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Abstract

The C++ library AutoPas is meant to be included into simulation programs, and delivers
optimal node-level performance for N-body problems with dynamic auto-tuning at run-time.
In this thesis, a molecular dynamic simulation program was built utilizing the flexibility
of AutoPas. It provides multiple methods and functionalities in order to create different
molecular dynamic scenarios and was evaluated by simulating the spinodal decomposition
phenomenon on the CoolMUC-2 cluster. The results show, that the performance of pairwise
force calculations increases by exclusively using Structure of Arrays and AVX intrinsics. In
general, the performance is inferior to ls1-mardyn.
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Zusammenfassung

Die C++ Library AutoPas wird in Computersimulationen eingeschlossen, um mittels
dynamischem Auto-Tunings zur Laufzeit optimale node-level Leistung für N-body Probleme
zu erreichen. In dieser Bachelorarbeit wurde mithilfe der Flexibilität von AutoPas ein
Program für molekulardynamische Simulationen erstellt. Das Program verfügt über mehrere
Funktionalitäten, um verschiedene Simulationsszenarien zu erstellen und zu simulieren. Mit-
tels der Reproduktion des spinodalen Phasenzerfalls auf dem CoolMUC-2 Kluster, wurde die
Leistung des Programms evaluiert. Die Ergebnisse zeigen, dass die Kräfteberechnungen durch
AutoPas unter der exclusiven Verwendung spezifischer Datenstrukturen und intrinsischer
Funktionen schneller durchgefhrt werden. Insgesamt ist die Leistung des molekulardynamis-
chen SImulationsprogramms schwächer, als die von ls1-mardyn.
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1. Introduction and motivation

With the help of science we are able to understand the complexity of our environment
through observation and critical thinking. Nevertheless, it can be extremely costly and
complicated to analyse certain phenomenons on very small or very big scales from empirical
observation. Therefore the popularity of simulations is increasing as a way of explaining
unknown behaviour. On a cosmological scale, the behaviour of huge galaxies was illustrated
by the IllustrisTNG simulations[AP17] that contribute to the understanding of stars and
mass. As many-body problems cannot be solved analytically, molecular dynamic simulations
are used to provide numerical solutions about microscopic systems. Their application is
mainly found in biology or chemical engineering [AH15], as they allow the observation
of complex behaviour of molecules and atoms. Besides efficient numerical algorithms,
super computers are needed to simulate scenarios with a huge number of particles, such as
separation of gases or the simulation of complete viruses, in e.g the simulation of the satellite
tobacco mosaic virus (STMV)[FP]. With parallel and distributed computing methods and
advanced programs, simulations of events with up to twenty trillion molecules are possible
[TSH+19]. The Leibniz-Rechenzentrum (LRZ) provides with the SuperMUC the opportunity
to simulate such events.

As molecular dynamic simulations proceed N number of particles, the simulated problems
are considered as N-body problems. Additionally, every object in a system theoretically
interacts with every other object, so that the computational complexity is O(N2). Reducing
the complexity is achieved by lowering the number of particle interactions. This is most
commonly done by only considering short-range interaction. Efficient algorithms are already
established for those type of interactions [Pli95] and can reduce the computational complexity
down to O(N).

Still in development by the project TalPas (”Task-based Load Balancing and Auto-
tuning in Particle Simulations”), the AutoPas library provides multiple algorithms and
tuning procedures in C++ in order to optimize the performance of huge programs, such
as ls1-mardyn [ls1]. Due to its modular and extensible structure, it can easily be enlarged
by developers. Furthermore, because of its simple interface, AutoPas can effortlessly be
integrated into other particle-type simulations.

This flexibility of AutoPas will be the focus of this thesis. The library’s functionalities
are covered in depth and used to implement a molecular dynamic simulation program
called ”md-flexible”. Moreover, its performance is compared to the ls1-mardyn program by
reproducing the Spinodal Decomposition phenomenon.
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2. Theoretical background

2.1. Physical and chemical Background

When talking about molecular dynamic simulations, it is important to understand the
mathematical, physical and chemical laws behind the computational processes. While we
need scientific laws to understand the interaction between the objects of a system, it is
important to distinguish the different numerical techniques that are responsible for the time
discretization. Furthermore, algorithms and data layouts are needed to efficiently compute
the natural phenomenons. In the following paragraphs, those scientific principles will be
presented and shortly explained, before moving on to the related code.

2.1.1. Newton’s laws of motion

Newton’s laws of motion were first published with Newton’s Philosophiae Naturalis Principia
Mathematica in 1687 [New87] and deal with explaining the motion of objects in relation to
their exerted force. They are applicable on all physical scales, from atomical (mixed with
Kepler’s laws of planetary motion) to planetary systems [nwi].
First law: when no external force is exerted on a object, the object remains a constant
velocity and is eather at rest, or moving in a staight line.
Second law: the acceleration a of a body is proportional to the net Force acting on the
body and to the mass m of the Object.

F = a+m (2.1)

Third law: ”For every action (force) in nature there is an equal an opposite reaction.”
Therefore, between two body the exerted forces are the following:

FAB = −FBA (2.2)

The forces are equal in magnitude but opposite in direction. [Bro99]
Newton’s third law of motion can be used to cut the number of force interaction in a system
by half. The native complexity still stays at O(N), but the computational time needed is
halved.

2.1.2. Equation of state in a macroscopic system

As a modification of the ideal gas law Equation 2.3, the van der Waals equaltion of state
estimates the behaviour of gases while considering them to not act.

PV = nRT (2.3)
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2. Theoretical background

It describes the universal forces of attraction and gives a relation of the volume, the pressure
and the temperature in kelvin in a macroscopic system.(

P +
an2

V 2

)
(V − bn) = nRT (2.4)

In Equation 2.4, P is the pressure of the fluid, V is the volume of the fluid, n is the number
of particles and T is the absolute temperature of the system and R is the gas constant.
Furthermore, the constant b describes the volume excluded from V by one particle and the
constant a describes the average strength of attractive force that exist between particles
in a gas that increases when the attractive force between particles is increasing. The
Lennard Jones potential uses this Equation 2.4 to simulate the attractive forces. Moreover,
the repulsive forces are based in the Pauli exclusion principle [pau]. In the md-flexible
simulation, those forces are modeled by the attractive Lennard Jones Potential.

