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Abstract

In partitioned fluid structure interaction, a structure solver and a fluid solver are
coupled via boundary conditions at the interface. This thesis presents partitioned
FSI simulations using OpenFOAM for the fluid, preCICE as a coupling tool, and a
structure solver I developed with the FEM library FEniCS. I extended the preCICE-
FEniCS adapter to match the requirements for FSI, such that users can couple FEniCS
simulations with vector functions and read conservatively mapped quantities from
preCICE to a FEniCS solver. Plus, the adapter now features a mapping between
pseudo-3D OpenFOAM and 2D FEniCS.

The setup is tested with two FSI scenarios: An elastic flap in a channel and the FSI3
benchmark. I compare the results to validated partitioned FSI methods and reference
results in literature to validate the preCICE-FEniCS adapter and the structure solver.
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1 Introduction

Cardiovascular flow [14], the collapse of the Tacoma Narrows Bridge [29], the wings of
an aircraft in turbulence [10] or the blades of a wind turbine [30], these examples have
something in common: A fluid flow in or around a structure leads to forces deforming
the structure, such that blood vessels expand when the pressure rises, the bridge shakes
under the impact of the wind, the airplane wings bend and the wind turbine blades
rotate and twist under the aerodynamic load. The deformation of the structure affects
the flow at the same time: The diameter of the artery increases and the fluid domain
grows. The twisted wind turbine blade affects the angle of attack and changes the lift.
This two-way coupled phenomenon is called fluid-structure interaction (FSI).

Simulations help us to better understand and optimize these kinds of phenomena.
However, these simulations are challenging because of the multi-physics nature of the
problems. Fluid and structure are described with different models and equations that
require coupling to express the interaction. There are different coupling aspects in
multi-physics. The physical models can either be weakly or strongly coupled depending
on how much they affect each other. In the simulation, we speak of tight coupling if we
synchronize the numerical models at all times. A loose coupling scheme might allow a
shift of a timestep for the coupling variables [15].

There are two main approaches for strongly coupled FSI simulations: The first
approach is a monolithic solver, that includes both the equations for the fluid and
the structure and solves them at the same time [13], the second one is the partitioned
approach, where one solver solves the governing equations in the fluid domain and an
independent solver calculates the displacements of the structure [20]. The monolithic
approach is usually tightly coupled [26][3], whereas the partitioned approach can be
either loosely coupled with an explicit coupling scheme [11] or tightly using implicit
coupling schemes [23].

In this thesis, I follow a partitioned approach with tight coupling of the numerical
models. I use the finite element software FEniCS [1] to implement a structure solver,
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1 Introduction

the computational fluid dynamics (CFD) software OpenFOAM [31] to model the
surrounding fluid flow and the multi-physics coupling library preCICE [4] to couple
these two. So far, FEniCS and OpenFOAM have been coupled using preCICE for
conjugate heat transfer (CHT) by B. Rüth [25]. OpenFOAM has been used as a fluid
solver for FSI with preCICE and the structural mechanics solver CalculiX by D. Risseeuw
[23]. In this work I will reuse the existing components as far as possible.

In chapter 2, I explain the theoretical background for FSI simulations focusing on
the structural part. In chapter 3, I introduce the software components I used for my
FSI simulations. Chapter 4 presents the implementation of a structure solver in FEniCS
and the new features of the preCICE-FEniCS adapter for FSI. Chapter 5 contains FSI
simulations to test and validate my FSI simulation framework.

To simplify notation in this thesis, I use the Einstein notation and tensor notation. In
Einstein notation, a second order tensor is denoted as aij and a first order tensor as bj.
We sum over indices appearing twice in a term, such that the expression

ci =
3

∑
j=1

aijbj (1.1)

reduces to
ci = aijbj. (1.2)

In tensor notation, all tensors are bold symbols. The scalar product of two second order
tensors σijεij is expressed as σ : ε. Time derivatives are denoted with the dot notation
where ẋ = dx

dt is the first and ẍ = d2x
dt2 the second material time derivative.
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2 Physical and Numerical Model for
Fluid-Structure-Interaction

2.1 Continuity Assumption and Balance Laws

The models for computational mechanics for both fluids and structures come from
continuum mechanics. In continuum mechanics, we assume the medium to have
continuous material properties like density or viscosity. This continuum assumption
simplifies the "real world" since materials consist of discontinuous matter on the
molecular level. While molecular dynamics is used for simulation on nanoscale, it is
impossible to apply it on macroscale due to limited computing power [18]. However,
continuum mechanics yields highly accurate results for macroscopic geometries where
the length-scales in the simulation are orders greater than the mean free path length
[16].

The concept of continuity enables us to describe the medium with continuous
functions over its domain, allowing us to define its motion and properties. These
functions can be derived, integrated and used in the balance laws. For a deforming
continuum, these equations can be formulated in either a Eulerian point of view,
describing points by their current location xi, or a Lagrangian point of view with
respect to their reference coordinates Xi. The balance laws in the Eulerian frame are
the balance of momentum

∂σij

∂xj
+ ρbi = ρüi, (2.1)

balance of mass
ρ̇ + ρ

∂vi

∂xi
= 0, (2.2)

and balance of angular momentum

σij = σji, (2.3)
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2 Physical and Numerical Model for Fluid-Structure-Interaction

with stress tensor σij, body forces bi, density ρ, displacements ui, and velocity vi. The
balance equations are connected to the equations of motion by constitutive relations.
Constitutive relations differ for solids and fluids, whereas the balance laws apply for
all materials satisfying the continuity condition.

