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Abstract

In this work, we apply multifidelity Monte Carlo sampling, a technique for uncertainty
quantification, to two test cases from plasma microturbulence analysis, which is an
important field of research into fusion power. Multifidelity Monte Carlo sampling aims
to increase the accuracy of standard Monte Carlo estimators for statistical moments of
model output based on uncertain input parameters. Standard Monte Carlo sampling
estimates statistics by evaluating the underlying model for a number of samples and
computing estimators from the results. In order to obtain acceptable precision, a pro-
hibitive amount of samples is often required and simulations become computationally
infeasible, especially if the underlying model is expensive to evaluate. To overcome this
shortcoming, multifidelity Monte Carlo sampling distributes the model evaluations be-
tween the model under consideration and one or more computationally less expensive
surrogate models. The obtained model evaluations are then combined into estimators
using a control variate approach.

In our test scenarios, we consider the Cyclone Base Case, a popular benchmark
in the analysis of plasma turbulence. Multifidelity Monte Carlo sampling is applied
to a three-dimensional and an eight-dimensional version of this scenario. For our
simulations, we use the plasma microturbulence code Gene and construct a sparse
grid approximation and a machine learning surrogate. In both test cases, we find
that the application of multifidelity Monte Carlo sampling leads to a reduction of
the estimators’ mean squared error by orders of magnitude. Moreover, we show that
combining different low-fidelity models can further decrease the error.
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1. Introduction

In this section, general concepts about the methodologies examined in this work and the
physical application under consideration are introduced. Section 1.1 summarizes the
fields of uncertainty quantification, multifidelity methods and plasma microturbulence
analysis, and explains why we study these areas here. In Section 1.2 we describe the
specific work done in this thesis. Section 1.3 reviews previous efforts in the analysis
of plasma microturbulence using UQ approaches and in the research of multifidelity
methods. We outline the following chapters in Section 1.4.

1.1. Motivation

1.1.1. Uncertainty Quantification

One area within the field of scientific computing that has recently been gaining in-
creasing attention is that of uncertainty quantification (UQ). This discipline is based on
methodologies from probability theory, statistics and applied mathematics. A broad
definition of UQ is given in [32] as "the science of identifying, quantifying, and reducing
uncertainties associated with models, numerical algorithms, experiments, and predicted
outcomes or quantities of interest".

Whenever computer models are used to describe the behaviour of physical systems,
there is likely some uncertainty involved. Uncertainty can for instance be introduced by
errors made in the measurement of real-world physical parameters that act as inputs
for the model. Due to e.g. instrument precision, the accuracy of inputs can often
only be guaranteed within a certain error margin. Another source of uncertainty are
the numerical methods used to model the system. In order to be able to represent
input and output domains, they often need to be discretized. Because of this, any
model outputs are really only approximations of the true quantities. Furthermore, the
true physics of a process can in some cases be difficult to model, in other situations
might lead to computationally expensive models or is simply not fully understood.
Therefore, the structure of a given model often represents a simplified version of
reality and inherently leads to uncertainties with regard to the real-world system under
consideration [32]. Uncertainties introduced by any of these sources into the modelling
of physical phenomena need to be studied. In order to fully understand results obtained

1



1. Introduction

from simulations processes that are subject to any form of uncertainty, it is important
to assess the effect of uncertainty on the model and its output.

In the current work, we focus on uncertainties introduced by input parameters.
Quantifying the effect they have on the output of a model is important in order to
understand the information given by the model better. The area of UQ dealing with this
type of problem is called uncertainty propagation. One task in this discipline might be
identifying the expected value of the model output for a given set of input parameters
and quantifying the confidence of this prediction by determining the variance of the
output.

Monte Carlo sampling is a standard technique in uncertainty propagation for estimating
the mean and variance of stochastic model outputs based on uncertain input. In the
first step, (pseudo-)random samples of the input parameters are drawn based on an
assumption on their probability density function. The given model is then evaluated
at each sample and the corresponding ensemble of model evaluations is used to
estimate statistics such as mean and variance. The convergence of this algorithm
for mean estimation using n i.i.d samples lies in O( 1√

n ) [17]. On the one hand, this
rate does not depend on the number of input dimensions which makes Monte Carlo
sampling attractive for dealing with high-dimensional problems. On the other hand,
the convergence is slow as it decreases only with 1√

n . Intuitively, this means that to gain
one more digit of precision, about ten times more effort needs to be invested. Therefore,
in many cases, evaluating the model for the number of samples that are needed to
achieve results of an acceptable accuracy can be too computationally expensive.

1.1.2. Multifidelity Monte Carlo Sampling

To decrease the cost of Monte Carlo sampling, several other methods can be employed,
e.g. control variates or importance sampling [13]. The objective of these techniques is
to reduce the variance of Monte Carlo estimators. An estimator’s accuracy is directly
influenced by its variance. Therefore, decreasing this variance leads to an increased
precision in an estimator that uses a given number of samples. In this work, we focus
on control variates as a variance reduction technique which we employ in the context of
multifidelity Monte Carlo sampling (MFMC).

In the simulation of physical phenomena, there are often several models available
that describe the given scenario, typically varying in the precision of their output
and their computational cost. Multifidelity methods make use of such models and
exploit their differences. In particular, multifidelity Monte Carlo sampling tries to
speed up the convergence of the standard Monte Carlo sampling process by evaluating
not only the accurate and expensive high-fidelity model but also employing one or more
low-fidelity models of a lower accuracy which are usually computationally cheaper. By
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1. Introduction

distributing some of the samples to less expensive models, more model evaluations can
be obtained in a given time frame. The accuracy of the final result can be guaranteed
by the evaluations stemming from the original model.

1.1.3. Plasma Microturbulence Analysis

The real-world application under consideration here is that of plasma microturbulence
analysis. Since the first experiments were conducted in the 1930s, power generation
by nuclear fusion has been steadily researched until the present [14]. Current nuclear
reactors all harvest power generated by nuclear fission, the splitting of an atom’s
nucleus. Fusion, on the other hand, is the process of two nuclei combining into a larger
atom. This releases large amounts of energy. In contrast to fission, nuclear fusion does
not generate radioactive waste, and accidents such as have happened in Chernobyl
or Fukushima are not possible [14]. This makes fusion a safe and desirable source of
energy.

In order for these reactions to be able to occur, a plasma needs to be created. To
achieve this, massive amounts of energy are used to heat up a gas enough to become a
plasma which is then confined in the reactor using a magnetic field. This environment
needs to be maintained for long periods of time for fusion reactions to occur. Projects
such as ITER [14] are currently trying to build devices where this can happen. However,
this is complicated by microinstabilities inside the plasma that cause turbulences and
with that, energy to be lost. In order for physicists to be able to counteract this problem,
it is crucial to understand these instabilities better. This can be done by computer
simulations that give information about the plasma’s behaviour. For this purpose,
we use the gyrokinetic solver Gene. The physical parameters that act as inputs for
these simulations are subject to uncertainty. Therefore, an approach to these problems
with a UQ framework is required. Increased studies of plasma microturbulence using
UQ methodologies have only been conducted in the past several years which renders
further investigation into this application necessary.

1.2. Overview over this work

This work examines multifidelity Monte Carlo sampling in detail. We study two test
cases from the field of plasma microturbulence analysis: the so-called Cyclone Base
Case with three input parameters and an extended version with an input dimension of
eight. We show in practice how estimating mean and variance using MFMC estimators
can improve the precision of standard Monte Carlo estimators by several orders of
magnitude and present how MFMC can achieve this. As surrogate models for Gene,
we use a sparse grid approximation and construct a neural network. Using these two
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1. Introduction

models, we discuss how combining multiple low-fidelity models can further increase
the estimator accuracy.

1.3. Related work

In this section, we review some of the techniques used in existing works to quantify
uncertainty in the analysis of plasma microinstabilities. We further summarize relevant
literature on multifidelity methods in UQ and in particular, multifidelity Monte Carlo
sampling.

The study of plasma microturbulence problems by UQ methods has been receiving
increasing attention in recent years. Different methodologies have been applied to
this type of scenario. The work [9] conducts a simple parameter scan with the goal
of validating the solver Gene, which is also employed in our simulations, against a
specific test case. Similar studies were carried out in [38]. The authors of [39] perform a
UQ study on nonlinear plasma turbulence test cases using the probabilistic collocation
method which improves on simple Monte Carlo sampling.

One important area of UQ is sensitivity analysis. This can be summarized as the
quantification of the relative contributions of a model’s uncertain input parameters
to its output uncertainty [32]. In [40] a sensitivity analysis is performed, again with
the objective of validating nonlinear simulations using a plasma microturbulence
framework against data obtained from experiments. In the work [30], further study of
the impact of input parameters on model output is presented using a spectral method.

In [8] multiple scenarios addressing plasma microinstabilities are analysed with a
UQ approach. For this, an approximation of Gene is developed using adaptive sparse
grids and a sensitivity scoring system. We make use of this approximation for our work
as well (see Section 2.3).

A general introduction to multifidelity methods is given in [26]. The work proposes a
classification of different types of surrogate models and model management techniques
(see Subsection 4.1.3), and surveys multifidelity techniques used in UQ, statistical
inference and optimization. In [22], multifidelity UQ is performed by constructing
approximations of a model using stochastic collocation and polynomial chaos methods.
Three different multifidelity techniques for UQ are discussed in [15], among them
multifidelity Monte Carlo sampling (MFMC), the algorithm employed in the current
work.

Control variates, the variance reduction technique that MFMC is based on, are
summarized e.g. in [21]. In [24], this classical approach is extended to situations where
the mean of the control variate is not known, as is the case for our scenario. [33] shows
a means to judge the efficiency of a control variate estimator which we will also use in
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1. Introduction

our work. Control variates and resulting multifidelity Monte Carlo estimators for UQ
are described in [23]. The work [25] shows how optimal results can be achieved with
multifidelity Monte Carlo sampling for a given set of models. The authors formalize
this approach and discuss how the employed models should be chosen. Moreover,
[29] presents multifidelity Monte Carlo estimators for the variance of model output
and for sensitivity indices which are again based on the control variate technique. The
algorithms employed in this work are primarily used as described in the last two of the
mentioned works. To the best of our knowledge, our work is the first application of
multifidelity Monte Carlo sampling to plasma microturbulence analysis.

1.4. Outline of this work

The remainder of this thesis is structured as follows. The following three chapters
introduce the theoretical aspects that this work is based on. Chapter 2 summarizes the
real-world application of plasma microturbulence analysis that lies behind our experi-
ments. It further gives information on the solver Gene and describes the construction
of two surrogate models. In Chapter 3, the area of UQ that is relevant for this work, un-
certainty propagation, is outlined in more detail. The chapter then presents definitions
and notations from probability theory and statistics that are used throughout this work.
Furthermore, a standard algorithm in uncertainty propagation is presented. Chapter 4
gives an overview over multifidelity methods in general and introduces multifidelity
Monte Carlo sampling, the algorithm under consideration in this work. In Chapter 5
our results from the application of this technique to two plasma microturbulence test
cases are presented. We give a conclusion and brief outlook in Chapter 6.
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2. Plasma microturbulence analysis

This chapter gives an overview of the field of plasma microturbulence analysis. We
choose this real-world application as a representative and practically relevant problem
in which the impact of uncertainties needs to be properly analysed. Section 2.1
summarizes the physical background of this application. As a model for simulating
plasma microinstabilities, we look at the simulation code Gene. An introduction
to this code is given in Section 2.2. Sections 2.3 and 2.4 describe how to construct
surrogate models for Gene. It should be noted that the full description of the physics
of this application goes beyond the scope this work. For more detail regarding plasma
microinstability analysis, we refer the reader to [16, 28].

2.1. Theoretical Background

Plasma microturbulence analysis is a highly relevant research area in the future con-
struction of nuclear fusion reactors. Fusion power plants aim to generate power by
harvesting the energy released in the fusion of particles. In order to make reactions like
this possible, a plasma needs to be generated for the fusion to take place in. A plasma is
essentially a gas that is brought to very high temperatures such that electrons separate
from their nuclei and the gas becomes ionized. A key characteristic of a plasma is its
low density. In order for high-energy particle collisions and therefore fusion reactions
to occur, fusion devices need to confine the plasma with the help of a magnetic field.
This field is designed to be of a toroidal shape and confines the plasma to that form
[28]. Figure 2.1 shows a schematic of a tokamak, a fusion reactor in which the plasma
is contained in this way. A current focus of research in the ITER project is the creation
of a burning plasma, meaning a plasma that can sustain on its own the necessary
temperature for fusion to occur [14].

An obstacle on the path to accomplishing this are plasma microinstabilities, i.e.
fluctuations in the plasma that cause energy loss. The reason for which they occur are
steep density and temperature gradients inside the plasma. These are unavoidable and
lead to free energy that drives the turbulent transport. Strong magnetic fields can also
not fully control these instabilities. For this reason, it is important for plasma physicists
to better understand the microturbulences resulting from the instabilities and obtain
information that can be used in the process of constructing such burning plasmas.

6



2. Plasma microturbulence analysis

Figure 2.1.: Schematic of a tokamak fusion reactor. The plasma is confined by magnetic
fields in a toroidal shape. Source: [18], licensed under CC BY 4.0.

To this aim, computer simulations of the plasma can be conducted. However,
measuring the physical parameters which play a big role in the experiment, e.g. the
temperature and density gradients, is not always possible with perfect precision.
Therefore, these measurements are subject to uncertainties. Furthermore, plasma
simulations can be stiff problems, meaning that small change in the inputs can have a
big impact on the results [8]. This is why a UQ approach is needed in the analysis of
plasma microturbulences.

In the following, we briefly summarize the modelling of fusion plasma. Already in
fluid dynamics, which is a highly researched area of classical physics, dealing with
turbulence is difficult. Moreover, since particle collisions in the plasma happen with a
low-frequency, fluid descriptions are often not suitable. One approach to modelling
plasma microinstabilities would be a kinetic model which uses 6D Vlasov equations
per particle species coupled via Maxwell’s equations. Solving these six-dimensional
differential equations is very computationally expensive and therefore another approach
with a reduced model needs to be used [8].

