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Abstract

Currently, the geometry aware sparse grids allow us to use only simple stencils for
image classification on a normal resolution. In this thesis, I present the data hierarchy,
a set of different coarsened images of the original data, that allow us to apply complex
stencils on lower resolutions while still being able to process the original image through
simple stencils. By exploiting the data hierarchy the accuracy in some cases is improved
by nearly 5%.

I also present the class of hierarchical parent stencils that can work vertically on
the data hierarchy and uses fewer interaction terms allowing us to establish a data
hierarchy without necessarily increasing the number of grid points.

Smart use of the data hierarchy and multiple stencils allows us to apply sparse grid
image classification in cases that would have been infeasible before.
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1 Introduction

Today more and more people are using the internet and are owning devices with a
growing number of sensors. More than 2.5 · 1018 bytes of data are generated each day by
all our devices and sensors [Mar18]. This makes classification techniques and machine
learning a very important topic since the amount of data we produce is increasing even
further each day. A huge amount of this data are plain images or images contained in
videos. To compensate the data growth we need to improve our ways to classify them.

Geometry aware sparse grids were designed to solve image classification problems
using sparse grids even though image classification is usually a high dimensional
problem [Wae17]. Only grid points are added to the sparse grid, which are in specific
data dimensions. A so-called stencil defines those dimensions. The stencil has a huge
impact on the performance and accuracy of the resulting sparse grid.

In this thesis, I will present an attempt to improve the capability of geometry aware
sparse grids by creating a data hierarchy of each image. The data hierarchy consists of
coarsened images of each data entry. This allows us to apply complex stencils on lower
resolutions, while still being able to use simpler stencils on the original image and thus
reducing the number of grid points.

Additionally, the data hierarchy may also increase the accuracy. Through the coars-
ening of the image, some image features become more emphasized. For instance, for
an image classification of a high-resolution image, it is not relevant whether a black
pixel is right next to a more reddish one. Instead, it is rather more important whether a
black area is next to a reddish area. Through the coarsening of the images, these areas
become pixels, on which complex stencils can be applied, which would be infeasible on
high resolutions. Therefore, the accuracy may be improved.

I will give a brief overview of geometry aware sparse grids and how classification
problems are solved by it in Section 2. Then I will show firstly my approach of
generating a data hierarchy and then defining a class of hierarchical parent stencils in
Section 3. The implementation of the stencils and some changes to the SG++ Software
to improve performance will be shown in Section 4. Finally, the performance and
accuracy of the newly developed techniques are shown and analyzed on the MNIST
and CIFAR-10 dataset in Section 5.
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2 Fundamentals

In this chapter, I will explain the basic theory for a sparse grid image classification.
First, the basic interpolation of a function using a full grid will be presented and
then a transition to sparse grids will be made. Afterward, the transition from sparse
grids to geometry aware sparse grids will be shown and then a possible way to solve
classification problems using sparse grids will be described.

2.1 Full Grid Interpolation

Since a grid interpolation is a discretization technique, only a bounded function can
be interpolated on arbitrary positions. Otherwise only a subdomain of the function
is useable. Without loss of generality, the unit-hypercube Ω ∈ [0, 1]d is used as the
domain for a d-dimensional function f : Ω→ R, which shall be interpolated. The space
Ω can be discretized by a full grid of a resolution n ∈N, containing equidistant grid
points xi with a mesh size of h = 2−n. An interpolant u : Ω→ R can then be defined
as a weighted sum of suitable d-linear basis function ϕi : Ω→ R [Pfl10]:

f (~x) ≈ u(~x) = ∑
i

αi ϕi(~x) (2.1)

with αi ∈ R being the weight for the basis function ϕi.

2.2 Hierarchical Basis Function

As can be seen in Equation 2.1, the performance of the interpolation is mainly dependent
on a good choice of basis function. A basis is needed, such that as few as possible
basis functions contain all necessary information so that basis functions that are not
affecting the result strongly can be skipped and the basis functions should also be easily
computable. Such a basis can be found by a hierarchical construction of the function
space [Pfl10]. Starting from the one-dimensional case, the hierarchical basis will be
derived and later on extended to support d-dimensional cases.
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2 Fundamentals

2.2.1 Hierarchical Basis Function in One Dimension

From the standard hat function [BG04]

ϕ(x) = max{1− |x|, 0} (2.2)

we can derive a basis function through dilatation and shifting [Pfl10]:

ϕl,i(x) = ϕ(2lx− i) (2.3)

with the hierarchical level l ∈N and an index 0 ≤ i ≤ 2l . With these modifications, it
is achieved that the function is centered at the grid point xl,i. This can be seen in Figure
2.1.

Now a set of piecewise linear functions Vn in which our interpolant u can be found
is derived. Vn is the function space of a grid of level n. First, a set of indices is declared
[Pfl10]

Il = {i ∈N : 1 ≤ i ≤ 2l − 1∧ i odd}, (2.4)

from which we can obtain the hierarchical subspace [Pfl10]

Wl = span{ϕl,i : i ∈ Il}. (2.5)

This subspace contains all basis functions, that is needed to extend Vn−1 to Vn [BG04].
In other words, adding the hierarchical subspace Wl to a grid of level n− 1 changes the
level of the grid to n. With V1 = W1, we can sum up the subspace to obtain Vn:

Vn =
⊕
l≤n

Wl (2.6)

A graphical representation of the complete process for the one-dimensional case can be
seen in Figure 2.1.

The interpolant u ∈ Vn can then be calculated with [Pfl10]

u(x) = ∑
l≤n,i∈Il

al,i ϕl,i(x), (2.7)

where the weight αl,i is also being referred to as the (hierarchical) surplus.

2.2.2 Moving to the Multi-Dimensional Case

In the d-dimensional case, the basis functions are extended in a tensor product manner
[Pfl10]

ϕ~l,~i(~x) =
d

∏
j=1

ϕlj,ij(xj) (2.8)
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2 Fundamentals

Figure 2.1: Construction of the piecewise linear function (right) space via hierarchi-
cal subspaces (left) in a one-dimensional case. Including all hierarchical
subspaces up to a level l results in the function space Vn. Taken from [Pfl10].

Figure 2.2: Tensor product of the subspaces in a two-dimensional case. Taken from
[BG04].

4



2 Fundamentals

where the vectors~l and~i contains the level and the index of each dimension. For the
d-dimensional hierarchical subspace the index set must also be redefined to support
multiple dimensions [Pfl10]:

I~l = {~i : 1 ≤ ij ≤ 2lj − 1∧ ij odd∧ 1 ≤ j ≤ d}, (2.9)

from which we can obtain the multi-dimensional subspaces [Pfl10]

W~l = span{ϕ~l,~i :~i ∈ I~l} (2.10)

and finally the multi-dimensional function space of d-linear functions with a mesh size
of hn [Pfl10]

Vn =
⊕
|~l|∞≤n

W~l (2.11)

where |~l|∞ is the maximum norm defined as |~x|∞ = maxj xj. For a two-dimensional
case, a graphical representation of a hierarchical subspace is shown in Figure 2.2

The interpolant u ∈ Vn can then be obtained with [Pfl10]

u(~x) = ∑
|~l|≤n,~i∈I~l

α~l,~i ϕ~l,~i(~x) (2.12)

If the function f is smooth enough, the error of the full grid interpolation is [Pfl10]

|| f (~x)− u(~x)||L2 ∈ O(h2
n) (2.13)

but with a growth of basis functions in [Pfl10]

O(h−d
n ) = O(2nd) (2.14)

and thus enduring the curse of dimensionality, as the number of grid points grows
exponentially with the number of dimensions.