2.2 Structure mechanics

2.2.1 Constitutive Relations for Linear Elasticity

For the structure simulation, we follow the approach of J. Bleyer’s tutorial for elastody-
namics with a linear elastic material, a material that depends on only three parameters:
Density ρ, and the two Lamé-parameters µ and λ [2]. Linear-elastic means that defor-
mations ui are small and we use the linearized strain-tensor

εij =
1
2

(∂uj

∂xi
+

∂ui

∂xj

)
. (2.4)

While the density affects dynamic aspects, the Lamé parameters relate the stresses σ

and strains ε with the constitutive relation

σij = λδijεkk + 2µεij (2.5)

where δij denotes the Kronecker delta. The Young’s modulus E and Poisson’s ratio ν

of a material can be converted to the Lamé parameters using

λ =
Eν

(1 + ν)(1− 2ν)
(2.6)

and
µ =

E
2(1 + µ)

. (2.7)

We calculate u using the Finite Element Method (FEM) [17]. First, we multiply the
balance of momentum (Equation 2.1) with a test function v ∈ V and integrate by parts
over the domain Ω to obtain the weak form∫

Ω
ρü · vdx +

∫
Ω

σ(u) : ε(v)dx =
∫

Ω
ρb · vdx +

∫
∂Ω

(σ · n) · vds ∀ v ∈ V (2.8)
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2 Physical and Numerical Model for Fluid-Structure-Interaction

where the function space V is chosen according to the Dirichlet boundary conditions.
We discard the first integral on the right hand side of the equation since there are no
bodyforces b in my FSI simulations. The second integral describes traction forces. Here,
we substitute σ · n = t. t is the traction vector and it contains the loads from the fluid.
Then, we express the weak form (Equation 2.8) in terms of the displacements u by
applying the constitutive relation (Equation 2.5) and the definition of the strain tensor ε

(Equation 2.4). We sort Equation 2.8 into functions of displacements u and accelerations
ü and obtain the form

m(ü, v) + k(u, v) = L(v) ∀ v ∈ V . (2.9)

with
m(ü, v) =

∫
Ω

ρü · vdx, (2.10)

k(u, v) =
∫

Ω
σ(u) : ε(v)dx (2.11)

and
L(t, v) =

∫
∂Ω

t · vds (2.12)

2.2.2 Time Integration with the Generalized α-Method

Following Bleyer [2], we discretize Equation 2.9 with constant time steps and perform
time integration with the generalized α-method [8]. The generalized α-method is widely
used in structural dynamics due to its second-order accuracy, A-stability and parameter
controlled high frequency dissipation. The idea is to discretize Equation 2.9 in time
and solve the equation for an intermediate point in time.

The discretized form reads

m(ün+1−αm , v) + k(un+1−α f , v) = L(tn+1−α f , v) ∀ v ∈ V (2.13)

where the notation un+1−α is the linear interpolation of a function u at tn+1−α:

un+1−α = (1− α)un+1 + αun. (2.14)
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2 Physical and Numerical Model for Fluid-Structure-Interaction

We use the approximations

un+1 = un + ∆tu̇n +
∆t2

2
((1− 2β)ün + 2βün+1, (2.15)

u̇n+1 = u̇n + ∆t((1− γ)ün + γün+1, (2.16)

and
ün+1 =

1
β∆t2 (un+1 − un − ∆tu̇n)−

1− 2β

2β
ün (2.17)

to express Equation 2.13 in terms of un+1 and known quantities at tn. Equation 2.13
is the form that we use to describe our problem in FEniCS. FEniCS automatically
rearranges Equation 2.13 to an equation of the form

K̄(un+1, v) = F(v, L(tn), L(tn+1), un, u̇n, ün) ∀ v ∈ V (2.18)

with the bilinear form K̄ and the linear form F, such that only K̄ depends on the
unknowns un+1.

We use two different choices for the parameters: First, αm = 0.2 and α f = 0.4, which
is a popular choice in structure dynamics, and second, αm = α f = 0, such that the
generalized α-method equals the Newmark-β-method [21]. γ and β are defined as

γ = 1
2 + αm − α f , and β = 1

4

(
γ + 1

2

)2
. In section 5.2, I explain why I used 2 different

sets of parameters. Finally, we solve Equation 2.18 using Finite Elements in space for
every timestep.

2.3 Fluid mechanics

For modeling fluids, I use a Newtonian fluid following the FSI3 benchmark by S. Turek
and J. Hron in their benchmarking proposal [26]. Since my work is focused on the
structure and I use the fluid setups from D. Risseeuw’s Master Thesis [23], no specific
knowledge in fluid mechanics is required to understand the following chapters. The
fluid simulation is treated as a "black box" that reads mesh deformations u and writes
forces t on the boundary. Readers interested in more details can find those in the
references.
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2 Physical and Numerical Model for Fluid-Structure-Interaction

2.4 Implicit Coupling

For FSI simulations, the equations for the fluid and the structure are coupled. In the
partitioned approach, we have two subsystems that read boundary conditions from
each other. The fluid solver F reads displacements u as input and calculates forces t as
a response:

F(u) = t (2.19)

The solid solver S calculates its response accordingly:

S(t) = u (2.20)

Explicit coupling is the simplest way to implement this coupling. In explicit coupling,
at least one solver calculates its response for the next timestep tn+1 with the input from
tn:

tn+1 = F(un) (2.21)

The other solver either uses the input tn+1 in a serial staggered scheme or tn in a
parallel staggered scheme to compute un+1. Explicit coupling is a loose coupling
scheme, since there is a shift between the coupling variables t and u. Explicit coupling
only needs one iteration per timestep and is therefore computationally cheap. However,
it suffers from instabilities, because the added mass effect is not taken into account
properly. The added mass effect describes the additional inertia in a system when a
solid is accelerated in a fluid. It occurs because the solid has to move the surrounding
fluid. With implicit coupling, we can represent the added mass effect accurately and
avoid these instabilities [5].