A popular technique that gives rise to computationally feasible models is that of
gyrokinetic theory. For more detail on this than is given here, we refer to [4, 16].
Gyrokinetics gives a set of non-linear partial differential equations in 5D phase state
that is computationally much more feasible to solve and is widely used in the modelling

7
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2. Plasma microturbulence analysis

of plasma dynamics. Particles in a plasma are known to circle around magnetic field
lines at high speeds, while the exact point they are orbiting is slowly drifting [4]. The
frequency at which the particles move around this so-called gyrocenter is by many
orders of magnitude higher than the frequency at which turbulences usually occur
[16]. For this reason, the gyrophase information of the particles can be omitted when
modelling microinstabilities. This yields the mentioned system of five-dimensional
equations. We will now look at a solver for these equations which we employ for our
simulations.

2.2. The Gene code

Gene
1, which stands for Gyrokinetic Electromagnetic Numerical Experiment, is a numerical

solver for the aforementioned gyrokinetic equations. It works on a 5D (3D-2V) position-
velocity space plus time and uses a fixed grid [8]. Its development started in 1999 and
is still ongoing [12]. Gene is massively parallelized in that it runs computations for
different grid points on different cores. This is done using MPI [12].

Gene allows for different types of simulations, e.g. radially local and global ex-
periments. Local simulations model flux-tube domains, meaning a narrow box that
follows the field lines of the surrounding magnetic field. In these type of simulations,
density and temperature profiles are only evaluated at the center of the flux-tube and
periodic boundary conditions in directions perpendicular to the magnetic field lines
are assumed. Computations for this type of simulations can be done efficiently using
spectral methods [11]. Radially global scenarios extend the simulations to full torus
simulations. This is necessary for e.g. small devices where locality can not be assumed.
In these situations, periodic boundaries can not be used any more and computations
become much more expensive and can require at least 10k CPU-hours [8].

Additionally, it is possible to run Gene for linear simulations, i.e. simulations which
do not take into account the nonlinearities in the gyrokinetic equations. Operating
Gene in a nonlinear mode can massively increase the runtime. For this reason, the
test cases we examine in this work are linear local simulations. Linear simulations can
be highly relevant in e.g. identifying different microinstabilities such as ITG or ETG
driven modes, i.e. modes in which instabilities are driven by the temperature gradients
of ions or electrons, or TEMs which are modes driven by trapped electrons [8].

Because Gene is still expensive to evaluate, a computationally cheaper surrogate can
be used in its place. We summarize such a reduced model in the following.

1http://genecode.org/
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2. Plasma microturbulence analysis

2.3. Sparse grids surrogate

The sections presents an approach used to generate a surrogate model for Gene. This
technique was first presented in [8]. Using an adaptive approach, it constructs an
approximation of Gene via interpolation on sparse grids. The resulting model is then
much less expensive to evaluate than Gene. For an introduction to sparse grids, we
refer to [5]. In our experiments, we will use this surrogate as a low-fidelity model (see
Subsection 4.1.1).

The goal in using sparse grids to construct this approximation is to delay the curse of
dimensionality. The number of deterministic grid points needed for interpolation on a
full uniform grid grows exponentially large with the number of stochastic parameters,
i.e. the number of uncertain inputs. Using N points in one dimension, a full-grid
approach requires Nd points in d input dimensions. For an increasing number of
dimensions, this approach quickly stops being computationally feasible. Sparse grid
methodologies target this problem by using significantly fewer grid points while
maintaining a similar approximation quality as if a full grid had been used.

In the classical sparse grid approach, the grid points are typically chosen before
execution of the algorithm. In contrast, adaptive sparse grid techniques only refine
the grid in specific directions that are determined during the runtime of the algorithm.
This information on whether to refine in a specific direction is obtained by estimating
the approximation errors on the current grid [27].

The sparse grid approximation under consideration here uses such an adaptive
approach, introducing a sensitivity scoring system which quantifies the impact the
different stochastic parameters and their interaction have on the model output. The
sensitivity scores refinement approach aims to preferentially refine the stochastic input
directions that are rendered important.

In the following, we describe the idea behind the employed technique in more
detail. The notations are used as presented in [8]. First, we summarize the employed
sparse grid approach and then describe how the adaptivity is implemented. Let U (i),
i = 1, . . . , d be a sequence of one-dimensional linear continuous operators. By d we
denote the number of input parameters. Consider approximations U (i)

` for U (i) with

‖U (i) −U (i)
` ‖

`→∞−−−→ 0 (2.1)

in a suitable norm ‖ · ‖. We define ` ∈ N as the level of the approximation. The
higher the level, the higher is the accuracy of the approximation U (i)

` . Note that sparse
grid approximations can be defined for arbitrary linear continuous operators, such as
interpolation, integration or spectral projection. In this work, we focus on interpolation
because [8] established that this provides accurate approximations in the context of

9



2. Plasma microturbulence analysis

plasma microturbulence at low cost.
We briefly summarize Lagrange interpolation as employed here. More detail can

be found in [2]. We define m(`) as the number of points used in constructing the ap-
proximation U (i)

` . The interpolation nodes on level ` are denoted by {un}m(`)
n=1 . With the

Lagrange polynomials {Ln(u)}m(`)
n=1 of degree n− 1, we define U (i)

` as the interpolation
operator

U (i)
` ( f )(u) =

m(`)

∑
n=1

f (un)Ln(u). (2.2)

In our case, the function f that is to be interpolated is Gene. Therefore, obtaining
the necessary function evaluations is computationally expensive. For this reason, the
line (L)-Leja points (see [10]) are chosen as interpolation nodes. This is because (L)-Leja
points are nested, i.e. the points {un}m(`−1)

n=1 are a subset of {un}m(`)
n=1 , meaning model

evaluations from level `− 1 can be reused for level `. Further, only one additional
point is added per level, i.e. m(`) = `, and therefore the number of necessary model
evaluations only grows slowly. The line (L)-Leja points are constructed as

u1 = 0.5

un = argmax
u∈[0,1]

|
n−1

∏
k=1

(u− uk)|, n ≥ 2.
(2.3)

In the case that (2.3) has multiple maximizers, we simply pick one of them. Here,
we show the (L)-Leja sequence on [0, 1]. This can easily be generalized to an arbitrary
domain by scaling the points to that domain. Figure 2.2 shows a full grid and a sparse
grid constructed with (L)-Leja points.

With the approximations U (i)
` , the operator U (i) can now be written as

U (i) = U (i)
1 +

∞

∑
l=2
U (i)
` −U

(i)
`−1. (2.4)

for i = 1, . . . , d. We define the individual terms of this sum as ∆(i)
1 = U (i)

1 and

∆(i)
` = U (i)

` −U
(i)
`−1 (2.5)

for ` ≥ 2 and i = 1, . . . , d and obtain for the operators

U (i) =
∞

∑
`=1

∆(i)
` . (2.6)
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Figure 2.2.: Comparison of a full grid (left) and a sparse grid (right). Both are using
line (L)-Leja points.

To extend these one-dimensional operators to d dimensions, we combine them via
tensorization and have

U (d) = U (1)
`1
⊗ . . .⊗U (d)

`d
=

∞

∑
`=0

∆(1)
`1
⊗ . . .⊗ ∆(d)

`d
. (2.7)

Here, ` is a multiindex with ` = (`1, . . . , `d) ∈ Nd where `i signifies the level of
refinement in dimension i. From this, an approximation for U (d) can now be constructed.
This is done by cutting off the summation over the multiindex ` at a certain point. For
this purpose, let L ⊂Nd be a finite multiindex set. An approximation only computes
a sum over this set L, i.e. stops the refinement for each direction at a different level.
Figure 2.3 depicts the sparse grid built from a multiindex set L. The approximation
U (d)
L is given by

U (d) ≈ U (d)
L =

∞

∑
`∈L

∆(1)
`1
⊗ . . .⊗ ∆(d)

`d
. (2.8)

The challenge then lies in constructing the multiindex set L as this determines how
fine the grid is chosen in each dimension. This is done adaptively based on an error
indicator for the current level of refinement. In contrast to many previous algorithms,
the approach considered here uses local as opposed to global information. For this,
a sensitivity scoring system is constructed which measures the contribution of each
direction as well as the contribution from the interaction between all of the dimensions.
The user prescribes a set of tolerances τ = (tol1, . . . , told, told+1)

T. If the contribution of
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2. Plasma microturbulence analysis

(2, 1)

(1, 1) (1, 2) (1, 3)

→

Figure 2.3.: The (L)-Leja grid points and the corresponding multiindices and the result-
ing sparse grid constructed from the set L = {(1, 1), (1, 2), (1, 3), (2, 1)}.

parameter i at a certain level drops lower than toli, refinement of the grid is stopped
in this direction. With told+1, a threshold for the interaction between all of the input
parameters is specified. In this way, the algorithm adapts to the structure of the problem
at hand and exploits all directions up to the given precision.

When creating a surrogate model for Gene using this approach, the parameter τ can
be used to control the accuracy of the resulting model. Imposing lower tolerances leads
to the algorithm constructing finer grids and therefore more accurate models. Less
precise models can be obtained by prescribing higher tolerances. These in turn are then
less expensive to evaluate. This simple construction of models that have differing levels
of correlation with Gene can be used in our application of multifidelity methods which
rely on having models of different accuracies. A second type of surrogate model we
use in our experiments is one obtained via machine learning. We give some detail on
this in the following section.

2.4. Machine learning surrogate

One important characteristic of multifidelity Monte Carlo sampling is the fact that
many different models can be used in addition to the high-fidelity model. MFMC is
non-intrusive, meaning it essentially treats each model as a black box and only uses
them to obtain evaluations at given samples. Therefore, it does not matter how the

12



2. Plasma microturbulence analysis

input layer hidden layer hidden layer output layer

Figure 2.4.: Our neural network contains two hidden layers with three neurons per
layer.

different models are constructed. Given that there are often multiple ways available in
which physics applications can be modelled, this is very attractive.

In order to demonstrate this flexibility that MFMC offers, we construct another
surrogate model for Gene. With output data from previous runs of Gene, we create a
simple data-fit approximation with a machine-learning approach. For this, we use the
neural-networks API Keras2 running on Tensorflow with Python.

The problem solved here using a neural network is a regression problem. This means
that we want the model to predict output that is a single continuous value from a given
number of input parameters. The model aims to approximate a non-trivial function
f : Rd → R (in our case, f is Gene) by a function g : Rd → R constructed from training
data, that is pairs of input parameters x = (x1, . . . , xd)

T and the corresponding model
evaluation f (x). Regression typically determines g using the following approach:

g(x, w) = w0 + w1φ1(x) + . . . + wM−1φM−1(x). (2.9)

By φi, i = 1, . . . , M− 1 we denote the so-called basis functions and w = (w0, ..., wM−1)
T

are parameters that are used to fit the function to the given data. By using non-linear
functions, complex non-linear input-output relationships can be approximated. The
number of parameters M determines the degrees of freedom in fitting g. Training a
regression machine learning model then means determining the optimal values for the
parameters wi such that the approximation error of g is minimal. For more detail on
regression and machine learning in general, we refer to [3].

The structure of the neural network we create here is illustrated in 2.4. The input
layer of the machine-learning picture takes three input parameters. It has two densely
connected hidden layers, both of which are made up of three neurons each. The output

2https://keras.io/
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2. Plasma microturbulence analysis

layer returns a single value. As an activation function, we use the commonly employed
ReLU function. An RMSprop optimizer with a learning rate of 0.001 is chosen as an
optimizer to use during training to determine the weights and biases of the neural
network. This is an optimizer that improves on the often employed standard gradient
descent method. We have found this choice to make training fast. This optimizer is
then set up to minimize the MSE of the predicted output during training. We show
how this can be accomplished using Keras in Section A.1.

14



3. Uncertainty Quantification

In Section 1 we gave a brief introduction to the discipline of uncertainty quantification.
In this work we focus on one area of UQ, forward propagation of uncertainty, which will
be described further in Section 3.1. Section 3.2 introduces notations and summarizes
the aspects of probability theory that are necessary for understanding the methodology
used in this work. In Section 3.3, we detail Monte Carlo sampling, which is a standard
algorithm used in uncertainty propagation. In later chapters, we focus on multifidelity
Monte Carlo sampling, which is based on this technique.

3.1. Forward Propagation of Uncertainty

In this section, we give more detail on the specific kind of UQ problem that arises with
our plasma physics scenario. Typically, UQ problems can be categorized into two types:
forward propagation of uncertainty (or forward uncertainty quantification), and inverse
uncertainty quantification.

In forward UQ, the uncertainties of the system are modelled in the input parameters.
This appears in applications where the exact values of inputs are not known, e.g.
when the precision of physical measurements of input parameters is limited. This
uncertainty is often represented as a probability distribution function for each of the
input parameters. The objective is to learn about the effect these uncertainties have on
the output of the employed model. This can be quantified by estimating the statistical
moments of the model output, such as expectation and variance, based on the uncertain
input parameters. To determine these moments, the input uncertainties need to be
propagated through the model. The real-world application considered in this work is
an example of forward propagation of uncertainty where, based on expert opinion, a
certain probability distribution of the input parameters is assumed. The principle of
forward UQ is illustrated in Figure 3.1 [34].

In contrast to this, inverse UQ is given model output and from it, aims to characterize
uncertainties in the input parameters. As this work solely deals with a forward UQ
problem, we do not go into more detail on inverse problems here. For more details on
both of the mentioned areas of UQ, see [32].

It is also important to mention that forward propagation of uncertainty is an outer
loop application. In outer-loop applications we construct a loop around a model f which
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3. Uncertainty Quantification

Input X

model f

Output f (X)

Figure 3.1.: Forward UQ estimates statistics of the model output based on the input
distribution.

outer-loop
application

model f

inputx
ou

tp
ut

f(
x)

Figure 3.2.: Schematic of an outer-loop application. The outer-loop application uses the
given model to compute independent results and aggregates them.

then is evaluated in each iteration for a realization x of the set of input parameters. At
the end, the outputs f (x) of each iteration are used to compute the desired statistics,
see Figure 3.2 [26]. Often, these iterations are independent of each other and therefore
can be run in parallel [26].

