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Das bewußte Reduzieren, das Weglassen, das Vereinfachen hat eine tiefe ethische Grundlage:
Nie kann etwas zuwider sein, was einfach ist. Egon Eiermann

The deliberate reduction, the omission, simplifying has a deep ethical foundation:
Never can anything/anyone be against to what is simple. Egon Eiermann
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Chapter 1

Introduction

1.1 What is Model Order Reduction?

By Model Reduction or Model Order Reduction (MOR), the number of describing equa-
tions of a dynamic system shall be significantly reduced, without considerably changing the
characteristic behavior. This is an approximation, i. e. a certain error occurs.

1.2 Which models are reduced?

There are different classes of mathematical models to describe dynamic systems (for which
different methods of model reduction are needed). Here, a few classes are listed.

First-order linear time-invariant (LTI) systems: In general, the modeling of such sys-
tems results in an implicit state-space representation of the form

Eẋ(t) = Ãx(t) + B̃u(t),
y(t) = Cx(t) + Du(t),

(1.1)

where E, Ã ∈ Rn×n, B̃ ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Hereby, x(t) ∈ Rn denotes
the state vector, u(t) ∈ Rm the inputs and y(t) ∈ Rp the outputs of the model.
Provided that the descriptor matrix E is regular1, the state differential equation can
be brought into the well-known explicit form by multiplication with E−1:

ẋ(t) = A x(t) + B u(t),
y(t) = C x(t) + D u(t).

(1.2)

1Models with singular E matrix are generally called descriptor systems or Differential-Algebraic Equations
(DAE). These include additional algebraic equations/constraints, making analysis and reduction a little more
difficult. The bibliography at the end of the script contains some references regarding this topic.

7



8 CHAPTER 1. INTRODUCTION

This representation is theoretically equivalent to (1.1) (in particular: neither the trans-
fer behavior nor the solution x(t) are changed by it), so that we will only examine the
explicit representation in the following. At this point, however, it is emphasized that
the implicit representation (1.1) has considerable advantages for the numerics2.
The “characteristic behavior” is the input-output behavior, described in frequency-
domain by the transfer function matrix G(s) = C (sI−A)−1 B + D from input u(t)
to output y(t). Please note that – by model order reduction – only the number of state
equations/variables is reduced. The number of inputs and outputs remains the same.

Second-order (LTI) systems:
M z̈(t) + D ż(t) + K z(t) = g u(t),

y(t) = lT z(t),
(1.3)

where M, D, K ∈ Rn×n are the mass, damping and stiffness matrices. A second-order
system may be reformulated as a first-order system with x =

[
zT , żT

]T
. Nevertheless,

the definiteness properties of the matrices M, D, K can be much easily preserved by
a direct reduction of the second-order model (1.3) instead of using the reformulated
first-order model.

Port-Hamiltonian (LTI) systems:
ẋ(t) = (J−R)∇H(x(t)) + bu(t),
y(t) = bT∇H(x(t)).

(1.4)

The aim of MOR here is to reduce the number of state equations and preserve the
port-Hamiltonian structure.

Parametric (LTI) systems: Depend on d (material, geometry) parameters p=[p1, p2, . . . , pd]T .
ẋ(t) = A(p) x(t) + B(p) u(t),
y(t) = C(p) x(t) + D(p) u(t).

(1.5)

The main goal of parametric model order reduction (pMOR) is to preserve the param-
eter dependency in the reduced model, thus allowing for a variation of the parameters
without the need to repeat the reduction step for every new parameter set.

Nonlinear (time-invariant) systems:
ẋ(t) = f (x(t), u(t)) ,
y(t) = h (x(t), u(t)) .

(1.6)

Here, the main tasks are (1) to reduce the number of state equations via dimensional
reduction and (2) to speed-up the evaluation of the nonlinear terms via so-called hyper
reduction methods.

In this lecture, we restrict ourselves to LTI systems in explicit representation with only one
input and one output (m = p = 1), i. e. single-input, single-output (SISO). The presented
methods, however, can be generalized to the multiple-input, multiple-output (MIMO) case.

2A short explanation can be found in Sec. 7.1.

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



1.3. WHY MODEL ORDER REDUCTION? 9

1.3 Why Model Order Reduction?

In principle: If the system order/dimension is too high!

Simulation: If the system order is too high, a simulation becomes time-consuming (takes
e. g. several days) or even impossible (due to limited working memory).

Control: The control of high-order plants can have the following disadvantages:

• Complexity: The control design becomes the more complicated/more untranspar-
ent, the higher the order of the plant is (exception: output-feedback).

• Computation time: The calculation of the control input could take longer than
the sampling time allows; this may lead from reduced control quality to even
instabilities.

• Hardware: The higher the order of a controller, the more powerful hardware is
needed.

Optimization: For each optimization step and each parameter update, the output to be
optimized must be recalculated, i. e. the dynamic system must be simulated again.
Complex optimization problems typically require several thousand iterations to con-
verge. This can lead, in the case of high-order models, to several-day simulations in
order to find an optimal solution for the problem.

1.4 Where do large models come from?

• Spatial discretization of partial differential equations (PDEs), using e. g. the finite
element (FEM), finite difference (FDM) or finite volume (FVM) method.
Example: The heat conduction equation for the temperature T (x, t) along a one-
dimensional rod is:

∂T (x, t)
∂t

= ∂2T (x, t)
∂2x

+ u(x, t). (1.7)

A numerical approximation can be obtained by spatial discretization, i. e. by evalu-
ating the PDE (1.7) at specific points (x1, x2, . . . , xn). When the state vector x =
[T (x1, t), T (x2, t), . . . , T (xn, t)]T is introduced, a LTI system of the type (1.2) is ob-
tained.

• The modeling of technical systems consisting of a large number of individual com-
ponents. The most prominent example are integrated circuits with a high degree of
integration (see also Very Large Scale Integration) with hundreds of thousands to mil-
lions of transistors.

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



10 CHAPTER 1. INTRODUCTION

1.5 Goals of Model Order Reduction

Given: Full Order Model (FOM)

ẋ(t) = Ax(t) + bu(t), x(t = 0) = x0

y(t) = cTx(t),
(1.8)

with A ∈ Rn×n, b ∈ Rn, cT ∈ R1×n and n ≈ 102 . . . 106.

Wanted: Reduced Order Model (ROM)

ẋr(t) = Arxr(t) + bru(t), xr(t = 0) = xr,0
yr(t) = cTr xr(t),

(1.9)

of order q � n. A model order reduction procedure should provide the reduced quantities
Ar, br and cTr under consideration of the following objectives:

1. Good approximation: The reduction technique should yield a ROM, which captures
the most dominant dynamics and well approximates the state vector or input-output
behavior of the FOM either in (a specific interesting) time- or frequency-domain. The
approximation quality can, for instance, be measured point-wise in time by ‖y(t) −
yr(t)‖(·) or ‖x(t)−V xr(t)‖(·), or point-wise in frequency by ‖G(iω)−Gr(iω)‖(·) using
suitable matrix and vector norms (·) = {1, 2,∞,Fro, . . .}. Another possibility is to use
norm-wise error measures as ‖y− yr‖(?) or ‖x−V xr‖(?) with (?) = {L1,L2,L∞, . . .}
in time-domain, or ‖G−Gr‖(∗) with (∗) = {H2,H∞,Hankel . . .} in frequency-domain.

2. Preservation of system properties: Basic features of the original model (e. g. sta-
bility, passivity, second-order / Port-Hamiltonian structure, etc.) should be preserved
in the ROM. This requirement is achieved by applying special or adapted reduction
methods tailored to address these demands.

3. Numerical efficiency: Model reduction pays off, if the benefit of having multiple,
cheap online evaluations (required e.g. for design analysis, optimization and control)
outweighs the upfront offline cost needed for the computation of the reduced model.
Thus, the reduction method should be as numerically efficient (fast) and stable as
possible. Expensive offline, and specially online computations should be avoided. To
be avoided: matrix inversion, solution of Lyapunov / Sylvester / Riccati equations,
eigenvalue problems, singular value problems, . . .

Remark: Since we are interested in the approximation of the transfer behavior, we will
assume in the following that the initial values x(t = 0) and xr(t = 0) are in the origin.

Remark: If the system (1.8) has a feedthrough d, this remains unchanged by the reduction,
since the dimensions of d depend only on the number of inputs and outputs, which are
not influenced by the reduction. Only the number n of state variables shall be reduced!
(However, there are methods with dr 6= d, in order to use additional degrees of freedom in
the reduction.)

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



1.6. MODEL ORDER REDUCTION SOFTWARE 11

1.6 Model Order Reduction Software

High-dimensional models arising in real-life problems are usually too complex to be reduced
by hand. Therefore, model order reduction is typically performed on a computer. Over time,
several software packages in different languages (Matlab, Python, C) have been developed.
An overview can be found at
https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Comparison_of_Software.

The numerical investigations within the lectures and exercises are carried out in Matlab
and are based on the Matlab built-in functions of the Control System Toolbox, as well
as on the Chair’s own sss and sssMOR toolboxes. The sss and sssMOR toolboxes are
available for free download at the Chair’s homepage http://www.rt.mw.tum.de/?morlab
or in GitHub https://github.com/MORLab.

In the script, you will find sometimes blue boxes containing Matlab functions that are
linked to the presented contents. These functions can be used to supplement the theoretical
discussion from lecture and script with numerical investigations in Matlab using practical
benchmark systems. Links to various benchmark collections can be found at
http://www.eu-mor.net/support/benchmark-collections/.

Matlab function(s): ss, dss

sss function(s): sss

sssMOR function(s): ssRed

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control
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Chapter 2

Mathematical Fundamentals

In this chapter some necessary mathematical fundamentals – specially of linear algebra –
will be revised or newly introduced.

2.1 Vector space

Definition 1. A vector space V is a set of vectors, in which the addition of the vectors
and the multiplication of a vector by a scalar from the field K (for us: K = R or K = C) are
defined and the results of these operations are again elements of V. Moreover, the following
holds for x,y, z ∈ V and α, β ∈ K:

Commutative law : x + y = y + x
Associative law : (x + y) + z = x + (y + z)

Existence of zero element : ∃ 0 ∈ V : x + 0 = x
Existence of the inverse element : ∃ (−x) ∈ V : x + (−x) = 0

Distributive law 1 : (α + β)x = αx + βx
Distributive law 2 : α(x + y) = αx + αy

(αβ)x = α(βx)
Existence of the identity element : ∃ 1 ∈ K : 1x = x

Example: Vectors in Rn.

Definition 2. A subset W of a vector space V, i. e. W ⊂ V, is called vector subspace
(short: subspace), if the elements of W with the same rules of the vector space V (addition,
scalar multiplication) again form a vector space, i. e.

∀ x,y ∈ W and α ∈ K : x + y ∈ W and αx ∈ W . (2.1)

13



14 CHAPTER 2. MATHEMATICAL FUNDAMENTALS

Example: Plane in R3, e. g. the x1-x2-plane:x ∈ R3 : x = α

 1
0
0

+ β

 0
1
0

 , α, β ∈ R

 ⊂ R3 (2.2)

2.2 Linear dependence and rank

Definition 3. The vectors v1,v2, . . .vn ∈ V are called linearly dependent, if there are
numbers c1, c2, . . . cn ∈ R, which are not all equal to zero, such that:

c1v1 + c2v2 + . . .+ cnvn = 0. (2.3)

Otherwise, they are called linearly independent.

Linear dependence means therefore that a vector vi can be represented by a linear combi-
nation of all other remaining vectors. The number of linearly independent column vectors
of a matrix corresponds to the rank.

Definition 4. The rank of a matrix V is defined as the number of linearly independent
column vectors of V.

It follows that a matrix V ∈ Rm×n has the full rank min(m,n), if all column vectors are
linearly independent. In the literature you will also find the terms “row rank” and “column
rank”. Since both are identical, these three terms can be used as synonyms.

Corollary 1. Let v1,v2, . . .vn ∈ Rn and V := [v1,v2, . . .vn]. Then, the following holds:

v1,v2, . . .vn linearly independent ⇔ rank(V) = n ⇔ det(V) 6= 0. (2.4)

Remark: While the equivalence between linear independence and column rank applies to
any matrix, the condition with the determinant only applies to square matrices.

