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Abstract

In this thesis we provide a method to detect trends and change points in the loss triangles
of basic loss portfolios in order to ensure an appropriate assessment of the claims reserve
and the premium risk and reserve risk based on these data. The adequate determination
of these key financial figures is one of the most important issues of an insurance company
and if such structural changes are disregarded that may distort the results.
We develop an approach build upon the theory of linear models and change point analysis
to solve this problem. The aim is to identify structural changes based on statistical meth-
ods to automatize the calibration of basic loss models.
First of all, we present the necessary fundamentals and the framework of the basic loss
model in the reserving and the risk context. Then, we bring these parts together and apply
the considerations to the claims data to detect structural changes. We use two commonly
used reserving models as starting point, integrate the possibility of trends and change
points and choose the best model in terms of model fit and complexity. Finally, we verify
this approach by a simulation study and show the achieved results.
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Zusammenfassung

In dieser Arbeit liefern wir eine Methode Trends und Change Points in den Schaden-
dreiecken von Basisschadenportfolios zu erkennen, um eine angemessene Bewertung der
Schadenrückstellung und des Prämien- und Reserverisikos auf der Grundlage dieser Daten
zu gewährleisten. Die adäquate Bestimmung dieser Finanzkennzahlen ist eines der wich-
tigsten Themen eines Versicherungsunternehmens und werden solche strukturellen Ver-
änderungen nicht berücksichtigt, kann das die Ergebnisse verzerren.
Wir entwickeln einen Ansatz basierend auf der Theorie von linearen Modellen und Change
Point Analyse, um dieses Problem zu lösen. Ziel ist es, strukturelle Veränderungen auf der
Grundlage statistischer Methoden zu identifizieren und damit die Kalibrierung von Basis-
schadenmodellen zu automatisieren. Zunächst werden die notwendigen Grundlagen und
der Rahmen des Basisschadenmodells im Reservierungs- und Risikokontext dargestellt.
Dann fügen wir alles zusammen und wenden die Überlegungen auf die Schadendaten an,
um strukturelle Veränderungen zu erkennen. Wir verwenden zwei gängige Reservierungs-
modelle als Ausgangspunkt, integrieren die Möglichkeit von Trends und Change Points
und wählen das beste Modell in Hinblick auf Modellanpassung und Komplexität. Ab-
schließend verifizieren wir diese Methode durch eine Simulationsstudie und zeigen die
erzielten Ergebnisse.
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Notation

Within this thesis we use the following notation and abbreviations:

E[Y ] expected value of random variable Y
Cov[Y, Z] covariance of random variables Y and Z
V ar[Y ] variance of random variable Y
Θ parameter set
dim(Θ) number of parameters in Θ
S( · ) sum of squared residuals
N (µ, σ2) normal distribution with mean µ and variance σ2

Nn(µ,Σ) multivariate normal distribution with mean vector µ
and covariance matrix Σ

L( Θ | y ) likelihood function
l( Θ | y ) log likelihood function
ψ(·) mean function
AIC(·) Akaike information criterion
BIC(·) Bayesian information criterion
PL(·) penalized likelihood

UY underwriting year
DY development year
Si,k incremental losses of UY i in DY k
Ci,k cumulative losses of UY i in DY k
vi premium of UY i
Ri reserve in underwriting year i
R total reserve
Mi,k incremental loss ratio of UY i in DY k
Fi,k development factor of UY i in DY k
mk expected loss ratio in DY k
fk expected development factor in DY k
s2k additive variance parameter in DY k
σ2
k multiplicative variance parameter in DY k
D given loss triangle
SCR Solvency Capital Requirement
CDR claims development result

mse(Ŷ ) mean squared error of prediction of random variable Y
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Chapter 1

Introduction

If you want to know the future,
look at the past.

Albert Einstein

In every field of science you should understand the past to predict the future and this
concept also plays an important role for insurance companies.
Insurance companies can be classified on the basis of the respective insurance product in
life insurance, health insurance and non-life insurance (see e.g. Chapter 16 Cipra, 2010).
But the principle is always the same, people buy an insurance policy for a fixed premium
to protect against an unknown future loss and the insurance company guarantees in re-
turn to pay the covered claim amount in case a loss happens. That’s why all insurance
companies aim to predict claims as accurately as possible. This involves on the one hand
claims of future business for pricing purposes and on the other hand of the current busi-
ness for reserving purposes. Due to the differences in insured events the used methods and
models to predict the claims differ for all classes of insurance and we focus on a non-life
insurance company in this thesis.
The claims settlement in non-life business can take many years. Consequently, the insur-
ance company is obliged to hold a claims reserve in order to be able to pay all outstanding
claims, which are not yet fully settled. This reserve is an important position on the li-
ability side on the balance sheet of the company and accordingly has significant impact
on the company’s equity (Forte et al, 2012). It is therefore subject to financial regulation
and has high practical relevance for insurance companies, which results in a wide range
of actuarial literature with various methods to calculate the reserves. For a summary of
important stochastic claims reserving models for non-life insurance we refer for example
to England and Verrall (2002) or Wüthrich and Merz (2008).
Besides the assessment of these expected future obligations, it is also required to quantify
the uncertainty of this prediction (Merz and Wüthrich, 2008). Reason for that are the
regulatory requirements for insurance companies by Solvency II. This supervisory regime
came into effect in 2016 and specifies, among other requirements, a risk-based capital the
insurers have to hold to reduce the risk of insolvency, called Solvency Capital Requirement
(SCR) (BaFin, 2016). In order to calculate the SCR insurance companies can choose be-
tween using the standard formula as a one-size-fits-all solution or an own internal model
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2 CHAPTER 1. INTRODUCTION

that is better adapted to the company. Following the Solvency II Directive (2009), the
SCR has to comprise different risk categories and one of them is the non-life underwriting
risk. This risk consists of catastrophe risk, which is arising out of losses related to extreme
or exceptional events, and premium risk and reserve risk resulting from fluctuations in
the claims settlement. Reserve risk quantifies the risk of insufficient reserves, whereas the
premium risk comprises the risk that the premium is not sufficient for the upcoming year
(Ohlsson and Lauzeningks, 2009). In this thesis, we do not consider catastrophe losses but
concentrate on reserves as well as premium and reserve risk from non-life business caused
by smaller and frequent losses, which we call basic losses.
The underlying assumption in the calibration of a basic loss model is that the future
loss development follows a similar pattern compared to past losses. The question arises,
what happens in case this assumption does not hold because of a structural change in
the claims history of the portfolio. A structural change in the loss development can either
appear as gradual change in form of a trend in data or an abrupt structural break, where
the loss pattern before and after the break is not consistent. In practice such changes are
omnipresent.
A break in a data set is called change point and the detection of change points has become
increasingly important in modern statistics due to a wide range of application fields (see
e.g. Eckley et al, 2011). Using data that is not representative for the future observations
to estimate and predict can lead to a bad performance of the prediction model.
In the claims prediction process bad predictions can cause serious consequences for the
insurance company. In case of an underestimation of the reserve or the risk capital the in-
surance company may not be able to settle the claims, the ruin probability of the company
is higher than pretended and the solvability of the insurance company is not guaranteed
anymore. On the other hand an overestimation of the reserve leads to an overestimation
in liabilities and results in an underestimation of the profit and the equity (Dimitrijevic,
2015). And an overestimation of the risk capital leads to a dispensable stressed solvency
situation.
The objective of this thesis is to provide an approach to detect structural changes in the
claims data of basic loss portfolios to ensure an adequate assessment of the claims reserve
and the premium and reserve risk. Currently, changes and breaks are qualitatively judged
based on portfolio know-how, but objective analytical methods are not yet established.
The results of this thesis provide the possibility to optimize the basic loss model calibra-
tion with the help of an automatized approach to detect structural changes.
Based on the theoretical foundation of linear regression models and change point analysis
we propose two methods to analyze the loss history for structural changes and evaluate
whether the data is disturbed by trends or change points or not. The first one serves
as statistical tool to analyze the loss pattern step by step, but to automatize the model
selection we also present a second method. The idea is to formulate the loss development
of a basic loss portfolio in form of linear regression models and extend it by integrating
structural changes. By allowing for trends and change points in the model we will get
several model candidates exhibiting different model complexity. We will choose the most
appropriate model and thus identify change points, trends and an appropriate model cal-
ibration considering the structural breaks in data history.
The change point detection results in identification of the part of the data that is rep-
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resentative for the future loss development and consequently can be used to predict the
future claims adequately.
The thesis is organized as follows. In Chapter 2 linear regression models together with two
fundamental parameter estimation methods are introduced. We start with a classical lin-
ear regression model, before we relax the assumptions of constant variances and consider
a weighted regression model. Furthermore, we present two special cases and information
criteria, which will be used later to select the optimal model. This chapter builds the
theoretical basis of the approach we will propose.
Chapter 3 begins with a short introduction to loss reserving and explains the common
representation of historical claims data in the structure of a loss triangle. We proceed
and present two commonly used loss reserving models, which provide the basis for later
extension by change points and trends. To do this we show that both models can be
expressed in form of a weighted linear regression model. In the last section of this chapter
we discuss the selection of the optimal model to predict the reserve and quantify the
prediction uncertainty, which contains the analysis of the loss history. At this point we
explain possible reasons for structural changes in the claims data to give a motivation for
the detection of changes and trends. This finalizes the framework of the basic loss model
calibration in the reserving context.
Then, in Chapter 4 we introduce the requirements of Solvency II for the premium and
reserve risk and show, how these can be linked to the previously discussed reserving model
in an internal model context. This yields the setting of the basic loss model calibration in
the SCR context.
Thereafter, we outline the theory of change point analysis in Chapter 5 starting with the
problem formulation. We present a solution to this problem together with two algorithms,
which can be used for an efficient computation. This provides a useful inspiration for the
approach we will apply to detect change points and trends. But before we develop this
approach in the next chapter we have to state the penalized likelihood method and for-
mally define the change point problem in a linear regression model.
Finally, in Chapter 6 we present the application on the observed loss data. We develop
a method to analyze the loss history development year by development year, i.e. step by
step, to investigate whether the losses show a similar loss pattern or trends and change
points appear in the loss development. After that, we propose a closely linked method for
the selection and estimation of an overall basic loss model.
In Chapter 7 we provide a simulation study to evaluate the proposed method for model se-
lection and estimation. We consider different scenarios and validate the detected change
points. Additionally, we investigate the accuracy of the predicted reserve based on the
selected model especially compared to the predicted reserve with the original reserving
method. By this procedure we can also quantify the consequences of disregarding trends
and change points in the past for the prediction of future losses.
The last chapter concludes the thesis summing up all results and provides an outlook on
further research possibilities.
All analyses are performed with the statistical software R (R Core Team, 2019).



Chapter 2

Linear regression models

As the basis for the following chapters, this chapter deals with linear regression models,
which are one of the most fundamental and commonly used tools in statistical modeling.
We first introduce and define the classical linear regression model and present two param-
eter estimation methods for this model. Afterwards in Section 2.2 we consider weighted
linear regression models as a generalization of the classical linear regression model and
discuss the parameter estimation now in this model. This model allows for error terms
with unequal variances, which is an essential condition for our later application. We follow
Fahrmeir et al (2007) and Rao and Toutenbourg (1999) to present the theory.
Based on the results we consider two simple but important special cases. These models
together with the information criteria, we will finally introduce in this chapter, form the
theoretical basis for this thesis.

2.1 The classical linear regression model

The aim of a regression model is to explain a random variable Y from the influence of k
variables x1, . . . , xk and a random error ε in the following form:

Y = f(x1, . . . , xk) + ε. (2.1)

The random variable Y is usually called response or dependent variable and the known
variables x1, . . . , xk are denoted as covariates, independent variables or predictors. While
f(x1, . . . , xk) describes the systematic component, the unobservable variable ε is a random
disturbance used to explain the difference between the observations and the model. When
function f is linear, equation (2.1) is called a linear regression model and the dependent
variable Y can be expressed as

Y = β0 + β1x1 + . . . βkxk + ε

for some unknown regression parameters β0, . . . , βk. A set of n observations yi with known
covariates xi,1, . . . , xi,k can be represented as

yi = β0 + β1xi,1 + . . . βkxi,k + εi, i = 1, . . . , n,

4



2.1. THE CLASSICAL LINEAR REGRESSION MODEL 5

or in matrix notation as

y = Xβ + ε,

where y = (y1, . . . , yn)T defines the vector of observations, β = (β0, . . . , βk)
T the vector

of regression parameters, ε = (ε1, . . . , εn)T the vector of random errors and design matrix
X is defined as

X =


1 x1,1 . . . x1,k
1 x2,1 . . . x2,k
...

...
. . .

...
1 xn,1 . . . xn,k

 .

In the classical linear regression model the random errors εi are assumed to be independent
and normally distributed with

E[εi] = 0 and V ar[εi] = σ2 for all i = 1, . . . , n.

The assumption of constant variances σ2 for all error terms is called homoscedasticity.
Summing up, the assumptions of the classical linear regression model yield the following
definition.

Definition 2.1. (Classical linear regression model)
The classical linear regression model explains the random response Yi as linear function
of the covariates

Yi = β0 + β1xi,1 + . . . βkxi,k + εi, i = 1, . . . , n,

with independent and normally distributed random variables

εi ∼ N (0, σ2).

The expectation of Yi is by linearity given by

E[Yi] = β0 + β1xi,1 + . . . βkxi,k, i = 1, . . . , n.

The classical linear regression model can be written in matrix notation as

Y = Xβ + ε with ε ∼ Nn(0, σ2In),

where Y = (Y, . . . , Yn)T is the vector of random variables, In denotes the identity matrix
of order n and Nn denotes the multivariate normal distribution of a n-dimensional random
vector. For more details to the univariate and multivariate normal distribution, the reader
is referred to Fahrmeir et al (2007, Anhang B). Therefore, it holds

Y ∼ Nn(Xβ, σ2In).

We consider two methods to estimate the unknown regression parameters based on obser-
vations y of Y under the assumptions of the classical linear regression model, the ordinary
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least squares estimation and the maximum likelihood estimation.

Ordinary least squares estimation

The ordinary least squares estimate β̂ is defined as the vector that minimizes the sum of
squared residuals

S(β) =
n∑
i=1

(yi − ŷi)2 = (y −Xβ)T (y −Xβ) , (2.2)

whereby ŷi denote the fitted values

ŷi = β0 + β1xi,1 + . . .+ βkxi,k, i = 1, . . . , n.

Hence, this method does not require a distribution assumption. Differentiating (2.2) by
β and equating to zero yields

∂S(β)

∂β
= 2XTXβ − 2XTy = 0 ⇔ XTXβ = XTy.

The equations on the right-hand side are known as normal equation and if X is of full
rank, then we obtain

β̂ =
(
XTX

)−1
XTy (2.3)

as unique solution of the normal equations.

Maximum likelihood estimation

The maximum likelihood method is based on the likelihood function L(β, σ2 | y) de-
fined by

L
(
β, σ2 | y

)
=

n∏
i=1

f
(
yi | β, σ2

)
for a model with parameters β and σ2, a density function f(· | β, σ2) and i.i.d. observations
y from f. So obviously the maximum likelihood method needs a distribution assumption
in contrast to the least squares method. The objective is to estimate the parameters
by maximizing the likelihood function. By reason that the logarithm is an increasing
function, instead of differentiating the likelihood function one can consider the logarithm
of the likelihood function

l(β, σ2 | y) = logL(β, σ2 | y),

called log likelihood. In a classical linear model the random variables Yi are assumed to
be normally distributed and the probability density function of a normally distributed
random variable Y ∼ N (µ, σ2) is

f
(
y | µ, σ2

)
=

1√
2πσ2

exp

{
−(y − µ)2

2σ2

}
.
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Therefore, for model given in Definition 2.1 the likelihood function is specified by

L(β, σ2 | y) =
n∏
i=1

f
(
yi | β, σ2

)
=

n∏
i=1

1√
2πσ2

exp

{
−(yi − (β0 + β1xi,1 + . . .+ βkxi,k))

2

2σ2

}

=
1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Xβ)T (y −Xβ)

}
and the corresponding log likelihood is

l(β, σ2 | y) =
n∑
i=1

log (f(yi | β, σ)) = −n
2

log(2πσ2)− 1

2σ2
(y −Xβ)T (y −Xβ) .

The maximum likelihood estimates (MLE) of β and σ2 are derived by equating the first
derivatives of the log likelihood to zero:

(i)
∂l (β, σ2 | y)

∂β
= 0 ⇔ 1

2σ2
2XT (y −Xβ) = 0

⇔ β =
(
XTX

)−1
XTy

(ii)
∂l (β, σ2 | y)

∂σ2
= 0 ⇔ − n

2σ2
+

1

2(σ2)2
(y −Xβ)T (y −Xβ) = 0

⇔ σ2 =
1

n
(y −Xβ)T (y −Xβ)

Note that equating the first derivative of the log likelihood by β to zero yields again the
normal equations. It follows that under the assumptions of the classical linear regression
model, as given in Definition 2.1, the maximum likelihood estimation and the least squares
estimation yield the same result for the regression parameters β.

2.2 The weighted linear regression model

We relax the assumptions of the classical linear model and consider the linear regression
model

Y = Xβw + ε with E[ε] = 0 and Cov[ε] = σ2
wW

for a known positive definite matrix W .
The expected value remains unchanged compared to the classical linear regression model.
We denote the expected value as of now by a linear function ψ( · ) with

ψ(i) := E[Yi] = βw,0 + βw,1xi,1 + . . . βw,kxi,k, i = 1, . . . , n.

Unlike before, at the moment we do not require a normal error distribution and moreover,
in this model the condition Cov[ε] = σ2

wIn is replaced by the assumption Cov[ε] = σ2
wW .
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This means we allow additionally for error terms that are not independent and ho-
moscedastic.
In the case the error variables have still not equal variances, but are at least uncorrelated,
ε is called heteroscedastic. For these random errors it holds

E[εiεj] =

{
σ2
i for i = j,

0 for i 6= j.

This can be modeled by defining the covariance matrix W as a diagonal matrix

W = diag(w1, . . . , wn).

Then it follows

V ar[εi] = σ2
i = σ2

wwi, i = 1, . . . , n,

and we get the model

Y = Xβw + ε with E[ε] = 0 and Cov[ε] = σ2
wdiag(w1, . . . , wn) (2.4)

for known weights w1, . . . , wn. These weights define how much variability for each obser-
vation is allowed and we will see that weights affect the influence of each observation on
the parameter estimation. As outlined in the previous section, for least squares estimation
no distribution assumption is needed, so we can estimate the regression parameters βw
by a least squares approach.

Weighted least squares estimation

To find the least squares estimator βw, a simple transformation can be used. Multiplica-
tion of W−1/2 = diag(1/

√
w1, . . . , 1/

√
wn) to the left of model (2.4) yields the transformed

model equation

W−1/2Y = W−1/2Xβw +W−1/2ε.

This can be rewritten in the form of a classical linear regression model

Y ∗ = X∗βw + ε∗ with E[ε∗] = 0 and Cov[ε∗] = σ2
wIn,

where Y ∗ = W−1/2Y , X∗ = W−1/2X and ε∗ = W−1/2ε. The least squares method for a
classical linear regression model was outlined in previous section. Hence, from (2.3), we
get the least squares estimate

β̂w =
(
X∗TX∗

)−1
X∗Ty∗

=
(
XTW−1/2W−1/2X

)−1
XTW−1/2W−1/2y

=
(
XTW−1X

)−1
XTW−1y,

where y∗ = W−1/2y. This estimate β̂w is minimizing the weighted sum of squared residuals

Sw(βw) =
n∑
i=1

1

wi
(yi − ŷi)2 = (y −Xβw)T W−1 (y −Xβw) . (2.5)
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Maximum likelihood estimation

For maximum likelihood estimation we use the model defined in (2.4), but now we again
have to specify an error distribution and consider the following model.

Definition 2.2. (Weighted linear regression model)
The linear regression model

Yi = βw,0 + βw,1xi,1 + . . . βw,kxi,k + εi with εi ∼ N (0, σ2
wwi), i = 1, . . . , n,

with known weights w1, . . . , wn is called weighted linear regression model.

Under the assumptions in a weighted linear model it holds

Y ∼ Nn
(
Xβw, σ

2
wW

)
,

therefore, the likelihood function is given by

Lw(βw, σ
2
w | y) =

1√
(2πσ2

w)n det(W )
exp

{
− 1

2σ2
w

(y −Xβw)T W−1 (y −Xβw)

}
and the corresponding log likelihood is

lw(βw, σ
2
w | y) = −n

2
log(2πσ2

w)− 1

2

n∑
i=1

log(wi)−
1

2σ2
w

(y −Xβw)T W−1 (y −Xβw) .

Differentiating the log likelihood by βw and σ2
w and equating the derivatives to zero yields

(i)
∂lw (βw, σ

2
w | y)

∂βw
= 0 ⇔ 1

2σ2
w

2XTW−1 (y −Xβw) = 0

⇔ βw =
(
XTW−1X

)−1
XTW−1y

(ii)
∂lw (βw, σ

2
w | y)

∂σ2
w

= 0 ⇔ − n

2σ2
w

+
1

2(σ2
w)2

(y −Xβ)T W−1 (y −Xβ) = 0

⇔ σ2
w =

1

n
(y −Xβw)T W−1 (y −Xβw)

The maximum likelihood estimate β̂w equals again the least squares estimate in the
weighted linear regression model under the normal distribution assumption. The maxi-
mum likelihood estimates are given by

β̂w =
(
XTW−1X

)−1
XTW−1y (2.6)

σ̂2
w =

1

n

(
y −Xβ̂w

)T
W−1

(
y −Xβ̂w

)
=

1

n

n∑
i=1

1

wi
(yi − ψ̂(i))2, (2.7)
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where ψ̂(i) denote the estimated expected values

ψ̂(i) = β̂w,0 + β̂w,1xi,1 + . . . β̂w,kxi,k, i = 1, . . . , n.

Since these values maximize by definition the likelihood function, it follows that the
maximum value of the log likelihood is given by

lw(β̂w, σ̂
2
w | y) = −n

2
log(2πσ̂2

w)− 1

2

n∑
i=1

log(wi)−
1

2σ̂2
w

(
y −Xβ̂w

)T
W−1

(
y −Xβ̂w

)
= −n

2
log(2πσ̂2

w)− 1

2

n∑
i=1

log(wi)−
n

2
. (2.8)

To conclude, maximum likelihood estimation can be applied to derive parameters for a
model that fit best to the data. The corresponding maximum value of the log likelihood
is therefore an important statistical value, which will be used several times in this thesis.

2.3 Simple weighted regression models

In this section we introduce two models, which we will need later, and use the results from
the previous section to derive explicit formulas for the maximum likelihood estimates.

Definition 2.3 (Intercept-only model). A regression model defined by

Yi = a+ εi with εi ∼ N (0, σ2
wwi), i = 1, . . . , n,

with a single constant regression parameter a for all i = 1, . . . , n is called intercept-only
model.

The intercept-only model describes response variables, which all have equal means and
differ only because of random disturbance. It has only a single parameter and no prediction
variable. Hence, using (2.6) and (2.7), the maximum likelihood estimates are given by

â =
(
XTW−1X

)−1
XTW−1y =

(
n∑
i=1

1

wi

)−1 n∑
i=1

yi
wi

=

∑n
i=1

yi
wi∑n

i=1
1
wi

, (2.9)

σ̂2
w =

1

n

n∑
i=1

1

wi
(yi − â)2. (2.10)

Definition 2.4 (Simple linear regression model). A linear regression model

Yi = a+ b · xi + εi with εi ∼ N (0, σ2
wwi), i = 1, . . . , n,

with a single predictor variable xi for all i = 1, . . . , n is called simple linear regression
model.
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A weighted linear regression model with a single covariate explains the relationship by a
line with a y-intercept a and a slope b. The maximum likelihood estimates for this model
are given by

â =
x2w · yw − xw · yw
1w · x2w − (xw)2

, and b̂ =
−xw · yw + 1w · xyw

1w · x2w − (xw)2
, (2.11)

σ̂2
w =

1

n

n∑
i=1

1

wi
(yi − µ̂i)2 with µ̂i = â+ b̂xi, (2.12)

with weighted sums

xw =
n∑
i=1

xi
wi
, yw =

n∑
i=1

yi
wi
, xyw =

n∑
i=1

xiyi
wi

,

1w =
n∑
i=1

1

wi
and x2w =

n∑
i=1

x2i
wi
.

Proof. There is a single prediction variable xi for all i = 1, . . . , n, hence, the simple linear
model is represented by design matrix and regression parameters

X =


1 x1
1 x2
...

...
1 xn

 and βw =

(
a
b

)
.

By (2.6) it holds(
â, b̂
)T

= β̂w =
(
XTW−1X

)−1
XTW−1y =

=


n∑
i=1

1

wi

n∑
i=1

xi
wi

n∑
i=1

xi
wi

n∑
i=1

x2i
wi


−1

n∑
i=1

yi
wi

n∑
i=1

xiyi
wi



=
1

n∑
i=1

1

wi
·

n∑
i=1

x2i
wi
−

(
n∑
i=1

xi
wi

)2


n∑
i=1

x2i
wi

−
n∑
i=1

xi
wi

−
n∑
i=1

xi
wi

n∑
i=1

1

wi




n∑
i=1

yi
wi

n∑
i=1

xiyi
wi



and multiplication yields the result above. The maximum likelihood estimate for σ2
w follows

immediately by (2.7).

Both described models assume that a single model is valid for all data points, where the
single model is in the form

Yi = ψ(i) + εi with εi ∼ N (0, σ2
wwi), i = 1, . . . , n.
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In practice this is not adequate if the data indicates a partition in more than one interval
with different behavior. In Chapter 5 we will consider models, which allow for changes in
the behavior of the response.

2.4 Information criteria AIC and BIC

Given a set of data and a set of candidate models the next step is to select the best model.
In order to do this, it is obviously important to consider at first the goodness-of-fit, but
also the complexity of a model. Two commonly used criteria for model selection based
on a set of observations, which balance model fit and penalize the complexity of a model,
are the Akaike information criterion and the Bayesian information criterion.
In this section we will define these criteria and present the process of model selection us-
ing information criteria. To do this, we follow Fabozzi et al (2014) and Ding et al (2018).
Then, we apply it to the weighted regression models.

The Akaike information criterion was proposed by Akaike (1973, 1974) as criterion for
model selection and is defined for a set of data y = {y1, . . . , yn} as follows.

Definition 2.5. The Akaike information criterion (AIC) for a model M with parameter
set Θ is

AIC(M) := −2 logL(Θ̂ | y) + 2p,

where logL(Θ̂) is the maximized value of the log likelihood with parameters Θ̂ that maxi-
mize the likelihood function and p the numbers of parameters of model M.

The first component measures the model fit, where by the negative sign a high likelihood
leads to a low AIC. In order to avoid overfitting it is not enough to use the likelihood
alone for model selection. If we add more parameters to our model, we will always get a
higher maximum likelihood, but not necessarily a better model because of the increase
in complexity. That is what the second term of the AIC is for, it penalizes additional
parameters. Hence, a low AIC refers to a high maximum likelihood and a low number of
parameters, that is why the model with the lowest AIC is considered as the best model
among the candidate models.
The Bayesian information criterion (E. Schwarz, 1978), also known as the Schwarz infor-
mation criterion, is similar to the Akaike information criterion, but it has a harder penalty
depending on the sample size.

Definition 2.6. The Bayesian information criterion (BIC) for a modelM with parameter
set Θ is

BIC(M) := −2 logL(Θ̂ | y) + p log(n),

where logL(Θ̂) is the maximum log likelihood with parameters Θ̂, p the numbers of pa-
rameters of model M and n the number of observations.
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Again the first term of the BIC represents the model fit and the second term is a penalty
for model complexity. Therefore, consistently models with lower BIC are preferred and
the model selection process using information criteria consists of three steps:

Step 1: Fit the observed data to each candidate model M by estimation of the model
parameters Θ.

Step 2: Calculate the information criterion for each fitted model.

