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Abstract

This thesis reviews recent methods employed for the simulation of Elliptical and Archimedean
copulas and provides guidance for the implementation and testing of such simulations. The
ultimate purpose of copula simulations is the generation of samples from a multivariate
(joint) distribution, through the Monte Carlo sampling method. Simulations of such multi-
variate distributions have proven to be useful, when the number of marginals contained in
a multivariate distribution is high, and analytic approaches get highly expensive in terms
of computational effort or do not even exist. A second important advantage of copulas is
their ability to decouple the dependence structure and marginals from one another, such that
those can be modeled separately. Copulas are prominently used in quantitative finance, but
have found applications in various other fields such as climate and weather research, civil
engineering and medical research.
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Kurzfassung

Diese Arbeit betrachtet aktuelle Methoden zur Simulation von Archimedischen und Ellip-
tischen Copulas und schlägt eine Möglichkeit vor um diese zu implementieren und zu
testen. Das letzendliche Ziel von Copula Simulationen ist Stichproben von einer multivariaten
Verteilung durch Monte-Carlo-Simulationen zu generieren. Diese Simulationen gelten als
bewährte Modellierungsverfahren für Verteilungen mit einer hohen Anzahl an Dimensionen,
da analytische Methoden hierfür rechnerisch zu aufwendig sind oder gar nicht existieren.
Ein weiterer Vorteil von Copulas liegt in der Fähigkeit eine multivariate Verteilung in eine
Copula und Randverteilungen zu zerlegen, sodass diese separat modelliert werden können.
Copulas werden hauptsächlich in der quantitativen Finanzwirtschaft verwendet, aber auch
in verschiedensten anderen Bereichen, wie Klima- und Wetterforschung, Bauingeneurwesen
und Medizinforschung.
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1. Introduction

Modeling multivariate distributions involving d random variables, with d ≥ 2, is a challenging
problem, since the model complexity increases with the number of dimensions d. A way of
dealing with this issue, is to rely on Monte Carlo simulations instead of analytical solutions.
With the help of these simulations it is possible to create very general models that have the
capability to capture complex structures. However, in order to make use of this technique,
an efficient simulation scheme is required. Such efficient schemes exist for the simulation of
copulas, which constitute a way of modeling the dependence structure inherent to multivariate
distributions. It is crucial to understand that copulas themselves are only modeling the
dependence among the random variables of a multivariate distribution, without taking their
marginal distributions into account. This gets obvious when looking at the marginals of a
copula, which are all uniformly distributed on the interval [0, 1]. While this might look like
an oversimplification, it actually constitutes the strongest argument for the usage of copulas,
as it allows one to model the marginal distributions and the dependence structure separately.
By exploiting the fact that one can transform uniformly distributed random numbers into any
desired univarate probability distribution through the application of the generalised inverse
of the cumulative distribution function, commonly denoted by F−1, onto the uniforms of the
copula, one is able to obtain samples from an arbitrary multivariate distribution, without any
further constraints.
The eventual goal of this thesis is to provide the theoretical background alongside with
technical guidance for simulations of d-dimensional multivariate distributions F(x1, ..., xd)

with a copula C and marginals F1, ..., Fd, where F(x1, ..., xd) = C(F1(x1), ..., Fd(xd). This results
in the following two-step approach to obtain one sample vector of F:

Set (U1, ..., Ud) = sample from C

Return (F−1
1 (U1), ..., F−1

d (Ud))

Note that it has been proven by Sklar’s theorem (see section 2.1) that any multivariate
distribution (with continuous marginals) can be decomposed into a copula and univariate
marginals. Hence, no simplifying assumptions, with regards to the model and subject being
modeled, have to be made theoretically.
To illustrate the importance of correct modeling of multivariate distributions, we describe in
the next section a well-known inappropriate use of the so-called Gaussian copula in finance -
with devastating consequences.
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1. Introduction

The 2008 Financial Crisis and the Gaussian Copula

Felix Salmon’s famous article "A recipe for disaster: The formula that killed Wall Street" from
2009 displayed rigorously how the financial crisis of 2008 came about and uncovered the
foolish mistakes that led to the devastating event [1]. The recipe Salmon refers to metaphori-
cally, is the Gaussian copula, which will be discussed in detail in chapter 2. The Gaussian
copula was introduced to the world of finance by Chinese mathematician David X. Li in 2000
through his paper "On Default Correlation: A Copula Function Approach" [2]. Inspired by
the way insurance companies modeled the risk of mortality with regards to life insurances, Li
proposed a similar approach to model the correlation between defaults in the credit market
[3]. Practitioners were very quick to adapt Li’s proposal, as it allowed institutions to sell
huge amounts of seemingly risk-free financial products, called CDOs (Collatarised Debt
Obligations) to investors, generating a huge bubble fed by the then booming housing/mort-
gage market. These CDOs, which essentially are pools of debt, such as mortgages, are sold
to investors who then get payed off with the mortgage/debt payments of the debt holder.
Those products were so appealing to investors, because they allowed them to avoid taking on
idiosyncratic risks of individual defaults on mortgages by diversifying through pools. CDOs
and other related financial products existed long before the financial crisis. The only problem
was that modeling such complex products and pricing them according to those models, was
an impediment to their popularity... Until the Gaussian copula was introduced to the financial
world and used to model CDOs [4]. As a consequence, huge amounts were issued and sold
to private and institutional investors, who were looking to profit from the bullish housing
market. The main difficulty of modeling a pool of debt or mortgages is that one has to capture
the correlations between the individual mortgages in order to estimate the risk of default
correctly. A CDO can be seen as a multivariate distribution, where the marginals consist
of the individual default probabilities of the debt holders. The Gaussian copula offered a
tool to model the dependencies among the individual marginals of a CDO, which F. Salmon
describes as mathematically beautiful, simple, tractable, yet fatally flawed. Especially, because
the Gaussian copula lacks what is called "heavy tails", which describes a strong correlation of
the variables in the extremes. It therefore failed to capture the probability of many mortgages
defaulting at once, which eventually was the case when the crisis came about and the model
fell apart. Since then, other more sophisticated types of copulas have been employed to model
correlations in the financial industry, some of which will be introduced and implemented as
part of this thesis.

Outline of Thesis

This thesis is structured as follows: First, the mathematical theory behind the concept of
copulas, specific types, their application, alongside with all the additional tools necessary for
performing simulations will be given in chapter 2. This includes the simulation algorithms
as well. After that chapter 3 will outline a possible approach to implement and test the
simulations. Chapter 4 will be about the evaluation of the implementation. Finally, in chapter

2



1. Introduction

5 we are going to highlight the main findings of this thesis and give an outline on possible
points for further research.
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2. Copula - Definitions and Sampling

The word "copula" comes from Latin and means as much as "link" or "tie" [5]. Copulas, which
can be of various types depending on the properties of the phenomenon being modeled,
determine how the dependence between univariate marginal distributions is structured. One
of the biggest advantages of copulas is given by the fact that the marginal distributions
and their dependence are modeled separately. With regards to the application of copulas
in financial risk modeling this provides a significant benefit, as it enables model building
through a so-called "bottom-up approach". In the field of financial risk modeling, this proves
to be crucial, as most of the time the marginal behaviour of the different variables included
in a model can be observed rather easily, compared to the dependency among them. As an
example, consider a credit risk model: the underlying marginals consist of the numerous
obligors who hold loans and will be able to pay them back (or not) with a certain probability,
which can be estimated rather easily through fundamental information on the debt holder, as
well as historical data. Meanwhile the dependence between those obligors is much harder
to estimate, especially considering the high dimensionality involved in this problem, which
becomes an issue when looking at institutions that issue large amounts of loans [6].
This section is meant to recapitulate the mathematical background on which the simulation
of copulas builds. The notations, definitions and theorems used are usually taken from [7]
and [6], if not indicated otherwise.