Example: Consider the following matrix:

V =

v1 v2 v3 1 4 5
2 5 7
3 6 9

 (2.5)

The columns of V are linearly dependent, since v3 is the sum of the other two columns:

1v1 + 1v2 − 1v3 = 0 ⇒ v3 = v1 + v2 (2.6)

On the other hand, v1 and v2 are linearly independent, and hence rank(V) = 2.

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



2.3. BASIS 15

Matlab function(s): rank, det

2.3 Basis

Definition 5. A basis B of a vector space V is a subset B ⊂ V, with the two properties:

1. Each element of V can be represented as a linear combination of vectors from B.

2. The basis vectors are linearly independent.

Example: The columns of all 3× 3 matrices with rank 3 form bases for the R3.

Definition 6. The dimension dim (V) of a vector space V is defined as the number of basis
vectors in B.

Definition 7. A basis B = {b1, . . . ,bn} is called orthogonal, if all vectors are pairwise
orthogonal to each other, i. e.

bTi bj = 0, for i 6= j. (2.7)

Are the basis vectors also normalized, i. e ‖bi‖2 = 1, then we speak of an orthonormal basis.

Example: Canonical basis for R3 (orthonormal basis):

b1 =

 1
0
0

 , b2 =

 0
1
0

 , b3 =

 0
0
1

 . (2.8)

Matrices whose column vectors form an orthonormal basis are of particular importance and
are introduced below.

Definition 8. A square real matrix A ∈ Rn×n is called orthogonal, if its column vectors are
orthonormal (i.e. not only orthogonal) to each other. In this case, its transpose is equal to
the inverse:

ATA = AAT = In ⇔ AT = A−1 (2.9)

The analogue for complex matrices A ∈ Cn×n is called unitary matrix.

By definition, an orthogonal matrix must be square. In model order reduction, however,
rectangular matrices V∈Rn×q with n� q play an important role. Their column vectors form
an orthonormal basis for a q-dimensional subspace of Rn. Since there is no clear designation
for such matrices in the mathematical literature, we will allow ourselves a so-called “abuse

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



16 CHAPTER 2. MATHEMATICAL FUNDAMENTALS

of notation”1 and occasionally also assign the attribute orthogonal to rectangular matrices
V∈Rn×q, if they fulfill the property:

VTV = Iq. (2.10)

Matlab function(s): orth

2.4 Range and nullspace

Definition 9. The range or image of a matrix A ∈ Rm×n is the set of all vectors y ∈ Rm,
which can be represented as the product y = Ax for arbitrary x ∈ Rn.

The product Ax can be represented as a weighted sum of the columns Ai in the form

y = Ax = A1x1 + A2x2 + · · ·+ Anxn,

which shows, that the image of the matrix A is precisely the vector space spanned by its
columns.
Definition 10. The nullspace or kernel of a matrix A ∈ Rm×n is the set of all vectors
x ∈ Rn, for which the following holds: Ax = 0.

Example:

A =


1 0 1
3 3 6
0 2 2
1 1 2

 (2.11)

This matrix has rank(A) = 2, i. e. the range/image has dimension 2:

range(A) = im(A) = span





1
3
0
1

 ,


0
3
2
1



 (2.12)

and the nullspace has dimension 1:

ker(A) =

x ∈ R3 : x = α

 1
1
−1

 , α ∈ R

 . (2.13)

A basis for the image and nullspace can be calculated, for example, by a singular value
decomposition.

1“In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that
is not formally correct but that seems likely to simplify the exposition or suggest the correct intuition (while
being unlikely to introduce errors or cause confusion)”. (source: Wikipedia)

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



2.5. SINGULAR VALUE DECOMPOSITION (SVD) 17

Matlab function(s): null

2.5 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is related to the eigenvalue decomposition, but it
is also defined for rectangular matrices A ∈ Rm×n:

A = UΣVT , (2.14)

where the matrices U ∈ Rm×m and V ∈ Rn×n are orthogonal (UTU = Im und VTV = In).
The matrix Σ ∈ Rm×n has only entries on the diagonal, and is dependent on the dimensions
of A:

Σ =


σ1

σ2
. . .

σmin(m,n)

 . (2.15)

The entries σ1 ≥ σ2 . . . ≥ σmin(m,n) are non-negative (i. e. positive or zero), they are sorted in
descending order and called singular values of the matrix A. The following figure illustrates
the decomposition for different dimensions:
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18 CHAPTER 2. MATHEMATICAL FUNDAMENTALS

2.5.1 Properties of the SVD

Let rank(A) = p ≤ min(m,n), A = UΣVT , and write U = [u1, . . . ,um], V = [v1, . . . ,vn].
Then the following holds:

1. σi = 0 for i = p+ 1, . . . ,min(m,n).

2. The singular values σi are the roots of the first min(m,n) eigenvalues of AAT or ATA:

σi =
√
λi(ATA) =

√
λi(AAT ). (2.16)

Therefore, all singular values are real and non-negative: σi ≥ 0.

3. The eigenvectors of AAT (or ATA) are the singular vectors ui (or vi).

4. The right-singular vectors vp+1, . . . ,vn form a basis for the nullspace of A.

5. The left-singular vectors u1, . . . ,up form a basis for the image of A.

6. From the definition of the SVD it follows that a matrix can be represented as a dyadic
sum:

A = σ1u1vT1 + σ2u2vT2 + . . .+ σpupvTp . (2.17)

Special case: For positive (semi-)definite matrices (i.e. symmetric matrices with positive
(or rather non-negative) eigenvalues) it holds: SVD = EVD (eigenvalue decomposition)

A = AT ≥ 0 ⇒ A SVD= UΣVT EVD= TΛT−1 ⇒ U = T, Σ = Λ, VT = T−1

since the eigenvectors form an orthogonal basis and all eigenvalues are non-negative.

2.5.2 Matrix approximation

The SVD can be used – among others – to approximate matrices. Hereby, a matrix X with
rank k ≤ p is sought, such that the following difference is minimized:

min
rank(X)=k

‖A−X‖2 (2.18)

The 2-norm of a matrix is defined as an induced norm as follows:
‖A‖2 = max

‖x‖2=1
‖Ax‖2 = σmax(A) =

√
λmax(ATA) (2.19)

One can show that the solution of the minimization problem is exactly the sum of the first
k dyadic products of the SVD,

X =
k∑
i=1

σiuivTi = UΣ̂VT , (2.20)

where Σ̂ = diag(σ1, . . . , σk, 0, . . . , 0). Moreover, for the minimum holds:
min

rank(X)=k
‖A−X‖2 = σk+1(A). (2.21)
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2.5.3 (Further) Applications of the SVD

For the sake of completeness, some other important applications of the SVD are listed below:

• Range, nullspace and rank: As mentioned before, the SVD provides a basis for the
range and nullspace of a matrix. Moreover, the rank of a matrix equals the number of
non-zero singular values in Σ.

• Low-rank matrix approximation / Deflation: As discussed in Sec. 2.5.2, the
SVD can be used to obtain a low-rank approximation of a matrix. This application
is strongly related to the often required deflation of a basis, in order to eliminate
redundant column vectors and obtain a full rank, orthogonal matrix.

• Nearest orthogonal matrix: Related to the application before, the SVD can be
used to determine the orthogonal matrix O closest to a square matrix A. Moreover,
it is also employed for the solution of the so-called orthogonal Procrustes problem
O = arg minX ‖AX−B‖Fro s.t. XT X = I.

• Pseudoinverse: The SVD can be used for computing the pseudoinverse of a matrix.
The pseudoinverse is one way to solve linear least-squares minimization problems such
as minx ‖Ax− b‖2, arising e.g. in underdetermined linear systems of equations.

• MOR / Reduced order modeling: Proper Orthogonal Decomposition (POD) is a
(nonlinear) reduction method, which is based on the SVD of a so-called snapshot ma-
trix. The idea is to collect samples of the FOM state trajectory in X=[x(t1), . . . ,x(tns)]
and to build the reduction basis with the q leading left-singular vectors of X.

• Others: The SVD is widely applied in different fields such as signal processing, image
processing, statistics, pattern recognition, machine learning and big data.

Matlab function(s): svd, svds, gsvd (orth, rank, null, pinv)

2.6 Norms

For certain analysis purposes, it is useful to assess the “intensity” of a time signal or a
dynamic system in the form of a norm. I. e. a signal in the time-domain or a function in the
frequency-domain will be assigned a scalar non-negative value by the norm. Time signals
are usually evaluated by the Lp-norms, where p is usually 1, 2 or ∞. The same applies to
the Hp-norms to assess/evaluate dynamic systems. We will use the following norms:

Definition 11. The L2-norm for time signals is defined as:

‖x‖L2
=
√∫ ∞

0
|x(t)|2 dt. (2.22)
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Definition 12. The H2-norm of LTI systems is defined as:

‖G‖H2
=
√

1
2π

∫ ∞
−∞
|G(iω)|2 dω =

√∫ ∞
0
|g(t)|2 dt, (SISO) (2.23a)

‖G‖H2
=
√

1
2π

∫ ∞
−∞

tr
(
G(iω) G(−iω)T

)
dω =

√∫ ∞
0

tr
(
g(t) g(t)T

)
dt. (MIMO) (2.23b)

Corollary 2. The H2-norm of an asymptotically stable LTI system can be equivalently rep-
resented as (here only SISO, but analog for MIMO):

‖G‖2
H2

=
∫ ∞

0
|g(t)|2 dt =

∫ ∞
0

cT eAtb︸ ︷︷ ︸
g(t)

bT eAT tc︸ ︷︷ ︸
g(t)T

dt =
∫ ∞

0
bT eAT tc︸ ︷︷ ︸

g(t)T

cT eAtb︸ ︷︷ ︸
g(t)

dt

= cT
∫ ∞

0
eAtb bT eAT t dt︸ ︷︷ ︸

Wc

c = bT
∫ ∞

0
eAT tc cT eAt dt︸ ︷︷ ︸

Wo

b

= cT Wc c = bT Wo b, (2.24)

where the matrices Wc and Wo are the so-called controllability and observability Gramians
of the system (cf. Ch. 5).

Definition 13. The H∞-norm of LTI systems is defined as:

‖G‖H∞ = sup
‖u‖L2 6=0

‖y‖L2

‖u‖L2

= sup
ω∈R
|G(iω)| , (SISO) (2.25a)

‖G‖H∞ = sup
ω∈R

max
i=1,...,n

σi
(
G(iω)

)
= sup

ω∈R
σmax

(
G(iω)

)
. (MIMO) (2.25b)

Some further explanations for SISO LTI systems (similar for MIMO)

The H2-norm is equivalent to the L2-norm of the impulse response g(t), i.e. ‖G‖H2 = ‖g‖L2 .
The H∞-norm describes the highest value in the amplitude response of the system. This is
equivalent to the maximum steady-state (DC) gain of the system for harmonic excitation.

For the evaluation of the approximation quality of LTI reduced order models, the error is
often quantified in the frequency-domain using the H2- or H∞-norms, i.e. via ‖G − Gr‖H2

or ‖G−Gr‖H∞ . Hereby, Gr(s) represents the transfer function of the reduced model. It can
be shown that the error measures in the frequency-domain also represent an upper bound
for the approximation error in the time-domain, according to the relationships

‖y − yr‖L∞ ≤ ‖G−Gr‖H2
‖u‖L2 ,

‖y − yr‖L2
≤ ‖G−Gr‖H∞ ‖u‖L2 .

(2.26)
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Matrix or vector norms

Matlab function(s): norm(X), norm(X, 'fro'), norm(v,p)

System norms

Matlab function(s): norm(sys), norm(sys,inf)

sss function(s): norm(sys), norm(sys,inf)
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Chapter 3

Projective Model Order Reduction

The MOR methods that we want to consider here are based on projections. An illustrative
example for a projection is the shadow cast: the shadow is a two-dimensional image of a
three-dimensional object. This chapter introduces projections in general, regardless of the
MOR method used.

3.1 The projector
Mathematically speaking, a projection is a linear mapping of a vector space V into itself,
and is represented by a multiplication with the projector P ∈ Rn×n: xprojected = Px. The
image/range of a projection is either a subspace of V or V itself.