Step 3: Compare the candidate models via information criteria and select the model with
lowest.

In case of a weighted linear regression modelMw, as stated in Definition 2.2, the parameter
set Θ is given by

Θ = {βw,0, βw,1, . . . , βw,k, σ2
w} = {βw, σ2

w}

and we get the information criteria

AIC (Mw) = −2 logLw(Θ̂ | y) + 2 · dim(Θ) (2.13)

BIC (Mw) = −2 logLw(Θ̂ | y) + dim(Θ) · log(n). (2.14)

By using (2.8), the first term of both criteria is given by

−2 logLw(Θ̂ | y) = n log(2πσ̂2
w) + n+

n∑
i=1

log(wi) (2.15)

and we have the maximum likelihood estimate for σ2
w

σ̂2
w =

1

n

n∑
i=1

1

wi
(yi − ψ̂(i))2

for the fitted values ψ̂(i), for all i = 1, . . . , n, based on maximum likelihood estimates β̂w
given by (2.6). In Chapter 6 we will discuss how to use this model selection approach with
regard to loss data. But for this purpose we continue with the required foundations and
deal with loss reserving in the next chapter.



Chapter 3

Loss reserving

We start this chapter with a brief introduction to loss reserving and specify the problem,
which includes the commonly used formulation of the loss history as a triangular array.
Thereafter, we consider two loss reserving models, which provide estimates for the claims
reserve based on the given loss triangle and we will show that these estimators are unbi-
ased. To present these fundamental concepts we follow Mack (2002) and Wüthrich and
Merz (2008) and for the definition of the loss development by triangles we follow Schmidt
(2006).
Using the outlined theory of linear regression models in the previous chapter, we ex-
plain how the introduced reserving models are linked to linear regression and compare
the presented estimated model parameters to the results from a weighted least squares
and maximum likelihood estimation. Finally, we discuss how to select the best model to
predict the reserve for the given loss history.

3.1 Introduction to loss reserving

We consider a portfolio of non-life insurance policies. If a covered event happens in a policy,
the process of the claim settlement can extend over many years. At first, it can take time
until the insured discovers and reports the claim, for instance asbestos claims or faults in
construction can manifest themselves many years after they occurred. After reporting, it
can still take up to several years until the full claim amount can be determined, examples
for this are claims in case of bodily injury with long period of treatment; or the settlement
can be delayed due to legal proceedings.
That is why the insurance company has to build a reserve for outstanding liabilities from
not yet settled claims, called claims reserve. For all reported but not yet fully settled losses
a so-called case reserve is assessed by a claim handler based on his/her experience and
adjusted until the loss is closed. Until the claims are settled future payments are expected,
and it is possible that the case reserve is not sufficient. So on the one hand a reserve for
incurred (and reported) but not enough reserved claims, denoted IBNeR reserve, has to be
build in addition to the case reserves and on the other hand a claims reserve for incurred
but not yet reported (IBNyR) claims is required. We denote the IBNeR claims reserve
and IBNyR claims reserve together as IBNR claims reserve and consequently the total

14



3.2. LOSS TRIANGLES 15

claims reserve of a portfolio is defined as

total claims reserve = case reserves + IBNR reserve.

Mathematically speaking, the total claims reserve of a portfolio is the estimated sum of
expected future payments based on the available information at that time (Institute of
Actuaries, 1997).
Whereas case reserves are determined on an individual claims basis, the IBNR reserve is
set on the aggregated basis of a portfolio. For an adequate estimation of the IBNR reserve
actuarial models and the history of loss payments are required. Instead of paid losses, it
is also possible to use incurred losses as data basis, where incurred losses denote the sum
of paid losses and case reserves.
The used loss history in the actuarial models takes account of the development of losses
over time. This development can be described in incremental or in cumulative form.
Incremental data shows the initial loss amount in the first year and then the successive
increments of each calendar year. Cumulative data reports the total summed loss amount
in all years also starting with the initial amount in the first year. Note that in general
paid loss increments are positive and cumulative paid losses are monotone increasing, but
for incurred losses negative increments are possible. This can be explained by the yearly
adjustment of the case reserves, if the first indication was too high, it is reasonable to
reduce the case reserve and that leads to a negative incremental case reserve.
The following models can be applied to both types of data and in theory both types
should lead to the same expected ultimate loss in the end, but in practice there is a gap
between the result of both projections (Quarg and Mack, 2004).

3.2 Loss triangles

We model a portfolio of outstanding claims by a set of random variables describing the
incremental basic losses. Due to the long development of claims over time, older losses
covered under policies that were written several years ago exhibit more data history than
very recent losses covered under more recent policies. This leads to the typical triangular
representation of the loss history, called loss development triangle or run-off triangle, where
the rows of the triangle refer to the origin years and the columns, denoted as development
years, represent the development over time. Commonly used as origin year is the policy
year under which they are covered, denoted as underwriting year, or the calendar year
the claim occurred, called accident year. (Institute of Actuaries, 1997)
In the following, we group the losses by underwriting years, which yields the following
definition.

Definition 3.1. The random variables Si,k, i, k = 1, . . . , n denote the total incremental
losses of underwriting year i in development year k.

This means each row in the loss triangle displays the claims arising from policies written
in the same underwriting year (UY) and each column shows the development year (DY),
which specifies the period in years until the respective claims are fully settled starting
from the associated underwriting year. Furthermore, losses Si,k on a diagonal represent
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the same calendar year i+k−1.
For the most recent underwriting year, denoted by n, only the losses occurred and re-
ported during the first development year have been observed, since this corresponds to
the most recent calendar year n. Therefore, for the previous underwriting year the losses
of development year one and two are known, etc., while for the oldest available underwrit-
ing year, denoted by underwriting year 1, the whole loss development is known. Future
loss development will arise in the next diagonals until all losses are finally settled. Thus,
the current loss triangle will gradually turn into a rectangle. Consequently, the full loss
development is split into two triangles, the upper triangle with observed losses

{Si,k | i+ k − 1 ≤ n}

and the lower triangle with future losses

{Si,k | i+ k − 1 > n}.

This is illustrated in Table 1. The observations in the upper triangle are available at the

(a) Observed upper triangle

UY development year k

i 1 2 . . . n− 1 n

1 S1,1 S1,2 . . . S1,n−1 S1,n

2 S2,1 S2,2 . . . S2,n−1
...

...
...

...

n−1 Sn−1,1 Sn−1,2 S2,n−1

n Sn,1

(b) Unobserved lower triangle

UY development year k

i 1 2 . . . n− 1 n

1 S,n−1 S,n−1 S,n−1 S,n−1 S,n−1

2 S2,n

...
...

...

n−1 . . . Sn−1,n−1 Sn−1,n

n Sn,2 . . . Sn,n−1 Sn,n

Table 1: Upper and lower loss development triangle with incremental losses

end of calendar year n, while the lower triangle needs to be predicted. The future losses
define the loss reserve the insurance company needs to hold for the outstanding liabilities.

Definition 3.2. The loss reserve for underwriting year i at the end of calendar year n is
given by

Ri =
n∑

k=n+2−i

Si,k, i = 2, . . . , n, (3.1)

and R1 = 0. The total reserve R for the outstanding claims at the end of calendar year n
is defined as the sum of reserves for these underwriting years, i.e.

R =
n∑
i=2

Ri.
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In case the incremental losses Si,k represent incurred losses this total reserve defines actu-
ally the IBNR reserve of the portfolio and to get the total claims reserve we have to add
the case reserves from the observed incurred losses. These case reserves are reported but
even though they are part of the future payments. The predicted reserve based on paid
losses Si,k already defines the total claims reserve of the portfolio.
Instead of incremental losses a loss triangle can also display cumulative losses.

Definition 3.3. The random variables Ci,k, i, k = 1, . . . , n, denote the cumulative loss
amounts of underwriting years i after k development years. It holds

Ci,k =
k∑
j=1

Si,j, i, k = 1, . . . , n.

The other way around it is obviously that

Si,k = Ci,k − Ci,k−1 for all i, k = 1, . . . , n,

where Ci,0 := 0. Therefore, the reserve for underwriting year i, specified in Definition 3.2,
can also be expressed in form of

Ri = Ci,n − Ci,n+1−i, i = 2, . . . , n, (3.2)

where the losses Ci,n+1−i, i = 1, . . . , n, define the latest known cumulative loss amounts
for the underwriting years, which are represented by the last loss diagonal of the observed
upper triangle

D := {Ci,k | i+ k − 1 ≤ n}.

The cumulative losses Ci,n describe the ultimate loss amount for underwriting years i =
1, . . . , n. It follows that the loss reserve can be predicted either by estimating the lower
incremental or cumulative loss triangle. Prediction of the lower triangle yields a projection
of the loss development as illustrated for the cumulative loss development in Table 2.
Therefore, Definition 3.2 and equation (3.2) yield the following corollary.

Corollary 3.4. We denote the predicted loss reserve based on D for underwriting year
i = 2, . . . , n by R̂i and it can be estimated by

R̂i =
n∑

k=n+2−i

Ŝi,k,

where Ŝi,k, i+ k − 1 > n, denote the predicted incremental losses, or equivalently by

R̂i = Ĉi,n − Ci,n+1−i,

where Ĉi,n, i = 2, . . . , n, denote the predicted ultimate cumulative losses.

So we aim to predict the total claims reserves R by predicting the future losses for all
underwriting years i = 1, . . . , n given the loss history D.
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UY development year k

i 1 2 . . . n− 1 n

1 C1,1 C1,2 . . . C1,n−1 C1,n

2 C2,1 C2,2 . . . C2,n−1 Ĉ2,n

...
...

... b
... b b

... b
...

n−1 Cn−1,1 Cn−1,2 . . . Ĉn−1,n−1 Ĉn−1,n

n Cn,1 Ĉn,2 . . . Ĉn,n−1 Ĉn,n

Table 2: Cumulative loss development with observed upper triangle and predicted lower
triangle

3.3 Loss reserving methods

In this section we consider two stochastic loss reserving methods. The objective of a loss
reserving method is in general to predict the loss reserves and there are various different
statistical approaches for this estimation. One of the oldest and most popular methods
is the chain ladder method. The original chain ladder method was a simple but accurate
algorithmic technique to estimate the reserves, but it provides only a point estimator and
gives no indication of the uncertainty in the predictions. So Mack (1993) developed a
stochastic model underlying the chain ladder algorithm, which allows quantifying also the
uncertainties in the prediction.
The stochastic chain ladder model is a distribution-free model and is based on the assump-
tion that the loss development shows for all underwriting years a similar multiplicative
behavior from development year to development year. That is why we call it the multi-
plicative model in the following.
Additionally, we consider another distribution-free stochastic reserving model, which as-
sumes instead of a similar multiplicative loss pattern an additive loss pattern with similar
ratios per development year, so we call it the additive model.
Based on both models of Mack (2002) we aim to predict the loss reserve, so after defining
the models we will derive model parameters to predict the future development.

The additive model

All loss reserving methods are based on the assumption that the development of the
losses of every underwriting year follows a common development pattern. One simple way
to model similar loss development is to assume that the underwriting years are indepen-
dent and their behavior is only affected by different volume measures.
We use the known premiums vi of all underwriting years i = 1, . . . , n as volume measures.
The volume adjusted random variable

Si,k

vi
, i, k = 1, . . . , n, is denoted by Mi,k and defines

the incremental loss ratio of underwriting year i in development year k. The additive
model focuses on loss ratios as central parameters to describe the loss development and
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the following assumptions.

Assumption 3.1 (Assumptions of the additive model).

(A1) All incremental losses are independent random variables, i.e. the incremental losses
of different underwriting years i, j = 1, . . . , n

{Si,1, ..., Si,n}, {Sj,1, ..., Sj,n}, i 6= j

are independent and the increments of different development years k, l = 1, . . . , n

{S1,k, ..., Sn,k}, {S1,l, ..., Sn,l}, k 6= l

are independent.

(A2) There exist finite expected loss ratios m1, . . . ,mn such that

E

[
Si,k
vi

]
= E [Mi,k] = mk

holds for all i = 1, . . . , n, k = 1, . . . , n.

(A3) There exist constant variance parameters s21, . . . , s
2
n such that

V ar

[
Si,k
vi

]
= V ar[Mi,k] =

s2k
vi

holds for all i, k = 1, . . . , n.

Under the model assumptions (A2) and (A3) we can determine the first two moments of
the incremental losses Si,k by

E [Si,k] = vi ·mk for all i, k = 1 . . . , n (3.3)

and

V ar [Si,k] = s2k · vi for all i, k = 1 . . . , n. (3.4)

Theorem 3.5. Under the Assumptions 3.1 unbiased estimators for the mean loss ratios
m1, . . . ,mn are given by

m̂k =

∑n+1−k
i=1 Si,k∑n+1−k
i=1 vi

, k = 1, . . . , n.

Proof. The expected value of the estimator m̂k is by definition of m̂k and independence
of the underwriting years given by

E [m̂k] = E

[∑n+1−k
i=1 Si,k∑n+1−k
i=1 vi

]
(A1)
=

∑n+1−k
i=1 E [Si,k]∑n+1−k

i=1 vi
.

Using (3.3) for E [Si,k] yields

E [m̂k] =

∑n+1−k
i=1 vi ·mk∑n+1−k

i=1 vi
= mk,

which completes the proof of the theorem.
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In the previous proof and in the following we frequently use the characteristics of the
expected value and the variance. For more details see e.g. Klenke (2013).

Theorem 3.6. Under the Assumptions 3.1 the variances of the estimators m̂k are given
by

V ar [m̂k] =
s2k∑n+1−k

i=1 vi
, k = 1, . . . , n− 1.

Proof. By independence of underwriting years and Theorem 3.5 it holds

V ar[m̂k] = V ar

[∑n+1−k
i=1 Si,k∑n+1−k
i=1 vi

]
(A1)
=

∑n+1−k
i=1 V ar[Si,k](∑n+1−k

i=1 vi

)2 .

Hence, from (3.4) we obtain

V ar[m̂k] =

∑n+1−k
i=1 vi · s2k(∑n+1−k
i=1 vi

)2 =
s2k∑n+1−k

i=1 vi

and the theorem follows.

Theorem 3.7. Under the model assumptions of the additive method unbiased estimators
for the variance parameters s21, . . . , s

2
n−1 are given by

ŝ2k =
1

n− k

n+1−k∑
i=1

vi

(
Si,k
vi
− m̂k

)2

, k = 1, . . . , n− 1.

Proof. To show that ŝ2k is unbiased we take the expectation and get by independence
assumption (A1)

E[ŝ2k] =
1

n− k

n+1−k∑
i=1

vi · E

[(
Si,k
vi
− m̂k

)2
]
. (3.5)

At first, we consider only

E

[(
Si,k
vi
− m̂k

)2
]

= E

[(
Si,k
vi

)2
]

︸ ︷︷ ︸
V ar

[
Si,k
vi

]
+ E

[
Si,k
vi

]2
−2E

[
Si,k
vi
· m̂k

]
+ E

[
m̂2
k

]︸ ︷︷ ︸
V ar [m̂k] + E[m̂k]

2

.

Hence, using Theorem 3.6 and (A3), we obtain

E

[(
Si,k
vi
− m̂k

)2
]

=
s2k
vi

+m2
k − 2E

[
Si,k
vi
· m̂k

]
+

s2k∑n+1−k
j=1 vj

+m2
k

= s2k

(
1

vi
+

1∑n+1−k
j=1 vj

)
+ 2m2

k − 2E

[
Si,k
vi
· m̂k

]
. (3.6)
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Next we consider only the last term on the right-hand side of (3.6) and we get

E

[
Si,k
vi
· m̂k

]
= E

[
Si,k
vi
·
∑n+1−k

j=1 Sj,k∑n+1−k
j=1 vj

]
=

∑n+1−k
j=1 E [Si,k · Sj,k]
vi ·
∑n+1−k

j=1 vj
.

Since by independence of underwriting years it holds

E[Si,k · Sj,k] =

{
E[Si,k] · E[Sj,k], i 6= j,
E[S2

i,k], else

and it is

E[S2
i,k] = V ar[Si,k] + E[Si,k]

2,

we get ∑n+1−k
j=1 E [Si,k · Sj,k]
vi ·
∑n+1−k

j=1 vj
=

V ar[Si,k] +
∑n+1−k

j=1 E [Si,k] · E[Sj,k]

vi ·
∑n+1−k

j=1 vj
=

=
vi · s2k + vi ·m2

k ·
∑n+1−k

j=1 vj

vi ·
∑n+1−k

j=1 vj
=

s2k∑n+1−k
j=1 vj

+m2
k,

where the second step follows by (3.3) and (3.4). Hence, we have

E

[
Si,k
vi
· m̂k

]
=

s2k∑n+1−k
j=1 vj

+m2
k.

Putting this back in equation (3.6) gives

E

[(
Si,k
vi
− m̂k

)2
]

= s2k

(
1

vi
+

1∑n+1−k
j=1 vj

)
+ 2m2

k − 2

(
s2k∑n+1−k

j=1 vj
+m2

k

)

= s2k

(
1

vi
− 1∑n+1−k

j=1 vj

)
.

Thus, it holds by (3.5)

E[ŝ2k] =
1

n− k

n+1−k∑
i=1

vi · s2k

(
1

vi
− 1∑n+1−k

j=1 vj

)
=

=
s2k

n− k

(
n+1−k∑
i=1

1−
∑n+1−k

i=1 vi∑n+1−k
j=1 vj

)
= s2k,

since the remaining terms cancel out, which completes the proof.

As a result of Theorem 3.5 an unbiased estimator for E[Si,k] is given by

Ŝi,k = vi · m̂k for all k ≥ n+ 2− i. (3.7)
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Furthermore, conditional on the loss history D = {Ci,k | i + k + 1 ≤ n} we get for
underwriting years i = 2, . . . , n

E [Ci,n | D] = Ci,n−i+1 + E [Si,n−i+2 + . . .+ Si,n | D] = Ci,n−i+1 +
n∑

k=n−i+2

E [Si,k]

= Ci,n−i+1 + vi ·
n∑

k=n−i+2

mk. (3.8)

The unbiased estimator for this is given by

Ĉi,n = Ci,n−i+1 + vi ·
n∑

k=n−i+2

m̂k. (3.9)

Using Corollary 3.4 yields finally the predicted reserve in the additive model

R̂i = vi ·
n∑

k=n−i+2

m̂k, i = 2, . . . , n. (3.10)

The multiplicative model

The underlying assumption of the multiplicative method is that the underwriting years
show a similar development pattern based on development factors. Let Fi,k denote the

individual development factor
Ci,k

Ci,k−1
of underwriting year i = 1, . . . , n from development

year k − 1 to development year k, then the basic assumption is that the development
factors are similar for all underwriting years.
The development factors define how the cumulative losses are linked and the principle fo-
cus of the multiplicative model lies on them. To be more precise, the model assumptions
of the multiplicative method are the following:

Assumption 3.2 (Assumptions of the multiplicative model).

(M1) All cumulative losses of different underwriting years are independent, i.e. for i, j =
1, . . . , n

{Ci,1, ..., Ci,n}, {Cj,1, ..., Cj,n}, i 6= j

are independent sets of random variables.

(M2) There exist finite development factors f2, . . . , fn such that

E

[
Ci,k
Ci,k−1

∣∣∣ Ci,1, . . . Ci,k−1] = E [Fi,k | Ci,1, . . . Ci,k−1] = fk

holds for all i = 1, . . . , n, k = 2, . . . , n.
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(M3) There exist constant variance parameters σ2
2, . . . , σ

2
n such that

V ar

[
Ci,k
Ci,k−1

∣∣∣ Ci,1, . . . Ci,k−1] = V ar [Fi,k | Ci,1, . . . , Ci,k−1] =
σ2
k

Ci,k−1

holds for all i = 2, . . . , n, k = 2, . . . , n.

The assumptions (M2) and (M3) lead to

E [Ci,k | Ci,1, . . . Ci,k−1] = Ci,k−1 · fk for all i = 1 . . . , n, k = 2, . . . , n. (3.11)

and

V ar [Ci,k | Ci,1, . . . Ci,k−1] = Ci,k−1 · σ2
k for all i = 1 . . . , n, k = 2, . . . , n. (3.12)

Theorem 3.8. Under the Assumptions 3.2 of the multiplicative model it holds that

f̂k =

∑n+1−k
i=1 Ci,k∑n+1−k
i=1 Ci,k−1

are unbiased and uncorrelated estimators for development factor fk = E[Fi,k | Ci,1, . . . , Ci,k−1]
for all k = 2, . . . , n.

Proof. The estimator f̂k is unbiased as E[f̂k] = E
[
E[f̂k | Ci,1, . . . Ci,k−1]

]
and

E[f̂k | Ci,1, . . . Ci,k−1] = E

[ ∑n+1−k
i=1 Ci,k∑n+1−k
i=1 Ci,k−1

∣∣∣ Ci,1, . . . Ci,k−1]

=

∑n+1−k
i=1 E [Ci,k | Ci,1, . . . Ci,k−1]∑n+1−k

i=1 Ci,k−1

by independence assumption (M1) and measurability of the previous cumulative losses
Ci,k−1. Hence, from (3.11), we get

E[f̂k | Ci,1, . . . Ci,k−1] =

∑n+1−k
i=1 Ci,k−1 · fk∑n+1−k
i=1 Ci,k−1

= fk,

which shows that the estimators are unbiased. It remains to show, that they are uncorre-
lated. For this we define

Bk = {Ci,j | j ≤ k, i+ j − 1 ≤ n}, 1 ≤ k ≤ n.

Then it holds for all j < k by unbiasedness and measurability

E
[
f̂j · f̂k

]
= E

[
E
[
f̂j · f̂k | Bk

]]
= E

[
f̂j · E

[
f̂k | Bk

]]
= E

[
f̂j

]
· f̂k = f̂j · f̂k,

which completes the proof of the theorem.
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Theorem 3.9. The variance of estimator f̂k in the multiplicative model is given by

V ar
[
f̂k | Ci,1, . . . Ci,k−1

]
=

σ2
k∑n+1−k

i=1 Ci,k−1
, k = 2, . . . , n− 1.

Proof. Again using independence of the underwriting years and (3.12) yields immediately

V ar
[
f̂k | Ci,1, . . . Ci,k−1

]
(M1)
=

∑n+1−k
i=1 V ar [Ci,k | Ci,1, . . . Ci,k−1](∑n+1−k

i=1 Ci,k−1

)2 =
σ2
k∑n+1−k

i=1 Ci,k−1
.

Theorem 3.10. Under the Assumptions 3.2 it holds

σ̂2
k =

1

n− k

n+1−k∑
i=1

Ci,k−1

(
Ci,k
Ci,k−1

− f̂k
)2

is an unbiased estimator for variance parameter σ2
k = V ar[Fi,k | Ci,1, . . . , Ci,k−1] · Ci,k−1

for all k = 2, . . . , n− 1.

Proof. The proof for unbiasedness of the variance parameter proceeds similar as described
for the additive method. It holds by the tower property

E
[
σ̂2
k

]
= E

[
E
[
σ̂2
k | Ci,1, . . . Ci,k−1

]]
and by independence assumption (M1)

E
[
σ̂2
k | Ci,1, . . . Ci,k−1

]
=

1

n− k

n−k+1∑
i=1

Ci,k−1 · E

[(
Ci,k
Ci,k−1

− f̂k
)2 ∣∣∣ Ci,1, . . . Ci,k−1] .(3.13)

We consider only

E

[(
Ci,k
Ci,k−1

− f̂k
)2 ∣∣∣ Ci,1, . . . Ci,k−1] = E

[(
Ci,k
Ci,k−1

)2 ∣∣∣ Ci,1, . . . Ci,k−1]+ (3.14)

+ E
[
f̂ 2
k

∣∣∣ Ci,1, . . . Ci,k−1]− 2 · E
[
Ci,k
Ci,k−1

· f̂k
∣∣∣ Ci,1, . . . Ci,k−1] .

The first term of (3.14) is given by

E

[(
Ci,k
Ci,k−1

)2 ∣∣∣ Ci,1, . . . Ci,k−1] =

= V ar

[
Ci,k
Ci,k−1

∣∣∣ Ci,1, . . . Ci,k−1]+ E

[
Ci,k
Ci,k−1

∣∣∣ Ci,1, . . . Ci,k−1]2 =
σ2
k

Ci,k−1
+ f 2

k ,
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where the second step follows by model assumptions (M2) and (M3). The last term of
(3.14) is by Theorems 3.10 and 3.9

E
[
f̂ 2
k | Ci,1, . . . Ci,k−1

]
= V ar

[
f̂k | Ci,1, . . . Ci,k−1

]
+ E

[
f̂k | Ci,1, . . . Ci,k−1

]2
=

σ2
k∑n+1−k

i=1 Ci,k−1
+ f 2

k .

Next, we calculate the remaining part on the right-hand side of the above equality (3.14)

E

[
Ci,k
Ci,k−1

· f̂k
∣∣∣ Ci,1, . . . Ci,k−1] = E

[
Ci,k
Ci,k−1

·
∑n+1−k

j=1 Cj,k∑n+1−k
j=1 Cj,k−1

∣∣∣ Ci,1, . . . Ci,k−1]

=

∑n+1−k
j=1 E [Ci,k · Cj,k | Ci,1, . . . Ci,k−1]

Ci,k−1 ·
∑n+1−k

j=1 Cj,k−1
, (3.15)

where we used linearity of the conditional expectation and measurability of Ci,k−1. Again
by independence of underwriting years it holds

E [Ci,k · Cj,k | Ci,1, . . . Ci,k−1] =

{
E [Ci,k | Ci,1, . . . Ci,k−1] · E [Cj,k | Ci,1, . . . Ci,k−1] , i 6= j,
E
[
C2
i,k | Ci,1, . . . Ci,k−1

]
, else.

Together with

E
[
C2
i,k | Ci,1, . . . Ci,k−1

]
= V ar [Ci,k | Ci,1, . . . Ci,k−1] + E [Ci,k | Ci,1, . . . Ci,k−1]2 ,

this yields for (3.15)

V ar [Ci,k | Ci,1, . . . Ci,k−1] +
∑n+1−k

j=1 E [Ci,k | Ci,1, . . . Ci,k−1]E [Cj,k | Ci,1, . . . Ci,k−1]
Ci,k−1 ·

∑n+1−k
j=1 Cj,k−1

=

=
Ci,k−1σ

2
k +

∑n+1−k
j=1 Ci,k−1fk · Cj,k−1fk

Ci,k−1 ·
∑n+1−k

j=1 Cj,k−1
=

σ2
k∑n+1−k

j=1 Cj,k−1
+ f 2

k ,

where in the second step we used (3.12) and (3.11) once again. Putting the three parts of
(3.14) together gives

E

[(
Ci,k
Ci,k−1

− f̂k
)2 ∣∣∣ Ci,1, . . . Ci,k−1] = .

=
σ2
k

Ci,k−1
+ f 2

k − 2

(
σ2
k∑n+1−k

j=1 Cj,k−1
+ f 2

k

)
+

σ2
k∑n+1−k

i=1 Ci,k−1
+ f 2

k

= σ2
k

(
1

Ci,k−1
− 1∑n+1−k

j=1 Cj,k−1

)
.