2.1. Dependence Modeling with Copulas

Having outlined the advantageous concept of modeling multivariate distributions in a dyadic
way, by isolating the dependence structure and the marginals, it is appropriate to formally
introduce the copula:

Definition 1 (Copula) A function C : [0, 1]d −→ [0, 1] is called copula if there is a random vector
(U1, ..., Ud) such that each component Uk ∼ U(0, 1) for all k = 1,...,d, is uniformly distributed and

C(u1, ..., ud) = P(U1 ≤ u1, ..., Ud ≤ ud), u1, ..., ud ∈ [0, 1]. (2.1)

The mathematical foundation for the application of copulas to multivariate distributions was
provided by Sklar (1959) through his famous theorem, which goes as follows:

Theorem 1 (Sklar’s Theorem) A function F : Rd −→ [0, 1] is the distribution function of some
random vector (X1, ..., Xd) if and only if there is a copula C : [0, 1]d −→ [0, 1] and univariate distri-
bution functions F1, ..., Fd : R −→ [0, 1] such that

4



2. Copula - Definitions and Sampling

C(F1(x1), ..., Fd(xd)) = F(x1, ..., xd), x1, ..., xd ∈ R, (2.2)

where C is unique if Fj, j = 1, ..., d is continuous.

Sklar’s Theorem shows the decomposition of a multivariate distribution into two components,
namely the marginal distributions (Fi, i = 1, ..., d) and the dependence structure (C). Addition-
ally, the theorem indicates, that every multivariate probability distribution can be split into
marginals and copula [8].

2.2. Special Cases of Copulas

As first concrete examples of copulas, it makes sense to consider the most fundamental types,
in part because they are connected to the more sophisticated ones. When reasoning about the
correlation of two random variables, there are three trivial cases that have to be considered:

• Independence: The variables are independent from each other and do not correlate at
all. Analytically this copula is given by:

C∏(u1, ..., ud) =
d

∏
i=1

ui, (2.3)

and can be sampled by simply drawing d independent uniform random variables. A
2-dimensional plot of a simulation would therefore look like figure 2.1.

Figure 2.1.: MATLAB plot of a simulated Independence copula

5



2. Copula - Definitions and Sampling

• Comonotonicty: The variables show perfect positive dependence. The functional form
of this special type of copula is as follows:

CM(u1, ...ud) = min{u1, ..., ud}. (2.4)

The trivial simulation procedure here is given by drawing one uniform random variable
and setting every value of the other d dimensions equal to the first draw, such that the
value of all variables is equal. A simulation of a 2-dimensional comonotonicity copula
can be seen in figure 2.2.

Figure 2.2.: MATLAB plot of a simulated Comonotonicity copula

• Countermonotonicity: The variables show perfect negative dependence. This type
of dependence can only be exhibited by two random variables and is therefore only
defined for two marginals.

W(u1, u2) = max{u1 + u2 − 1, 0}. (2.5)

Once again, a straight forward sampling approach is to sample one uniform random
variable U1 for the first dimension and set the second one equal to (1 − U1). The
graphical representation can be seen in figure 2.3.

6



2. Copula - Definitions and Sampling

Figure 2.3.: MATLAB plot of a simulated Countermonotonicity copula

2.3. Elliptical Copulas

Elliptical copulas earn their names due to the fact that they are related to some elliptical
distribution. More precisely, they are obtained with the help of Sklar’s theorem where the
distribution function F is classified as elliptical [7] and most commonly Gaussian or Student’s
t. Note that this family of copulas is often also referred to as implicit copulas, as they are
implicitly given through some distribution. Formally, this class of copulas is defined as
follows:

Definition 2 An elliptical copula is a copula, where F follows an elliptical distribution and is given
by:

C(u1, ..., ud) := F(F−1
1 (u1), ..., F−1

d (ud)), (u1, ..., ud) ∈ [0, 1]d, (2.6)

where F−1
k are the univariate quantile functions, k = 1, ..., d.

2.3.1. Gaussian Copula

The most famous type of copula is the Gaussian copula, which was already introduced
informally in the introductory chapter. Mathematically it is defined according to the following
definition:

Definition 3 The Gaussian copula CGauss
P is the copula of X ∼ N (0, P), with P as the correlation

matrix. The functional definition is given by

CGauss
P (u1, ..., ud) := FP(Φ−1(u1), ..., Φ−1(ud)), (2.7)

7



2. Copula - Definitions and Sampling

where (u1, ..., ud) ∈ [0, 1]d, FP is the joint distribution function of X, and Φ−1 is the quantile function
of the standard normal distribution.

A simulation from a 2-dimensional Gaussian copula can be seen in figure 2.4.

2.3.2. t-Copula

The t-copula is also part of the family of elliptical copulas, but has one significant key feature
that the Gaussian copula lacks, namely tail-dependence. Tail dependence generally describes
the asymptotic behaviour of multivariate distributions, i.e., how the variables correlate in the
extremes. For further reading on tail dependence and explicit calculations for the Gaussian-
and t-copula, see [6] section 7.2.4 and [9] section 2.13.
The t-copula is defined as follows:

Definition 4 The t-copula Ct
P,ν is the copula of X ∼ td(0, P, ν), where P is a correlation matrix and

ν > 0 the degrees of freedom. The functional form is given by

Ct
P,ν(u1, ..., ud) := tν,P(t−1

ν (u1), ..., t−1
ν (ud)), (2.8)

with (u1, ..., ud) ∈ [0, 1]d, tν,P as the joint distribution function of X and t−1
ν as the quantile function

of the univariate standard t-distribution with ν degrees of freedom .

An example for a simulation with a t-copula can be seen in figure 2.4. When looking at the
structure of the points in the bottom-left and top-right corner of (b) and (d), the difference in
tail-dependence of the two copulas gets visible by the arrangement of the simulated points.
The points in (d) have a tighter formation in the two corners, compared to the multivariate
distribution with the Gaussian copula in (b).

8



2. Copula - Definitions and Sampling

Figure 2.4.: MATLAB plot of 20,000 simulated points from (a) a Gaussian copula with ρ = 0.8,
(b) a bivariate distribution with the same copula as in (a) and standard normal
marginals, (c) a t-copula with parameters ν = 2 and ρ = 0.8, (d) a bivariate
distribution with the same copula as in (c) and standard normal marginals.

2.4. Archimedean Copulas

Archimedean copulas differ from elliptical copulas in a number of ways. First off, they are
not related to any multivariate distribution. Instead, they rely on a so-called generator φ

for their construction. For that reason, they are often also referred to as explicit copulas. The
functional representation of an Archimedean copula is given as:

Cφ(u1, ..., ud) := φ(φ−1(u1) + ... + φ−1(ud)). (2.9)

Here, the generator φ has to fulfill a number of properties, as Cφ needs to have uniformly
distributed marginals, in order to fit the definition of a copula. For this to hold we define
Archimedean generators as follows:

Definition 5 An (Archimedean) generator is a function φ : [0, ∞) −→ [0, 1] with the following
properties:

9



2. Copula - Definitions and Sampling

1. φ(0)=1 and limx↗∞ φ(x) = 0,

2. φ is continuous,

3. φ is decreasing on [0,∞) and strictly decreasing on [0, inf{x > 0 : φ(x) = 0}),
where inf ∅ := ∞.

For a proof that these properties are necessary to obtain a copula with an Archimedean
generator, see [7] section 2.2.1. In the following, two popular instances of Archimedean
copulas will be introduced, by giving their respective generator functions and highlighting
some of their properties. Further tools, necessary for their simulation, will be introduced in
later sections and synthesized in section 2.6. Analytical definitions of these copulas are left
out, as they do not play any role in the simulations, but can be found in the corresponding
chapters of [7].

2.4.1. Clayton Copula

The Clayton copula is characterized through its generator function φ and its inverse φ−1,
which are given as:

φ(x) = (1 + x)−1/θ , φ−1(x) = x−θ − 1, θ ∈ (0, ∞). (2.10)

It possesses lower tail dependence and no upper tail dependence, as can be seen in figure 2.5.
Furthermore, the correlation-defining parameter θ is defined on an open right-unbounded
interval, which seems counter-intuitive as correlation is usually defined on [-1,1]. This aspect
will prove to be interesting with regards to simulations, as limiting cases for θ must be
tested. The correlation, as Kendall’s Tau (see section 2.7.1), is obtained through the formula
τCCl

θ
= θ/(2 + θ).