2.3 From Full to Sparse Grids

Sparse grids are able to overcome the curse of dimensionality by including only certain
hierarchical subspaces [BG04]. Only the hierarchical subspaces up to the diagonal of
the desired level are included in a regular sparse grid, while a full grid would use a
complete square [BG04]. The number of grid points that are not included is quite large,
which can be seen in Figure 2.3.

The sparse grid space is, therefore, a slight alteration of Vn [Pfl10]

V(1)
n =

⊕
|~l|1≤n+d−1

W~l , (2.15)
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2 Fundamentals

V1

V2

V3

Figure 2.3: Grid combination scheme for two dimensions. The dots mark the position
of the grid points in the corresponding hierarchical subspace. Image taken
from [BG04] and modified to show the subspaces included in the function
space Vn.
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2 Fundamentals

with |~l|1 being the L1-norm defined as |~x| = ∑d
j |xj|. The interpolant u(~x) ∈ V(1)

n is
then obtainable by [Pfl10]

u(~x) = ∑
|~l|1≤n+d−1,~i∈I~l

α~l,~i ϕ~l,~i(~x) (2.16)

which leads to a significant reduction of complexity to O(h−1(log h−1
n )d−1) basis func-

tion evaluations at the cost of slightly decreasing the accuracy to O(h2
n(log h−1

n )d−1)

[Pfl10].

2.4 Handling the Boundary

As can be seen in Figure 2.1 the current approach cannot handle boundary values of
the function. To support boundary values boundary grid points could be added, but
since this approach would lead to a huge increment of complexity, the basis function is
slightly modified. The modified linear basis function is defined as [Pfl10]:

ϕl,i(x) =



1, if l = 1∧ i = 1{
2− 2l · x, if x ∈ [0, 1

2l−1 ]

0, else
if l ≥ 1∧ i = 1{

2l · x + 1− i, if x ∈ [1− 1
2l−1 , 1]

0, else
if l ≥ 1∧ i = 2l − 1

ϕ(x · 2l − i), else.

(2.17)

Instead of having the value 0 at the boundary, we now have a default value of 1. As
shown in Figure 2.4, through suitable scaling via the surplusses, boundary values can
be considered.

2.5 Geometry Aware Sparse Grids

Although sparse grids can overcome the curse of dimensionality, a higher dimensional-
ity will still increase the number of grid points. Thus, for high dimensional problems,
such as image classification, a regular sparse grid is infeasible. For instance, a color
image with a resolution of 8× 8 corresponds to a space with 8 · 8 · 3 = 192 dimensions.
If a sparse grid of level three would be used, the resulting grid would have 74, 497 grid
points and on level four it would have 9, 659, 649 grid points. Therefore, already on
small levels, the numbers of grid points is infeasible.
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2 Fundamentals

Figure 2.4: Treatment of the boundary with a modified linear basis function. Image
taken from [Pfl10].

Waegemans introduced in his thesis [Wae17] an approach to reduce the number of
grid points a lot without significant changes to the error rate by exploiting the following
property of image data:

1. Image data contains information in the order of the dimensions.

2. The context (respectively the neighborhood) of a pixel contains most of the
information.

The second property follows from the first, since dimensions must not be swapped,
except the complete context of the pixel would be swapped too, for instance by applying
rotations or scalings. Otherwise, the image would get unrecognizable even for humans.

Waegemans uses this geometric property, by forcing the sparse grid to only include
hierarchical subspaces, that are adding grid points between dimensions belonging to
each others neighborhood. Of course, this includes hierarchical subspaces, that are only
adding grid points to one dimension. Hierarchical subspaces are adding grid points
between all dimensions, that have a level of two or higher in the level vector (cf. Figure
2.3) [Wae17]. In all other hierarchical subspaces, those who only have one level higher
than or equal to two, only the resolution of one dimension is improved. For instance,
in a three-dimensional case, the hierarchical subspace W1,3,2 adds grid points between
the x2 and x3 axis, while the subspace W1,1,3 only increases the resolution on the x3

axis. Hence, if it is known that only the second and the first dimension correlate, the

8



2 Fundamentals

Figure 2.5: On the left, the grid points of a geometry aware sparse of level four with
the interaction terms T = {∅, {x}, {y}, {z}, {x, y}} are shown. On the right,
the grid points are shown, that are not included due to the interaction terms.
Image taken from [Wae17].

subspace W1,3,2 can be left out, probably without affecting the error rate much. For a
similar case, the resulting grid points and also the not included grid points are shown
in Figure 2.5.

2.5.1 Mathematical definition of sparse grids

To describe which dimensions belong to each other’s context interaction terms t ⊆ D
are used, with D = {d1, d2, ..., dn} being the set of dimensions [Kre16]. The set of
interaction terms is, therefore, a subset of the power set of dimensions:

T ⊆ 2D (2.18)

Let ζ : Nd → 2D be a function that returns the interaction term modeled by the
hierarchical subspace W~l as discussed above, defined as [Wae17]:

ζ(~l) = {di : li > 2∧ i ∈ [d]}. (2.19)

With this, the interaction-based sparse grid function space [Wae17]

VT =
⊕

W~l∈V(1)∧ζ(~l)∈T

Wl (2.20)

can be obtained.
To calculate the total number of grid points, that the corresponding geometry aware

sparse grid based on the interaction set has, the following equation may be used
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2 Fundamentals

k Level 2 Level 3 Level 4 Level 5

0 1 1 1 1
1 2 6 14 30
2 0 4 20 68
3 0 0 8 56
4 0 0 0 16
5 0 0 0 0

Table 2.1: Some values of gk for different levels. gk returns the number of hierarchical
subspaces, which corresponds to an interaction term of size k. Observe, that
subspaces that are modeling an interaction term of size k are only included
in levels greater than or equal to k + 1.

[Wae17]:

n =
max{|t|:t∈T}

∑
i=0

|Si| · gi (2.21)

where Si is the set of interaction terms with a cardinality of i

Si = {t : t ∈ T ∧ |t| = i} (2.22)

and gk : N→N is a function that returns the number of grid points in a hierarchical
subspace, that models an interaction term of size k for a grid level m [Wae17]:

gk(m) =

{
∑m

i=k+1 2i−1 · ( i−2
i−k−1), if k ≥ 1

1, if k = 0
(2.23)

For a comprehensive explanation of this equation, see [Wae17]. A list of values for gk
for the sparse grid level two, three and four is given in Table 2.1. From the values of gk,
one can see that an interaction term of size k is only included in a sparse grid of level
k + 1.

2.5.2 Stencils

The rule through which the interaction set is generated is referred to as stencil [Wae17].
Waegemans, introduced the direct neighbor stencil (DN-stencil), which adds one
interaction term each, for all pixels with a hamming distance of one [Wae17]. Hence,
the direct neighbors are the pixels to the left, right, top and down. Therefore there
are (x− 1)y + x(y− 1) interaction terms of size two, which also is the largest size of
interaction terms.

10



2 Fundamentals

DN-stencil ColDN-stencil

|S1| xy 3xy
|S2| (x− 1)y + x(y− 1) 3(x− 1)y + 3x(y− 1) + (3

2)xy
|S3| 0 xy
|S4| 0 0

Table 2.2: Sizes of the interaction set partitioned by the size of the interaction terms.
x and y are the width and the height of the image. For a comprehensive
derivation of these sizes for the stencils see [Wae17].

