Qni −

∆t

∆x
(A+∆Qi−1/2 +A−∆Qi+1/2). (2.47)

9



Chapter 2. Foundations

t = 0.0006 t = 0.0010 t = 0.0014

Figure 2.3: Simulation of a wave generated by a point source that is refracted at the interface
between two mediums (indicated by the dashed line). The medium coefficient ma-
trices Ai were initialized in such a way, that in the left medium, the speed of sound
and impedance are cl ≈ 343 m/s and Zl ≈ 413, whereas the wave speed in the right
medium is cr ≈ 171 m/s with impedance Zr ≈ 205. As can be seen, the wave propa-
gating in the right medium has approximatively half the speed as in the left medium.
Note also, that both, the reflected and transmitted wave, have less power than the
original wave.

This transformation is more convenient to deal with in higher dimensions and different hyperbolic
systems, as it decouples the solution from the waves W± in (2.40) and instead only depends on
the cell differences.

2.4 Variable impedance

A similar representation can be derived for a domain with varying medium coefficients in the
cells, which is particularly useful to understand partially reflecting boundary conditions in section
3.3. Assume we have cellwise constant acoustic properties

Ai = A(x) =

[
0 Ki

1/ρi 0

]
(2.48)

ci = c(x) =
√
Ki/ρi (2.49)

Zi = Z(x) =
√
Kiρi (2.50)

∀x ∈ Ci. Now, consider the Riemann problem at the interface between two mediums with
different impedances Zl, Zr. The eigenvectors (2.12) of the waves propagating into the left and
right medium with speeds −cl and cr become

r− =

[
−Zl

1

]
and r+ =

[
+Zr

1

]
. (2.51)

Any futher derivation made throughout the previous sections can be generalized for variable
impedances by substituting (2.12) with (2.51). [3, sec. 9.9]

The only difference is, that for the FVM, we obtain matrices (2.44) at each interface [3, sec.
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2.4. Variable impedance

9.11], i.e.
A±i−1/2 = Ri−1/2Λ±i−1/2R

−1
i−1/2 (2.52)

with

Ri−1/2 =

[
−Zi−1 +Zi

1 1

]
(2.53)

and

Λ−i−1/2 = diag(−ci−1, 0) and Λ+
i−1/2 = diag(0,+ci). (2.54)

Thus, for variable impedances, we update each cell similar to equation (2.47) as follows:

Qn+1
i = Qni −

∆t

∆x
(A+

i−1/2∆Qi−1/2 +A−i+1/2∆Qi+1/2). (2.55)

Note, that with various wave speeds ci, the CFL condition (2.41) is only then satisfied, if the
fastest wave cannot travel further than the cell width within the timestep [3, p. 70], i.e.

C =
∆t

∆x
max
i
|ci| ≤ 1. (2.56)

An interesting observation that can be made at the interface between two cells with different
impedances is refraction, where the incident wave gets reflected and transmitted into the other
medium to some extent (see Figure 2.3). As mentioned earlier, this phenomenon will be discussed
in more detail in section 3.3, where we exploit this property in order to implement partial
reflections.
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3 Boundary conditions

The numerical approach of simulating acoustic waves, that has been developed in the previous
chapter, updates each cell based on the differences to its neighboring cells. But those do not
exist at the border of the simulation domain. For instance, the one-dimensional domain exists of
a limited number of adjacent cells along the x-axis. Thus, the furthest left and right cells do not
have a left or right neighbor. This necessitates the definition of how the simulation should behave
at the domain borders. One possibility to solve this problem is to introduce so-called ghost cells.
These are additional, adjoining cells at the border, which do not belong to the domain as such.
In 1D, this is accomplished by appending one cell to either end of the domain. In order to realize
a particular and stable behavior at the borders, it has to be defined how the values of these ghost
cells need to be set. As they are not part of the domain, they do not get updated like the regular
cells. Instead, after each timestep, their values will be reevaluated depending on the cells within
the domain. In other words, by introducing ghost cells, it is ensured that all outer cells in the
domain have neighboring cells in each direction and can thus be updated as usual.

In this chapter, we will implement absorbing (section 3.1), totally reflecting (section 3.2) and
partially reflecting (section 3.3) boundary conditions by making use of the idea behind ghost
cells. In fact, this concept can be applied to impose boundary conditions on any cell interface,
and is not restricted to the outer border of the domain.

3.1 Absorption

At absorbing boundaries, the acoustic waves shall flow out of the domain. Ideally, no ingoing
waves will be created and the incident waves hitting the boundary will not be reflected. This
objective has been explored in more depth, e.g. in [5], where the Perfectly Matched Layer (PML)
was first introduced. However, we will use an approximative solution, which works sufficiently
in most cases.

In [3, sec. 7.3.1], it has been suggested to use zero-order extrapolation for the ghost cells, i.e.

Qn0 = Qn1 and QnN+1 = QnN , (3.1)

where Qn0 is the left and QnN+1 the right ghost cell. The reasoning behind (3.1) is, that the
difference between both adjacent cells at the domain border is zero, and thus the wave strengths
α∓ from (2.32) are zero too. Consequently, there is neither an outgoing nor an incoming wave
(2.33). For higher dimensions, the same approach has been described in [3, sec. 21.8.5], which
however led to unstable results in our experiments.

We will instead refer to the work from [6, sec. 4.1], where the ghost cells are initialized with zero,
i.e.

Qn0 =

[
0
0

]
and QnN+1 =

[
0
0

]
. (3.2)

13



Chapter 3. Boundary conditions

However, we may also want to have absorbing interfaces in the interior of the domain, and not
only at its outer border. That can be achieved in the exact same way, but now the ghost cells
are rather conceptual than actual cells.

Suppose we want to implement an absorbing boundary (i, s) in cellQL = Qi on side s ∈ {−1,+1},
where s = −1 refers to the left and s = +1 to the right interface of the cell. We will henceforth
refer to QL as local cell, whereas the adjacent cell QN = Qi+s is the artificial ghost or simply
neighboring cell.

Often, the desired boundary conditions can be realized with ghost cells that are a linear trans-
formation of the local cells. That is, we pretend that the neighboring cell of QL is

QN = TQL = T

[
pL
uL

]
, (3.3)

where T ∈ RD+1×D+1 is the transformation matrix. Note, that with higher dimensions, the
size of the quantity vectors Q adapt accordingly in order to include the pressure, as well as the
velocities for any of the D dimensions, hence Q ∈ RD+1.

In the case of D = 1, we are given equation (2.55), which can be equivalently rewritten to

Qn+1
i = Qni −

∆t

∆x
(L+

i−1/2Q
n
i −N+

i−1/2Q
n
i−1 +N−i+1/2Q

n
i+1 − L−i+1/2Q

n
i ), (3.4)

where the A±i∓1/2 matrices are further split into identical local (L±i∓1/2) and neighboring (N±i∓1/2)
matrices. The reasoning behind this reformulation is, that it enables us to impose boundary
conditions on any cell interface and for each side independently.

In order to do so, we substitute the neighboring cell Qi∓1 in (3.4) for an interface (i,∓1) with
(3.3). In fact, we do not need to calculate QN specifically for each cell and timestep, as applying
the transformation matrix T on the corresponding neighboring matrices N±i∓1/2 is of the same
effect:

N±i∓1/2QN
(3.3)
= N±i∓1/2(TQL) = (N±i∓1/2T )QL. (3.5)

Thus, for any interface (i, s), we establish artificial ghost cells by redefining the neighboring
matrices from (3.4) as follows:

N+
i−1/2 7→ A+

i−1/2T if s = −1 or N−i+1/2 7→ A−i+1/2T if s = +1. (3.6)

In the case of absorbing boundaries, the corresponding transformation matrix is a zero matrix

T =

0 · · · 0
...

. . .
...

0 · · · 0

 , (3.7)

such that the ghost cell QN = 0 ·QL = 0 becomes a zero-vector as required by (3.2).