In order to understand the algorithms we present here that are used in forward
UQ, we need some concepts from the fields of probability theory and statistics. We
introduce those in the following.

3.2. Probabilistic Framework

In this section, an overview of the aspects of probability theory that are used in this
work is given. Definitions and notations mainly follow [32, 19].
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3. Uncertainty Quantification

A probability space is given by (Ω,F ,P), where Ω is the sample space, i.e. the set
of all possible outcomes, the set of events F is a σ-algebra on Ω which holds sets of
possible outcomes, and P is a probability function P : F → [0, 1]. We define a random
variable X as a function X : Ω→ R that assigns a probability to each of the outcomes.
In our case we only make use of continuous random variables, i. e. random variables
whose image set is not countable.

A random variable’s cumulative distribution function (cdf) FX : R→ [0, 1] is defined as
FX(x) = P [{ω ∈ Ω|X(ω) ≤ x}]. For a continuous random variable X it can be written
as

FX(x) =
∫ x

−∞
fX(s)ds (3.1)

where fX : R→ [0, 1] is the probability density function (pdf) of X with fX = dFX
dx .

The expected value or mean µX = E[X] of a continuous random variable X is given by

E[X] =
∫

R
x fX(x)dx. (3.2)

For the variance σ2
X = Var[X] of a continuous random variable X it holds that

Var[X] = E[(X− µX)
2] =

∫
R
(x− µX)

2 fX(x)dx. (3.3)

The standard deviation of a random variable X is denoted by σX and is given by the
positive square root of the variance Var[X]. The covariance of two random variables X
and Y is given by

Cov(X, Y) = E[(X−E[X])(Y−E[Y])]. (3.4)

The Pearson correlation coefficient of two random variables X and Y is defined as

ρXY =
Cov(X, Y)

σXσY
. (3.5)

It takes values between −1 and +1 and is a measure of linear correlation between
the two random variables [31]. A correlation coefficient of 0 means that the random
variables are uncorrelated.

Let X = (X1, . . . , Xd) be a random vector of d random variables. Their joint cdf
FX : Rn → [0, 1] is given by FX(x1, . . . , xd) = P [{ω ∈ Ω|Xi(ω) ≤ xi, i = 1, . . . , n}].
In the remainder of this work, the notation X will always refer to a random vector

17



3. Uncertainty Quantification

consisting of multiple random variables. We call X independent if, and if only, for
x1, . . . , xd ∈ R the joint pdf can be expressed as

fX(x1, . . . , xd) = P(X1 = x1, . . . , Xd = xd) =
d

∏
i=1

fXi(xi). (3.6)

Another important notion is that of independent and identically distributed (i.i.d.) ran-
dom variables. Random variables X1, . . . , Xd are i.i.d. if they are independent according
to (3.6) and if their individual distribution functions are identical, i.e. fX1 = . . . = fXd .

In later chapters each one of d uncertain input parameters will be modelled as a
random variable Xi for 1 ≤ i ≤ d. We apply a model f : Rd → R to the input
X = (X1, . . . , Xd) and obtain output Y = f (X). Y is then again a random variable. In
our experiments we assume independence of the input parameters.

The goal in this work is to estimate the mean E[Y] and the variance Var[Y]. For this,
a probability distribution of the input needs to be assumed. In the test cases analysed
in this work each of the input parameters is modelled as a uniform random variable.
The pdf of a random variable X that is uniformly distributed on an interval [a, b] is
given by fX(x) = 1

b−a for a ≤ x ≤ b. We denote a uniform distribution by X ∼ U (a, b).
Finally, the concept of estimators is introduced. We will use this all throughout this

work. In practice, as is the case with our application, models are often much too
complex for mean and variance to be computed analytically. This is only possible for
very simple cases, such as linear models. For this reason, we have to estimate them
numerically. An estimator is a random variable which maps (usually i.i.d.) random
samples X = (X1, . . . , Xn) to an estimate for an unknown quantity of a probability
distribution. If the unknown quantity is θ, then the estimator is often called θ̂. With
this, an estimator can be written as a function θ̂ : Rn → R and the resulting estimate
is a realization θ̂(X) of the estimator. To generate estimates for mean and variance of
a random variable X we employ two very commonly used estimators. For samples
X1, . . . , Xn the sample mean and variance are given by

Ê =
1
n

n

∑
i=1

Xi and V̂2 =
1

n− 1

n

∑
i=1

(Xi − Ê)2. (3.7)

Both of these estimators are unbiased. The bias of an estimator θ̂ is defined as the
difference of the estimator’s expected value to the true value of the estimated quantity θ,
i. e. Bias(θ̂) = E[θ̂]− θ [7]. If an estimator is unbiased, it means that the bias is zero
and therefore its expected value is equal to that of the quantity it is trying to estimate.
Thus, here it holds that E[Ê] = µX and E[V̂2] = σ2

X.
The sample correlation coefficient for two random variables X and Y approximates their

Pearson correlation coefficient ρXY. Based on n i.i.d. samples (xi, yi) of the pair (X, Y)
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3. Uncertainty Quantification

it can be computed as

ρ̄XY =
1

V̂XV̂Y(n− 1)

n

∑
i=1

(xi − ÊX)(yi − ÊY) (3.8)

where V̂2
X and V̂2

Y are the sample variances and ÊX and ÊY are the sample means of
X and Y as described in (3.7) [25]. With this, a standard method employed in forward
UQ that makes use of the sample mean and variance is presented.

3.3. Monte Carlo Sampling

Monte Carlo methods are a very common set of algorithms used in different areas of
mathematics, including statistics and UQ. First described in the 1940s by von Neumann,
Ulam and Metropolis, Monte Carlo methods are based on evaluating a model for a
number of random samples of the input and then computing an overall result from
the simulation outputs [37]. A method that falls into this category is Monte Carlo
sampling. Subsection 3.3.1 describes this algorithm and some of its attributes. Monte
Carlo sampling is demonstrated on a simple example in Subsection 3.3.2.

3.3.1. Algorithm and properties

Monte Carlo sampling is a simple and straightforward method that is used to estimate
statistical moments of a random variable. In the context of UQ, it can be used to obtain
estimates for the mean and variance of a model output Y = f (X) based on uncertain
input X. The necessary steps are shown in Algorithm 1.

Algorithm 1 Monte Carlo Sampling

Require: number of samples n ∈N

Draw n i.i.d. samples xi = (xi1, . . . , xid), i = 1, . . . , n of the set of input parameters
X = (X1, . . . , Xd) based on a given joint pdf fX.
for 1 ≤ i ≤ n do

Evaluate the model f for sample xi.
end for
Compute estimates for the quantity of interest, for our case the mean E[Y] = E[ f (X)]
of the model output Y using the sample mean Ê = 1

n ∑n
i=1 f (xi) and the variance

Var[Y] = Var[ f (X)] using the sample variance V̂ = 1
n−1 ∑n

i=1( f (xi)− Ê).

It is interesting to note that for a fixed input the problem solved for each set of real-
izations of the input random variables in step 2 of Algorithm 1 becomes deterministic.
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3. Uncertainty Quantification

Moreover, both of the estimators employed in the third step are unbiased estimators,
meaning that E[Ê] = E[Y] and E[V̂] = Var[Y] (see Section 3.2). By the Law of Large
Numbers, they converge towards the true quantities E[Y] and Var[Y] for n→ ∞ where
n is the number of samples [35].

We now take a look at the error introduced by using a Monte Carlo estimator θ̂ to
approximate a quantity θ. The mean squared error (MSE) of θ̂ with respect to the true
value θ is given by

MSE[θ̂] = E[(θ̂ − θ)2]. (3.9)

If θ̂ is unbiased, as is true for the sample mean and variance, it follows that

MSE[θ̂] = E[(θ̂ − θ)2] = E[(θ̂ −E[θ̂])2] = Var[θ̂]. (3.10)

In the case that θ̂ is biased, meaning that Bias(θ̂) = E[θ̂]− θ 6= 0, we have

MSE[θ̂] = E[(θ̂ − θ)2] = E[(θ̂ −E[θ̂] + Bias(θ̂))2] = Var[θ̂] + (Bias(θ̂))2. (3.11)

We see that the MSE of an estimator is directly influenced by its variance. Consider
the sample mean Ê which is employed here. Based on the fact that it is unbiased, we
can further give [23]

MSE[Ê] = Var[Ê] =
1

N2 Var
[ N

∑
i=1

f (xi)

]
=

Var[ f (X)]
N

. (3.12)

With this, the convergence rate of the root mean squared error
√

MSE[Ê] of Monte

Carlo sampling is given by O( 1√
N
) where n is the number of samples [17]. Here

it can be observed that the speed of convergence only depends on the number of
samples and not on the dimensions of the input domain. This makes Monte Carlo
sampling a powerful tool in solving higher dimensional problems for which the curse of
dimensionality can quickly become an issue when other methods are used [26].

Looking again at (3.12), we note that in order to decrease the MSE of Monte Carlo
sampling and therefore increasing the accuracy of the results, there are two possibilities.
We can either increase the number of samples n, or we can try to decrease the variance
Var[ f (X)]. In practice, the number of samples that are needed to obtain results of
the desired accuracy is often prohibitive. This is especially the case if evaluating the
employed model is computationally expensive and can therefore not be done for the
required number of samples within realistic time constraints. Another approach is
therefore decreasing the variance of the random variable whose mean is being estimated.
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Figure 3.3.: To approximate π, draw uniform points inside the unit square and count
the number of points nin that lie inside the unit circle.

This is what Multifidelity Monte Carlo Sampling aims to accomplish. This technique
which will be explained further in Chapter 4.

Before we demonstrate Monte Carlo sampling on an example, we give some more
brief context on it. First and foremost, Monte Carlo sampling is a numerical integration
method. Suppose, given a function f : [a, b]d → R, we want to compute the value
of the definite integral I( f ) =

∫
[a,b]d f (x)dx where x = (x1, . . . , xd). While there exist

many quadrature rules for the one-dimensional case, for d > 1 this is in general more
complex. In particular, numerical integration is subject to the curse of dimensionality.
An approach that uses n fixed grid points in one dimension requires nd points in d
dimensions. Monte Carlo integration on the other hand draws n uniform i.i.d. samples
xi ∈ [a, b]d with 1 ≤ i ≤ n from the domain [a, b]d and approximates the integral as
Î( f ) = V · 1

N ∑n
i=1 f (xi), where V =

∫
[a,b]d dx is the volume of the domain [a, b]d. As

mentioned before, for N → ∞, we have Î( f )→ I( f ) and in particular, no dependence
on d which makes Monte Carlo sampling a popular method for quadrature in multiple
dimensions. Comparing the approximation Î( f ) with the sample mean (3.7) we use to
estimate a random variable’s expectation, we see that with our estimators we are in
fact approximating an integral and therefore solving an integration problem. For more
details on Monte Carlo integration, please refer to [17].

3.3.2. Approximation of π

To demonstrate the functionality of Monte Carlo sampling, this subsection shows how
it can be used to estimate the number π. This can be done via quadrature.

Since r = 1 for the unit circle, π can directly be approximated by estimating the area
A of the circle, i. e. A = π. To do this, Monte Carlo sampling can be employed. The
idea behind this application is as follows. We draw n sample points uniformly from
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0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 3.4.: A plot of the function x2
1 + x2

2 = 1. The function f from 3.13 equals 1 for
all the points in red and 0 for the black points. The area coloured in red
gives 1

4 A.

the unit square and count the number nin of points drawn that lie in the unit circle as
opposed to the number of those that lie outside it. With this, the area of the circle can
be estimated as nin

n . This idea is illustrated in Figure 3.3.
We express this more formally. Let f : [0, 1]2 → {0, 1} with

f (x1, x2) =

{
1 if x2

1 + x2
2 ≤ 1

0 otherwise.
(3.13)

The function f therefore indicates whether a point x = (x1, x2) lies in the unit circle
or not. Based on Algorithm 1, the steps shown in Algorithm 2 can now be used to
approximate A and therefore π.

Algorithm 2 Approximation of π

Require: number of samples n ∈N

Draw n i.i.d. samples xi = (x1, x2) of two uniform random variables from the domain
[0, 1]2.
for 1 ≤ i ≤ n do

Evaluate f (x1, x2).
end for
Calculate an estimate for the area A as Â = 4 · 1

n ∑n
i=1 f (x1, x2).

As described in Subsection 3.3.1, the higher the number of samples n is chosen,
the closer the estimate Â will be to the true value of π = 3.141592. We show this
convergence experimentally in Table 3.1.
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3. Uncertainty Quantification

number of samples n estimate for π

100 3.2
1000 3.108
10000 3.1564
100000 3.14004
1000000 3.140128

Table 3.1.: Approximations of π obtained using the Algorithm 2 for an increasing
number of samples.
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4. Multifidelity Monte Carlo Sampling

In this chapter, we summarize the Multifidelity Monte Carlo Sampling (MFMC) algorithm,
which is the main algorithmic focus of this work As explained in Chapter 3, estimating
statistics of a model output using standard Monte Carlo sampling (MC) is not always
computationally feasible. To obtain accurate results, one often needs to evaluate the
model for more samples than possible. This is in part due to the employed models
being expensive to evaluate. For the same computational costs as standard MC, MFMC
sampling aims to produce more accurate estimates. In other words, MFMC yields the
same accuracy as standard MC for a smaller computational cost.

In Section 4.1 a general introduction to multifidelity methods is given and their
functioning and characteristics are described. The origin of the employed MFMC
estimator are control variates which are described in Section 4.2. The MFMC estimator
is then discussed in Section 4.3. In Section 4.4 we show how to minimize the MSE
of this estimator. The employed algorithm for multifidelity Monte Carlo sampling is
summarized in Section 4.5. Finally, we demonstrate the benefit of using a multifidelity
estimator on a small numerical example in Section 4.6 and compare the results to
those obtained by standard Monte Carlo sampling. For more details on the methods
presented in this chapter please refer to [26, 25, 29].