If the image is colored, the colored direct neighbor stencil (ColDN-stencil) includes
interaction terms for each direct neighbor of the same color. Interactions between
different colors are only included for the same pixel. For an RGB-colored image,
this leads to a maximum interaction size of three. Since all child hierarchical sub-
spaces must also be included in the sparse grid the power set of {ri, gi, bi} must be
a subset of the interaction terms, where ri is the index of the red color dimension
of the pixel i, gi and bi analogously. Therefore, for each pixel i the set of interaction
{∅, {ri}, {gi}, {bi}, {ri, gi}, {ri, bi}, {gi, bi}, {ri, gi, bi}} are added to the interaction set T.
The resulting number of interaction terms together with the ones from the DN-stencil
are shown in Table 2.2.

Waegemans also proposed the more complex cube stencil [Wae17]. It contains all
possible interactions terms of pixels in a square of a specific size. Thus it acts like a
regular sparse grid, which is applied only on the sub-image. The number of interaction
terms of this stencil grows exponentially with the square size, as all possible interaction
terms of the pixels inside the cube have to be included. This is equivalent to the power
set of the pixels. I use the notation ’cube-l’ to denote a cube stencil of length l.

2.6 Spatial Adaptivity

Only for functions that are smooth enough, the sparse grid scheme defines a good set
of grid points [Pfl10]. But for functions that have strong local fluctuations, the sparse
grid interpolation could be erroneous. To compensate the error a higher level of the
sparse grid may be used, but this would increase the number of grid points enormously.
Instead, it would be preferable to only add grid points where the local fluctuations are.

This can be done by a refinement of a grid point that covers at least some parts of the
critical area. The refinement adds all 2 · d children of a grid point. The children are all
the grid points of the next sparse grid level, which basis functions cover the same area
that the parent grid point has covered. To add those grid points it must be ensured,

11



2 Fundamentals

Figure 2.6: Refinement of a grid point (marked in red) by adding all of its 2 · d children
and if necessary adding the non-existent parent grid points (marked in gray)
for a sparse grid of level two.

that all hierarchical ancestors exist [Pfl10]. Therefore, in some cases not only children
of the grid point that is getting refined need to be added.

In comparison to the sparse grid scheme, the refinement grid points are chosen a
posteriori, hence after the sparse grid is generated. Critical areas may be detected
through the values of the surplusses or via other techniques. For more details of
different refinement criterions see [Pfl10].

2.7 Classification using Sparse Grids

A classification problem can be solved with sparse grids by applying one sparse grid
density estimation per class.

2.7.1 Density Estimation using Sparse Grids

The data of one class is interpreted as random samples from a probability distribution
which density function must be approximated. Areas with a lot of samples will,
therefore, have a large density while areas with small or none samples will have a small
density. Hence, the value of the interpolant u, obtained through the sparse grid density
estimation of class i, at a point x is the probability that the data represented through x
is of class i.

The sparse grid density estimation is formulated by the equation [Peh13]

(R + λC)~α =~b (2.24)

with R being a matrix of L2 scalar products of the basis functions with Ri,j = 〈ϕi, ϕj〉L2.
The vector~α contains the surplusses of the basis functions and bi is the average value of
the basis function ϕi over all the data in the training set of the particular class. λ ∈ R

12



2 Fundamentals

is a scalar to control how much the regularization matrix Ci,j = 〈Λϕi, Λϕj〉 affects the
result. Commonly, Λ is chosen, such that the matrix C is equal to the identity matrix I.
Therefore, no complex calculation is needed and a smoother function is advocated (c.f
[Pfl10]). [Peh13]

This equation for the density estimation has the benefit, that the matrix C is of size
n× n with n being the number of grid points. Therefore, the complete system of linear
equations is solvable in O(n3) and thus the system’s complexity is independent of the
size m of the particular class training set [Peh13]. Only for the calculation of the vector
~b the training set size is relevant. To calculate the average we need to iterate over each
item once and this for all grid points. Thus the calculation of the vector needs O(n ·m)

steps. Hence, the total complexity for the system of linear equations is in O(n3 + n ·m).
An improvement of the complexity can be achieved by decomposing the matrix

into an online and an offline system. Through the decomposition, the system can be
solved in O(n2) steps. This is a huge improvement especially if the decomposition can
still be used after a refinement step, which is, for instance, the case when a Cholesky
decomposition was used.

2.7.2 Classification using Density Estimation

The result of the classification can then be obtained by evaluating each approximated
density estimation ui for each class i ∈N at the point x. The result is then gained in a
"one-hot" manner, meaning that the resulting label is the class which density estimation
was the highest, no matter how close the other values were [Pfl10].

label(x) = arg maxiui(x) (2.25)

The density estimation can also be used to express how certain the result is. If, for
instance, the density of only one class is high, the result is likely to be accurate. On the
other hand, if all density estimations return a similar value, the result is very likely to
be wrong.

13



3 Exploiting the Data Hierarchy

The basic idea in this thesis is to transform each data point so that it becomes a
data hierarchy consisting of coarsened versions of the original data. With this data
hierarchy complex stencils that are infeasible on high resolutions may be applied to the
coarsened versions of the data, while less complex stencils can still be applied on the
full resolution.

I will propose a general approach to create a data hierarchy and explain why it can
increase the accuracy and also increases the performance of the classification, in the
first part of this chapter. Then in the second part, I will define the class of hierarchical
parent stencils, that may be used for interactions between the different layers of the
data hierarchy.

3.1 Data Hierarchy

The transformation of the images into a data hierarchy is done by appending coarsened
versions to the original data point. I define the data hierarchy as the set of layers
L = {l1, l2, . . . , ln}. I also assume that the data hierarchy is sorted in descending order.
Thus the layer li will have a greater resolution and hence a greater dimensionality than
the layer li+1.

The layers’ resolutions are stored in the matrix A ∈ Nn×σ with σ being the total
numbers of axes of the data. Therefore, if the data is a colored image (σ = 3), then a2,1

will be the length, a2,2 will be the height and a2,3 will be the number of color channels
of the second layer.

Using a data hierarchy to decrease the number of grid points might seem strange
at first since the dimensionality of our classification problem is increased and the
advantage of using more complex stencils on layers with lower resolution can also be
accomplished by working on a coarsened image directly and not generating the whole
data hierarchy. But if the image has also some features that are only recognizable on
high resolutions, e.g. a one-pixel thin line, then working on the coarsened image is
not applicable as an important feature of the image may be lost. Therefore the data
hierarchy can be exploited to work on several resolutions of the image with different
stencils. A complex stencil can be applied on the coarsened image while a simple
stencil could be used to detect features of the high-resolution image.

14



3 Exploiting the Data Hierarchy

The data hierarchy may also be used to improve accuracy. If a feature can only be
easily detected on a lower resolution, but this one feature would not be enough to do a
correct classification, the feature can not be used without a data hierarchy to improve
accuracy. Such a feature would be, for instance, the average color of an image. On a
layer of resolution 1× 1, this feature would be clearly visible while most classification
problems can not be correctly solved only based on the average color. Through the
data hierarchy though, we can include the 1× 1 version as well as the original image.
Hence, this feature of the image can be used for the classification along with the other
features of the original image so that the accuracy is improved.