2.1.3. Lennard Jones Potential

The Lennard-Jones-Potential U LJ also known as the 12-6 potential is a mathematical model
and was first proposed by John Lennard-Jones in 1924. It describes the potential energy of
two interacting particles leading to the difference between attractive and repulsive forces of
these particles depending on their separation [LJ24].

ULJ = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
(2.5)

Here, r is the distance between two particles, σ is the finite distance at with the potential is
zero, ε is the depth of the potential well.

As visualised in Figure 2.1, when the distance r between two particles is bigger than
1.12 · σ, the resulting forces are attractive until the potential energy reaches a minimum,
so that the forces become repulsive and r increases again. This is a repeating cycle that
accounts for the motion of the particle when no other external forces are present. The
Figure 2.1 visualizes the potential and the inter-molecular forces
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2. Theoretical background

Figure 2.1.: The potential curve shows that if the seperation of the particles is situated left
of the minimum they repel, otherwise they attract each other

Source: http://atomsinmotion.com/book/chapter5/md

The variables σ and ε in Equation 2.5 are specific to each particle, so that this potential
cannot directly be applied to any pair of particles.
Accordingly, we need rules to compute the potential between particle pairs. There are
different combination rules, and the choice of them can affect the accuracy of the simulation.
The md-flexible simulation uses the Lorentz-Berthelot rules [Lor81][Ber98], that compute
the resulting σ and ε by an arithmetic and a geometric mean respectively.

σ =
σ1 + σ2

2
ε =
√
ε1ε2 (2.6)

The simulation uses the gradient of the potential to compute the resulting forces acting on
each particle [bmo]. To compute the forces of all particles with Equation 2.8, the program
iterates pairwise through all particles. Here it is important to point out, that since the
interacting force between particles diminishes with increasing distance, the potential between
particles can be ignored. This is why, the user defines rcutoff the maximum distance for
which force interactions are being calculated.

FLJ(
−→
di,i) = ∇di,j

ULJ(di,j) (2.7)

FLJ(
−→
di,j) =

24ε

|
−→
di,j|2

[(
σ

|
−→
di,j|

)6

− 2

(
σ

|
−→
di,j|

)12]−→
di,j (2.8)

In this model,
−→
di,j is the vector between particles i and j, with |

−→
di,j| its euclidean norm.
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2. Theoretical background

2.1.4. Kinectic energy and temperature

In a system, there are two forms of acting energies: Potential energy and kinectic energy.
While potential energy is the energy stored by an object as a result of its position, kinectic
energy describes the energy of motion. The kinectic energy of an object is proportional to
its mass m and to its velocity v [Jai09].

Ek =
1

2
mv2 (2.9)

From this equation we deduct the average kinectic energy in a system:

Ekin =
∑N

i=0

mi < vi, vi >

2
(2.10)

Moreover, the temperature of a system is proportional to the average kinetic energy of that
system. The relation between the temperature of a system and the kinectic energies between
all particles are describe by Equation 2.11

T =
2 ·
∑N

i=0

mi < vi, vi >

2
dim ·N · kb

(2.11)

In Equation 2.10 and Equation 2.11, m and v are the mass and velocity of the particle i.
Furthermore dim is the number of dimensions in the system, N is the number of particles
and kB is the Boltzmann constant. The Boltzmann constant ”is a physical constant that
relates the average relative kinetic energy of particles in a gas with the temperature of the
gas”1. To simulate heating or cooling processes, the simulation uses a thermostat, that
scales the velocities of all particles in the system to obtain the desired temperature.

2.1.5. Brownian motion

The Brownian motion is the random motion of particles that results from the continuous
collision with other particles. It was first observed by botanist Robert Brown in 1827 [Bro28]
by observing the movement of pollen in water through a microscope. The Brownian motion
of a single particle, is ”the result of the thermal motion of molecular agitation of the liquid
medium” [Hao19]. The smaller the particle and the higher the temperature in the system,
the more the particles are displaced. This initial motion can be simulated in molecular
dynamics by applying the Maxwell-Boltzmann distribution (Equation 2.12) in the first
timesteps of the simulation using the thermostat that iterates over all particles in the system.

f(v) = (
m

2πkBT
)

3

2 · e
−
mv2

2kBT (2.12)

In Equation 2.12, m is the mass of the particle, kB is the Boltzmann constant, T is the
temperature and v is the velocity of the particle.

1https://en.wikipedia.org/wiki/Boltzmann_constant
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2. Theoretical background

2.2. Particle processing and time discretization

2.2.1. Time Discretization

The process of time discretization can be done with the application of different discretization
methods. The basic idea, is to approximate the positions and velocities of all particles in
every time step with different algorithms. Because of its simplicity and sufficient accuracy,
the md-flexible simulation uses the Verlet-Störmer algorithm where the data for each particle
is updated corresponding to its properties during the previous and current timestep [Swo82].

x(tn+1) = xi(t
n) + ∆t · vi(tn) + (∆t)2Fi(t

n)

2mi
(2.13)

v(tn+1) = vi(t
n) + ∆t

Fi(t
n) + Fi(t

n+1)

2mi
(2.14)

Equation 2.13 and Equation 2.15 visualizes the computational procedure for the position x
and velocity v of the particle i in relation to the acting forces F in timestep t of the n-th
iteration with step size Δt.

2.2.2. Boundary conditions

For molecular dynamic simulations, as well as for any computational task, the resources are
limited and the system has to fulfil a lot of constraints. As any imitation or simulation of
natural phenomenons is processed in a limited domain, it is important that the simulation
is modelling the rightful behaviour at the borders of that domain. Depending on the model,
different boundary conditions can be implemented on each border of the domain. The
most common boundary conditions are ”Outflowing”, ”Reflecting”, and ”Periodic”. For
simulations that implement outflowing boundaries, the particles are disappearing when
moving out of the borders. With reflecting boundaries, the particles won’t vanish but will
bounce off the borders.