4.1. Introduction to Multifidelity Methods

Before the estimators used to obtain the results in this work are presented, we first
overview over multifidelity methods and the idea behind them. Because they can be
used in many different fields of applied mathematics, we keep this section general and
go into detail on their application as MFMC later. In the following, the definitions and
notations are similar to those given in [26].

4.1.1. High- and low-fidelity models

The core idea of multifidelity methods is to use at the same time all available models
characterizing a real-world phenomenon. Let X ⊆ Rd be the input domain for both
models and Y ⊆ Rd′ be the output domain with dimensions d, d′ ∈N. We differentiate
between a high-fidelity model and low-fidelity model. The high-fidelity model f (0) : X → Y
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4. Multifidelity Monte Carlo Sampling

error
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low-fidelity
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low-fidelity
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low-fidelity
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low-fidelity
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high-fidelity
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Figure 4.1.: Multifidelity methods use high- and low-fidelity models. The high-fidelity
model is typically expensive to evaluate but high in accuracy, while the
low-fidelity models are computationally cheaper and exhibit higher errors.

depicts reality with a degree of accuracy that is sufficient for our application. The
low-fidelity models f (i) : X → Y for i = 1, . . . , k with k ∈ N approximate the high-
fidelity model but their output is of a lower accuracy. Usually the computational costs
for evaluating the high-fidelity model are higher than the costs for evaluating the
low-fidelity models. This relationship is visualized in Figure 4.1 [26].

In our case, Gene (see Section 2.2) acts as the high-fidelity model. We assume its
output to be our "truth", meaning that its accuracy is sufficient for our purposes. As low-
fidelity models we use a sparse grid approximation of Gene and a machine-learning
model.

A multifidelity method uses evaluations from both the high- and low-fidelity models
to obtain an overall solution to a given problem, such as estimating statistics of the
high-fidelity model. Typically, this is done to reduce the computational cost of model
evaluations while maintaining the accuracy of the result as if only the high-fidelity
model had been used. By distributing some of the work to the low-fidelity models, their
lower runtime is exploited to speed up the computational process. The high-fidelity
model is kept in the loop for accuracy guarantees, i.e., to keep the estimators unbiased.
In contrast to this, traditional model reduction techniques replace the high-fidelity model
with a lower fidelity surrogate which is then used in computations. This reduces the
runtime of Monte Carlo sampling or other uncertainty propagation methods. However,
to guarantee accurate estimates, the lower fidelity surrogate has to be certified, i.e., its
approximation error with respect to the high-fidelity model has to be known.

The goal we achieve in our work by using multifidelity methods is to reduce the time
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Figure 4.2.: The outer-loop application uses high-fidelity and one or more low-fidelity
models to obtain a result.

budget p needed to generate estimates for the model output’s mean and variance while
maintaining the approximation quality of the results obtained by employing standard
Monte Carlo sampling. This is equivalent to finding an estimator that has a lower MSE
than the standard Monte Carlo estimator using the same given time budget.

Multifidelity methods can be used to obtain computational speedups in the solution
of outer-loop applications which previously have solely used the high-fidelity model.
We have defined the concept of outer-loop applications in the context of uncertainty
propagation. Other scenarios that can be modelled as outer-loop applications include
solving an optimization problem or dealing with inverse problems via statistical
inference [26]. The concept of outer-loop applications using a high-fidelity and multiple
low-fidelity models is illustrated in Figure 4.2 [26].

4.1.2. Types of low-fidelity models

To show the flexibility of multifidelity methods, it is important to mention the fact that
many different types of low-fidelity models can be used in conjunction with the existing
high-fidelity model. There are various ways to construct low-fidelity models which
depend strongly on the representation in which the high-fidelity model is given. For
example, it might be available only as a black box, meaning it can be used to compute
output from given input but there is no insight into how these results are obtained. In
another case, the implementation details of the high-fidelity model might be available
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4. Multifidelity Monte Carlo Sampling

and well-understood. Again, we cite [26] where low-fidelity models are separated into
three categories, see also [1] for more details:

1. Simplified low-fidelity models: This type of model leverages knowledge about
the problem’s physical background and/or details of the high-fidelity model’s
functionality to create a low-fidelity model. This can include simplifying the
methods used to model real-world applications, using coarser grids to discretize
a domain, or omitting non-linear terms from an equation.

2. Projection-based low-fidelity models: Instead of taking advantage of insight into the
problem domain, projection-based models make use of the high-fidelity model’s
mathematical structure. In developing a low-fidelity model this structure is
retained by finding a lower-dimensional subspace and projecting the mathematical
operators used onto it.

3. Data-fit low-fidelity models: These are constructed from given input parameters
and corresponding output data that has been obtained during multiple runs of
the high-fidelity model. This is typically done via interpolation or regression.
Machine-learning techniques can also be used to create a data-driven model. Note
that creating this type of model is typically non-intrusive, meaning it does not
need access to the high-fidelity model’s implementation.

Both the sparse grid surrogate and the machine learning model we use as low-fidelity
models are data-fit models, though both are constructed in very different ways.

4.1.3. Model management strategies

In order to balance the model evaluations of multifidelity methods between the high-
fidelity and one or more low-fidelity models, a model management strategy is required,
i.e. a rule for how to split the evaluations between the models and how to combine the
separate results into a final result to the given problem. The authors of [26] give three
different classes of model management strategies:

1. Adaption: The behaviour of the low-fidelity model is corrected with information
from high-fidelity evaluations. Here, modifications to the low-fidelity model itself
are made.

2. Fusion: This strategy combines evaluations from both types of models according
to some algorithm to find a result.

3. Filtering: In this technique, information obtained from low-fidelity evaluations
acts as a filter for when to invoke the high-fidelity model.
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Fusion and filtering are both non-intrusive techniques. Multifidelity Monte Carlo uses
a fusion model management strategy to accumulate the results of the different models.
This technique is based on control variates which we introduce in the following.

4.2. Control Variates

In Subsection 4.1.3 we explained how operating multifidelity methods requires a model
management strategy. For this purpose, the multifidelity estimator employed here uses
control variates, which are a commonly used variance reduction technique. The goal of
such techniques is to increase the precision of a MC estimator by decreasing its variance.
Other variance reduction techniques include stratified sampling, importance sampling
and antithetic variates [26, 13]. This section introduces control variates in a general
sense and Section 4.3 then specifies their use in MFMC. For more details on control
variates, see e.g. [21].

To see the need for such an approach to Monte Carlo sampling, consider again the
error of a standard Monte Carlo estimator Ê for the mean as introduced in 3.7. Since Ê
is unbiased, the MSE of this estimator is given by

MSE[Ê] = Var[Ê] =
Var[ f (0)(X)]

n
(4.1)

where n is the number of samples (see 3.12). Decreasing the error of the estimator
is therefore equal to decreasing its variance. As discussed earlier, using a higher
number of samples is not always possible. Another approach is to decrease the term
Var[ f (0)(X)]. This can be achieved with control variates.

To reduce the estimator variance of a random variable A, control variates make use of
one or more auxiliary random variables B that are correlated with A, the key being that
the mean of these auxiliary variables is known, and further, that they are statistically
correlated with A. It is shown later why this is necessary.

Consider estimating the expectation E[A] of a random variable A. Drawing n i.i.d.
realizations ai, i = 1, . . . , n of the random variable, this can be done via a standard
Monte Carlo estimator

ān =
1
n

n

∑
i=1

ai. (4.2)

We know this estimator to be unbiased. Let B be a second random variable for which
the expectation E[B] = µB is known but can also be approximated from n i.i.d. samples

28



4. Multifidelity Monte Carlo Sampling

bi, i = 1, . . . , n of B using a Monte Carlo estimator

b̄n =
1
n

n

∑
i=1

bi. (4.3)

With this, we can give the control variate estimator ÊA for E[A]:

ÊA = ān + α(µB − b̄n) (4.4)

where α is a real-valued constant. The term α(µB − b̄n) represents an adjustment or
correction to the standard Monte Carlo estimator ān. Since E[b̄n] = µB, it follows with
the linearity of expectation that

E[ÊA] = E[ān + α(µB − b̄n)]

= E[ān] + αE[µB − b̄n]

= E[ān]

= E[A].

(4.5)

Thus, ÊA is also unbiased just as the standard MC estimator. Furthermore, the work
[23] shows the variance to be

Var[ÊA] =
1
n
(σ2

A + α2σ2
B − 2αρABσAσB). (4.6)

Since ÊA is unbiased, by (3.10) the MSE of the estimator is equal to its variance.
Therefore minimizing the MSE of the estimator is again equivalent to minimizing its
variance. By [21], this can achieved by choosing

α∗ =
Cov[A, B]

σ2
B

= ρAB
σA

σB
(4.7)

and substituting into (4.6) leads to

MSE[Ê∗A] = Var[ÊA] = (1− ρ2
AB)

σ2
A

n
= (1− ρ2

AB)MSE[ān]. (4.8)

Therefore, if A and B are correlated, i.e. ρAB 6= 0, the MSE of the control variate
estimator is lower than that of the standard Monte Carlo estimator since |ρAB| ≤ 1.
Furthermore, the higher the correlation coefficient ρAB is, the higher is the variance
reduction for a given number of samples n. Multifidelity Monte Carlo sampling uses
this method to construct an estimator with a lower variance and makes use of low-
fidelity models in place of the auxiliary random variable B. We specify this technique
in the following.
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4.3. Multifidelity Estimator

We now formulate the Multifidelity Monte Carlo estimators used to approximate
E[ f (0)(X)] and Var[ f (0)(X)]. They were first introduced in [25, 29] and are making use
of the control variate technique as described above. While we have only shown control
variates for one auxiliary random variable, the MFMC estimator here generalizes this
technique to multiple random variables. We first describe how these estimators are
computed in Subsection 4.3.1 and examine some of their attributes, such as their errors,
in Subsection 4.3.2.

4.3.1. Definition

Here we compute statistics for the random variable f (0)(X), thus this takes the place of A
from Section 4.2. As auxiliary random variables we use the outputs f (1)(X), . . . , f (k)(X)
of the k low-fidelity models. The multifidelity estimators are constructed as follows.

We define m0 as the number of times the high-fidelity model f (0) is evaluated and
m1, . . . , mk with 0 < m0 ≤ m1 ≤ . . . ≤ mk as the number of model evaluations for the
low-fidelity models f (1), . . . , f (k). Further, mk i.i.d. realizations

x1, ..., xmk (4.9)

of the input random vector X are drawn. We evaluate models f (i) for i = 0, . . . , k for
the samples x1, . . . , xmi and obtain

f (i)(x1), ..., f (i)(xmi). (4.10)

From these evaluations standard Monte Carlo estimators are derived. For the high-
fidelity model f (0) we construct

Ē(0)
m0 =

1
m0

m0

∑
j=1

f (0)(xj) and V̄(0)
m0 =

1
m0 − 1

m0

∑
j=1

( f (0)(xj)− Ē(0)
m0 )

2 (4.11)

using the sample mean and variance, and for the low-fidelity models f (i), i = 1, . . . , k
we compute

Ē(i)
mi =

1
mi

mi

∑
j=1

f (i)(xj) and V̄(i)
mi =

1
mi − 1

mi

∑
j=1

( f (i)(xj)− Ē(i)
mi )

2 (4.12)

and additionally

Ē(i)
mi−1 =

1
mi−1

mi−1

∑
j=1

f (i)(xj) and V̄(i)
mi−1 =

1
mi−1 − 1

mi−1

∑
j=1

( f (i)(xj)− Ē(i)
mi−1)

2. (4.13)
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It is important to see that while both of the estimators in (4.12) and (4.13) give
estimates for the expectation E[ f (i)], the first uses mi and the second mi−1 samples to
do this. Since the mi−1 samples are a subset of the mi samples, these estimators are
dependent.

The multifidelity Monte Carlo estimator Ê of E[ f (0)] is then given by

Ê = Ē(0)
m0 +

k

∑
i=1

αi(Ē(i)
mi − Ē(i)

mi−1) (4.14)

and the estimator V̂ of Var[ f (0)] by

V̂ = V̄(0)
m0 +

k

∑
i=1

αi(V̄
(i)
mi − V̄(i)

mi−1) (4.15)

where α1, . . . , αk ∈ R are the control variate coefficients. It is specified how they
should be chosen in Subsection 4.4.1. These estimators use the differences between
Ē(i)

mi and Ē(i)
mi−1 (or respectively V̄(i)

mi and V̄(i)
mi−1) as a correction to the estimate obtained

solely from high-fidelity evaluations. As mentioned in Subsection 4.1.3, the model
management strategy employed here is that of fusion. Note also that the control variate
estimator requires the true mean or variance of the auxiliary random variables (see
(4.4)) which are not known in this case. We approximate them by Ē(i)

mi and V̄(i)
mi with

mi > mi−1.

4.3.2. Properties

This subsection examines the given MFMC estimators (4.14) and (4.15) more closely.
Firstly, it is important to state that both of the estimators are unbiased. With the
same reasoning as in Section 4.2 it follows from the linearity of expectation that
E[Ê] = E[ f (0)(X)] and E[V̂] = Var[ f (0)(X)].

Let w = (w0, w1, . . . , wk)
T with wi, i = 0, . . . , k, being the costs to evaluate model f (i)

for one sample, and m = (m0, m1, . . . , mk)
T with mi, i = 0, . . . , k being the number of

model evaluations of model f (i). To obtain the correction terms, we evaluate model f (i)

for the samples x1, . . . , xmi to compute Ē(i)
mi and reuse the evaluations at the first mi−1

samples f (i)(x1), . . . , f (i)(xmi−1) to compute Ē(i)
mi−1 . Therefore, the computational costs

c(ŝ) for constructing a multifidelity estimator Ê are

c(Ê) =
k

∑
i=0

wimi = wTm. (4.16)

A multifidelity estimator V̂ for the variance is obtained from the same samples as a
mean estimator, therefore does not incur any additional costs. Because the objective
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in constructing a multifidelity estimator was to reduce the variance of the resulting
estimator, we examine this variance next. Note that since ŝ is unbiased, the MSE of the
estimator is again equal to its variance. In [25], the variance Var[Ê] = MSE[Ê] of the
estimator for the expectation is shown to be

Var[Ê] =
σ2

0
m0

+
k

∑
i=1

(
1

mi−1
− 1

mi
)(α2

i σ2
i − 2αiρ0,iσ0σi), (4.17)

where ρi,j is the correlation coefficient between model outputs f (i)(X) and f (j)(X),
and σ2

i is the variance of f (i)(X).
For the variance of the multifidelity estimator V̂ we refer to the original publication

[29]. In further computations, we will only make use of the above variance of the mean
estimator. We explain the reason behind this in the following section.