3.1.1 Generating the Data Hierarchy

A good data hierarchy does not include unnecessarily layers, as they will only increase
the dimensionality. On the other hand, it should include layers which are necessary to
either emphasize a feature or to enable the use of a complex stencil without adding too
many grid points. Also, all layers should be coarsened as strong as possible, without
losing the desired features, to reduce the number of added dimensions.

If no special domain knowledge is available to decide which resolution to pick for
the layers, a generally applicable approach could be to half each axis of the original
data from layer to layer until the last layer has a size of one in each axis. To guarantee
that the last image is of this size, the numbers are always rounded up.

Of course, it is normally desired to exclude the color information axis in this approach.
For the reason of simplicity, I will assume, without loss of generality, that the data has
no color information axis.

The approach can be expressed by the recursive equation:

li+1 = coarsend~ai · 12 e
(li)

where coarsen~s(x) is a function that coarsens the data x to the resolution~s. This leads
to a data hierarchy of size |L| = max{dlog |~ai|∞e} and a dimensionality of

d =
|L|

∑
i=1

σ

∏
k=1

ai,k =
|L|

∑
i=1

σ

∏
k=1
d a1,k

2i e. (3.1)

If the data consists of plain images and the resolutions are of a power of two, the
equation can be written in its closed form:

d =
a1,1 · a1,2

3
· (1− 4−|L|) (3.2)

To decrease the number of added dimensions by this approach it is recommended to
check the generated dataset and decide whether all of the layers are really necessary.
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3 Exploiting the Data Hierarchy

Figure 3.1: Data Hierarchy examples generated through the proposed general approach.
The first row shows a sample from the MNIST dataset and the second row
from the CIFAR-10 dataset. Both datasets are introduced in detail in Section
5.

If two layers are nearly identical or do not include any important features, the layer
with the highest resolution should be left out, as it is affecting the number of added
dimensions the most. For instance, each data point of a 28× 28 grayscaled MNIST-image
would have 1, 050 dimensions and in the case of a 32× 32 colored CIFAR-10-image
4, 095 dimensions. As it can be seen on the resulting data hierarchies in Figure 3.1,
in the case of the MNIST-sample the layer of size 14× 14 has nearly no difference to
the original image. Since it does not reveal any important feature of the image, one of
the layers should be excluded. As the original image has the highest resolution, it is
excluded and thus the dimensionality is reduced to 266.

3.2 Hierarchical-Parent Stencil

Until now, only interactions working horizontally on each layer of the data hierarchy
have been considered. In this subsection, the class of hierarchical parent (HP) stencils is
introduced and analyzed. This stencil type is working vertically on the data hierarchy
and thus is putting the different layers in relation to each other.

The basic idea behind this stencil type is to use the fact, that the neighborhood of a
pixel is completely contained by another pixel on a more coarsened layer. Therefore,
the HP-stencils follow the same intuition as the DN-stencil, with the difference, that
in the DN-stencil the direct neighbors are considered explicitly while the HP-stencils
are considering them implicitly. Through this implicit interaction, the HP-stencils use
fewer interaction terms than the DN-stencil and has also the ability to include larger
neighborhoods without needing larger interaction terms as for instance the cube stencil
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3 Exploiting the Data Hierarchy

uses. Of course, an implicit interaction will not be as accurate as an explicit one, but
through this, the number of grid points may be reduced, without affecting the error
rate strongly.

The HP-stencils have in common that only interactions between child and parent
dimensions may be included. The parent-child relation is defined as:

R =

{
(pi,~x, pj,~y) : i < j ∧

(
xk

ai,k
,

xk + 1
ai,k

)
∩
(

yk

aj,k
,

yk + 1
aj,k

)
6= ∅

}
(3.3)

where pi,~x is the null-based index of the pixel on the layer li that is positioned at the
point ~x ∈Nσ

0 with 0 ≤ xk < ai,k. Hence, two pixels are in the parent-child relation only
if the coarsened pixel overlaps with the area of the pixel on the layer with the higher
resolution. If the child layer’s resolution is not dividable by the resolution of the parent,
a pixel may have multiple parents, since multiple pixels overlap its area.

3.2.1 All-Hierarchical-Parent

Now to look at a concrete stencil, we define the all-hierarchical-parent (AHP) stencil. It
is called so because it contains all possible hierarchical-parent interaction terms up to a
cardinality of two. This means, that the set of interaction terms is

T = {∅} ∪ {{pi,~x} : i ≤ |I| ∧ xk ≤ ai,k} ∪ {{e, f } : eR f }. (3.4)

Thus we get the following numbers of interaction terms (again partitioned by the
interaction terms cardinality):

|S0| = 1

|S1| = d

|S2| =
|L|

∑
i=0

σ

∏
j=0

ai,j · (|L| − i)

In the case of a grayscaled 32× 32 image and a grid level of three, this would lead
to 33, 679 grid points. These are too many grid points and thus the stencil will be
infeasible on high resolutions. Especially the number of interaction terms of size two is
the problem. Through the term |L| − i the image with the highest resolution affects the
result the most.

3.2.2 Next-Hierarchical-Parent

To reduce the number of grid points, the stencil can be modified, to only include
interaction terms between certain layers, instead of connecting each layer to all other
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1× 1-image

3× 3-image

5× 5-image

10× 10-image

DN-stencil

1× 1-image

3× 3-image

5× 5-image

10× 10-image

NHP-stencil

1× 1-image

3× 3-image

5× 5-image

10× 10-image

AHP-stencil applied only on the first layer

1× 1-image

3× 3-image

5× 5-image

10× 10-image

AHP-stencil

Figure 3.2: Schematics of the different stencils on a data hierarchy. Not all interaction
terms are displayed for the reason of simplicity. Observe, that some pixels
have multiple parents in the layer with resolution {5× 5}.
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3 Exploiting the Data Hierarchy

layers. A possible rule would be to only include the parents of the next layer. The
resulting stencil will be referred to as next-hierarchical-parent (NHP) stencil and will
have the set of interactions

T ={∅}
∪ {{pi,~x} : i ≤ |I| ∧ xk ≤ ai,k}
∪ {{e, f } : eR f ∧ e ∈ lj ∧ b ∈ lj+1 ∧ j ≤ |I| − 1}.

With the new set of interaction terms, the NHP-stencil can, therefore, be partitioned
into

|S0| = 1

|S1| = d

|S2| =
|L|

∑
i=0

σ

∏
j=0

ai,j.

The critical term is gone and thus the number of grid points on a 32× 32 grayscaled
image is reduced to 13, 647. This is especially good since the DN-stencil applied on
every layer in the data hierarchy would have 18, 606 grid points. This is achieved
through the implicit comparison by the HP-stencils.

The smallest amount of grid points is generated if the layers’ resolutions are of
a power of two. In this case, each pixel has only one parent and thus at most two
interaction terms of size two attached to it. Thus, the number of interaction terms of size
two is smaller than for a DN-stencil, where each pixel has up to four interaction terms
of size two. If the proposed general approach is used to generate the data hierarchy,
then the number of dimensions/pixels in the data hierarchy will be lower than twice
the dimensions of the original image without data hierarchy (c.f. Equation 3.2).