In implicit coupling, we approximate

tn+1 = F(un+1), un+1 = S(tn+1) (2.22)

iteratively until the convergence criteria are satisfied. Convergence can be accelerated by
a postprocessing method that takes previous iterations into account. For postprocessing,
I chose the Interface Quasi-Newton method (IQN-ILS) since it performed best in [9].

preCICE offers ready to use implementations of various coupling methods. Users
only specify the coupling scheme, postprocessing method and convergence limits. More
details on implicit coupling with the Interface Quasi-Newton Method and other cou-
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2 Physical and Numerical Model for Fluid-Structure-Interaction

pling methods can be found in B. Gatzhammer’s PhD Thesis [12] and B. Uekermann’s
PhD Thesis [27].

2.5 Black Box Surface Coupling

In partitioned FSI, structure and fluid share a common surface. This surface is repre-
sented in both the structure mesh and the fluid mesh. On this surface, both solvers
receive a boundary condition and write a boundary condition for the other solver. This
boundary condition is communicated between the solvers by a vector at each node
of their mesh. If the meshes match at the interface, this nodal data can be directly
transferred to the other solver. However, if the meshes do not match, the nodal data
has to be mapped from one mesh to the other.

2.5.1 Conservative and Consistent Mapping

In the following, I restrict myself to the example present in my FSI simulations:
Conservative mapping of forces from the fluid to the structure mesh and consistent
mapping of displacements from the structure to the fluid mesh. For more details on
conservative and consistent mapping, see [12].

How the nodal data is mapped to the other mesh depends on what it resembles.
Conservative mapping applies to vectors that resemble an integral over a part of the
coupling surface. Forces are mapped conservatively since the force at a node resembles
the integral over the pressure and shear stress around this node. Every part of the
coupling surface belongs to the integration domain of a node. The magnitude of the
force vector increases for a coarser mesh, since there are less nodes and the integral for
a single node is performed over a bigger area. Consistent mapping applies to quantities
that are independent from the mesh fineness, such as displacements. The vectors at the
nodes resemble samples of a continuous function defined on the whole surface.

2.5.2 Mapping Implementations: Nearest-Neighbor and Radial Basis
Functions

There are different schemes that can be applied to both conservative and consistent
mapping. Details on various mesh mapping schemes are in [27]. Again, I restrict myself
to force and displacement mapping in FSI.
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2 Physical and Numerical Model for Fluid-Structure-Interaction

The simplest mapping scheme is nearest-neighbor mapping. For conservative map-
ping of forces from fluid to structure, the force on a node of the solid mesh is the sum
over the forces of all fluid nodes that are closer to this solid node than to any other solid
node. In consistent mapping of displacement from structure to fluid, the displacement
of a fluid node equals the displacement of the nearest structure node. This way of
mapping displacements leads to a ragged fluid boundary if the fluid mesh is finer than
the structure mesh, since it is a zero-order interpolation.

To prevent this, I use a mapping scheme based on radial basis functions (RBF) with
thin plate splines [27]. RBF mapping interpolates the data between the nodes such that
a smooth fluid boundary is reconstructed. RBF mapping is sensitive for instabilities
in certain cases [19]. In subsection 5.1.2, these instabilities are discussed concerning
the extrapolation of displacements. However, it interpolates with first order and only
needs the same nodal data as nearest-neighbor mapping. Therefore, its use is beneficial
over other higher order mapping schemes that need connectivity information of the
meshes like nearest projection. Figure 2.1 compares the meshes of the same simulation
with nearest-neighbor mapping on the left and RBF-mapping on the right.

Figure 2.1: Nearest-neighbor mapping results in a ragged fluid domain for coarse
structure meshes (left), whereas the RBF-mapping (right) leads to a smooth
interface. On the bottom, arrows indicate which structure nodes influence
the fluid node. For nearest-neighbor mapping, it is just 1 structure node
for each fluid node, whereas all the surrounding structure nodes affect the
position of a fluid node in RBF-mapping.
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3 Software Components

3.1 preCICE

The multi-physics coupling library preCICE [4] provides the tools to couple single
physics solvers for multi-physics simulations. It supports schemes for mapping between
different meshes and timesteps and is mainly used for surface coupling. preCICE is
available on GitHub1 under the LGPL 3.0 Licence2.

An advantage of coupling with preCICE is that users can add new coupled compo-
nents to their simulation with few changes in the original. Plus, the components of a
simulation are exchangeable if users want to test different solver combinations. The
solvers are treated as "black-boxes": preCICE only observes the data that is sent by the
solvers and manipulates their input without knowing their internal models.