The variance Var[Ê] depends on the number of model evaluations m0, . . . , mk and
on the control variate coefficients α1, . . . , αk. Since their values directly influence the
MSE of the resulting estimator, they should be chosen such that this error is as small
as possible if an optimal MFMC estimator is to be obtained. This is addressed in the
following section.

4.4. Optimal Model Managment

This section outlines the model management strategy used in constructing the multifi-
delity estimator described in Section 4.3. This strategy includes how to distribute the
model evaluations to the different models, i.e. how to chose the mi, and how to select
the coefficients αi. This is described in Subsection 4.4.1. It is shown that in order to
minimize the error of the MFMC estimators, the employed low-fidelity models must be
chosen with regard to their interaction with each other. Subsection 4.4.2 details how
this can be best achieved.

4.4.1. Optimal number of evaluations and control variate coefficients

So far, we have defined the MFMC estimators Ê and V̂ and explained that the model
evaluations are distributed among the models according to m0, ..., mk. This section
describes how to choose these numbers and it also shows the optimal values for the
coefficients α1, . . . , αk such as to obtain an estimator with a minimal MSE.

We formulate this as an optimization problem for a given computational budget
p ∈ R+. Since MSE[Ê] = Var[Ê] the variance from (4.17) is used as the objective
function. Note that by using this function, the MSE of the mean estimator Ê is
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minimized, not necessarily the MSE of the estimator V̂. We describe reasons for this
choice later in this subsection.

The optimal number of model evaluations m∗ = (m∗0 , m∗1 , ..., m∗k )
T and control variate

coefficients α∗1 , . . . , α∗k are thus obtained by solving the following optimization problem:

argmin
m0,m1,...,mk∈R

α1,...,αk∈R

Var[Ê]

s.t. m0 > 0,

mi ≤ mi−1 i = 1, . . . , k,

wTm = p.

(4.18)

The first two inequality constraints ensure that 0 < m∗0 ≤ m∗1 ≤ . . . ≤ m∗k and the last
condition guarantees that the cost of computing the MFMC estimator is equal to the
time budget p. Note that here we only require m0, m1, ..., mk to be rational numbers,
even though the number of model evaluations clearly need to integer. This is done in
order to avoid having to solve complex integer programming problem and a relaxed
linear program over the real numbers is solved instead. We round up the obtained
mi to bm∗c = (bm∗0c, bm∗1c, ..., bm∗kc)T to ensure that each model is evaluated at least
once. The authors of [25] also reason that compared to a usually large number of
model evaluations, rounding by a value less than one does not change the overall
number significantly. In the following, we will assume the m∗i to have been obtained by
rounding and therefore, for them to be integer.

It is important to mention that the budget p should be chosen large enough such as
to allow at least one evaluation of the high-fidelity model, that is, p should exceed the
runtime needed for one high-fidelity model evaluation. If this is not given and only
low-fidelity evaluations are used, the resulting estimator will be biased. The true values
of E[ f (0)] and Var[ f (0)] can not be obtained from biased low-fidelity models alone.

We now give the unique solution to the optimization problem (4.18), i.e. the values
m∗ and α1, ..., αk under which the largest variance reduction, and therefore the lowest
MSE, can be achieved. For a proof of this solution, see [25]. In order for it to be
correct, the models f (0), f (1), . . . , f (k) need to be ordered according to their correlation
coefficients:

|ρ0,0| > |ρ0,1| > . . . > |ρ0,k|. (4.19)

Furthermore, their costs w0, w1, . . . , wk need to fulfill

wi−1

wi
>

ρ2
0,i−1 − ρ2

0,i

ρ2
0,i − ρ2

0,i+1
(4.20)
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for i = 1, . . . , k. We define ρ0,k+1 to be 0. The optimal coefficients α∗1 , . . . , α∗k ∈ R are
given by

α∗i =
ρ0,iσ0

σi
(4.21)

for i = 1, . . . , k. To obtain the optimal number of model evaluations we first compute
r∗ = (r∗0 , r∗1 , . . . , r∗k )

T ∈ Rk
+ by

r∗i =

√√√√w0(ρ2
0,i − ρ2

0,i+1)

wi(1− ρ2
0,1)

(4.22)

for i = 0, . . . , k and then set

m∗0 =
p

wTr∗
and m∗i = m∗1r∗i (4.23)

for i = 1, . . . , k. Choosing the control variate coefficients and the number of model
evaluations according to these rules guarantees that the MSE of the MFMC estimator is
minimized.

To be able to obtain the ordering (4.19), check condition (4.20) and compute the control
variate coefficients and number of model evaluations, the correlation coefficients ρ0,i
and the variances σ2

i are required for the high-fidelity and low-fidelity models. These
are generally not known and must be obtained beforehand. We show in Subsection 4.5.2
how this can be achieved.

The optimization problem solved in this section minimizes the variance Var[Ê], i.e.
the variance of the multifidelity mean estimator. As recommended in [29], we will use
the obtained coefficients and number of model evaluations for computing the MFMC
variance estimator V̂ as well. These may not be the optimal numbers to minimize
Var[V̂], but the work [29] shows that the MSE of the estimator that uses them is very
similar to that of esimators using coefficients that minimize Var[V̂]. Furthermore, the
term for the variance of the estimator V̂ depends on the squared variances (σ2

i )
2 and is

therefore sensitive to changes in them. Since these variances are usually determined
experimentally, this introduces a source of instability into the algorithm which can be
avoided by using the coefficients optimized with regard to Var[Ê] [29]. This is why, in
the following sections, we will utilise these coefficients and focus on the MSE generated
for the estimator Ê.

Having obtained the coefficients α1, . . . , αk and the number of model evaluations
m0, m1, . . . , mk which minimize the MSE of the estimator Ê, we can now examine this
error more closely. The MSE of the MFMC estimator Ê with respect to a given time
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budget p is given by [25]

MSE[Ê] = Var[Ê] =
σ2

0
p

( k

∑
i=0

√
wi(ρ0,i − ρ0,i+1))

)2

(4.24)

where again ρ0,k+1 is defined to be 0. To see that by using a MFMC estimator, we
can achieve a reduction in the MSE compared to a standard Monte Carlo estimator, we
compare the two errors. In (3.12), the MSE of a standard MC estimator ÊMC for the
mean of the high-fidelity model output f (0)(X) for a computational budget p is given
as

MSE[ÊMC] =
σ2

0
n

=
σ2

0
p

w0 (4.25)

where n is the number of samples. For a budget p this is given by n = p
w0

. With
the terms for both of these errors, we obtain the condition under which the MSE of
a MFMC estimator is lower than the MSE of a standard MC estimator. It holds that
MSE[Ê] < MSE[ÊMC] if and if only( k

∑
i=0

√
wi(ρ0,i − ρ0,i+1))

)2

< w0 (4.26)

which is equivalent to ( k

∑
i=0

√
wi

w0
(ρ0,i − ρ0,i+1))

)2

< 1. (4.27)

Furthermore, the smaller the value of the term on the left side is, the higher the
variance reduction and the smaller the MSE[Ê] will be. We call this term the variance
reduction ratio γ with

γ =
MSE[Ê]

MSE[ÊMC]
=

( k

∑
i=0

√
wi

w0
(ρ0,i − ρ0,i+1))

)2

. (4.28)

From this ratio, we can derive how to best choose the surrogate models to obtain a
high variance reduction and therefore a low MSE. Both the costs of a model and its
correlation coefficient contribute to the value of γ. We examine the characteristics a
model should have to best decrease the variance reduction ratio. Firstly, γ is directly
proportional to the costs wi of the low-fidelity model f (i). This means that the less
expensive a model is to evaluate, the higher its contribution to the variance reduction
is because it leads to a smaller γ. Secondly, in the single terms of the sum in γ, the
correlation coefficients ρ0,i always appear in conjunction with the correlation coefficient
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of the following model f (i+1), i.e. in the difference (ρ0,i − ρ0,i+1). Therefore, γ will be
low if that difference is low which is the case if the squared correlation coefficients ρ2

0,i
and ρ2

0,i+1 are of similar value. We want to emphasize this point: to achieve a high
variance reduction, it is not only important for the costs of the low-fidelity models
to be small, but the interaction of the different models plays a role as well, not just
their individual correlation coefficients. Therefore, it is important to choose the models
with regards to one another, not just according to their relationship to the high-fidelity
model alone. Subsection 4.4.2 looks further at the problem of choosing the low-fidelity
models in such a way that the MSE of an estimator based on these models is low.

4.4.2. Model selection

We discussed in Subsection 4.4.1 how to choose the control variate coefficients and the
number of model evaluations for a given set of models that fulfill (4.19) and (4.20).
With regards to the variance reduction ratio (4.28), we have seen that in order for the
MFMC estimator to exhibit a low MSE, the models should be chosen such that their
interaction leads to a low value of γ. This subsection presents an algorithm that, given
an arbitrary set of a high-fidelity and k low-fidelity models, chooses a subset of these
models which can be ordered as in (4.19) and fulfills (4.20). Additionally, these models
will be selected such that out of all possible subsets, the chosen set leads to the MFMC
estimator with the lowest MSE/variance.

This model selection algorithm was first proposed in [25]. We present it in Algo-
rithm 3. As input, the algorithm takes the available models f (0), f (1), ..., f (k), including
the high-fidelity model, the standard deviation σ0 of the high-fidelity model and the
correlation coefficients ρ0,0, ρ0,1, ..., ρ0,k and costs w0, w1, ..., wk of the models. The goal
of the algorithm is to compare all possible subsets of modelsM with each other and
find the subset M∗ which will cause the lowest variance v∗ of the resulting MFMC
estimator. This is done by computing the variance v for each of the subsets according
to (4.24) and selecting the set where this value is the lowest.

The algorithm first ensures the condition (4.19) by reordering the models if necessary.
Because the variance depends on the computational budget p, we need to choose a
value for it. The algorithm sets it to the runtime of the high-fidelity model p = w0,
however since this is never changed during the execution and the dependence of the
estimator variance on p is linear, p could also be chosen differently and the result
of the algorithm would be the same. The set M∗ which will at termination of the
algorithm contain the optimal subset of models is initialized with the high-fidelity
model, ensuring that the returned set is not empty. We know the resulting variance of
only using a high-fidelity model, which is equivalent to standard Monte Carlo sampling
for a budget p, to be σ0

p w0 (see (4.25)). We initialize v∗, which will at any point in the
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Algorithm 3 Model selection

Require: models f (0), f (1), ..., f (k), σ0, ρ0,0, ρ0,1, ..., ρ0,k, w0, w1, ..., wk
Reorder the models if |ρ0,0| > |ρ0,1| > ... > |ρ0,k| (cond. 4.19) is not fulfilled
Set the computational budget p = w0

Initialize the set of modelsM∗ = { f (0)} and set v∗ = σ2
0
p w0.

for M⊆ { f (0), f (1), ..., f (k)} do
if f (0) /∈ M then

continue
end if
Set l = |M| to the number of models inM
Assign new indices i1, ..., il to the models inM s.t. |ρ0,i1 | > ... > |ρ0,il |
Set ρ0,ik+1 = 0
Check that for j = 1, ..., k it holds

wij−1

wij

>
ρ2

0,ij−1
− ρ2

0,ij

ρ2
0,ij
− ρ0,i2

j+1

(cond. (4.20)) (4.29)

if cond. (4.20) does not hold for all j = 1, ..., k then
continue

end if
Compute

v =
σ2

0
p

( l

∑
j=1

√
wij(ρ

2
0,ij
− ρ2

0,ij+1

)2

(4.30)

if v < v∗ then
M∗ =M
v∗ = v

end if
end for
return M∗

execution of the algorithm hold the lowest variance encountered so far by the set of
models currently inM∗, to this value.

With this, all of the subsets of the set of available models can be checked for their
variance. The algorithm chooses a subset M and first ensures that the high-fidelity
model f (0) is part of it and that the selection satisfies condition (4.20). If not, this set is
discarded. Then the variance v of an MFMC estimator that uses all of the models in
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M is computed according to (4.24). If this is the lowest variance encountered so far,
we store the setM inM∗ and the corresponding variance in v∗. After checking all of
the possible subsets of { f (0), f (1), ..., f (k)}, the algorithm terminates with the subset that
will result in the lowest estimator variance and therefore, the lowest MSE. This is the
set of models that, out of the available models, should be used to construct a MFMC
estimator that is as accurate as possible.

The authors of [25] also note that since the algorithm iterates over all subsets of
{ f (0), f (1), ..., f (k)}, its complexity is in O(2k). However, in practice usually only few
models are available, i.e. k ≤ 10, and therefore the exponential runtime does not pose
a problem. We now have a means to decide which of the available models to use in
computing an MFMC estimator. The following section summarizes how to obtain such
an estimator.

4.5. Multifidelity Monte Carlo Sampling

In the previous sections of this chapter, we have described all the theory necessary to
construct a multifidelity estimator with the goal of achieving a lower MSE than that of
a standard Monte Carlo estimator. Since it is based on standard Monte Carlo sampling,
we call this technique multifidelity Monte Carlo ampling. We sum up this approach in
Subsection 4.5.1 and address the finding of unknown correlation coefficients, variances
and runtimes in Subsection 4.5.2.

4.5.1. MFMC algorithm

Algorithm 4 summarizes the procedure of multifidelity Monte Carlo sampling. As
inputs, the algorithm takes the high-fidelity and the low-fidelity models f (0), f (1), ..., f (k),
their variances σ2

0 , σ2
1 , ..., σ2

k , computational costs w0, w1, ..., wk and the correlation coeffi-
cients ρ0,0, ρ0,1, ..., ρ0,k of the respective models with the high-fidelity model.