On the other hand, a DN-stencil without data hierarchy can have fewer grid points,
as the number of interaction terms of size one is lower than with a NHP-stencil and
a data hierarchy. Thus, for a low-level sparse grid, the number of grid points can be
higher if a NHP-stencil with data hierarchy is used. But with higher sparse grid levels
the number of interaction terms of size one becomes less important than the interaction
terms of size two, since the number of hierarchical subspaces added to the grid using
interaction terms of size two grows faster than those of size one, as it can be seen in
Table 2.1. The number of grid points for different sparse grid levels is shown in Figure
3.3 and for different resolutions in Figure 3.4. As it can be seen in them, adding the data
hierarchy and applying the NHP-stencil does not increase the number of grid points
significantly for levels greater than or equal to three. This makes the NHP-stencil a
good candidate if a data hierarchy should be established to apply a complex stencil on
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Figure 3.3: This diagram shows the number of grid points of a geometry aware sparse
grid on a 28× 28 image in correlation with the sparse grid level. The number
of grid points for the DN- and ColDN-stencil is without a data hierarchy,
while the number for the HP-stencils is with a data hierarchy generated
through the proposed approach.

a lower resolution because the number of interaction terms of size one does not grow
with an additional stencil. Therefore, if a combination of stencils is used on different
layers, it is better to combine them with a NHP-stencil than with a DN-stencil. Keep in
mind that the NHP-stencil in the diagram uses the general data hierarchy approach,
hence a custom data hierarchy may reduce the number of grid points even further.

Another way to reduce the number of grid points the AHP-stencil generates is to
exploit the data hierarchy by applying it only on some layers. We can, for instance,
apply the NHP-stencil on the lowest layer and then the AHP-stencil on all other layers.
Thus, reaching a similar structure, except that the image with the highest resolution
which affects the number of grid points the most is not multiplied by the number of
layers. Hence, the amount of grid points is reduced.

3.2.3 Handling of Color Information

Color information can be handled analogously as by the DN-stencil. The different color
images are handled in the specific stencil manner, while interactions between different
colors are only included in each pixel itself. The changes to the number of interaction
terms are identical as in the case of the transition from the DN to the ColDN-stencil
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Figure 3.4: In this diagram, the number of grid points in a level three geometry aware
sparse grid in correlation with the image resolution is shown. As in Figure
3.3, the DN-stencil and ColDN-stencil are applied to the original image
and are not using a data hierarchy while the HP-stencils are using a data
hierarchy generated through the proposed approach. Observe the large
increment of grid points when a new layer is added in the case of the
AHP-stencil.
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4 Implementation

In this thesis, I used the SG++ library [PPB10], which delivers all necessary methods
for an image classification using geometry aware sparse grids. First, I will show how
the dataset has been modified. Then I will present the algorithm developed for the
class of hierarchical stencils and finally, I will explain some modifications I made to the
SG++ pipeline.

4.1 Data Preprocessing

All of the data preprocessing was made in Python using NumPy [vCV11], OpenCV
[Bra00] and Keras [Cho+15]. NumPy delivers a helpful n-dimensional array, which
Keras and OpenCV are using. OpenCV is a library for computer vision delivering many
methods for image manipulations, whereas Keras is a high-level library for machine
learning, which I used among other things to apply a data augmentation (c.f. Section
5.1).

4.1.1 Generating the Data Hierarchy

The datasets were loaded through Keras, all data were contained in NumPy arrays.
The data has been resized according to the proposed approach for generating a data
hierarchy. Each coarsened image has been generated through the OpenCV ’resize’
method. The images were then concatenated sorted by their resolutions. Lastly, the
data has been normalized to range between zero and one and then saved in an ARFF-
format, so that it could be processed by the SG++ data-driven pipeline.

4.2 Changes to the SG++ Data-Driven Pipeline

The geometry aware sparse grid configuration was extended to support multiple
dimensions so that an arbitrary data hierarchy could be used by the stencils. To exploit
the data hierarchy a finer stencil control was needed so that multiple stencils could
be defined and applied on different layers. Therefore, the stencil definition has been
changed into an array of stencils, where each stencil object had a stencil type and a set
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4 Implementation

of indexes corresponding to the layers in the data hierarchy attached to it. An example
configuration file is shown in Listing 8.1.

The grid factory, which generated all interactions based on the stencil configuration
has been, then, changed to combine all resulting interaction terms of each stencil to-
gether. To enforce that each interaction term can only be added once, the data structure
of the interactions has been changed to a set. This was necessary, as duplicated interac-
tion terms would lead to wrong results in Waegemans algorithm for the evaluation of
geometry aware sparse grids [Wae17].

To speed the calculation up, the evaluation of the SG++ classifier has been changed
to a matrix-based processing and to use the interaction-based evaluation method.
Previously each data entry was evaluated individually. The performance gain was
significant, especially on larger grids, as the interaction-based evaluation works at a
faster order [Wae17]. In some cases, the evaluation was 20 times faster than before.

4.3 Hierarchical Parent Stencil

All previously developed stencils have been redesigned to work on an arbitrary number
of axes in the data. Thus theoretically video data could be processed by them as well.
Therefore, the HP-stencils should also be able to work on arbitrary many axes of the
data.

The algorithm for the HP-stencils uses a recursive helper function, to find a parent in
a different layer that overlaps with the same area. The parent is calculated by modifying
the parent-child relation (c.f. Equation 3.3). The sets are multiplicated with aj, k, so that
the relation becomes

R =

{
(pi,~x, pj,~y) : i < j ∧

(
xk · aj,k

ai,k
,
(xk + 1) · aj,k

ai,k

)
∩ (yk, yk + 1) 6= ∅

}
. (4.1)

Now this relation can be used to calculate the parents’ positions directly. There are two
possible cases per axis k of the data:

1. The set
(

xk ·aj,k
ai,k

, (xk+1)·aj,k
ai,k

)
does not contain a whole number.

2. The set
(

xk ·aj,k
ai,k

, (xk+1)·aj,k
ai,k

)
does contain a whole number.

In the first case, there exists only one parent in this axis of the child and the position
in the axis can be calculated by rounding the minimum or maximum of the set down.
In the second case, there exist two parents in this axis and their position in the axis
can be calculated by rounding both the minimum and the maximum of the set down.
Since a set does not contain duplicated entries and in both cases, the positions are
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calculated by rounding the terms down, we do not need to check in which case we are.
The algorithms are presented in Algorithm 1 and Algorithm 2.

Algorithm 1 HierarchicalParent

interactions← ∅
for i = 1 to |L| do

if stencil should be applied on layer li then
for j = i + 1 to |L| do

for all coordinates ~x in layer li do
GetParentAndAddToInteractions(~x, i, j, 1)

end for
end for

end if
if stencil is NHP-stencil then

return interactions
end if

end for
return interactions

Algorithm 2 The function GetParentAndAddToInteractions(~x, i, j, k) is used to find
all parents on the layer lj of a child at position ~x and layer li. This function works
recursively over all axes of the data.

if k ≤ σ then
ratio← aj,k

ai,k

~yk ← b~xk · ratioc
GetParentAndAddToInteractions(~x, i, j, k + 1)
~yk ← b()~xk + 1) · ratioc
GetParentAndAddToInteractions(~x, i, j, k + 1)

else
interactions← interactions∪ {(pj,~x, pk,~y)}

end if
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5 Classification Results

In this chapter, I will analyze the accuracy gains of the data hierarchy and the hierar-
chical parent stencils, by applying them to some real-world datasets. First, I will show
some of the modifications that I applied to the datasets. Then I will start presenting the
results on the MNIST, fashion-MNIST and CIFAR-10 dataset.