Using this for equation (3.13) results in

E
[
σ̂2
k | Ci,1, . . . Ci,k−1

]
= σ2

k,

which proves the claim.
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Now with the result of Theorem 3.10 we get

Ĉi,k = Ci,k−1 · f̂k for all k ≥ n− i+ 1 (3.16)

as unbiased estimator for E [Ci,k | Ci,1, . . . Ci,k−1].
Furthermore, conditional on the loss history D = {Ci,k | 1 ≤ i + k − 1 ≤ n} it holds for
underwriting years i = 2, . . . , n

E [Ci,n | D] = E [E [Ci,n | Ci,1, . . . Ci,n−1] | D] = E [Ci,n−1 · fn | D] =

= E [Ci,n−1 | D] · fn = . . . = [Ci,n−i+1 | D] · fn−i+2 · . . . · fn =

= Ci,n−i+1 ·
n∏

k=n−i+2

fk. (3.17)

Therefore, unbiased estimators for the ultimate cumulative losses are

Ĉi,n = Ci,n−i+1 ·
n∏

k=n−i+2

f̂k, i = 2, . . . , n, (3.18)

and finally by Corollary 3.4 the predicted reserve in the multiplicative model based on
loss triangle D is given by

R̂i = Ci,n−i+1 ·

(
n∏

k=n−i+2

f̂k − 1

)
, i = 2, . . . , n. (3.19)

3.4 Reserving models as weighted linear regression

models

In this section we show that the additive and multiplicative reserving models can be
interpreted as weighted linear regression models. For this purpose we use the results
derived in Chapter 2. There we introduced weighted linear regression models by some
linear relationship

Yi = βw,0 + βw,1xi,1 + . . . βw,kxi,k + εi, i = 1, . . . , n,

and error terms εi with

E[εi] = 0 and V ar[εi] = σ2
wwi

for known weights w1, . . . , wn.
We want to describe the additive and multiplicative reserving model in such a form and
apply the parameter estimation methods discussed in the previous chapter to derive pa-
rameter estimators. Then, we compare the estimators to the unbiased estimators given in
the previous Section 3.3.
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Additive regression model

For a fixed development year k ∈ {1, . . . , n} by Assumptions 3.1 of the additive model
the loss ratios Mi,k of the upper triangle can be formulated as

Mi,k = mk + εi,k, i = 1, . . . , n− k + 1, (3.20)

with some independent random variables εi,k so that

E[εi] = 0 and V ar[εi] =
s2k
vi
.

Note that assumption E[εi] = 0 implies E[Mi,k] = mk, which corresponds to (A2),

V ar[εi,k] =
s2k
vi

gives (A3) and independence is required for (A1). This model fits to the
linear regression model defined in (2.4) for the loss ratios as response and known weights
given by wi = 1/vi with known premiums v1, . . . , vn. From Section 2.2 we know that
we can estimate mk by a weighted least squares estimation using (2.5). Minimizing the
weighted sum of squared residuals

Sw(mk) =
n−k+1∑
i=1

vi (Mi,k −mk)
2

leads

∂Sw(mk)

∂mk

= 0 ⇔
n−k+1∑
i=1

2vi (Mi,k −mk) (−1) = 0

⇔ mk =

∑n−k+1
i=1 viMi,k∑n−k+1
i=1 vi

=

∑n−k+1
i=1 Si,k∑n−k+1
i=1 vi

.

It follows that the weighted least squares estimators correspond to the unbiased estimators
m̂k given in Theorem 3.5. Under the assumption of normally distributed errors we can also
state the maximum likelihood estimators. By formula (2.9) for an intercept-only model,
we have

m̂k =

∑n−k+1
i=1 viMi,k∑n−k+1
i=1 vi

,

which also leads to the parameter estimators in the presented reserving model of Mack
(2002). This is not surprising as we already showed in Section 2.2 that maximum likelihood
estimation yields the same result as least squares estimation for normally distributed
variables. The maximum likelihood estimator for the variance is by formula (2.10) given
by

ŝ2k =
1

n− k + 1

n−k+1∑
i=1

vi(Mi,k − m̂k)
2.
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Multiplicative regression model

Similarly, we can define the multiplicative model for a fixed development year k ∈
{2, . . . , n} in the form

Fi,k = fk + εi,k, i = 1, . . . , n− k + 1, (3.21)

again with independent random errors εi,k, which satisfy

E[εi] = 0 and V ar[εi] =
σ2
k

Ci,k−1

for given previous losses Ci,k−1. This can be derived from the model assumptions (M1)-
(M3) in the multiplicative model. Hence, also the multiplicative model can be connected
to weighted regression by using weights wi = 1/Ci,k−1 for all i = 1, . . . , n − k + 1 and
development factors as response. Minimizing the weighted sum of squared residuals

Sw(fk) =
n−k+1∑
i=1

Ci,k−1 (Fi,k − fk)2

yields again the unbiased estimators of Mack’s model

f̂k =

∑n−k+1
i=1 Ci,k∑n−k+1
i=1 Ci,k−1

as defined in Theorem 3.10. We know that also the maximum likelihood estimation results
in the same estimators if normally distributed errors are assumed, which is easily confirmed
by applying formula (2.9) again. Formula (2.10) again gives the corresponding maximum
likelihood estimator for the variance parameter

σ̂2
k =

1

n− k + 1

n−k+1∑
i=1

Ci,k−1(Fi,k − f̂k)2.

In conclusion, we showed that both the additive and the multiplicative model can be
expressed in forms of a linear regression with heteroscadastic error terms. That means we
can estimate parameters based on the least squares approach and under the assumption
of a normal distribution also based on maximum likelihood estimation.
We will use this result later and additionally extend the regression model in case an
intercept-only model is not sufficient to characterize the loss development. A motivation
for this extension is given in the next section, but the approach will be presented later.
Before we can gain further insight on this matter in Chapter 6, we finalize this chapter
with some specifications of the loss model, which is required as basis for the next chapter.



3.5. MODEL SELECTION 29

3.5 Model Selection

We introduced two different models to describe the loss reserve and both are stochastic
models, which allows to quantify the uncertainties. But before uncertainties can be in-
vestigated in the next chapter, one model for the portfolio of basic losses has to be fixed
based on that the parameters are estimated and the reserve is predicted. This choice con-
tains the remaining model decisions we outline in this section. We start with the choice
between the additive and multiplicative model as underlying reserving method.

Selection of the reserving model

Table 3 shows a comparison of both models and it gives an overview on the estimated pa-
rameters in both models. Both introduced reserving models of Mack (2002) are stochastic,
distribution-free models and assume a common development pattern for all underwriting
years. To choose one of both models we have to check the model assumptions for the
observed loss triangle D.
A first indication which model fits better can be examined by analyzing the observed
loss development by using two different plots. The first plot helps to assess if the loss

+

+

+

+

+

+
+

+
+ +

2 4 6 8 10

20
40

60
80

10
0

Loss ratio plot

development years

cu
m

ul
at

iv
e 

lo
ss

 r
at

io
s 

in
 %

+

+

+

+

+

+
+

+ +

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+

UY 1
UY 2
UY 3
UY 4
UY 5
UY 6
UY 7
UY 8
UY 9
UY 10

+

+

+

+

+
+ + + + +

2 4 6 8 10

Logarithmized loss plot

development years

lo
ga

rit
hm

iz
ed

 c
um

ul
at

iv
e 

lo
ss

es

+

+

+

+
+

+ + + +

+

+

+

+
+

+ + +

+

+

+
+

+ + +

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+

UY 1
UY 2
UY 3
UY 4
UY 5
UY 6
UY 7
UY 8
UY 9
UY 10

Figure 1: Plots of cumulative loss ratios Ci,k/vi (left) and logarithmized cumulative losses
log(Ci,k) (right) per underwriting year i against the development years k = 1, . . . , n−i+1.

pattern is compatible with the additive model and the second one associated with the
multiplicative model. To validate the assumption that all underwriting years have similar
incremental loss ratios per development year it is helpful to plot the loss ratios versus the
development years but in cumulative form. This means we plot the losses in cumulative
form Ci,k (instead of incremental losses) divided by the premiums vi per underwriting
year i = 1, . . . , n for all observed development years k = 1, . . . , n− i+ 1. The cumulative
loss ratios Ci,k/vi correspond to the sum of incremental loss ratios Mi,1 + . . .+Mi,k up to
development year k. Parallel lines in this plot indicate similar additive loss development.
The multiplicative assumption can be assessed via the plot of the logarithmized cumu-
lative losses log(Ci,k) for all observed losses Ci,k against the development years k. Again
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Additive Multiplicative

Data

Used data: incremental losses & premiums cumulative losses

Central object: loss ratios development factors

Assumptions

Independence: underwriting years &
development years

underwriting years

Mean: E [Si,k] = vi ·mk E [Ci,k | Ci,1, . . . Ci,k−1] = Ci,k−1 · fk

Variance: V ar [Si,k] = s2k · vi
V ar [Ci,k | Ci,1, . . . Ci,k−1] =

Ci,k−1 · σ2
k

Unbiased
estimated
parameters

Mean: m̂k =

∑n−k+1
i=1 Si,k∑n−k+1
i=1 vi

f̂k =

∑n−k+1
i=1 Ci,k∑n−k+1
i=1 Ci,k−1

Variance:
ŝ2k =

1

n− k

n+1−k∑
i=1

vi

(
Si,k
vi
− m̂k

)2

σ̂2
k =

1

n− k

n+1−k∑
i=1

Ci,k−1

(
Ci,k
Ci,k−1

− f̂k
)2

Prediction

Losses: Ŝi,k = vi · m̂k Ĉi,k = Ci,k−1 · f̂k

Ultimate: Ĉi,n =
Ci,n+1−i + vi

∑n
k=n+2−i m̂k

Ĉi,n = Ci,n+1−i ·
∏n

k=n+2−i f̂k

Reserve: R̂i = vi
∑n

k=n+2−i m̂k R̂i = Ci,n+1−i ·
(∏n

k=n+2−i f̂k − 1
)

Table 3: Comparison between additive and multiplicative reserving model

parallelism indicates development according to the model assumptions. These two plots
are shown in Figure 1 for an exemplary triangle D with 10 underwriting years.
In both plots the triangular form of the data is recognizable as each line represents the
observed development of one underwriting year. These plots give an impression of the
total model fit in the additive and the multiplicative model. In the plots in Figure 1 there
is no clear indication that the assumptions are violated neither in the additive nor the
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multiplicative model, since the development is at least roughly parallel.
In order to make sure that the assumptions hold for each development year k = 1, . . . , n
the incremental loss ratios and development factors of each development year should be
considered in a separate plot. To check whether the observed loss ratios are similar per
development year k or not, i.e. to evaluate assumption

E

[
Si,k
vi

]
= E [Mi,k] = mk, i = 1, . . . , n− k + 1,

we plot the incremental loss ratios Mi,k of this development year versus the underwriting
years i. For the multiplicative model we plot the development factors Fi,k versus the
underwriting years i to verify the assumption

E

[
Ci,k
Ci,k−1

∣∣∣ Ci,1, . . . Ci,k−1] = E [Fi,k | Ci,1, . . . Ci,k−1] = fk, i = 1, . . . , n− k + 1.

For the exemplary loss triangle used for Figure 1 these plots are shown in Figure 2. In the

(a) Loss ratios per DYs (b) Development factors per DYs

Figure 2: Plots of incremental loss ratios Mi,k (left) and development factors Fi,k (right)
versus the underwriting years i for each development year k.

optimal case, all loss ratios and development factors are approximately at the same level
per development year, which indicates equal mean values. Otherwise, these plots can hint
violations in the model assumptions. The question arises of how this can be objectively
evaluated and how to deal with it in case model violations are identified. Consequently,
we will consider the analysis of the loss history in the next paragraph of this section more
detailed.
Furthermore, the assumptions of independence in both models has to be verified. For this
we refer to Mack (2002), who elaborates in Section 3.2.7 of his book a method to check
this condition.
Sometimes the additive method fits better the early loss development until the major part
of the losses developed and for later development years the loss development is better de-
scribed by a multiplicative model. Thus, it can be also reasonable to use a mixture of both
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methods. This is possible since the modeling of the loss development proceeds column by
column. Hence, we can assume the additive model for the first development years until
some development year, called transition point t, 1 ≤ t ≤ n, which specifies for all columns
up to and including this point the additive model and afterwards a multiplicative model.
The first development year is always modeled additive, since the multiplicative method
provides parameters as of the second development year. For loss reserving purposes this
is sufficient, but modeling the uncertainty requires additionally the consideration of the
first loss of the upcoming underwriting year.

Analysis of the loss history

As discussed in this chapter, the aim of a loss reserving model is to use the observed
loss development to predict the future losses. This is based on the assumption that older
years are similar to newer years in terms of the assumptions concluded in Table 3. If this
is violated, then the models can produce unreliable results. It follows the importance to
make sure that the data is not disturbed by structural changes in the loss development.
Reasons for changes in the loss pattern can be changes in claims management or a change
in legislation that impacts the loss amounts. Such a change in a calendar year could affect
all losses in this calendar year and all subsequent losses, which divides the triangle into
two parts with divergent loss patterns. It is also possible that instead of a calendar year
effect, a break in behavior before and after an underwriting year is visible in the loss
triangle. This can happen when the composition of the portfolio changes.
Another scenario that can cause insufficient estimates is data affected by trends. If the
data of a development year, which is assumed to have a constant mean, shows a signif-
icant increasing or decreasing behavior from older to newer underwriting years instead,
this should not be neglected. For example, the ongoing improvement in safety in cars can
lead to fewer car accidents, or (to stay with the example of a car insurance) a portfolio
can change for the worse due to a gradual increase in young drivers over time.
These are just a few of the possible examples that can produce structural changes and
violate the model assumptions, what makes clear why the loss history has to be analyzed
to investigate whether disturbances are apparent in the data. If not, then we ensured the
model assumption is not violated and the original reserving models introduced in this
chapter are usable without any adjustment. But otherwise, in the presence of trends or
change points or even both, the model assumption of equal means per development year
does not hold.
In practice, the loss history is analyzed and often a starting year different to the first
available underwriting year is determined. This year is used for the calibration of the
model and the data before that year is discarded. The idea is to avoid the influence of the
very old years with varying pattern and to use only the part of data that is assumed to
be representative for the future development. This choice is usually based on the expert
judgment of an actuary and at least change points can be handled by this procedure. But
no analytical method has been established yet, which objectively detects changes and se-
lect the optimal starting point. Furthermore, this adjustment does not solve the issue with
trends. In most commonly used standard methods there is no possibility to take trends
into account. In Chapter 5 we will introduce a statistical method that detects changes
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in data and thereafter in Chapter 6 we present how to apply these ideas to our models
to investigate whether any changes are contained and extend the approach by trends in
order to propose a common solution for both problems. There we will discuss in detail
how to adjust the model to get appropriate results.
But before we can predict the reserve and quantify its uncertainty in the next chapter, we
have to examine if all losses are settled after n DYs as previously assumed or if we have
to extend or can reduce the number of material development years.

Assessment of the ultimate development year

Sometimes the loss development shows a slightly different form than introduced in Table
1. Given the loss history D with the loss development of the past n underwriting years,
we assumed that all losses fully settled after n development years with the typical lower
triangle to predict.
In practice it is possible that the number of development years until all losses of an un-
derwriting year are fully settled, called ultimate development year and denoted by N , is
not equal to the given number of available underwriting years n. This is shown in Figure
3. Case (a) holds, if a long history of underwriting years is given and these years indicate

(a) Shorter loss development (b) Longer loss development

Figure 3: Ultimate development year for a short loss development (a) vs. for a long loss
development (b)

all losses are already settled before development year n after N < n years and there is no
further development after development year N . In this case we do not expect losses after
N development years for newer underwriting years, too, so we can neglect the develop-
ment years N + 1, . . . , n. The outstanding losses we have to predict are then given by a
smaller triangle, as pictured by the light blue part in the figure.
If in contrast even for older underwriting years still outstanding losses are expected, since
the loss development is still persisting, it is not enough to consider only the loss settlement
until development year n. We have to extend the prediction of future losses until fully
developed after development year N > n, as shown in case (b) of the figure.
To choose an appropriate ultimate development year, it is useful to plot the observed
cumulative losses Ci,k versus the development years k = 1, . . . , n as displayed in Figure
4. It shows two different examples with obviously different observed loss development.
While the left plot indicates a short loss development, since the cumulative losses do not
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Figure 4: Cumulative losses Ci,k against development years k for all underwriting years
with short (left) vs. long (right) settlement durations

further increase after a few development years, the right one shows a portfolio with long
duration of claims settlement. In the right example we still have to expect losses after 30
development years, so we have to assume ultimate development year N > n. On the other
hand for Example 1, shown in the left plot of Figure 4, it is obviously that 30 development
years are more than enough to model the claims until fully settled.
Under these aspects, we have to adjust the definition of the reserve in case N 6= n. By
definition of the ultimate development year it follows that the ultimate losses are given
by Ci,N and the unknown ultimate losses can be estimated by

Ĉi,N = Ci,n+1−i + vi

N∑
i=n−i+2

m̂k for all i = 1, . . . , n with n− i+ 2 ≤ N

in the additive model or

Ĉi,N = Ci,n+1−i ·
N∏

i=n−i+2

f̂k for all i = 1, . . . , n with n− i+ 2 ≤ N

in the multiplicative model. Given the loss history D the unknown reserve for an under-
writing year i is predicted by

Ri = Ĉi,N − Ci,n−i+1 for all i = 1, . . . , n with n− i+ 2 ≤ N.

Note that the parameter estimation is limited to the size n of the given loss triangle D.
For N ≤ n we can estimate all parameters based on D, but for N > n an extrapolation of
parameters is required. The extrapolation depends on the selected loss reserving model.
In the additive model we assume the parameters mn+1, . . . ,mN decrease exponentially to
zero. This is estimated by a linear regression of ln(mj) on j

ln(mj) = α + β · j + εj, j = 1, . . . , N.
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The available n estimated parameters m̂1, . . . , m̂n are used to estimate the regression
parameters a and b. Then the parameters mn+1, . . . ,mN are estimated by

m̂l = exp
{
â+ b̂ · l

}
, l = n+ 1, . . . , N.

Similarly, in the multiplicative model we assume the parameters fn+1, . . . , fN decrease
exponentially to one. Using a linear regression of ln(fj − 1) on j

ln(fj − 1) = γ + δ · j + εj, j = 2, . . . , N,

yields analogously to above estimated tail parameters

f̂l = 1 + exp
{
γ̂ + δ̂ · l

}
, l = n+ 1, . . . , N,

for some estimated regression parameters γ and δ. Analogously we can extrapolate the
variance parameters sk and σk by a linear regression of ln(sk) or ln(σk) on k, since it is
assumed that these parameters also decrease exponentially to zero.
In conclusion, our basic loss model is a stochastic model defined by the given loss history
D of a portfolio of basic losses, the selected reserving model (if necessary adjusted because
of disturbance in data) and the ultimate development year. Based on this we can estimate
model parameters in order to predict the outstanding claims and therefore the required
reserve. In the next chapter we are interested in assessing the uncertainty in our prediction.



Chapter 4

Quantification of the prediction
uncertainty

The modeling process for each basic loss portfolio is divided into two parts, first the
selection of the loss model and the prediction of the reserve and then the quantification of
the risk that future losses develop differently than predicted. The specification of the loss
model and prediction of the reserve has already been described in the previous chapter,
hence, we want to consider the uncertainty now. Given a loss model the comprised risk
can be assigned to two sources of uncertainty, the reserve risk and the premium risk.
At first, the formal specifications by Solvency II are introduced, which yield that the
risk can be assessed by quantifying the prediction uncertainty of the claims development
result that we will define in Section 4.2. One possible way to measure the uncertainty in
the claims development result of basic losses within an internal model is to construct an
empirical distribution for the claims development using the simulation approach presented
at the end of this chapter. Before we describe this method, the first two moments required
for the simulation are derived.

4.1 Solvency II specifications

In Article 101 of the Solvency II Directive (2009) the risk-based capital insurance com-
panies are required to hold is defined as:

The Solvency Capital Requirement shall be calibrated so as to ensure that all
quantifiable risks to which an insurance or reinsurance undertaking is exposed
are taken into account. It shall cover existing business, as well as the new
business expected to be written over the following 12 months. With respect
to existing business, it shall cover only unexpected losses.
It shall correspond to the Value-at-Risk of the basic own funds of an insurance
or reinsurance undertaking subject to a confidence level of 99,5 % over a one-
year period. [Article 101.3]

This means, according to Solvency II, insurance companies need to quantify the risk
that the next calendar year develops differently as expected. The level is set in order to

36
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ensure that any unexpected losses over a time horizon of one year can be covered with a
probability of 99.5%, which limits the ruin probability to less than 0.5%. As mentioned
in the introduction, part of the risk we have to quantify are the one-year premium and
reserve risk. Within the framework of Solvency II in the Technical Specifications for the
third Quantitative Impact Studies QIS3 (CEIOPS, 2007) the reserve risk is described as
follows:

Reserve risk stems from two sources: on the one hand, the absolute level of
the claims provisions may be mis-estimated. On the other hand, because of
the stochastic nature of future claims payouts, the actual claims will fluctuate
around their statistical mean value. [I.3.229]

While the reserve risk refers to the provisions for existing business, the premium risk
corresponds to the uncertainty caused by future claims from new business.

Premium risk is understood to relate to future claims arising during and after
the period until the time horizon for the solvency assessment. The risk is
that expenses plus the volume of losses (incurred and to be incurred) for
these claims (comprising both amounts paid during the period and provisions
made at its end) is higher than the premiums received (or if allowance is
made elsewhere for the expected profits or losses on the business, that the
profitability will be less than expected). [I.3.226]

The premiums and expenses are assumed to be nonrandom, so we consider simplifying
the uncertainty in the losses of the next underwriting year.
Overall, we see the calendar year at risk on the next diagonal in the loss development
triangle.

4.2 The claims development result

Quantifying the risk in unexpected development in claims from existing business and next
year’s business, is about measuring the uncertainty in the possible change in reserve over
one calendar year. Following Wüthrich et al (2009), we denote the difference between
the predicted reserves based on the information available in one year and the predicted
reserve now as claims development result. Reason for this change are the upcoming losses
during the next calendar year, which means that the reserves will have to be recalculated
in one year based on the additional information at that point in time.
We assume that all losses are fully settled after N development years and in the interests of
simplicity we assume that we have given the loss history of the last N underwriting years,
which leads to typical loss development structure. To quantify the uncertainty connected
in the re-estimation of the reserves within one accounting year (N,N+1], we differentiate
between the information available now at time t = 0 using the loss history of the last N
underwriting years and one year later at time t = 1. Let

D(t=0) = {Ci,k | i+ k − 1 ≤ N}
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denote the claims data available at time t = 0 and

D(t=1) = {Ci,k | i+ k − 1 ≤ N + 1}

denote the available information one year later. After one year a new loss diagonal is
available as illustrated in Table 4.

UY development year k

i 1 . . . N
1

2 D(t=0) R2

3 R3

... R(t=0)
...

N RN

N + 1

UY development year k

i 1 . . . N
1
2

3 D(t=1) R3

...
...

N R(t=1) RN

N + 1 RN+1

Table 4: Loss development triangle at time t = 0 (left) vs. one year later at time t = 1
(right)

Accordingly, the loss reserve for underwriting year i for future claims at time t = 0 is
given by

R
(t=0)
i = Ci,N − Ci,N−i+1, i = 2, . . . , N, (4.1)

and at time t = 1 by

R
(t=1)
i = Ci,N − Ci,N−i+2, i = 3, . . . , N + 1. (4.2)

Note that the loss reserve of the first underwriting year is zero both at time t = 0 and
t = 1, since it is assumed that all losses are fully developed after N development years.
Therefore, also the loss reserve for the second underwriting year is zero at time t = 1
because of the additional loss diagonal, but now for the next underwriting year N + 1 a
loss reserve has to be considered.

Definition 4.1. The true one-year claims development result (CDR) for underwriting
year i = 2, . . . , N is given by

CDR
(t=1)
i = E

[
R

(t=0)
i | D(t=0)

]
−
(
Si,N−i+2 + E

[
R

(t=1)
i | D(t=1)

])
,

where Si,N−i+2 are the incremental loss amounts between time t = 0 and t = 1, i.e. in
calendar year N + 1. For underwriting year N + 1 the true one-year CDR is defined as

CDR
(t=1)
N+1 = −

(
SN+1,1 + E

[
R

(t=1)
N+1 | D

(t=1)
])
.

By the formal characterizations in Section 4.1 the reserve risk refers to the aggregate
claims development result

N∑
i=2

CDR
(t=1)
i
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and the premium risk to

CDR
(t=1)
N+1 .

An equivalent formulation for the CDR is by (4.1) and (4.2)

CDR
(t=1)
i = E

[
Ci,N | D(t=0)

]
− E

[
Ci,N | D(t=1)

]
for i = 2, . . . , N

and

CDR
(t=1)
N+1 = −E

[
CN+1,N | D(t=1)

]
.

The true CDR is not observable, since the true model parameters, m1, . . . ,mN or respec-
tively f2, . . . , fN , are not known. In order to predict the true CDR we therefore have to
estimate E

[
Ci,N | D(t=0)

]
and E

[
Ci,N | D(t=1)

]
by some Ĉ

(t=0)
i,N and Ĉ

(t=1)
i,N . Similarly, let

R̂
(t=0)
i and R̂

(t=1)
i denote estimates for the expected loss reserve at time t = 0 and t = 1.

Then, the following holds:

Definition 4.2. The observable one-year CDR for underwriting year i = 2, . . . , N is
given by

ˆCDR
(t=1)

i = R̂
(t=0)
i −

(
Si,N−i+2 + R̂

(t=1)
i

)
= Ĉ

(t=0)
i,N − Ĉ(t=1)

i,N

and for underwriting year N + 1 by

ˆCDR
(t=1)

i = −
(
SN+1,1 + R̂

(t=1)
N+1

)
= −Ĉ(t=1)

N+1,N .

To present this theory and in the naming of this claims development result we still follow
Wüthrich et al (2009), but notice that this quantity is actual still not observable, but
estimated.
In Section 3.3 we presented unbiased estimators for the cumulative ultimate losses and
the reserves in the additive and multiplicative reserving model, which we can use now
to estimate the CDR. At time t = 0 the loss triangle D(t=0) is given, so the true model
parameters m1, . . . ,mN and f2, . . . , fN at time t = 0 can be estimated as outlined in
Section 3.3 for D = D(t=0) and n = N . The estimated parameters at time t = 0 are
denoted m̂

(t=0)
1 , . . . , m̂

(t=0)
N and f̂

(t=0)
2 , . . . , f̂

(t=0)
N , respectively. Given the loss triangleD(t=0)

the expected cumulative loss after N development years for underwriting year i = 2, . . . , N
depending on the specified reserving method is by model assumptions (A2) and (M2)

E
[
Ci,N | D(t=0)

]
= Ci,N−i+1 + vi ·

N∑
k=N−i+2

mk

if the additive method is chosen or for the multiplicative method by

E
[
Ci,N | D(t=0)

]
= Ci,N−i+1 ·

N∏
k=N−i+2

fk.



40 CHAPTER 4. QUANTIFICATION OF THE PREDICTION UNCERTAINTY

In Section 3.5 we mentioned the possibility that the loss model has a transition point t from
an additive to multiplicative loss model. In this case the expected ultimate cumulative
loss conditional on D(t=0) is for all underwriting years i with N − i + 1 ≥ t equal to the
pure multiplicative case, since the additive method is used only until t, and otherwise

E
[
Ci,N | D(t=0)

]
=

(
Ci,N−i+1 + vi ·

t∑
k=N−i+2

mk

)
·

N∏
k=t+1

fk, i = N − t+ 2, . . . , N.

This can be estimated by using the estimated parameters m̂
(t=0)
1 , . . . , m̂

(t=0)
N and

f̂
(t=0)
2 , . . . , f̂

(t=0)
N in all three outlined cases. The predicted cumulative loss at time t = 0 is

denoted by Ĉ
(t=0)
i,N . The respective loss reserve at time t = 0 is, using (4.1), estimated by

R̂
(t=0)
i = Ĉ

(t=0)
i,N − Ci,N+i−i i = 2, . . . , N.

To predict Ci,N at time t = 1 one diagonal of information (c.f. Table 4) is missing, so
we apply a simulation approach to simulate this loss diagonal with mean and variance
corresponding to Mack’s reserving models.
To simulate the future claims Ci,N−i+2 we use the expected value and variability at time
t = 0. Using (3.3) or (3.11), depending on the selected model, the expected losses of the
upcoming diagonal at time t = 0 are given by

E
[
Ci,N−i+2 | D(t=0)

]
= Ci,N−i+1 + vi ·mN−i+2

for an additive modeled diagonal loss or

E
[
Ci,N−i+2 | D(t=0)

]
= Ci,N−i+1 · fN−i+2

for a loss in the multiplicative model, for all underwriting years i = 2, . . . , N . To predict
the first loss of the newest underwriting year N + 1 neither a previous loss amount is
available nor a multiplicative parameter for the first development is given, so we use
always the additive model for the first development year and we have

E
[
CN+1,1 | D(t=0)

]
= vN+1 ·m1.