Definition 14. A projector is defined by:

P = P2. (3.1)

This simple definition is indeed sufficient, and such matrices are also called idempotent. A
clear explanation is that a repeated projection does not change anything, i. e. if one takes a
projected vector xprojected = Px as a new output vector and projects it again, then the same
vector must result: Pxprojected = xprojected.

Theorem 1. The eigenvalues of a projector P are either 0 or 1.

Proof. Let P = VDV−1 be the eigendecomposition of the projector. From the definition
follows

P2 = VDV−1VDV−1 = VD2V−1 P=P2
=⇒ D = D2 (diagonal matrix)
=⇒ λi(P) = λi(D) ∈ {0, 1}.

Remark: Conversely, the theorem generally does not apply, as the matrix
[

1 3
0 1

]
shows.
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The eigenspaces of P can be computed as follows:

eigenvectors corresponding to the eigenvalues λi = 0 : ker(P)
eigenvectors corresponding to the eigenvalues λi = 1 : range(P)

range(P) denotes the subspace onto it is projected, whereas ker(P) defines the direction of
the projection. The whole vector space (in our case mostly Rn) is the sum of these two
vector subspaces:

V = ker(P)⊕ range(P). (3.2)
Consequently, each vector x ∈ V can be written as the direct sum of both components:

v := Px
u := x−Px = (I−P) x

}
⇒ x = u + v, (3.3)

where u ∈ ker(P) and v ∈ range(P) are lying in the kernel or in the range of P.
Proof.

Pv = P2x = Px = v ⇒ v ∈ range(P)
Pu = Px−P2x = 0 ⇒ u ∈ ker(P) �

3.2 Generating projectors

How can projectors P be specifically be generated, in order to achieve a desired projection?
This shall be derived exemplarily using a projection in R3:

The vector x ∈ R3 shall be projected onto the plane spanned by the columns of the matrix
V ∈ R3×2. The projection should be carried out along the direction x⊥. For this purpose,
the matrix W ∈ R3×2 is defined, whose columns are orthogonal to x⊥. If the projected
vector xp shall lie in V, then xp must be represented as a linear combination of the columns
of V, thus:

xp = V r, (3.4)
where r ∈ R2 is still unknown. We also know that the vector chain must be closed:

x⊥ = x− xp. (3.5)
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The columns of W are orthogonal to x⊥, so the following applies:

WTx⊥
!= 0. (3.6)

Inserting equations (3.4) and (3.5) in (3.6) yields:
WTx⊥ = WTx−WTxp = WTx−WTV r = 0 (3.7)

⇔ WTVr = WTx (3.8)
⇔ r =

(
WTV

)−1
WTx (3.9)

Using the equation (3.4) the projector can be specified:

xp = Vr = V
(
WTV

)−1
WT︸ ︷︷ ︸

P

x (3.10)

This derivation also applies to any higher dimensions, which is why any projection matrices
V, W ∈ Rn×q lead to a projector P ∈ Rn×n:

P = V
(
WTV

)−1
WT (3.11)

Hereby we would like to assume – without loss of generality – that the projection matrices V
and W have full column rank, i.e. are basis matrices for the respective subspaces range(V)
and range(W). Similarly, the assumption of invertibility of WTV, which is required in
equation (3.11), makes sense: If the matrix WTV is singular, then the underlying projection
is not meaningful, because the projection direction and the projection plane partly run
parallel to each other, as the following theorem shows.
Theorem 2. The relation det

(
WTV

)
= 0 is valid, if and only if a vector ṽ ∈ range(V)

exists, such that WT ṽ=0 holds.

Proof. det
(
WTV

)
= 0 ⇐⇒ ∃x ∈ Rq,x 6= 0 :

(
WTV

)
x = 0

⇐⇒ ∃x ∈ Rq,x 6= 0 : WT
[
v1 . . . vq

] 
x1
...
xq


⇐⇒ ∃ṽ ∈ range(V), ṽ 6= 0 : WT ṽ = 0 �

Theorem 3. P = V
(
WTV

)−1
WT is a projector.

Proof. The proof is done by checking the definition:

P2 = V
(
WTV

)−1
WTV

(
WTV

)−1

︸ ︷︷ ︸
=I

WT = P. �

For our purposes, it makes sense to consider projectors in the formulation (3.11), since
range(V) is the subspace onto it is projected, and the orthogonal complement of range(W)
determines the direction of the projection. For this, we need the following definition.
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Definition 15. Let W be a subspace of Rn.Then, the orthogonal complement W⊥ of W is
defined as:

W⊥ :=
{
x ∈ Rn : xTy = 0 for all y ∈ W

}

The directions of a projection are the orthogonal complement of range(W), i. e. [range(W)]⊥,
since WTx is formed on the right side of the product Px. Through the product WTx, all
directions that are orthogonal to range(W) are “deleted” during the projection. In our
example above, that is exactly x⊥, because WTx⊥ = 0. From similar considerations and
from equation (3.4) also follows:

range(P) = range(V), ker(P) = [range(W)]⊥ . (3.12)

Definition 16. A projection is called orthogonal, if – in addition to P = P2 – it further
holds: P = PT . Otherwise, it is called a skew projection.

Proof. The eigenvectors of a symmetric matrix P = PT form an orthogonal basis. It follows
that range(P) ⊥ ker(P). However, since ker(P) defines the direction of the projection, it is
thus projected orthogonally onto range(P).

For a projector (3.11), the special choice W := V leads to an orthogonal projection: P =
V
(
VTV

)−1
VT =PT . This can be verified with the figure at the beginning of the chapter.

What has been said so far about projections is summarized in the following table:

General Generated Illustrative
projection projection example

Projection Mapping with: Mapping with: Shadow cast
P V

(
WTV

)−1
WT

Projection onto range(P) range(V) Ground

Direction of ker(P) orthogonal to W Axis of the sun
projection or [range(W)]⊥

Orthogonal P = PT V
(
VTV

)−1
VT Sun in zenithprojection

Skew P 6= PT V
(
WTV

)−1
WT , with: e. g. evening

projection span(V) 6= span(W) sun

As it is shown in exercise 3.2, projectors are independent of the choice of the basis matrices
V,W for the subspaces V ,W . Thus, for any regular matrices Tv,Tw ∈ Rq×q with Ṽ = VTv

and W̃ = WTw it holds

P = V
(
WTV

)−1
WT = Ṽ

(
W̃T Ṽ

)−1
W̃T . (3.13)
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Hence it follows that in an orthogonal projection – without loss of generality – W = V may
be assumed, because the choice of any other basis leads to the same projector.

There are still two important special cases to mention:

1. Are the two projection matrices biorthogonal, i. e. WTV = Iq, then the (generally
skew or oblique) projector follows:

P = VWT . (3.14)

Attention: “Orthogonal projection” and “biorthogonal bases” denote two different
things!

2. Is a “truncation-operation” desired (i. e. keeping only the first q coordinate directions
of a vector), then the projection matrices

V = W =
[

Iq
0

]
are used. ⇒ P =

[
Iq 0
0 0

]
.

3.3 Projective MOR

In model reduction, the state vector x(t) ∈ Rn shall be approximated by a vector xr(t) ∈ Rq

of lower dimension q � n. For this, one chooses a projection matrix V ∈ Rn×q that spans a
q-dimensional subspace and whose columns represent the basis vectors for the reduced state
xr(t). If the subspace contains/includes the main dynamics of the original system, then the
following approximation is valid:

x(t) ≈ Vxr(t). (3.15)

For a system in minimal realization, this equation can never be exactly fulfilled, there is an
error e(t):

x(t) = Vxr(t) + e(t). (3.16)

Substituting this in the state equation of the original system results in:

Vẋr(t) = AVxr(t) + bu(t) + ε(t), (3.17)

where the residual ε(t) = Ae(t)− ė(t) contains the error terms caused by the approximation.

The state equation is overdetermined: q variables in xr and n equations. As known from
linear algebra, an overdetermined system of equations in the general form Mξ = γ has a
unique solution, if the right-hand side γ lies in the vector space range(M), i.e. if γ can be
completely represented by a linear combination of the columns of M. For equation (3.17)
this condition is generally not fulfilled. In order to still obtain a unique solution for xr(t),
this condition is enforced by projecting the state differential equation onto the q-dimensional
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subspace range(V)1:

PVẋr(t) = PAVxr(t) + Pbu(t) + Pε(t), (3.18)
⇒ V

(
WTV

)−1
WTVẋr(t) = V

(
WTV

)−1
WTAVxr(t) +

+V
(
WTV

)−1
WTbu(t) + (3.19)

+V
(
WTV

)−1
WTε(t).

The projected system (3.19) can thus be solved uniquely in reduced coordinates for any
residual ε(t), which is generally not known. In order to solve the problem, the solution of
the projected differential equation is chosen such that the resulting ε(t) disappears during
the projection: V

(
WTV

)−1
WTε(t) = 0. One interpretation is that the residual ε(t) lies in

the ker(P), i. e. WTε(t) = 0, or ε(t) ⊥W.

Definition 17. The condition ε(t) ⊥W is called Petrov-Galerkin condition. If an orthog-
onal projection is applied – i. e. W = V and thus ε(t) ⊥ V – then it is called Galerkin
condition.

In each summand of (3.19), the matrix V is on the left and a q-dimensional vector xr(t) is on
the right. Since it is assumed that the columns of V are linearly independent, the equation
(3.19) is only satisfied, if it is fulfilled by the q-dimensional vectors to the right of V; this
means that one can simply omit the matrix V in this case. What remains is the reduced
model, i.e. q equations with q unknowns, which can be solved uniquely for xr(t):

ẋr(t) =

Ar︷ ︸︸ ︷(
WTV

)−1
WTAV xr(t) +

br︷ ︸︸ ︷(
WTV

)−1
WTbu(t),

yr(t) = cTV︸ ︷︷ ︸
cT

r

xr(t).
(3.20)

Are the bases V and W biorthogonal, i. e. WTV = Iq, then the reduced system is given by:

ẋr(t) = WTAVxr(t) + WTbu(t),
yr(t) = cTVxr(t).

(3.21)

Remark: The Petrov-Galerkin condition is needed to remove the (unknown) error terms
that inevitably result from the approximation of the state vector. The resulting reduced
model would take exactly the form (3.20), if the ansatz x(t) ≈ Vxr(t) would be used in the
derivation, i.e. without considering the error terms. However, the error plays an important
role in the interpretation of (3.20): Solving the projected differential equation in reduced

1Note at this point the similarity to the “least-squares” approach for solving overdetermined systems
of equations. Since there is generally no unique solution, the solution that causes the smallest Euclidean
error norm is calculated. This is achieved by an orthogonal projection of the equation onto range(V) (cf.
pseudoinverse).
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coordinates results in an error in the state differential equation (namely the residual ε(t)),
which disappears through the projection. By solving the reduced model (3.20) the Petrov-
Galerkin condition is always fulfilled!

Proof.

ẋ(t)−Ax(t)− bu(t) = 0,
⇒ P

(
ẋ(t)−Ax(t)− bu(t)

)
= 0,

⇒ P
(
Vẋr(t)−AVxr(t)− bu(t)

)
−Pε(t) = 0,

⇒ Pε(t) = 0, (3.22)

where the last step follows from the solution of (3.20).

sssMOR function(s): projectiveMOR

Orthogonal and biorthogonal bases

As we have seen before, it is essential that (i) the projection matrices V,W ∈ Rn×q have
full column rank (i.e. they do not contain redundant basis vectors) and that (ii) the matrix
WTV is invertible.