The huge advantage of this approach is, that we avoid to calculate the values of any ghost cell
with a matrix-vector multiplication as described in (3.3) for each timestep. Instead, we simply
equate QN with the local cell QL and perform the transformation once during the initialization
of the N± matrices, which is equivalent, as (3.5) shows. In conclusion, this enables us to
impose boundary conditions on any interface (i, s), as long as the corresponding ghost cell can
be expressed as a linear transformation of Qi.
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3.2. Total reflection

t = 0.0014 t = 0.0017 t = 0.0020

Figure 3.1: Simulation of a wave in a 1×1×1-meter domain with absorbing boundary conditions
imposed on all borders of the domain. A point source in the center radiates a wave
with velocity ≈ 343 m/s, which thus hits the boundaries after ≈ 0.0015 seconds.
These illustrations show a slice of the three-dimensional space in x − y-plane at
z = 0.5. As can be seen in the middle and right image, the wave is mostly absorbed,
but weak ingoing waves still arise. Note, that the strengths of those ingoing waves
vary with the angle. A wave hitting the border frontally just advects along a single
dimension and can thus be totally absorbed. But the steeper the angle of incidence
is, the stronger is the wave that arises at the boundary, which can be seen in the
right image.

In Figure 3.1, the propagation of a wave in a domain with absorbing borders is illustrated.

3.2 Total reflection

When acoustic waves hit an obstacle, i.e. another medium with different properties, they get
reflected to some extent at the interface between those two mediums. In this section, we will
consider ideal solid walls, where incident waves get reflected totally.

For a solid interface (i, s) at xi+s·1/2, the physical condition requires

u(xi+s·1/2, t) = 0 ∀t ≥ 0. (3.8)

According to [3, sec. 7.3.3], this can again be achieved with a ghost cell of the form

QN =

[
pL
−uL

]
. (3.9)

It can be easily proved that (3.9) ensures (3.8) by solving the Riemann problem introduced in
section 2.2. We set

ql = QN =

[
p
−u

]
and qr = QL =

[
p
u

]
(3.10)

and show that the velocity quantity of the arising middle state (2.30) is zero:

um =
1

2
[(−u+ u)− (p− p)/Z0] = 0 � (3.11)
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Chapter 3. Boundary conditions

t = 0.0014 t = 0.0017 t = 0.0020

Figure 3.2: Simulation of the same wave and physical domain as in Figure 3.1, but with totally
reflecting boundary conditions imposed on all borders. As can be seen in the images,
the reflected waves have the exact same power as the incident waves, i.e. no energy
is lost.

Thus, for D = 1, totally reflecting boundary conditions are characterized by (3.9), which yields

T =

[
1 0
0 −1

]
. (3.12)

In higher dimensions, this is analogous. Suppose we have D = 3 and the interface at which the
boundary condition shall be imposed is orthogonal to dimension d ∈ {x, y, z}. Then, (3.8) must
hold for the velocity quantity along the d-axis. So with

q =


p
u
v
w

 , (3.13)

where u, v, w denote the velocities in x, y and z directions, the transformation matrix is defined
as

T =


diag(1,−1, 1, 1) if d = x

diag(1, 1,−1, 1) if d = y

diag(1, 1, 1,−1) if d = z

. (3.14)

Hence, we can simply redefine the neighboring matrices in the exact same way as stated in (3.6),
but with (3.12) or (3.14) as transformation matrix. The results for totally reflecting boundaries
can be seen in Figure 3.2.

3.3 Impedance reflection

In reality, total reflection does not exist. Depending on the material of the obstacle, like con-
crete or glass, the acoustic waves will be absorbed to different extents (see section 5.3.2). The
refraction effect that occurs at the interface between two different mediums has already been
briefly mentioned in section 2.4. In fact, it can be exactly determined how strong the absorption,
respectively the reflection is. Depending on the impedances Z1, Z2 of those mediums, an incident
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3.3. Impedance reflection

wave from medium 1 will be reflected at the interface and its pressure magnitude changes by a
factor

CR =
preflected

pincident
=
Z2 − Z1

Z2 + Z1
, (3.15)

as derived in [3, sec. 9.10]. Hence, we can simulate an impedance mismatch between cells by
specifying their medium coefficients accordingly in order to match a particular CR. Assume the
regular impedance in the domain is Z1 and we want to change the impedance of cells at certain
interfaces to Z2, such that (3.15) is satisfied for a particular CR. Solving for Z2 yields

Z2 = Z1
1 + CR
1− CR

, (3.16)

and as CR does not depend on the speeds c1, c2, we could define

K2 = Z2c1, (3.17)

ρ2 = Z2/c1, (3.18)

such that the waves transmitted into medium 2 advect with the same speed

c2 =
√
K2/ρ2 =

√
c2

1 = c1 (3.19)

as in medium 1. This has the advantage of not having to decrease the timestep ∆t for a fixed
cell width ∆x in order to satisfy the CFL condition (2.56).

Another approach is to incorporate the impedance mismatch directly into the cell interfaces by
adjusting the L± and N± matrices, as done for the other boundary conditions. This allows
us, although not being physically realistic, to implement infinitesimally small partially reflecting
walls, where furthermore no wave is transmitted through the interface.

Suppose we want to simulate a change of impedance at interface (i, s) from Zi in the local
cell to an impedance Z̃i+s in the neighboring cell. To make clear that we are just mocking
the impedance change without actually modifying the medium coefficients of the neighboring
cell, we will in the following utilize the tilde (̃·) notation to refer to values resulting from the
artificial neighboring cell. The previous approach suggests to redefine the coefficient matrix in
the neighboring cell to

Ai+s 7→ Ãi+s =

[
0 K̃i+s

1/ρ̃i+s 0

]
, (3.20)

where K̃i+s and ρ̃i+s are simply derived from (3.17) and (3.18) with Z1 = Zi and Z2 = Z̃i+s.
According to (2.52), we then have interface matrices

Ã±i+s·1/2 = R̃i+s·1/2Λ̃±i+s·1/2R̃
−1
i+s·1/2, (3.21)

where the eigenvector matrix (2.53) becomes

R̃i−1/2 =

[
−Z̃i+s +Zi

1 1

]
if s = −1 or R̃i+1/2

[
−Zi +Z̃i+s

1 1

]
if s = +1. (3.22)

Moreover, as shown in (3.19), the wave speeds ci and c̃i+s are equal, so we have diagonal matrices
(2.54)

Λ̃+
i+s·1/2 = diag(0,+ci) and Λ̃−i+s·1/2 = diag(−ci, 0). (3.23)
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Chapter 3. Boundary conditions

t = 0.0014 t = 0.0017 t = 0.0020

Figure 3.3: Partially reflecting boundary conditions imposed on the upper and right boundaries.
In order to see the difference, total reflection is imposed on the other boundaries. The
local matrices (3.24) have been set to establish a reflection coefficient of CR = 0.2.
Note, that the wave front after the reflection does not change, i.e. the strength of the
reflected wave is independent on the angle of incidence, as opposed to Figure 3.1.

Thus, having a neighboring cell with a different impedance as in the local cell eventually results
into local and neighboring matrices from (3.4) which are equal to (3.21) at the interface xi+s·1/2.
However, we do not want any wave from the neighboring cell to flow into the local cell, thus, we
simply set QN = 0 ·QL = 0, the same way we did for absorbing boundary conditions in section
3.1. Consequently, for an interface (i,∓1), we redefine the matrices as follows:

L±i∓1/2 7→ Ã±i∓1/2 (3.24)

and
N±i∓1/2 7→ 0. (3.25)

Note again, that we did not actually change the impedance in the neighboring cell. Instead,
we manipulated the interface matrices accordingly as if there was an impedance discontinuity.
In consequence, we are able to realize partial reflection at any interface, such that the incident
wave gets reflected and attenuated pursuant to an arbitrarily chosen reflection coefficient CR.
The results are illustrated in Figure 3.3.
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4 Grid refinement

In this chapter, it will be expounded how the domain can be discretized in variably sized cuboidal
cells, in order to enable arbitrarily located boundaries, as well as global and local domain refine-
ments. All methods will be explained in 3D, but most of it can be explained for each dimension
independently. Thus, for ease of notation, we will throughout this chapter denote an arbitrary
dimension as d ∈ {x, y, z}.