Periodic boundaries can be defined as particles leaving the domain on one side and entering
on the opposite side of the domain. This leads to particle interactions across borders and to
an infinite domain. To implement reflecting and periodic boundaries, the domain is divided
into three layers: inner, boundary and halo with the important property ”interaction length”
IT defined as followed:

IT = rcutoff + rskin (2.15)

Here, rcutoff represents the cutoff radius chosen in the Linked Cell algorithm Subsection 2.3.2
and the maximal distance of force interactions between the particles and rskin represents the
skin radius for verlet lists mentioned in Subsection 2.3.3.
The inner layer includes all particles with distance > IT from all borders of the domain.
The boundary layer contains all particles that are IT away from the boundary towards
the innerlayer and rskin towards the outside direction of the border. Finally, the halo layer
contains all particles that are outside of the domain and rskin/2 inside of the domain. To
reflect the particles off a reflecting boundary, the common method is to copy the particle
that has to be reflected onto the halo layer when it is getting closer to the border. As
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2. Theoretical background

Figure 2.2.: Two dimensional boundary processing of particles by different layer cells.
White cells are representing the inner layer, blue cells inside the red boundary

are representing the boundaries layer and the halo layer is visualized by the
cells outside of the red boundary. The copying of particles in the boundary

cells to the halo cells is pictured by the different colors.

soon as the particle is moving outside of the domain, it is replaced by its appropriate halo
particle, having the same properties as the original particle’s, but with reverse velocity
values. For periodic boundaries, as the particles interact across borders, the particles inside
the boundary layer are interacting with respective particles in the halo layer. It is important
to point out, that particles that are placed at the corners of the domain, have to be copied
up the three times. This is visualized by Figure 2.2. To rightfully compute the halo particles,
such that the memory consumption is not exploding, the AutoPas library is updating the
halo particles every multiple time steps. For that, the ”inner” domain and halo domain are
divided into user defined sized cells. The management of cells is discussed Subsection 3.2.2.
After simulating a new time step, new halo particles are computed, and halo particles from
the previous computation are either deleted or cell-wise updated to their new position.

7



2. Theoretical background

2.3. Molecular Dynamic Algorithms

2.3.1. Direct Sum

The direct sum algorithm is the most intuitive algorithm to compute the data of particles in
a system. It is stating, that in a system of objects, all individual objects are interacting
with each other. This is simply done by iterating over all particles in the system for every
particle. By using the Newton’s third law describes in Subsection 2.1.1, this method can be
optimized, but nevertheless is very unefficient especially for large systems with a high number
of particles. It has the most unnecessary calculations of particles of all three algorithms
mentioned in Section 2.3. The complexity of a system implementing this method is O(N2).

(a) Direct Sum (b) Linked Cell

Figure 2.3.: Particles interactions of Direct Sum and Linked Cell
modified from source: https://en.wikipedia.org/wiki/Cell_lists

2.3.2. Linked cell

The linked cell algorithm is one of the most used algorithm to proceed particles in molecular
dynamic simulations. It divides the multidimensional domain into cells with adjustable
but uniform border size csize, and computes the data of the particles by iterating through
the affected neighbouring cells. In most cases csize is equal to rcutoff so that the algorithm
only needs to iterate through the neighbouring cells of the current cell. Regarding a three
dimensional system, the linked cell algorithm would iterate over all 26 neighbour cells of
the current cell. If csize is smaller then rcutoff, then it needs to iterate through more cells.
Moreover, if csize is bigger than rcutoff, then in most cases, computational power is lost,
because unnecessary particles are included into the process, mentioned in Subsection 2.1.3.
The particle interactions are visualized in Figure 2.3.
With N the number of particle and rcutoff, the computational effort of this method is

8
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2. Theoretical background

O(cN) ∈ O(N). The linked cell algorithm is in between the direct sum and verlet list
algorithms in terms of computational and memory overhead, but benefits most of the SoA
data structure mentioned in Section 2.4. A full comparison of the methods is shown by
Figure 2.5.

2.3.3. Verlet Lists

To compute the particles in a system using the verlet list algorithm, a data structure is
created for every particle. Every particle contains a list of its neighbouring particles within
rcutoff. This list must be rebuilt every multiple time step as the particles are moving. To
build these lists, it is necessary to iterate pairwise through all the particles and check all
distances. The native computational effort for the build step is O(N2), but can be improved
with the linked cell algorithm to O(N) [ZYC04].

Furthermore, by multiplying the size of the list by rverlet-skin, more particles will be
included in the force calculations and the rebuild frequency can be diminished. Figure 2.4
visualizes the neighbour region for a single particle.

Figure 2.4.: Neighbour region of a verlet List

9



2. Theoretical background

2.3.4. Comparison of the methods

Figure 2.5.: Comparison of the Molecular Dynamic Algorithms tested on the Cool-MUC2
(mentioned in Section 6.1)

Source: [GST+19]

Figure 2.5 shows a comparison between the different molecular dynamic algorithms. In
general, the usage of direct sum should be avoided for large scale scenarios, and the denser
the scenario becomes, the more beneficial is the usage of the linked cell algorithm over the
verlet lists.

2.4. Data Layouts

To efficiently compute the particles in the system, different data layouts can be chosen.
Different data structures are used for accessing that data of the particles stored in the
memory. Mostly vectors or arrays are used as containers to store the data corresponding
to the particles. The Array of Structures (AoS) is the more intuitive one. As seen in
Figure 2.6, for each particle, a data structure is set up with all the properties important to
the calculation. This leads to multiple accesses on different memory locations being necessary
to calculate the force interactions between the particles. However, it allows to easily manage
the particles. Adding and deleting particles from a AoS data structure is easier than when
using the Structure of Arrays (SoA). The SoA shown in Figure 2.7, has multiple advantages
over the Array of Structures. The data structure separates each property of the particle
used in the molecular simulation into different containers with size equal to the number of
particles in the simulation. Data is therefore loaded efficiently as it is stored continuously in
memory. To calculate the forces between the particles, the structure of arrays is also more
efficient because of vectorization techniques mentioned in Section 3.2.5.
Moreover, as every particle need to be copied, the conversion from AoS to SoA is expensive.

10



2. Theoretical background

[a]

[b]

Figure 2.8.: Data Layouts
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3. Related codes

3.1. ls1-mardyn

ls1-mardyn is a highly optimized program to simulate enourmous domains in molecular
dynamics. It was developped by the cooperation of four universities: the High Performance
Center Stuttgard (University of Stuttgart), Laboratory for Engineering Thermodynamic
(University of Kaiserslautern), the scientic computing faculty (Technical University of
Munich), Thermodynamics and Energy Technology (University of Paderborn)[ls1]. It is
built to compute parallely on supercomputing architectures and can simulate systems with
up to twenty trillion particles [TSH+19]. In this thesis, the performance of ls1-mardyn with
and without AutoPas is compared to the md-flexible simulation explained from the AutoPas
library. This is done by computing the SpinodialDecomposition mentioned in Chapter 5.