Using now the unbiased estimates m̂
(t=0)
1 , . . . , m̂

(t=0)
N and f̂

(t=0)
2 , . . . , f̂

(t=0)
N at time t = 0

yields for all underwriting years i = 2, . . . , N the estimates

Ê
[
Ci,N−i+2 | D(t=0)

]
=

{
Ci,N−i+1 + vi · m̂(t=0)

N−i+2, additive model

Ci,N−i+1 · f̂ (t=0)
N−i+2, multplicative model

(4.3)

and for underwriting year N + 1

Ê
[
CN+1,1 | D(t=0)

]
= vN+1 · m̂(t=0)

1 . (4.4)

The estimation of the standard deviation to simulate the loss diagonal is described in the
next section.
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4.3 Conditional mean squared error of prediction

The future losses are random variables, hence, they include some uncertainty. The variabil-
ity can be described by the mean squared error conditional on the known claims history
D = D(t=0). To present this we follow beside Wüthrich et al (2009) again Mack (1993,
2002) in this section.

Theorem 4.3. The mean squared error conditional on the known claims history D =
D(t=0) of the predicted future losses Ĉi,N−i+2 of the next calendar year for i = 2, . . . , N +1
is given by

mse(Ĉi,N−i+2) = E
[
(Ci,N−i+2 − Ĉi,N−i+2)

2 | D
]

=

= V ar[Ci,N−i+2 | D] +
(
E[Ci,N−i+2 | D]− Ĉi,N−i+2

)2
. (4.5)

Proof. We follow Mack (2002) and use the general formula

E
[
(X − h(Y ))2 | Y

]
= V ar[X | Y ] + (E[X | Y ]− h(Y ))2

for X = Ci,N−i+2, Y = D and h(D) = Ĉi,N−i+2.

The first term of (4.5) is the variance around the true value for the respective model,
while the second term of equation (4.5) describes the difference between estimated value
and the unknown true value. The latter can be estimated by

E

[(
E[Ci,N−i+2 | D]− Ĉi,N−i+2

)2
| D
]

= E

[(
E[Ĉi,N−i+2 | D]− Ĉi,N−i+2

)2
| D
]

= V ar
[
Ĉi,N+i−2 | D

]
,

since E
[
Ĉi,N−i+1 | D

]
= E [Ci,N−i+1 | D] holds by unbiasedness of estimates in both mod-

els. Therefore, the mean squared error (4.5) is given by

mse(Ĉi,N−i+2) = V ar[Ci,N−i+2 | D] + V ar
[
Ĉi,N+i−2 | D

]
, i = 2, . . . , N + 1. (4.6)

In the additive model under the Assumptions 3.1 the second term is given by

V ar
[
Ĉi,N−i+2 | D

]
= V ar

[
Ci,N−i+1 + Ŝi,N−i+2 | D

]
= V ar[Ŝi,N−i+2], i = 2, . . . , N + 1,

since the previous cumulative loss Ci,N−i+1 is D-measurable and Si,N−i+2 is independent
of Si,1, . . . , Si,N−i+1 and thus independent of D. Using (3.7) yields

V ar[Ŝi,N−i+2] = V ar[vi · m̂N−i+2] = v2i · V ar[m̂N−i+2].

Next we consider the first term of (4.6) in the additive model. It holds by equation (3.4)

V ar [Ci,N−i+2 | D] = V ar[Si,N−i+2] = vi · s2N−i+2.
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In the multiplicative case under the Assumptions 3.2, especially (3.12), the first term
of (4.6) is given by

V ar [Ci,N−i+2 | D] = Ci,N−i+1 · σ2
N−i+2.

The previous cumulative loss Ci,N−i+1 is D-measurable and by equation (3.16) the second
term of (4.6) in the multiplicative model is given by

V ar[Ĉi,N−i+2] = C2
i,N−i+1 · V ar[f̂N−i+2].

Since the true parameters sk and σk are unknown we estimate the conditional mean
squared error by using the unbiased estimators presented in Section 3.3. Also the variance
of the estimated parameters was determined in that section and an overview of all esti-
mated parameters is given in Table 3. Therefore, the mean squared error for both models
can be estimated by

m̂se(Ĉi,N−i+2) =

{
vi · ŝ2N−i+1 + v2i · ˆV ar[m̂N−i+2], additive,

Ci,N−i+1 · σ̂2
N−i+2 + C2

i,N−i+1 · ˆV ar[f̂N−i+2 | D], multiplicative.
(4.7)

4.4 Stochastic re-reserving

In this section the main steps of the simulation approach re-reserving (Ohlsson and
Lauzeningks, 2009; Kraus and Diers, 2010) are presented. In literature the approach is
typically used for the one-year reserve risk, but we extend the approach to measure ad-
ditionally the premium risk. The method consists of three steps, illustrated in Figure 5.

Step 1: Loss reserve at time t=0
At first, the best estimate of the cumulative ultimate losses Ci,N conditional on
the known loss triangle D(t=0) at time t = 0 is calculated for all underwriting years
i = 1, . . . , N associated to the selected model in the first part. This yields predictions
Ĉ

(t=0)
i,N for the expected ultimate losses and the respective loss reserves R̂

(t=0)
i at time

t = 0 as already described in Section 4.2. This is the best estimate of the outstanding
losses at time t = 0.

Step 2: Simulation of loss diagonal
To predict the loss reserve at time t = 1 one diagonal in the loss triangle is missing,
so the next step is to simulate the claims between time t = 0 and t = 1. One
possibility to get the simulated diagonal is to simulate from a normal or log-normal
distribution with mean given by (4.3) and (4.4) and variance by (4.7). This yields
for every simulation run one possible realizations of the cumulative claims Ci,N−i+2

of the next calendar year for all underwriting years i = 2, . . . , N + 1.

Step 3: Loss reserve at time t = 1 per simulation path
On basis of the additional loss diagonal of step 2 for each simulation run the reserve
at time t = 1 can be estimated conditional on the loss triangle D(t=1) of the related
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Figure 5: Re-Reserving Approach

simulation run. Similar to the parameter estimates in step 1 new model parame-
ters at time t = 1 for each simulation run can be calculated according to Section
3.3 depending on loss triangles D(t=1) in each simulation path. By this, estimates
Ĉ

(t=1)
i,N (l) for the predicted cumulative ultimate loss are provided in each simulation.

The respective loss reserve is the best estimate for the loss reserve at time t = 1
conditional on the loss triangle D(t=1) for each simulation path.

To be more precise in step 3, let L be the number of simulations and the realizations of
simulation run l with l = 1 . . . , L are denoted by Ci,N−i+2(l). The upper triangle D(t=1)(l)
of observed losses in simulation run l is then defined as

D(t=1)(l) := {Ci,k(l) | i+ k − 1 ≤ N + 1},

where

Ci,k(l) =

{
Ci,k, i+ k − 1 ≤ N,
Ci,k(l), i+ k − 1 = N + 1.
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This implies

D(t=1)(l) = {Ci,k : i+ k − 1 ≤ N} ∪ {Ci,N−i+2(l) | i = 2, . . . , N + 1}
= D(t=0) ∪ {Ci,N−i+2(l) | i = 2, . . . , N + 1},

which means the loss triangle used to estimate the new reserve is the loss triangle at time
t = 0 extended by the realizations of the simulated diagonal. Accordingly, we can estimate
new model parameters at time t = 1 in each simulation run l by applying the introduced
formulas from Section 3.3 based on n = N + 1 and loss triangle D = D(t=1)(l) for all

l = 1, . . . , L. The corresponding estimated parameters at t = 1 are denoted by m̂
(t=1)
k (l)

and f̂
(t=1)
k (l).

Given the loss triangle D(t=1)(l) the expected cumulative loss after N development years
for underwriting year i = 3, . . . , N + 1 depends on the specified reserving method and is

E
[
Ci,N | D(t=1)

]
= Ci,N−i+2 + vi ·

N∑
k=N−i+3

mk

for the additive model or

E
[
Ci,N | D(t=1)

]
= Ci,N−i+2 ·

N∏
k=N−i+3

fk.

for the multiplicative model. With a transition point t again for all underwriting years i
with development year of last cumulative loss before transition point, i.e. N + 2− i < t,
it holds

E
[
Ci,N | D(t=1)

]
=

(
Ci,N−i+2 + vi ·

t∑
k=N−i+3

mk

)
·

N∏
k=t+1

fk.

Using the estimated unbiased parameters m̂
(t=1)
k (l) and f̂

(t=1)
k (l), predictions Ĉ

(t=1)
i,N (l) for

the cumulative ultimate loss per underwriting year are provided in all simulation runs
l = 1 . . . , L. The respective loss reserve at time t = 1 is consequently estimated by

R̂
(t=1)
i (l) = Ĉ

(t=1)
i,N (l)− Ci,N−i+2(l), i = 3, . . . , N + 1,

where we used (4.2). The approach yields all components to calculate the observable CDR,
stated in Definition 4.2, for each simulation. In simulation run l = 1, . . . , L it is given by

ˆCDR
(t=1)

i (l) = R̂
(t=0)
i (l)−

(
Si,N−i+2(l) + R̂

(t=1)
i (l)

)
= Ĉ

(t=0)
i,N (l)− Ĉ(t=1)

i,N (l)

for underwriting years i = 2, . . . , N and for underwriting year N + 1 by

ˆCDR
(t=1)

N+1 (l) = −
(
SN+1,1(l) + R̂

(t=1)
N+1

)
= −Ĉ(t=1)

N+1,N(l).

The empirical distributions of the aggregate claims development result
∑N

i=2CDR
(t=1)
i

and of the result of the newest underwriting year CDRN+1 are used to estimate the
probability distributions.



Chapter 5

Change point analysis background

Change point analysis is used to identify changes in structure of time series data. Struc-
tural changes can arise in a range of application fields, this makes the detection of change
points to a highly interesting research area. Since its beginning by Page (1954) change
point problems have received a considerable attention in statistical literature resulting
in a wide range of problem formulations, methods and algorithms over the years. The
interested reader is referred to Truong et al (2018) or Aminikhanghahi and Cook (2016)
for more details.
We follow Chen and Gupta (2014) to introduce a general problem formulation of testing
for change points at first. Killick et al (2012) propose a solution to this problem with
different algorithms for an efficient change point detection. We discuss this method and
two algorithms, before we consider a more specific method following Eckley et al (2011)
that we will use in the next chapter for the change point detection in claims data. For
this we have to discuss regression models with change points, which will complete this
chapter.

5.1 Problem formulation

Let Y1, Y2, . . . YT be a sequence of independent random variables with distribution func-
tions F1, . . . , FT . In general the problem of testing a single change point can be defined
as problem of hypothesis testing between null hypothesis of no change

H0 : F1 = F2 = . . . = FT

against the alternative of there is a change point located at τ so that

HA : F1 = . . . = Fτ 6= Fτ+1 = . . . = FT .

If the distributions differ only in parameters θ, but belong to the same family F ( · ) it is
enough to test

H0 : θ1 = θ2 = . . . = θT

versus alternative

HA : θ1 = . . . = θτ 6= θτ+1 = . . . = θT .

45
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As time series are often affected by more than one structural change, we are more inter-
ested in the problem of detecting multiple changes. This includes the problem of finding
the optimal number of change points m and their optimal location τ1, . . . , τm. For given
τ1, . . . , τm we can define the problem again as hypothesis testing between null hypothesis
of no change

H0 : F1 = F2 = . . . = FT

against the alternative of m change points located at τ1, . . . , τm with

HA : F1 = . . . = Fτ1 6= Fτ1+1 = . . . = Fτ2 6= Fτ2+1 . . .

. . . Fτm−1 6= Fτm = . . . = FT .

Or in the parametric case we have

H0 : θ1 = θ2 = . . . = θT (5.1)

versus alternative

HA : θ1 = . . . = θτ1 6= θτ1+1 = . . . = θτ2 6= θτ2+1 . . .

. . .θτm−1 6= θτm = . . . = θT .

5.2 Penalized minimization

We follow Killick et al (2012) and Haynes et al (2014). Let y1, y2, . . . yT be a sequence
of independent random variables with m change points located at τ1, . . . , τm. The set of
change points T := {τ | 0 = τ0 < τ1 . . . τm < τm+1 = T} splits the time series into m + 1
segments, whereby segment i includes y(τi−1+1):τi := {yτi−1+1, . . . , yτi}. Each segment i has
some model parameters θi, so we can describe a model Mm with m change points by a
set of parameters

Θm = {θ1, . . . ,θm+1, τ1, . . . , τm}.

One common approach to find the best segmentation is to first define a cost function used
to measure the fit of a segment. We denote the cost of a segment y(τi−1+1):τi by C(y(τi−1+1):τi)
and choose the location of change points for a fixed number m by minimizing the sum of
costs over the m+ 1 segments

Qm(y1:T ) = min
τ1,...,τm

{
m+1∑
i=1

[
C
(
y(τi−1+1):τi

)]}
.

Since the number of change points is in general unknown we estimate m by solving

min
m
{Qm(y1:T ) + f(m)}
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for some appropriate penalty function f(m), which is increasing with m, to avoid overfit-
ting. For a linear penalty function f(m) = (m+ 1)β with some penalty β > 0, we get the
penalized minimization problem

Q(y1:T , β) = min
m,τ1:m

{
m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]}
. (5.2)

The choice of model is obviously dependent on the choice of cost function and penalty.
Commonly used as cost function is twice the negative maximum log likelihood (Yao (1988),
Gupta and Chen (1996)), and the penalty often belongs to an information criteria like
Akaike information criterion (AIC; β = 2p) or the Bayesian information criterion (BIC;
β = p log T ), where p is the number of additional parameters by adding a segment. It
is an obvious choice to use the combination of maximum log likelihood as cost function
and these penalties, since we have already discussed in Section 2.4 that the information
criteria balance model fit and complexity.

5.3 Algorithms

Two algorithms are introduced in this section. For that we consider the multiple change
point problem again as minimization problem (5.2)

Q(y1:T , β) = min
m,τ1:m

{
m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]}
.

with some appropriate penalty β. The most commonly used method for such a problem
is Binary Segmentation proposed by Scott and Knott (1974). Since it is not an exact
method, an alternative algorithm will be considered later.

Binary Segmentation

The reason why Binary Segmentation is this popular is its simplicity and low computa-
tional cost. The basic concept is the iterative application of single change point methods
on split subsets. This means the first step is to search for a change point in the full time
series. If there is at least one point in time τ , which satisfies

C(y1:τ ) + C(y(τ+1):T ) + β < C(y1:T ),

then the point with the smallest cost is identified as the first change point, else the method
stops and we accept the null hypothesis of no change point. In case a change point τ is
detected the procedure is repeated on the two subsets y1:τ and y(τ+1):T . In this way the sets
are split in smaller subsets until no further change points are detected. But this approach
does not necessarily lead to the global minimum of the minimization problem (5.2), this
means this is not an exact method (Rohrbeck, 2013).
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Optimal Partitioning

Jackson et al (2005) introduced another method and solve minimization problem (5.2)
based on a successive approach. Let Q(t) be the minimization of (5.2) for data y1:t up to
point t, 1 < t ≤ T , with possible vectors of change points Tt := {τ | ∃m : 0 = τ0 < τ1 <
. . . < τm < τm+1 = t} and let Q(0) = 0. Then it holds

Q(t) = Q(y1:t; β) = min
τ∈Tt

{
m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]}

= min
m

τ1<...<τm+1
τm+1=t

{
m+1∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]}

= min
m

τ1<...<τm+1
τm+1=t

{
m∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
+ C(y(τm+1):t) + β

}

= min
s<t

 min
m

τ1<...<τm
τm=s

m∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
+ C(y(s+1):t) + β

}

= min
s<t

{
min
τ∈Ts

m∑
i=1

[
C
(
y(τi−1+1):τi

)
+ β

]
+ C(y(s+1):t) + β

}
= min

s<t
{ Q(s) + C(y(s+1):t) + β

}
. (5.3)

The value of s in (5.3) for which Q(t) is minimal is the location of the last change point in
segment y1:t. The optimal set of change points in y1:T can be calculated recursively. Steps
for implementing this method are given in Algorithm 1.

Algorithm 1: Optimal Partitioning Method

input : A set of data (y1, . . . , yT )
A cost function C( · ) dependent on the data
A penalty constant β
Let Q(0) = 0 and cp(0) = NULL

for τ = 1, . . . , T do
1. Calculate Q(τ) = min0≤t<τ [Q(t) + C(y(t+1):τ ) + β].
2. Let τ ∗ = arg

{
min0≤t<τ [Q(t) + C(y(t+1):τ ) + β]

}
.

3. Set cp(τ) = [cp(τ ∗), τ ∗].
end
output: The change points recorded in cp(n)

5.4 Penalized likelihood

A slightly different penalized optimization problem than defined in (5.2), but popular
method to detect change points is the penalized likelihood problem (see e.g. Killick et al,
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2010) given by

min
m,τ1,...,τm

PL(Mm).

A model Mm with m changes in some parameters θ located at τ1, . . . , τm, but common
variance σ2 for all segments is defined by parameter set Θm = {θ1, . . . ,θm+1, σ

2, τ1, . . . , τm}
with

pm = m+ 1 +
m+1∑
j=1

dim(θj)

parameters. The penalized likelihood for model Mm is defined as

PL(Mm) = −2 logL(Θ̂m | y) + f(m) (5.4)

with maximum value of the likelihood function L(Θ̂m | y) and a penalty function like

f(m) = 2pm (AIC)

f(m) = pm log T (BIC).

Note that choosing the model that minimizes the penalized likelihood with one of these
penalties means choosing the model with the lowest information criteria. It was shown
by E. Schwarz (1978) that the AIC does not asymptotically estimate the correct number
of parameters, while the Bayesian Information Criterion provides a consistent estimator
for the change points as shown by Yao (1988). Therefore, we estimate the number of
change points by using the BIC criterion and we finally define our penalized minimization
problem as

min
m,τ1,...,τm

PL(Mm) = min
m,τ1,...,τm

{
−2 logL(Θ̂m | y) + pm · log(T )

}
. (5.5)

Testing for change points is then equivalent to finding model Mm that minimizes the
penalized likelihood. If model M0 without change points and parameters Θ0 = {θ0, σ2}
has the lowest penalized likelihood, we accept the null hypothesis H0 of no change point,
defined in (5.1). Otherwise, we rejectH0 and determine the number and location of change
points by means of model Mm with the lowest penalized likelihood.

5.5 Piecewise regression

In this section we follow Hinkley (1970, 1971) and McGee and Carleton (1970) to present
the underlying theory and use the results of Chapter 2 to define the change point problem
for a weighted regression model. We start with a single change point before we continue
with the formulation of a more general model.
In Section 2.2 we defined the weighted linear regression model in the form

Yi = ψ(i) + εi with εi ∼ N (0, σ2
wwi), i = 1, . . . , T,
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for known weights w1, . . . , wT , a variance σ2 and a linear mean function ψ( · ), which
describes the linear relationship between the response and some covariates xi,1, . . . , xi,k
valid for all data points. As already known, this is not true in case of structural changes
in the data, so we consider a model which allows for change points. Such models are
called piecewise regression models or segmented regression models, since the data is split
in linear segments (see e.g. Muggeo, 2003). In case a single change τ is assumed we define
the following model.

Definition 5.1 (Piecewise regression model). A piecewise regression model is of the form

Yi =

{
ψ1(i) + εi, i = 1, . . . , τ,
ψ2(i) + εi, i = τ + 1, . . . , T,

(5.6)

where the change point τ is unknown, ψj( · ), j = 1, 2, define the mean functions for the
two segments and it holds

εi ∼ N (0, σ2wi), i = 1, . . . , T,

for some variance parameter σ2.

In literature mainly three special cases of (5.6) are discussed:

1) Different intercepts a1 and a2:

ψ1(i) = a1, xi ≤ τ & ψ2(i) = a2, xi > τ.

2) Different slopes and intercepts:

ψ1(i) = a1 + b1xi, xi ≤ τ & ψ2(i) = a2 + b2 · (xi − τ), xi > τ.

3) Continuous regression with changing slopes b1 and b2:

ψ1(i) = a+ b1(xi − τ), xi ≤ τ & ψ2(i) = a+ b2(xi − τ), xi > τ.

Examples for these special cases are illustrated in Figure 6.
Using this model we can describe a response variable, which shows one abrupt change.

Since data is often affected by more than one change, we define a general piecewise re-
gression model with m change points.

Definition 5.2 (Piecewise regression model withm change points). A piecewise regression
model Mm with m change points is of the form

Yi = ψ(i) + εi =


ψ1(i) + εi, i = 1, . . . , τ1,
ψj(i) + εi, i = τj−1 + 1, . . . , τj, j = 2, . . . ,m,
ψm+1(i) + εi, i = τm + 1, . . . , T,

(5.7)

where the change points τ1, . . . , τm are unknown, each ψj( · ), j = 1, . . . ,m + 1, defines
the linear mean functions for segment j and

εi ∼ N (0, σ2
mwi), i = 1, . . . , T,

with a common variance parameter σ2
m.
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Figure 6: Piecewise regression with single change point in form of special case 1 (left),
case 2 (middle) and case 3 (right)

Change points τ1, . . . , τm split the model into m + 1 segments, where each segment j
is described by an individual linear regression with some regression parameters θj that
define mean function ψj( · ). Therefore, for given change point locations τ1, . . . , τm+1 we
can estimate maximum likelihood estimators for regression parameters θj by fitting a
weighted linear regression model with these parameters θj on the data of the correspond-
ing segment y(τj−1+1):τj . Using the results derived in Section 2.2, especially formula (2.6),

yields maximum likelihood estimates θ̂j and thus estimated expected values ψ̂j(i) for all
i = τj−1 + 1, . . . , τj and for all segments j = 1, . . . ,m+ 1.
Rewriting model (5.7) in forms of

Yi = ψ1(i)1{1≤i≤τ} + ψ2(i)1{τ1<i≤τ2} + . . .+ ψm+1(i)1{τm<i≤n} + εi

shows that the whole model is still a weighted regression model. It follows that if we know
τ1, . . . , τm we can define

ψ̂( · ) := ψ̂1( · )1{1≤i≤τ} + ψ̂2( · )1{τ1<i≤τ2} + . . .+ ψ̂m+1( · )1{τm<i≤n}

and use equation (2.7) to estimate the common variance parameter σ2
m. We get

σ̂2
m =

1

T

T∑
i=1

1

wi

(
yi − ψ̂(i)

)2
=

1

T

m+1∑
j=1

τi∑
i=τi−1+1

1

wi

(
yi − ψ̂j(i)

)2
.

Thus, the maximum likelihood estimates θ̂1, . . . , θ̂m and σ̂2
m depend on the choice of

τ1, . . . , τm and m and it remains to estimate the optimal number and location of change
points.
We use the penalized likelihood method, which we presented in the previous section, with
penalty function corresponding to the BIC to estimate the optimal number m of change
points and the optimal locations τ1, . . . , τm. Each piecewise regression model in the form
(5.7) has a parameter set

Θm = {θ1, . . . ,θm+1, σ
2
m, τ1, . . . , τm}
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depending on the number of change points m. Hence, by (5.5), we have the penalized
minimization problem

min
m,τ1,...,τm

PL(Mm) = min
m,τ1,...,τm

{
−2 logL(Θ̂m | y) + dim(Θ̂m) · log(T )

}
, (5.8)

where, by using (2.15), the maximum likelihood term for this weighted linear model is
given by

−2 logL(Θ̂m | y) = T log(2πσ̂2
m) + T +

T∑
i=1

log(wi).

The model with change points τ̂1, . . . , τ̂m for some m with minimal penalized likelihood
yields the estimate for the optimal number and locations of change points τ̂1, . . . , τ̂m and
accordingly regression parameters θ̂1, . . . , θ̂m+1 and common variance parameter σ̂2

m.
Again testing for change points is equivalent to finding the piecewise regression model
Mm that minimizes the penalized likelihood. In case a model without change pointsM0

has minimal likelihood, we do not reject the null hypothesis of no change.
In the next chapter we finally apply this method to loss data to check if the data is
disturbed by structural breaks.



Chapter 6

Application to loss triangles

In this chapter we fit the presented parts together and use the previous results to apply
change point analysis for loss triangles. But in fact, we do not only search for change
points, but also for trends. Theoretical foundation for this application are the linear
models defined in Chapter 2 and the change point analysis presented in the previous
chapter. We apply this to the reserving models discussed in Chapter 3 in order to test for
structural changes in the loss development.
As already mentioned in the introduction of this thesis, we present two methods. We start
this chapter with a short description of the approach, before we consider candidate models
for the first method. This method is outlined in Section 6.3 and defines a way to analyze
the loss history separately for each development year. Thereafter, we apply this on an
exemplary loss triangle. In Section 6.5 we propose a more extended method to select an
overall model. This method can be used to automatize the basic loss model calibration,
since it selects and estimates a model based on the loss history under consideration of
trends and change points.

6.1 Approach

In Section 3.4 we showed that the additive and multiplicative reserving model can be
interpreted as weighted regression model in the form of

Yi,k = µk + εi,k, εi,k ∼ N
(
0, σ2

kwi
)
, (6.1)

per development year k = 1, . . . , N in the additive model and k = 2, . . . , N in the multi-
plicative model, for all underwriting years i = 1, . . . , N . In the additive model the response
variable Yi,k is given by the incremental loss ratios Mi,k and the weights are defined as
wi = 1

vi
with premiums vi. In the multiplicative model we are interested in responses Fi,k,

which denote the development factors, and weights defined by wi = 1
Ci,k−1

with cumulative

losses Ci,k−1 from the previous development year k − 1.
This holds true only under the assumption that for each development year the expected
values are constant. We want to test whether the model assumption of equal means is
fulfilled for each development year or violated due to a trend or a single or multiple change
points. To do this for a given underlying reserving model with respective response and

53
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data, we extend model (6.1) and compare it to other weighted regression models of the
form

Yi,k = ψ(k)(i) + εi,k, εi,k ∼ N
(
0, σ2

kwi
)
, (6.2)

with some linear mean functions ψ(k)( · ) to describe the behavior of a fixed development
year k. Then the observations yk = {y1,k, . . . , yN−k+1,k} of some development year k can
be represented as

yi,k = ψ(k)(i) + εi,k, i = 1, . . . , N − k + 1,

for k = 1, . . . , N in the additive model or k = 2, . . . , N in the multiplicative model.
Because of the triangular form of the given loss data the number of observations declines
per development year and obviously it does not make sense to fit too complex models
with a lot of parameters to development years with a small number of observations.
Furthermore, usually the incremental loss ratios in later development years are quite
small and the development factors close to one, since the losses are almost settled, and
these development years do not have a substantial impact on the prediction of the reserve
compared to early development years. That is why we consider only development years k
up to some limit, denoted by D, with D ≤ N .
In the next section we will define candidate models for each development year and fit all
presented candidate models to the observed data. Then we use the Bayesian information
criterion defined in Section 2.4 to compare our candidate models and evaluate whether
trends or structural changes appear in the loss pattern or not.

6.2 Candidate models per development year

In this section we consider three different types of models to describe a development year
k = 1, . . . , D. All models are weighted regression models of the form of equation (6.2), but
differ in the choice of mean function ψ(k)( · ) and therefore also in number of parameters.
We denote the number of regression parameters for development year k by p(k).

Type I: Models with no change point

We consider two models without change point. The first one is our base model and the
foundation of the analysis, because we compare all other candidate models to this model.

Model 1a) Base model
The base model is an intercept-only model with mean function ψ(k)( · ) of development
year k given by

ψ(k)(i) = a(k), i = 1, . . . , N.