5.1 Data Augmentation

A common problem in data mining is overfitting. Overfitting can occur when the
dataset does not provide enough data points (samples). The problem of overfitting
becomes apparent when a classification technique has a good accuracy on the training
examples, but when applied on the testing samples, the accuracy is low. In such cases,
the classification technique does not learn the desired task, instead, it uses the available
variables it should set to memorize the training data. Thus a good rule of thumb is to
have ten times more data points than variables.

In a sparse grid density estimation the number of grid points corresponds to the
number of variables that must be set (cf. Equation 2.24). Since for each class, one
density estimation must be applied and the number of grid points, as it can be seen in
Figure 3.3, is quite high, our training sets must also be huge. As many datasets are not
containing enough samples, new data points must be generated. This process is called
data augmentation.

Figure 5.1: One sample of each class in the tested datasets. Each dataset contains ten
classes. The first row shows the classes of the MNIST, the second the classes
of the fashion-MNIST and the last row the classes of the CIFAR-10 dataset.
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Figure 5.2: Data augmentation examples The first image of each row, shows the origi-
nal, while the others are all generated through rotations, scalings and shifts
of the original image. In the case of the truck image also horizontal flips
were applied.

The goal of the data augmentation is to change existing data points without changing
their classification. Common methods for the augmentation include scalings, rotations,
shifts and other linear transformations. These transformations should be applied
carefully, otherwise, the generated data points may be mislabeled. To set the correct
parameters of the transformation domain knowledge plays an important part. For
instance, an image of the digit eight can be horizontally flipped without changing the
correct labeling. Flipping the digit five, on the other hand, creates a wrong labeled grid
point.

Some valid transformations of an image from the MNIST and CIFAR-10 dataset are
shown in Figure 5.2.

5.2 MNIST Handwritten Digit Dataset

The MNIST dataset consists of 60,000 grayscaled images of handwritten digits and
additionally 10,000 validation samples. The classification goal is to decide which digit
is shown in the image. Each image has a resolution of 28× 28. The data hierarchy
generated through the proposed general approach consists of six layers with the
resolutions 28× 28, 14× 14, 7× 7, 4× 4, 2× 2 and 1× 1.

5.2.1 Paradox Behavior and the Dominance Effect

On the original dataset, without any data augmentation, I observed a, on first sight,
paradox behavior: Sparse grids with lower levels have significantly better accuracy.
This behavior can be seen in Table 5.1. The difference in the case without data hierarchy
is more than 10%.
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This behavior is probably caused by the dominance effect in the MNSIT dataset
Waegemans described in [Wae17], as the confusion matrix shows that the sparse grid
tends to label more samples to the dominant class if the level of the sparse grid is
higher. The problem arises through a class that has, in general, a higher density over
the complete input space. The SG++ software allows negative densities. Thus the
dominance effect happens through local large negative densities for the dominant class,
such that the positive density can be higher than the density of the other classes. A
higher resolution of the sparse grid allows the density estimation to fluctuate stronger
between negative and positive values. Therefore, in general, the more grid points the
sparse grid consist of, the smaller the area with strong negative values can become so
that the class can dominate all others in almost all areas. If a lower number of grid
points is used, the areas with negative values can not switch back to a positive value,
so that the dominant class has a lower density in more areas. If a refinement is applied
on the sparse grid, the same effect is observable. After applying enough refinements all
samples are getting labeled as the dominant class.

Since Waegemans traces the dominance effect of the classes back to their standard
derivation [Wae17], I applied the data augmentation on the MNIST dataset. The data
augmentation should increase the derivation and thus reduce the dominance effect.
But instead, the results were worse. Even without applying any refinements, almost all
samples were labeled to be samples from the dominant class.

Therefore, I changed the strategy. Instead of increasing the variance of the classes,
I decreased it by calculating the average image of each class and using them as the
training set. Thus the training set consists only of one sample per class. Surprisingly
the results were actually nearly 3% better when taken over all classes. This may be
caused by the reduction of data points as the density estimation will have stronger
peaks at the local position of the one sample. As the samples were averages, these
spikes were laying in good positions and reduced the dominance effect as they were
more unlikely to overlap. Though, this did not solve the problems completely.

Therefore, the results and insights gained through the MNIST dataset have to be
used carefully. For instance, the AHP-stencil turns out to have lower accuracy than the
NHP-stencil. This may be caused by a lower accuracy of the AHP-stencil in general or
it can also be caused by the paradox behavior as the AHP-stencil has more grid points.

5.2.2 Interpretation for the Data Hierarchy and Hierarchical Parent

Despite this paradox behavior, some interesting things can still be concluded from the
results of Table 5.1.

First, the NHP-stencil reaches almost the identical accuracy than the DN-stencil
without a data hierarchy and also decreases the number of grid points a little bit. As
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stencil level grid points train (%) test (%)

Without data hierarchy

regular sparse grid 2 1569 83.0193 82.398
DN 3 10753 74.7662 73.7812

With data hierarchy

regular sparse grid 2 2101 83.3876 82.5113
DN 3 14253 74.9292 73.7812
NHP 3 10701 74.4616 73.7528
Cube-2 on {4× 4, 2× 2, 1× 1} and NHP 3 11333 74.4262 73.441
DN and NHP 3 18653 73.1581 72.534
AHP 3 26353 62.6169 62.9252

Table 5.1: Classification results on the MNIST dataset using the classes 2, 5 and 7 on
the resolution 28× 28. Note that the accuracy of the sparse grids of level
two is higher than their corresponding grids on level three. If no layers are
specified, the stencil has been applied to all available layers.

the paradox effect can be ignored for results with a similar number of grid points and
accuracy, it can be concluded that the NHP-stencil indeed does mimic the DN-stencil.
Thus the NHP-stencil can be used to replace the DN-stencil and adding a data hierarchy
without increasing the number of grid points, while still preserving a similar accuracy.

Secondly, adding the data hierarchy without exploiting it through applying a different
stencil does not necessarily improve the accuracy. This can be seen by the identical
accuracy of the DN-stencil of level three with and without a data hierarchy. Using
a data hierarchy in this case only increased the number of grid points and thus the
computing time.

5.3 Fashion-MNIST

Similar to the MNIST dataset is the fashion-MNIST dataset [XRV17]. It is meant as a
drop-in replacement for the MNIST dataset. It has the identical structure and number
of samples as the MNIST dataset but does not consist of images of digits. Instead, it
consists of grayscaled pictures partitioned by ten different classes of fashion types. The
classes are t-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag and ankle
boot.

This dataset was tested starting with a resolution of size 7 × 7. The used data
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stencil level grid points train (%) test (%)

Without data hierarchy

regular sparse grid 2 99 41.20 41.63
DN 3 631 38.03 37.88

With data hierarchy

AHP 3 1417 43.04 42.78
DN and AHP 3 1865 40.56 40.47
regulr spare grid 2 141 40.10 40.27
NHP 4 3381 40.20 39.52
DN and NHP 4 5621 39.49 38.87
DN 3 869 38.31 38.09
DN 4 3221 38.40 37.49
DN and NHP 3 1349 36.99 36.62
NHP 3 901 36.48 35.97
DN on {4× 4, 2× 2, 1× 1} and NHP 3 1013 36.32 35.84

Table 5.2: Classification results on the fashion-MNIST dataset using all ten classes on
the resolution 7× 7.

hierarchy added the coarsened layers of sizes 4× 4, 2× 2 and 1× 1 to the data points.
As the results in Table 5.2 show, the fashion-MNIST dataset seems also to be having

the paradox behavior. Although, the effect seems to be not as strong as on the MNIST
dataset, as the difference between a level two and level three sparse grid without the
data hierarchy is only around 5%. The improvement of the paradox behavior could be
caused through the lower resolution of the images, as the dominance effect is highly
depending on the standard derivation of the pixels [Wae17] and as the difference
between the images becomes less on lower resolutions the effect is getting weaker.