Figure 3.1: General scheme of a coupled FSI simulation using preCICE. In my case, I
use OpenFOAM as fluid solver and a FEniCS structure solver with their
respective adapters. Adapted from [22]

An FSI simulation with a FEniCS structure solver and OpenFOAM consists of five
1https://github.com/precice/precice
2https://opensource.org/licenses/lgpl-3.0.html
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3 Software Components

components as seen in Figure 3.1. On the left hand side is the fluid solver OpenFOAM,
connected to preCICE with the OpenFOAM-adapter. On the right, the preCICE-FEniCS
adapter connects the structure solver FEniCS with preCICE.

An adapter converts the coupling data from the representation in preCICE to a
representation that the solver uses internally and vice versa. There are ready-to-use
adapters for many well known solvers like OpenFOAM, CalculiX, deal.II or SU2 [4][28].
For other solvers, an adapter can be implemented "in a few weeks" [22]. preCICE
provides a C++, Python, Fortran and C API. Adapters are usually written in the
language of the solver and use the corresponding preCICE API.

3.2 FEniCS

FEniCS3 is an open-source project for solving partial differential equations (PDEs) with
the Finite Element Method (FEM). Well-documented tutorials and the high-level Python
interface make it beginner friendly, while powerful features also attract experts. A key
feature is the handling of abstract weak forms, such that scientific models are quickly
translated to a FEM simulation. For a simple FEniCS simulation, users specify a mesh,
a function space for test and trial functions, the weak form of the PDE, and boundary
conditions. Time dependent simulations require the user to implement an additional
timestepping scheme.

3.3 preCICE-FEniCS Adapter

The previously available FEniCS-preCICE adapter was implemented by B. Rüth. He
simulated conjugate heat transfer with OpenFOAM and FEniCS [25]. The adapter
transforms boundary conditions from a representation that FEniCS understands to
the representation preCICE needs and vice versa. To write to preCICE, the adapter
evaluates the coupling function at the coupling nodes and writes those values in a
NumPy4-array to preCICE. The read direction is more sophisticated for a Neumann
boundary condition such as forces. The forces t = σ · n are a part of the weak form
(Equation 2.18). In FEniCS, the weak form is an abstract expression. The adapter creates
an expression from the nodal values with a subclass of FEniCS’ UserExpression. The

3https://fenicsproject.org/
4https://numpy.org/
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3 Software Components

evaluation function of the UserExpression is overloaded with an RBF-interpolation of
the nodal values using SciPy5. This expression is then added to the weak form.

The extension of the preCICE-FEniCS Adapter for FSI was a main goal of my thesis.
The new functionality enables users to couple vector valued functions in FEniCS
with preCICE, using only five function calls in their simulation script (see Figure 4.1).
Additionally, the new adapter can read quantities that were mapped conservatively
(see section 2.5 for conservative and consistent mapping). I describe the new features
and improvements in detail in section 4.2. The version I used is on GitHub6.

3.4 OpenFOAM and OpenFOAM Adapter

OpenFOAM7 is a popular open-source software using the Finite Volume Method for
numerical simulations. It started with computational fluid dynamics and was extended
with solvers for electromagnetics, heat transfer and other applications. L. Cheung
already coupled OpenFOAM and preCICE for conjugate heat transfer in her Master’s
Thesis in 2016 [6] and G. Chourdakis developed a general OpenFOAM-preCICE adapter
in his Master’s Thesis [7] based on [6]. D. Risseeuw simulated wind turbines (FSI)
with preCICE, OpenFAOM and CalculiX in 2019 [23], where he also ran the benchmark
scenario from Turek and Hron [26] to validate his models. The benchmark scenario and
an elastic flap are hosted as ready-to-use tutorials for FSI with preCICE on GitHub8,
such that I could extract the fluid case and use it for my FSI simulations with FEniCS
instead of CalculiX with only minor changes in the fluid setup. I used OpenFOAM 5.x
for my simulations.

5https://www.scipy.org/
6https://github.com/precice/fenics-adapter/tree/6939ad4daa7365a9a9fa0972980fa8186bb94603
7https://openfoam.org
8https://github.com/precice/
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4 Implementation

4.1 A FEniCS Solver for Linear Elastic Structures

FEniCS is a platform to solve PDEs that lets users implement their own solvers. To
solve the equations from section 2.2, I derived a 2D solver from Bleyers 3D-transient
elastodynamics tutorial [2]. My simulation script contains the solver and the specific
cases described in chapter 5 in one file. The two cases are basically beams that differ in
length, width, and the location of the boundary conditions, so the script can be used in
both cases with minor modifications.

I chose continuous Galerkin elements with second order Lagrange polynomials on a
mesh of triangles. The boundary is split up into a clamped Dirichlet boundary and a
Neumann boundary where the coupling takes place. On the Neumann boundary, we
write displacements and read forces. Figure 4.1 visualizes the control flow with focus
on the coupling. In the beginning, the adapter is initialized with the corresponding
functions. Then, the read field is incorporated into the simulation as a boundary
condition. This can be done in two different ways as I will explain in subsection 4.2.4.

The timestep is defined in the preCICE-configuration file and read via the adapter
during initialization. For implicit coupling, we compute several iterations for one
timestep. Until convergence, the solver updates the forces and writes displacements
by calling the advance() function of the preCICE-FEniCS adapter in every iteration.
The solver advances to the next timestep if preCICE marks the current timestep as
converged. Once the coupling is completed, the solver postprocesses the results.

13



4 Implementation

Figure 4.1: Overview over the structure solver. Parallelograms are methods of the
preCICE-FEniCS Adapter. Boxes show a summary of the solver’s actions.