In Algorithm 3, we have described how an optimal set of models out of all the
available models to minimize the MSE of the resulting estimator. With the help of
this algorithm, the multifidelity Monte Carlo sampling algorithm first ensures that
the input models have been chosen in accordance to the model selection algorithm. If
they have not, an estimator with a lower MSE can be achieved. It then computes the
control variate coefficients α1, ..., αk and the number of model evaluations m0, m1, ..., mk
as described in Subsection 4.4.1. Next, mk realizations of the input X of the models
are drawn and the models f (i) are evaluated for the first mi samples. From these
evaluations, the MFMC estimators for mean and variance are computed and returned.
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Algorithm 4 Multifidelity Monte Carlo Sampling

Require: f (0), f (1), ..., f (k), σ0, σ1, ..., σk, ρ0,0, ρ0,1, ..., ρ0,k, w0, w1, ..., wk, p
if f (0), f (1), ..., f (k) are not the result of Algorithm 3 then

Restart the algorithm for a set of models chosen by Algorithm 3
end if
Set the control variate coefficients α1, ..., αk to

αi =
ρ0,iσ0

σi
for i = 1, ..., k (4.31)

Set r = (r0, r1, ..., rk)
T to

ri =

√
w0(ρ2

0,i − ρ2
0,i+1)

wi(1− ρ0,1)
for i = 1, ..., k (4.32)

Set the number of model evaluations m0, m1, ..., mk to

m0 =
p

wTr
, mi = rim0 for i = 1, ..., k (4.33)

Draw realizations x1, ..., xmk of the input vector X
for 0 ≤ i ≤ k do

Evaluate model f (i) for samples x1, ..., xmi

end for
Compute MFMC estimators Ê and V̂ for mean and variance of the high-fidelity
output as (see Subsection 4.3.1 for details)

Ê = Ē(0)
m0 +

k

∑
i=1

αi(Ē(i)
mi − Ē(i)

mi−1) and V̂ = V̄(0)
m0 +

k

∑
i=1

αi(V̄
(i)
mi − V̄(i)

mi−1) (4.34)

return Ê, V̂

4.5.2. Preprocessing

We note that Algorithm 4 requires the variances of the models, their costs and correlation
coefficients. These quantities are typically not known. In practice we therefore need to
estimate them beforehand. This can be done by drawing a number n of samples from
the input domain, evaluating each of the models f (0), f (1), ..., f (k) for these samples and
using the sample variance and sample correlation coefficient estimator to compute the
unknown quantities. While evaluating the models, the time it takes to get the results
can be measured and used to obtain estimates for the runtimes of the models. We
summarize this preprocessing procedure as we will employ it later in Algorithm 5.
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Algorithm 5 Preprocessing

Require: models f (0), f (1), ..., f (k), number of samples n
Draw realizations x1, ..., xn of the input vector X
for 0 ≤ i ≤ k do

Evaluate model f (i) for samples x1, ..., xn and store the time wj it takes for evaluation
j in wi = (w1, ..., wn)T

end for
for 0 ≤ i ≤ k do

Compute the sample variance σ̄2
i of model f (i) according to (3.7)

Compute the sample correlation coefficient ρ̄0,i according to (3.8)
Average the model evaluation costs from wi to obtain the runtime w̄i of model
f (i) :

w̄i =
1
n

n

∑
i=1

wi (4.35)

end for
return σ̄2

0 , σ̄2
1 , ..., σ̄2

k , ρ̄0,0, ρ̄0,1, ..., ρ̄0,k, w̄0, w̄1, w̄k

The work [25] shows experimentally that in practice it usually is sufficient to draw
samples for a low number n because the effect small changes in these estimates have on
the number of evaluations and the control variate coefficients is small. The work also
notes that while some costs can follow from computing these estimates beforehand,
often results are available from previous simulations that can be used instead. For
our experiments in which we show results for different computational budgets and
different model selections, these numbers also need to be computed only once for each
model. Before we show these results, we present the process of multifidelity Monte
Carlo sampling on a small numerical example.

4.6. Illustrative Example

In this section, we use an analytical function to demonstrate the MFMC algorithm. We
further examine the MSE of the obtained estimators and show the improvement in
precision compared to standard Monte Carlo estimators.

For this purpose we use the Borehole function as a high-fidelity model f (0). This
function is a popular benchmark used in testing UQ techniques. It models the scenario
of drilling a borehole from the ground through two aquifers. The value of the function
gives the water flow rate in m2

yr through the borehole. For more details, see [20, 36]. The
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function f (0) : R8 → R is given by

f (0) =
2πTu(Hu − Hl)

ln(r/rw)
(
1 + 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

) (4.36)

This function depends on eight parameters that are subject to uncertainty. We
summarize them and their distributions in Table 4.1. We employ multifidelity Monte
Carlo sampling to estimate mean and variance of the function output and compare
the effectiveness of these estimators with that of standard Monte Carlo estimators.
For the MFMC analysis, we use one low-fidelity model f (1). This is derived from the
high-fidelity model as

f (1) =
5Tu(Hu − Hl)

ln(r/rw)
(
1.5 + 2LTu

ln(r/rw)r2
wKw

+ Tu
Tl

) (4.37)

and was proposed in [42]. Before we can run the MFMC algorithm, we need to
find estimates for the models’ correlation coefficients and variances. We obtain them
as described in Algorithm 5. Because both high- and low-fidelity model are simple
analytical functions that are very fast to evaluate and in reality have very similar
evaluation times, we prescribe their runtimes by w0 = 10−3s and w1 = 10−4s. To
estimate the correlation coefficient and variances, we use n = 107 samples. The results
are summarized in Table 4.2.

Before we give the practical results we obtained from executing the algorithm, we
examine the variance reduction ratio γ (4.28) of the MFMC algorithm for this case.
Recall that this ratio describes the reduction in the variance of the MFMC mean
estimator ÊMFMC compared to the standard Monte Carlo estimator ÊMC. It holds that
MSE[ÊMFMC] = γMSE[ÊMC]. Computing this ratio directly from the estimates we
obtained for the correlation coefficient and the runtimes we prescribed, we obtain for
this case

MSE[ÊMFMC] ≈ 0.10 ·MSE[ÊMC]. (4.38)

This means that for these models, we expect the precision of the MFMC mean
estimator to increase by roughly one order of magnitude compared to the standard MC
estimator. Using (4.24) and (4.25), we show this relationship of the expected MSEs in
Figure 4.3. We refer back to this result when we describe our practical findings.

We now run multifidelity Monte Carlo sampling as shown in Algorithm 4. We obtain
estimates for different computational budgets p ∈ {102, 5 · 102, 103, 5 · 103, 104}. These
budgets are given in seconds. Note that the coefficient α1 is independent of p (see (4.21))
and in this example is computed as 1.25664286124. The optimal numbers of model
evaluations are given in Table 4.3. Observe that m0 and m1 are directly proportional to
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parameter probability distribution
radius of the borehole rw N (0.10, 0.0161812)
radius of influence r LN (7.71, 1.0056)
transmissivity of the upper aquifer Tu U (63070, 115600)
potentiometric head of the upper aquifer Hu U (990, 1110)
transmissivity of the lower aquifer Tl U (63.1, 116)
potentiometric head of the lower aquifer Hl U (700, 820)
length of the borehole L U (1120, 1680)
hydraulic conductivity of the borehole Kw U (9855, 12045)

Table 4.1.: The eight input parameters used in the Borehole function. N (µ, σ2) de-
notes a normal (Gaussian) distribution and LN (µ, σ2) denotes a log-normal
distribution with mean µ and variance σ2.

costs wi [s] standard deviation σi

f (0) 10−3 28.839468998
f (1) 10−4 22.9496143156

Table 4.2.: The costs and standard deviations of the high- and low-fidelity model em-
ployed in the numerical example of the Borehole function. The correlation
coefficient of the two models is estimated as ρ0,1 = 0.999999999998.

the time budget and grow linearly with p (see (4.23)). The reason that these numbers
do not scale exactly with p in this example is because the number of model evaluations
are rounded from rational numbers to integers (see Section 4.4). We further compute
standard Monte Carlo estimators using only the high-fidelity model f (0) as described
in Algorithm 1.

In order to be able to judge the accuracy of the resulting MC and MFMC estimators,
we compute reference estimators for the Borehole function. For this, we use standard
Monte Carlo sampling with 108 i.i.d. samples and obtain µ = E[ f (0)] ≈ 74.0913128804
and σ2 = Var[ f (0)] ≈ 831.301796299.

Because the MFMC algorithm is optimized to minimize the MSE of the mean esti-
mator, we compute the MSE with respect to the mean estimator Ê. In order to achieve
smoother plots, we compute the MSE as an average of 20 runs of the standard MC and
MFMC algorithm which each yield estimators Êi, i = 1, . . . , 10. The MSE is obtained as
follows:

MSE =
1
20

10

∑
i=1

(µ− Êi) (4.39)
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p m0 m1

100 1 1420696
500 4 5682781
1000 8 11365562
5000 36 51145027
10000 71 100869358

Table 4.3.: The optimal number of model evaluations for different time budgets p for
the example of the Borehole function problem.

The achieved mean squared errors of the estimators using standard MC and MFMC
for the mean of the Borehole function are reported in Figure 4.4. Note the logarithmic
scale on both axes. As shown in (4.24) and (4.25), it is clearly visible that for both
standard MC and MFMC an increase of the computational budget p leads to a direct
decrease in the MSE of the estimators. Using the MFMC algorithm with the second
model f (1) in addition to f (0) reduces the MSE of the estimator by about one order
of magnitude for a given budget. This confirms the theoretical estimate of the mean
squared error we gave in (4.38).
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Figure 4.3.: The expected decay of the MSE of the standard Monte Carlo estimator and
MFMC estimator for the mean of the Borehole function f (0).
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Figure 4.4.: The MSE of the standard Monte Carlo estimator and MFMC estimator for
the mean of the Borehole function f (0). The MFMC estimator uses the
low-fidelity model f (1) in addition to the high-fidelity model.
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This chapter presents our results from performing uncertainty propagation with the
MFMC algorithm on two test cases of plasma microturbulence analysis. We examine the
so-called Cyclone Base Case (CBC) where we first study a version with three uncertain
input parameters (Section 5.1) to gain some first insights into the results that can be
achieved with MFMC on this type of problem. We then move on to an extended CBC
scenario with eight uncertain inputs to see the applicability of MFMC to a higher-
dimensional and more challenging test case (Section 5.2). For both cases, we compute
MFMC estimators of mean and variance of the Gene output and compare their accuracy
to that of standard MC estimators.

5.1. Modified Cyclone Base Case (3D)

This section examines a modified version of the CBC test case with three stochastic
parameters. Subsection 5.1.1 summarizes the physics of this scenario and describes
the uncertainties in the input parameters. In Subsection 5.1.2, the construction of the
low-fidelity models used for MFMC in this test case is described. Subsections 5.1.3 and
5.1.4 show the results we obtained from applying the MFMC algorithm to this scenario.

5.1.1. Description of the test case

This test case is a popular benchmark in gyrokinetics and represents a simplified
description of turbulent transport as occurring in the ITER reactor. The type of here
is a linear local, i.e. flux-tube, simulation for which Gene’s linear eigenvalue solver is
employed as a high-fidelity model.

The original version of this test case [6] models electrons and a single species of
ions such that ni = ne and Ti = Te, i.e. the densities ni and ne of ions and electrons
are assumed to be equal, as are their temperatures Ti and Te. In order to create a
more realistic scenario, the version of this test case used here [8] models electrons
fully gyrokinetically. This means that the electrons’ logarithmic temperature gradient
−Lsδxln Te is not assumed to be equal to the ions’ temperature gradient −Lsδxln Ti, but
has to be taken into account as well. Plasmas are subject to quasi-neutrality, which
means that the number of (singly charged) ions and electrons in a plasma are equal [41].

45



5. Results

parameter probability distribution
ion/electron log density gradient −Lsδxln n U (1.665, 2.775)
ion log temperature gradient −Lsδxln Ti U (7.500, 12.500)
electron log temperature gradient −Lsδxln Te U (7.500, 12.500)

Table 5.1.: The three uncertain input parameters for the 3D CBC test case and their
probability distributions.

For this reason, the logarithmic density gradients −Lsδxln ni and −Lsδxln ne of the ions
and electrons are modelled as equal. These three different quantities are the uncertain
input parameters for this test case. We model them as independent uniform random
variables. Their input ranges are summarized in Table 5.1. Further input parameters
which for this scenario are fixed at deterministic values are modelled as stochastic
inputs in the eight-dimensional version of this test case.

We are interested in one output obtained from this simulation. That output is the
growth rate γ[cs/Ls] of the dominant eigenmode. Here, cs =

√
Te/mi is the ion sound

speed (where mi is the ion mass) and Ls is the characteristic length [8]. The goal of the
uncertainty analysis is to firstly estimate the mean of this output based on the three
uncertain input parameters. In addition to this, we estimate the standard deviation
of the output. This gives a measure for how reliable the mean prediction is, i.e. if the
standard deviation is low, then the true mean is very likely to be close to the value of
the estimator, while for a high standard deviation this is less probable.

We perform simulations for normalized perpendicular wavenumbers kyρs = 0.3, 0.8.
These values control the size of the local simulation box. For the CBC test case, it is
known that at around kyρs = 0.6, there is a mode transition from an ITG mode to a
trapped-electron-mode (TEM)/ETG hybrid mode [8]. For this reason, we choose the
kyρs for our runs such that both modes can be examined. Simulations for different
kyρs are independent of each other and can therefore be performed in parallel. For the
application of MFMC to this scenario, this also means that low-fidelity models need
to be constructed for both of the examined wavenumbers independently of each other.
We present the employed models in the following.

5.1.2. Low-fidelity models

In order to create low-fidelity models to be used with MFMC, we apply the methods
presented in Sections 2.3 and 2.4. We construct for both of the respective kyρs a sparse
grid (SG) approximation f (1) of the high-fidelity model f (0) and a machine-learning
(ML) model f (2) based on an artificial neural network .