3.2. AutoPas

The AutoPas library is an open-source project1 and part of the ”TaLPas”2 project. It is meant
to be included into simulation programs, and allows the optimization of N-body problems
by dynamic auto-tuning at run-time in order to deliver the best node-level performance for
the current state of the simulation. Though it doesn’t include any native functionality to
run on multiple nodes, it is possible to use the MPI functionalities of ls1-mardyn, or other
simulation programs, to run an AutoPas instances on each node.
The mechanism of auto-tuning, described in Subsection 3.2.3, chooses the best configurations
for the simulation by analysing the properties of the simulation in the current timestep.
Most scientific simulations work on specific input with specific algorithms that are chosen
before runtime. In practice it is hard to choose the right static properties to efficiently
simulate variable scenarios. The Spinodal Decomposition, mentioned in Chapter 5, is such a
scenario that describes the transformation from a homogeneous to a heterogeneous state.
The AutoPas library fills this gap in Molecular Dynamic simulations with auto-tuning at run-
time [GST+19]. In this thesis, most of the AutoPas library functionalities are included into
the modular and flexible simulation program called ”md-flexible”, included as an example
program inside the library, which allows the user to easily use the library’s processes to
build multiple simulation scenarios.

1https://github.com/AutoPas/AutoPas
2https://wr.informatik.uni-hamburg.de/research/projects/talpas/start
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3. Related codes

3.2.1. Structure of AutoPas

The AutoPas class is the main point of interaction between the user and the library. It
abstracts all the functionalities of the containers and the tuning processes and additionally
allows a pairwise iteration through the particles in the system. This procedure is further
explained in Subsection 3.2.5. In order to be adaptable to multiple types of simulations, the
class uses templates to be generic to the type of Particle cells and to the type of Particles
used. The entire AutoPas object is built around C++ function templates. AutoPas divides
the domain into cells. The containers provide an interface to handle the storage for the
particles, and the functionality to add particles into the domain. Inside the domain, with
help of iterators it is possible to iterate through the AutoPas container. Inside the containers
are also implemented the different traversal methods. In case of molecular dynamics, a
functor is used that calculates the Lennard Jones mentioned in Subsection 2.1.3. The
particles, must inherit from a base class to work over the functionalities of the AutoPas
library. On the restriction given by the ”ParticleBaseclass”, developpers can define their
own particles and to implement different simulations. Furthermore to optimize a highly
compute-intensive program at run-time, the library has different selectors with different
tuning strategies are managed by the AutoTuner, mentioned in Subsection 3.2.3.

When a simulation program uses AutoPas to optimize its performance, it has to rightfully
initialize the AutoPas object. This is done, when the user passes all necessary options for a
auto-tuned simulation. The initialisation of the AutoPas object is shown by Listing A.2.

The AutoPas library can only compute the particles, if in all dimensions the domain
is bigger than IT as defined in Equation 2.15. Therefore the user has to set the domain
with ”boxMin” and ”boxMax” because the default values aren’t working. After that, the
user needs to call the init() function, displayed in Listing A.3, to initialize the auto-tuning
process and the logicHandler according to the properties of the simulation before any other
function is called on the AutoPas object.

3.2.2. Container management

The AutoPas library implements different type of containers implementing the molecular
dynamic algorithms, mentioned in Section 2.3, to manage the particles in the system. All
containers must inherit from the base class called ”ParticleContainerInterface.h”, that
provides an interface for all the containers within AutoPas. It defines methods for addition
and deletion of particles, accessing container properties, creating and iterating through
particles, updating the container. All those functionalities are managed by the LogicHandler
class, which calls specific functions on the AutoPas object. One of the functions is the
updateContainer() function. This function can be called from the AutoPas object, and
potentially updates the internal container by deleting halo particles, and resorting the owned
particles into the appropriate cells. Besides, the LogicHandler manages all the function calls
of the containers, to be called from the AutoPas instance.
Moreover, there are three different iterator behaviours, so that the container can iterate
through the particles inside the container. The behaviours are: Iterating only through halo
particles, iterating only through owned particles or iterating through both type of particles.
By using the ”begin(iteratorBehaviour)” function, the user can access the first particle
of a container depending on their type and iterate through them with the ++ operator.
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3. Related codes

Furthermore, all container must also allow to iterate through particles of a certain region.
In most cases, this is done by accessing specific cells in a cell base container. The accessing
is done with the help of the ”CellBlock3D” class, an interface designed to manage blocks of
particle cells and provide a functionality to easily access the cells in the system by converting
the three dimensional cell index to a one dimensional one. This class also provides a method
to resize the cell size if needed by the AutoTuner.

3.2.3. Tuning

The AutoTuner receives the data from the simulation for auto-tuning from the containers.
As all the containers are sharing a common interface, the AutoTuner follows the strategy
pattern. This allows to select different configurations for the simulation at runtime for the
containers. A configuration is dependent on the containers used, and is a combination of
the following items:

• container

• traversal

• data Layout

• usage of Newton’s third law

• cell size Factor

All available configurations of the system shape a ”search space” from which the AutoTuner
chooses the optimal configuration depending on the tuning strategy. Currently two different
tuning strategies are implemented inside AutoPas: The fullSearch or the bayesianSearch.
More tuning strategies can be implemented by inheriting from the ”TuningStrategyInterface”.
The fullSearch strategy tests every possible configuration of the search space and then selects
the optimum. The bayesianSearch predicts the best configuration option that will run
through the program in the next step.
The tuning strategies are running when the simulation is in tuning phase. The procedure
involves the following activities:

• For each available configuration, the AutoTuner collects multiple samples of statistical
measurements. The number of samples collected depends on the user’s input

• Comparing the samples with the selectorStrategy given by the user, the tuner deduces
the optimal configuration having a high chance of delivering the optimal performance
in the next iterations.

This procedure is repeated periodically. The period of applications on the system is specified
by the user during the initialisation.