For better numerical robustness, it is highly recommended (but not mandatory!) that the
projection matrices V,W ∈ Rn×q are orthogonal (i.e. VTV = Iq, WTW = Iq) or even
biorthogonal to each other (i.e. WTV = Iq). In the following, we list different cases:

1. Two-sided reduction (V 6= W) with orthogonal bases, i.e. VTV = Iq, WTW = Iq:

P = V(WTV)−1WT (3.23)

2. Two-sided reduction (V 6= W) with biorthogonal bases, i.e. WTV = Iq:

P = VWT (3.24)

3. One-sided reduction (W = V or V = W, i.e. orthogonal projection!) with non-
orthogonal bases:

P = V(VTV)−1VT

P = W(WTW)−1WT
(3.25)

4. One-sided reduction (W = V or V = W, i.e. orthogonal projection!) with orthogonal
bases, i.e. VTV = Iq, WTW = Iq:

P = VVT

P = WWT
(3.26)
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3.4 Summary

In this chapter, we have learned the basic procedure for model reduction of linear systems,
where the reduced model emerges from a projection of the original model. Therefore, the
main goal of a model reduction method in this projective setting is to find appropriate bases
V and W. In the following, three common methods for the calculation of suitable projection
matrices are presented.
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Chapter 4

Modal Reduction

One of the first approaches for model order reduction of linear time-invariant systems in
state-space representation was the modal reduction (aka. modal truncation). This reduction
method originated in the 1960s and was originally developed for second-order models arising
in structural dynamics. The main idea is based on the consideration of the transfer behavior
after state transformation to modal coordinates. This way, the system can be represented by
n decoupled paths, where each path is associated to an eigenvalue and a modal coordinate.
Hereby it is obvious to neglect paths (i.e. modal coordinates and eigenvalues) that have no
significant effect on the transfer behavior.

In the following, the procedure according to Litz is presented, as it can be found in the book
[Föl13, Chapter 8.6]. This assumes that all eigenvalues of A are simple, and thus the matrix
A is diagonalizable.

4.1 Modal transformation

By an eigenvalue decomposition of the system matrix T−1AT = Λ and a change of basis
x=T z (modal transformation), the state-space representation in modal coordinates results

ż(t) = Λ z(t) + b̂u(t),
y(t) = ĉT z(t),

(4.1)

with Λ=diag(λ1, . . . , λn), b̂=T−1 b, ĉT =cT T. Here, T is the eigenvector matrix of A, so
that for each column tk it holds: A tk = λk tk. The above equation (4.1) thus represents a
system of n decoupled differential equations in the modal coordinates:

żk(t) = λk zk(t) + b̂k u(t), k = 1, . . . , n. (4.2)

31



32 CHAPTER 4. MODAL REDUCTION

Applying the Laplace transform to (4.1) yields

z1(s) = 1
s− λ1

b̂1u(s),

...

zn(s) = 1
s− λn

b̂nu(s),

y(s) =
n∑
k=1

ĉk zk(s),

(4.3)

from which the block diagram 4.1 with n decoupled paths can be easily constructed.

b̂1
s−λ1

ĉ1

b̂n

s−λn
ĉn

u

z1

...
zn

y

Figure 4.1: Block diagram of the system in modal coordinates.

In addition, the transfer function G(s) takes the simple form of

G(s) = ĉT (sI−Λ)−1 b̂ =
n∑
k=1

ĉk b̂k
s− λk

. (4.4)

To each of the n eigenvalues λk and each modal coordinate zk belongs exactly one path with
the share ĉk b̂k

s−λk
to the transfer behavior.

Matlab function(s): eig

4.2 Dominance measure according to Litz

In order to decide which modal coordinates may be neglected during reduction, each eigen-
value λk is assigned a positive real number Dk, which represents a measure for its significance
in the transfer behavior (4.4).

As one can see from the summands in (4.4), a mere consideration of the eigenvalue λk or
its absolute value will not suffice to assess its dominance. Instead, the coefficients ĉk and
b̂k (which, according to the Gilbert criterion, also allow statements on the observability and
controllability of λk) must be considered.
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For this reason, Litz proposed the following dominance measure in the 1970s

Dk =
∣∣∣∣∣∣ ĉk b̂kλk

∣∣∣∣∣∣ . (4.5)

This can be interpreted as the contribution of the k-th path to the steady-state response of
y(t), according to the Laplace transform’s final value theorem.

Note at this point that the Litz dominance measure has a direct extension for multiple-input,
multiple-output systems (m, p > 1) based on the influence of an eigenvalue on individual
transmission paths. A more detailed explanation and other measures of dominance can be
found in the book [Föl13].

4.3 Modal truncation

The state-space representation in modal coordinates (4.1) can be rearranged using the dom-
inance measure, such that the eigenvalues are sorted from high to low dominance:

d

dt



z1
...
zq
zq+1
...
zn


=



λ1
. . . 0

λq
λq+1

0 . . .
λn





z1
...
zq
zq+1
...
zn


+



b̂1
...
b̂q
b̂q+1
...
b̂n


u

y =
[
ĉ1 . . . ĉq ĉq+1 . . . ĉn

]


z1
...
zq
zq+1
...
zn


.

(4.6)

Based from the sorted representation (4.6), the reduced model results by truncating the
non-dominant subsystem to

ż1(t) = Λ1 z1(t) + b̂1 u(t),
y(t) = ĉT1 z1(t),

(4.7)

according to the partitioning Λ1 = diag(λ1, . . . , λq).

The choice of a suitable reduced order q differs from case to case and is usually based either
on the relative decrease of the dominance measure or on the absolute value of Dk, which
should fall below a certain tolerance.
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Modal truncation as projection

Note that modal reduction is also a projective model reduction procedure, because the
reduced model (4.7) can also be obtained directly from the original state-space representation
by projection (3.20), i.e. via Ar =

(
WTV

)−1
WTAV, br =

(
WTV

)−1
WTb and cTr = cTV.

General case The projection matrices V and WT result from the selection of the right
and left eigenvectors corresponding to the q most dominant eigenvalues:

V = Tq =
[
t1 · · · tq

]
and WT = LT

q =


lT1
...
lTq

 , (4.8)

where the right eigenvectors tk and left eigenvectors lTk , k = 1, . . . , n fulfill
A tk=λk tk ⇔ AT = TΛ,
lTk A = λklTk ⇔ LTA = ΛLT .

(4.9)

If, for example, D3>D1>D2�Dk holds for all other indices k=4, . . . , n, then the following
projection matrices result

V =
[
t3 t1 t2

]
and WT =

lT3
lT1
lT2

 . (4.10)

Please note that in this case the projection matrices are not biorthogonal to each other (i.e.
WTV 6= Iq), unless they are explicitly biorthogonalized subsequently.

Further note that for a symmetric matrix A only one eigenvalue problem has to be solved,
since for A = AT it follows tk = lk (cf. Equation (4.9)), and hence V = W.

Special case In this case, the projection matrices V and WT are given by the eigenvector
matrix Tq and its inverse T−1

q :

V = Tq =
[
t1 . . . tq

]
and WT = T−1

q =


lT1
...
lTq

 . (4.11)

In this case, the following applies

lTi tj =
{

1, i = j
0, i 6= j

, (4.12)

thus WTV=Iq holds, meaning that V and W are biorthogonal. This leads to
lTk A = λklTk ⇔ T−1 A = Λ T−1 ⇒ LT = T−1. (4.13)

Thus, the special choice WT = T−1
q yields biorthogonal projection matrices.

Regardless of the case: modal reduction can be interpreted as a projection onto the subspace
of the most dominant (right) eigenvectors, orthogonal to the subspace of the left eigenvectors.
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sssMOR function(s): modalMor

4.4 Reduction of unstable systems

The dominance analysis from section 4.2 only makes sense for asymptotically stable eigen-
values, because eigenvalues to the right or on the imaginary axis are always to be regarded
as dominant and have to be kept in the reduced model.

Indeed, this applies to all model reduction procedures: If a model is not asymptotically stable,
a splitting similar to a modal reduction should first be performed, in which the asymptotically
stable (“s”) subsystem is separated from the unstable/antistable (“a”) subsystem

d

dt

[
zs
za

]
=
[

Λs 0
0 Λa

] [
zs
za

]
+
[

b̂s
b̂a

]
u

y =
[

ĉTs ĉTa
] [ zs

za

]
.

(4.14)

Subsequently, a reduction of the stable subsystem can be performed, for example with modal
reduction, balanced truncation or Krylov subspace methods. Finally, the unstable subsystem
should be reintegrated into the reduced model.

d

dt

[
zs,r
za

]
=
[

As,r 0
0 Λa

] [
zs,r
za

]
+
[

bs,r
b̂a

]
u

y =
[

cTs,r ĉTa
] [ zs

za

]
.

(4.15)

Matlab function(s): stabsep

4.5 Residualization

A disadvantage of modal reduction is that generally no steady-state accuracy can be guar-
anteed. This means that the amplitude response at frequency s= 0, which corresponds to
the stationary final value of the step response y(t→∞), of the original and reduced model
can deviate from each other.

However, since steady-state accuracy plays an important role in many applications, it can
be guaranteed by the residualization method. This strategy is summarized below and can
be read in more detail in [Ant05, p.285]. Since the problem of steady-state accuracy can
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generally occur in approximations in which part of the state variables are truncated, it is
presented here in general form.

The starting point is any partitioned state-space representation of the form

d

dt

[
z1
z2

]
=
[

A11 A12
A21 A22

] [
z1
z2

]
+
[

b1
b2

]
u,

y =
[

cT1 cT2
] [ z1

z2

]
,

(4.16)

in which the relevant dynamics are represented by the state directions z1 and the remaining
dynamics are to be neglected. The usual approach at this point would be a truncation, which
leads to the reduced model

ż1 = A11 z1 + b1 u,

yr = cT1 z1,
(4.17)

which generally has no steady-state accuracy.

By neglecting the dynamics of the state directions in z2, i.e. by assuming ż2 = 0, the state
vector z2 can be represented as a function of z1.

z2 ≈ −A−1
22 (A21 z1 + b2 u) , (4.18)

where A22 must be invertible. Inserting z2 in (4.16) finally yields the reduced model by
residualization

ż1 =

Ar︷ ︸︸ ︷(
A11 −A12A−1

22 A21
)

z1 +

br︷ ︸︸ ︷(
b1 −A12A−1

22 b2
)
u,

yr =
(
cT1 − cT2 A−1

22 A21
)

︸ ︷︷ ︸
cT

r

z1 +
(
−cT2 A−1

22 b2
)

︸ ︷︷ ︸
dr

u,
(4.19)

where the following holds

G(0) = cT (−A)−1 b = cTr (−Ar)−1 br + dr = Gr(0). (4.20)

The proof follows directly from the inversion of block matrices and can be read in [FN82].
Note that by residualization one achieves steady-state accuracy, but generally at the cost of
accuracy at high frequencies:

G(s→∞) = lim
s→∞

cT (sI−A)−1 b = 0 6= dr = Gr(s→∞) (4.21)

4.6 Properties of modal truncation

+ The reduced model is available in modal coordinates.

+ From the stability of the original system it also follows the stability of the reduced
system, since the eigenvalues of the reduced system are a subset of the eigenvalues of
the original system.
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+ Eigenvalues and modal coordinates are exactly preserved. This is especially advanta-
geous, if certain eigenvalues and their eigenmodes are of special importance and should
be exactly preserved in the reduced model (e.g. unstable eigenvalues).

+ The reduced state vector has a physical meaning, namely, it describes the direction
along certain modal coordinates.

- The choice of the reduced coordinates is restricted to the set of eigenvectors of the
original model. This can sometimes be a limitation, especially if other state directions
play a greater role in the transfer behavior (see exercise).

- The Litz dominance measure considers only the contribution amount of the individual
eigenvalues to the transfer behavior. However, there are systems in which compensation
effects occur that cannot be captured by this measure. In these cases, the reduction
result may become unsatisfactory.

- The main disadvantage of the method is the high memory requirement O(n2). Even
if the system matrix A is sparse, the matrix of the eigenvectors T is generally dense.
Moreover, a high computational effort O(n3) is required for the solution of the eigen-
value problem (Schur decomposition, cf. [GV96]), wherefore the method cannot be
readily applied to very high-dimensional models without further “tweaks”.

Implementation for large-scale models. Modal reduction as presented in this chapter
is only suitable for medium-sized models. However, there are some extensions and ad-
justments for high-dimensional, sparse models: In general, the entire eigendecomposition
T−1AT = Λ of the FOM is not computed, since the matrix T ∈ Cn×n is usually dense!
Instead, power methods or Krylov methods can be used to iteratively calculate eigenspaces
for certain eigenvalues, for example for those with the largest or smallest magnitude. The
interested reader may have a look at the Matlab functions eig, eigs as well as at the
books [Dem97] and [Saa03].