4.1 Timestep analysis

To perform numerical simulations, the domain has to be discretized both in space and time,
which are closely intertwined. Here, the maximum timestep ∆t is mainly limited by the cell
sizes, provided that the wave speeds are equal in each cell. In this work, we will always simulate
the propagation of acoustic waves in a single medium with constant coefficients K0, ρ0 and thus
a constant wave speed c0. According to the CFL condition in one dimension (2.41), where the
neighboring cells contribute to the result for the next timestep, a wave must only propagate for
at most the cell width ∆x within one timestep in order to ensure stability.

Similarly, this also applies to three-dimensional space, but now we consider cells Ci,j,k with
variable widths ∆xi,∆yj ,∆zk ∈ R>0 for each dimension. The authors of [7] suggest that the
timestep ∆ti,j,k in each cell should be at most

∆ti,j,k =
CO

c0 ·
(

1
∆xi

+ 1
∆yj

+ 1
∆zk

) , (4.1)

where CO is a factor that further ensures stability for a simulation convergence order O [8, sec.
5.1].

In our implementation, however, we use a constant timestep ∆t for the whole domain. That is,
regardless of the other cells, the cell with the smallest volume-to-surface ratio is decisive for the
timestep, which gives

∆t = min
i,j,k

∆ti,j,k. (4.2)

Of course, this is not optimal and there exist other approaches like [9] where local timesteps
are used for each cell individually. But in our case, we elaborate on the optimal way to refine
the grid within given criteria, such that the global timestep (4.2) gets maximized. According to
equation (4.1), this is achieved, if the minimal cell widths

∆dmin := min
n∈[Nd]

∆dn (4.3)

get maximized in each dimension individually. Here, ~N = (Nx, Ny, Nz) ∈ N3
>0 denotes the

number of cells per dimension. Consequently, all methods that are proposed in the following
sections are designed to maximize (4.3), in order to get the best global timestep possible.
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Figure 4.1: Cell widths in a uniformly discretized domain with resolution R = 10, depending on
the length Sd of the domain in one dimension d.

4.2 Uniform domain

Let ~S = (Sx, Sy, Sz) ∈ R3
>0 be the variable size of the spatial simulation domain, which is split

into cuboidal cells. These generate a three-dimensional grid, which can be accurately represented
by its grid points Gd ⊆ [0, Sd]. We introduce a global resolution R ∈ R>0, which limits the cell
sizes, such that

∆dn ≤ 1/R ∀n ∈ [Nd] (4.4)

must hold ∀d. To maximize the cell widths, the domain clearly has to be split into equally sized
cells. Thus, an arbitrary interval [a, b] in one dimension would have to be split into

NR(a, b) := d(b− a) ·Re (4.5)

cells with a constant width of

∆R(a, b) :=
b− a

NR(a, b)
. (4.6)

Hence, the grid points within the interval are located at

GR(a, b) := {a+ n ·∆R(a, b) | n ∈ {0, . . . , NR(a, b)}}. (4.7)

Suppose we want to discretize the whole domain of size ~S with a global resolution R, then,
according to (4.7), the domain’s grid points are

Gd = GR(0, Sd). (4.8)

With that, all cells have the same size, such that the minimum cell widths (shown in Figure 4.1)
are

∆dmin = ∆R(0, Sd). (4.9)

This yields the following upper bound for the global timestep (4.2):

∆t ≤ CO
[
c0 ·

(
1

∆R(0, Sx)
+

1

∆R(0, Sy)
+

1

∆R(0, Sz)

)]−1

. (4.10)
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4.3. Interior boundary interfaces

Example Let ~S = (2, 1.05) be the size of a two-dimensional domain with global resolution
R = 2. Then, according to (4.8), we get grid points

• Gx = {0, 0.5, 1, 1.5, 2} with ∆xmin = 0.5 and

• Gy = {0, 0.35, 0.7, 1.05} with ∆ymin = 0.35.

4.3 Interior boundary interfaces

Modeling rooms with obstacles like walls requires us to impose boundary conditions not only
at the border of the domain, but at the interior as well. As discussed in chapter 3, we apply
boundary conditions at the cell’s interfaces. An arbitrary interface in 3D is a rectangle that
is orthogonal to one dimension d⊥ ∈ {x, y, z} with corner points P1 = (x1, y1, z1) and P2 =
(x2, y2, z2), where d⊥1 = d⊥2 and d1 6= d2 for the other two dimensions. For instance, the left
border of the domain is defined by the frontal lower left corner P1 = (0, 0, 0) and the rear upper
left corner point P2 = (0, Sy, Sz), where d⊥ = x.

Given a set of corner points PBC that define the interfaces on which boundary conditions shall
be imposed, a coarse grid G̃d can be defined, that includes not more than those interfaces. That
is, the coarse grid is the minimal grid required to represent all boundary interfaces and thus only
consists of the interface and domain corner points

G̃d = {Pd | P ∈ PBC} ∪ {0, Sd}, (4.11)

where Pd denotes the d-th coordinate of a point P . This grid is the basis for any further
refinement. For ease of notation, we will from now on consider each set of grid points G̃d, Gd an
ascendingly sorted and indexed family, such that the n-th component of a grid G is defined as

(G)n := [sortedlist(G)]n ∀n ∈ [|G|].

Although the coarse grid (4.11) provides all specified boundary interfaces, it may not yet satisfy
the condition for a global resolution (4.4). Thus, we still need to uniformly refine every slice of
the coarse grid, as defined in (4.7). This yields

Gd =
⋃

1≤n<|G̃d|

GR

(
(G̃d)n, (G̃d)n+1

)
. (4.12)

In Figure 4.2, it is illustrated how interior boundaries cause diffraction effects.
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Chapter 4. Grid refinement

t = 0.0017 t = 0.0026 t = 0.0035

Figure 4.2: Simulation of sine waves that pass an aperture of width 0.1 m in the upper row and
an aperture of width 0.6 m in the lower row. The domain has size ~S = (1.5, 1.5, 1.5),
with absorbing boundary conditions imposed on all borders and a totally reflecting
wall indicated by the red lines at x = 0.85. In both scenarios, the point source is
located at PS = (0.2, 0.75, 0.75) and emits a sinusoidal signal with a frequency of
2000 Hz. The wave speed is ≈ 343 m/s. These illustrations show a two-dimensional
slice of the domain at z = 0.75. As can be seen in both simulations, the waves hitting
the aperture get diffracted around the corners into the so-called acoustic shadow [1,
sec. 7.2.3].
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Example Imagine the following domain with size ~S = (2, 1) and interface points PBC =
{(0.5, 0.55), (0.5, 1.0)} ∪ {(1.0, 0.3), (1.8, 0.3)}. According to equation (4.11), the coarse grid
is defined as

• G̃x = {0, 0.5, 1.0, 1.8, 2} and

• G̃y = {0, 0.3, 0.55, 1}.

Here, the blue lines represent the interfaces defined in PBC. Notice, that the coarse grid is
indeed as minimal as required to depict all specified interfaces in PBC. One can especially
see, that the grid consists of cells with very diverse sizes.

Applying a global resolution of R = 4 according to (4.12) gives the following grid:

• Gx = G̃x ∪ {0.25, 0.75, 1.2, 1.4, 1.6} and

• Gy = G̃y ∪ {0.15, 0.775}.

Here, the light blue lines indicate the additional grid points. Compared to the coarse grid,
the domain now is more equally refined, but still exactly integrates all specified boundaries.

4.4 Local refinement

Going one step further, we may want to define parts in our domain which have a higher resolution
than R. This gives us more control over the grid and enables us to refine specific parts of the
domain, which may be more prone to inaccuracies compared to the rest of the domain.