14



4 Implementation

4.2 New Features in the FEniCS-preCICE Adapter

4.2.1 Handling Vector Valued Functions

So far, the official preCICE-FEniCS adapter featured scalar valued functions only. In FSI
however, we couple vector functions. In preparatory work, Rafal Kulaga coupled two
FEniCS structure solvers in a static split beam. Scalar and vector data need different
preCICE functions, so I implemented wrappers that automatically call the correct
preCICE function to read or write the coupled quantity. These wrappers are called in
the initialize() and advance() step (see Figure 4.1).

4.2.2 3D-2D Coupling

OpenFOAM provides 3D solvers for 3D meshes only. However, users can simulate 2D
scenarios with a mesh that has only one layer in the third dimension and solve for the
flow field only in the two actual dimensions. We call such a setup pseudo-3D.

In FEniCS, users choose the dimensions of their simulation themselves. I solve my 2D
structure simulation with a 2D solver for minimal computational effort. The preCICE-
FEniCS adapter maps between a 2D simulation in FEniCS and pseudo-3D OpenFOAM
to allow coupling. For preCICE, the simulation is 3D, although the z-component is
ignored in the RBF-mapping (see section 2.4 or [27]) of forces and displacements.

The 2D-3D mapping is needed for three sets of data: Forces, displacements and the
positions of the nodes. For the forces, the adapter deletes the z-components, whereas
it appends zeros for the displacements and positions in the z-dimension. The forces
additionally have to be scaled with 1/∆d, where ∆d is the thickness of the fluid domain,
since the forces are proportional to ∆d and the stiffness of the 2D structure in FEniCS
corresponds to a structure with unit thickness in the z-direction. I chose ∆d = 1 such
that the scaling is unnecessary.

4.2.3 Runtime Improvements by Buffering RBF-Interpolation

Test simulations ran much longer than expected. OpenFOAM seemed to wait for
FEniCS much longer than vice versa, although the structure has less degrees of freedom.
Profiling showed that the preCICE-FEniCS adapter spends most of the time computing
RBF-interpolations. Whenever the read function was evaluated, a new interpolant was
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initialized on the whole mesh. The runtime decreased by more than 80% when the
interpolation is buffered for reuse. The two lower bars in Figure 4.2 show the runtimes
before and after the optimization for an elastic flap in a channel.

0 500 1000 1500 2000 2500
Time in s

No
 Optimization

Optimized 
 Workaround

PointSources
Fluid & preCICE
Other Structure
PointSource
CustumExpression Evaluation

Figure 4.2: Runtimes of the simulation of an elastic flap with different versions of
the preCICE-FEniCS adapter. The top bar shows the approach with
PointSources as presented in subsection 4.2.4, the other bars compare
the approach with a CustomExpression before and after optimization.

4.2.4 Reading Forces as Point Loads

Despite the new runtime improvements from subsection 4.2.3, the read-pipeline pre-
sented in section 3.3 is not optimal for FSI with OpenFOAM. OpenFOAM writes point
loads with conservative mapping between nodes, whereas the preCICE-FEniCS adapter
expects the read-field to be a distributed load as we read it from consistent mapping
(section 2.4). I solved this issue with 2 different approaches: First, a workaround that
can handle simple geometries and second, a more general solution that treats the forces
as point loads.

The workaround is valid for structures, where every edge on the fluid structure
interface has the same length h. In my test cases, the structure is a rectangle. We can
easily choose the coupling boundary to consist of edges of length h. If the solver scales
the forces with 1

h , they can be treated like a force density and the read pipeline from
section 3.3 with the optimization from subsection 4.2.3 is a valid approach.

It might not always be possible to choose a mesh with constant edge length and the
adapter should support coupling on arbitrary meshes. In a new approach, the forces
are treated as point loads on the nodes instead of a continuous function. FEniCS offers
functionality for point loads with the PointSource feature. The adapter creates a list
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of PointSources and returns it to the solver in every advance() call. Then, they are
applied to the assembled system.
PointSources are only implemented for scalar function spaces, such that every

point load is split up into its x- and y-component and a PointSource is created for
each component using its corresponding subspace. Plus, their magnitude cannot be
modified and they can only be applied to an assembled system and not to the weak
form. This forces the solver to explicitly assemble the system and apply the forces
without preprocessing. In the generalized α-method (see subsection 2.2.2), the solver is
supposed to apply the forces at tn+1−α f , an interpolation of the forces at tn and tn+1.
This interpolation is not easily computed from a list of PointSources, so the solver
applies the forces of tn+1 instead, as it receives those forces in implicit coupling. This
impacts the convergence for α f > 0 and is discussed with an example in section 5.2.
The PointSource approach lowers the runtime even further, as seen in Figure 4.2.

4.2.5 Special Treatment of Dirichlet-Boundary Nodes Inside the Coupling
Boundary

At the fluid-solid interface there might be nodes that belong to the Dirichlet boundary
of the solid, where the displacement is zero. For the fluid solver, these nodes belong to
the coupling boundary, so the solver expects to read valid displacements and it writes
forces on that point. However, applying this force as a PointSource on the Dirichlet
boundary of the structure leads to instabilities. We also cannot exclude these points
from the structure’s coupling domain, since preCICE then extrapolates displacements
of surrounding nodes. This extrapolation shifts the fluid domain such that fluid and
structure overlap or a gap appears.