2.4.2. Gumbel Copula

The second Archimidean copula that is subject to this thesis is the Gumbel copula with the
following generator function φ and its inverse φ−1:

φ(x) = e−x1/θ
, φ−1(x) = (− log(x))θ , θ ∈ [1, ∞). (2.11)

This copula exhibits upper tail dependence with no lower tail dependence, as can be verified
in figure 2.5. The correlation is given by τCG

θ
= (θ − 1)/θ. Here, only the limiting case of

θ −→ ∞ has to be examined in the simulation, since the defining interval of θ is closed.

10



2. Copula - Definitions and Sampling

Figure 2.5.: MATLAB plot of 20,000 simulated points from (a) a Clayton copula with θ = 5,
(b) a bivariate distribution with the same copula as in (a) and standard normal
marginals, (c) Gumbel copula with θ = 5, (d) a bivariate distribution with the
same copula as in (c) and standard normal marginals.

2.5. Generation of Non-Uniform Random Numbers

The generation of non-uniform random numbers plays a crucial role in the simulation of
copulas and is an unavoidable procedure that is part of every sampling scheme regardless of
the copula type. Two major methods for this cause, are firstly, the Inverse Transform Method
or Inversion Method and secondly, the Acceptance-Rejection Method, both of which will be used
for the simulations performed in this thesis. Generally speaking, one would prefer the Inverse
Method, as it constitutes a straight forward, analytical approach. However, for the generation
of some distributions, it is more sensible to rely on the Acceptance-Rejection Method, as the
inverse of some distributions is expensive to evaluate or, in some cases, might not even exist
[7].

11



2. Copula - Definitions and Sampling

2.5.1. The Inverse Transform Method

The theoretical foundation for the inverse transform method relies on Theorem 3.1 of [10]
and makes use of the fact that the cumulative distribution function F of every univariate
distribution is distributed uniformly. Therefore, we can take the inverse F−1 of F, plug in
uniformly distributed numbers and thereby obtain numbers with the desired distribution
F. Formally, this looks as follows: Let U ∼ U(0, 1) and F be the cdf of some univariate
distribution with F−1 its inverse. Then F−1(U) has the distribution function F.

Generating Exponentially Distributed Random Numbers

The generation of Exp(λ) distributed random numbers can be performed perfectly through
the inversion method. Its inverse distribution function is given as F−1(u) = − log(1−u)

λ ,
0 ≤ u < 1. Therefore, having a random variable U ∼ U(0, 1), we can obtain the desired
exponential random variable Y ∼ Exp(λ) by using Y := − log(U)/λ. Note that 1−U and
U have the same distribution and were exchanged in the above formula for simplification
purposes. The uniform numbers U plugged into this formula should be verified beforehand
for their exact range, as log(0) is undefined.

Generating Normally Distributed Random Numbers

The inverse cumulative distribution function of the normal distribution has no explicit
analytical representation. It is therefore unavoidable, to either use a method of another
category than inversion, such as the Box-Muller Method, or rely on approximations of the
inverse commonly denoted by Φ−1. There exist many such approximations, plenty of which
are mentioned in [7]. However, the algorithm of choice for this thesis is the PPND7 algorithm
from [11], which yields results that are accurate and perform well in terms of runtime.
Note that the runtime is very important here, as a bivariate simulation of 20,000 points
with standard normal marginals, requires 40,000 calls on this function. Real use cases of
simulations would usually involve a much higher number of marginals and evaluations of
the funtion.

Generating Chi-Square and t-Distributed Random Numbers

The generation of a chi-squared distributed random variable χ2
ν is required when one wants to

obtain a multivariate Student’s t-distribution or even a single Student’s t-distributed random
number. Once again there are a number of ways to solve this problem, as there is no way
to compute the inverse directly. For this thesis, an approximation of the inverse cumulative
distribution function through a Taylor series expansion was used. It was first proposed by
Best and Roberts in 1975 [12] and later on refined by Shea (1991) [13]. The algorithms and the
code are openly available and will therefore not be shown here.
To further obtain a Student’s t-distributed random number, one has to generate a standard
normally distributed random variable Z ∼ N(0, 1), as well as a chi-squared distributed
variable V ∼ χ2

ν and then return X := Z√
V/ν
∼ tν.

12
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2.5.2. The Acceptance-Rejection Method

There are a couple of reasons one would want to refrain from using the inverse transform
method: Firstly, for some distributions, there exist only approximations for the inverse density
function F−1. Secondly, there are cases where evaluating F−1 is very time-consuming and
requires excessive computational effort. This is where the acceptance-rejection method (AR
method) offers an alternative to circumvent these issues.
John von Neumann proposed the method in 1951. The theoretical foundation can be looked
up in [10] Theorem 3.3 with the proof for it attached subsequently and a generalized algorithm
for the method as well. Specific ones that were implemented will be given in the following.

Generating Gamma-Distributed Random Numbers

Obtaining a random variable with a gamma distribution X ∼ Γ(α, η) can be broken down
into two sub-problems, according to [7], where we compute Γ(α, 1) with α < 1 and Γ(n, 1)
with n ∈ N. This enables us to obtain a gamma distribution with any desired parameters,
due to:

• The scaling property: X ∼ Γ(α, η)⇒ cX ∼ Γ(α, η/c) for any c > 0,

• Γ(α, 1) ∼ Γ(bαc, 1) ∗ Γ(α− bαc, 1), where the operator "∗" stands for convolution.

For the integer part of the calculation, Cheng’s algorithm (see section 6.8.1 of [7] for more
detail) is used, which goes as follows:

Algorithm 1 (input: α > 1):

1. Generate U1, U2 ∼ U(0, 1).

2. Y := 1√
2α−1

log( U1
1−U1

).

3. X := αeY.

4. Z := U2
1U2.

5. R := α− log(4) + (α +
√

2α− 1)Y− X.

6. If (R ≥ 4.5Z− 1− log(4.5)) or (R < log(Z)) then return X.

7. Else goto 1.

We are now left with the problem of generating a random variable X ∼ Γ(α, 1) with 0 < α < 1.
For this part, two Algorithms will be considered and later compared. The first of which is
taken from [7]:

13
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Algorithm 2 (input: 0 < α < 1):

1. a := (1− α)αα/(1−α).

2. Generate E1, E2 ∼ Exp(1).

3. X := E1/α
1 .

4. If (X > E1 + E2 − a) return X.

5. Else goto 2.

Due to reasons further outlined in chapter 4, a second approach to the generation of a
gamma-distributed random variable was reviewed in this thesis. It is taken from [14] and
supposed to work well with small α values. The algorithm requires the two following func-
tions, which will be defined up front, as they would otherwise hinder the readability of the
pseudo-code:

hα(z) = ce−z−e−x/α
, z ∈ (−∞, ∞),

ηα(z) =

{
ce−x, for z ≥ 0,

cwλeλx, for z < 0,

where λ := α−1 − 1 and c = Γ(α + 1) with Γ denoting the gamma function. The pseudo-code
looks as follows:

Algorithm 3 (input: 0 < α < 1):

1. λ := α−1 − 1.

2. w := α/e(1− α).

3. r := (1 + w)−1.

4. Generate U1, U2, U3 ∼ U(0, 1).

5. If U1 ≤ r then z = − log(U1/r).

6. Else z = log(U2)/λ.

7. If hα(z)/ηα(z) > U3 then return e−z/α.

8. Else goto 4.

14
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2.5.3. Generating Stable-Distributed Random Numbers

The generation of a stable-distributed random number X ∼ S(α, 1, 0) has an elegant method
of its own, which is neither an Inversion- nor an AR Method. The algorithm is defined by the
following steps:

Algorithm 4 (input: 0 < α ≤ 1):

1. Generate U ∼ U(0, 1).

2. Generate E ∼ Exp(1).

3. U := π(U − 1
2 ), such that U ∼ U(−π

2 , π
2 ).

4. Return X := sin(α(π/2+U))
cos(U)1/α ( cos(U−α(π/2+U))

E )(1−α)/α.