Let RP be the local resolution that shall be applied at a point P = (Px, Py, Pz). First, we need to
determine the cells which contain P and then again uniformly split the corresponding intervals
into equally sized smaller slices based on the specified local resolution. The locally refined grid
G∗d thus becomes:

G∗d = Gd ∪

 ⋃
Pd∈[(Gd)n,(Gd)n+1]

GRP

(
(Gd)n, (Gd)n+1

) . (4.13)

Of course, this can also be applied iteratively in order to refine the domain locally at multiple
points with individual resolutions. An examplary simulation with a single local refinement at
the point source is shown in Figure 4.3.
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t = 0.0001 t = 0.0006 t = 0.0011

Figure 4.3: Simulation of a wave in a domain of size ~S = (1, 1, 1), which has an higher resolution
around the point source PS = (0.5, 0.5, 0.5). For better visibility of the grid, this
simulation has been executed with relatively small resolutions R = 9 and RPS

=
5R = 45. The grid is visualized using ParaView.

Example Suppose we would like to locally refine the grid in the example from section 4.3
at point P = (0.75, 0.15) with a local resolution of RP = 6. There are four cells containing
that point between grid points

• x: {0.5, 0.75, 1.0} with ∆x = 0.25 and

• y: {0.0, 0.15, 0.3} with ∆y = 0.15.

As ∆y ≤ 1/6, the grid is already resolved high enough in y-dimension and does not need
any additional grid points, thus G∗y = Gy. But ∆x > 1/6, so (4.13) gives two additional
grid points, to wit

G∗x = Gx ∪G6(0.5, 0.75) ∪G6(0.75, 1.0)

= Gx ∪ {0.625, 0.875}

The advantage compared to uniform refinement with a higher global resolution in general is,
that the domain will consist of fewer cells. Thus, the computing time is noticeably better. On
the other hand, there will also be significantly fewer support points distributed over the whole
domain, which is expected to produce a worse accuracy. As the timestep would be similar for
both approaches, we can quantify the performance difference by comparing the number of cells
for each method.

(i) If only the global resolution R is increased without applying any local refinement, the
number of cells is given by (4.5).

(ii) The other approach is to define a constant global resolution R̃ and refine the domain locally
at a single point with an increasing local resolution R. Let I ∈ [2] be the number slices in
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4.4. Local refinement

which the refinement point is located. This is typically 1, but can be 2 if the refinement
point lies exactly on a grid interface. We know that the domain without local refinement
consists of NR̃(0, Sd) slices, each of width ∆R̃(0, Sd). I of them will be split further into
NR(0,∆R̃(0, Sd)) locally refined slices. Thus, according to equations (4.5) and (4.6), we
get a total number of

Nd = dSd · R̃e+ I ·
⌈
R · Sd

dSd · R̃e

⌉
− I (4.14)

cells per dimension.

In section 6.2.2, we will compare both refinement methods regarding their efficiency.

Example Given a domain of size ~S = (1, 1, 1), a constant resolution of R̃ = 4 and I = 1
slices that shall be refined, we obtain the following numbers of cells in each dimension,
depending on R:

0 R̃ 8 12 16
0

R̃

8

12

16

R

N
d

(i) uniform

(ii) uniform+local

Note, that the numbers exponentiate accordingly in 3D.
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5 Convolution reverberation

In audio engineering, the determination of a room’s reverberation characteristics is of great
interest. For this purpose, the propagation of acoustic signals can be described as a LTI system.
The acoustics in a room or any environment can thus be exactly characterized by the impulse
response, which is typically gathered analogously from microphones. This enables a variety of
useful applications. For instance, if a signal gets measured at a point for which the impulse
response is known, the original signal can be extracted through an inverse filter of the transfer
function. This is also called deconvolution. The other way around is to transfer the reverberation
ambience of a room like a concert hall to an arbitrary input signal. This effect is referred to as
convolution reverberation. In this chapter, we will discuss both methods in order to obtain an
impulse response numerically, which we will use for the auralization of virtual environments. [1,
p. 44] [2, sec. 6.5]

5.1 Theoretical procedure

For any LTI system, its response y(t) to an input signal s(t) can be calculated exactly, if the
impulse response hδ(t) of the system is known:

y(t) = hδ(t) ∗ s(t) =

∫ +∞

0
hδ(τ) · s(t− τ) dτ. (5.1)

In the frequency domain, the convolution becomes a multiplication

Y (s) = Hδ(s) · S(s), (5.2)

where capitalized function names represent the corresponding Laplace transformations. Further-
more, we will utilize the notation y(t) c sY (s) to express the correspondence Y (s) = L{y(t)}.

However, we are not able to simulate a perfect Dirac delta impulse δ(t) in practice, so we have
to use another source function f(t) instead to obtain the impulse response. We know that the
system’s response to f is given by (5.1), i.e.

hf (t) = hδ(t) ∗ f(t), (5.3)

which we will henceforth refer to as approximative impulse response (AIR). To retrieve hδ,
deconvolution can be performed in the frequency domain [2, p. 254], which yields

hδ(t) c sHf (s) · 1

F (s)
. (5.4)

Thus, if the inverse
f−1(t) c s1/F (s) (5.5)
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Chapter 5. Convolution reverberation

is known, the system output is

y(t) = [hf (t) ∗ f−1(t)] ∗ s(t). (5.6)

As proposed by [10], we will use

f(t) = H(t) · t
T 2
e−t/T (5.7)

as our source function, where T ∈ R>0 is a constant.

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

t

f
(t

)
w

it
h
T

=
1

Note, that f(t) is a good approximation of the Dirac delta impulse itself. On one hand, it has a
strong peak at t = T , which quickly attenuates against 0 afterwards. On the other hand, it has
the same measure of

∫∞
−∞ f(t) = 1, regardless of T . But foremost, its inverse according to (5.5)

is very simple, which is desirable for the deconvolution. Using partial integration, we obtain the
following Laplacian of f(t):

f(t) c s ∫ ∞
0

f(t) · e−st dt =

∫ ∞
0

t

T 2
e−t/T · e−st dt =

∫ ∞
0

t

T 2
e−t(s+T

−1) dt

=

[
− t

T 2
· 1

s+ T−1
e−t(s+T

−1)

]∞
0

−
∫ ∞

0
− 1

T 2
· 1

s+ T−1
e−t(s+T

−1) dt

=

[
− 1

T 2
· t

s+ T−1
e−t(s+T

−1)

]∞
0

−
[

1

T 2
· 1

(s+ T−1)2
e−t(s+T

−1)

]∞
0

=
1

T 2 · (s+ T−1)2

=
1

s2T 2 + 2sT + 1

= (1 + sT )−2. (5.8)

Now, inserting (5.8) into (5.5) leads to

f
−1

(t) c s 1

(1 + sT )−2

= 1 + 2T · s+ T 2 · s2. (5.9)

We can exploit the linearity of the Inverse Laplace Transform and the correspondence [11, p.
262]

dn

dtn
δ(t) c ssn (5.10)
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5.2. Approximative impulse response

to retrieve the inverse

f
−1

(t) = δ(t) + 2T · d

dt
δ(t) + T 2 · d2

dt2
δ(t) =

(
1 + T

d

dt

)2

δ(t). (5.11)

Furthermore, with the differentiation rule [12, p. 156], we get

dn

dtn
δ(t) ∗ s(t) = δ(t) ∗ dn

dtn
s(t) =

dn

dtn
s(t), (5.12)

such that (5.6) can be simplified to

y(t)
(5.11)

= hf (t) ∗

[(
1 + T

d

dt

)2

δ(t) ∗ s(t)

]
(5.12)

= hf (t) ∗

[(
1 + T

d

dt

)2

s(t)

]
, (5.13)

as stated in [10]. Note, that we changed the convolution order compared to (5.6), which is
allowed due to the associativity of the convolution operator. The reasoning behind this is, that
we know the source signal s(t) exactly, as opposed to the AIR, because the simulation is not
absolutely accurate. Hence, we convolve the inverse with the source function instead, to avoid
intensifying the error of the AIR.

Now, we are able to calculate the system response for any arbitrary source function s(t) ∈ C2, like
a piece of music, once we know the AIR. That means, we only need to invest once in simulating
a point source with function f(t), and can refer to (5.13) afterwards, which drastically reduces
the computing time.