The AutoTuner is instantiated by the init() function call showed inside the AutoPas class
Listing A.3. The selected configuration of traversals and data layouts will be applied with
the next call of the iterate pairwise method. For the specific containers having a list of
neighbouring particles, the tuner will rebuild the neighbouring lists.
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3. Related codes

3.2.4. Travelsals

The AutoPas library supports the use of OpenMP parallelization methods. When the tuner
selects the right configuration for the AutoPas container, it chooses the best traversal for
the current time-step. All cell based traversals are subclasses of the CellPairTraversal with
inherits from the TraversalInterface. Most common used traversals are the Sliced traversal
and the cell based traversals with the nomenclature ”C” ”numberOfCells”. The implemented
algorithms are ”C01”, ”C04”, ”C08” and ”C18” and implement different orders to iterate
through the cells. The traversals are being generated by the AutoTuner when calling the
iteratePairwise method. The tuner chooses the right traversal accordingly to the current
container, the pairwise functor, the data layout and the current configuration. Then the
particles in the system are processed by the traversal.

The sliced traversal finds the longest dimension of the simulation domain and cuts it into
so called ”slices”. Every thread then processes every slice as they are assigned following the
round robin procedure. This means, that the slices are processed in a circular order. Each
thread locks the cells on the boundary wall to the previous slice until the boundary wall is
fully processed. Figure 3.1 shows the procedure on 3 threads, (colored in yellow, black and
blue) working in parallel. The cells in red are synchronization cells. When the yellow thread
is processing the cells, it locks the cells in red until the black thread has finished to process
the first column of cells. This parallelization method is straight forward when the size of
the cells is a least rradius. But it is getting more complicated, when the cellsize is less then
rradius, because race conditions can happen on multiple overlaying cells therefore more cells
must be synchronized.

Figure 3.1.: Sliced traversal with 3 threads marked with yellow, black and blue. The red
cells represent synchronization cells

For the cell based traversals with the nomenclature ”C” ”numberOfCells”. The procedure
is as follows. The grid of cells in divided into cell cubes. For example, the C08 traversal,
subdivides the domain of cells into cube of cells with 8 cells in a three dimensional system.
That means, for cell traversals with the nomenclature ”C” ”numberOfCells”, ”numberOf-
Cells” is the number of cells of the cubes in a three dimensional space. For 2D, the number
of cells in a cube is divided into 2. After that all the cubes of cells are each assigned to one
thread, all force interactions of the particles in the cube are being calculated. The thread
processes the interactions of each cell with the other cells. This is shown by Figure 3.2.
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Figure 3.2.: Cutoff of a C08 traversal on 2D

The number of threads that are assigned to a domain is equal to the number of cubes that
are generated by the traversal. The threads are processing the cubes independently from
each other. As the direct sum container is only using two cells, one cell for halo particles
and another cell for owned particles, it is possible to only compute the calculations either
for all halo or for all owned cells. Therefore the direct sum algorithm is getting quickly
inefficient when big systems need to be built with high number of particles. The efficiency
can therefore be increased when using the linked cell container. Though the linked cell is
working with a lot of cells, it is important to rightfully handle the cells close to each other.

3.2.5. Particle computation

To compute the interaction between the particles inside the simulation, AutoPas provides
the functionality to iterate pairwise through all the particles. This is done by the function,
listed in Listing A.4, which is called from the AutoPas object. In order to rightfully use this
functionality, the used Functor must correlate with the particles in the simulation and needs
to provide functions to calculate their forces interactions with AoS and SoA data types.
This allows the user to adapt the AutoPas library to other types of simulations. For the
md-flexible program, as force interactions are calculated with help of the Lennard Jones(LJ)
potential, the ”MoleculeLJ” particle is used. The elements needed for the procedure are
described at Section 4.2. As the pairwise iteration over particles differs from container to
container, the logic handler manages the iteratePairwise call as mentioned is Subsection 3.2.2.
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3. Related codes

Vectorization and SIMD instructions

AutoPas allows the computation of the particles under different data layouts mentioned
in Section 2.4. While using the AoS (Array-of-structure) data type, it is not possible to
process multiple particle datas with SIMD instructions, because of the definition of AoS.
However, with the SoA (Struture-of-Arrays), as specific data of the particles is stored linearly
in the memory, it is possible to speed up the computation of force interactions between the
particles by vectorizing with SIMD instructions. The pairwise LJFunctor is using OpenMP
SIMD directives to auto-vectorize the computation of the Lennard Jones forces between the
particles. Though, as no function calls are allowed and very few math operations are possible
inside a vectorized domain, resulting values of the mixing rules mentioned in Subsection 2.1.3
(necessary for the calculation of the Lennard Jones potential), had to be preloaded into
vectors for the SIMD instructions in order to work.
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4. Implementation of the Simulation

4.1. Structure of the Program

The AutoPas library is built to be as generetic as possible, to work with different particles,
particle cells, pairwise functors and traversals. The md-flexible simulation is working with
particles that are suited for the force calculations via the Lennard Jones Potential, those
will be called MoleculeLJ. However, it can easily be adapted to other Particle types and
particle cells as mentioned in Section A.1.
The settings for the simulation are being chosen either through the command line or with
a Yaml configuration file. Further details about setting the simulation environment are
discussed in Section A.2. The main point of interaction between the user and the md-flexible
simulation is given by the ”Simulation” class witch controls the simulation process.
First, the Simulation class processes the input given by the user and configures the AutoPas
object accordingly. After initializing the simulation domain in accordance with the infor-
mation of the particles provided inside the Yaml configuration file, it then proceeds the
pairwise force calculation, the dicretization of time and if specified, applies the thermostat
and periodic boundaries.
The calculation of the pairwise force interaction is done by calling the iteratePairwise() func-
tion of AutoPas, mentioned in Subsection 3.2.5, and needs the ”ParticlePropertiesLibrary”
when a scenario is simulated with multiple type of particles. The ”ParticlePropertiesLibrary”
map properties of the particles to their type and is further described in Section 4.2.
The movement of the particles is realized by the ”TimeDiscretization” class. In order to
simulate the behaviour for the position and velocity of all particles over time, the class uses
the iterator functionality of AutoPas. Therefore the Verlet-Störmer algorithm, mentioned
in ?? can easily be applied by creating an OpenMP parallel region and iterating over all
particles inside the AutoPas container.
The periodic boundary functionality is implemented inside the ”BoundaryCondition” class.
By using the updateContainer() function, mentioned in Subsection 3.2.2, it copies the
particles that are leaving the domain. Furthermore, the periodic boundary position change is
done by shifting the positions of the leaving particles accordingly to their three dimensional
position inside the domain, and adding to the AutoPas container.
As mentioned in Equation 2.11, the thermostat scales the velocity of all particles in a system,
in order to get the desired temperature in the system. This is done by also utilizing the
Iterator functionality of AutoPas.
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4. Implementation of the Simulation

4.2. Storage of particle properties

The md-flexible simulation uses ”MoleculeLJ” particles because they provide the necessary
data structure for the simulation to work displayed in Table 4.2.
Inside Table 4.2, floatType is a template parameter of the particle, and indicates the precision
of the particle variable. Float for 32 bit, and double for 64 bit precision.