Matlab function(s): eigs

sss function(s): eigs

sssMOR function(s): modalMor

Selection criteria for (dominant) eigenmodes. As mentioned before, for large-scale
systems, only a few eigenvectors are generally computed using power iteration methods or the
Arnoldi/Lanczos iteration (Krylov methods). In the first-order case, only the eigenvectors
associated to the eigenvalues fulfilling a certain criterion (e.g. smallest magnitude ('sm'),
largest real part ('lr'), etc.) or closest to a given complex shift σ (eigs(A,6,SIGMA))
are calculated. In the second-order case, the eigenmodes associated to the smallest eigenfre-
quencies ('sm' or SIGMA=0) or to a specific, relevant frequency range are often computed.
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4.7 Modal truncation for second-order systems

As mentioned at the beginning of this chapter, modal truncation was originally developed
for second-order models arising in the context of structural dynamics. Therefore, we briefly
explain this reduction concept for second-order systems in the following.

Starting point is a linear, second-order model of the form

M z̈(t) + D ż(t) + K z(t) = g u(t),
y(t) = lT z(t),

(4.22)

with symmetric, positive definite mass and stiffness matrices M,K, and (mostly) symmetric
damping matrix D. Depending on the damping, two different cases can be distinguished.

Proportional or zero damping

For proportional (aka. Rayleigh) damping, where D=αM + βK with α, β ≥ 0 is commonly
used, or for zero damping D = 0, the second-order system (4.22) can be diagonalized and
thus brought into modal coordinates by using the so-called quadratic eigenvalue problem.

We exemplarily derive the quadratic eigenvalue problem for the undamped case, where D=0
and the homogeneous system is considered (u(t)=0). The ansatz for the displacements and
accelerations is then given by

z(t) =
n∑
k=1

φk eλkt, z̈(t) =
n∑
k=1

φk λ
2
k eλkt, (4.23)

where λk = δk ± iωk. If zero damping is considered, then δk = 0, yielding λk = ±iωk and
λ2
k=−ω2

k. Inserting the above ansatz into the equations of motion (4.22) delivers

− ω2
k M

n∑
k=1

φk e±iωkt + K
n∑
k=1

φk e±iωkt = 0,

⇐⇒ (K− ω2
k M)φk e±iωkt = 0.

(4.24)

This equation holds for all e±iωkt, yielding the quadratic eigenvalue problem

(K− ω2
k M)φk = 0 ⇔ KΦ−MΦΩ2 = 0. (4.25)

Hereby, the eigenfrequencies and eigenmodes {ωk,φk}nk=1 are encoded in the matrices Ω =
diag(ω1, . . . , ωn) ∈ Rn×n and Φ = [φ1, . . . ,φn] ∈ Rn×n. Typically, the eigenmodes are
normalized using the inner product weighted by M such that

φT
i M φj = δij, φT

i K φj = ω2
i δij,

⇐⇒ ΦT M Φ = I, ΦT K Φ = Ω2.
(4.26)

To sum up: in this case, the eigenvalues λk are either purely imaginary (D=0) or complex
conjugated (proportional damping). The eigenfrequencies ωk and the eigenmodes φk are real.
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General damping

For general damping D 6= 0, the quadratic eigenvalue problem cannot be used anymore.
Instead, the second-order model (4.22) has firstly to be reformulated as a first-order model
of dimension 2n in explicit

[
ż
z̈

]
=

A︷ ︸︸ ︷[
0 I

−M−1K −M−1D

] [
z
ż

]
+

b︷ ︸︸ ︷[
0

M−1g

]
u,

y =
[

lT 0T
]

︸ ︷︷ ︸
cT

[
z
ż

]
,

(4.27)

or implicit form (F is a degree of freedom; F = αI, α = 103, . . . , 106, F = −K, F = M, etc.)

E︷ ︸︸ ︷[
F 0
0 M

] [
ż
z̈

]
=

A︷ ︸︸ ︷[
0 F
−K −D

] [
z
ż

]
+

b︷ ︸︸ ︷[
0
g

]
u,

y =
[

lT 0T
]

︸ ︷︷ ︸
cT

[
z
ż

]
.

(4.28)

After the reformulation, the first-order eigenvalue problems

(A− λkI)tk = 0 ⇔ AT = TΛ, or (A− λkE)tk = 0 ⇔ AT = ETΛ,
lTk (A− λkI) = 0T ⇔ LTA = ΛLT , or lTk (A− λkE) = 0T ⇔ LTA = ΛLTE,

(4.29)

have to be solved, in order to compute the complex eigenvalues λk, and the complex right
and left eigenvectors tk and lTk .

Note again that for a symmetric matrix A (in the implicit case: for symmetric A and E),
only one eigenvalue problem has to solved.

To sum up: in this general case, the eigenvalues λk are complex-valued and the eigenvectors
tk and lTk are also complex-valued. This leads to complex projection matrices V,W ∈ Cn×q,
which generally yield complex-valued reduced quantities Ar, br and cTr . This is usually not
desired, especially if the original matrices are real-valued. Nevertheless, if the eigenvalues
come in complex conjugate pairs (as it is mostly the case), then a splitting of the eigenvectors
tk and lTk in real and imaginary part is possible, in order to obtain real projection matrices
V,W ∈ Rn×q spanning the same subspaces as their complex counterparts.
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Chapter 5

Balanced Truncation

In this chapter, we learn a widely used method for model reduction, which originated in
the 1980s. It is the so-called Balanced Truncation (BT) or Truncated Balanced Realization
(TBR): first, the system is brought – by a state transformation – into a balanced represen-
tation, where the “unimportant state variables” can be easily identified; then, the reduced
model is obtained by truncation.

The basic idea of TBR can be formulated as follows: find a state representation, where every
single state variable xi is just as strong or weak controllable as it is observable (= balancing).
Neglect then the state variables with the slightest contribution to the input-output behavior
(= truncation).

The terms controllability and observability are repeated in the following comparison.

Controllability Observability
• Relation between input u(t) and state • Relation between state x(t) and out-

x(t) put y(t)
• Matrices A and b • Matrices A and cT
• Complete controllability: the system • Complete observability: let u(t) be

can be transferred from the initial known; then the initial state x(t0)=x0
state x(t0) = 0 to any arbitrary final can be uniquely determined over a fi-
state x(t)=xe in finite time by a suit- nite time period solely from the mea-
able control input u(t). surement of y(t).

41
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5.1 Controllability

Which states are well controllable? In order to assess controllability, we need a suitable
measure; in the following, this should be the energy1: the states x(te) = xe, which can be
reached with little energy from the origin x(t = 0) = 0, are well / easily controllable. In
order to identify these states, we assume an asymptotically stable system which dwells at
the equilibrium x = 0. To carry the system to the final state xe, control input energy is
needed. The goal is therefore to determine the minimum energy required in order to bring
the system to the final state xe.

This task can be formulated as an optimization problem as known from optimal control (cf.
e.g. “Moderne Methoden der Regelungstechnik 2”):

Cost functional: J =
∫ te

0
u2(t) dt

with the constraint: ẋ(t) = Ax(t) + bu(t)
and the boundary conditions: x(t = 0) = 0 and x(t = te) = xe,

where te is free and is therefore part of the optimization. To avoid this, we could choose
te → ∞; but then the integral would no longer exist, since control input energy would be
permanently needed to keep the system in xe. Instead, we have to apply a trick: we consider
the problem in negative time direction: τ = te − t; dτ

dt = −1 ⇔ dt = −dτ . This way, the
sign on the right side of the ODE changes and the cost functional becomes:

J =
∫ t=te

t=0
u2(t) dt =

∫ τ=0

τ=te
−u2(τ) dτ =

∫ te

0
u2(τ) dτ. (5.1)

For times τ > te, the system remains in the equilibrium without control input energy,
wherefore we can now also set te →∞ to eliminate the optimization variable te. This yields
the optimization problem in the well-known form:

Cost functional: J =
∫ ∞

0
u2(τ) dτ

with the constraint: ẋ(τ) = −Ax(τ)− bu(τ)
and the boundary conditions: x(τ = 0) = xe and x(τ →∞) = 0.

The solution provides the optimal control law (see e.g. “Moderne Methoden 2”):

uopt(τ) = −1
2
(
−bT

)
Px(τ) = 1

2bTPx(τ), (5.2)

where P is the solution of a Riccati equation. However, there is no weighting xTQx of
the states in the cost functional. Thus, the corresponding term is omitted, and the Riccati

1Note that the quantity designated here as energy is actually to be understood as generalized energy and
must e.g. not possess the unit Joule. It should be a measure for the required control input energy, cf. e.g.
equation (5.1).

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



5.1. CONTROLLABILITY 43

equation becomes the Lyapunov equation:

(−AT )P + P(−A)− 1
2P(−b)(−bT )P = 0, (5.3)

⇔ −ATP−PA− 1
2PbbTP = 0, (5.4)

⇔ 2P−1AT + 2AP−1 + bbT = 0. (5.5)

5.1.1 Controllability Gramian

Definition 18. We define Wc := 2P−1 as the controllability Gramian. It is the solution of
the Lyapunov equation:

AWc + WcAT + bbT = 0. (5.6)

Furthermore, it can be shown (see Exercise), that:

Wc =
∫ ∞

0
eAtbbT eAT tdt. (5.7)

Matlab function(s): gram(sys,'c'), lyap, lyapchol

5.1.2 Energy consideration

Theorem 4. The controllability Gramian specifies the minimum value of the cost functional
J∗(xe) depending on the final state xe:

J∗(xe) = xTe W−1
c xe. (5.8)

Proof. If the optimal control law u(τ) = 1
2bTPx(τ) = bTW−1

c x(τ) is inserted into the state
equation, then this yields the dynamics:

ẋ(τ) =
(
−A− bbTW−1

c

)
x(τ). (5.9)

Furthermore, the following term is also needed:

d

dt

(
xT (τ)W−1

c x(τ)
)

= ẋT (τ)W−1
c x(τ) + xT (τ)W−1

c ẋ(τ) (5.10)
(5.9)= xT (τ)

(
−ATW−1

c −W−1
c A− 2W−1

c bbTW−1
c

)
x(τ) (5.11)

= −xT (τ)W−1
c

(
WcAT + AWc + 2bbT

)
W−1

c x(τ) (5.12)
(5.6)= −xT (τ)W−1

c bbTW−1
c x(τ) (5.13)
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The term xT (τ)W−1
c x(τ) is thus antiderivative of (5.13), and it follows:

J∗(xe) =
∫ ∞

0
u2

opt(τ) dτ =
∫ ∞

0
uTopt(τ)uopt(τ) dτ (5.14)

(5.2)=
∫ ∞

0
xT (τ)W−1

c bbTW−1
c x(τ)dτ (5.13)=

[
−xT (τ)W−1

c x(τ)
]∞

0
(5.15)

= −xT (τ →∞)W−1
c x(τ →∞) + xT (0)W−1

c x(0) = 0 + xTe W−1
c xe (5.16)

The product xTe W−1
c xe describes the minimum energy required to reach the final state

xe. This result allows the following interpretation: After singular value decomposition of
Wc = UΣUT with σ1 ≥ σ2 . . . ≥ σn (or eigendecomposition, since Wc = WT

c > 0), the
following holds:

• The first singular vectors ui point in the directions that are “easily” controllable: σ1
is maximal, and with W−1

c = UΣ−1UT follows that uT1 W−1
c u1 = 1

σ1
is minimal.

• The corresponding singular values σi describe how much energy is needed to reach
these directions in the state-space.

The interested reader is referred to [ZDG+96, Ch. 3.2] and [Ant05, Ch. 4.2.1] for more
information.

5.2 Observability

Which states are well observable? The observability should also be assessed by means of the
energy: the states x(t = 0) = x0, which provide for u(t) ≡ 0 the most energy at the output
in the steady-state process, are well observable. In order to identify these states, we define
the observability Gramian.