However, as we are dealing with discrete signals, we also need to perform the abovementioned
convolution in the discrete domain. Suppose we have signals s(k)[n] = s(k)(n/fs) and hf [n] =
hf (n/fs) with sample frequency fs ∈ R>0. Here, s(k)(t) denotes the k-th derivative of s(t). The
discrete representation of (5.13) then becomes

y[n] =
1

fs

∞∑
i=0

hf [i] ·
(
s[n− i] + 2T · s(1)[n− i] + T 2 · s(2)[n− i]

)
(5.14)

where y[n] is the discrete output signal [11, p. 47].

We will discuss how to retrieve the AIR with a fixed sample frequency in the next section, as
well as how to obtain the first and second derivatives of a discrete source signal in section 5.4.

5.2 Approximative impulse response

In chapter 4, it has been discussed how cell sizes determine the simulation timestep. Furthermore,
a method for global and local grid refinement has been proposed, from which the support points
for the Gauss-Lobatto quadrature [13, p. 431 f.] of degree O can be derived. With that, the
simulation is discretized in both the temporal and spatial domain.

Let PR ∈ [0, Sx] × [0, Sy] × [0, Sz] be the receiver point where the AIR shall be measured. In
order to obtain the quantites q exactly at PR with timesteps ∆tAIR = 1/fs, one approach would
be to adjust the grid points and Courant number C ∈ (0, 1] accordingly, such that PR becomes
a support point in the domain and ∆tAIR is a multiple of C ·∆t.
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Chapter 5. Convolution reverberation

Inserting a new grid point to establish a support point exactly at PR can lead to infinitesimally
small cell sizes (e.g. if the receiver point is arbitrarily close to the domain border) and thus to
infinitesimally small timesteps as well. But even if we do not change the grid and use the support
point which is closest to the actual receiver point PR instead, it might be necessary to decrease
the simulation timestep ∆t excessively in order to obtain measurements at the right times.

For that, the loss of efficiency is indicated by the maximal required Courant number C. For ease
of notation, we define

β :=
∆tAIR

∆t
> 0. (5.15)

The minimal number of timesteps between two AIR measurements is n = dβe. Thus,

C ·∆t =
∆tAIR

n
, (5.16)

which bounds the Courant number to

0 < C =
∆tAIR

∆t
· 1

n
=

β

dβe
≤ 1. (5.17)

That is, in order to retrieve the AIR at an exact sample frequency of fs, the simulation might
need to be slowed down intentionally by the factor 1/C, which can be very high, depending on
β.

Due to these considerations, it is justifiable to instead interpolate the values both in time and
space. This enables us to use the maximal timestep, i.e. C = 1, which is more efficient than the
abovementioned approach. Here, the spatial interpolation will be based on Lagrange polynomi-
als, whereas for the interpolation in time, we will utilize the Taylor expansion.

The first step is to determine a cell

Ci,j,k = [(Gx)i, (Gx)i+1]× [(Gy)j , (Gy)j+1]× [(Gz)k, (Gz)k+1] (5.18)

within the domain grid G, such that PR ∈ Ci,j,k. For that cell, the quantity matrix Qni,j,k ∈
RO×O×O×4 is given at time tn = n · ∆t and contains the pressure and velocity values at O
support points for each dimension. These support points span over an interval of [0, 1], hence,
the receiver point within the cell has to be projected onto that interval, resulting into its relative
coordinates:

ξ =
(PR)x − (Gx)i

(Gx)i+1 − (Gx)i
, (5.19a)

η =
(PR)y − (Gy)j

(Gy)j+1 − (Gy)j
, (5.19b)

ζ =
(PR)z − (Gz)k

(Gz)k+1 − (Gz)k
. (5.19c)

The Lagrange polynomials [13, p. 334] are

Lm(p) =
∏

n:n6=m

p− pn
pm − pn

, (5.20)

where m,n ∈ [O] and pn are the Gauss-Lobatto points in the interval [0, 1]. Due to the property
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5.2. Approximative impulse response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10−3

0

2

4

n ·∆tAIR [s]

h
[n

]

Figure 5.1: AIR for a domain of size ~S = (1, 1, 1) with sample frequency fs = 44100 Hz, receiver
point PR = (0.5, 0.5, 0.5), source point PS = (0.1, 0.2, 0.3), speed of sound c0 ≈ 343
m/s and convergence order O = 4. Impedance boundary conditions were imposed
on all domain borders with reflection factor CR = 0.5. The source function f(t)
has been simulated with T = 0.0005. Note, that the distance between receiver and
source is ‖PR − PS‖2 ≈ 0.54 m, such that the first incidence of the wave is correctly
expected after 0.54/343 ≈ 1.57 · 10−3 seconds.

of Lagrange polynomials, that

Lm(pn) =

{
1 if n = m

0 otherwise
, (5.21)

a polynomial

ql(Q, 0) =
∑
m1

∑
m2

∑
m3

Qm1,m2,m3,l · Lm1(ξ) · Lm2(η) · Lm3(ζ) (5.22)

can be constructed, which exactly interpolates the values given in the quantity matrix Q, where
m1,m2,m3 ∈ [O] and l ∈ [4]. Here, ql(Q, t) denotes the quantity l, interpolated at time t and
point (ξ, η, ζ) with given support values Q at time 0.

In order to form the Taylor expansion in the time-domain, we also need the derivatives of ql
with respect to the time. We do not want to investigate that further and instead rely on the
implementation that has already been provided in the LinA code. So in the following, we consider
the derivatives ∂n

∂tnQ given for n ∈ [O] at the support points. Using the spatial interpolation
from (5.22), the derivatives can be determined at the receiver point too, which gives

ql(Q, t) =

O∑
n=1

tn

n!
ql

(
∂n

∂tn
Q, 0

)
. (5.23)

Of course, t cannot be arbitrarily high, as stability is only guarenteed with a limited simulation
timestep, i.e. 0 ≤ t ≤ ∆t is required. Thus, the final definition for the AIR is

hf [n] = q1

(
Q
bnβc
i,j,k , n∆tAIR − bnβc∆t

)
, (5.24)

with the quantity l = 1 being the pressure. An example is shown in Figure 5.1

Note, that we are able to measure the AIR at multiple receiver points simultaneously. This could

31



Chapter 5. Convolution reverberation

for instance be used to mimic human ears that perceive acoustics in stereo, which is crucial for
us to estimate the distance or angle to a source via triangulation. Thus, we hereby mention that
a stereo signal certainly also contributes to a more realistic sound.

5.3 Acoustic properties

As mentioned at the beginning of this chapter, the auralization of specific environments can
be accomplished using convolution reverberation. In doing so, the impulse response (or rather
an approximation of such) is usually retrieved by recording the sound at a certain point in the
environment with microphones. Our approach is to simulate the AIR instead, as described in
the previous sections. This, however, requires us to specify acoustic parameters like the speed
of sound or boundary conditions appropriately to imitate real-world acoustics. In this section,
we will briefly mention the properties that have been used in our experiments.

5.3.1 Medium coefficients

As propagation medium, we used air at 20◦C. Depending on the literature, there exist slightly
different coefficients K0 and ρ0. We chose the values in [4, p. 161, Table 13.3] with

K0 ≈ 140 kPa = 140,000
kg

m · s2
, (5.25)

ρ0 ≈ 1.189
kg

m3
, (5.26)

which yields the speed of sound

c0 =

√
K0

ρ0
=

√
140,000 kg ·m3

1.189 kg ·m · s2
≈ 343

m

s
(5.27)

and an impedance of

Z0 = ρ0c0 ≈ 408
kg

m2 · s
. (5.28)

5.3.2 Boundary conditions

Besides the propagation medium, we also need to characterize the objects in the environment
with which the sound waves interact. This depends on various circumstances, like the material
and texture of the objects. For instance, a plain surface reflects waves rather sharply, whereas a
rough surface scatters the waves, which is also referred to as diffuse reflection [1, sec. 11.1.3.2].