Data Data type
Size in memory in
[Byte]

Position std::array<floatType,3>
double: 24
float: 12

Velocity std::array<floatType,3>
double: 24
float: 12

Force of current time step std::array<floatType,3>
double: 24
float: 12

Force of previous time step std::array<floatType,3>
double: 24
float: 12

Owned boolean 1

Particle Id unsigned long 4

Type of particle unsigned long 4

Table 4.1.: Elements of Molecule LJ particle

The boolean ”Owned” defines whether the particle is inside the domain of the AutoPas
object or not.
When simulating with 64 bit precision, the program needs to allocate 105 bytes of memory
for every particle, compared to 57 bytes when using a 32 bit precision.
However, to compute the force interactions and the time discretisation, the algorithm needs
to access further particle properties: Mass m, Epsilon ε, Sigma σ. The ”Particle Properties
Library” class, stores these properties for every particle type using the std::map container
to easily access the data.

Property Data type
size in memory in
[Byte]

Mass m floatType
double: 24
float: 12

Epsilon ε floatType
double: 24
float: 12

Sigma σ floatType
double: 24
float: 12

Table 4.2.: Data stored in Particle Properties Library

As those properties are not stored in every instance of the MoleculeLJ particle, 72 bytes
or 36 bytes are spared for every particle depending on the accuracy of the data. This heavily
reduces the needed memory for the simulation.
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4. Implementation of the Simulation

4.3. Object Generation with Yaml

With the help of Yaml configuration files, the md-flexible simulation supports the functionality
to generate multiple cubes or spheres in a 3 dimensional space. The cubes can either be filled
with a grid of particles, or distributed either randomly or following the Gaussian distribution.
An example of the configuration file is shown in Listing A.1.
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5. Simulation Scenario : Spinodal
decomposition

In order to compare the md-flexible program with ls1-mardyn, the spinodal decomposition
phenomenon was performed respectively on both simulation programs.
In thermodynamics, spinodal decomposition is known as the mechanism for the rapid
unmixing from a mixture of liquids or solids to form two distinct phases with different
chemical compositions and properties [JBC94]. In contrast to the nucleation the formation
of a new thermodynamical phase from an existing one where the transition occurs at discrete
nucleation sites, the unmixing of the phase is more defined and occurs uniformly throughout
the material. The decomposition happens in so called spinodal regions, and as there is no
thermodynamic barrier to the reaction inside that region, the decomposition concludes from
diffusion. Diffusion is the movement of a material from an area of high concentration to
an area of low concentration [JK60]. The separation of the phase can be illustrated by the
phase diagram.
In this thesis, the spinodal decomposition was performed on particles with mass = 1.0 u,
which approximately corresponds to the chemical element of Hydrogen (with mass=1.008 u).
To prepare the decomposition, a system is created where the particles are at equilibrium.
Therefore, the simulated scenario consist of two phases. The equilibrium phase and the
decomposition phase.

5.1. Equilibrium Phase

Phase equilibrium is a static condition witch exists between or within different states of
phases (namely liquid, gas and solid). The stage of equilibrium means that the chemical
potential of any object present in the system stays steady with time. That means that
throughout the region of equilibrium, all physical and chemical properties of the particles
are the same and the interaction between the particles are spacially uniform. It is ”the
absence of any tendency toward change on a macroscopic scale” [JS17].
To reach a state of equilibrium, and later simulate the spinodal decomposition on that state,
62 500 particles were initialized in a cubiq domain 60 nm in length. With the help of a
thermostat the temperature of the system is hold to 1.4 K for 500 000 simulation time
steps. The initialization of the particles is different for both simulating programs ls1-mardyn
and md-flexible. ls1-mardyn generates a grid of particles with initial density 0.29 ρ. The
md-flexible simulation program initilized the domain by filling it with randomly uniformly
distributed particles. Figure 5.1 shows the initialisation and Figure 5.2 shows the final state
of the equilibrium phase for both programs,
After 500 000 simulation time-steps we expect that the particles are evenly distributed. The
output images produced by both programs are showing the expected behaviour.
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5. Simulation Scenario : Spinodal decomposition

(a) md-flexible (b) ls1-mardyn

Figure 5.1.: Initial state of Equilibrium phase

(a) md-flexible (b) ls1-mardyn

Figure 5.2.: Final state of Equilibrium phase

Figure 5.3.: Phase Diagram displaying spinodal curves, within the binodal coexistence
curves and two critical points

Source: [spi]
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5. Simulation Scenario : Spinodal decomposition

5.2. Decomposition Phase

In order to simulate the second phase of the scenario, the temperature of the domain
is dropped to 0.7 K. By decreasing the temperature, the state of the system is getting
mechanically instable. This transition of the state is shown by Figure 5.3 and happens when
the state is within one of the spinodal curve. Generally beneath the critical point UCST
(”Upper critical solution temperature”) or above the critical point LCST (”Lower critical
solution temperature”). With the increase in time, the system is decomposing itself to a
balance of liquid and gas. The balance of two distinct phases coexisting, is represented
by the binodal curve, figured by the ”Coexistence curve” in Figure 5.3. This procedure is
simulated for 80 000 time steps by both simulation programs.
While for ls1-mardyn, dropping the temperature from 1.4 K to 0.7 K takes around 80
simulation steps, the md-flexible program is directly scaling the velocities in the system so
that the desired temperature is attained at the first time step.
Right after the temperature dropped, we expect to observe the transition from a homogeneous
to a heterogeneous system. More and more areas with low particle density are forming which
represent the formation of gases contrary to building clusters of Hydrogen atoms.
With time, the topologie of the system is converging to a stable state.
Both programs are using periodic boundary on all borders to simulate the scenario.
The Figure 5.4, Figure 5.5 and Figure 5.6 are visualising this phenomenon simulated by
both simulation programs.
The topologie of both programs is slightly different. In case of the simulation done by the
md-flexible program, a main cluster of hydrogen molecules in the middle of the domain was
built. Resembling a uneven sphere with outgoing arms. In comparison to the images from
the ls1-mardyn simulation program, the clusters of particles are less connecting one another
throughout the periodic boundaries. A difference between both simulations is expected, as
both programs initialise differently the domain, and use different numerical algorithms to
compute the data.
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5. Simulation Scenario : Spinodal decomposition