5.2.1 Observability Gramian

Definition 19. We define the solution Wo = WT
o > 0 of the Lyapunov equation:

ATWo + WoA + ccT = 0, (5.17)

as observability Gramian. Analogously it holds:

Wo =
∫ ∞

0
eAT tccT eAtdt. (5.18)
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Matlab function(s): gram(sys,'o'), lyap, lyapchol

5.2.2 Energy consideration

The observability Gramian describes how well or badly observable the state variables are.
This relationship stems from the following considerations. The unactuated system is:

ẋ(t) = Ax(t)
y(t) = cTx(t).

(5.19)

The solution y(t) = cTx(t) with the initial value x(t = 0) = x0 is given by:

y(t) = cT eAtx0. (5.20)

Thus, the initial state x0 provides the following energy at the output (measured in the
L2-norm):

‖y‖2
L2 =

∫ ∞
0

yT (t) y(t) dt (5.21)
(5.20)= xT0

∫ ∞
0

(
eAT tccT eAt

)
dt x0 (5.22)

(5.18)= xT0 Wox0. (5.23)

The product xT0 Wox0 describes the energy that the state x0 provides by observing/measuring
the output. After the singular value decomposition of Wo, the following analog interpretation
follows:

• The first singular vectors point in the directions that generate most energy at the
output, i. e. the directions that are “strongly” observable.

• The corresponding singular values (= eigenvalues) describe, how large this energy is.

The interested reader is referred to [ZDG+96, Ch. 3.2] and [Ant05, Ch. 4.2.2] for more
information.

5.3 Balancing

The previous considerations about the energy flow in the system can be summarized in the
following chart:
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States that require
a lot of energy to be
reached

States that provide
little energy at the out-
put

small eigenvalues of
Wc or large eigenval-
ues of W−1

c

small eigenvalues of
Wo

weak controllable
states

weak observable states

As follows from the observations of Exercise 4, only those state variables that are both poorly
controllable and poorly observable may be neglected. Thus, the information of Wc and Wo

must be considered at the same time! A direction, that e. g. is well controllable, does not
necessarily have to be a well observable direction.

In order to find directions that are as well controllable as observable, we have to introduce
a state transformation of the form z = Tx, since this way linear combinations of state
variables x are introduced as new state variables z. This first leads to the question: how do
the Gramians change with such a state transformation?

Theorem 5. Let Wc, Wo be the Gramian matrices in the coordinates x. The transformed
Gramians Ŵc, Ŵo, in the coordinates z = Tx are:

Ŵc = TWcTT , (5.24)
Ŵo = T−TWoT−1. (5.25)

(Proof see Exercise.)

This means that the eigenvalues of Wc and Wo change with the representation of the system!
However, one can see that the eigenvalues of the product WcWo are invariant under state
transformations

ŴcŴo = T (WcWo) T−1. (5.26)
The eigenvalues of WcWo are thus independent of the representation of the system. They
are invariant system variables to describe the transfer behavior.

Definition 20. The Hankel singular values σi (HSV) of a system are defined as

σi =
√
λi(WcWo), (5.27)

and represent a measure for the energy transfer from the inputs to the outputs. They are
independent from the state representation.

Reminder: We are looking for state directions which are both badly controllable as well as
badly observable! The solution is provided by the balanced representation, which can be
defined using the HSVs.
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Definition 21. A system is called balanced, if: Wc = Wo = diag(σ1, σ2, . . . , σn) with
σ1 ≥ σ2 ≥ . . . ≥ σn. That means: both Gramian matrices are equal, are in diagonal form
and have the HSVs as entries.

In a balanced system, all state variables are therefore just as well controllable as observable.
One possible calculation of the state transformation T, which transforms the system to
balanced representation, is given in the following theorem.

Theorem 6. The state transformation T to balanced representation can be calculated as
follows:

1. Cholesky decomposition 2 of Wc = SST and Wo = RRT

2. SVD of RTS = UΣVT

3. T := Σ−1/2UTRT and T−1 := SVΣ−1/2

Note: Due to this transformation, the state variables lose their physical meaning!

Proof.

Ŵc = TWcTT with Wc = SST

= Σ−
1
2 UTRT

(
SST

)
RUΣ−

1
2

= Σ−
1
2 UTU︸ ︷︷ ︸

=I

Σ VTV︸ ︷︷ ︸
=I

Σ UTU︸ ︷︷ ︸
=I

Σ−
1
2

= Σ−
1
2 Σ2Σ−

1
2 = Σ.

The proof of Ŵo = Σ is analogous.

In the balanced representation, the state variables are ordered according to their importance
for the transfer behavior, i.e. according to the HSVs. Thus, we have found a measure to
evaluate which state variables we can keep in the reduced system and which we can neglect.

Matlab function(s): hsvd, hsvplot, balreal

5.4 Truncated Balanced Realization

Once the balanced representation of the system has been found (i.e. after state transforma-
tion with T), the reduction can finally be carried out. To this end, the balanced system is

2The Cholesky decomposition is only defined for symmetric positive definite matrices. The factors S, R
are lower triangular, cf. [GV96].
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partitioned into two blocks,[ ˙̂x1(t)
˙̂x2(t)

]
=
[

Â11 Â12

Â21 Â22

] [
x̂1(t)
x̂2(t)

]
+
[

b̂1

b̂2

]
u(t),

y(t) =
[

ĉT1 ĉT2
] [ x̂1(t)

x̂2(t)

]
,

(5.28)

whereby for both Gramian matrices hold:

Ŵc = Ŵo =



σ1
. . .

σq
σq+1

. . .
σn


. (5.29)

The state variables in x̂2(t) (i. e., the state variables with the smallest HSVs) contribute little
to the energy transfer from u(t) to y(t), and can therefore be neglected. By truncating the
state variables x̂2(t), the reduced system results:

ẋr(t) = Â11xr(t) + b̂1u(t),
yr(t) = ĉT1 xr(t).

(5.30)

Balancing and Truncation can also be performed without calculating the complete balanced
system (see Algorithm 1).

Balanced Truncation can be interpreted as a Petrov-Galerkin projection onto the subspace
range(VBT), orthogonal to range(WBT), with the approximation x(t) ≈ VBT xr(t). Please
note that the projection matrices VBT and WBT are biorthogonal, i.e. WT

BTVBT = Iq.

Remark: the Lyapunov equations (5.6) and (5.17) are usually solved with the Bartels–Stewart
algorithm [BS72] (Matlab: lyap). However, the Lyapunov equations can also be directly
solved after the Cholesky factors S and R of the Gramians Wc = SST and Wo = RRT with
the Hammarling method [Ham82] (Matlab: lyapchol). This way, steps 1 and 2 can be
combined in Algorithm 1. This variant is also known as Square-Root Balanced Truncation
(SR-BT) (cf. Section 7.2).

Please note that for a symmetric (i.e. A=AT , (E=ET )) and collocated (i.e. b = c) system,
only one Lyapunov equation has to be solved, since in this case it holds Wc = Wo!

Matlab function(s): balred, balancmr, lyap, lyapchol
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Algorithm 1 Order reduction by balanced truncation
1. Solve the Lyapunov equations:

AWc + WcAT + bbT = 0,
ATWo + WoA + ccT = 0.

2. Cholesky decompositions: Wc = SST , Wo = RRT , S,R ∈ Rn×n.

3. SVD: RTS = UΣVT = ∑n
i=1 σiuivTi

4. Choose the first q columns of U and V: Uq = [u1, . . . ,uq], Vq = [v1, . . . ,vq], and the
first Hankel singular values: Σq = diag(σ1, . . . , σq). Calculate the projection matrices
VBT and WBT:

VBT := SVqΣ−1/2
q ∈ Rn×q,

WT
BT := Σ−1/2

q UT
q RT ∈ Rq×n.

5. Since VBT and WBT are biorthogonal, the reduced system of order q � n is:

Ar = WT
BTAVBT, br = WT

BT b, cr = cTVBT.
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5.5 Properties of Balanced Truncation

+ The reduced model is also balanced and a minimal realization.

+ From the stability of the original system, the stability of the reduced system follows:
the reduced Gramians are diagonal and have the largest HSVs as entries ⇒ positive
definite Lyapunov solutions ⇒ stability proof by Lyapunov.

+ It can be shown that:
‖G(s)−Gr(s)‖∞ ≤ 2

n∑
i=q+1

σi. (5.31)

The error in the H∞-norm is thus limited by the double sum of the truncated Hankel
singular values. This means that a priori, i. e. before computing the reduced sys-
tem, the approximation error can be controlled by the choice of the reduced order q.
This is a considerable advantage of the method, since the reliable estimation of the
approximation error is one of the most difficult challenges in model reduction.

- The main disadvantage of TBR is the high memory requirement O(n2). Even if the
system matrix A is sparse, the Gramians and their Cholesky factors are generally
dense! In addition, a high computational effort O(n3) is required for the solution of
the Lyapunov equations and the SVD of RTS, wherefore the method cannot be readily
applied to very high-dimensional models without further “tweaks”.
Example: When increasing the order of the original system from n = 500 to n = 1000
(factor 2), balanced truncation requires about 4×more memory and 8×more time. On
today’s standard computers, TBR is feasible up to a maximum order of ≈ 5000−10000,
since the lower triangular, dense Cholesky factors and the dense Gramians may already
need more than 9 GB of memory!

Implementation for large-scale models. Balanced Truncation as it is presented in Al-
gorithm 1 or implemented in Matlab (balred, balancmr) is only suitable for medium-
sized models. However, there are some extensions and adjustments for high-dimensional,
sparse models, like e.g. the Low-Rank Square-Root Balanced Truncation (LRSR-BT). The
main difference lies in the approximate solution Wc ≈ ZcZT

c and Wo ≈ ZoZT
o of the two

Lyapunov equations using low-rank factors of the dimension Zc ∈ Rn×qc ,Zo ∈ Rn×qo with
qc, qo � n. The most important methods in this regard are the Low Rank Alternating Direc-
tion Implicit (LR-ADI) (see [Pen00]) and the Rational Krylov Subspace Method (RKSM) (see
[DS11]). Both approaches are very closely related to the Krylov subspace methods presented
in the next chapter. For the sake of completeness, it should be noted that the advantages of
Balanced Truncation described above are generally lost due to the approximate solution of
the Lyapunov equations.

Our lyapchol command uses the third-party toolbox M-M.E.S.S.3 (LR-ADI) or our own
implemented crksm function to approximately solve large sparse Lyapunov equations.

3Available under https://www.mpi-magdeburg.mpg.de/projects/mess
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Approximate solution of Lyapunov equations via mess_lradi or crksm

sss function(s): lyapchol (mess_lradi, crksm)

This sss command plays a crucial role for many functions. For instance, lyapchol is
needed for the computation of the H2-norm of a LTI system via norm(sys,2) (cf. (2.24)).
Moreover, it is also employed within tbr.

Truncated Balanced Realization (TBR)

sssMOR function(s): tbr
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Chapter 6

Krylov Subspace Methods

In this chapter we learn another important approach for model order reduction: the Krylov
subspace methods. The basic idea is the local approximation of the transfer behavior. Just
as an arbitrary function f(x) can be approximated by a Taylor series around a point x0, we
also want to approximate the transfer function G(s) around a frequency s0. This gives us
indeed a powerful tool, which is however not easy to use! Professor Athanasios C. Antoulas,
an expert in the field, expresses this fact like this:

The advantage of Krylov subspace methods is that there are many degrees of freedom.
The disadvantage of Krylov subspace methods is that there are many degrees of freedom.

The problem is that it is not always perfectly clear, how to appropriately choose the degrees
of freedom of the method. Therefore, the Krylov subspace methods are still subject of
intensive research. The method is also called Moment Matching.

6.1 Moment Matching

The transfer function G(s) of a system is a rational function of the Laplace variable s and
can be expanded into an infinite Taylor series around a (complex) frequency s0 with the
(still to be determined) coefficients mi:

G(s) = −m0 −m1(s− s0)−m2(s− s0)2 − . . . = −
∞∑
i=0

mi (s− s0)i (6.1)

The minus before mi is a sign convention (definition issue). The goal of moment matching is
to find a reduced model, such that the first q coefficients mi, i = 0, 1, . . . q − 1 of the Taylor
series of the original and reduced model match. It is thus a local approximation around the
frequency s0.