The accuracy and computational costs of the SG surrogate can be controlled by the
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kyρs SG corr. coefficient ρ0,1 ML corr. coefficient ρ0,2

0.3 0.99897 0.99987
0.8 0.98192 0.97085

Table 5.2.: The estimated correlation coefficient of the low-fidelity models with the
high-fidelity model.

kyρs Gene std. dev. σ0 SG std. dev. σ1 Ml std. dev. σ2

0.3 0.13049 0.12015 0.12861
0.8 0.27471 0.27348 0.26519

Table 5.3.: The estimated standard deviations of the three models employed in the 3D
CBC test case.

values of the tolerances τ = (tol1, . . . , told, told+1). Recall that the first d = 3 tolerances
give a threshold for the contribution of the three input directions to the model output
while told+1 controls the contribution by the interaction of all the input parameters.
The adaptive algorithm of [8] stops refinement of the grid in one direction if the contri-
bution of this dimension falls lower than the specified tolerance. Therefore, setting a
higher tolerance leads the algorithm to stop refinement earlier, while prescribing low
tolerances makes the algorithm explore the directions further even if their contribu-
tions are low. This leads to more grid points on which an interpolation of Gene is
constructed and with that, to computationally more expensive and accurate models.
For kyρs = 0.3, we set τ = (10−1, 10−1, 10−1, 10−1)T, while for kyρs = 0.8, we use
τ = (10−6, 10−6, 10−6, 10−3)T.

We construct machine-learning surrogates which perform regression via a neural
network as a second type of low-fidelity model. By doing this, we exploit the fact
that we have high numbers of previous simulations runs from Gene available which
makes training a neural network simple. We use the set up of the neural network as
described in Section 2.4 for both kyρs. For kyρs = 0.3, we train the model with ≈ 105

input-output data sets, while for kyρs = 0.8 we only use ≈ 2, 5 · 104 samples. This leads
to the ML model for kyρs = 0.3 achieving a higher accuracy as the one for kyρs = 0.8.
Furthermore, it is important to note for our later experiments that the ML model for
kyρs = 0.3 has a higher correlation with the high-fidelity model than the SG model
does.

The correlation coefficients for the SG and ML models were computed from 1000
model evaluations of each of the models. They are listed in Table 5.2. Standard
deviations of the three models were computed in the same runs and are given in
Table 5.3.
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kyρs Gene runtime [s] w0 SG runtime [s] w1 ML runtime [s] w2

0.3 260.1698 0.0009 0.0020
0.8 240.5124 0.0167 0.0017

Table 5.4.: The estimated runtimes of the three models employed in the 3D CBC test
case.

Gene runs are performed on two Intel Xeon E5-2697 nodes from the CoolMUC-2
Linux cluster1 at the Leibniz Supercomputing Centre. Evaluations of the low-fidelity
models are obtained on an Intel Core i5-8250U CPU running at 1.60GHz. The model
runtimes are measured on the latter according to Algorithm 5. Gene runtimes are
obtained from averaging the runtimes of 1000 runs and low-fidelity runtimes are
computed from 50000 model evaluations. They are summarized in Table 5.4.

In the following two subsections, we present our results from performing MFMC
using combinations of Gene with these two low-fidelity models for both wavenumbers
kyρs.

5.1.3. Results for kyρs = 0.3

We first give our results from using both standard MC (Algorithm 1) and MFMC
(Algorithm 4) to estimate mean and variance of the high-fidelity model output for
kyρs = 0.3. We use both techniques for computational budgets p ∈ {5 · 102, 103, 5 ·
103, 104, 5 · 104, 105}. These budgets are given in seconds. We first perform MFMC using
only the SG low-fidelity model in conjunction with the high-fidelity model because we
want to show how different selections of low-fidelity models can affect the estimators.

As we did for the example in Section 4.6, we first present the theoretical improvement
that the MFMC mean estimator ÊMFMC,1 using one low-fidelity model is expected to
achieve compared to a standard MC estimator. Substituting the estimated computational
costs and standard deviations of the two models into (4.28) gives for this set up the
following variance reduction:

MSE[ÊMFMC,1]

MSE[ÊMC]
≈ 0.00222. (5.1)

In our simple example from Chapter 4, we only achieved a variance reduction ratio of
0.10. In this more realistic test case of plasma microturbulence analysis, we can expect
a reduction of the variance of the estimator, and therefore of its MSE, by about three
orders of magnitude. This is due to the tremendous reduction in runtime compared to

1https://www.lrz.de/services/compute/linux-cluster/
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the high-fidelity model which we achieved for the SG surrogate. The decay of the MSE
is depicted in Figure 5.1 using (4.24) and (4.25). This plot represents the theoretical,
ideal reduction of the MSE based on the assumption that all the estimated model
parameters, i.e. variances, correlation coefficients and runtimes, are exact. Note that we
examine the MSE of the MFMC mean estimator since the number of model evaluations
and control variate coefficients are optimized with regards to the mean estimator.

As a reference for the true value of the model output’s mean for γ[cs/Ls], we use
a result obtained by performing standard MC with a SG surrogate. This SG model
has been constructed by setting the tolerances of the adaptive sparse grid algorithm to
τ = (10−14, 10−14, 10−14, 10−14)T which yields a very accurate approximation of Gene.
The lower runtime of the resulting model then allows using the MC algorithm with a
high number of samples. In this case, 25000 model evaluations have been obtained to
compute the reference estimator. This results in the estimate µ = E[ f (0)] ≈ 0.68091. For
the standard deviation, we obtain a reference of σ ≈ 0.13035.

Furthermore, we perform 10 runs of the MC and MFMC algorithms for each of the
budgets, obtaining estimates Ê1, . . . , Ê10 for the mean value. We compute the MSE as
an average over these quantities:

MSE =
1
10

10

∑
i=1

(µ− Êi). (5.2)

Figure 5.2 shows the MSE of the computed MC and MFMC estimators of the mean
of the model output γ[cs/Ls]. The results confirm the preliminary estimates of the MSE
decay obtained by examining the variance reduction of the MFMC estimator compared
to the standard MC estimator. We can see that the MSE of the estimator directly
decreases with increasing budgets (see (4.24)). Furthermore, by applying MFMC we
can decrease the MSE of the standard MC estimator by about three orders of magnitude
as we estimated by means of the variance reduction ratio.

In Algorithm 3, we presented an algorithm that, out of a given set of models, selects
the subset of models that leads to a MFMC estimator with the lowest MSE that can
be achieved with any of the models in the set. The algorithm does this by computing
the variance of the resulting MFMC estimators and selecting the subset of models that
leads to the lowest variance. Executing it for the three models we have for the current
scenario, i.e. the high-fidelity model and the SG and ML low-fidelity models, this
algorithm will return a set containing all three. This means that by using all three, we
will achieve estimators with a lower MSE than the one we obtained using only the SG
model as a low-fidelity model.

Computing the variance reduction ratio for MFMC using the two low-fidelity models
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Figure 5.1.: The expected decay of the MSE of the standard Monte Carlo and MFMC
estimator for the mean value of the growth rate γ[cs/Ls] for kyρs = 0.3.
The MFMC estimator uses the high-fidelity model and the SG low-fidelity
model.
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Figure 5.2.: The MSE of the standard Monte Carlo and MFMC estimator for the mean
value of the growth rate γ[cs/Ls] for kyρs = 0.3 using the high-fidelity
model and the SG low-fidelity model in the 3D CBC test case.
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with regard to standard MC gives

MSE[ÊMFMC,2]

MSE[ÊMC]
≈ 0.00032. (5.3)

In the case of only using the SG model, we obtained a significant variance reduction
ratio of γ = 0.00222 (5.1). This was due to the SG model being computationally less
expensive than the high-fidelity model by a factor of the order of 105s and its correlation
coefficient ρ0,1 being very high. By adding the second low-fidelity model, we achieve
even further variance reduction. We mentioned in Subsection 4.4.1 that in order for
a set of models to reduce the MSE further than another combination, they need to
compliment each other with respect to their correlation coefficients. This is the case
here.

While the variance reduction from adding the second low-fidelity model to the
combination of f (0) and f (1) is not as big as the change from standard MC to MFMC
with one low-fidelity model, we can still obtain further variance reduction from the
additional ML model. Figure 5.3 illustrates this. In Figure 5.4 we show our results
from applying the MFMC algorithm using both low-fidelity models to the test case.
Again, they confirm the theoretical results we obtained from computing the variance
reduction. Results for p = 105 were not computed for this set of models.

Figure 5.5 depicts how MFMC distributes the model evaluations to the different
models. For each combination of models we examined, the plot shows the fraction
that m0, m1 and m2 make up of the total number of evaluations over all models. Note
the logarithmic scale on the y-axis. This distribution is valid for all time budgets p,
because the number of model evaluations scales linearly with p (see (4.23)). In the case
of MFMC with only the SG model as a low-fidelity model, only a very small number
of evaluations falls to the high-fidelity model. Adding the ML model as a second
low-fidelity model, most of the evaluations are still distributed to the SG model which,
in this combination, is again the computationally cheapest model and the model with
the lowest correlation coefficient. Here, before computing the optimal number of model
evaluations and control variate coefficients, the models are reordered to satistfy (4.19).

Finally, Table 5.5 lists the MC and MFMC estimators computed for the model output’s
mean and variance for the different time budgets. Note that a budget of 500 only allows
for one evaluation of the high-fidelity model (since w0 = 260.1698) and that therefore, no
estimate for the variance can be computed using standard MC for this budget. MFMC
on the other hand uses the remaining budget for additional low-fidelity evaluations
with which a variance estimator can be obtained.

For the purpose of understanding the model selection algorithm better, we obtained
another ML surrogate with a correlation coefficient to high-fidelity model of ρ ≈ 0.77389
and a runtime of w ≈ 0.00193. While the runtime of this model is comparable to that of
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Figure 5.3.: The expected decay of the MSE of the standard Monte Carlo and MFMC
estimators for the mean value of the growth rate γ[cs/Ls] for the 3D CBC
test case with kyρs = 0.3. The first MFMC estimator uses only the SG model
(black), the second uses the SG and the ML low-fidelity models (green).

103 104 105

budget p (seconds)

10 7

10 6

10 5

10 4

10 3

10 2

es
tim

at
ed

 M
SE

std MC MSE
MFMC MSE SG lo-fi model
MFMC MSE 3 models

Figure 5.4.: The MSE of the standard Monte Carlo and MFMC estimators for the mean
value of the growth rate γ[cs/Ls] for the 3D CBC test case with kyρs = 0.8.
The first MFMC estimator uses only the SG model (black), the second uses
the SG and the ML low-fidelity models (green).
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Figure 5.5.: The distribution of evaluations over the models for standard MC and MFMC
with two and three models for kyρs = 0.3. On the logarithmic y-axis, the
percentage of model evaluations that fall to the different models is given.

p ÊMC ÊMFMC,1 ÊMFMC,2 σ̂MC σ̂MFMC,1 σ̂MFMC,2

500 0.72962867 0.68067796 0.6804246 - 0.12497945 0.12868827
1000 0.69809482 0.67982301 0.68106508 0.06459229 0.13115049 0.12914015
5000 0.6803166 0.68121959 0.68116393 0.11145522 0.12980779 0.12928115
10000 0.68458738 0.68122072 0.68101832 0.14912978 0.12985041 0.12948363
50000 0.68213214 0.68093813 0.6811262 0.13138754 0.12929114 0.12950445
100000 0.68100762 0.6812384 - 0.13243871 0.12964336 -

Table 5.5.: The estimated mean Ê and standard deviation σ̂ of the model output γ[cs/Ls]

for kyρs = 0.3 obtained with MC and MFMC estimators in the 3D CBC test
case. The subscripts MFMC, 1 and MFMC, 2 refer to estimators obtained
from MFMC using one and two low-fidelity models respectively.
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the ML model used in the previous experiments, its correlation coefficient is significantly
smaller. Running the model selection algorithm for the SG model and this ML model,
the algorithm selects the high-fidelity and the SG model only. In this case, adding a
second model actually increases the MSE of the MFMC estimators.

5.1.4. Results for kyρs = 0.8

This subsection shows our results for wavenumber kyρs = 0.8 in the three-dimensional
CBC test scenario. As in the previous experiments, we first computed standard MC
estimators for mean and variance of the high-fidelity model output γ[cs/Ls] for the
same increasing budgets p. We then performed MFMC with first only the SG model
created for this kyρs and then added the ML model as a second low-fidelity model.

The runtime of the SG model we created for this scenario is higher than that of the
model for kyρs = 0.3 and its correlation coefficient is lower. This is attributed to the
different microinstability mode and more complex physics needed to model it. For this
reason, constructing the SG approximation requires more grid points and yields a more
expensive model. Both the runtime and correlation coefficient influence the variance
reduction ratio (4.28), which in this case computes to

MSE[ÊMFMC,1]

MSE[ÊMC]
≈ 0.039. (5.4)

The plots in Figure 5.6 show the expected reduction of the MSE for MFCM with the
SG model. To compute the MSE we achieved in the practical application of MFMC,
we compute reference estimators for the mean µ ≈ 0.55318 and for the standard
deviation σ ≈ 0.27666. These results were obtained by performing standard MC using
approximately 38000 samples of the high-fidelity model. With this, we estimate the
MSE of the MC and MFMC estimators and obtain the results shown in Figure 5.7.
These plots were again created by computing an average MSE over 10 runs of the MC
and MFMC algorithms.