Comparing the accuracy with and without data hierarchy, it can be concluded again
that the data hierarchy by itself does not improve the accuracy of the classification.
There is only a slight improvement of nearly 0.2%.

On this dataset, the NHP-stencil does not work as good as on the MNIST. There is a
drop of around 2% compared to the DN-stencil without data hierarchy. On the other
hand, the AHP-stencil does have very good accuracy, improving the best result without
data hierarchy nearly 1% and if compared to the same level nearly 5%.

29



5 Classification Results

stencil level grid points train (%) test (%)

Without data hierarchy

Cube-3 3 8941 31.75 31.86
Cube-2 3 4493 31.03 31.18
DN 3 3009 30.55 30.88
regular sparse grid 2 385 25.31 25.81

With data hierarchy

DN and NHP 3 4899 30.80 31.17
ColDN and ColNHP 3 5239 30.42 30.66
Cube-2 starting from 4× 4 and DN 3 4235 30.02 30.17
ColDN 3 4231 29.97 30.15
DN 3 3891 29.94 30.11
Cube-2 starting from 4× 4 and NHP 3 5115 28.72 29.09
AHP 3 4267 28.36 29.07
ColNHP 3 3559 27.59 28.43
NHP 3 2539 27.35 28.13
regular sparse grid 2 511 25.28 25.48

Table 5.3: Classification results on the CIFAR-10 dataset using all ten classes on the
resolution 8× 8.

5.4 CIFAR-10

The CIFAR-10 dataset [KNH] consists of 50,000 training and 10,000 test images. The
following labels should be assigned to the images: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck.

For the following test results, the original images have been coarsened to a resolution
of 8 × 8. The images are colored with three color channels. The data hierarchy,
generated by the proposed general approach, adds the layers with a resolution of 4× 4,
2× 2 and 1× 1 to the data points.

5.4.1 Comparison between Different Stencils

The results generated on the dataset with different stencils are shown in Table 5.3.
The CIFAR-10 dataset does not seem to suffer from the paradox behavior and a look

on its confusion matrix shows no sign of a dominant class. Therefore, as expected,
the sparse grid of level two has a lower accuracy as the sparse grid of level tree. The
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increment of the level, in fact, improves the accuracy by 5%.
Simply adding the data hierarchy does, once again, not change the accuracy signifi-

cantly. The decrement of the accuracy with data hierarchy using the same stencil as
without is less than 0.8%.

Replacing the DN-stencil without a data hierarchy with a NHP-stencil reduces the
accuracy by nearly 3%. Also, the AHP-stencil does not perform as well as on the
fashion-MNIST dataset. These decreases of accuracy by the hierarchical parent stencils
may be caused by the resolution. The resolution is of a power of two. Through this
resolution, the data hierarchy can be divided evenly by two. Thus, each child has
exactly one parent. The problem in such a case is that only a part of the neighbors of the
child pixel is contained in the parent. Thus, the basic idea to replace the DN-stencil’s
interaction terms with an implicit interaction term to the hierarchical parent is not
fulfilled and therefore the accuracy of the hierarchical parent stencils is not similar to
the one of the DN-stencil.

Also interesting is that using the color versions of the stencils does not seem to affect
the accuracy significantly. This may be caused by the low level, as the color interactions
have interaction terms up to a size of three. Thus, only with a sparse grid higher than
level four, the color versions of the stencils reach their full potential. On a sparse grid
of level three and lower tough using them seems to only increase the number of grid
points unnecessarily.

5.4.2 Different Layers

As the CIFAR-10 dataset does not have the paradox behavior, tests were made to inspect,
how the used layers in the data hierarchy are contributing to the accuracy. Each test
applied the DN-stencil and the NHP-stencil on the different layers. The results are
presented in Table 5.4. Keep in mind that the NHP-stencil uses the next available layer
even though it is not applied on it. Thus if it is applied on the layer 8× 8, the layer
4× 4 has been implicitly included.

As one can see, applying the stencils on the lowest layer results with the best
accuracy. If the higher layers are included, the accuracy is reduced a little bit. This
effect is probably caused by the coarsening algorithm used. As one can see in Figure
3.1 the coarsening reduces the coloring of the image until, in most cases at least, the
image is only grayish. Thus, almost all samples are intersecting in this dimension. This
increases the difficulty for the density estimation. This is also, probably why applying
the data hierarchy with the same stencils as without it, may decrease the accuracy, as it
can be seen especially for the sparse grids of level two in Table 5.3.
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5 Classification Results

DN and NHP on grid points train (%) test (%)

{8× 8} 3777 30.80 31.17
{4× 4} 903 28.00 28.13
{2× 2} 207 23.10 23.56
{1× 1} 33 20.37 20.99
{8× 8; 4× 4} 4673 30.65 31.06
{8× 8; 2× 2} 3977 30.44 30.72
{8× 8; 1× 1} 3803 30.78 30.97
{4× 4; 2× 2} 1103 27.38 27.46
{4× 4; 1× 1} 929 27.76 27.93
{2× 2; 1× 1} 233 22.97 23.32
{8× 8; 4× 4; 2× 2} 4873 30.44 30.84
{8× 8; 4× 4; 1× 1} 4699 30.61 31.03
{8× 8; 2× 2; 1× 1} 4003 30.42 30.59
{4× 4; 2× 2; 1× 1} 1129 27.15 27.37
{8× 8; 4× 4; 2× 2; 1× 1} 4899 30.37 30.75

Table 5.4: Classification results on the CIFAR-10 dataset in correlation with different
layers. With the NHP-stencil being applied on a certain layer, it is meant
that interaction terms between the pixels in the specific layers and the next
hierarchical parent are added. Thus, if the stencil is applied on the layer
with resolution {8× 8}, the pixels from the layer with resolution {4× 4} are
included as well.
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6 Conclusion

The data hierarchy allows the use of complex stencils on lower resolutions while
applying simple stencils on the original data and thus solves the tradeoff that must
be made between a higher or lower resolution. Since better stencils can be applied,
this allows improving the image classification accuracy. Although, simply using the
same stencils as in the case without the data hierarchy does not seem to increase the
accuracy necessarily. In such cases, some layers of the data hierarchy should be left out,
as the layers with lower resolutions tend to get the same values through the coarsening
technique and thus may decrease the accuracy. The data hierarchy also enables us to
use new stencil types, for instance, the HP-stencils.

The NHP-stencil seems to mimic the accuracy of the DN-stencil quite well and
reduces the number of grid points. It tends to work better between layers that are
not dividable by their resolution. Therefore, in such cases, the generation of the data
hierarchy should be modified a little bit to always end with undividable resolutions.