But also the frequency of the waves have an influence on how strong the reflection or absorption
is. In the following table, some examplary reflection coefficients CR from [1, p. 346, Table 11.2]
are cited for different materials and frequencies:

Material 125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Concrete 0.98 0.98 0.97 0.96 0.95 0.95
Carpet (≈ 5 mm) 0.97 0.96 0.94 0.80 0.70 0.60

Window 0.88 0.92 0.94 0.95 0.95 0.95
Linoleum covering

on a felt layer
0.98 0.95 0.90 0.85 0.93 0.95
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5.4. Implementation

It is apparent that some materials reflect waves more evenly across all frequency bands, and
others vary strongly. This is certainly a critical limitation of our current system, as we are
only able to simulate surfaces with a frequency-independent reflection coefficient, as described
in section 3.3. In that regard, we will experiment with different parameters until the results are
adequate enough.

5.4 Implementation

After having described the theoretical foundations for convolution reverberation, its implemen-
tation is defined by the following steps:

1. Define the domain that shall be simulated, e.g. its size, resolution and boundaries with the
properties given in section 5.3.

2. Specify coordinates for the point source PS and receiver PR. Where appropriate, refine
the domain locally, e.g. at the point source (see section 6.2.2 for a considered decision).

3. Choose (5.7) as source function and specify an elaborate value for the parameter T . In
section 6.2.3, the choice of T will be argued in detail. To simulate this function, we yet
have to provide its antiderivative for the code, which can be determined using partial
integration: ∫

f(t) dt =

∫
t

T 2
e−t/T dt

=

[
− t

T
e−t/T

]
−
∫
− 1

T
e−t/T dt

= −e−t/T
(

1 +
t

T

)
+ c. (5.29)

4. Run the simulation and measure the AIR according to (5.24).

5. Numerically convolve the AIR with the desired source signal as described in (5.14). We
use cubic splines as interpolation for the discrete source signal in order to obtain its first
and second derivatives. This can be, for instance, easily implemented with NumPy and
SciPy:

1 from s c ipy . i n t e r p o l a t e import sp l rep , spa lde
2 from s c ipy . i o . wave f i l e import read
3 from numpy import l i n space , convolve
4
5 f s , source = read ( audioPath ) # sample frequency , source s i g n a l
6 N = len ( source ) # number o f sample po in t s
7 t = l i n s p a c e ( 0 . 0 , (N−1)/ f s , N) # sample time po in t s
8
9 tck = sp l r ep ( t , source , k=3) # cubic s p l i n e i n t e r p o l a t i o n o f source ,

10 # twice d i f f e r e n t i a b l e at time po in t s
11 de r i v = spa lde ( t , tck ) # de r i v a t i v e s o f polynomial at time po in t s
12 deconvSource = [ # deconvolved source s i g n a l
13 de r i v [ i ] [ 0 ] + 2∗T∗ de r iv [ i ] [ 1 ] + T∗∗2∗ der iv [ i ] [ 2 ] for i in range (N)
14 ]
15
16 # d i s c r e t e convolut ion , ’ r e sponse ’ = AIR
17 output = convolve ( response , deconvSource ) / f s
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6 Validation

The approach described in the previous chapter involves many numerical solutions, that make
the convolution reverberation prone to errors. Especially the AIR certainly contributes to an
inaccurate output signal, if itself deviates from the expected response. In order to quantify that
error, we will derive the analytical solution for the AIR in a simple setting and compare it with
the actual measurements obtained through the simulation.

6.1 Analytical solution using Green’s function

Let s : R → R be an arbitrary function for the pressure perturbation that is being generated
from a single point source ŝ : R3 × R→ R located at x = (0, 0, 0), i.e.

ŝ(x, t) := δ(x)s(t). (6.1)

Using this as the pressure quantity in the three-dimensional PDE of (2.2), which follows from
the conservation laws [14, sec. 1.1], gives

ŝ(x, t) = pt +K0(ux + vy + wz), (6.2a)

0 = ut + (1/ρ0)px, (6.2b)

0 = vt + (1/ρ0)py, (6.2c)

0 = wt + (1/ρ0)pz. (6.2d)

Differentiating with respect to t gives

∂

∂t
ŝ(x, t) = δ(x)s′(t) = ptt +K0(uxt + vyt + wzt), (6.3)

where

uxt = (ut)x = −(1/ρ0)pxx, (6.4a)

vyt = (vt)y = −(1/ρ0)pyy, (6.4b)

wzt = (wt)z = −(1/ρ0)pzz. (6.4c)

Plugging equations (6.4a-6.4c) into (6.3) yields

ptt −
K0

ρ0
(pxx + pyy + pzz) =

(
∂2
t − c2

0∆
)
p = δ(x)s′(t), (6.5)

where ∆ = ∂2
x + ∂2

y + ∂2
z denotes the Laplacian operator. With the differential operator for the

3D wave equation given as
L = ∂2

t − c2
0∆, (6.6)
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equations (6.2a-6.2d) can be rewritten as a PDE of second order:

Lp(x, t) = δ(x)s′(t). (6.7)

These types of PDEs can be solved using Green’s functions [14, sec. 3.1]. The basic idea is to
find a function G for a given linear differential operator L, such that

LG(x, t) = δ(x)δ(t). (6.8)

Then, any equation of the form
Ly(x, t) = f(x, t) (6.9)

can be transformed into

Ly(x, t) = L[G(x, t) ∗ f(x, t)] = [LG(x, t)] ∗ f(x, t)
(6.8)
= f(x, t) (6.10)

to show that
y(x, t) = G(x, t) ∗ f(x, t). (6.11)

The Green’s function for (6.6) is given as

G(x, t) =
1

4πrc20
δ

(
t− r

c0

)
, (6.12)

where r = ‖x‖2, i.e. the distance between receiver and source point [14, p. 141]. In the following,
we can substitute r for x in the other functions as well. With∫ ∞

−∞
δ(x− x0)f(x) dx = f(x0) (6.13)

[11, p. 73] and (6.11), the analytical solution for p in (6.7) then becomes

p(r, t) = G(r, t) ∗ δ(r)s′(t) =

∫ ∞
0

∫ ∞
0

δ(τ − ξ/c0)

4πξc2
0

δ(r − ξ)s′(t− τ) dξ dτ

=

∫ ∞
0

δ(τ − r/c0)

4πrc2
0

s′(t− τ) dτ

= H (t− r/c0) · 1

4πrc2
0

s′ (t− r/c0) . (6.14)

Notice, that this equation follows our intuition of how acoustic waves propagate. On one hand,
the sound intensity decreases proportional to r. On the other hand, the waves arrive at the
receiver with a delay of r/c0, which is the time the waves with speed c0 need to travel r meters.
Moreover, the waves propagate equally in each direction.

In conclusion, the analytical solution (6.14) is known for any source function for which the
derivative exists. For instance, the approximation of the Dirac delta impulse (5.7) has the
derivative

s′(t) = f ′(t) = e−t/T
(

1

T 2
− t

T 3

)
. (6.15)

For the analysis in the next section, we will evaluate the error terms with this function, as we
are foremost interested in the accuracy for convolution reverberation.
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6.2. Convergence tests

6.2 Convergence tests

In this section, we will present various experiments to assess the impact of different parameters
on the numerical error. As the equations derived in the previous section describe the analytical
solution for an undisturbed spherical wave, we will design the experiments in such a way, that
the wave generated by a point source will never interact with any boundary. We will especially
ensure that the domain is always big enough, such that the waves do not hit the borders, in
order to avoid any undesirable interference.

If not stated otherwise, each experiment has been executed with the following settings:

• Domain size: ~S = (3, 3, 3)

• Source point: PS = (1.5, 1.5, 1.5)

• Speed of sound: c0 ≈ 343 m/s (according to section 5.3.1)

• Simulation time: tsim = 0.0036, thus the wave propagates ≈ 1.235 meters

• Impulse parameter: T = 0.001

• Convergence order: O = 4

• Cluster: CoolMUC 3 (mpp3)

• Number of cores: 64

6.2.1 Uniform refinement

First, we are going to analyze the impact of the uniform domain resolution on the pressure error.
Moreover, the two approaches mentioned in section 4.4, i.e. a constant uniform resolution and
local refinement at the point source will be compared in section 6.2.2.