We then ran the model selection algorithm for all three models: the high-fidelity
model, the SG low-fidelity model and the ML low-fidelity model. For this set of models,
the algorithm again returns the selection of all three models, meaning that a MFMC
estimator computed using all three will exhibit a lower MSE than an estimator using
only one of the low-fidelity models. The variance reduction ratio for this set of models
is given by

MSE[ÊMFMC,2]

MSE[ÊMC]
≈ 0.037. (5.5)
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Figure 5.6.: The expected decay of the MSE of the standard Monte Carlo and MFMC
estimator for the mean value of the growth rate γ[cs/Ls] for kyρs = 0.8 in
the 3D CBC test case. The MFMC estimator uses the high-fidelity model
and the SG low-fidelity model.
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Figure 5.7.: The MSE of the standard Monte Carlo and MFMC estimator for the mean
value of the growth rate γ[cs/Ls] for kyρs = 0.8 using the high-fidelity
model and the SG low-fidelity model in the 3D CBC test case.
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p ÊMC ÊMFMC,1 ÊMFMC,2 σ̂MC σ̂MFMC,1 σ̂MFMC,2

500 0.54945094 0.5591043 0.56674721 0.41094231 0.27346354 0.2693183
1000 0.50797404 0.5605094 0.55732878 0.29885409 0.26297078 0.28351324
5000 0.56687098 0.55628552 0.55223438 0.28189931 0.27492931 0.28295497
10000 0.58152203 0.55665978 0.56177573 0.1938001 0.27186596 0.26959688
50000 0.5606377 0.55506742 0.55648918 0.27432992 0.27513511 0.27396548
100000 0.56078382 0.55578007 0.5560119 0.27523817 0.27242003 0.27514184

Table 5.6.: The estimated mean Ê and standard deviation σ̂ of the model output γ[cs/Ls]

for kyρs = 0.8 obtained with MC and MFMC estimators in the 3D CBC test
case. The subscripts MFMC, 1 and MFMC, 2 refer to estimators obtained
from MFMC using one and two low-fidelity models respectively.

Compared to the variance reduction factor 0.039 for only the SG model, this selection
of models does not yield a large additional decrease of estimator’s variance. This can
also be seen in Figure 5.8.

Our results from computing the MSE of our obtained MFMC estimators with respect
to the given reference mean estimator support this observation. The results from our
simulations are depicted in Figure 5.9. In contrast to our results for kyρs = 0.3 shown
in Figure 5.4, the MSE plots for kyρs = 0.8 still shows large fluctuations rather than
a linear decay (on a logarithmic scale) as expected. For some of the computational
budgets, the experimentally determined MSE even exceeds the MSE of the MFMC
estimator that only uses the SG low-fidelity model. This can be attributed to the fact
that for kyρs = 0.8, the runtime of the employed SG model is almost 20 times as high as
the runtime of the SG model for kyρs = 0.3. Because of this, fewer model evaluations
are possible in the given time frames. For comparison, for p = 500 this only allows for
m0 = 2 high-fidelity evaluations and m1 = 187 (ML) and m2 = 3830 (SG) low-fidelity
evaluations, while for kyρs = 0.3 these numbers were m0 = 1, m1 = 970 (SG) and
m2 = 34309 (ML). A solution to achieve more accurate results could be to find a second
low-fidelity model with a lower runtime but a comparable correlation coefficient, or
increase the computational budget.

Figure 5.10 depicts the distribution of the model evaluations over the available models.
Note that in this case, there is no reordering necessary when the second low-fidelity
model is added because it holds that |ρ0,1| > |ρ0,2|. For this reason, the largest share of
evaluations then falls to the newly added ML model, not the SG model as was the case
for kyρs = 0.3. Table 5.6 lists the estimators obtained for kyρs with both MC and MFMC
using one and two low-fidelity models.
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Figure 5.8.: The expected decay of the MSE of the standard Monte Carlo and MFMC
estimators for the mean value of the growth rate γ[cs/Ls] for the 3D CBC
test case with kyρs = 0.8. The first MFMC estimator uses only the SG model
(black), the second uses the SG and the ML low-fidelity models (green).
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Figure 5.9.: The MSE of the standard Monte Carlo and MFMC estimators for the mean
value of the growth rate γ[cs/Ls] for the 3D CBC test case with kyρs = 0.8.
The first MFMC estimator uses only the SG model (black), the second uses
the SG and the ML low-fidelity models (green).
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Figure 5.10.: The distribution of evaluations over the models for standard MC and
MFMC with two and three models for kyρs = 0.8. On the logarithmic
y-axis, the percentage of model evaluations that fall to the different models
is given.

5.2. Modified Cyclone Base Case (8D)

This section summarizes our results from the application of the MFMC algorithm to the
CBC test case that is modelled with eight uncertain input parameters. Subsection 5.2.1
explains the additions made to the three-dimensional version of this test case from the
previous section to obtain this extended scenario. The low-fidelity model we use in the
MFMC algorithm for this application is described in Subsection 5.2.2. Subsection 5.2.3
presents our results for this test case.

5.2.1. Description of the test case

This test case extends the version of the CBC that is given in Subsection 5.2.1. We
expand the three-dimensional scenario to eight dimensions by modelling uncertainty
in additional input parameters which have previously been set to a deterministic value.
By doing this, we model a setting that is closer to realistic conditions inside a fusion
reactor. The CBC test case with these eight uncertain inputs was first presented in [8].

The input parameters and their probability distributions for this case are listed in
Table 5.7. The parameters are again modelled as independent. We keep the density
and temperature gradients of the ions and electrons as we have modelled them before.
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parameter probability distribution
plasma beta β U (0.598 · 10−3, 0.731 · 10−3)

collision frequency νc U (0.238 · 10−2, 0.322 · 10−2)

ion/electron log density gradient −Lsδxln n U (1.665, 2.775)
ion log temperature gradient −Lsδxln Ti U (7.500, 12.500)
electron log temperature gradient −Lsδxln Te U (7.500, 12.500)
temperature ratio Ti/Te U (0.950, 1.050)
magnetic shear ŝ U (0.716, 0.875)
safety factor q U (1.330, 1470)

Table 5.7.: The eight uncertain input parameters for the 8D CBC test case and their
probability distributions.

Further uncertainty is introduced in the ratio Ti/Te of the ion and electron temperatures
themselves which we have previously assumed to be 1. Because we treat electrons
fully gyrokinetically, electromagnetic effects in the plasma need to be considered.
The stochastic parameter β describes their magnitude as a ratio of the kinetic to the
magnetic pressure inside the plasma. To compute collisions between particles, we use
the linearized Landau-Boltzmann collision operator as implemented in Gene. The
frequency νc of collisions is now modelled as uncertain. The last two parameters
we have previously modelled as deterministic characterise the magnetic field. We
add uncertainties to the safety factor q which describes the relationship between the
number of toroidal turns of a magnetic field line to the number of poloidal turns [8]
and its derivative ŝ = r

q
δq
δr with respect to r, which is the radial coordinate labelling flux

surfaces [8].
We again compute one model output, the growth rate γ[cs/Ls] of the dominant

eigenmode. For this scenario, we examine the mean and variance of this output
computed with MC and MFMC for kyρs = 0.3.

5.2.2. Low-fidelity model

For this scenario, we perform MFMC using one low-fidelity model. We again construct
a SG surrogate for Gene using the approach from Section 2.3. For the tolerances used
in the adaptive sparse grid algorithm, we prescribe τ = (10−6, . . . , 10−6, 10−6)T and
obtain a model f (1) with a correlation coefficient ρ0,1 ≈ 0.99999. Runtimes for Gene

and this SG model are measured on the machines as described above. They are given,
along with the estimated standard deviations of both models, in Table 5.8.
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Gene f (0) SG model f (1)

runtime wi
[
s
]

574.59450 0.10061
standard deviation σi 0.12999 0.13021

Table 5.8.: The runtimes and standard deviations of the high- and low-fidelity model
for the 8D CBC test case for kyρs = 0.3.

5.2.3. Results for kyρs = 0.3

We now present our results from using standard MC and MFMC on the 8D CBC
test case. As before, we estimate mean and variance of the model output with both
techniques and examine the MSE of the obtained estimators. Because the runtime of the
high-fidelity model for this test case exceeds a budget of 500, we apply the algorithm
for the remaining budgets that have previously been used.

Computing the variance reduction from the data we have just given in Subsec-
tion 5.2.2, we obtain for this scenario

MSE[ÊMFMC,1]

MSE[ÊMC]
≈ 0.0003. (5.6)

This means that by performing MFMC with the SG model as a low-fidelity model,
we can achieve about four orders of magnitude in the estimators’ precision compared
to standard MC for a fixed computational budget. The expected decay of the MSE is
illustrated in Figure 5.11.

Our results from applying MC and MFMC are depicted in Figure 5.12. The MSE is
computed with respect to a reference mean estimator obtained during the (deterministic)
construction of the SG surrogate. We use µ ≈ 0.67936 and σ ≈ 0.13119. We can see that
again the estimated MSE is very close to our theoretical observations.

Figure 5.13 shows the distribution of model evaluations over the two models. We
note that, as in the cases examined before, MFMC allocates most of the evaluations to
the computationally cheaper SG model and only very few are given to the high-fidelity
model (e.g. for p = 105, m0 = 40 and m1 = 765683).

Table 5.9 lists the estimates obtained for mean and variance of the high-fidelity output.
Note that the budget p = 1000 only allows for one high-fidelity model evaluation and
therefore, no variance can be computed using standard MC. Comparing these results
with the estimators we computed in the three-dimensional CBC scenario (Table 5.5),
we observe that the estimated values are very similar. This is due to the additional
parameters that are modelled as uncertain here contributing little to the model output.
In fact, [8] shows by performing sensitivity analysis on this test case that for kyρs = 0.3,
the logarithmic electron temperature gradient −Lsδxln Te has the largest impact on the
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Figure 5.11.: The expected decay of the MSE of the standard Monte Carlo and MFMC
estimator for the mean value of the growth rate γ[cs/Ls] for kyρs = 0.3 in
the 8D CBC test case. The MFMC estimator uses the high-fidelity model
and the SG low-fidelity model.
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Figure 5.12.: The MSE of the standard Monte Carlo and MFMC estimators for the mean
value of the growth rate γ[cs/Ls] for the 8D CBC test case with kyρs = 0.3
using the high-fidelity model and the SG low-fidelity model.
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Figure 5.13.: The distribution of evaluations over the models for standard MC and
MFMC with two models for kyρs = 0.3 in the 8D CBC test case. On the
logarithmic y-axis, the percentage of model evaluations that fall to the
different models is given.

p ÊMC ÊMFMC,1 σ̂MC σ̂MFMC,1

1000 0.69485483 0.67953651 - 0.13059121
5000 0.6945134 0.67938304 0.15957415 0.13112354
10000 0.69078531 0.67938439 0.13393346 0.1309927
50000 0.67682187 0.67940607 0.12994909 0.13098227
100000 0.67802467 0.67946586 0.1341998 0.13102557

Table 5.9.: The estimated mean Ê and standard deviation σ̂ of the model output γ[cs/Ls]

for kyρs = 0.3 obtained with MC and MFMC estimators in the 8D CBC test
case.

model output while the contributions from other parameters are negligible.
This simple experiment of adding one low-fidelity model to the high-fidelity model

and computing MFMC estimators using both shows the usefulness of the MFMC
algorithm. Investing the one-time effort in constructing the SG model for this test
case means the runtimes of the estimation process can be decreased by a factor of
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approximately 104 to obtain estimators of the same precision as before if MFMC instead
of MC is used. Additional variance reduction could be achieved if further low-fidelity
models are added.
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The main focus of this thesis was the application of multifidelity Monte Carlo sampling
in the quantification of uncertainty in a real-world application, plasma microturbulence
analysis. We showed in detail how MFMC uses high- and low-fidelity models that
describe the same physical phenomenon to reduce the variance and with that the MSE
of standard MC estimators used in UQ. To demonstrate the benefits of MFMC, both of
the algorithms were applied to the simulation of plasma microturbulence, a field to
which UQ has only been introduced in recent years and which is of great interest in
the study of nuclear fusion. To this end, simulations were conducted using the plasma
physics code Gene as a gyrokinetic solver. Low-fidelity models that approximate Gene

were constructed via interpolation on sparse grids and regression using an artificial
neural network.

With these models, two test scenarios of plasma microturbulence analysis were
examined. We applied the MC and MFMC algorithms to quantify uncertainty in a
modified version of the popular Cyclone Base Case benchmark. In a first run, we
studied a version of the CBC with three uncertain input parameters. For this test
case, we performed simulations for two different wavenumbers kyρs = 0.3, 0.8. For
both of them, we first executed MFMC using a SG model as a low-fidelity model and
then added a ML model, both for increasing computational budgets. In both cases,
MFMC with one low-fidelity model lead to a reduction of the MSE of a mean estimator
for the model output of at least one order of magnitude. For kyρs = 0.3, the error
could be reduced further by adding the ML model, while for kyρs = 0.8 the particular
configuration of the SG and ML models chosen resulted in little improvement. We
then applied both algorithms to a more realistic, eight-dimensional CBC scenario. With
the little effort of only adding a very accurate SG surrogate to the high-fidelity model,
MFMC achieved a large MSE reduction by about four orders of magnitude.

With these results, we demonstrated that MFMC can be a very effective tool in
forward UQ by reducing the computational budget needed to generate mean and
variance estimators of a given accuracy. We showed that adding multiple low-fidelity
models can further improve this approach. By using models constructed via machine
learning and interpolation, we illustrated how MFMC can be employed with low-
fidelity models of any type and construction. Moreover, by the application of MFMC to
test cases from plasma microturbulence analysis we found the MFMC algorithm to be
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very promising to UQ studies in this field of research.
In the future, other low-fidelity models with varying runtimes and correlation

coefficients could be added to the existing models to perhaps further improve the
performance of MFMC on the test cases considered. Moreover, while the CBC test case
employed here does model a real-world scenario, it is still a simplified description of the
application. Therefore, MFMC should be applied to additional, more realistic test cases
to fully study the benefits the algorithm can bring to UQ in plasma microturbulence
analysis.
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A.1. Source code: Implementation of a machine-learning
surrogate for Gene

1 def build_model():
2 model = keras.Sequential([
3 keras.layers.Dense(3, activation=tf.nn.relu, input_shape=(3,)),
4 keras.layers.Dense(3, activation=tf.nn.relu),
5 keras.layers.Dense(1)
6 ])
7

8 optimizer = tf.keras.optimizers.RMSprop(0.001)
9

10 model.compile(loss=’mean_squared_error’,
11 optimizer=optimizer,
12 metrics=[’mean_squared_error’])
13

14 return model

Listing A.1: The Python function we use to build a machine-learning model.
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