53



54 CHAPTER 6. KRYLOV SUBSPACE METHODS

6.1.1 Moments

Definition 22. The moments mi of a transfer function (or of a dynamic system) around
an expansion point (aka. shift) s0 are defined as the negative coefficients of the Taylor series
representation around s0:

G(s) = −
∞∑
i=0

mi (s− s0)i , (6.2)

or in other words:
mi = − 1

i!
diG(s)
dsi

∣∣∣∣∣
s=s0

i = 0, 1, . . . (6.3)

For a dynamic system in state-space representation the following holds:

mi = cT (A− s0I)−(i+1) b. (6.4)

Proof. The transfer function is

G(s) = cT (sI−A)−1 b = cT (sI−A + s0I− s0I)−1 b = cT [(s− s0)︸ ︷︷ ︸
ŝ

I− (A− s0I)︸ ︷︷ ︸
Â

]−1b

= cT
[
Â
(
ŝÂ−1 − I

)]−1
b = −cT

(
I− ŝÂ−1

)−1
Â−1b.

We use the so-called Neumann series: (I−T)−1 = ∑∞
i=0 Ti. With T := ŝÂ−1 follows:

G(s) = −cT
∞∑
i=0

(
ŝÂ−1

)i
Â−1b = −

∞∑
i=0

cT (A− s0I)−(i+1) b (s− s0)i.

The comparison with (6.2) delivers the result: mi = cT (A− s0I)−(i+1) b.

The goal of moment matching is to match the first q moments of the original and reduced
system:

G(s) = −m0 −m1(s− s0)− . . .−mq−1(s− s0)q−1 −mq(s− s0)q − . . .
Gr(s) = −mr,0 −mr,1(s− s0)− . . .−mr,q−1(s− s0)q−1 −mr,q(s− s0)q − . . .

with mi = mr,i, i = 0, 1, . . . , q − 1
mj 6= mr,j, j = q, q + 1, . . .

Since we look at systems in state-space representation, we are seeking for a reduced system,
such that the following applies:

cT (A− s0I)−(i+1) b != cTr (Ar − s0I)−(i+1) br, i = 0, 1, . . . , (q − 1) (6.5)

It will turn out that we can achieve this, if we use so-called Krylov subspaces for the projection
matrices V and W.
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sssMOR function(s): moments

6.1.2 Krylov subspaces

Definition 23. The Krylov subspace Kq of a matrix M ∈ Rn×n and a vector v ∈ Rn is
generally defined as:

Kq(M,v) = span
{
v,Mv,M2v, . . . ,Mq−1v

}
. (6.6)

A Krylov space denotes a q-dimensional subspace Kq ⊆ Rn, for which (infinitely) many
bases V ∈ Rn×q exist. Krylov subspaces were introduced to solve large eigenvalue problems
and linear systems of equations iteratively. They are also often used to approximately solve
linear matrix equations, such as e.g. Lyapunov equations (cf. Ch. 5). For model reduction
we need two particular Krylov subspaces, which are defined below.

Definition 24. Kq ((A− s0I)−1, (A− s0I)−1b) is called input Krylov subspace and
Kq
(
(A− s0I)−T , (A− s0I)−Tc

)
is called output Krylov subspace around the expansion

point s0.

6.1.3 Implicit Moment Matching

Using the previous definitions, we can already formulate the (theoretical) solution to the
moment matching problem. The practical implementation follows in Section 6.2.

Theorem 7 (Moment Matching 1). Form the columns of V a q-dimensional basis of the
input Krylov subspace around s0, and is W ∈ Rn×q arbitrary such that det(Ar − s0I) 6= 0,
then the first q moments of the original and the reduced system around s0 match.

Proof. The first moment of the reduced system is:

mr,0 = cTr (Ar − s0I)−1 br (6.7)

= cTV
((

WTV
)−1

WTAV− s0I
)−1 (

WTV
)−1

WTb (6.8)

= cTV
((

WTV
)−1 (

WTAV− s0WTV
))−1 (

WTV
)−1

WTb (6.9)

= cTV
(
WTAV− s0WTV

)−1
WTb (6.10)

= cTV
(
WTAV− s0WTV

)−1
WT (A− s0I) (A− s0I)−1︸ ︷︷ ︸

=I

b (6.11)
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Since (A− s0I)−1 b is the first direction of the Krylov subspaceKq ((A− s0I)−1, (A− s0I)−1b)
and V represents a basis for this Krylov subspace, the following applies:

∃ r0 ∈ Rq : (A− s0I)−1 b = Vr0. (6.12)

It follows:

mr,0 = cTV
(
WTAV− s0WTV

)−1
WT (A− s0I) Vr0 (6.13)

= cTV
(
WTAV− s0WTV

)−1 (
WTAV− s0WTV

)
r0 (6.14)

= cTVr0
(6.12)= cT (A− s0I)−1 b = m0. (6.15)

The proof for the remaining q−1 moments can be carried out analogously using mathematical
induction.

Theorem 8 (Moment Matching 2). Form the columns of W a q-dimensional basis of the
output Krylov subspace around s0, and is V ∈ Rn×q arbitrary such that det(Ar − s0I) 6= 0,
then the first q moments of the original and the reduced system around s0 match.

Proof. The proof follows from the duality, i. e. in the previous proof, one must substitute A
with AT , b with c (B with CT in the MIMO case) and V with W, and the condition

∃ l0 ∈ Rq : (A− s0I)−T c = Wl0 (6.16)

must be used.

Corollary 3 (Moment Matching 3). Form the columns of V a basis of the input Krylov
subspace and the columns of W the basis of the output Krylov subspace, then the first 2q
moments of the original and the reduced system around s0 match.

6.1.4 Markov parameters1

If one wants to approximate the transient behavior, i.e. for t → 0 and s → ∞, then the
so-called Markov parameters must match. They represent the counterpart of the moments
for s0 →∞.

Definition 25. The Markov parameters Mi of a system are defined as:

Mi = dig(t)
dti

∣∣∣∣∣
t=0

= cTAib i = 0, 1, . . . (6.17)

and it can be shown that:

G(s) =
∞∑
i=0

Mi
1
si+1 = M0

1
s

+M1
1
s2 +M2

1
s3 + . . . . (6.18)

1The section on Markov parameters is given only for the sake of completeness and without proofs.
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In order to match Markov parameters in the reduced system, one needs the following theorem.

Theorem 9 (Moment Matching 4). Form the columns of V a basis of the Krylov subspace
Kq (A,b) and the columns of W a basis of the Krylov subspace Kq

(
AT , c

)
, then the first 2q

Markov parameters of the original and of the reduced system match.

6.1.5 Several expansion points

It is possible to guarantee moment matching around more than one expansion point (includ-
ing s0 →∞). For this purpose (aka. multipoint moment matching), the projection matrices
V and W are formed such that they span the union of appropriate Krylov subspaces.

Example: V = [V1,V2,V3], whereby:

range(V1) = Kq1

(
(A− s1I)−1, (A− s1I)−1b

)
,

range(V2) = Kq2

(
(A− s2I)−1, (A− s2I)−1b

)
,

range(V3) = Kq3 (A,b) .

Then, q1 moments around s1 match, q2 moments around s2 match, and additionally q3
Markov parameters match.

6.1.6 Summary

Generally, 2q is the maximum number of matching moments, since a transfer function of
order q has only 2q degrees of freedom (in partial fractional decomposition: q residues in
the numerator plus q poles in the denominator). According to the number of moments that
match, a distinction is made between one-sided and two-sided methods:

One-sided reduction Two-sided reduction
V input Krylov space W output Krylov space V input Krylov space
and W := V and V := W W output Krylov space
q moments match 2q moments match
State transformation in the original system 2q degrees of freedom fixed ⇒
changes the reduced dynamics! reduced dynamics are unique!

Note: The choice of a one-sided or a two-sided reduction depends on the goals and priorities
of the reduction. For instance, one can use the remaining degrees of freedom in W (or in V)
to guarantee stability of the ROM or to preserve other system properties. On the other hand,
one can use these degrees of freedom to match more moments to obtain a better accuracy.

sssMOR function(s): rk, crksm
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6.2 Computation of the matrices V and W

To guarantee moment matching, a matrix V or W must be calculated, whose columns span
the desired Krylov subspace. The explicit calculation of the Krylov directions (A− s0I)−i b
has to be avoided, as this would lead to numerical problems.

Consider the example with s0 = 0, i. e. V = [A−1b, . . . ,A−qb]. The individual Krylov
directions could theoretically be determined as follows:

v1 = A−1b (6.19)
vi = A−1vi−1, for i = 2, . . . , q (6.20)

The problem lies in the successive multiplication by one and the same matrix. By a multi-
plication, the shares of an eigenvector are stretched by its own eigenvalue. This means that
shares of eigenvectors corresponding to small eigenvalues are getting shorter and shorter,
compared to shares of eigenvectors corresponding to large eigenvalues. The more the mag-
nitude of the eigenvalues of A differ, the faster this difference is potentiated. The directions
vi become linearly dependent/parallel, so that after a few iterations there are no more q
independent columns in V! Orthogonal matrices, i. e. VTV = I, are numerically best con-
ditioned with the minimum condition number of 1. The aim of this section is therefore to
find an orthonormal basis V of a desired Krylov subspace. To this end, we first need the
so-called Gram-Schmidt method.

6.2.1 Gram-Schmidt method

For example, two vectors v1 and v2 are given, which span a two-dimensional subspace. Now
an orthogonal basis {v1, v̂2} of the same subspace is sought. The following figure illustrates
the relationship between the vectors,

wherein α ∈ R represents a suitable scaling of v1:

p = αv1 (6.21)

v̂2 = v2 − p (6.21)= v2 − αv1 (6.22)
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The aim is v̂2 ⊥ v1, i. e. v̂T2 v1 = 0:

(v2 − αv1)Tv1 = 0 (6.23)

⇔ α = vT2 v1

vT1 v1
(6.24)

(6.22)=⇒ v̂2 = v2 −
vT2 v1

vT1 v1
v1 (6.25)

The vectors {v1, v̂2} span the same space as {v1,v2}, but they are orthogonal to each other.
In order to obtain an orthonormal basis, we choose:

v∗1 := v1

‖v1‖
, v∗2 := v̂2

‖v̂2‖
. (6.26)

The resulting projection matrix V = [v∗1, v∗2] is then orthogonal, i. e. VTV = I. The whole
procedure is summarized in the following algorithm for arbitrary subspaces.

Algorithm 2 Gram-Schmidt method
Input: v1, . . . ,vq
Output: Orthonormal basis v∗1, . . . ,v∗q
1: v∗1 = v1

‖v1‖ // Normalization of the first vector
2: for i = 2 to q do
3: for j = 1 to (i− 1) do
4: vi ← vi − vT

i vj

vT
j vj

vj // Orthogonalization to all previous vectors
5: end for
6: v∗i = vi

‖vi‖ // Normalization of the resulting vector
7: end for

sssMOR function(s): gramSchmidt (in arnoldi)

6.2.2 Arnoldi algorithm

The Gram-Schmidt method calculates an orthonormal basis for a given set of vectors. To
improve the numerical conditioning of the iteration (6.20), the Gram-Schmidt process must
be applied in each iteration. In the example (6.20), it means that – instead of v3 := A−1v2 –
the orthogonal direction v∗2 must be used: v3 := A−1v∗2. After that, v3 must be orthonor-
malized to v∗1 and v∗2 using the Gram-Schmidt method, in order to obtain v∗3. Then, the
next direction must be determined: v4 = A−1v∗3; the Gram-Schmidt procedure is run again;
and so on ... . The following figure shows a graphic illustration of how the directions could
look like.
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The resulting orthonormal basis V := [v∗1,v∗2, . . .] spans the desired Krylov subspace (proof:
see exercise). The combination of the Gram-Schmidt method with the iterative calculation of
the next Krylov directions is summarized in the Arnoldi algorithm. But before the algorithm
is given, we have to deal with another problem from a numerical point of view: to calculate a
Krylov direction (A− s0I)−1vi, the inverse of the matrix A− s0I is (theoretically) required.
This, however, is numerically expensive (O(n3)), usually dense (thus memory intensive,
O(n2)) and badly conditioned. For all these reasons, the inverse should absolutely be avoided!
In order to avoid the explicit inversion, the problem can be equivalently reformulated into a
linear system of equations (LSE):

vi = (A− s0I)−1vi−1 ⇐⇒ (A− s0I)vi = vi−1 (6.27)

This system of equations can be efficiently solved using e.g. Gauss-Jordan elimination
(mldivide, “\”-operator in Matlab). Since such a system of equations needs to be solved
several times (only with different right-hand sides vi) for a Krylov basis, it makes sense to ad-
ditionally perform a so-called LU decomposition. Hereby, an arbitrary matrix is decomposed
into the product of an upper and lower triangular matrix (command lu in Matlab):

Systems of equations with triangular matrices can be easily solved by iterative insertion.
Due to the triangular form of L and U the system of equations (6.27) is effectively solved in
two steps, (A− s0I)−1 = (LU)−1 = U−1L−1:
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1. Solve Ly = vi−1, starting with the first entry of y.