The error is calculated as follows: We measure the AIR, according to section 5.2, at ten randomly
generated points within the domain (for comparability, we always use the same ten points in
each experiment). Those measurement points were intentionally generated in such a way, that
they are at least 0.1 meters apart from the source. The reason for this is, that the point source
produces strong local discontinuities, which also yields to visible artefacts in the simulations.
Furthermore, the analytical solution (6.14) diverges to infintity for r = 0, which makes the area
in the close proximity of the point source even more sensitive to errors. Hence, and also because
we are foremost interested in the accuracy after longer distances, we do not consider points with
a distance smaller than 0.1 meters to the source when evaluating the numerical error.

Now, with an AIR sample frequency of fs = 50000 Hz, we get tsim · fs = 180 pressure measure-
ments for each point, i.e. time series ỹi[n] with i ∈ [10] and n ∈ [180]. The absolute error ea is
then defined as the L2 norm of all deviations from the analytical solutions yi[n]:

ea :=

√√√√ 10∑
i=1

180∑
n=1

(ỹi[n]− yi[n])2. (6.16)

Figure 6.1 shows, that with increasing global resolution R, the error decreases expectedly. In
consequence, the measured AIR is more accurate, which can be seen in Figure 6.2, where an
AIR is displayed for various resolutions.
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Figure 6.1: Absolute pressure errors depending on the global resolution R for uniform refinement.

0 0.5 1 1.5 2 2.5 3 3.5

·10−3

0

1

2

t

P
re

ss
u

re

R = 8

0 0.5 1 1.5 2 2.5 3 3.5

·10−3

0

1

2

t

P
re

ss
u

re

R = 16

0 0.5 1 1.5 2 2.5 3 3.5

·10−3

0

1

2

t

P
re

ss
u

re

R = 32

0 0.5 1 1.5 2 2.5 3 3.5

·10−3

0

1

2

t

P
re

ss
u

re

R = 64

Analytical solution Measurement

Figure 6.2: AIR measurements compared to the analytical solution for different R. The receiver
point has been chosen to be located at PR = (1.698, 1.698, 1.698), such that the
distance to the source is ‖PR − PS‖2 =

√
3 · 0.1982 ≈ 0.343 meters. Hence, the wave

arrives at the receiver after ≈ 0.343/343 = 1 · 10−3 seconds.
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6.2. Convergence tests

(a) R = 2 (b) R = 4 (c) R = 8

Figure 6.3: Illustration of the domain grid with size ~S = (3, 3, 3). The locally refined source
point (indicated by the red cross) is located in the center of the domain at PS =
(1.5, 1.5, 1.5), where ν = 2 holds for each of the above shown grids. These illustrations
show a two-dimensional slice of the domain at its center. The red circle displays the
wave front at the end of the simulations after tsim = 0.0036 seconds. Note, that the
volume of the locally refined parts of the domain (here indicated by the gray areas)
decreases, the higher R is. This is because the source point can already be isolated
better with higher global resolutions.

More specifically, we can quantify to what extent higher resolutions improve the simulation
accuracy. For R = 2 and R = 64, the calculated errors were about 2.693 and 0.602 respectively,
which constitutes a convergence rate of

k =
log(2.693/0.602)

log(64/2)
≈ 0.432. (6.17)

This means, that the error gets reduced by an average of

2k ≈ 1.349 (6.18)

when the resolution is doubled. However, halving the cell sizes also leads to a halved simulation
timestep (4.2), as well as eight times more cells. Hence, we expect about 16 times longer
computing times, just to enhance the accuracy by the factor (6.18). The actual computing times
for the uniform refinement shown in Figure 6.4 approve the same conclusion.

6.2.2 Local refinement at point source

In the second experiment, we assess to which degree a higher local resolution at the point source
may improve the results. The experiments were designed in such a way, that the domain is first
uniformly refined with a global resolution of R. Then, the slices that contain the source point PS
have been refined locally with a resolution RPS

> R, as described in section 4.4. We introduce
a new variable

ν := RPS
/R, (6.19)

which expresses how many times the local resolution around the source is higher than the global
resolution. To better imagine the experiments, the refined domain is examplarily illustrated in
Figure 6.3 for different R.
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Figure 6.4: Computing times compared to the absolute pressure errors for both uniform and
local refinement at the point source. Here, the plot points for all local refinement
experiments indicate a change of ν to 2, 4 and 8 from the leftmost mark to the
rightmost mark. As expected, by increasing the uniform resolution R, the computing
time increases inversely proportional to the error. With local refinement, however,
the error is virtually unchanged, while the computing time increases noticeably. Note,
that the best results for local refinement can be observed with R = 2. But this is
most likely due to the refined parts covering a large fraction of the domain and
especially the spherical wave (see Figure 6.3).
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The general conclusion based on the results in Figure 6.4 is, that local refinement does not con-
tribute to a noticeably better accuracy. On the contrary, due to having significantly smaller cells,
the timestep decreases correspondingly, which leads to longer computing times and thus a worse
efficiency. A local timestepping (LTS) approach proposed in [9] could theoretically compensate
this very well, as the fraction of cells that are locally refined is typically small, especially for
higher global resolutions R (see Figure 6.3). However, besides the high computing times, the
accuracy does not improve reasonably, such that even with LTS enabled, local refinement would
not have outperformed the uniform method regarding the overall efficiency.

This is somewhat surprising, as we expected the error to be generated predominantely in the cell
on which the source term is applied, and that the error is then disseminated across the whole
domain. We therefore assumed that a locally reduced error would correspondingly improve
the accuracy in the other cells, despite them having a lower resolution. Based on the results,
however, this conclusion cannot be made. Thus, it is highly recommendable to always operate
on a uniform grid with no further local refinement.

6.2.3 Strength T of the approximative impulse

The choice of T in (5.7) noticeably effects the absolute error, as Figure 6.5 shows. With increasing
T , the error decreases continually. This may seem surprising; however, it is important to note
that we are effectively using different source terms, where the analytical solutions for higher T
consist of significantly smaller values (see Figure 6.6). Thus, it is more appropriate to compare
the relative errors instead, which we define as

er :=

√√√√ 10∑
i=1

180∑
n=1

γi[n]2, (6.20)

where

γi[n] :=

{
ỹi[n]−yi[n]

yi[n] if yi[n] 6= 0

0 otherwise
. (6.21)

Note, that the analytical solution (6.14) is 0 for all t < r/c0. This is not really optimal, as
incorrect signals prior to the wave incidence after r/c0 seconds are completely neglected in (6.20).
However, we can assume that those inaccuracies are similarly manifested in the measured signal
after the incidence, such that the above defined relative error is still sufficiently expressive.
As a consequence for all results presented in this section, we again randomly generated 10
evaluation points, but this time with the additional criterion of them having a maximal distance
of c0 · tsim ≈ 343 · 0.0036 = 1.2348 meters to the source. This is to ensure that there exists no
evaluation point for which yi[n] is just 0 during the whole simulation, i.e. for all n.

For the relative errors, illustrated in Figure 6.5, we also observe a steady decline with increasing
T , independent of the used resolutions. For T ≥ 0.003, however, the relative errors are not
changing noticeably anymore. This suggests using a value of 0.003 or above for T .

But the error is not the only quantity that should be taken into consideration. With different
T , the slope of the function and its antiderivative vary as well, as can be seen in Figure 6.7. The
approximative impulse f(t) is designed to have its peak at t = T with a value of f(T ) = (T ·e)−1.
Hence, the smaller T is, the stronger and earlier the peak occurs. Looking at the corresponding
antiderivatives, one observes that the impulse decays faster, the smaller T is.