In section 5.1, I provide examples for these issues. Figure 5.3 shows instabilities
that occur with a PointSource on the Dirichlet boundary and Figure 5.2 shows the
nonphysical overlap and gap. I solved this issue in the preCICE-FEniCS adapter: The
adapter receives the Dirichlet boundary domain additionally to the coupling domain.
It only creates a PointSource for nodes of the coupling domain that are not inside the
Dirichlet boundary at the same time.
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5 Testing and Validation

I chose 2 different FSI scenarios to test and validate the simulation software. In the first,
I analyze the flow through a channel with an elastic flap qualitatively. The simulation
runs in less than 6 minutes and shows whether the displacement mapping is performed
correctly. Plus, I provide details to the challenges from section 4.2 and measure the
difference between the two approaches to read forces (see subsection 4.2.4). This case is
a quick way to check whether the framework gives reasonable results. In the second
case, I simulate the well known FSI3 benchmark [26], a simulation in which the flow
around a cylinder with an elastic flap causes the flap to oscillate. While this simulation
takes much longer to compute (2-10 hours depending on the timestep), it allows a
quantitative comparison to reference results from validated setups.

5.1 Elastic Flap in a Channel

5.1.1 Setup

In this simulation I calculate the flow through a channel with an elastic flap attached to
the ground. I use my solver from section 4.1 with the geometry described in Figure 5.1
and Table 5.1. The fluid enters the domain on the left with a constant velocity of
vi = 10 m

s . I chose the parameters (Table 5.1) such that the elastic flap bends significantly
under the load of the flow.
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Figure 5.1: Setup of the channel with an elastic flap. The dimensions and material
parameters are listed in Table 5.1. Taken from [24]

Geometry Parameter Value Unit

l 6 m
h 4 m

lup 2.95 m
w f 0.1 m
h f 1 m

Material Parameter Structure Value Unit

ρs 1000 kg
m3

E 400000 kg
ms2

ν 0.3

Material Parameter Fluid Value Unit

ρ f 1000 kg
ms2

ν f 0.001 m2

s

Simulation Parameter Value Unit

∆t 0.01 s
αm, α f 0

# Cells Fluid Domain 2790
# Elements Solid Domain 640

Table 5.1: Parameters of the elastic flap testcase.

19



5 Testing and Validation

5.1.2 Stability

In section 4.2, I mentioned issues at the intersection of the structure’s Dirichlet boundary
and the coupling boundary. For the elastic flap case, this intersection consists of two
points: The left and right bottom node. Figure 5.2 shows exemplary how the fluid
mesh deforms if these points are excluded from the structure’s coupling domain.

Figure 5.2: A shift of the fluid domain near the structure’s Dirichlet boundary occurs if
the bottom nodes of the structure don’t belong to the coupling boundary
and the RBF-mapping extrapolates the displacements for the fluid nodes.

Instabilities also occur if the preCICE-FEniCS adapter does not filter for Dirichlet
nodes in the coupling domain. In this case the coupled simulation crashes in the first
timestep. A structure-only simulation reveals unphysical deformations of Dirichlet
nodes as seen in Figure 5.3 when PointSources are applied along the left side of the
beam.
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Figure 5.3: Lower part of the structure mesh before (left) and after (right) the first
timestep: The node on the bottom left is pulled all the way through the
beam by a PointSource. This happens because the node is also part of the
Dirichlet boundary.

5.1.3 Results

The simulation ran in about 5 minutes. The flap bends to the right under the load of the
fluid as seen in Figure 5.6. At 1.8 seconds the flap reached its maximum deformation.
Then it swings back to an almost vertical position. The RBF mapping of displacements
results in a smooth fluid mesh at the interface. A snapshot of the simulation at 5 s is
shown in Figure 5.4.

Figure 5.4: Velocity magnitude and normal stresses at 5 s in the elastic flap case. The
highest stresses occur around the left and right bottom nodes.
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Workaround vs. PointSources

In subsection 4.2.4 I presented two approaches to incorporate the forces into the
structure solver. Figure 5.5 compares them for an otherwise equivalent simulation. The
absolute difference is less than 0.01 m throughout the whole simulation. The relative
difference is less than 1 % except for the first timesteps, where very small displacements
introduce a high relative difference despite a very small absolute difference.
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Figure 5.5: Displacement (left) and difference (right) of the point (0,1) in the elastic flap
simulation for the workaround and PointSource approach.

Comparison to a Linear and Nonlinear Structure Simulated by CalculiX

The same simulation is on preCICE’s GitHub1 with CalculiX2 as structure solver. The
simulation uses a nonlinear hyperelastic St. Venant-Kirchhoff model that is also valid
for larger deformations. The material can be changed to a linear elastic material, such
that the inaccuracy of the linear elastic material can be evaluated. In Figure 5.6, I
compare the displacement of the top of the flap for my FEniCS solver with a linear
and a nonlinear CalculiX solver for the same fluid case. In the x-direction, the solvers
show similar results, though the linear solvers overestimate the displacements. In the
y-direction, both linear solvers fail to simulate the deformation properly.

1https://github.com/precice/precice/wiki/Tutorial-for-FSI-with-OpenFOAM-and-CalculiX
2http://www.calculix.de/
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Figure 5.6: Displacement of the point (0,1) in m in the elastic flap simulation in x-
direction (left) and y-direction (right) from 0 to 5 s for linear elastic FEniCS,
a linear elastic CalculiX and a nonlinear CalculiX Solver.