It will be further needed for the sampling of Gumbel copulas.

2.6. Additional Operations and Functions involved in Copula
Simulations

Cholesky Decomposition

As we will see in later sections, the generation of elliptical copulas, requires us to compute
the Cholesky decomposition of the correlation matrix, in order to obtain the lower triangular
matrix of the decomposition and with it eventually, a multivariate normal distribution with a
certain degree of correlation. The goal is to decompose some matrix A into a lower triangular
matrix L, such that LLT = A. Note that this operation is an optimized version of the LU
decomposition, which can only be applied to symmetric and positive-definite matrices, such
as correlation or covariance matrices. This decomposition requires N3/6 operations to be
executed, with N denoting the size of the matrix. This is about half as many operations as
required for the LU decomposition. For more detail and an implementation, see [15].

Calculating the CDF of the Normal Distribution

Additionally to the calculation of the inverse Φ−1(x), we will also need an efficient way of
evaluating the standard normal cumulative distribution function Φ(x) for the generation of a
multivariate normal distribution, which, in turn, is required for the Gaussian and t-copula.
This function, just like its inverse (section 2.5.1.), has no analytical representation. It is
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therefore necessary to rely on approximations, which there are a number of. In this thesis,
one provided by W.J. Cody in 1969 [16] is used for this cause.

Calculating the CDF of the Student’s t-Distribution

The Student’s t-distribution’s cumulative distribution function will be needed for the simula-
tion of t-copulas. There is a well-known way to evaluate it, which can be looked up in [15],
where even code for its calculation is provided.

2.7. Simulation Algorithms

In this section the simulation algorithms will be presented. Those are mainly based on [6],
but can generally be regarded as the most efficient and current ones for the purpose of copula
simulations, as other recent books such as [7], recommend essentially the same procedures.
Note that this section will only highlight the schemes. The implementation itself will be
presented in the next chapter.

2.7.1. Multivariate Normal Distribution

The aim of the following algorithm is to simulate a multivariate normal distribution N ∼
Nd(µ, Σ), where d corresponds to the dimension of the distribution, i.e., the number of
marginals contained in the distribution, µ is the location vector and Σ the covariance matrix.

Algorithm 5 (input: µ, Σ):

1. Compute the Cholesky decomposition of Σ to obtain Σ1/2, which is the lower triangular
matrix of the decomposition.

2. Generate a vector Z = (Z1, ..., Zd)
′ of independent standard normal variates.

3. Return X = µ + Σ1/2Z.

2.7.2. Multivariate t-Distribution

The next algorithm is meant to generate a multivariate t-distribution X ∼ td(ν, µ, Σ) with the
same parameters as for the multivariate normal distribution and additionally ν denoting the
degrees of freedom.

16
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Algorithm 6 (input: ν, µ, Σ):

1. Generate Z ∼ Nd(0, Σ) using Algorithm 5.

2. Generate W ∼ χ2
ν.

3. Return X = µ +
√

ν/WZ.

2.7.3. Gaussian Copula

With Algorithm 5 we are now able to generate the Gaussian copula CGa
P , where P is the

correlation matrix.

Algorithm 7 (input: P):

1. Generate Z ∼ Nd(0, P) using Algorithm 5.

2. Return U = (Φ(Z1), ..., Φ(Zd))
′, where Φ is the standard normal cdf.

2.7.4. t-Copula

Similarly, the t-copula Ct
ν,P is obtained with the following algorithm:

Algorithm 8 (input: ν, P):

1. Generate Z ∼ td(ν, 0, P) using Algorithm 6.

2. Return U = (tv(Z1), ..., tv(Zd))
′, where tν is the standard cdf of the univariate distribu-

tion tν.

2.7.5. Clayton Copula

Moving on to the Archimedean copulas, samples of a Clayton copula CCl
θ can be obtained by

means of the following procedure:

17
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Algorithm 9 (input: θ ∈ (0, ∞)):

1. Generate V ∼ Ga(1/θ, 1).

2. Generate X1, ..., Xd, such that Xi ∼ U(0, 1), i = 1, ..., d.

3. Transform X1, ..., Xd into independent, standard exponentially (Exp(1)) distributed
random numbers by applying the Inverse cdf F−1(x) = − ln x onto each element of the
Vector X1, ..., Xd.

4. Return U = ((1 + (X1/V))−1/θ), ..., (1 + (Xd/V))−1/θ))′.

2.7.6. Gumbel Copula

And finally, a sample Gumbel copula CGu
θ can be generated with the next Algorithm:

Algorithm 10 (input: θ ∈ [1, ∞)):

1. Generate V ∼ St(1/θ, 1, 0).

2. Generate X1, ..., Xd, such that Xi ∼ U(0, 1), i = 1, ..., d.

3. Transform X1, ..., Xd into independent, standard exponentially (Exp(1)) distributed
random numbers by applying the Inverse cdf F−1(x) = − ln x onto each element of the
Vector X1, ..., Xd.

4. Return U = (exp(−(X1/V)1/θ), ..., exp(−(Xd/V)1/θ))′.

Due to reasons that will further be outlined in chapter 4, a second approach was devel-
oped as part of this thesis. It is based on Algorithm 10 and 4, with the difference that instead
of having these algorithms separated, they were merged and subsequently transformed
mathematically, such that exponentiation with α = 1/θ occurs just once. While the exact
transformation steps will be shown in the next chapter, the resulting algorithm goes as follows:
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Algorithm 11 (input: θ ∈ [1, ∞)):

1. Generate U1, U2 ∼ U(0, 1).

2. E2 = − log(U2).

3. U1 = π(U1 − 0.5).

4. a = 0.5π+U1
θ .

5. s = sin(a).

6. c = cos(U1 − a).

7. Generate X1, ..., Xd, such that Xi ∼ U(0, 1), i = 1, ..., d.

8. Transform X1, ..., Xd, such that Xi ∼ Exp(1), i = 1, ..., d by applying F−1(x) = −lnx onto
each element X1, ..., Xd.

9. Return U = (exp(− cos(U1)E2
c (X1c

s )1/θ), ..., exp(− cos(U1)E2
c (Xdc

s )1/θ))′.

2.8. Statistical Measures of Correlation

Quantifying the dependence between two random variables plays a key role in the simulation
of copulas, as every type of copula has some parameter that determines the relationship
between the variables in terms of how strongly they depend on each other, if at all. The
statistical measures introduced in this section offer the possibility to be computed for empirical
samples, as well as through the predefined parameters of each copula. This provides an
opportunity to hold the values obtained through simulations against the theoretical ones
and thus, test the implementation numerically, as by the law of large numbers, the observed
values should be converging towards the theoretical ones with an increasing sample size.
In the following, the two most important measures of dependence, used in the domain of
copulas, will be introduced. Those are: Kendall’s Tau and Spearman’s Rho. Both of these
measures are so called concordance measures. The term concordant stands for two pairs of
values (u1, u2), (v1, v2) ∈ [0, 1]2, where both components of the first pairs of values u1, u2,
are either greater or smaller than v1, v2. Mathematically, this condition is formulated as:
(u1 − v1)(u2 − v2) > 0. If it does not hold one would speak of discordance instead.
Another common property of the mentioned statistics is their scale of measurement and
interpretation on that scale. Concordant measures were introduced by Scarsini in 1984 and
are functions from the set of copulas to the interval [-1,1] that satisfy a set of axioms [7]. While
the extreme cases of -1 and 1 indicate perfect negative dependence (countermonotonicity
copula) and perfect positive dependence (comonotonicity copula) respectively, the case of
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0 is mapped onto the independence copula. Values in between those are to be interpreted
accordingly [7]. Note that if these measures yield 0, this does not necessarily imply the
independence of the marginals [9].