This property is important for the choice of an adequate simulation time. Consider the fraction
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Figure 6.5: Absolute (left) and relative (right) pressure errors for different global resolutions
depending on the coefficient T .
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Figure 6.6: Analytical solutions for the pressure magnitude of the AIR with different T . The
distance between receiver and source is ≈ 0.343 meters.
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the parameter T .
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p(t) of the function that is simulated after t seconds, i.e.

p(t) :=

∫ t

0
f(τ) dτ

(5.29)
= 1− e−t/T

(
1 +

t

T

)
. (6.22)

For a fixed p ∈ [0, 1), the required simulation time t increases linearily with T . That is, there
exists a coefficient κ(p) ∈ R≥0, such that

p = p(t)⇐⇒ t = κ(p) · T. (6.23)

In the following table, some values for those linear coefficients are presented approximately:

p 0.95 0.9 0.5 0.1 0.01

κ(p) 4.744 3.890 1.678 0.532 0.149

To better understand what this means in practice, consider the experiments once with T1 =
0.0003 and once with T2 = 0.1. After tsim = 0.0036 seconds, the fractions of the radiated
impulse differ significantly with p1 = 99.992% and p2 = 0.063% respectively. According to
(6.23), the simulation time for the weaker impulse with T2 would have to be T2/T1 = 333.3̄ times
longer than with T1, in order to radiate the same amount p1.

Consequently, we on one hand generally prefer a small T in order to shorten the simulation
time, but on the other hand, a high T (at least greater than 0.003) should be used for a proper
accuracy. In conclusion, we thus recommend to use T ≈ 0.003 for the convolution reverberation.
Note, that this suggestion is based on the results for the here presented experiment, i.e. the
propagation of an undisturbed spherical wave with no boundary interactions. Hence, depending
on the individual circumstances, e.g. the experiment, computational resources, or the required
quality of the result, another value for T might be more appropriate.
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7 Some experiments

In the following, some examplary simulations are presented, which showcase various acoustic
effects, as well as some functionalities of our system. All experiments were simulated in 3D,
but for better visibility, we only show a two-dimensional slice for most of them. In those cases,
we omit the z-coordinates in the descriptions, and do hereby mention that the shown slices are
always aligned with the z-coordinate of the source points. Furthermore, the acoustic properties
are the exact same as stated in section 5.3.1 for all experiments. Green lines indicate absorbing
boundaries, whereas yellow and red lines represent partially and totally reflecting boundaries. If
not marked otherwise, all outer domain borders are absorbing. In all experiments, the domain
has been uniformly refined with a global resolution of R ≥ 48.

The first three experiments show diffraction effects in different environments. In Figure 7.1,
the source signal gets diffracted around the corners of a wall. In Figure 7.2, a signal is emitted
within a small pipe, that has small holes in it, similar to a flute. And in Figure 7.3, a similar
experiment as in Figure 4.2 is presented, but in 3D.

Another effect, that can be observed in Figure 7.4, is interference, which occurs when multiple
waves overlap. This experiment showcases the ability to simulate multiple, individual source
terms.
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t = 0.0001 t = 0.0007 t = 0.0013

t = 0.0019 t = 0.0025 t = 0.0031

Figure 7.1: Simulation of an acoustic signal in an open environment with a totally reflecting
ground and wall at the center. The domain has a size of ~S = (1, 1) and the wall is
0.5 meters tall and 0.125 meters wide. The point source is located left from the wall
at PS = (0.25, 0.125) and emits sine waves with frequency 2000 Hz. It can be seen,
that the source signal gets diffracted around the upper edges of the wall, such that
it can still be received on the other side of the wall, as we are expecting it. Note,
that all domain borders, except the ground, are absorbing. That is, with a geometric
approach alone, as described in the introductory chapter 1, a receiver point right
from the wall could not be backtraced to the source point by reflections only.
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t = 0.00001 t = 0.00055 t = 0.00100

t = 0.00145 t = 0.00190 t = 0.00235

t = 0.00280 t = 0.00325 t = 0.00370

Figure 7.2: Simulation of an acoustic signal within an onesidedly opened pipe. Note, that,
contrary to all previously presented experiments, the domain is not cubical, but
has size ~S = (1.5, 1). The pipe (indicated by the yellow lines) has corner points
(0.1875, 0.4375) and (1.125, 0.5625). Moreover, it has small holes of width 0.0625
meters, once in the top of the pipe at x = 0.625 (left corner), and once in the bottom
at x = 0.8125. Partially reflecting boundary conditions have been imposed on the
whole pipe with reflection factor CR = 0.9.
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t = 0.0003 t = 0.0010 t = 0.0017

t = 0.0024 t = 0.0031 t = 0.0038

Figure 7.3: Three-dimensional simulation of a sinusoidal source signal with frequency 2000 Hz,
that gets diffracted due to a small hole in a wall. The point source is located at
PS = (0.2, 0.75, 0.75) in a domain of size ~S = (1.5, 1.5, 1.5). The totally reflecting
boundary lies at x = 0.875 and has a square-shaped hole in it with a width of 0.125
meters (indicated by the red slice in the center of the wall). To better distinguish the
waves coming from the original source (blue) and the new spherical waves that arise
at the aperture (purple), we colored the areas of the domain that are segregated by
the wall differently. Note further, that for reasons of visibility, the purple color map
covers a more narrow range of pressure values, as the waves behind the aperture are
very weak. Thus, those waves may appear stronger than they actually are. For a
better comparability of the pressure magnitudes, refer to Figure 4.2, where a similar
experiment is shown in 2D.
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t = 0.0001 t = 0.0007 t = 0.0013

t = 0.0019 t = 0.0025 t = 0.0031

Figure 7.4: Simulation of two simultaneous point sources at ~PS1 = (0.25, 0.25) and ~PS2 =
(0.75, 0.75) in a domain of size ~S = (1, 1). The former signal is a cosine with fre-
quency 4000 Hz and a maximal amplitude of 0.1, whereas the latter source emits a
sinusoidal signal with a frequency of 1000 Hz and a maximal amplitude of 1. In fact,
the simulation system has been extended to allow for arbitrarily many individual
point sources. This could be, for instance, useful for convolution reverberation, if it
is known beforehand that the same source signal is always emitted at various points
in the environment simultaneously, like in concert halls with multiple loudspeakers.
In doing so, it can be avoided to measure the AIR for each source point separately.
However, this would of course require to use the exact same signal (5.7), including
the same T , for all sources.
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8 Conclusion

In the course of this thesis, the existing implementation of the ADER-DG method (LinA) has
been evolved to a functional auralization system. Especially the ability to make diffraction effects
audible is a substantial advantage compared to other methods.

In order to construct virtual environments, such that the propagation of acoustic waves can be
simulated reasonably realistic, we proposed the implementation of absorbing, as well as partially
and totally reflecting boundary conditions. Moreover, our system supports the specification of
planar boundaries (orthogonal to one dimension), which can be placed anywhere within the
domain. In doing so, the domain grid is automatically adjusted in such a way, that the re-
sulting global timestep is as optimal as possible. Overall, we were able to present a variety of
experiments, where diffraction effects could be observed in differently designed environments.

Our system further enables the interpolation of the simulated signal in space-time, such that
it can be measured not only at arbitrary points in the domain, but also at any desired sample
frequency. As the acoustic domain can be considered as a LTI system, this allows us to retrieve
an impulse response which represents the reverberation in the simulated environment.

With that, the simulation can be accelerated in two respects: On one hand, we only need to
simulate the approximative impulse (5.7) instead of the whole source signal. An appropriate
simulation time for that impulse depends predominantely on the reverberation time of the envi-
ronment, which we can generally assume to be feasibly small, e.g. in the range of some hundred
milliseconds [1, sec. 11.4]. Consequently, the computing times are kept acceptable, independent
of the duration of the actual sound source. On the other hand, once the approximative impulse
response is known, any simulation can effectively be reduced to a convolution operation, which
can be done in real-time. This is extraordinarily more efficient than simulating each source signal
individually, using the computationally expensive ADER-DG method.

Based on these considerations, our method can be considered as a relatively comprehensive and
efficient auralization system, given that it also incorporates diffraction effects in a highly accurate
manner. In conclusion, this suggests that our method is worthwhile to be further advanced, for
instance regarding more realistic boundary conditions or more complexly shaped objects and
environments, in order to become even more functional.
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