5.2 FSI3 Benchmark - Flow Around a Cylinder with a Flap

In 2007 S. Turek and J. Hron proposed three FSI benchmark simulations to test FSI
solvers [26]. FSI1 converges to a steady state whereas FSI2 and FSI3 are time-dependent
and result in a periodic oscillation of the structure. I chose to simulate the FSI3 case
because it shows large deformations and the added mass effect [32]. There are minor
differences between my simulation and the original FSI3. The original simulation
features a St. Venant-Kirchhoff material whereas mine features a linear-elastic material.
Plus, my inlet has a constant velocity instead of a parabolic velocity profile for practical
reasons.

5.2.1 Setup

In this simulation, the fluid enters the computational domain from the left. The velocity
is linearly ramped up to vi = 2 m

s in the first two seconds. For the outlet on the right,
the pressure pout is set to zero. The other boundaries of the fluid domain (top, bottom,
cylinder and flap) are no-slip walls.
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vi

pout

Figure 5.7: Setup of the FSI3 Benchmark Scenario. Parameters are specified in Table 5.2.
Adapted from [23].

The schematic setup is shown in Figure 5.7. Geometric and material parameters are
defined in Table 5.2 and Table 5.3. The cylinder is a fixed rigid body and therefore
excluded from the computational domain. The elastic flap consists of linear elastic
material (2.2) and is attached to the cylinder on its left end.

Geometry Parameter Value Unit

H 0.41 m
L 2.5 m
l 0.35 m
h 0.02 m
r 0.05 m

Points Coordinates Unit

A (0.6, 0.2) (m, m)
B (0.15, 0.2) (m, m)
C (0.2, 0.2) (m, m)

Boundary conditions Value Unit
vi 2 m

s
pout 0 Pa

Table 5.2: Geometry of the FSI3 Simulation.
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Material Parameter Structure Value Unit
ρs 1000 kg

m3

E 5600000 kg
ms2

ν 0.4

Material Parameter Fluid Value Unit
ρ f 1000 kg

ms2

ν f 0.001 m2

s

Table 5.3: Material parameters in the FSI3 Simulation.

I run the simulation with two different parameter sets for the generalized α-method:
αm = 0.2, α f = 0.4 and α f = αm = 0. The first set corresponds to optimal high
frequency dissipation [2], however the setup fails to evaluate the forces at tn+1−α f , such
that they are evaluated at tn+1 instead. The second set refers to the Newmark-method
[21], where the forces are correctly evaluated at tn+1. For each, I test two different
timesteps: ∆t = 0.001s and ∆t = 0.005s.

The fluid mesh consists of 6306 cells. The structure mesh is coarser at the interface
along the x-direction and finer in the y-direction. It contains 160 triangular elements
and is illustrated in Figure 5.8 along with the surrounding fluid mesh. On the solid-
fluid interface, discrete loads are applied on every boundary node of the structure
mesh with PointSources as explained in subsection 4.2.4.

Figure 5.8: Mesh of and around the flap for the FSI3 simulation.
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5.2.2 Testing the Structure Solver - CSM3

Turek and Hron suggest three tests for the structure solver, where only gravity is
applied on the structure and there is no coupling between fluid and structure [26]. I
simulate their third test CSM3 since it is the only time-dependent case. The material
and geometry parameters are the same as for the FSI3 (see Table 5.3 and Table 5.2)
except for the Young’s modulus E which is 1.4 MPa instead of 5.6 MPa. For this test,
I consider the first term on the right hand side of Equation 2.8 with b = (0,−2 m

s2 )

instead of the second term. In FEniCS, I add
∫

Ω ρb · vdx to the weak form and omit the
coupling forces.
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Figure 5.9: Displacement (in m) of point A in the CSM3 test in y-direction (left) and
x-direction (right) from 0 to 10 s.

Quantity My Results Turek & Hron Abs. variance Rel. var.

Frequency [Hz] 1.076 1.09 0.014 1.3 %
∆y(A) [mm] -67.3 ± 69.2 -63.6 ± 65.2 1.9 ± 4.0 6 %
∆x(A) [mm] -0.000035 ± 0.000035 -14.3 ± 14.3 -14.3 ± 14.3 100 %

Table 5.4: Comparison of my partitioned CSM3 with FEniCS and OpenFOAM to refer-
ence simulations.

Figure 5.9 shows the deflection of the point A under the gravitational loading. The
vertical deflections oscillate periodically, whereas the horizontal deflections are very
small (max -6.92 x10−7m) and jagged. In Table 5.4, I compare characteristic values from
my CSM3 simulation to the reference values from [26]. The frequencies almost match
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with a variance of 1.3 %. The deflection in the y-direction is about 6 % bigger in my
simulation than in the reference case. My linear elastic beam hardly deforms in the
x-direction, whereas the beam with St. Venant-Kirchhoff material shortens significantly
under the perpendicular gravitation.

5.2.3 FSI3 Results

Stability

The simulation converges for αm = α f = 0 for both timesteps ∆t. However, it only
converges for the larger timestep ∆t = 0.005s for αm = 0.2 and α f = 0.4. For ∆t = 0.001s,
the displacement of A shows high frequency oscillations as seen in Figure 5.10 before
OpenFOAM crashes at t ≈ 1.1s.