2.8.1. Kendall’s Tau

Definition 6 Let C ∼ (U1, U2) be a bivariate copula. Kendall’s tau of C is given by:

τC := 4E[C(U1, U2)]− 1. (2.12)

This formula can be applied to obtain the theoretical values, towards which a simulation
should converge. Calculating this measure for a sample (yi1, yi2), i = 1, ..., n is done with the
following formula taken from [9]:

τ =
2

n(n− 1) ∑
1≤i<j≤n

[I((yi1 − yj1)(yi2 − yj2) > 0)− I((yi1 − yj1)(yi2 − yj2) < 0)], (2.13)

where I is the indicator function. Note that the computation of τ requires O(n2) operations,
which makes it time consuming for large samples.
The relationships between Kendall’s tau and the copulas subject to this thesis are shown in
table 2.1. For proof on the formula for the Gaussian and t-copula, see [6]. A proof for the
Clayton and Gumbel copula can be found in [17].

2.8.2. Spearman’s Rho

Definition 7 Let C ∼ (U1, U2) be a bivariate copula. Spearman’s rho of C is given by:

ρC := Corr(U1, U2) = 12Cov(U1, U2). (2.14)

Again, the above formula is used for the calculation of the theoretical value, which can be
held against the empirical one of a sample (yi1, yi2), i = 1, ..., n, by means of the following
formula from [9]:

ρS =
∑n

i=1 ri1ri2 − n[(n + 1)/2]2

n(n2 − 1)/12
, (2.15)

where ri1, ri2 are the ranks and ri1 = k if yi1 is the kth smallest element among the first sample,
y11, ..., yn1, ri2 = l if yi2 is the lth smallest element of the second sample y12, ..., yn2. In terms of
complexity, this measure is more efficiently computable than Kendall’s tau, as the ranks can
be computed in O(n log(n)).
However, as can be seen in table 2.1, Spearman’s rho can only be computed for the Gaussian
copula. Proof for this formula can be found in [6], where it is also mentioned that there is no
simple formula for ρS, with regards to the t-copula. For the Archimedean copulas, literature
does not provide any formula either.
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Copula type τ ρS

CGa
ρ

2
π arcsin ρ 6

π arcsin 1
2 ρ

Ct
ρ

2
π arcsin ρ -

CCl
θ θ/(θ + 2) -

CGu
θ 1− 1/θ -

Table 2.1.: Relationship between statistical measures and different copulas
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The simulation algorithms described in this thesis, have been implemented for potential use
in the context of a risk management application, as used in banks and insurance companies.
This chapter is dedicated to describe how the whole process of simulating a multivariate
distribution with a copula and marginals, can be implemented with an object oriented pro-
gramming language such as C#, which was used for this thesis. A key feature of this approach
is the extendability to facilitate the addition of new copulas and marginal distributions to the
existing implementation. To achieve this, a strong focus will be put on the decomposition of
the process into its components (classes) and the design (ordering of classes).

3.1. Code Structure

As the whole mathematical theory behind the concept of copulas can be broken down
naturally into pieces as shown in chapter 2, this presents an opportunity to adopt this property
with regards to the actual implementation. Moreover, the problem allows for a hierarchical
ordering of the components as can be seen in figure 3.1. The Interface INumberGenerator
specifies a class that is somehow involved in the process of generating random numbers with
certain properties, the most basic example being uniformly distributed random numbers.
Starting with a uniform number generator, it is possible to transform the numbers obtained
through it into a desired univariate distribution through the methods described in section 2.5,
and further generate multivariate distributions with the algorithms presented in 2.7.

3.1.1. Pseudorandom Number Generators

In order to sample from copulas and multivariate distributions, we require uniformly dis-
tributed random numbers, which we can then transform. However, it is well-known that
computers cannot generate truly random numbers, because of their deterministic nature [15].
Therefore, the usage of Pseudo-random number generators (PRNG), as the fundamental build-
ing block for all random numbers generated is indispensable and constitutes the bottom layer
of the hierarchy in figure 3.1. The interface IUniformNumberGenerator specifies a class that can
generate a vector of independent uniformly distributed random numbers. Since an extensive
review of those generators lies beyond the scope of this thesis, figure 3.1 displays an interface
instead of an actual class, such that one can use one of the many existing implementations for
PSRNGs. The PSRNG used for the plots displayed in the following is the xoroshiro128+ 1.0,
which was developed by Blackman and Vigna (2016). The code is openly available under the
following reference: http://xoroshiro.di.unimi.it/xoroshiro128plus.c.
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3.1.2. Elliptical Copulas

Multivariate Normal Sampling

As a preliminary step for the generation of a multivariate Normal distributed sample, the
Cholesky decomposition of the covariance matrix should be performed within the constructor
of the MultivariateNormalSampler and its lower triangular matrix saved as a member vari-
able (_factorMatrix: double[][] in figure 3.1), to avoid doing this computationally expensive
operation more than once. Starting at bottom-right of figure 3.1, we are able to obtain a
d-dimensional vector u = (u1, ..., ud) of independent uniformly distributed random numbers
from an implementation of choice of the interface IUniformNumberGenerator. Having obtained
the uniforms, those are transformed into a sample z = (z1, ..., zd) of independent standard
normal numbers by applying Φ−1 (see section 2.5.1) onto each element of u and thereby
complete step 2 of Algorithm 5. To obtain the desired multivariate normal distribution, all
that is left to do, is perform the basic mathematical operations described in step 3 (Algorithm
5).

A couple of measures for performance optimization were implemented here:
1) At every generation of a single random vector, the lower triangular factor matrix has to
be multiplied with the vector of standard normal variables according to step 3 of Algorithm
5. This is by far the most time-consuming operation within the whole simulation algorithm,
without considering the Cholesky decomposition. Especially since, in practice, simulations
are run in high dimensions, which increases the duration of this operation even more. An
optimization in this case is possible due to the fact that the factor matrix is a lower triangular
matrix. The naive implementation of a matrix-vector multiplication has to perform n2 double
multiplications for a n× n factor matrix. Exploiting the matrix’s property, a more efficient
implementation reduces the number of multiplications required to 1

2 n2 + 1
2 n. The exact code

looks as follows:

private double[] FactorMatrixMultiplication(double[][] lowerTriangularMatrix,
double[] vector)

{
double[] result = new double[vector.Length];
for (int i = 0; i < vector.Length; i++)
{

for (int j = 0; j <= i; j++)
{

result[i] += lowerTriangularMatrix[i][j] * vector[j];
}

}
return result;

}

2) In order to optimize memory allocation, the method NextVector, which provides the random
numbers of one sampling iteration, is a call by reference function. This makes a difference,
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as the method is called within for loops that might invoke it several thousands of times,
depending on the sample size desired for a particular simulation.
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<<INumberGenerator>>
Interface

+ NextVector(double [])

ImplicitCopulaSampler

- _cdfs: Func<double,double>[]
- _multivariateSampler: INumberGenerator

MetaDistributionSampler

- _univariateDistributions: IUnivariateDistribution[]
- _copulaSampler: INumberGenerator

MultivariateStudentTSampler

- _multivariateNormalSampler: MultivariateNormalSampler
- _degreesOfFreedom: double
- _locationVector: double[]
- _uniformNumberGenerator: IUniformNumberGenerator 

MultivariateNormalSampler

- _factorMatrix: double[][]
- _meanVector: double[]
- _normalNumberGenerator: INumberGenerator 

- FactorMatrixMultiplication(double[][], double[]): double[]

NormalnumberGeneratorInverse

- _uniformNumberGenerator: INumberGenerator

<<IUniformNumberGenerator>>
Interface

ClaytonCopulaSampler

- _uniformNumberGenerator: IUniformNumberGenerator
- _theta: double
- _alpha: double 

- GenerateGammaVariable(): double

GumbelCopulaSampler

- _uniformNumberGenerator: IUniformNumberGenerator 
- _theta: double
- _alpha: double

<<IUnivariateDistribution>>
Interface

+ mean: double
+ variance: double 

+ CDF(double): double
+ InverseCDF(double): double

NormalDistributionStudentTDistribution

+ DegreesOfFreedom

Figure 3.1.: UML Diagram of classes involved in simulations of copulas
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Mutlivariate t Sampling

Moving upwards on the hierarchy of classes in the right-column displayed in figure 3.1,
the MultivariateStudentTSampler enables the generation of correlated t variables according
to Algorithm 6. Since the first step of the algorithm requires us to generate a multivariate
Normal distribution, the usage of the MultivariateNormalSampler is evident. As a second step
a W ∼ χ2

ν distributed variable has to be generated where ν ∈ R+ represents the degrees of
freedom of the multivariate t distribution. In order to generate W make use of the inversion
method proposed in section 2.5.1 on an independently generated uniform number (hence, the
additional uniform number generator in the class). This approach is used to circumvent the
need for a gamma variable, as gamma variables are more difficult to simulate and prone to
numerical errors, with regards to limiting cases of parameters, as we will see later on. Having
completed these steps, there are only the basic computations of step 3 left to solve for the
multivariate t-distribution to be obtained.