This model corresponds to Mack’s (2002) reserving models presented in Section 3.3 with
constant means per development year, since in Section 3.4 we have shown for both re-
serving models that the related maximum likelihood estimators are equal to the there



6.2. CANDIDATE MODELS PER DEVELOPMENT YEAR 55

presented unbiased estimators. All other candidate models are extensions of this model
and assume that the data is not constant, but structurally disturbed for some reason.
One reason for a violation in the assumption of a constant level of loss ratios or devel-
opment factors is that the data comprises a trend, which is covered in the following model.

Model 1b) Model with additional linear trend
The mean function changes by an additional trend parameter, which yields

ψ(k)(i) = a(k) + b(k) · i, i = 1, . . . , N.

We increased the number of regression parameters p(k) from a single parameter in Model
1a to p(k) = 2 in this model, which is a simple linear regression model as given in Defini-
tion 2.4 with covariate xi = i. In Section 2.3 we have presented this model together with
the intercept-only model that describes Model 1a.
Even if the expected value is not constant in Model 1b, at least both models assume that
a single model is valid for all values of development year k and there is no change point.
To model a structural break in a development we consider models of type II.

Type II: Models with a single change point

We consider two different models, which both assume there is a single change point τ (k),
1 ≤ τ (k) < N , that splits development year k in two segments.

Model 2a) Single change in mean
The mean function

ψ(k)(i) =

{
a
(k)
1 , i = 1, . . . , τ (k),

a
(k)
2 , i = τ (k) + 1, . . . , N,

describes a development year with constant mean for all underwriting years up to some
year τ (k) after that the mean changes. Individually both segments y1,k . . . , yτ (k),k and
yτ (k)+1,k, . . . , yN,k fulfill the assumption of constant means, but not taken as a whole.
Within the next model, this does not hold, because it attributes both segments addition-
ally a different trend.

Model 2b) Single change in intercept and trend
The model defined by

ψ(k)(i) =

{
a
(k)
1 + b

(k)
1 · i, i = 1, . . . , τ (k),

a
(k)
2 + b

(k)
2 · (i− τ (k)), i = τ (k) + 1, . . . , N,

describes a model, that is split in two simple linear regression segments by a change point
τ (k), after which intercept and trend change.
Both models are piecewise linear regression models with one change point as given in
Definition 5.1. The number of regression parameters for these two models is p(k) = p

(k)
1 +

p2(k), where it holds

p
(k)
j =

{
1 for Model 2a
2 for Model 2b

for j = 1, 2.
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The models of type I and type II are illustrated in Figure 7. Each plot shows possible

Figure 7: Models of type I (upper plots) and models of type II (lower plots)

observations (in this case loss ratios) for a model of some development year k with 30
observations and the blue line represents the respective mean function the observations
are generated from. The upper plots show Model 1a and Model 1b without change point
and in the lower plots the red lines highlights the location of the change point that is here
defined as τ (k) = 15 for both models of type II with exactly one change point.
Since a development year can be affected by more than one structural break, we need a
more general type of models with number of change points m not fixed. This leads to the
general piecewise regression model from Definition 5.2.

Type III: Models with multiple change points

We are interested in models for development year k with m change points located at
τ
(k)
1 , . . . , τ

(k)
m for some m ≥ 0 of the following form:

Model 3) General model
The piecewise regression model with mean function

ψ(k)(i) =


a
(k)
1 + b

(k)
1 · i, i = 1, . . . , τ

(k)
1 ,

a
(k)
j + b

(k)
j · (i− τj−1), i = τ

(k)
j−1 + 1, . . . , τ

(k)
j , j = 2, . . . ,m,

a
(k)
m+1 + b

(k)
m+1 · (i− τm), i = τ

(k)
m + 1, . . . , N,
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describes a model that splits the development year in m + 1 individual segments with
some regression lines.
We know the number of parameters is penalized, therefore, we want to omit unnecessary
parameters in Model 3. If the added penalty for the parameter is higher than the im-
provement in model fit reduces the BIC, then this parameter is not considered necessary.
Thus, we allow for each segment j to either have two parameters a

(k)
j and b

(k)
j for intercept

and slope or only an intercept a
(k)
j . Starting from second segment, we incorporate also the

possibility to avoid a useless new intercept parameter. This is inspired by special case 3
defined in Section 5.5, which assumes a continuous development from previous segment
j−1 to segment j without jump. In this case segment j, for j > 2, starts with an intercept
equal to the last point of the previous segment, i.e. a

(k)
j = ψ(k)(τj−1), and we do not count

a
(k)
j as a new parameter. It follows, it is also possible to have either only a new slope

parameter b
(k)
j for segment j or even no new parameter and the segment is modeled to

stay constant on that level a
(k)
j . This possibility to reduce the number of parameters in

Model 3 will be shown in the example in Section 6.4.
To conclude, the number of all regression parameters p(k) for Model 3 is in general given
by

p(k) =
m+1∑
j=1

p
(k)
j with p

(k)
1 ∈ {1, 2} & p

(k)
j ∈ {0, 1, 2}, j = 2, . . . ,m+ 1,

where p
(k)
j defines number of regression parameters of segment j for all j = 1, . . . ,m+ 1.

Note that because the number of parameters per segment and the number of change points
is not fixed anymore Model 3 can appear in the form of all models of type I and II in case
the optimal number of change points is zero or one.
But due to this variability in number and the locations of change points and number of
parameters per segment, we have a high number of possible combinations and we need an
efficient way to choose the optimal one. This will be discussed in the next section.
In conclusion, we define the parameter set of development year k for all candidate models
in the form

Θ(k) = {θ(k)1 , . . . ,θ
(k)
m+1, σ

2
k, τ

(k)
1 , . . . , τ (k)m }, (6.3)

where the set of regression parameters of each segment j of development year k is denoted
θ
(k)
j . If the model has no change point we have only one segment with regression param-

eters θ(k) and no τ in the parameter set, otherwise for some m ≥ 1 we have m change
points and m + 1 segments with some regression parameters in addition to the variance
parameter in the parameter set.
The number of parameters in Θ(k) for all m ≥ 0 is given by

dim(Θ(k)) = 1 +m+ p(k),

where p(k) is the number of all regression parameters.
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6.3 Change point analysis per development year

In this section we consider a fixed development year k, for some k = 1, . . . , D, and the
observations yk = y1,k, . . . , yN−k+1,k of this development year. We want to test if the
model assumption of equal means is fulfilled for this development year or not. So we fit
the candidate models to the data yk and compare the BIC of the Model 1a (base model)
at first with Model 1b and then with the optimal models of type II and type III.
For a single development year the BIC for all candidate models M presented in Section
6.2 is in general given by

BIC (M) = −2 logL
(

Θ̂(k) | yk
)

+ dim(Θ(k)) · log(N − k + 1)

= (N − k + 1)
(
log(2πσ̂2

k) + 1
)

+
N−k+1∑
i=1

log(wi) + dim(Θ(k)) · log(N − k + 1)

with maximum likelihood estimate

σ̂2
k =

1

N − k + 1

N−k+1∑
i=1

1

wi
(yi − ψ̂(k)(i))2

for mean function ψ(k)( · ) and parameter set Θ(k) as defined in (6.3) depending on the
candidate model. Here we used Section 2.4, where we derived the BIC for weighted linear
regression models. To get the BIC for each candidate model we have to specify the maxi-
mum likelihood estimates. In Section 2.3 we presented the maximum likelihood estimation
of model parameters for both models of type I, which immediately leads the BIC for
Model 1a and Model 1b.
The maximum likelihood estimation in piecewise regression models was discussed in Sec-
tion 5.5, which can be used for models of type II and III. For given locations of change
points the regression parameters of each segment can be estimated by fitting the data
of this segment to a regression model with these parameters, which yields ψ̂j for each
segment j, for j = 1, . . . ,m+ 1, and thus maximum likelihood estimate σ̂2

k.
For a single change point, i.e. the models of type II, we can easily estimate the max-
imum likelihood of τ for both models by trying all possible values τ = 1, . . . , N − k + 1
and estimate the regression parameters and the corresponding variance parameter based
on each τ . Then we can calculate the value of the likelihood function for all sets of es-
timated parameters and choose the τ with maximum likelihood. The maximum value of
the likelihood function for Model 2a and the one for Model 2b yields the BIC for each
model.
For the BIC of the model of type III we need to estimate the optimal number and
location of change points. As mentioned in previous section, it is not efficient to try all
numbers and locations, since the number of change points and parameters per segment is
not fixed anymore. Note that since the number of parameters is different for all possible
models of this type, it is not sufficient to compare only the likelihood function for different
change points, but a penalized minimization approach is required to take the number of
parameters into account. So we want to minimize

min
m,τ1,...,τm

PL(Mm) = min
m,τ1,...,τm

{
−2 logL

(
Θ̂(k) | yk

)
+ dim(Θ(k)) · log(N − k + 1)

}
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as discussed in Section 5.4. For an efficient computation we use an algorithm inspired by
the Optimal Partitioning method presented in Section 5.3. We adjust the algorithm for our
needs, but the concept is to use the successive proceeding from the Optimal Partitioning
method and find the optimal location of change points and the optimal parameters per
segment by partition of the segment up to a last change point based on the partitions
in the previous steps. The corresponding R code to run the approach is shown in the
Appendix A.1.
Given the BIC for each model, we compare the BIC of the base model to the BIC of all
other models to analyze the differences. We follow Fabozzi et al (2014) and interpret the
difference between the BICs of two models as evidence against the model with higher BIC
to be the better model. If Model 1b has a lower BIC compared to Model 1a, this implies
that this development year has no constant mean but is probably disturbed by a trend.
Similar in case the BIC of Model 2a or Model 2b is clearly lower than the BIC of Model
1a, then there is evidence that the model assumption is violated in this development year
because of a change point. Model 3 has always lowest BIC by definition, so in case Model 3
is not equal to Model 1a, then there is evidence that the development year is disturbed by
a trend, change point or both. But we are interested in the significance of this evidence,
so we denote the absolute difference between the BICs of two models ∆ and use the
principles derived by Kass and Raftery (1995), which yield the following interpretations
for the model with higher BIC:

∆ < 2 : Evidence against model with higher BIC is not significant.

2 ≤ ∆ < 6 : There is a positive evidence against model with higher BIC.

6 ≤ ∆ < 10 : The evidence against model with higher BIC is strong.

10 ≤ ∆ : The evidence against model with higher BIC is decisive.

By this we can judge the evidence against the original reserving model. The reason why
we do not only compare Model 3 and Model 1a but also Model 1b and models with exactly
one change point is that it can happen that Model 3 becomes very complex because the
number of change points and trends is not limited. In terms of practical application, one
of the other models would be preferred in this case. If we compare the BIC of Model 3
with the other models, we can evaluate whether another model fits almost as well but is
not that complex.

6.4 Exemplary application

We demonstrate the approach presented in the previous section by means of an example
based on the cumulative loss triangle given in Appendix A.3. For the analysis we use the
R functions presented in Appendix A.1 to fit the models and calculate the BIC for each
candidate model. We show the method on the basis of the multiplicative reserving model
as underlying reserving model, thus, we are interested in development factors as response
and the cumulative losses from the respective previous development year as weights. As
already mentioned, the development factors start from the second development year and
we present the results from analyzing development years two, three and four.
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The second development year has the following observed development factors:
[ 1 ] 1 .169324 1.162750 1.161218 1.177176 1.103187 1.148052 1.158462 1.146301 1.117710 1.111361 1.158134

[ 1 2 ] 1 .091129 1.061845 1.092284 1.121587 1.089020 1.113378 1.082967 1.103472 1.130769 1.206529 1.156928
[ 2 3 ] 1 .149189 1.107265 1.204623 1.142124 1.202818 1.225892 1.190426 1.226929 1.290268 1.236598 1.302107
[ 3 4 ] 1 .257289 1.264768 1.116647 1.161820 1.169067 1.160897 1.136097 1.121968 1.087960 1.167328 1.159322
[ 4 5 ] 1 .182102 1.187929 1.133476 1.147208 1.168649

Fitting the data to Model 1a and Model 1b yields the resulting models of type I illustrated
in Figure 8 together with the determined BIC. The left plot in the figure shows the

Figure 8: Model 1a (left) and Model 1b (right) for observed development factors of DY2

base model, which corresponds to the original multiplicative reserving model assuming
a constant development factor for development year 2. Allowing for an additional trend
parameter leads to Model 1b (right plot). The figure shows that the model with trend
has minimal lower BIC than the base model, but on this basis we do not reject the base
model, since the evidence against Model 1a is not significant.
Next step is to test for one change point, thus, we fit the data to both models of type II
with the result given by Figure 9. Comparing the information criteria of these two models

Figure 9: Model 2a (left) and Model 2b (right) for observed development factors of DY2
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to Model 1a indicates that there is at least one change point in data. The difference for
both models is too high to ignore the evidence against the base model. But the fact that
both models propose a different change point hints that probably one change point is not
enough, thus we fit the data to Model 3.
Allowing for each number of change points and testing for the optimal number and location
leads to the model presented in Figure 10. Model 3 has two change points and the evidence
that this model fits clearly better and against Model 1a is decisive. Obviously we have to
reject the hypothesis that development year 2 has development factors with a constant
level for all underwriting years, since our proposed method revealed that the data is
disturbed by structural changes.

Figure 10: Model 3 for observed development factors of DY2

Note that Model 3 for this data is a good example for what we explained in Section 6.2
with regard to avoiding unnecessary parameters. The second segment starts at the last
level of the previous segment and we do not need a new intercept parameter. Also for the
third segment we need only one new parameter, since this segment has obviously a new
level, but an additional trend parameter is not worth the increasing complexity.
We continue with the third development year and apply the same approach on the
observations of development year 3, which are given by:
[ 1 ] 1 .129547 1.141429 1.092039 1.090876 1.118347 1.066648 1.087056 1.141425 1.114531 1.073510 1.059459

[ 1 2 ] 1 .096958 1.175040 1.090072 1.092764 1.074150 1.082954 1.134907 1.106821 1.098110 1.182680 1.229721
[ 2 3 ] 1 .209252 1.185986 1.196175 1.236189 1.161573 1.147865 1.210819 1.208338 1.213113 1.253227 1.182577
[ 3 4 ] 1 .165724 1.247450 1.150170 1.202611 1.189428 1.216641 1.196323 1.226974 1.159509 1.257347 1.197520
[ 4 5 ] 1 .209851 1.225442 1.221560 1.223073

All candidate models with the respective information criteria are concluded in Figure
11. Again we can draw conclusions from analyzing all candidate models. Firstly, adding
a trend parameter obviously improves the model fit a lot. At this point of time before
analyzing the other models we would already reject the hypothesis that the third devel-
opment year has a constant expected development factor for all underwriting years.
But considering Model 2a and Model 2b reveals that a change point is even more suitable
to describe the increase from older underwriting years to newer ones. Now both models
of type II propose the same change point and the difference to the BIC of Model 1a is
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Figure 11: All candidate models based on the observed development factors of DY3

very large, but the fact that Model 2a has a lower BIC than Model 2b shows that it is
not necessary to add a trend parameter to both segments.
Model 3 reveals that more change points do not improve the result anymore, instead
Model 2a is already the optimal model to describe development year 3. Therefore, we still
have to reject the assumption that the development factors of development year 3 have
the same mean, but now we evaluated that it is because of a change point. The evidence
against Model 1a is decisive and our method manifests that development year 3 is split
in two segments with each a constant mean.
Lastly, we apply the approach on the forth development year with observations
[ 1 ] 1 .098521 1.088052 1.110494 1.125790 1.091408 1.097900 1.092555 1.106848 1.095334 1.104255 1.093042
[ 1 2 ] 1 .100402 1.118174 1.082582 1.113441 1.113822 1.109559 1.103727 1.094070 1.100368 1.098434 1.116399
[ 2 3 ] 1 .098194 1.121952 1.096454 1.128102 1.091105 1.124826 1.116646 1.110916 1.105111 1.094164 1.086173
[ 3 4 ] 1 .109784 1.120197 1.103618 1.108863 1.101601 1.102480 1.078373 1.118762 1.094677 1.098704 1.098172
[ 4 5 ] 1 .119247 1.112747 1.107858

We present the result of fitting these observations to each candidate model again in form
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of the plotted models with each BIC. For development year 4 this is given in Figure 12.
This figure shows that in case of development year 4 there is no evidence at all against
Model 1a, since Model 1b as well as the models of type II show a higher BIC than the
base model and Model 3 is equivalent to Model 1a. Thus, we verified that the data of this
development year is not disturbed by trends or change points and the original reserving
model is the optimal model to describe this development year.

Figure 12: All candidate models based on the observed development factors of DY4

6.5 Automatized model selection

The change point analysis per development year introduced in Section 6.3 and discussed
in the previous section by using an example is a helpful tool to analyze the data and de-
termine whether the data is disturbed by unwanted effects like trends or change points. In
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practice, we expect that change points do not appear individually for some development
years, but ranging through the total claims history. That is why it is useful to consider all
development years k up to the chosen limit D and test if there are common change points
to obtain an overall model. In this section we present an approach for that and use again
the penalized likelihood approach discussed in Section 5.4 to decide on the best model.
In Section 3.5 we stated two different scenarios how change points can show up in the data.
The first one has change points in underwriting years and the second one has changes in
calendar years. We formulate one model for each case.

Model A) Change points in underwriting years
The model with m change points in the loss development located at some underwriting
years τ1, . . . , τm is for all development years k defined as

Yi,k = ψ(k)(i) + εi,k with εi ∼ N
(
0, σ2

kwi
)
, i, k = 1, . . . , N,

where the mean functions of all development years k are in the form

ψ(k)(i) =


ψ

(k)
1 (i), i ≤ τ1,

ψ
(k)
j (i), τj−1 < i ≤ τj, j = 2, . . . ,m,

ψ
(k)
m+1(i), τm < i ≤ N.

Similar we can define a model with change points in calendar years.

Model B) Change points in calendar years
The model with m change points in the loss development located at some calendar years
τ1, . . . , τm is defined as

Yi,k = ψ(k)(i) + εi,k with εi ∼ N
(
0, σ2

kwi
)
, i, k = 1, . . . , N,

but now the change points effect each development year k in the following way:

ψ(k)(i) =


ψ

(k)
1 (i), i+ k − 1 ≤ τ1,

ψ
(k)
j (i), τj−1 < i+ k − 1 ≤ τj, j = 2, . . . ,m,

ψ
(k)
m+1(i), τm < i+ k − 1 ≤ N.

Both models are illustrated in Figure 13. In contrast to change point analysis per develop-
ment year we assume that if there are change points τ1, . . . , τm, then these change points
concern all development years and not that each development year has individual change
points τ

(k)
1 , . . . , τ

(k)
m .

For both models we use a penalized likelihood approach to test for the respective types of
change points and find the optimal number and location of change points, in case there
are change points. For given observations

{yi,k | k = 1, . . . , D, i = 1, . . . , N − k + 1} = {yk | k = 1, . . . , D}

and cost function defined as the sum of the maximum likelihood of all considered devel-
opment years, we get for a model Mm in form of Model A or Model B in both cases the
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Figure 13: Model A (left) and Model B (right) with two change points

penalized minimization problem

min
m,τ1,...,τm

PL(Mm) = min
m,τ1,...,τm

{
D∑
k=1

−2 logL
(
θ̂
(k)
, σ2

k | yk
)

+ dim(Θ) · log(T )

}
,

where T is the number of observations with T =
∑D

k=1(N − k+ 1) and the parameter set
for both models is

Θ = {θ(1), . . . ,θ(D), τ1, . . . , τm+1, σ
2
1, . . . , σ

2
D}

for some m ≥ 0, where {τ1, . . . , τm+1} = ∅ for m = 0.
For same values of change points τ1, . . . , τm, Model A and Model B differ in the location of
these change points in the development years, since for Model B these belong to calendar
years and for Model A to underwriting years. If for example Model A and Model B both
have change point τ = 10, then in Model A this change point is in all development years
underwriting year 10, which yields first segments from the first to the tenth element in
the loss triangle for all development years. Model B has in this example calendar year 10
as change point, i.e. in the first development year the first segment consists again of the
first ten elements, but in the second development year calendar year 10 corresponds to
underwriting year 9 and the first segment has nine elements, in the third development
year the first segment has eight elements and so on. Different segments per development
year lead to different regression parameters and thus different variance parameters for
Model A and Model B. But the approach to find the optimal locations of change points in
both models is the same. We determined the maximum likelihood term per development
year in the previous section, which yields

PL(Mm) =
D∑
k=1

[
(N − k + 1)

(
log(2πσ̂2

k) + 1
)

+
N−k+1∑
i=1

log(wi)

]
+ dim(Θ) · log(T ).

Again there is a high number of possible models and we need an efficient way to calculate
the optimal number and location of change points for Model A and Model B. We adjust
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the algorithm used for change point analysis per development year in order to find an
appropriate number and location of change points in this minimization problem. The R
code for this method is presented in Appendix A.2. We will evaluate the performance of
this method for both models in the simulation study in the next chapter.
The model selection then works as follows. Running the penalized likelihood approach to
test for one of both models yields a winner model with a number and locations of change
points, which minimize the penalized likelihood. This is our final model. In case we want
to test for both types of change points we run the approach once for Model A and once for
Model B and that results in two winner models. We trust the model with lowest penalized
likelihood of both models and select this one as the final model.
If the final model with minimal penalized likelihood is a modelM0 without change point,
we verified that there are no change points in the data. In case the optimal model has no
change point and each mean function per development year is constant, i.e the regression
parameters per development year consist only of an intercept parameter, this corresponds
to the original reserving model. Otherwise, if the optimal model contains additionally
some slope parameters, we have to assume trends are contained in some development
years and we should not trust the original reserving model. Similarly, in the case the
final selected model is a model with one or more change points, we have to reject the
hypothesis that there are no change points in the claims data and the means are equal
per development year.
If we reject the original reserving model, because we assume that the model assumptions
are violated, then we should consider these effects for an adequate prediction of the future
losses. That is why we adjust the reserving model and use the final model, which is an
extension of the original one by additional parameters, to predict the values of the lower
triangle

{Yi,k | i+ k − 1 > N}.

The final model is defined by the regression parameters with some maximum likelihood

estimates θ̂
(k)

, k = 1, . . . , D, which we can use to predict the lower triangle up to the
chosen limit D < N . Since we assume that all losses almost settled after development
year D and thus later development years have no essential impact on the prediction, for
simplicity we use the estimated model parameters from the original reserving model for
the prediction of the remaining development years D + 1, . . . , N .
But for all development years k = 1, . . . , D, we use the estimated regression parameters,
which specify the mean function ψ(k) for each development year. This means we predict
the future development by

Ŷi,k = ψ̂(k)(i) for all k = 1, . . . , D and for all i+ k − 1 > N.

In the simulation study we evaluate the performance of the change point detection ap-
proach on the one hand and one the other hand we use this prediction method to examine
the accuracy of estimates and compare it to the original model.



Chapter 7

Simulation study

In this chapter we provide a simulation study to explore the performance of the change
point and trend detection method proposed in Section 6.5. We generate data sets for
different scenarios and apply the method for each data set. By this we can estimate the
number and location of change points, if there are some, and compare them to the true
ones, which we generated in the simulation process. Furthermore, we can use the model,
which is selected by this procedure, to predict the reserve and compare it to the true
reserve. To quantify the impact of neglected trends and change points on the accuracy of
the prediction in the original reserving method, we also predict the reserve by using the
original method without adjustments.
First, we give an overview of the simulation setup and then we explain the scenarios with
the choice of the parameters in detail. After that, we present the results for each scenario
and conclude the chapter with a discussion of these results.

7.1 Overview of simulation setup

In this study we focus on the additive model as original reserving model and therefore we
use loss ratios as data basis to analyze the loss development and predict the reserve. We
consider different scenarios and simulate 100 data sets per scenario. The data sets contain
N underwriting years with premiums and a N×N -matrix of loss ratios Mi,k, which define
the loss ratios of all underwriting years i and development years k, i, k = 1, . . . , N . The
loss ratios are generated by

Mi,k ∼ N
(
µi,k, σ

2
i,k

)
, i, k = 1, . . . , N, (7.1)

where µi,k are chosen scenario specific and discussed in detail in the next section. While
the upper triangle of loss ratios

{Mi,k | i+ k − 1 ≤ N}

defines the observed loss ratios, which we will use for model selection and prediction, the
lower triangle

{Mi,k | i+ k − 1 > N}

67
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is considered to be unknown and represents the true future loss development, which needs
to be predicted. But before we analyze the prediction, we want to examine the accuracy of
the change point detection of our approach. We are interested in the number and location
of identified change points in each simulated data set. For each scenario we investigate
whether each true change point was detected or not and the number of wrongly detected
change points. In a scenario without true change points the detection is considered correct,
when no change point is falsely identified.
Thereafter, we verify the precision of the reserve prediction by using the selected model,
which allows for trends and change points, and the impact of this adjustment compared to
the original additive reserving method. To make the absolute reserves and the derivations
between true and predicted reserve comparable, we fix the premiums for all simulated
data sets and all scenarios by some v1, . . . , vN . The reserve, as specified in Definition 3.2,
is given by

R =
N∑
i=2

Ri with Ri =
N∑

k=N−i+2

Si,k, i = 2, . . . , N,

where Si,k denote the incremental losses. By definition of loss ratios Mi,k, the incremental
losses are given by Si,k = vi ·Mi,k. It follows that for simulated data set l, for l = 1, . . . , 100,
we have the true reserve

R(l) =
N∑
i=1

Ri(l) with Ri(l) =
N∑

k=N−i+2

Si,k(l) = vi

N∑
k=N−i+2

Mi,k(l), i = 2, . . . , N,

where Mi,k(l) denote the realized loss ratios of simulation l. We compare the true reserve to
the predicted reserve with the proposed model of the presented model selection approach
from previous chapter. For each simulated data set l, the so predicted reserve is denoted
by R̂∗(l) and it holds

R̂∗i (l) =
N∑

k=N−i+2

Ŝi,k(l) = vi

N∑
k=N−i+2

M̂i,k(l), i = 2, . . . , N,

where we predict Mi,k as discussed in Section 6.5 by

M̂i,k = ψ̂(k)(i)

for some mean function of development year k = 1, . . . , N based on observations

{Mi,k(l) | i+ k − 1 ≤ N}.

Additionally, we estimate the reserve in the original additive reserving model as presented
in Section 3.3, where we introduced this loss reserving model, based on the upper triangle

{Si,k(l) | i+ k − 1 > N}

with realized incremental losses Si,k(l) = vi · Mi,k(l). We denote the predicted reserve

in the original additive reserving model R̂0. To compare the results we consider for the
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original and the new prediction model the deviation between the true and the predicted
reserve.
The deviation between the true reserve and the predicted reserve in simulation run l is
given by

R(l)− R̂(l), l = 1, . . . , N, for R̂ =

{
R̂0, original model,

R̂∗, new model.

We use these deviations to analyze both predictions of a scenario and calculate the average
absolute deviation

1

100

100∑
l=1

∣∣∣R(l)− R̂(l)
∣∣∣

and the mean squared error

1

100

100∑
l=1

(
R(l)− R̂(l)

)2
in each scenario for both models. Furthermore, we consider the mean relative error

1

100

100∑
l=1

∣∣∣R(l)− R̂(l)
∣∣∣

R(l)

in both cases as evidence for or against the accuracy of the estimated reserve.
Section 7.3 presents these results for all scenarios that we discuss in the next section
extensively.