Figure 5.10: For a timestep ∆t = 0.001s, αm = 0.2 and α f = 0.4 the simulation crashes
after 1.1 s. Before the crash, the flap oscillates with a high frequency.

Converging Simulations

For the other parameter choices, the elastic flap oscillates as seen in Figures 5.11
and 5.12. The strains are small during the ramp up of the velocity from 0 to 2 s. At
2.5 s, the deformations start to be visible and they peak between 4 and 4.5 s. After
that point, the tip shows a periodic displacement in the y-direction. Table 5.5 gives
characteristic values on the deformation of the structure.
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∆t = 0.001, ∆t = 0.005 ∆t = 0.005
α f = 0, αm = 0 α f = 0, αm = 0 α f = 0.4, αm = 0.2

Frequency [Hz] 4.317 4.308 4.255
periodic ∆y(A) [10−3m] 1.07±41.68 1.12±41.38 1.25±46.75

∆ymax [10−3m] 46.1 45.8 54.5
t at ∆ymax [s] 4.08 4.31 4.31

periodic ∆x(A) [10−6m] 50±36 48±38 65±65

Table 5.5: Characteristic values of the three converging FSI3 simulations

Figure 5.11: Exemplary velocity field of the FSI3 Case.
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Figure 5.12: Tip displacement of point A in y-direction from 0 to 10 s for ∆t = 0.001s,
α f = 0 and αm = 0. For the other simulations the image looks very similar
and is therefore not included here.

Comparison to Reference Results

In Table 5.6, I compare characteristic values of the periodic oscillations of my FSI3
simulation with the results from [26] and two reference simulations with CalculiX
instead of my structure solver. [26] has a timestep of ∆t = 0.0005s and a parabolic
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velocity profile on the inlet, whereas the other simulations use ∆t = 0.001s and a
constant velocity profile. Plus, the mesh in [26] is much finer with 253952 elements
than the other simulations with only 6306 cells in the fluid domain. The setup with
OpenFOAM, preCICE and CalculiX was validated in [23]. I used the same fluid case for
the reference simulations as I used to couple my FEniCS structure solver. For CalculiX,
I use the nonlinear case from the preCICE-tutorial on GitHub3 and a linearized version.
Figure 5.13 visually compares my simulation with the linear and nonlinear CalculiX
simulations. The difference between my case and the linearized CalculiX is much
smaller than between the two CalculiX simulations with less than 5% for frequency and
y-displacement.

Quantity FEniCS-OF CCX-OF-lin CCX-OF-nl T & H

Frequency [Hz] 4.317 4.380 4.543 5.55
periodic ∆y(A) [10−3m] 1.07±41.68 1.12±39.82 0.95±33.45 1.48±34.38
periodic ∆x(A) [10−6m] 50±36 50±25 -2075±2025 -2690±2530

Table 5.6: Characteristic values of my FSI3 case compared to a linearized version of the
FSI3 preCICE tutorial with CalculiX, the original tutorial and Turek & Hron
[26].
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Figure 5.13: Displacement of the point A in m in the FSI3 test in y-direction (left) and
x-direction (right). The results of the simulations using CalculiX are shifted
such that the phases match on the left edge of the figures.

3https://github.com/precice/tutorials/tree/master/FSI/cylinderFlap/OpenFOAM-CalculiX
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6 Conclusions

In this thesis, I explored possibilities to simulate fluid structure interaction with FEniCS,
preCICE and OpenFOAM. I developed a 2D structure solver in FEniCS and an adapter,
such that the solver can be coupled with a pseudo-3D OpenFOAM simulation via
preCICE. The setup was tested with two different testcases and for different parameters
in the timestepping. The generalized α-method becomes unstable in certain cases, when
the forces are not evaluated at the correct time for small timesteps, as seen for the FSI3
case. The setups give qualitatively reasonable results for αm = α f = 0. In comparison
with a validated linear structure solver, the difference is less than 5 % for frequency and
displacement. This indicates that the preCICE-FEniCS adapter and the implemented
structure solver work correctly. The CSM3 already shows the limitations of a linear
elastic model: Large rotations cannot be represented correctly and deformations are
overestimated. This is also the case for the FSI3 simulation, where the displacements in
the y-direction are overestimated and the displacements in the x-direction are wrong,
since they are the result of a rotation that cannot be displayed in a linear model.

The preCICE-FEniCS adapter was designed such that other researchers can use it
to couple their own FEniCS solvers for FSI and is provided on GitHub1. The whole
structure setup can be used to extend CFD simulations to FSI due to the modular nature
of simulations with preCICE as coupling tool. The components are well separated,
such that also other CFD solvers than OpenFOAM may be used.

6.1 Future Work

There are still aspects in the structure solver and the adapter that can be improved.
The structure solver could be extended for hyperelastic materials that it can express
large deformations and rotations better. preCICE developers work on higher order
coupling schemes, such that the forces can be evaluated at arbitrary points in time. This

1https://github.com/precice/fenics-adapter
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6 Conclusions

would allow the FEniCS solver to actually read the forces at tn+1−α f and the generalized
α-method could be correctly applied for various choices of α f .

The computational performance was sufficient for the testcases in this thesis with
a maximum runtime of 10 hours for the FSI3 on a virtual machine. preCICE and
OpenFOAM are ready for intra- and inter-solver parallelism. For more sophisticated
simulations, also the FEniCS-part could be parallelized, such that the solvers run on
multiple cores and at the same time instead of in an alternating fashion on a single
core.
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