Implicit Copula Sampling

With the help of the two previously described classes, it is now possible to generate multivari-
ate Gaussian and t-distributions with any desired correlation and dimension. However, this is
still not a copula, which can easily be noticed due to the fact that the points obtained by means
of those classes are on the interval (−∞; ∞). The vector with random points of the copula
is build by applying either the cdf of the standard normal distribution (N(0, 1)) in the case
of a Gaussian copula or the cdf of t-distribution with the specified degrees of freedom ν, as
described in Algorithm 7 and 8. This step is implemented in the ImplicitCopulaSampler, which
invokes NextVector on either one of the multivariate samplers, then applies the corresponding
cdf onto the sampled values it obtains from the underneath layer and thereby, constructing a
sample from a copula.

3.1.3. Archimedean Copulas

Due to the fact that Archimedean copulas have a fundamentally different nature than elliptical
ones, the implementation approach differs as well. A first observation that can be made,
when looking at the simulation algorithms, is that the univariate distributions involved differ
completely. While elliptical copulas rely on the generation of a correlated multivariate normal
distribution, which involves the computationally expensive vector-matrix multiplication (see
Algorithm 5), Archimedean copulas seem to be generated more effortlessly at a first glance,
since we only need a sample of independent standard exponentially distributed random
variables as a basis. Consequently, the code structure results in a flatter hierarchy.

Clayton Copula Sampling

The first and, as we will see in the next chapter, most challenging step for the simulation
of a Clayton copula CCl

θ consists of the generation of a gamma-distributed random variable
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V ∼ Γ(1/θ = α, 1). There are two proposed methods in section 2.5.2. for this, which will
be evaluated in the next chapter. The method GenerateGammaVariable provides the gamma
variable, using the member variable _alpha as a parameter. Next, uniformly distributed
random numbers (U1, ..., Ud) are needed, which are subsequently transformed to exponential
ones (E1, ..., Ed) using the straight forward approach outlined in section 2.5.1.. Finally, the
inverse of the generator function Φ−1 is applied to each element of the vector ( E1

V , ..., Ed
V ) and

to complete the process of generating random numbers from the Clayton copula.

Gumbel Copula Sampling

In this thesis, as already mentioned, two approaches for the simulation of a Gumbel copula
will be reviewed. The first one makes use of Algorithm 4, for the generation of a Stable
distributed random variable V, which would be implemented in an extra method, which is
not displayed as part of the GumbelCopulaSampler in 3.1. Having obtained this variable, the
only thing left to do is take the same steps as for the simulation of a Clayton copula and apply
the generator function of the Gumbel copula on the exponential variables divided by V.
The second approach is a derived version of the just mentioned one and was developed in
order to avoid multiple exponential operations with α or 1/θ. By substituting X of step 4
Algorithm 4 into the variable V of Algorithm 10, one can make mathematical transformation
and use the relationship between α and θ to obtain Algorithm 11. To prove the correctness of
this, all transformation steps are provided below.

exp
(
−
(

Xi

V

)α)

= exp

−
 Xi

sin(α(π/2+U))
cos(U)1/α

(
cos(U−α(π/2+U))

E

)(1−α)/α


α

= exp

−
 Xi

sin(α(π/2+U))
cos(U)1/α

(
cos(U−α(π/2+U))

E

)(1/α−1)


α

= exp

−
 Xi

sin(α(π/2+U))
cos(U)1/α

(
cos(U−α(π/2+U))

E

)1/α
E

cos(U−α(π/2+U))


α

= exp

−
 Xα

i(
sin(α(π/2+U))E

cos(U−α(π/2+U))

)α cos(U−α(π/2+U))
cos(U)E




= exp
(
−
((

Xi cos(U − α(π/2 + U))

sin(α(π/2 + U))E

)α cos(U − α(π/2 + U))

E

))
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Meta Distributions

With the just presented algorithms, one can generate samples from any of the four copulas that
are part of this thesis. However, as the capability of defining ones own marginal distributions
is part of the simulation of arbitrary multivariate distributions, a last transformation step
is necessary, where we transform the uniformly distributed numbers obtained through the
copula into some other distributions of choice, while maintaining the copula’s dependence
structure. The MetaDistributionSampler class at the top of the hierarchy in figure 3.1, provides
this functionality by containing the set of desired marginal distributions and applying their
inverse cdfs on the values obtained by one of the copula samplers.

Bottom-up sampling procedure

In order to offer a sequential perspective on how the simulations can be run with the presented
implementation, the following shows the general procedure:

1. Generate an instance of the class MetaDistributionSampler, alongside with an array of
univariate distributions (marginals) and a copula with the necessary parameters.

2. Sample by invoking NextVector on the MetaDistributionSampler as often as desired.
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An example of a simulation would then look as follows:

public static void simulationMain(){

var RV1 = new NormalDistribution(0, 1);
var RV2 = new StudentTDistribution(4);
IUnivariateDistribution[] univariateDistributions = new[] { RV1, RV2 };

var correlationParam = 0.7;
var correlationMatrix = new double[2][] {

new double[2] {1.0, correlationParam},
new double[2] {correlationParam, 1.0}

};

copula = new StudentTCopula(3.5, correlationMatrix);

var uniformNumberGeneratortype =
NumberGeneratorUniformVariates.Xoroshiro128Plus;

var seed = 0.0;

var sampler = new MetaDistributionSampler(
univariateDistributions,
copula,
uniformNumberGeneratortype,
seed);

var samplesize = 10_000;
double[][] sample = new double[samplesize][];

for (int i = 0; i < samplesize; i++)
{

sample[i] = new double[univariateDistributions.Length];
sampler.NextVector(sample[i]);

}

}

The above code simulates 10,000 realizations from a bivariate joint distribution consisting
of the marginals RV1 ∼ N (0, 1) and RV2 ∼ t(4), with a correlation of ρ = 0.7 and a t-copula
with ν = 3.5.

The NextVector call inside the for-loop gets delegated all the way down to the uniform num-
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ber generator within the NormalNumberGeneratorInverse, which obtains U(0, 1) distributed
random numbers and transforms those into N (µ, Σ) distributed random numbers. If the cop-
ula is a t-copula, the numbers are further processed to fit tν(µ, Σ). The ImplicitCopulaSampler
then applies either the Student’s t-distribution’s cdf or the normal distribution’s cdf onto the
obtained values, thus mapping them back into the range [0, 1]. If the sample should have
non-uniform marginals, the MetaDistributionsSampler can transform those in the last step.
This can also be skipped by just starting the whole simulation with the ImplicitCopulaSampler.

3.2. Testing

Since the above implementation involves a lot of calculations and different components,
rigorous testing is necessary in order to validate the algorithm’s correct performance. Copulas
allow for a two-fold approach to testing to be used. On one hand visual tests of scatterplots can
be used, as well as numerical tests, which involve statistical measures such as the introduced
Kendall’s tau and Spearman’s rho. Both of these have their strength and weaknesses. Hence,
conclusions about the validation of the implementation should only be drawn in accordance
with both, visual and numerical tests. The before mentioned modularity and hierarchical
ordering of the presented implementation proves to be advantageous with regard to testing,
as each component can be tested separately. For instance one can check if the uniform number
generator really provides uniformly distributed random numbers, then put the next layer on
top and check for correctness again. Bugs are thereby easily recognized and located during
the implementation process.