7.2 Scenario design

In this section we finalize the simulation setup and describe the design of the scenarios in
detail. This simulation study comprises seven different scenarios, where we generate the
loss ratios from. We discuss the choice of reasonable values for the expected values µi,k
and variance parameters σ2

i,k in (7.1) for each scenario.
We set the number of underwriting years N to 30 and consider the following scenarios:

(S1) No change point and all development years have constant means

(S2) No change point, but there are trends in all development years

(S3) One change point in underwriting year τ = 15 with constant means before and after
the change point (Model A with one change point)

(S4) Same scenario as S3, but we increase the overall volatility parameters (Model A
with one change point)
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(S5) Two change points located in underwriting years τ1 = 10 and τ2 = 20 and additional
trends in development years (Model A with two change points)

(S6) One change point in calendar year τ = 15 with constant means before and after the
change point (Model B with one change point)

(S7) One change point in calendar year τ = 20 with constant means before the change
point and trends after the change point (Model B with one change point)

with 100 replicates in each scenario.
In scenario (S1) all development years have a constant mean, this means it holds

µS1i,k = µ(k) for all i, k = 1, . . . , 30

for some µ(1), . . . , µ(30). Since it is assumed that the loss ratios decrease exponentially to
zero, we define

µ(k) = exp{−0.8− 0.4 · k}, k = 1, . . . , 30, (7.2)

which yields the mean loss ratios per development year shown in Figure 14.

Figure 14: Expected loss ratios µS1i,k = µ(k) for all underwriting years i of development
years k in scenario (S1)

We define the limit of development years that we consider for trend and change point de-
tection by D = 10, since the losses are almost settled at that point. To define the variances
σ2
i,k we have to define the premiums v1, . . . , v30 at first, since we assume heteroscedasticity

in the original and the extended model with variances in the form

σ2
i,k =

σ2
k

vi
, i, k = 1, . . . , 30.

As mentioned before, for reasons of comparability we fix the premiums for all data sets.
Typically, the premiums of a portfolio are different for all underwriting years, but of similar
size. We use the randomly generated premiums, which are all more or less 10 million per
underwriting year, shown in Figure 15. We do not fix equal premiums for all underwriting
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Figure 15: Simulated premiums per underwriting year

years to allow for the different variances depending on the premiums as weights. But the
volume adjusted variance parameter σ2

k is assumed to be constant per development year.
We fix this parameter per development year so that all loss ratios M1,k, . . . ,MN,k have an
average variation coefficient of 0.3, which yields for variance parameters σ2

i,k

σi,k = 0.3 µ(k)

1√
vi

1
30

∑30
j=1

1√
vj

,

where we used the mean parameters µ(k), defined in (7.2). We fix these variances for all
scenarios except of Scenario 4, where we consider the impact of higher variances on the
accuracy of the change point detection.
For scenario (S2) we use the previously defined loss ratios µ(k) from (S1) as starting
point for each development year, but add a linear increasing trend of 2% per underwriting
year. This means we define the mean values in (S2) as

µS2i,k = µ(k) + 0.02 · µ(k) · i, i = 1, . . . , 30,

which is illustrated in Figure 16.

Figure 16: Expected loss ratios µS2i,k against underwriting years i per development year k
in scenario (S2)
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To generate the data sets for scenario (S3) we split the data in two blocks and define
the expected values for (S3) by

µS3i,k =

{
µ
(k)
1 = µ(k) for all i = 1, . . . , 15,

µ
(k)
2 = exp{−0.1− 0.4 · k} for all i = 16, . . . , 30,

k = 1, . . . , 30,

where we used the expected values µ(k) of scenario (S1) as loss ratios for the upper block
and defined the loss ratios for the lower block again as exponentially decreasing. The
expected loss ratios for both are plotted in Figure 17, which shows that we set the loss
ratios in the lower block higher compared to the loss ratios in older underwriting years.

Figure 17: Expected loss ratios µ
(k)
1 for the upper (green) and µ

(k)
2 for the lower (blue)

block of all development years in scenario (S3) and (S4)

For scenario (S4) we use the same expected values as defined in (S3), but double the
variances compared to the other scenarios. This means we set

µS4i,k = µS3i,k and σ∗i,k
2 = 2 · σ2

i,k

in order to investigate the impact of increasing volatility on the performance of the change
point detection and the accuracy of the predicted reserve.
Scenario (S5) is the most complex scenario with two change points and trends.We split
the data sets for this scenario in three blocks and define

µS5i,k =


µ(k) for all i = 1, . . . , 10

µ
(k)
2 − 0.07 · µ(k)

2 · i for all i = 11, . . . , 20
µS520,k for all i = 21, . . . , 30

for k = 1, . . . , 30,

which is illustrated in Figure 18. Here we used again the mean loss ratios µ(k) from
scenario (S1) as mean of the first segment of each development year. For the second

segments we used the means µ
(k)
2 , defined in scenario (S3), but only as intercept parameter

and added a strong decreasing trend. After the second change point the mean values for
the third segments of all development years remain constant at the reached level in the
previous segments. By this scenario we want to evaluate, whether complex scenarios with
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Figure 18: Expected loss ratios µS5i,k against underwriting years i per development year k
in scenario (S5)

many parameters can be identified, especially under consideration of the low number of
observations.
Scenarios (S3)-(S5) are three scenarios with change points in underwriting years, this
means they belong to Model A as defined in Section 6.5. To evaluate also the performance
of the method for detection of change points in calendar years we consider two more
scenarios of Model B.
For scenario (S6) we use the same values for the location of the change point and the
means before and after the change points as defined in (S3), but now the loss development
is separated by the change point τ = 15 in calendar year (instead of underwriting year).
That means, we define

µS6i,k =

{
µ(k) for all i ≤ 15− k + 1,

µ
(k)
2 for all i > 15− k + 1,

k = 1, . . . , 30,

which is illustrated in Figure 19.

Figure 19: Expected loss ratios µS6i,k against underwriting years i per development year k
in scenario (S6)
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Analogously, we define scenario (S7) as a scenario of Model B with one change point in
a calendar year but now located at τ = 20 and trend after this change points. We set

µS6i,k =

{
µ(k) for all i ≤ 20− k + 1,

µ
(k)
2 + 0.02 · µ(k)

2 for all i > 20− k + 1,
k = 1, . . . , 30,

where we used again the values µ(k) and µ
(k)
2 from scenario (S3), but added an increasing

trend after change point in calendar year τ = 20. The expected values of (S7) are shown
in Figure 20.

Figure 20: Expected loss ratios µS7i,k against underwriting years i per development year k
in scenario (S7)

Now we can generate data sets for each scenario and run the method defined in Section
6.5 to test for structural breaks in underwriting years and in calendar years by using
the R functions presented in Appendix A.2 and predict the reserve under consideration
of change points and trends. More details are given in Appendix B.1, there we present
the generated premiums and the setup of the simulation study in R and also the results,
which are described in the next section.

7.3 Simulation results

This section presents the results obtained in the simulation study for the discussed sce-
narios (S1)-(S7). For each scenario we analyze at first the number and locations of the
detected change points and compare them to the true change points of each scenario.
We count a detected change point in one of the simulated data sets as exact detected true
change point in case the underlying scenario has exactly this change point. The remaining
true change points with a detected change point in a range of the true change point ±5
are considered as at least nearly detected. For a data set with a true change point that is
neither exactly nor nearly detected, we mark the true change point as not detected. In the
case of scenario (S5) we analyze the two true change points separately. To evaluate the
accuracy of the change point detection per scenario we have to identify also the number
of detected change points, which are no true change points. Such a change point is a
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falsely detected change point. The results of the change point detection for all scenarios
are shown in Table 5.
The table shows that in both scenarios (S1) and (S2) without any true change point

Scenarios

change points (S1) (S2) (S3) (S4) (S5) (S6) (S7)

true change point in scenario no no one one 1st 2nd one one

total number exact detected 0 0 100 100 100 24 100 100

total number nearly detected 0 0 0 0 0 76 0 0

total number not detected 0 0 0 0 0 0 0 0

total number falsely detected 0 0 11 18 60 14 18

Table 5: Summary of detected change points for all scenarios with 100 data sets

actually also no change point was falsely identified as change point. In scenario (S3) with
a single change point we detected all true change points exactly, but identified 11 times
additional to the true change point falsely some point as change point. The number of
falsely detected changes point increases in scenario (S4) to 18. As expected, Scenario 6
and Scenario 7 show a similar picture to Scenario 3 and Scenario 4, which shows that the
method works for the detection of changes in underwriting years and calendar years. In
scenario (S5) we have two true change points, the first one was exactly detected in all
simulated data sets. The second change point was also identified in each case but in the
majority of cases only nearly, furthermore the number of falsely detected change points
is 60 in this scenario. We will discuss reasons for this in the next section, but to conclude
all true change points were detected.
Probably even more interesting is the accuracy of the predicted reserve especially com-
pared to the accuracy of the original reserving model. To measure the accuracy of estimates
we use the average absolute deviation, the mean squared error and the mean relative error,
which we defined in Section 7.1. We compare these statistical values for the predicted re-
serve based on the new model to the reserve predicted with the original model. The results
are presented in Table 6. As expected the table shows that for scenario (S1) the predicted
reserves are for both models very similar and close to the true reserve, but for all other
scenarios we have large differences in the predicted reserve and therefore in deviation to
the true reserve. While the predicted reserve taking the detected change points and trends
into account is in every scenario quite precise with a low absolute and relative deviation
to the true reserve, the original reserving method appears as not appropriate to predict
the reserve for scenarios (S2)-(S7). In scenario (S2), which comprises only an increasing
trend, the original reserving method neglects this and underestimates the reserve by more
than 20% or in volume terms in average about 6.5 million based on an average true reserve
of 30.1 million (see Appendix B.2) in this scenario. Scenarios (S3) and (S4) tell the same
story in case of a change point, more than 12 million difference in average to a true reserve
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(I) Deviations between true and predicted reserve with the new model

Scenarios

deviation (S1) (S2) (S3) (S4) (S5) (S6) (S7)

average absolute in mio 0.85 1.20 1.95 1.92 1.90 1.31 4.73

mean squared in billion rrr 109 238 526 667 355 287 2571

mean relative 4.4% 3.9% 5.0% 5.0% 7.8% 3.4% 9.7%

(II) Deviations between true and predicted reserve with the original model

Scenarios

deviation (S1) (S2) (S3) (S4) (S5) (S6) (S7)

average absolute in mio 0.80 6.54 12.77 12.58 3.01 8.24 20.4

mean squared in billion rrr 102 4392 16467 16073 978 6946 41830

mean relative 4.1% 21.6% 32.9% 32.5% 15.4% 21.3% 42.0%

Table 6: Comparison of prediction accuracy between new (I) and original (II) model

of about 38 million shows that the predicted reserve is not accurate. The result expressed
as a percentage is an underestimation of the reserve by more than 32%. In contrast, the
proposed model achieves more precise predictions, we have average absolute deviations of
a few percentage points. Under consideration of the random deviation of the true reserve,
which makes an exact prediction impossible, the predicted reserve by the new method
proves as very accurate. Furthermore the new method shows random deviations in both
directions, while the original method shows for all scenarios (S2)-(S7) a systematic over-
or underestimation depending on the set-up of the scenario. Even for the complex scenario
(S5) with two change points and a trend, the new method performed better compared
to the original method. The results of scenario (S6) and scenario (S7) show that also in
case of change points in calendar year we achieve with the new method more accurate
predictions than the original method. Also the mean squared errors confirm the complete
picture of clearly better prediction results in case of trends and change points compared
to the original reserving model.

7.4 Discussion

By these results we can draw conclusions with regard to the accuracy of the detected
change points on the one hand and the precision of the predicted reserve on the other
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hand.
With the proposed method we were able to identify each true change point in all scenarios,
both in underwriting and in calendar years. For scenarios (S3), (S4), (S6) and (S7) and
the first change point of scenario (S5) this detection was totally exact, only the second
true change point in (S5) is harder to detect exact. The reason for that is pretty clear,
when the transition from one segment to the next is without a jump from one level to
another but instead continuous, it is more difficult to identify the exact point, where the
change is located. Nevertheless, we were able to identify the second true change point in
this scenario at least nearly and in most data sets the true change point was only one point
away. The fact, that there are some wrongly identified change points shows that the change
point detection is sensitive and tends to slightly overfit the number of change points. But
in both scenarios without change point no point was falsely identified as change point,
which verifies that this overestimation of change points seems to happen only in case the
data is actually disturbed by one or more change points. Scenario (S4) indicates that
by increasing the common variance also the sensitivity increases, which is quite obvious.
We should keep in mind that we do not have many observations per development year
and change points divide these observations into even smaller connected sets, thus, it is
clear that a precise estimation is increasingly complex with increasing parameters, which
is again confirmed by scenario (S5) and scenario (S7). Therefore, the more structural
changes and the higher the volatility for a low number of observations, the more sensitive
the change point detection. It follows, in case more than one change point is detected
it can be helpful to analyze how significant the change points are. For that one can use
the change point analysis per development year presented in Section 6.3. If for most
development years a model with exactly these change points is the model with lowest
BIC and the difference to the model with only one change point is clearly, then this is an
explicit evidence that all change points are actually true change points. But if we do not
trust a change point, the selected model can be easily adjusted by removing this change
point and using the maximum likelihood estimates in the model without this change point
for prediction.
The comparison of the accuracy of the predicted reserves points out two aspects. The
first one is that the proposed model proves as an appropriate way to predict the reserve,
the predicted reserve is accurate in all tested scenarios. Only scenarios S5 and S7 differ
from the 3-5 percent of other scenarios with slightly higher variance. The reason for the
higher absolute deviation in both scenarios is that the last point is later than in the other
scenarios and thus, the last segment on which the prediction is based is shorter. Again a
smaller number of observations makes it more difficult to make a precise prediction, but
compared to the original method the prediction accuracy is still clearly better.
In contrast, the original reserving method seems to be not sufficient to predict the reserve
in case the data basis is disturbed by change points or trends. Scenarios (S2)-(S7) show
that neglecting trends and structural changes in the loss data leads to bad estimations
for the reserve. The relative error in the original model is at least double up to almost
seven times as high as in the new model for these scenarios. Only if no trends and change
points appear, which is rather untypical in practice, the classic model assumptions are
fulfilled and the original model should be used. In case the data shows only change points
but no trends the original reserving method can be used by ignoring the data before the
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last change occurred, but even in this case a method is required to detect these changes.
If trends are contained, the original method is not applicable at all. An increasing trend
will always lead to an underestimation and a decreasing trend to an overestimation of the
reserve, when the model is not adjusted.
Note that the results and the conclusions depend strong on the assumed scenarios. This
includes the assumption of a normal distribution. We chose the normal distribution for
two main reasons. The first one is because the maximum likelihood estimates correspond
to the estimates in the original reserving models, which provide the basis for the proposed
extension. Secondly, we need a distribution, which allows for negative values, since we
discussed in Section 3.1, that there can be negative incremental losses. Using a method
which is restricted to a positive response is therefore often not applicable in practice.
But since typically log-normal or gamma distribution is used to model loss data, we
investigated the impact on the outcome when using a different distribution assumption.
For this we used the expected values and variances of scenario (S3), but generated the
loss ratios from a log-normal distribution. We applied the proposed new method without
any adjustment, i.e. we used a normal distribution to fit the data. The results as well
as the code used to generate the data sets and results are given in detail in Appendix
B.2. These results show that the proposed method is efficient even if the observed data
is not normally distributed. We detected all true change points exactly and the predicted
reserve is again very accurate with an average discrepancy of only 4.7% to the true reserve,
while the original method gives no accurate estimates in case the data is disturbed by a
change point. This certifies that the proposed method is robust even if the assumption of
a normal distribution is not fulfilled.
To conclude, the proposed method solves two issues of the original method, which can
lead to an inadequate estimation of the reserve at once, namely trends and change points.
No separate analysis for both is required and we have shown in the simulation study that
using the model, which includes the detected change points and trends, appears as an
improved method to predict the reserve accurately.



Conclusion

In this thesis we provided an approach to detect changes and abrupt breaks in claims
data of non-life business portfolios, which form the basis for the assessment of the claims
reserve and in an internal model also for the underwriting risk resulting from fluctuations
in the claims settlement.
We modified two established reserving models by integrating trends and change points
based on the theory of linear models and change point analysis. After describing the nec-
essary framework and theoretical basics, we proposed a statistical method to investigate
the loss history for structural changes. Then, we adapted this method to combine more
development years in order to automatize the analyses and model selection, which we
evaluated by means of a simulation study. By application of the presented method we de-
tected all change points and using the selected model, which allows for trends and change
points, for prediction of the reserve demonstrated precise prediction results. On the other
hand it does not appear appropriate to predict the reserve in the presence of trends and
change points by the original models without any adjustment.
The promising results provide opportunity for further research. In future work, it would
be interesting to evaluate in detail the impact of change points and trends on the assess-
ment of the premium and reserve risk. As we explained in Chapter 4, in an internal model
the original reserving models are also used for the quantification of the premium risk and
reserve risk. Obviously the uncertainty of the prediction cannot be correctly measured in
case the past claims history is not modeled adequately, thus, the results of this thesis ap-
ply equally for risk modeling purposes as for the reserving. We expect similar results, but
this should also be quantified in the same manner as for the reserve based on a simulation
study but by assessing the fluctuation of the claims settlement.
Furthermore, the robustness of the methodology can be further extended with regard to
practical application. Currently the data should not contain obvious outliers, since these
can distort the results. Therefore, instead of cleaning up the data to avoid outliers before
application of our proposed method, this could be easily integrated in the method to
further advance automatization.
Already from the current results we can draw important conclusions. We believe that it
is essential to analyze the claims history precisely and ensure that in case there are any
structural breaks, they will be detected. Besides change points we should also pay atten-
tion to trends, because they can have a strong leverage on the future claims development.
In practice, standard models without trend consideration are widely used for reserving
and risk modeling purposes and if the data is analyzed for change points then on the
basis of expert judgment. The presented approach is an objective analytical method to
identify both change points and trends. This can improve analyses, model decisions and
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results and furthermore, it can help to justify these decisions to regulatory supervision.
As we have seen, only when the observed claims development is precisely analyzed, its
structural behavior understood and appropriately modeled, it is possible to use the past
claims to predict the future claims development accurately and thus the claims reserve
and the risk capital. Keeping in mind, the enormous relevance of an adequate valuation of
reserves and risk capital for insurance companies, the practical benefit of an application
based on the ideas of this thesis becomes evident.



Appendix A

R Code

This appendix provides R code for the change point analysis per development year ap-
proach proposed in Section 6.3 and the R Code for the automatized model selection
approach presented in Section 6.5, which is used for the simulation study in Chapter 7.
We use no available package for change point detection, only the package pracma (2017)
for some calculations.

We consider a data set with some N × N -matrix losses, which defines the incremental
loss triangle, and a N -dimensional vector premium for the premiums of all underwrit-
ing years. We can define the response and the weights depending on the chosen original
reserving model by the following commands.

#ca l c u l a t e observed l o s s r a t i o s and development f a c t o r s
M<− l o s s e s /premium
F<−cbind ( apply ( l o s s e s [ ( 1 : (N−1) ) , 1 : 2 ] , 1 , sum) / l o s s e s [ 1 : (N−1) , 1 ] , sapply ( 3 :N, func t i on (k ){apply ( l o s s e s

[ 1 : (N−1) , 1 : k ] , 1 , sum) /apply ( l o s s e s [ , 1 : ( k−1) ] , 1 , sum) }) )

#choose type=”add” f o r the add i t i v e r e s e r v i ng model and type=”mult” f o r the mu l t i p l i c a t i v e r e s e r v i ng
model

i f ( type==”add” ){
Y=M
W=matrix (premium ,N,N)
} e l s e {

Y=F
W=cbind ( l o s s e s [ 1 : (N−1) , 1 ] , sapply ( 2 : (N−2) , func t i on (k ){c ( apply ( l o s s e s [ 1 : (N−k ) , 1 : k ] , 1 , sum) , rep (NA, k

−1) ) }) )
N=N−1

}

Note that we shifted all development years in the multiplicative model by −1 in order to
start from DY 1. We will need this later.

A.1 Analysis per development year

In this section we present the commands and defined functions to perform change point
analysis per development year. We consider a fixed development year k and start with
models of type I. We fit the data of this development year to Model 1a and Model 1b to
calculate the BIC for both.
y=Y[ 1 : (N−k+1) , k ]
w=W[ 1 : (N−k+1) , k ]
n=length (y )

#f i t models
model1a=lm(y˜ 1 , weights=w)
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model1b=lm(y˜c ( 1 : n) , weights= w)

#ca l c u l a t e sum of squared r e s i d u a l s
SS1a=sum(w∗ (model1a$ r e s i d u a l s ) ˆ2)
SS1b=sum(w∗ (model1b$ r e s i d u a l s ) ˆ2)

#ca l c u l a t e BIC
Q1a=2∗ l og (n)+n∗ ( l og (2∗pi ∗SS1a/n)+1)−sum( log (w) )
Q1b=3∗ l og (n)+n∗ ( l og (2∗pi ∗SS1b/n)+1)−sum( log (w) )

Q1a is the BIC of Model 1a and Q1b is the BIC of Model 1b. We compare the BIC of
all models to the BIC Q1a of Model 1a and analyze the difference between the BICs to
decide if there is evidence against the base model and how strong it is. For a graphical
illustration of Model 1a vs. Model 1b we use:
mu1a=pred i c t (model1a )
mu1b=pred i c t (model1b )

par (mfrow=c (1 ,2 ) )
p lo t (y , main=paste ( ”Model 1a with BIC” , round (Q1a , 2 ) ) )
l i n e s ( c ( 1 : n) ,mu1a , c o l=”blue ” )
p lo t (y , main=paste ( ”Model 1b with BIC” , round (Q1b , 2 ) ) )
l i n e s ( c ( 1 : n) ,mu1b , c o l=”blue ” )

Next step is to find the optimal location of the change point τ for Model 2a and Model 2b
of type II. We choose for each model the one with the smallest sum of squared residuals,
since this yields the maximum possible likelihood for both models.
SS2a<−SS2b<−rep (NA, n−1)
#t e s t a l l tau , but we want a minimum segment length o f 3

f o r ( tau in 3 : ( n−3) ){
model2a . l e f t=lm(y [ 1 : tau ] ˜ 1 , weights=w[ 1 : tau ] )
model2a . r i gh t=lm(y [ ( tau+1) : n ] ˜ 1 , weights=w[ ( tau+1) : n ] )
SS2a [ tau ]=sum(w[ 1 : tau ] ∗model2a . l e f t $ r e s i d u a l s ˆ2)+sum(w[ ( tau+1) : n ] ∗model2a . r i gh t $ r e s i d u a l s ˆ2)
model2b . l e f t=lm(y [ 1 : tau ] ˜c ( 1 : tau ) , weights=w[ 1 : tau ] )
model2b . r i gh t=lm(y [ ( tau+1) : n ] ˜c ( 1 : ( n−tau ) ) , weights=w[ ( tau+1) : n ] )
SS2b [ tau ]=sum(w[ 1 : tau ] ∗model2b . l e f t $ r e s i d u a l s ˆ2)+sum(w[ ( tau+1) : n ] ∗model2b . r i gh t $ r e s i d u a l s ˆ2) }

#choose tau with minimal sum of squared r e s i d u a l s
tau . a=which . min ( SS2a )
tau . b=which . min ( SS2b )

#ca l c u l a t e BIC
Q2a=4∗ l og (n)+n∗ ( l og (2∗pi ∗SS2a [ tau . a ] /n)+1)−sum( log (w) )
Q2b=6∗ l og (n)+n∗ ( l og (2∗pi ∗SS2b [ tau . b ] /n)+1)−sum( log (w) )

The graphics for models 2a and models 2b are generated by
mu.a=c(predict(lm(y[1: tau.a]~1,weights=w[1:tau.a])),predict(lm(y[(tau.a+1):n]~1,weights=w[(tau.a+1):n])))

mu.b=c(predict(lm(y[1: tau.b]~c(1:tau.b),weights=w[1:tau.b])),predict(lm(y[(tau.b+1):n]~c(1:(n-tau.b)),weights=w[(tau.b

+1):n])))

par(mfrow=c(1,2))

plot(y,main=paste("Model 2a with BIC", round(Q2a ,2)))

lines(c(1:tau.a),mu.a[1:tau.a],col="blue")

lines(c((tau.a+1):n),mu.a[(tau.a+1):n],col="blue")

plot(y,main=paste("Model 2b with BIC", round(Q2b ,2)))

lines(c(1:tau.b),mu.b[1:tau.b],col="blue")

lines(c((tau.b+1):n),mu.b[(tau.b+1):n],col="blue")

For models for type III we run a penalized likelihood approach to find the optimal number
and location of change points and use the following:

cp=r e p l i c a t e ( ( n+1) , l i s t (0 ) )
model=r e p l i c a t e (n , l i s t (SS=0, p=0, parameter=c (0 , 0 , 0 , 0 , 0 ) , Q=NA) )

#su c c e s s i v e approach
f o r ( tau in 3 : (N−k−2) ){ # minimum segment length o f 3

index=c (1 , which ( ( c ( 1 : tau )<=(tau−2) )&( c ( 1 : tau )>3) ) )
in te r im . models<−sapply ( index , func t i on ( t ){ f i t .DY(y , t , tau ,w, prev ious . model=model [ , t ] ) })
problem<−sapply ( 1 : l ength ( index ) , func t i on ( t ){ i n te r im . models [ , t ] $Q})
tau . s t a r=which . min ( problem )
model [ , tau+1]= inte r im . models [ , tau . s t a r ]
cp [ [ ( tau+1) ] ]= unique ( c ( cp [ [ index [ tau . s t a r ] ] ] , tau ) ) }

#choose model with minimal BIC
q<−which . min (model [ 4 , ] )
Q=model [ 4 , q ] $Q
cpts<−cp [ [ q ] ]
#check i f Model 1a or Model 1b with m=0 has lower cost , then t h i s i s optimal

i f (min (Q1a ,Q1b)<=Q){
Q$Q=min(Q1a ,Q1b)
cpts=NA

i f (Q1a<=Q1b){
mu=rep (model1a$ c o e f f i c i e n t s , n)
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} e l s e { mu=model1b$ c o e f f i c i e n t s [1 ]+ c ( 1 : n)∗model1b$ c o e f f i c i e n t s [ 2 ] }
} e l s e {

parameter=model [ 3 , ( cpts+1) ]
l=length ( cpts )
mu=numeric (0 )
f o r ( j in 2 : l ){ mu= c (mu, ( parameter [ [ j ] ] [ 1 ] + parameter [ [ j ] ] [ 2 ] ∗c ( 1 : ( cpts [ j ]− cpts [ j −1]) ) ) ) }
mu=c (mu, ( parameter [ [ l ] ] [ 4 ] + parameter [ [ l ] ] [ 5 ] ∗c ( 1 : ( n−cpts [ l ] ) ) ) )
cpts=cpts [ which ( cpts !=0) ]

}

Here we used the function fit.DY, which fits the best model with last change point tau
based on the previous calculated models with last change point at t before tau. This
function is defined as:

f i t .DY<−f unc t i on (y , t , tau ,w, prev ious . model ){
n=length (y )

#try a l l p o s s i b l e models f o r segment t : tau
model . a<−lm(y [ t : tau ] ˜c ( 1 : ( tau−t+1) )+1,weights=w[ t : tau ] ) #two new parameters : s l ope and i n t e r c ep t
model . b<−lm(y [ t : tau ] ˜ 1 , weights=w[ t : tau ] ) #one new parameter : j u s t in t e r c ep t , no s l ope
model . c<−lm( I ( y [ t : tau ]−prev ious . model [ [ 3 ] ] [ 3 ] − prev ious . model [ [ 3 ] ] [ 2 ] ∗c ( 1 : ( tau−t+1) ) ) ˜c ( 1 : ( tau−t+1) )

−1,weights=w[ t : tau ] ) #one new parameter : s l ope change
model . d<−lm( I ( y [ t : tau ]−prev ious . model [ [ 3 ] ] [ 3 ] ) ˜ 0 , weights=w[ t : tau ] ) #no new parameter : model s tays at

l a t e s t l e v e l
models=l i s t (model . a , model . b , model . c , model . d )
SS=sapply ( 1 : 4 , func t i on ( l ){sum(w[ t : tau ] ∗ ( models [ [ l ] ] $ r e s i d u a l s ) ˆ2) })