(a) md-flexible (b) ls1-mardyn

Figure 5.4.: Decomposition Phase at time-step: 20 000

(a) md-flexible (b) ls1-mardyn

Figure 5.5.: Decomposition Phase at time-step: 40 000

(a) md-flexible (b) ls1-mardyn

Figure 5.6.: Decomposition Phase at time-step: 80 000
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6. Simulation results

6.1. Linux-Cluster CoolMUC-2

The LRZ Linux Clusters consist of several segments with different processors and different
sizes of shared memory. The CoolMUC-2 is a cluster for both serial and parallel programming
and was used to simulate the Spinodal Decomposition scenario with ls1-mardyn and md-
flexible. It uses Haswell-based1 nodes on the Intel Xeon E5-2697 v3 processor.

CoolMuc-2

CPU Intel Xeon E5-2697 v3

Cores per Node 28

Total Number of Cores 10752

Base frequency [GHz] 2.6

RAM per Node [GB] 64

Total Number of Nodes 384

Vector instruction set AVX-2 (256 Bit)

Max. aggregated RAM [TB] 3.8

Table 6.1.: CoolMUC-2 Hardware

6.2. Benchmarking results

ls1-mardyn md-flexible

Allowed traversals c08, sliced all traversals

Allowed containers linked Cell linked Cell

Traversal selector strategy fastest median fastest Abs

Data layout SoA SoA

Tuning interval 1000 1000

Tuning samples 10 10

Table 6.2.: AutoPas options used for md-flexible and for auto-tuned ls1-mardyn execution

In order to benchmark the md-flexible simulation, it was run with two different type
of Functors, the standard LJ Functor and the LJ Functor using AVX instrinsics (only
implemented for SoA data layout). The performance measurements for both simulation
programs are displayed by Table 6.4 for the equilibrium phase and by Table 6.3 for the
decomposition phase.

1https://en.wikipedia.org/wiki/Haswell_(microarchitecture)

25

https://en.wikipedia.org/wiki/Haswell_(microarchitecture)


6. Simulation results

[a]

[b]

Figure 6.3.: Iterations/s and MMUPS/s for both simulation programs run on CoolMUC-2
with 28 threads
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6. Simulation results

In average, the main loop of the md-flexible program is 4,8 times slower than the one of
ls1-mardyn. The force calculations are by average 4,3 times slower. As Figure 6.1 and
Figure 6.2 show, ls1-mardyn is a lot faster than md-flexible.
Furthermore, the force calculations are in average 24,5% faster with AVX instrinsics. When
only observing the run by ls1-mardyn of the decomposition phase, AutoPas didn’t improve
the performance. Though, theoretically, as the state is very variable, the usage of the
AutoPas library should better the performance. This is due because not the optimal options
were chosen for AutoPas. But in general, the highly optimized ls1-mardyn program is faster.
[GST+19].

md-flexible ls1-mardyn

Build Options LJ LJ-AVX w/out AutoPas with AutoPas

Total time [sec] 4556,41 4097,37 821,703 1075,06

Force
computation
[sec]

2547,35 2045,50 513,81 563,84

Iterations/s 17,54 18,86 97,36 74,42

MMUPS/s 1,09 1,22 4,41 3,37

Table 6.3.: Performance measurements of Decomposition phase for both programs

md-flexible ls1-mardyn

Build Options LJ LJ-AVX w/out AutoPas

Total time [sec] 31119,291 28030,801 6870,03

Force computation
[sec]

15590,62 11192,89 4667,51

Iterations/s 16,12 17,85 72,04

MMUPS/s 1,211 1,378 4,502

Table 6.4.: Performance measurements of Equilibrium phase for both simulation programs

Furthermore, for the chosen scenario, when AutoPas can choose between AoS and SoA, it
sometimes runs multiple time steps of the simulation with AoS, though it would be faster
with SoA. The exclusive usage of SoA, leads that no expensive copying from AoS to SoA is
performed and auto-vectorization methods are uses. This is confirmed by the measurements
in Table 6.5: the force calculations are 8% faster when only using SoA.

md-flexible

Build Options LJ with AoS, SoA LJ with SoA only

Total time [sec] 4763,59 4556,41

Force computation [sec] 2767,69 2547,35

Iterations/s 16,67 17,54

MMUPS/s 1,03 1,09

Table 6.5.: Measurements of decomposition phase data layout usage: AoS, SoA vs SoA only
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7. Conclusion

Based on the functionalities of the C++ library AutoPas, a molecular dynamic simulation
program was built. Designed to be generic to the particles, it can be adapted to different
types of simulations by implementing the appropriate pairwise functor responsible for the
calculation of particle interactions. Currently, the pairwise force interactions are calculated
with the help of the Lennard Jones potential. Therefore, suitable particles and an adapted
library were implemented, both beeing used to store the data to be computed. The library
reduces the memory overhead as it stores common properties for the same type of particles.
Moreover, the Verlet-Störmer method and a thermostat were implemented in order to
perform the movement of the particles and to keep the system of the simulated scenario on
a desired temperature. Both functionalities use OpenMP parallelization methods to enable
the execution on multiple cores.
In order to benchmark the performance of the simulation, it was compared to the massively
parallel code of ls1-mardyn by using the CoolMUC-2 cluster. Therefore, the spinodal
decomposition phenomenon was simulated on both platforms. Restricting the AutoPas
configurations for md-flexible to only use Structure of Arrays accelerated the computations
of the force interaction by 8%. Furthermore, the usage of AVX intrinsics increased the
performance of the force calculations by 24%. Finally, the md-flexible code runs in average
4,8 times slower than ls1-mardyn under optimal configuration.
Following the results of this thesis, the performance of the developed simulation tool could
be improved by optimizing the iterators and by merging numerical calculations over the
data of the particles.
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A. Appendix

A.1. Code modularity

The md-flexible simulation is designed to be generic to the following elements:

• Particles

• ParticleCells

By default, the md-flexible simulation is build with the particle type ”MoleculeLJ” that
correlates with the Functor calculating the Lennard Jones force interactions. It is important
that the Functor is coherent with the particles used inside the simulation.
The needed steps to change the type of simulation are:

• changing the template parameters of the Simulation object inside the main function

• implementing a new pairwise Functor that works with the desired type of particles

• adapting the function call calculateForces inside the simulation loop to the new Functor

A.2. Setting simulation setting

The user can pass the simulation options for the md-flexible simulation by specifying a
Yaml configuration file or by passing options through the command line. When passing the
path to the yaml file, the user can override the settings of the yaml file with the command
line. The syntax of the Yaml files is clear and easy to use . It allows the user to create
scenarios with multiple Objects (Cubes of Spheres) in space. All setting for the simulation
are displayed by Listing A.1 in the yaml syntax.
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A. Appendix

1 ###AutoPas Options=

2 container: #string option

3 data -layout: #string option

4 selec tor-strategy: #string option

5 traversal: #string option

6 tuning -strategy: #string option

7 newton3: #string option

8 cell -size -factor: #string option

9 log -level: debug #string option

10 tuning -interval: #int option

11 tuning -samples: #int option

12 tuning -max -evidence: #int option

13 verlet -rebuild -frequency: #int option

14 verlet -skin -radius #double option

15 no -flops: #boolean option

16 log -file: #string option

17 vtk -filename: #string option

18 vtk -write -frequency: #size_t option

19 ### Simulation Options=

20 functor: #string option

21 delta_t: #double option

22 iterations: #size_t option

23 cutoff: #double option

24 ### Thermstat Options=

25 Thermostat:

26 initializeThermostat: #boolean option

27 initTemperatur: #double option

28 numberOfTimesteps: #size_t option

29 target:

30 targetTemperature: #double option

31 delta_temp: #double option

32 ### Checkpointing =

33 checkpointFile: #string option: fullPath

34 ### Objects generation Options =

35 Objects:

36 CubeGrid:

37 0:

38 particle -type: 0 #size_t option

39 particle -epsilon: 1. #double option

40 particle -sigma: 1. #double option

41 particle -mass: 1. #double option

42 particles -per -Dim: [10 ,10 ,10] #list of size_t

43 particleSpacing: 0.5 #double option

44 velocity: [10. ,10. ,10.] #list of doubles

45 botto mLeftCorner: [5. ,5. ,5.] #list of doubles
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46 CubeGauss:

47 0:

48 particle -type: 0 #size_t option

49 particle -epsilon: 1. #double option

50 particle -sigma: 1. #double option

51 particle -mass: 1. #double option

52 numberOfParticles: 100 #size_t option

53 box -length: [8. ,8. ,8.] #list of doubles

54 distribution -mean: 2.0 #double option

55 distribution -stddev: 5.0 #double option

56 velocity: [0. ,0. ,0.] #list of doubles

57 botto mLeftCorner: [5. ,5. ,5.] #list of doubles

58 CubeUniform:

59 0:

60 particle -type: 0 #size_t option

61 particle -epsilon: 1. #double option

62 particle -sigma: 1. #double option

63 particle -mass: 1. #double option

64 numberOfParticles: 100 #size_t option

65 box -length: [10. ,10. ,10.] #list of doubles

66 velocity: [0. ,0. ,0.] #list of doubles

67 botto mLeftCorner: [5. ,5. ,5.] #list of doubles

68 Sphere:

69 0:

70 particle -type: 0 #size_t option

71 particle -epsilon: 1. #double option

72 particle -sigma: 1. #double option

73 particle -mass: 1. #double option

74 center: [0. ,0. ,0.] #list of doubles

75 radius: 10 #size_t option

76 particleSpacing: 0.5 #double option

77 firstId: 0 #size_t option

78 velocity: [5. ,5. ,5.] #list of doubles

Listing A.1: Yaml configuration file
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A.3. Important AutoPas functions

1 explicit AutoPas(std:: ostream &logOutputStream = std::cout)

2 : _boxMin{0, 0, 0},

3 _boxMax{0, 0, 0},

4 _cutoff(1.),

5 _verletSkin (0.2) ,

6 _verletRebuildFrequency (20),

7 _tuningInterval (5000) ,

8 _numSamples (3),

9 _maxEvidence (10),

10 _tuningStrategyOption(TuningStrategyOption :: fullSearch

),

11 _selec to rStrategy(Selec to rStrategyOption :: fastestAbs),

12 _allowedContainers(allContainerOptions),

13 _allowedTraversals(allTraversalOptions),

14 _allowedDataLayouts(allDataLayoutOptions),

15 _allowedNew to n3Options(allNew to n3Options),

16 _allowedCellSizeFac tors

17 (std:: make_unique <NumberSetFinite <double >>(std::set <

double >({1.}))) {

18 _instanceCounter ++;

19 autopas:: Logger :: unregister ();

20 autopas:: Logger :: create(logOutputStream);

21 autopas:: Logger ::get()->flush_on(spdlog :: level::warn);

22 }

Listing A.2: AutoPas constructor

1 void init() {

2 _auto Tuner = std:: make_unique <autopas::AutoTuner <Particle ,

ParticleCell >>(

3 _boxMin , _boxMax , _cutoff , _verletSkin , std::move(

generateTuningStrategy ()),

4 _selec torStrategy , _tuningInterval ,

5 _numSamples);

6 _logicHandler =

7 std:: make_unique <autopas:: LogicHandler <Particle ,

ParticleCell >>

8 (*( _auto Tuner.get()), _verletRebuildFrequency);

9 }

Listing A.3: Initialisation function for AutoPas
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1 template <class Functor>

2 void iteratePairwise(Functor *f) {

3 static_assert(not std::is_same <Functor, autopas::Functor<

Particle ,

4 ParticleCell >>::value , "The static type of Functor in

iteratePairwise

5 is not allowed to be autopas::Functor. Please use the ""

derived type instead ,

6 e.g. by using a dynamic_cast.");

7 if (f->getCutoff() > this ->getCutoff()) {

8 utils:: ExceptionHandler :: exception("Functor cutoff ({})

must not be larger

9 than container cutoff ({})", f->getCutoff(), this ->getCu

toff());

10 }

11 _logicHandler ->iteratePairwise(f);

12 }

Listing A.4: AutoPas iteratePairwise method
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