3.2.1. Visual Tests

When testing the simulation algorithms visually, knowledge about the underlying theory
is required, as plots have to be examined with the eye. One approach here is to tweak one
parameter at a time, such that desired changes should be visible in the graphs. A second
approach that can be used is to plot certain empirical values of the simulation such as mean,
variance of the marginals, and check if those are close to the theoretical values that should be
obtained and converge with an increasing sample size. The main problem with visual tests is
that there obviously is a lack of accuracy, as there is no strict acceptance/rejection threshold.
Therefore, the results of these tests should be treated cautiously. However, basic structures in
scatterplots of copulas should be recognized and give a first idea about the correctness.

3.2.2. Numerical Tests

The general approach to numerical testing is more straight forward than for visual tests.
Chapter 3 already introduced statistical measures, such as Kendall’s tau and Spearmann’s rho,
which are generally used to measure the correlation between two random variables. For most
copulas, the theoretical value of some statistical measure is known. Thus, the empirical value
can be held against the theoretical value and they should not deviate too much from each
other. "Too much" is of course not quantifiable but in general, a high sample-size (>10,000)

30



3. Implementation and Testing

should not yield a greater difference than roughly 1-2%. These tests are especially useful
for implementations in bigger software projects, where such tests can be deployed to be run
periodically.

3.2.3. Stress Tests

In general, copulas rely on one parameter to specify the correlation between the variables.
This parameter always has a certain range in which it is defined and algorithms should yield
fast and correct simulation results for every possible value within that interval. If there are
certain limits to this, they should be known and dealt with accordingly. A simulation, has two
more parameters which have to be looked at to ensure that there are no configurations that
yield bad results. The first one being the size of the simulation in terms of draws from the
joint distribution and the second one being the dimensionality or the number of marginals
contained in the joint distribution.
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4. Results

This chapter is devoted to examine the performance of the implementation presented in the
previous chapter. The first step in the evaluation of the implementation consists of making
sure that the simulations perform well in terms of accuracy. This involves the tweaking of
different parameters across their respective ranges and verification of the introduced statistical
measures with regards to differences between theoretical and empirical values. Larger cases
of deviations must be further examined in order to determine the cause. This first evaluation
step helps indicate the correctness of the implementation as well as potential limitations, such
as numerical instabilities in the simulation algorithms. Upon examining the accuracy, the
performance with regard to running time will be reviewed. In particular how an increasing
amount of dimensions impacts the runtime of simulations. This aspect is crucial as, in
practice, simulations are usually run with a great amount of marginals. To test the speed of
the simulations, C#’s stopwatch class was used and the garbage collector activated before
every simulation in order to get comparable and coherent results. Furthermore, the average
time over 5 simulations was calculated to obtain smoother curves. A second variable that
impacts the runtime of a simulation is the sample size i.e. how many vectors are drawn
from the distribution. However, it is obvious that a change in sample size impacts the
runtime linearly, since this modification just constitutes a change in the number of times the
"NextVector" method is invoked within a for-loop. Therefore, there is no need for further
examination with regards to that.

4.1. Gaussian Copula

As already briefly indicated in chapter 2, the 2-dimensional Gaussian copula only has the
Pearson correlation ρ, contained in the correlation matrix P, as a parameter. Since it is defined
on the closed interval [−1, 1], testing for accuracy is straight forward. Figure 4.1 and 4.2 show
the results of 21 simulations, with ρ increased by 0.1 after each simulation, starting at -1. The
plots clearly indicate that the simulations run correctly throughout the range of the parameter
ρ, as the blue(theoretical) and red(empirical) lines seem perfectly aligned with each other.
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4. Results

Figure 4.1.: Theoretical and empirical value of Kendall’s Tau (y-axis) of a Gaussian copula
plotted against ρ = [−1, 1]. The simulations were run with 10,000 draws each, at
interval steps of 0.1 and interpolated in between.

Figure 4.2.: Theoretical and empirical value of Spearman’s Rho (vertical axis) of a Gaussian
copula plotted against ρ = [−1, 1] (horizontal axis). The simulations were run
with 10,000 draws each, at interval steps of 0.1 and interpolated in between.

Examining the speed of the implemented algorithm for the simulation of a Gaussian copula,
figure 4.3 shows how the running time is impacted by an increasing number of marginals.
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Due to the matrix vector multiplication performed in step 3 of Algorithm 5, we get a runtime
complexity of O(n2) where n denotes the number of dimensions or marginals included in
the distribution. Note that this is just the simulation of the copula without any non-uniform
marginals added.

Figure 4.3.: Runtime (vertical axis in milliseconds) of simulations from a Gaussian copula
with 3,000 draws and increasing dimensionality (horizontal axis).

4.2. t-Copula

In addition to the Pearson correlation ρ contained in the correlation matrix P, the t-copula
has the degrees of freedom ν as a second parameter. Table 2.1 indicates that this parameter
has no impact on the τ-value of the copula. However, it is still necessary to check limiting
cases, as we use the degrees of freedom in the calculations of step 3 in Algorithm 6, where
extreme values of ν might cause numerical errors that could lead to incorrect simulations.
Figure 4.4 indicates that the implementation works well for values that are usually used as
degrees of freedom, such as ν = 2.5.
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4. Results

Figure 4.4.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a t-copula with
ν = 2.5, plotted against ρ = [−1, 1] (horizontal axis). The simulations were run
with 10,000 draws each and at interval steps of 0.1. The curves are interpolated in
between.

The same holds for an arbitrarily chosen limiting case (ν = 1000) on the upper side of the
scale, as indicated by figure 4.5.
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Figure 4.5.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a t-copula with
ν = 1, 000, plotted against ρ = [−1, 1] (horizontal axis). The simulations were run
with 10,000 draws each and at interval steps of 0.1. The curves are interpolated in
between.

For values of around ν < 0.005, the accuracy of the implementation starts to vanish more
and more, especially in the areas where ρ is close to its boundaries of −1 and 1, as can be
observed in figure 4.6. This is due to the fact that the smaller the degrees of freedom value
is, the more sample points from the simulated Chi-Squared distribution are equal to zero.
Looking at step 3 of Algorithm 6, we have a zero division, which is evaluated to infinity.
The square root of infinity is then evaluated to infinity. Therefore, Algorithm 6 returns a
number of +/−∞ values, depending on how close to zero ν is. These infinity values then
get mapped onto either 0 or 1, according to the sign, when applying the cdf of the Student’s
t-distribution in step 2 of Algorithm 8.
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Figure 4.6.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a t-copula with
ν = 0.001, plotted against ρ = [−1, 1] (horizontal axis). The simulations were run
with 10,000 draws each and at interval steps of 0.1. The curves are interpolated in
between.

Figure 4.7 displays how the running time is affected by the number of marginals. As
expected simulations take longer than for the Gaussian copula, since the previously identified
performance bottleneck in Algorithm 5 cannot be avoided when generating a t-copula
according to Algorithm 8. However, the additional operations that are involved cause
a significant increase in runtime. While the simulation of a Gaussian copula, with 200
marginals, takes slightly more than 0.6 seconds, a simulation with the same amount of
dimensions from the t-copula needs more than 1 second. Despite that the complexity is still
O(n2), as indicated by the slope of the curve, as none of the additional operations has a
higher degree of complexity than step 3 of Algorithm 5.
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Figure 4.7.: Runtime (vertical axis in milliseconds) of simulations from a t-copula with 3,000
draws and increasing dimensionality (horizontal axis).

4.3. Clayton Copula

As mentioned in [14], it gets hard to obtain non-zero numbers for very small α values.
Considering this, it makes perfectly sense that Algorithm 9 generates incorrect results for
big θ values, as α = 1/θ. When V = 0, the division of all Xd ∼ Exp(1) by V yields positive
infinity in C# according to the rules of the IEEE 754 arithmetic [18]. 1

∞1/θ consequently
evaluates to zero for all sample points. The error caused by this issue gets visible in figure 4.8
where the two curves split more and more apart for increasing θ values. Using the before
mentioned xoroshiro128+ 1.0 PSRNG with seed = 0.0, the first zero values in the simulation
appear at θ = 82.001. One can filter these zero results out, in order to maintain the possibility
of adding non-uniform marginals and get better τ values. However, the simulation would
still not result in a mathematically correct copula, due to the marginals not being uniformly
distributed as in figure 4.9. Therefore, one would be better advised to use a boundary on the
θ values in the implementation or reject zero points and sample those from a comonotonicity
copula instead.
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4. Results

Figure 4.8.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a Clayton copula
plotted against θ = [0.001, 500.001] (horizontal axis). The simulations were run
with 10,000 draws each, using Algorithm 2 for the generation of the gamma
variate and at interval steps of 1. The curves are interpolated in between.