#now models f o r tau+1:n
model2 . a<−lm(y [ ( tau+1) : n ] ˜c ( 1 : ( n−tau ) )+1,weights=w[ ( tau+1) : n ] ) #two new parameters : s l ope and

i n t e r c ep t
model2 . b<−lm(y [ ( tau+1) : n ] ˜ 1 , weights=w[ ( tau+1) : n ] ) #one new parameter : j u s t in t e r c ep t , no s l ope

#the other two models depend on the prev ious f i t t e d segment
SS . r i gh t=c (sum(w[ ( tau+1) : n ] ∗ (model2 . a$ r e s i d u a l s ) ˆ2) ,sum(w[ ( tau+1) : n ] ∗ (model2 . b$ r e s i d u a l s ) ˆ2) )
p=c (2 , 1 , 1 , 0 , 2 , 1 )
a=c ( coe f (model . a ) [ 1 ] , c o e f (model . b ) [ 1 ] , p rev ious . model [ [ 3 ] ] [ 3 ] , p rev ious . model [ [ 3 ] ] [ 3 ] )
b=c ( coe f (model . a ) [ 2 ] , 0 , p rev ious . model [ [ 3 ] ] [ 2 ] + coe f (model . c ) [ 1 ] , 0 )
L=4
i f ( t==1){ L=2} #i f t=1 t h i s i s the f i r s t segment and we al low only f o r model a or b
Q=matrix (NA,L , 4 )
a . r i gh t=cbind ( rep ( co e f (model2 . a ) [ 1 ] , L) , rep ( co e f (model2 . b) [ 1 ] , L) , matrix (NA,L , 2 ) )
b . r i gh t=cbind ( rep ( co e f (model2 . a ) [ 2 ] , L) , rep (0 ,L) , matrix (NA,L , 2 ) )
new . l e v e l=a+(tau−t+1)∗b #l a t e s t l e v e l o f segment t : tau depending f o r a l l p o s s i b l e models
SS . r e s t<−matrix (NA,L , 2 )

#now we c a l c u l a t e the co s t Q f o r each combination o f f i r s t and second model
f o r ( l in 1 :L){

f o r ( q in 1 : 2 ) {
Q[ l , q]=n∗ ( l og (2∗pi ∗ ( prev ious . model [ [ 1 ] ] + SS [ l ]+SS . r i gh t [ q ] ) / (n) )+1)−sum( log (w) )+ ( prev ious . model

[ [ 2 ] ] + p [ l ]+p[(4+q) ]+2)∗ l og (n) }
model2 . c<−lm( I ( y [ ( tau+1) : n]−new . l e v e l [ l ]−b [ l ] ∗c ( 1 : ( n−tau ) ) ) ˜c ( 1 : ( n−tau ) )−1,weights=w[ ( tau+1) : n ] )
model2 . d<−lm( I ( y [ ( tau+1) : n]−new . l e v e l [ l ] ) ˜ 0 , weights=w[ ( tau+1) : n ] )
a . r i gh t [ l , 3 : 4 ]= c (new . l e v e l [ l ] , new . l e v e l [ l ] )
b . r i gh t [ l , 3 : 4 ]= c (b [ l ]+ coe f (model2 . c ) [ 1 ] , 0 )
SS . r e s t [ l , ]= c (sum(w[ ( tau+1) : n ] ∗ (model2 . c$ r e s i d u a l s ) ˆ2) ,sum(w[ ( tau+1) : n ] ∗ (model2 . d$ r e s i d u a l s ) ˆ2) )
Q[ l ,3 ]=n∗ ( l og (2∗pi ∗ ( prev ious . model [ [ 1 ] ] + SS [ l ]+SS . r e s t [ l , 1 ] ) / (n) )+1)−sum( log (w) )+ ( prev ious . model

[ [ 2 ] ] + p [ l ]+1+2)∗ l og (n)
Q[ l ,4 ]=n∗ ( l og (2∗pi ∗ ( prev ious . model [ [ 1 ] ] + SS [ l ]+SS . r e s t [ l , 2 ] ) / (n) )+1)−sum( log (w) )+ ( prev ious . model

[ [ 2 ] ] + p [ l ]+2)∗ l og (n) }
best . l=which (Q==min(Q) , a r r . ind=TRUE) [ 1 , 1 ]
best . r=which (Q==min(Q) , a r r . ind=TRUE) [ 1 , 2 ]
re turn ( l i s t (SS=(prev ious . model [ [ 1 ] ] + SS [ best . l ] ) , p=(prev ious . model [ [ 2 ] ] + p [ best . l ]+1) , parameter=c ( a

[ best . l ] , b [ best . l ] , new . l e v e l [ best . l ] , a . r i g h t [ best . l , best . r ] , b . r i gh t [ best . l , best . r ] ) , Q=
min(Q) ) )

}

The final Q is the BIC of the optimal model with change points located at cpts. We can
plot the final model with lowest BIC by:

p lo t (y , main=paste ( ”Model 3 with BIC” , round (Q, 2 ) ) , xlab=”Underwrit ing Years” , ylab=”Loss Rat ios ” , pch=16)
i f ( any ( i s . na ( cpts ) ) ){

l i n e s ( c ( 1 : n) ,mu, c o l=”blue ” )
} e l s e {
l i n e s ( c ( 1 : cpts [ 1 ] ) ,mu[ 1 : cpts [ 1 ] ] , c o l=”blue ” )
i f ( l ength ( cpts )>1){

f o r ( l in 2 : l ength ( cpts ) ){
l i n e s ( c ( ( cpts [ l −1]+1) : cpts [ l ] ) ,mu[ ( cpts [ l −1]+1) : cpts [ l ] ] , c o l=”blue ” ) }}

l i n e s ( c ( ( cpts [ l ength ( cpts ) ]+1) : n) , mu[ ( cpts [ l ength ( cpts ) ]+1) : n ] , c o l=”blue ” )
ab l i n e (v=cpts +0.5 , c o l=” red ” ) }
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A.2 Automatized model selection

In this section we present the approach to find the optimal number and location of change
points for more development years, at first located at the same underwriting years (Model
A) and then in the same calendar years (Model B). The limit D is denoted DY s in the
code below. We need three slightly different functions for Model A and Model B. The
first one starts with m = 0, i.e. fits the best model per development year without change
points but allows for trends and is equal for Model A and Model B.
typeI<−f unc t i on (Y,W,N,DYs,U){ # U i s the t o t a l number o f obse rva t i on s
#f i t model with and without f o r a l l DYs

model1a=sapply ( 1 :DYs , func t i on (k ){lm(Y[ 1 : (N−k+1) , k ] ˜ 1 , weights=W[ 1 : (N−k+1) , k ] ) })
model1b=sapply ( 1 :DYs , func t i on (k ){lm(Y[ 1 : (N−k+1) , k ] ˜c ( 1 : (N−k+1) ) , weights=W[ 1 : (N−k+1) , k ] ) })

#ca l c u l a t e sum of squared r e s i d u a l s
SS1a=sapply ( 1 :DYs , func t i on (k ){sum(W[ 1 : (N−k+1) , k ] ∗ (model1a [ , k ] $ r e s i d u a l s ) ˆ2) })
SS1b=sapply ( 1 :DYs , func t i on (k ){sum(W[ 1 : (N−k+1) , k ] ∗ (model1b [ , k ] $ r e s i d u a l s ) ˆ2) })

#ca l c u l a t e co s t per development year
Q1a=sapply ( 1 :DYs , func t i on (k ) {2∗ l og (U)+(N−k+1)∗ l og (2∗pi ∗SS1a [ k ] / (N−k+1) ) })
Q1b=sapply ( 1 :DYs , func t i on (k ) {2∗ l og (U)+(N−k+1)∗ l og (2∗pi ∗SS1b [ k ] / (N−k+1) ) })

#choose minimal per development year
mu=sapply ( 1 :DYs , func t i on (k ){ i f (Q1a [ k]<=Q1b [ k ] ) {

rep (model1a [ , k ] $ c o e f f i c i e n t s ,N)
} e l s e {model1b [ , k ] $ c o e f f i c i e n t s [1 ]+model1b [ , k ] $ c o e f f i c i e n t s [ 2 ] ∗c ( 1 :N) }})
Q=sapply ( 1 :DYs , func t i on (k ){ i f (Q1a [ k]<=Q1b [ k ] ) {

Q1a [ k ]
} e l s e { Q1b [ k ] }})
p=rep (2 ,DYs)
p [ which (Q==Q1b) ]=3
parameter=sapply ( 1 :DYs , func t i on (k ){ i f (Q1a [ k]<=Q1b [ k ] ) {

c (model1a [ , k ] $ c o e f f i c i e n t s [ 1 ] , 0 )
} e l s e { c (model1b [ , k ] $ c o e f f i c i e n t s [ 1 ] , model1b [ , k ] $ c o e f f i c i e n t s [ 2 ] ) }})
re turn ( l i s t (Q. t o t a l=sum(Q) ,Q=Q,mu=mu, parameter=parameter , p=p) )

}

The selected µ in by the function are the predicted values per development year in case
the selected model without change points has minimal cost. We need the function later
for the main function, where all possible models with m > 0 are tested. There we need
again a function that fits the optimal model to the last segments based on the previous
models. This is given for Model A by the following function, which is an extension of the
function fit.DY() presented in the previous section of this appendix.

f i t<−f unc t i on (y , t , tau ,w, prev ious . model ,N,DYs ,U, typI ){
nSS<−nQ<−rep (0 ,DYs)
np<−rep (0 , (DYs+1) )
nparameter=matrix (0 ,5 ,DYs)
K=DYs
i f ( (N−tau+1)<=DYs){

f o r ( j in (N−tau+1) :DYs){
nSS [ j ]= prev ious . model$SS [ j ]
np [ j ]= prev ious . model$p [ j ]
nparameter [ , j ]= prev ious . model$parameter [ , j ]
nQ[ j ]= prev ious . model$Q[ j ]
i f ( t==1){

nQ[ j ]= typI $Q[ j ]
np [ j ]= typI $p [ j ]
nparameter [ , j ]=c ( typI $parameter [ , j ] ,NA, NA,NA)

}
}
K=N−tau

}
model . a<−sapply ( 1 :K, func t i on (k ){lm(Y[ t : tau , k ] ˜c ( 1 : ( tau−t+1) )+1, weights=W[ t : tau , k ] ) })
model . b<−sapply ( 1 :K, func t i on (k ){lm(Y[ t : tau , k ] ˜ 1 , weights=W[ t : tau , k ] ) })
model . c<−sapply ( 1 :K, func t i on (k ){lm( I (Y[ t : tau , k]−prev ious . model$parameter [ 3 , k]−c ( 1 : ( tau−t+1) )∗

prev ious . model$parameter [ 2 , k ] ) ˜c ( 1 : ( tau−t+1) )−1, weights=W[ t : tau , k ] ) })
model . d<−sapply ( 1 :K, func t i on (k ){lm( I (Y[ t : tau , k]−prev ious . model$parameter [ 3 , k ] ) ˜ 0 , weights=W[ t : tau , k

] ) })
model . e<−sapply ( 1 :K, func t i on (k ){lm( I (Y[ t : tau , k]−prev ious . model$parameter [ 3 , k]−c ( 1 : ( tau−t+1) )∗

prev ious . model$parameter [ 2 , k ] ) ˜ 0 , weights=W[ t : tau , k ] ) })
models=l i s t (model . a , model . b , model . c , model . d , model . e )
SS . l e f t=sapply ( 1 : 5 , func t i on ( l ){ sapply ( 1 :K, func t i on (k ){sum(W[ t : tau , k ] ∗ ( models [ [ l ] ] [ , k ] $ r e s i d u a l s ) ˆ2)

}) })
p=c (2 , 1 , 1 , 0 , 0 , 2 , 1 )
model2 . a<−sapply ( 1 :K, func t i on (k ){lm(Y[ ( tau+1) : (N−k+1) , k ] ˜c ( 1 : (N−k+1−tau ) )+1, weights=W[ ( tau+1) : (N−k

+1) , k ] ) })
model2 . b<−sapply ( 1 :K, func t i on (k ){lm(Y[ ( tau+1) : (N−k+1) , k ] ˜ 1 , weights=W[ ( tau+1) : (N−k+1) , k ] ) })
a<−sapply ( 1 :K, func t i on (k ){c (model . a [ , k ] $ c o e f f i c i e n t s [ 1 ] , model . b [ , k ] $ c o e f f i c i e n t s [ 1 ] , p rev ious . model$

parameter [ 3 , k ] , p rev ious . model$parameter [ 3 , k ] , p rev ious . model$parameter [ 3 , k ] ) })
b<−sapply ( 1 :K, func t i on (k ){c (model . a [ , k ] $ c o e f f i c i e n t s [ 2 ] , 0 , prev ious . model$parameter [ 2 , k]+model . c [ , k ] $

c o e f f i c i e n t s [ 1 ] , 0 , p rev ious . model$parameter [ 2 , k ] ) })
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SS . r i gh t=cbind ( sapply ( 1 :K, func t i on (k ){sum(W[ ( tau+1) : (N−k+1) , k ] ∗ (model2 . a [ , k ] $ r e s i d u a l s ) ˆ2) }) , sapply
( 1 :K, func t i on (k ){sum(W[ ( tau+1) : (N−k+1) , k ] ∗ (model2 . b [ , k ] $ r e s i d u a l s ) ˆ2) }) )

L=5
i f ( t==1){ L=2}
Q=array (NA, dim=c (L , 5 ,K) )
a . r=sapply ( 1 :K, func t i on (k ){c (model2 . a [ , k ] $ c o e f f i c i e n t s [ 1 ] , model2 . b [ , k ] $ c o e f f i c i e n t s [ 1 ] , 0 , 0 , 0 ) })
b . r=sapply ( 1 :K, func t i on (k ){c (model2 . a [ , k ] $ c o e f f i c i e n t s [ 2 ] , 0 , 0 , 0 , 0 ) })
a . r i g h t=r e p l i c a t e (L , a . r )
b . r i gh t=r e p l i c a t e (L , b . r )
SS . r e s t<−array (NA, dim=c (L , 3 ,K) )
new . l e v e l=sapply ( 1 :L , func t i on ( l ){a [ l , ]+( tau−t+1)∗b [ l , ] } )
f o r ( l in 1 :L){

f o r ( q in 1 : 2 ) {
Q[ l , q , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r i gh t [ , q ] ) /c (N: (N−K+1) ) )+ (

prev ious . model$p [ 1 :K]+p [ l ]+p[(5+q) ] ) ∗ l og (U)
}
mu2=sapply ( 1 :K, func t i on (k ){ mu2=a [ l , k]+c ( 1 : (N−k+1−tau ) )∗b [ l , k ]} )
model2 . c<−sapply ( 1 :K, func t i on (k ){lm( I (Y[ ( tau+1) : (N−k+1) , k]−new . l e v e l [ k , l ]−c ( 1 : (N−k+1−tau ) )∗b [ l , k ] )

˜c ( 1 : (N−k+1−tau ) )−1, weights=W[ ( tau+1) : (N−k+1) , k ] ) })
model2 . d<−sapply ( 1 :K, func t i on (k ){lm( I (Y[ ( tau+1) : (N−k+1) , k]−new . l e v e l [ k , l ] ) ˜ 0 , weights=W[ ( tau+1) : (N

−k+1) , k ] ) })
model2 . e<−sapply ( 1 :K, func t i on (k ){lm( I (Y[ ( tau+1) : (N−k+1) , k]−new . l e v e l [ k , l ]−c ( 1 : (N−k+1−tau ) )∗b [ l , k ] )

˜ 0 , weights=W[ ( tau+1) : (N−k+1) , k ] ) })
a . r i gh t [ 3 , , l ]<−new . l e v e l [ , l ]
a . r i gh t [ 4 , , l ]<−new . l e v e l [ , l ]
a . r i gh t [ 5 , , l ]<−new . l e v e l [ , l ]
b . r i gh t [ 3 , , l ]=b [ l , ]+ sapply ( 1 :K, func t i on (k ){model2 . c [ , k ] $ c o e f f i c i e n t s [ 1 ] } )
b . r i gh t [ 4 , , l ]= rep (0 ,K)
b . r i gh t [ 5 , , l ]=b [ l , ]
SS . r e s t [ l , , ]= rbind ( sapply ( 1 :K, func t i on (k ){sum(W[ ( tau+1) : (N−k+1) , k ] ∗ (model2 . c [ , k ] $ r e s i d u a l s ) ˆ2) }) ,

sapply ( 1 :K, func t i on (k ){sum(W[ ( tau+1) : (N−k+1) , k ] ∗ (model2 . d [ , k ] $ r e s i d u a l s ) ˆ2) }) , sapply ( 1 :K,
func t i on (k ){sum(W[ ( tau+1) : (N−k+1) , k ] ∗ (model2 . e [ , k ] $ r e s i d u a l s ) ˆ2) }) )

Q[ l , 3 , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r e s t [ l , 1 , ] ) /c (N: (N−K+1) ) )+ (
prev ious . model$p [ 1 :K]+p [ l ]+1)∗ l og (U)

Q[ l ,4 , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r e s t [ l , 2 , ] ) /c (N: (N−K+1) ) )+ (
prev ious . model$p [ 1 :K]+p [ l ] ) ∗ l og (U)

Q[ l ,5 , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r e s t [ l , 3 , ] ) /c (N: (N−K+1) ) )+ (
prev ious . model$p [ 1 :K]+p [ l ] ) ∗ l og (U)

}
f o r ( k in 1 :K){

nQ[ k]=min (Q[ , , k ] )
best . l=which (Q[ , , k]==min(Q[ , , k ] ) , a r r . ind=TRUE) [ 1 , 1 ]
best . r=which (Q[ , , k]==min(Q[ , , k ] ) , a r r . ind=TRUE) [ 1 , 2 ]
nSS [ k]= prev ious . model$SS [ k]+SS . l e f t [ k , best . l ]
np [ k]= prev ious . model$p [ k]+p [ best . l ]
nparameter [ , k]=c ( a [ best . l , k ] , b [ best . l , k ] , new . l e v e l [ k , best . l ] , a . r i gh t [ best . r , k , best . l ] , b .

r i gh t [ best . r , k , best . l ] )
}
Q. t o t a l=sum(nQ)+(prev ious . model$p [ (DYs+1) ]+1)∗ l og (U)
np [ l ength (np) ]= prev ious . model$p [ (DYs+1)]+1
return ( l i s t (SS=nSS , p=np , parameter=nparameter , Q=nQ, Q. t o t a l=Q. t o t a l ) )

}

We need this function again in the main function CP, which estimates the optimal number
and location of change points for Model A.
CP<−f unc t i on (Y,W,DYs,N){

E=f l i p l r ( t r i u ( ones (N) ,0) ) [ , 1 :DYs ]
#t o t a l number o f obse rva t i on s

U=sum(E)
cp=r e p l i c a t e ( (N+1) , l i s t (0 ) )

#use func t i on typeI to get the optimal model without change point
typI=typeI (Y,W,N,DYs ,U)
model=r e p l i c a t e (N, l i s t (SS=rep (0 ,DYs) , p=rep (0 ,DYs+1) , parameter=matrix (0 ,5 ,DYs) , Q=rep (NA,DYs) , Q.

t o t a l=NA) )
model [ , 1 ] $p=c ( rep (1 ,DYs) ,0)

f o r ( tau in 3 : (N−3) ){
index=c (1 , which ( ( c ( 1 : tau )<=(tau−2) )&( c ( 1 : tau )>3) ) )
in te r im . models<−sapply ( index , func t i on ( t ){ f i t (Y, t , tau ,W, prev ious . model=model [ , t ] ,N,DYs ,U, typI ) })
problem<−sapply ( 1 : l ength ( index ) , func t i on ( t ){ i n te r im . models [ , t ] $Q. t o t a l })
tau . s t a r=which . min ( problem )
model [ , ( tau+1)]= inte r im . models [ , tau . s t a r ]
cp [ [ tau+1]]=unique ( c ( cp [ [ index [ tau . s t a r ] ] ] , tau ) )

}
q<−which . min (model [ 5 , ] )
Q. t o t a l=model [ 5 , q ] $Q
cpts<−cp [ [ q ] ]
i f ( typI $Q. to ta l<=Q. t o t a l ){

Q. t o t a l=typI $Q. t o t a l
cpts=NA
mu=typI $mu

} e l s e {
parameter=model [ 3 , ( cpts+1) ]
l=length ( cpts )
mu=rep ( numeric (0 ) ,DYs)
f o r ( j in 2 : l ){ mu= rbind (mu, sapply ( 1 :DYs , func t i on (k ){ parameter [ [ j ] ] [ 1 , k]+parameter [ [ j ] ] [ 2 , k ] ∗c

( 1 : ( cpts [ j ]− cpts [ j −1]) ) }) ) }
mu= rbind (mu, sapply ( 1 :DYs , func t i on (k ){parameter [ [ l ] ] [ 4 , k]+parameter [ [ l ] ] [ 5 , k ] ∗c ( 1 : (N−cpts [ l ] ) ) }) )
cpts=cpts [ which ( cpts !=0) ]

}
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re turn ( l i s t (Q. t o t a l=Q. to ta l ,Q=model [ 4 , q ] , cpts=cpts ,mu=mu) )
}

For Model B the main function and the fit function work similarly to detect trends and
change points in calendar years. The fit function (denoted fit.CY ) is given by:
f i t .CY<−f unc t i on (y , t , tau ,w, prev ious . model ,N,DYs ,U, typI ){

nSS<−nQ<−rep (0 ,DYs)
np<−rep (0 , (DYs+1) )
nparameter=matrix (0 ,5 ,DYs)
nmu=prev ious . model$mu
K=DYs
i f (DYs>tau ){

f o r ( j in ( tau+1) :DYs){
nQ[ j ]= typI $Q[ j ]
np [ j ]= typI $p [ j ]
nmu[ , j ]= typI $mu[ , j ]
nparameter [ , j ]=c (0 ,0 , 0 , typI $parameter [ , j ] )

}
K=tau

}
model . a<−sapply ( 1 :K, func t i on (k ){lm(Y[max( t−k+1 ,1) : ( tau−k+1) , k ] ˜c ( 1 : ( ( tau−k+1)−max( t−k+1 ,1)+1) )+1,

weights=W[max( t−k+1 ,1) : ( tau−k+1) , k ] ) })
model . b<−sapply ( 1 :K, func t i on (k ){lm(Y[max( t−k+1 ,1) : ( tau−k+1) , k ] ˜ 1 , weights=W[max( t−k+1 ,1) : ( tau−k+1) , k

] ) })
model . c<−sapply ( 1 :K, func t i on (k ){lm( I (Y[max( t−k+1 ,1) : ( tau−k+1) , k]−prev ious . model$parameter [ 3 , k]−c

( 1 : ( ( tau−k+1)−max( t−k+1 ,1)+1) )∗prev ious . model$parameter [ 2 , k ] ) ˜c ( 1 : ( ( tau−k+1)−max( t−k+1 ,1)+1) )−1,
weights=W[max( t−k+1 ,1) : ( tau−k+1) , k ] ) })

model . d<−sapply ( 1 :K, func t i on (k ){lm( I (Y[max( t−k+1 ,1) : ( tau−k+1) , k]−prev ious . model$parameter [ 3 , k ] ) ˜ 0 ,
weights=W[max( t−k+1 ,1) : ( tau−k+1) , k ] ) })

model . e<−sapply ( 1 :K, func t i on (k ){lm( I (Y[max( t−k+1 ,1) : ( tau−k+1) , k]−prev ious . model$parameter [ 3 , k]−c
( 1 : ( ( tau−k+1)−max( t−k+1 ,1)+1) )∗prev ious . model$parameter [ 2 , k ] ) ˜ 0 , weights=W[max( t−k+1 ,1) : ( tau−k
+1) , k ] ) })

models=l i s t (model . a , model . b , model . c , model . d , model . e )
SS . l e f t=sapply ( 1 : 5 , func t i on ( l ){ sapply ( 1 :K, func t i on (k ){sum(W[max( t−k+1 ,1) : ( tau−k+1) , k ] ∗ ( models [ [ l

] ] [ , k ] $ r e s i d u a l s ) ˆ2) }) })
p=c (2 , 1 , 1 , 0 , 0 , 2 , 1 )
x2=sapply ( 1 :K, func t i on (k ){c ( 1 : (N−tau+k−1) ) })
model2 . a<−sapply ( 1 :K, func t i on (k ){lm(Y[ ( tau−k+2) :N, k ] ˜x2 [ [ k ] ]+1 , weights=W[ ( tau−k+2) :N, k ] ) })
model2 . b<−sapply ( 1 :K, func t i on (k ){lm(Y[ ( tau−k+2) :N, k ] ˜ 1 , weights=W[ ( tau−k+2) :N, k ] ) })
a<−sapply ( 1 :K, func t i on (k ){c (model . a [ , k ] $ c o e f f i c i e n t s [ 1 ] , model . b [ , k ] $ c o e f f i c i e n t s [ 1 ] , p rev ious . model$

parameter [ 3 , k ] , p rev ious . model$parameter [ 3 , k ] , p rev ious . model$parameter [ 3 , k ] ) })
b<−sapply ( 1 :K, func t i on (k ){c (model . a [ , k ] $ c o e f f i c i e n t s [ 2 ] , 0 , prev ious . model$parameter [ 2 , k]+model . c [ , k ] $

c o e f f i c i e n t s [ 1 ] , 0 , p rev ious . model$parameter [ 2 , k ] ) })
SS . r i gh t=cbind ( sapply ( 1 :K, func t i on (k ){sum(W[ ( tau−k+2) : (N−k+1) , k ] ∗ (model2 . a [ [ k ] ] $ r e s i d u a l s ) ˆ2) }) ,

sapply ( 1 :K, func t i on (k ){sum(W[ ( tau−k+2) : (N−k+1) , k ] ∗ (model2 . b [ [ k ] ] $ r e s i d u a l s ) ˆ2) }) )
L=5
i f ( t==1){ L=2}
Q=array (NA, dim=c (L , 5 ,K) )
a . r=sapply ( 1 :K, func t i on (k ){c (model2 . a [ [ k ] ] $ c o e f f i c i e n t s [ 1 ] , model2 . b [ [ k ] ] $ c o e f f i c i e n t s [ 1 ] , 0 , 0 , 0 ) })
b . r=sapply ( 1 :K, func t i on (k ){c (model2 . a [ [ k ] ] $ c o e f f i c i e n t s [ 2 ] , 0 , 0 , 0 , 0 ) })
a . r i g h t=r e p l i c a t e (L , a . r )
b . r i gh t=r e p l i c a t e (L , b . r )
new . l e v e l=sapply ( 1 :L , func t i on ( l ){ sapply ( 1 :K, func t i on (k ){a [ l , k ]+(( tau−t+1)−max( t−k+1 ,1)+1)∗ i f e l s e ( i s

. na (b [ l , k ] ) ,0 , b [ l , k ] ) }) })
SS . r e s t<−array (NA, dim=c (L , 3 ,K) )
model2 . c<−sapply ( 1 :L , func t i on ( l ){ sapply ( 1 :K, func t i on (k ){lm( I (Y[ ( tau−k+2) :N, k]−new . l e v e l [ k , l ]−x2 [ [ k

] ] ∗ i f e l s e ( i s . na (b [ l , k ] ) ,0 , b [ l , k ] ) ) ˜x2 [ [ k ] ]−1 , weights=W[ ( tau−k+2) :N, k ] ) }) })
model2 . d<−sapply ( 1 :L , func t i on ( l ){ sapply ( 1 :K, func t i on (k ){lm( I (Y[ ( tau−k+2) :N, k]−new . l e v e l [ k , l ] ) ˜ 0 ,

weights=W[ ( tau−k+2) :N, k ] ) }) })
model2 . e<−sapply ( 1 :L , func t i on ( l ){ sapply ( 1 :K, func t i on (k ){lm( I (Y[ ( tau−k+2) :N, k]−new . l e v e l [ k , l ]−x2 [ [ k