As the changes of accuracy in the classification results range from -2% to 5%, using
a data hierarchy may be useful in some cases, but only if it is good optimized for the
specific problem. Further investigation is needed, to exploit a data hierarchy reliably.
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7 Future Research

Further research could develop a wider variant of stencils that work vertically on the
data hierarchy. As already mentioned in the classification results the NHP-stencil seems
to have a decreased accuracy when the resolution is of a power of two. This is probably
because the parent pixel does not include all neighbors of the current pixel. Instead,
it only contains a corner of the neighbors, since four pixels without any overlappings
are contained in the parent, if the data hierarchy is generated through the proposed
general method. An on the data hierarchy vertical working stencil, that works similar
to the hierarchical-parents stencils, but includes interactions to the neighbors of the
hierarchical children as well may increase the accuracy.

Another interesting stencil would be one that includes all hierarchical parents into
a single interaction term. This will increase the number of grid points but it would
be interesting to see, how the accuracy could be improved. Intuitively this approach
compares the different sizes of the area of a pixel. It could better detect small details,
for instance, if a green pixel is in a white area, that itself is in a red area and so on.

Additionally, it could be interesting to investigate how the accuracy is affected
by a refinement on a sparse grid with and without data hierarchy. Maybe through
refinement steps the sparse grid can make better use of the additional data dimensions.

Last but not least, it is important to further investigate the paradox behavior on the
MNIST and fashion-MNIST dataset. As the MNIST dataset is one of the most famous
datasets for image classification, it is important to understand why the sparse grid
density estimation or the SG++ library is failing on it.

34



8 Appendix

8.1 Confusion Matrices

2 5 7

2 791 19 371
5 3 524 531
7 1 0 1288

Table 8.1: Confusion matrix for a MNIST test on a resolution 28× 28.

0 1 2 3 4 5 6 7 8 9

0 154 829 5 94 23 2 2 13 0 0
1 0 1188 3 8 18 2 0 1 0 0
2 6 258 133 33 709 33 2 24 2 1
3 2 1150 0 49 10 0 0 1 0 0
4 0 312 12 80 758 9 0 10 0 0
5 0 9 0 0 0 355 0 818 0 22
6 45 530 43 101 454 34 3 30 3 1
7 0 0 0 0 0 3 0 1180 0 9
8 5 111 11 15 35 60 0 887 34 37
9 0 13 0 0 0 38 0 461 0 717

percentage (%) 1.77 36.67 1.73 3.17 16.73 4.47 0.06 28.54 0.33 6.56

Table 8.2: Confusion matrix for a fashion-MNIST test on a resolution 7× 7.

8.2 Miscellaneous

{
"dataSource": {
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8 Appendix

0 1 2 3 4 5 6 7 8 9

0 386 55 6 16 39 7 70 18 274 134
1 44 196 3 20 54 6 227 22 88 314
2 168 39 38 31 216 5 331 59 63 82
3 89 33 13 77 111 69 380 54 40 150
4 63 13 13 26 340 14 371 45 38 76
5 62 24 9 69 144 138 293 62 54 82
6 44 22 15 26 153 22 606 46 15 81
7 53 20 7 42 183 25 240 170 40 221
8 98 78 2 21 38 21 63 11 478 215
9 44 58 3 3 34 7 120 22 108 582

percentage (%) 10.51 5.38 1.09 3.31 13.12 3.14 27.01 5.09 11.98 19,37

Table 8.3: Confusion matrix for a CIFAR-10 test on a resolution 8× 8.

"filePath": "cifar10.arff",
"hasTargets": true

},
"fitter": {

"gridConfig": {
"gridType": "modlinear",
"level": 3

},
"geometryConfig": {

"dim": [
[32,32,3],
[16,16,3],
[8,8,3],
[4,4,3],
[2,2,3],
[1,1,3]

],
"stencils": [

{
"stencil": "DirectNeighbour",
"applyOnLayers": [0]

},
{
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8 Appendix

"stencil": "NextHierarchicalParent",
"applyOnLayers": [0]

}
]

},
"regularizationConfig": {

"regularizationType": "identity",
"lambda": 0.01

},
"densityEstimationConfig": {

"densityEstimationType": "decomposition",
"matrixDecompositionType": "chol"

}
}

}

Listing 8.1: Example SG++ Pipeline Config

37



Bibliography

[BG04] H.-J. Bungartz and M. Griebel. “Sparse grids.” In: Acta Numerica 13 (2004),
pp. 147–269. issn: 0962-4929. doi: 10.1017/S0962492904000182.

[Bra00] G. Bradski. “The OpenCV Library.” In: Dr. Dobb’s Journal of Software Tools
(2000).

[Cho+15] F. Chollet et al. Keras. https://keras.io. 2015.

[KNH] A. Krizhevsky, V. Nair, and G. Hinton. “CIFAR-10 (Canadian Institute for
Advanced Research).” In: ().

[Kre16] L. Krenz. “Integration of Prior Knowledge for Regression and Classification
with Sparse Grids.” Bachelor’s thesis. Institut für Informatik, Technische
Universität München, Aug. 2016.

[Mar18] B. Marr. How Much Data Do We Create Every Day? The Mind-Blowing Stats
Everyone Should Read. 2018.

[Peh13] Peherstorfer, Benjamin. “Model Order Reduction of Parametrized Systems
with Sparse Grid Learning Techniques.” In: (2013).

[Pfl10] D. Pflüger. Spatially adaptive sparse grids for high-dimensional problems: Zugl.:
München, Techn. Univ., Diss., 2010. 1. Aufl. München: Verl. Dr. Hut, 2010.
isbn: 9783868535556.

[PPB10] D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. “Spatially adaptive sparse
grids for high-dimensional data-driven problems.” In: Journal of Complexity
26.5 (Oct. 2010). published online April 2010, pp. 508–522. issn: 0885-064X.

[vCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation.” In: Computing in Science
Engineering 13.2 (Mar. 2011), pp. 22–30. issn: 1521-9615. doi: 10.1109/MCSE.
2011.37.

[Wae17] Waegemans, Tim. “Image Classification with Geometrically Aware Sparse
Grids.” In: (2017).

[XRV17] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv: cs.LG/1708.
07747 [cs.LG].

38

https://doi.org/10.1017/S0962492904000182
https://keras.io
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/cs.LG/1708.07747

	Contents
	Introduction
	Fundamentals
	Full Grid Interpolation
	Hierarchical Basis Function
	Hierarchical Basis Function in One Dimension
	Moving to the Multi-Dimensional Case

	From Full to Sparse Grids
	Handling the Boundary
	Geometry Aware Sparse Grids
	Mathematical definition of sparse grids
	Stencils

	Spatial Adaptivity
	Classification using Sparse Grids
	Density Estimation using Sparse Grids
	Classification using Density Estimation


	Exploiting the Data Hierarchy
	Data Hierarchy
	Generating the Data Hierarchy

	Hierarchical-Parent Stencil
	All-Hierarchical-Parent
	Next-Hierarchical-Parent
	Handling of Color Information


	Implementation
	Data Preprocessing
	Generating the Data Hierarchy

	Changes to the SG++ Data-Driven Pipeline
	Hierarchical Parent Stencil

	Classification Results
	Data Augmentation
	MNIST Handwritten Digit Dataset
	Paradox Behavior and the Dominance Effect
	Interpretation for the Data Hierarchy and Hierarchical Parent

	Fashion-MNIST
	CIFAR-10
	Comparison between Different Stencils
	Different Layers


	Conclusion
	Future Research
	Appendix
	Confusion Matrices
	Miscellaneous

	Bibliography