A simulation with θ = 1000 as in figure 4.9 clearly yields totally incorrect results. It is up for
debate to what extend it is an issue that the simulation does not perform accurate anymore for
such a great θ value, as it implies a correlation of τ ≈ 0.998, which basically implies perfect
dependence (comonotonicity copula). However, since the first zero values appear much
earlier already, the algorithm should nevertheless be used cautiously, since this prohibits
the usage of marginal distributions with the copula due to the fact that F−1(0) = −∞ for
common distributions, such as the Gaussian or Student’s t.
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4. Results

Figure 4.9.: 10,000 simulated points from a Clayton copula with θ = 1, 000, using Algorithm 2
for the generation of the gamma variate.

Because of the just presented findings, a second method for the generation of a gamma
variate [14] was implemented, which supposedly works well with small α values. The idea
was to switch to a better performing algorithm once α (= 1/θ) reaches a certain threshold.
Unfortunately, figure 4.10 shows that simulations of Clayton copulas, with the alternative
Algorithm 3 are clearly even more prone to this issue than the initially used Algorithm 2.
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4. Results

Figure 4.10.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a Clayton
copula plotted against θ = [82.001, 500.001] (horizontal axis). The simulations
were run with 10,000 draws each, using Algorithm 3 for the generation of the
gamma variate and at interval steps of 1. The curves are interpolated in between.

With regard to performance, as expected, the simulation of a Clayton copula runs a lot
faster than any of the Elliptical ones. This is of course primarily because we do not require
the computationally expensive generation of a multivariate normal distribution, but also
because we require just one gamma distributed random variable, regardless of the number
of marginals. Furthermore, no complex computations of inverse cdfs are needed, as the
transformation of uniforms to exponentials is easily executed. Thus, we obtain a clearly linear
complexity for the simulation of a Clayton copula, as indicated by figure 4.11. The benchmark
was run with Algorithm 2 for the Generation of the gamma variate and θ = 3.5.
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Figure 4.11.: Runtime (vertical axis in milliseconds) of simulations from a Clayton copula
with 3,000 draws and increasing dimensionality (horizontal axis).

4.4. Gumbel Copula

Considering the issues encountered with the Clayton copula, which were just presented in
the previous section, it would not come as a surprise if similar ones would be encountered
for simulations of Gumbel copulas with high θ values or stable variables with close to zero α

parameters more precisely. Figure 4.12 clearly shows that there seem to be numerical issues
here once again, as the two curves are drifting apart increasingly with θ getting bigger.
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Figure 4.12.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a Gumbel
copula plotted against θ = [1, 500] (horizontal axis). The simulations were run
with 5,000 draws each and at interval steps of 1. The curves are interpolated in
between.

Looking at a particular instance of a copula with a high parameter, as in figure 4.13, we
obtain a completely incorrect result again, since the line should be connecting the points (0, 0)
and (1, 1) just like a comonotonicity copula in figure 2.2.

Figure 4.13.: 10,000 simulated points from a Gumbel copula with θ = 1, 000, using Algorithm
10.
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The problem with Algorithm 10 is that there are two places where α = 1/θ appears as an
exponent. Once in the generation of the stable-distributed random variable, as well as in the
last step of Algorithm 10 where we apply the Archimedean generator function of the Gumbel
copula. By simulating with Algorithm 11 instead of Algorithm 10 this issue is resolved
and simulations with high parameters become numerically stable, due to the exponential
operation with α occurring just once. Figure 4.14, shows no significant divergence between
the theoretical and empirical values and can therefore be considered better for simulations of
a Gumbel copula regardless of the parameter, since zero/one values might start to appear
even for higher two digit values of θ, with Algorithm 10, which would prohibit the usage of
non-uniform marginals.

Figure 4.14.: Theoretical and empirical value of Kendall’s Tau (vertical axis) of a Gumbel
copula plotted against θ = [1, 500] (horizontal axis). The simulations were run
with 5,000 draws each and at interval steps of 1. The curves are interpolated in
between.

In terms of runtime, the simulation of the Gumbel copula performs similar to the Clayton
copula with a linear complexity. Although, the Clayton copula is simulated slightly faster
than the Gumbel. This is very likely due to the vast amount of trigonometric functions that
have to be evaluated and do not appear in Algorithm 9 at all. However, even at θ = 500
the difference makes about 0.04 seconds, which is not really significant at the already fast
simulation speed of Archimedean copulas.
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Figure 4.15.: Runtime (vertical axis in milliseconds) of simulations from a Gumbel copula
with 3,000 draws and increasing dimensionality (horizontal axis).
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5. Conclusions

In this thesis, the approach to modeling and simulating multivariate distributions with copu-
las was reviewed. Upon recapitulating the necessary mathematical tools and techniques used
for this cause, a possible approach to the implementation of the recent copula simulation
algorithms was presented. Furthermore, the implementation was tested rigorously using
statistical concordance measures to explore the limitations, such that people who use these
are aware and able to make adjustment in their implementations.
We are further going to sum up the key takeaways of this thesis, with regards to the simulation
of the different copulas subject to it. Beginning with the Gaussian copula, we found that the
simulation algorithms run very smooth throughout the range of its parameter, although the
run-time was not as good as for the Archimedean copulas, despite efforts for optimizing the
necessary processes to sample from it.
The next copula implemented as part of this thesis was the Student t copula. Due to the
operations required for its sampling scheme, it performed worst in terms of speed and we
obtained inaccurate results for very small degrees of freedom values, because of instabilities
inherent to the generation of chi-squared distributed random numbers. Knowing this, differ-
ent methods for the generation of a chi-square variate could be tried out with this sampling
scheme.
For the Clayton copula we reviewed one simulation algorithm combined with two algorithms
that generate the gamma distributed random variable necessary for the simulation. Here
we discovered that the generation of a gamma variate gets numerically unstable for small
shape parameters (α), regardless of the algorithm used and therefore, yields increasingly bad
simulations with increasing θ values. For that reason it is advised to set an upper bound
on the θ parameter of the copula and reject values where the generated Gamma variable is
equal to zero, in order to preserve the possibility of transforming the uniform marginals into
some other distribution. Despite those issues, the simulations performed very well in terms
of speed with a linear complexity with regards to the number of marginals.
Finally, two approaches for the simulation of a Gumbel copula were implemented and re-
viewed. One of which relies on the generation of a Stable distributed random variable and
a second one, which was derived from the first procedure through mathematical transfor-
mations in order to optimize the computations. The results clearly indicate that the first
simulation algorithm is prone to numerical instabilities for high θ values, while the alternative
algorithm performed accurately throughout the tested range of possible values. Hence, it is
advised to use the algorithm developed in this thesis, to obtain correct simulations regardless
of the value of θ, while maintaining an efficient linear runtime complexity.
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A. Appendix

A.1. Pearson correlation

For two random variables X and Y, the Pearson correlation is given by:

ρX,Y =
cov(X, Y)

σXσY
, (A.1)

where σX denotes the variance of the variable X and cov(X, Y) the covariance between X and
Y.

A.2. Correlation Matrices

Having a joint distribution of random variables F = (X1, ..., Xd) the correlation Matrix P is
defined as:

P =


1 ρ12 ρ13 ... ρ1d

ρ21 1 ρ23 ... ρ2d
ρ31 ρ32 1 ... ρ3d

...
...

...
. . .

...
ρd1 ρd2 ρd3 ... 1

 , (A.2)

where ρi,j denotes the Pearson correlation between variable Xi and Xj.
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