] ] ∗ i f e l s e ( i s . na (b [ l , k ] ) ,0 , b [ l , k ] ) ) ˜ 0 , weights=W[ ( tau−k+2) :N, k ] ) }) })
f o r ( l in 1 :L){

f o r ( q in 1 : 2 ) {
Q[ l , q , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r i gh t [ , q ] ) /c (N: (N−K+1) ) )+ (

prev ious . model$p [ 1 :K]+p [ l ]+p[(5+q) ] ) ∗ l og (U)
}
SS . r e s t [ l , , ]= rbind ( sapply ( 1 :K, func t i on (k ){sum(W[ ( tau−k+2) : (N−k+1) , k ] ∗ (model2 . c [ , l ] [ [ k ] ] $ r e s i d u a l s

) ˆ2) }) , sapply ( 1 :K, func t i on (k ){sum(W[ ( tau−k+2) : (N−k+1) , k ] ∗ (model2 . d [ , l ] [ [ k ] ] $ r e s i d u a l s ) ˆ2) }) ,
sapply ( 1 :K, func t i on (k ){sum(W[ ( tau−k+2) : (N−k+1) , k ] ∗ (model2 . e [ , l ] [ [ k ] ] $ r e s i d u a l s ) ˆ2) }) )

a . r i gh t [ 3 , , l ]<−new . l e v e l [ , l ]
a . r i gh t [ 4 , , l ]<−new . l e v e l [ , l ]
a . r i gh t [ 5 , , l ]<−new . l e v e l [ , l ]
b . r i gh t [ 3 , , l ]= i f e l s e ( i s . na (b [ l , k ] ) ,0 , b [ l , k ] )+sapply ( 1 :K, func t i on (k ){model2 . c [ [ k ] ] $ c o e f f i c i e n t s

[ 1 ] } )
b . r i gh t [ 4 , , l ]= rep (0 ,K)
b . r i gh t [ 5 , , l ]= i f e l s e ( i s . na (b [ l , k ] ) ,0 , b [ l , k ] )
Q[ l , 3 , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r e s t [ l , 1 , ] ) /c (N: (N−K+1) ) )+ (

prev ious . model$p [ 1 :K]+p [ l ]+1)∗ l og (U)
Q[ l ,4 , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r e s t [ l , 2 , ] ) /c (N: (N−K+1) ) )+ (

prev ious . model$p [ 1 :K]+p [ l ] ) ∗ l og (U)
Q[ l ,5 , ]= c (N: (N−K+1) )∗ l og (2∗pi ∗ ( prev ious . model$SS [ 1 :K]+SS . l e f t [ , l ]+SS . r e s t [ l , 3 , ] ) /c (N: (N−K+1) ) )+ (

prev ious . model$p [ 1 :K]+p [ l ] ) ∗ l og (U)
}
f o r ( k in 1 :K){

L . k=L
i f ( ( t−k+1)<=1){L . k=2}
nQ[ k]=min (Q[ , , k ] )
best . l=which (Q[ , , k]==min(Q[ 1 : L . k , , k ] ) , a r r . ind=TRUE) [ 1 , 1 ]
best . r=which (Q[ , , k]==min(Q[ 1 : L . k , , k ] ) , a r r . ind=TRUE) [ 1 , 2 ]
nSS [ k]= prev ious . model$SS [ k]+SS . l e f t [ k , best . l ]
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np [ k]= prev ious . model$p [ k]+p [ best . l ]
nmu[max( t−k+1 ,1) : ( tau−k+1) , k]=models [ [ best . l ] ] [ , k ] $ f i t t e d . va lues+rbind ( rep ( 0 , ( ( tau−k+1)−max( t−k

+1 ,1)+1) ) , rep ( 0 , ( ( tau−k+1)−max( t−k+1 ,1)+1) ) , prev ious . model$parameter [ 3 , k]+c ( 1 : ( ( tau−k+1)−max(
t−k+1 ,1)+1) ) , rep ( prev ious . model$parameter [ 3 , k ] , ( ( tau−k+1)−max( t−k+1 ,1)+1) ) , prev ious . model$
parameter [ 3 , k]+c ( 1 : ( ( tau−k+1)−max( t−k+1 ,1)+1) ) ) [ best . l , ]

nmu [ ( tau−k+2) :N, k]= rbind ( p r ed i c t (model2 . a [ [ k ] ] , data . frame ( x2 [ [ k ] ] ) ) , p r ed i c t (model2 . b [ [ k ] ] , data .
frame ( x2 [ [ k ] ] ) ) , p r ed i c t (model2 . c [ , best . l ] [ [ k ] ] , data . frame ( x2 [ [ k ] ] ) )+new . l e v e l [ k , best . l ]+x2 [ [ k
] ] ∗ i f e l s e ( i s . na (b [ best . l , k ] ) ,0 , b [ best . l , k ] ) , p r ed i c t (model2 . d [ , best . l ] [ [ k ] ] , data . frame ( x2 [ [ k ] ] )
)+new . l e v e l [ k , best . l ] , p r ed i c t (model2 . e [ , best . l ] [ [ k ] ] , data . frame ( x2 [ [ k ] ] ) )+new . l e v e l [ k , best . l ]+
x2 [ [ k ] ] ∗ i f e l s e ( i s . na (b [ best . l , k ] ) ,0 , b [ best . l , k ] ) ) [ best . r , ]

nparameter [ , k]=c ( a [ best . l , k ] , b [ best . l , k ] , new . l e v e l [ k , best . l ] , a . r i gh t [ best . r , k , best . l ] , b .
r i gh t [ best . r , k , best . l ] )

}
Q. t o t a l=sum(nQ)+(prev ious . model$p [ (DYs+1) ]+1)∗ l og (U)
np [ l ength (np) ]= prev ious . model$p [ (DYs+1)]+1
return ( l i s t (SS=nSS , p=np , parameter=nparameter , Q=nQ, Q. t o t a l=Q. to ta l , mu=nmu, cp=c ( prev ious . model$

cp , tau ) ) )
}

Using the fit.CY function we can run the successive approach to get the optimal number
and location of change points in calendar years by function CP.CY :
CP.CY<−f unc t i on (Y,W,DYs,N){

E=f l i p l r ( t r i u ( ones (N) ,0) ) [ , 1 :DYs ]
U=sum(E)
cp=r e p l i c a t e ( (N+1) , l i s t (0 ) )
typI=typeI (Y,W,N,DYs ,U)
model=r e p l i c a t e (N, l i s t (SS=rep (0 ,DYs) , p=rep (0 ,DYs+1) , parameter=matrix (0 ,5 ,DYs) , Q=rep (NA,DYs) , Q.

t o t a l=NA,mu=matrix (0 ,N,DYs) , cp=numeric (0 ) ) )
model [ , 1 ] $p=c ( rep (1 ,DYs) ,0)
f o r ( tau in 3 : (N−3) ){

index=c (1 , which ( ( c ( 1 : tau )<=(tau−2) )&( c ( 1 : tau )>3) ) )
in te r im . models<−sapply ( index , func t i on ( t ){ f i t .CY(Y, t , tau ,W, prev ious . model=model [ , t ] ,N,DYs ,U, typI )

})
problem<−sapply ( 1 : l ength ( index ) , func t i on ( t ){ i n te r im . models [ , t ] $Q. t o t a l })
tau . s t a r=which . min ( problem )
model [ , ( tau+1)]= inte r im . models [ , tau . s t a r ]

}
q<−which . min (model [ 5 , 4 : (N−2) ] )+3
Q. t o t a l=model [ 5 , q ] $Q. t o t a l
i f ( typI $Q. to ta l<=Q. t o t a l ){

Q. t o t a l=typI $Q. t o t a l
cpts=NA
mu=typI $mu

} e l s e {
mu=model [ 6 , q ] $mu
cpts=model [ 7 , q ] $cp

}
re turn ( l i s t (Q. t o t a l=Q. to ta l ,Q=model [ 4 , q ] , cpts=cpts ,mu=mu) )

}

A.3 Example

The first development years of the cumulative loss triangle used in the example of Section
6.4 are presented in the following table.
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UY DY 1 DY 2 DY 3 DY 4 DY 5 DY 6 DY 7 DY 8 DY 9
1970 844370.00 987342.17 1115249.05 1225124.76 1321455.66 1360466.81 1377140.47 1381460.78 1383066.07
1971 1020430.00 1186505.06 1354310.94 1473560.69 1592463.74 1635972.00 1654515.86 1661871.63 1664328.32
1972 931780.00 1081999.39 1181585.17 1312143.71 1414116.34 1461575.67 1475056.51 1481876.07 1484234.44
1973 1141040.00 1343205.36 1465270.90 1649588.00 1816154.27 1871573.26 1889668.85 1897057.42 1899462.85
1974 962380.00 1061685.56 1187332.95 1295865.26 1401378.40 1445569.98 1461420.93 1467129.62 1469442.63
1975 1017480.00 1168119.79 1245972.55 1367953.36 1498247.81 1542641.29 1561670.20 1568137.49 1570102.29
1976 822560.00 952904.14 1035859.77 1131733.48 1228164.84 1263913.31 1276373.92 1282075.44 1284216.50
1977 1040670.00 1192921.13 1361630.19 1507117.80 1656212.73 1721199.26 1744326.79 1751170.07 1754245.51
1978 1010360.00 1129288.98 1258627.70 1378617.22 1478982.52 1524101.74 1541837.31 1548424.85 1551165.41
1979 1174750.00 1305571.55 1401544.50 1547662.82 1694672.32 1730788.79 1747441.24 1754158.31 1757244.68
1980 983530.00 1139059.61 1206787.38 1319069.76 1422383.06 1467418.66 1483447.11 1490087.34 1492128.21
1981 943080.00 1029022.37 1128794.02 1242127.70 1350384.56 1396870.47 1413805.27 1419513.18 1422167.46
1982 987140.00 1048189.42 1231664.58 1377215.56 1506924.25 1550473.64 1570027.28 1575730.95 1578162.13
1983 1102400.00 1204134.29 1312593.08 1420989.40 1555102.04 1599451.53 1618672.90 1624062.91 1626574.91
1984 962910.00 1079986.92 1180170.55 1314050.21 1412572.32 1459900.77 1477553.34 1482956.98 1485485.37
1985 923650.00 1005873.41 1080458.59 1203438.66 1316116.48 1349141.40 1361325.91 1367857.93 1369615.16
1986 1139310.00 1268483.24 1373708.99 1524211.04 1631192.95 1673233.20 1692975.03 1700082.36 1702506.74
1987 893020.00 967111.57 1097581.60 1211430.20 1329570.67 1383838.77 1400250.72 1405523.05 1407551.78
1988 1139040.00 1256898.70 1391162.31 1522028.28 1644433.99 1693414.66 1710403.56 1717215.23 1720457.52
1989 960560.00 1086171.80 1192736.14 1312449.09 1421212.69 1468297.33 1484853.97 1490061.93 1492759.25
1990 1165380.00 1406064.86 1662925.24 1826613.30 1969219.18 2028715.64 2050679.30 2058302.86 2061135.52
1991 1109300.00 1283380.73 1578199.80 1761901.04 1902498.20 1958843.20 1981475.48 1989548.43 1992082.11
1992 835410.00 960044.28 1160935.19 1274931.86 1374144.09 1428306.41 1446211.15 1452295.59 1454542.40
1993 1120480.00 1240667.94 1471414.75 1650856.86 1767058.64 1819130.60 1841628.82 1850217.91 1853370.63
1994 915090.00 1102338.88 1318589.70 1445772.59 1568207.90 1612075.71 1628629.19 1635707.09 1638141.03
1995 1094660.00 1250237.83 1545530.41 1743515.86 1885579.52 1950462.76 1975501.65 1983240.20 1986441.95
1996 960820.00 1155692.00 1342420.50 1464721.56 1586207.33 1637929.11 1655989.04 1661480.40 1663834.01
1997 843340.00 1033843.47 1186712.41 1334845.26 1437454.98 1476800.15 1492639.92 1497335.51 1499718.44
1998 1051830.00 1252125.94 1516098.43 1692944.49 1839699.62 1891316.85 1910925.62 1919169.01 1922088.04
1999 882700.00 1083010.24 1308642.34 1453791.41 1573903.55 1612901.61 1631682.95 1637863.24 1639839.14
2000 1205050.00 1554837.26 1886193.97 2084453.84 2263210.29 2319671.80 2347924.28 2357726.77 2361147.35
2001 1028100.00 1271346.28 1593285.40 1743314.79 1873671.25 1943170.28 1964132.73 1972140.48 1975585.87
2002 928580.00 1209110.73 1429866.35 1553082.62 1668930.39 1720203.80 1740329.93 1748440.96 1751187.12
2003 976410.00 1227629.91 1431077.59 1588186.54 1719959.81 1769461.86 1792701.46 1800535.88 1803260.07
2004 936950.00 1185024.65 1478259.02 1655940.78 1796342.80 1855430.80 1876727.22 1884780.03 1888487.17
2005 1127190.00 1258673.38 1447688.46 1597695.52 1724389.31 1780276.60 1801263.89 1807289.83 1809813.11
2006 998920.00 1160564.96 1395708.51 1547649.55 1653807.69 1701516.79 1719420.34 1728145.76 1730962.92
2007 1175940.00 1374752.60 1635169.28 1801304.21 1949935.63 2003479.78 2026148.07 2035470.20 2038551.02
2008 986690.00 1145445.26 1393596.05 1536411.44 1646373.87 1694197.43 1712292.96 1720099.66 1722943.93
2009 1064300.00 1209147.91 1446530.90 1559899.20 1688487.62 1745843.53 1763447.28 1769937.36 1772362.96
2010 919720.00 1031896.16 1266109.50 1416475.68 1539040.06 1579342.22 1597309.80 1603544.67 1606180.43
2011 1096340.00 1192774.08 1383032.40 1513973.26 1637073.24 1689078.76 1707764.97 1714876.18 1717545.07
2012 925700.00 1080595.60 1358683.54 1492790.66 1594496.69 1644539.22 1664256.08 1671556.41
2013 711370.00 824706.80 987603.07 1084557.65 1172176.29 1204969.43 1218199.95
2014 957590.00 1131968.62 1369513.10 1532823.62 1651109.90 1704578.70
2015 923550.00 1097112.27 1344447.89 1496029.87 1608155.38
2016 1128330.00 1278934.98 1562296.37 1730802.97
2017 997050.00 1143823.78 1398980.17
2018 821720.00 960302.33
2019 1047250.00

Table 7: Example



Appendix B

Addition to simulation study

In this appendix we present the parameters we used to generate the scenarios (S1) - (S7)
and additionally the results for another scenario.

B.1 Set-up and output

The premiums are randomly randomly generated by
premium=round (1000000∗rnorm (n , 10 , 1 ) )

and are given by
> premium

[ 1 ] 12820951 9226667 9911129 10362665 9622959 10153757 9334240 10993251 12723273 9913918 10650710
[ 1 2 ] 10464656 10865958 10538631 10006405 10500871 11018792 9569703 11120863 8925830 9798526 10205751
[ 2 3 ] 9706809 9815132 9125897 10540689 10117661 11112323 9640390 10767499

The mean values and sigmas are generated by
mu=exp(−0.8−0.4∗c ( 1 : n) )
mu2=exp(−0.1−0.4∗c ( 1 : n) ) )
sigma=0.3∗ (n∗mu)/sum(1 / sq r t ( premium)

#expected va lues per s c ena r i o
EW=array (NA, dim=c (n , n , 7 ) )
EW[ , , 1 ]= repmat (mu, n , 1 )
EW[ , , 2 ]= sapply ( 1 : n , func t i on (k ){mu[ k]+c ( 1 : n)∗ 0 .02 ∗mu[ k ]} )
EW[ , , 3 ]= rbind ( repmat (mu, ( n/ 2) ,1) , repmat (mu2 , ( n/ 2) ,1) )
EW[ , , 4 ]= rbind ( repmat (mu, ( n/ 2) ,1) , repmat (mu2 , ( n/ 2) ,1) )
EW[ , , 5 ]= rbind ( repmat (mu, 10 , 1 ) , sapply ( 1 : n , func t i on (k ){mu2 [ k]−c ( 1 : 1 0 ) ∗ 0 .07 ∗mu2 [ k ]} ) , repmat ( (mu2−10∗ 0 .07

∗mu2) ,10 ,1 ) )
EW[ , , 6 ]= sapply ( 1 : n , func t i on (k ){c ( rep (mu[ k ] , max(15−k+1 ,0) ) , rep (mu2 [ k ] , min ( ( n−(15−k+1) ) ,n) ) ) })
EW[ , , 7 ]= sapply ( 1 : n , func t i on (k ){c ( rep (mu[ k ] , max(20−k+1 ,0) ) , mu2 [ k]+c ( 1 : min ( ( n−20+k−1) ,n) )∗ 0 .02 ∗mu2 [ k ] )

})
se=repmat ( sigma , 7 , 1 )
se [4 , ]= sq r t (2 ) ∗ se [ 4 , ]

We used the following code to generate data sets, test for change points and predict the
reserve:
L=100
W=matrix (premium , n , n)
S imulat ionResu l t s=r e p l i c a t e (7 , l i s t (M=array (NA, dim=c (n , n ,L) ) , cp=matrix (0 ,5 ,L) , R. t rue=rep (NA,L) , R. hat

=rep (NA,L) , R0 . hat=rep (NA,L) ) )
DYs=10

f o r ( s in 1 : 7 ) {
M=array (NA, dim=c (n , n ,L) )
f o r ( i in 1 : n){

f o r ( k in 1 : n){
M[ i , k , ]= rnorm (L ,EW[ i , k , s ] , se [ s , k ] / sq r t ( premium [ i ] ) )

}}
R. hat<−R0 . hat<−R. true<−rep (NA,L)
cp<−matrix (0 ,6 ,L)
f o r ( j in 1 :L){

Y=M[ , , j ]
i f ( s<=5){ Model=CP(Y,W,DYs, n)
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} e l s e { Model=CP.CY(Y,W,DYs, n)}
m=Model$mu
cpts=Model$ cpts
i f ( any ( ! i s . na ( cpts ) ) ){

f o r ( l in 1 : l ength ( cpts ) )
cp [ l , j ]= cpts [ l ]

}
mu0 . hat<−apply (Y∗W∗upT, 2 , sum) /apply (W∗upT, 2 , sum)
mu. hat=cbind (m, repmat (mu0 . hat [ (DYs+1) : n ] , n , 1 ) )
l o s s e s h a t=lowT∗mu. hat∗W
lo s s e s 0ha t=lowT∗mu0 . hat∗W
R. true [ j ]=sum( lowT∗Y∗W)
R. hat [ j ]=sum( l o s s e s h a t )
R0 . hat [ j ]=sum( l o s s e s 0ha t )

}
Simulat ionResu l t s [ , s ]= l i s t (M=M, cp=cp , R. t rue=R. true , R. hat=R. hat , R0 . hat=R0 . hat )
}

The results are analyzed by the following commands:

cpts . detected=sapply ( 1 : 5 , func t i on ( s ){ l ength ( which ( S imulat ionResu l t s [ 2 , s ] $cp [1 : 5 , ] >0) ) })
t rue=c (0 ,0 , sapply ( 3 : 4 , func t i on ( s ){ l ength ( which ( S imulat ionResu l t s [ 2 , s ] $cp [ , ]==15) ) }) , l ength ( which (

S imulat ionResu l t s [ 2 , 5 ] $cp [ , ]==10) ) , l ength ( which ( S imulat ionResu l t s [ 2 , 5 ] $cp [ , ]==20) ) , l ength ( which (
S imulat ionResu l t s [ 2 , 6 ] $cp [ , ]==15) ) , l ength ( which ( S imulat ionResu l t s [ 2 , 7 ] $cp [ , ]==20) ) )

detected=rep (NA,100 )
f o r ( l in 1 :100) {

i f ( ! any ( S imulat ionResu l t s [ 2 , 5 ] $cp [ 1 : 5 , l ]==20) )
detected [ l ]= S imulat ionResu l t s [ 2 , 5 ] $cp [ min ( which ( ( abs ( S imulat ionResu l t s [ 2 , 5 ] $cp [ 1 : 5 , l ]−20)==min( abs (

S imulat ionResu l t s [ 2 , 5 ] $cp [ 1 : 5 , l ]−20) )&( S imulat ionResu l t s [ 2 , 5 ] $cp [ 1 : 5 , l ] !=10) ) ) ) , l ]
}
near ly=sum( ! i s . na ( detected )&( detected <=25)&( detected >=15))
min ( detected , na . rm=TRUE)
max( detected , na . rm=TRUE)

wrongly . detected=cpts . detected−c ( t rue [ 1 : 4 ] , sum( true [ 5 : 6 ] )+near ly , t rue [ 7 : 8 ] )
mean . abso lu te . e r r o r=sapply ( 1 : 7 , func t i on ( s ){mean( abs ( S imulat ionResu l t s [ 3 , s ] $R. true−Simulat ionResu l t s [ 4 ,

s ] $R. hat ) ) })
mean . squared . abso lu te . e r r o r=sapply ( 1 : 7 , func t i on ( s ){mean ( ( S imulat ionResu l t s [ 3 , s ] $R. true−

Simulat ionResu l t s [ 4 , s ] $R. hat ) ˆ2) })
mean . r e l a t i v e . e r r o r=sapply ( 1 : 7 , func t i on ( s ){mean( abs ( S imulat ionResu l t s [ 3 , s ] $R. true−Simulat ionResu l t s [ 4 ,

s ] $R. hat ) / S imulat ionResu l t s [ 3 , s ] $R. t rue ) })

mean . abso lu te . e r r o r 0=sapply ( 1 : 7 , func t i on ( s ){mean( abs ( S imulat ionResu l t s [ 3 , s ] $R. true−Simulat ionResu l t s
[ 5 , s ] $R0 . hat ) ) })

mean . squared . abso lu te . e r r o r 0=sapply ( 1 : 7 , func t i on ( s ){mean ( ( S imulat ionResu l t s [ 3 , s ] $R. true−
Simulat ionResu l t s [ 5 , s ] $R0 . hat ) ˆ2) })

mean . r e l a t i v e . e r r o r 0=sapply (17 , func t i on ( s ){mean( abs ( S imulat ionResu l t s [ 3 , s ] $R. true−Simulat ionResu l t s [ 5 ,
s ] $R0 . hat ) / S imulat ionResu l t s [ 3 , s ] $R. t rue ) })

average . t rue . r e s e r v e=sapply ( 1 : 7 , func t i on ( s ){mean( S imulat ionResu l t s [ 3 , s ] $R. t rue ) })

Overview=t ( data . frame (mean . abso lu te . e r ror ,mean . squared . abso lu te . e r ror ,mean . r e l a t i v e . e r ror , mean .
abso lu te . e r ror0 , mean . squared . abso lu te . e r ror0 , mean . r e l a t i v e . e r r o r 0 ) )

colnames ( Overview )=c ( ”S1” , ”S2” , ”S3” , ”S4” , ”S5” , ”S6” , ”S7” )

This yields the following results:

> average . t rue . r e s e r v e /1000000
[ 1 ] 19.21734 30.09068 38.70915 38.53945 19.44387 38.66612 48.61927
> mean . abso lu te . e r r o r /1000000
[ 1 ] 0 .851246 1.202557 1.951265 1.925225 1.523650 1.312879 4.732396
> mean . abso lu te . e r r o r 0 /1000000
[ 1 ] 0 .8018979 6.5400562 12.7713190 12.5801290 2.9305673 8.2476909 20.4144506
> mean . squared . abso lu te . e r r o r /10000000000
[ 1 ] 108.5097 238.8031 525.5819 667.1223 354.5872 286.8041 2571.2717
> mean . squared . abso lu te . e r r o r 0 /10000000000
[ 1 ] 101.9750 4392.2211 16466.7350 16073.3327 977.9889 6946.2440 41829.5707
> mean . r e l a t i v e . e r r o r ∗100
[ 1 ] 4 .366898 3.943553 4.982589 4.976084 7.824046 3.398808 9.702227
> mean . r e l a t i v e . e r r o r 0 ∗100
[ 1 ] 4 .094885 21.640087 32.929542 32.538903 15.396266 21.259453 41.954862

Or summarized in a Table:

S1 S2 S3 S4 S5 S6 S7

mean.absolute.error 8.512460e+05 1.202557e+06 1.951265e+06 1.925225e+06 1.523650e+06 1.312879e+06 4.732396e+06

mean.squared.absolute.error 1.085097e+12 2.388031e+12 5.255819e+12 6.671223e+12 3.545872e+12 2.868041e+12 2.571272e+13

mean.relative.error 4.366898e-02 3.943553e-02 4.982589e-02 4.976084e-02 7.824046e-02 3.398808e-02 9.702227e-02

mean.absolute.error0 8.018979e+05 6.540056e+06 1.277132e+07 1.258013e+07 2.930567e+06 8.247691e+06 2.041445e+07

mean.squared.absolute.error0 1.019750e+12 4.392221e+13 1.646673e+14 1.607333e+14 9.779889e+12 6.946244e+13 4.182957e+14

mean.relative.error0 4.094885e-02 2.164009e-01 3.292954e-01 3.253890e-01 1.539627e-01 2.125945e-01 4.195486e-01
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B.2 Effect of misspecification of distribution

This scenario is generated by using the expected values and variances of scenario (S3),
but by using a log-normal distribution.
M=array (NA, dim=c (n , n ,L) )
f o r ( i in 1 : n){

f o r ( k in 1 : n){
M[ i , k , ]= rlnorm (L , log (EW[ i , k , 3 ] ˆ 2 / sq r t (EW[ i , k ,3 ]ˆ2+ se [ 3 , k ]ˆ2 /premium [ i ] ) ) , s q r t ( l og ( se [ 3 , k ]ˆ2 / (

premium [ i ] ∗EW[ i , k , 3 ] ˆ 2 ) +1) ) )
}}

The results are produced analogously to above.
R. hat<−R0 . hat<−R. true<−rep (NA,L)
cp<−matrix (0 ,6 ,L)
DYs=10
f o r ( j in 1 :L){

Y=M[ , , j ]
Model=CP(Y,W,DYs, n)
m=Model$mu
cpts=Model$ cpts
i f ( any ( ! i s . na ( cpts ) ) ){

f o r ( l in 1 : l ength ( cpts ) )
cp [ l , j ]= cpts [ l ]

}
mu0 . hat<−apply (Y∗W∗upT, 2 , sum) /apply (W∗upT, 2 , sum)
mu. hat=cbind (m, repmat (mu0 . hat [ (DYs+1) : n ] , n , 1 ) )
l o s s e s h a t=lowT∗mu. hat∗W
lo s s e s 0ha t=lowT∗mu0 . hat∗W
R. true [ j ]=sum( lowT∗Y∗W)
R. hat [ j ]=sum( l o s s e s h a t )
R0 . hat [ j ]=sum( l o s s e s 0ha t )

}

S8=l i s t (M=M, cp=cp , R. t rue=R. true , R. hat=R. hat , R0 . hat=R0 . hat )

This yields the following results
> l ength ( which ( S8$cp [ , ]==15) )
[ 1 ] 100
> l ength ( which ( S8$cp [ , ] >0) )−100
[ 1 ] 25
> (mean . abso lu te . e r r o r=mean( abs ( S8$R. true−S8$R. hat ) ) )
[ 1 ] 1818823
> (mean . abso lu te . e r r o r 0=mean( abs ( S8$R. true−S8$R0 . hat ) ) )
[ 1 ] 11304868
> (mean . squared . abso lu te . e r r o r=mean ( ( S8$R. true−S8$R. hat ) ˆ2) )
[ 1 ] 4 .597557 e+12
> (mean . squared . abso lu te . e r r o r 0=mean ( ( S8$R. true−S8$R0 . hat ) ˆ2) )
[ 1 ] 1 .289314 e+14
> (mean . r e l a t i v e . e r r o r=mean( abs ( S8$R. true−S8$R. hat ) /S8$R. t rue ) )
[ 1 ] 0 .04743045
> (mean . r e l a t i v e . e r r o r 0=mean( abs ( S8$R. true−S8$R0 . hat ) /S8$R. t rue ) )
[ 1 ] 0 .297722

This means we detected all true change points and the predicted reserve by the new
method is again very close to the true reserve, while the original method shows a large
deviation.
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