2. Solve Uvi = y, starting with the last entry of vi.

These two steps can be briefly summarized in Matlab notation with the “\”-operator:
LUvi = vi−1 ⇐⇒ vi = U\ (L\vi−1)

The LU decomposition makes sense, because it only has to be performed once at the begin-
ning. With the stored matrices L and U, the q systems of equations for q Krylov directions
can be solved immediately! The numerically most expensive part of the reduction with
Krylov subspaces is therefore the LU decomposition.

Matlab function(s): lu, mldivide

sss function(s): solveLse

Similar to sss/lyapchol, the command solveLse to solve LSEs Ax=b plays a crucial
role for many functions. For instance, it is needed for the computation of the frequency
response of a LTI system via sss/freqresp. Moreover, it is also needed within arnoldi.

Algorithm 3 shows the Arnoldi algorithm for the efficient computation of an orthonormal
basis of a Krylov subspace. It includes the LU decomposition, the Gram-Schmidt method
and the iterative calculation of the Krylov directions.

Algorithm 3 Arnoldi algorithm (multimoment)
Input: Matrices A,b, expansion point s0, order q
Output: orthonormal basis of the Krylov subspace v∗1, . . . ,v∗q
1: L,U← lu(A− s0I) // LU decomposition
2: v1 = U\ (L\b) // first Krylov direction
3: v∗1 = v1

‖v1‖ // Normalization of the first vector
4: for i = 2 to q do
5: vi = U\(L\v∗i−1) // Computation of the next Krylov direction
6: v∗i = gramSchmidt(v∗1, . . . ,v∗i−1,vi) // Orthonormalization to previous directions
7: end for

sss function(s): solveLse

sssMOR function(s): arnoldi, gramSchmidt (rk)

Please note that Algorithm 3 can be generalized to match Markov parameters, match mo-
ments at several expansion points, etc. (cf. implementation in the sssMOR toolbox). Further
note that for every new expansion point s0, a new LU decomposition of the matrix A− s0I
has to be performed! Hence: the multipoint moment matching strategy – where moments
around different shifts are matched – is in general computationally more expensive than the
multimoment matching strategy – where high-order moments are matched at a single shift.
The combination of both strategies is mostly the best choice.
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6.3 H2-optimal reduction

We are now able to approximate a dynamic system locally in a numerically efficient way.
But if the best possible approximation over the entire frequency range is desired, then the
question arises how to choose the expansion points. One possibility is trying to find a ROM
of desired fixed order q, which minimizes the H2-error:

Gr(s) = arg min
deg(G̃r)=q

‖G− G̃r‖H2 . (6.28)

Since this optimization problem is non-convex, the goal at first is to find a local solution.
Considering the cost functional J = ‖G− G̃r‖H2 and the analysis of its vanishing gradient,
Meier and Luenberger derived in [ML67] first-order necessary optimality conditions for an
H2-optimal SISO reduced model:

G(−λr,i) = Gr(−λr,i), (6.29a)
G′(−λr,i) = G′r(−λr,i), (6.29b)

for i = 1, . . . , q. These interpolatory conditions can be interpreted as follows: for an H2-
optimal ROM, i.e. a reduced model with minimal error in the H2-norm, the first two
moments at the mirror images of the reduced eigenvalues, i.e. at s0 ← −λr,i, must match.
If one knew the reduced eigenvalues in advance, then one could choose the expansion points
accordingly and perform a standard Krylov reduction. Since this is not the case, an iterative
procedure is proposed with the Iterative Rational Krylov Algorithm (IRKA), first published
in 2006 [GAB08]. Without illuminating the backgrounds in more detail, the algorithm is
only presented here:

Algorithm 4 IRKA
Input: System A,b, cT , initial values s0,i (e. g. s0,i = 0, i = 1, . . . , q), tolerance ε
Output: local H2-optimal reduced system
1: repeat:
2: V← input Krylov subspace around the expansion points s0,i
3: W← output Krylov subspace around the expansion points s0,i
4: Ar = (WTV)−1WTAV, br = (WTV)−1WTb, cTr = cTV // Project system
5: s0,i ← −λi(Ar) // New expansion points from mirroring
6: until: |s0,i + λi(Ar)| < ε, ∀i = 1, . . . , q

One strength of IRKA is its simple implementation: One only has to calculate the reduced
eigenvalues, mirror them along the imaginary axis, and then use them as new expansion
points for the next iteration! Another advantage is that the shifts are adaptively chosen
by the algorithm. The user only has to define the reduced order q, some initial shifts and
a tolerance. The disadvantage is that new Krylov subspaces have to be calculated in each
iteration, leading to an increased numerical effort compared to a standard Krylov reduction.

If IRKA converges, i.e. if the shifts no longer significantly change, then it converges against a
local H2 optimum. Until today, there is no general proof for convergence. Practice, however,
shows that IRKA actually converges in most cases.
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Even after convergence of IRKA, it must be ensured that the reduced model is stable. After
all, like most Krylov methods, the stability preservation is not guaranteed! In particular, it
should be noted that the H2-norm is not defined for unstable systems. Therefore, the above
considerations are no longer valid and have to be adapted for unstable original models.

All these properties make IRKA – despite the lack of proofs – one of the most important
methods of model reduction!

sssMOR function(s): irka, cirka

6.4 Properties of Krylov subspace methods

+ Numerically efficient, since no “expensive” calculations are necessary: apart from the
LU-decompositions, only matrix-vector multiplications are involved.

+ The moments themselves are never explicitly calculated (which is anyway numerically
ill-conditioned); one speaks of implicit moment matching.

- The stability of the reduced system is not guaranteed, i.e. even if the original system
is stable, the reduced system does not necessarily have to be stable.

- There are no general, efficiently computable error bounds for the approximation qual-
ity; error bounds have been derived so far only for special cases.

- The result of a one-sided reduction (W = V) is not unique and depends on the original
state-space representation, i. e. a state transformation z = Tx in the original system
changes the reduced system!

- The problem with the choice and number/multiplicity of expansion points in order to
achieve a good approximation is not completely solved yet. As said before:

The advantage of Krylov subspace methods is that there are many degrees of freedom.
The disadvantage of Krylov subspace methods is that there are many degrees of freedom.

Implementation for very large-scale models. Krylov reduction as presented so far is
indeed applicable to large-scale models. A sparse LU-decomposition [L,U,P,Q,D] = lu(A)
together with a sparse direct solver (e.g. “\” in Matlab) allow for orders n ≈ 104 − 105.
If very large-scale models (n ≥ 106) shall be reduced, then iterative solvers such as e.g. the
generalized minimal residual method (GMRES) or the preconditioned conjugate gradient
(PCG) can be used instead.

Matlab function(s): ilu, gmres, pcg, bicg, bicgstab, cgs, etc.

sss function(s): iterSolve (in solveLse)
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Selection of shifts. The appropriate choice of expansion points is in fact the biggest issue
in Krylov subspace methods. Lamentably, there is no universal rule, since the selection of
suitable shifts is usually problem-dependent and should therefore be customized for the sys-
tem at hand. Nevertheless, a few guidelines can be given: if lower frequencies are of interest,
then moments at s0 = 0 should matched. If higher frequencies are relevant, then s0 = ∞
should be chosen. Apart from that, one could choose the mirror images of some eigenvalues
of the FOM as expansion points, i.e. s0 = −eigs(sys, q).' or spread the shifts over
the interesting frequency range, e.g. s0=logspace(log10(wmin),log10(wmax),q).
Some other more sophisticated procedures, such as the heuristic Penzl method, the Wachs-
press approach or exploiting the Ritz values (i.e. the eigenvalues of a reduced system), can
be used to adaptively get new shifts (e.g. within crksm).

sssMOR function(s): initializeShifts, getShifts, rkOp

Stability-preserving schemes. Krylov subspace methods are generally not stability pre-
serving. However, there exist some algorithms which specifically select the degrees of freedom
to preserve stability. One possibility is given by the Iterative SVD-Rational Krylov Algo-
rithm (ISRK). The algorithm combines an SVD-based method like balanced truncation with
rational Krylov. The approach requires computing the observability Gramian Wo (only
one Lyapunov equation needs thus to be solved) and an input Krylov subspace V. Then,
the method selects W := WoV. This choice preserves the stability in the reduced system.
Another related possibility is to restrict the search to so-called pseudo-optimal shifts. An
H2-pseudo-optimal ROM is a model that only fulfills the interpolatory condition (6.29a), and
which has eigenvalues as mirror images of the shifts. Such a ROM can be obtained by the
Pseudo-Optimal Rational Krylov (PORK) algorithm, which is exploited within the Stabilty
Preserving Adaptive Rational Krylov (SPARK) algorithm. For more information regarding
these procedures the reader is referred to [WPL13; Pan+13; Pan14].

sssMOR function(s): isrk, spark (porkV, porkW)

© M. Cruz Varona, A. Castagnotto, T. Wolf, R. Eid, M. Pak Chair of Automatic Control



6.5. COMPARISON BETWEEN TBR AND KRYLOV 65

6.5 Comparison between TBR and Krylov

The properties of balanced truncation and Krylov subspace methods are compared again in
the following table:

TBR Krylov

Advantages

+ automatable + efficient numerical computation
+ stability is preserved + suitable for large systems (n ≈ 106)
+ a priori error bound + many degrees of freedom

Disadvantages

- computationally expensive - stability is generally not preserved
- high memory consumption - no error bounds
- suitable only for small to - many degrees of freedom: e. g.
medium-sized systems, expansion point(s), multiplicity, . . .
n ≈ 5000
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Chapter 7

Further Topics

The following topics serve as supplement and outlook for the contents described so far, and
will also be covered during the lecture depending on time and interest. Therefore, only the
contents from this chapter which were also covered in lecture and/or exercise will be relevant
for the exam.

7.1 Systems in implicit state-space representation

The theory presented can be extended to implicit state-space representations of the form:

Eẋ(t) = Ax(t) + bu(t),
y(t) = cTx(t) + du(t),

(7.1)

with det(E) 6= 0. The naive procedure is to multiply the state equation by E−1 and then
proceed as before. However, this approach is mostly not advisable due to the inverse! Firstly,
the calculation of the inverse is numerically ill-conditioned. Secondly, the sparsity of the
matrices is usually lost through the inversion and subsequent multiplication. This is shown
in Figure 7.1 for the benchmark model heat-cont.
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Figure 7.1: Sparsity pattern for the matrix A and its inverse.
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For these reasons, model reduction methods are usually extended to deal with implicit state-
space representations. In fact, eigenvalue problems, Lyapunov equations and Krylov sub-
spaces can be generalized to the case with E matrix.

Generalized eigenvalue problem. The generalized eigenvalue problems are given by
(A− λkE)tk = 0 ⇔ AT = ETΛ, (7.2a)

lTk (A− λkE) = 0T ⇔ LTA = ΛLTE, (7.2b)
to compute the eigenvalues λk and the right and left eigenvectors tk, lTk of the pencil (A,E).

Generalized Lyapunov equations. The generalized Lyapunov equations for computing
the controllability and observability Gramians are

A Wc ET + E Wc AT + b bT = 0, (7.3a)

AT Wo E + ET Wo A + c cT = 0. (7.3b)

Note that the impulse response of the system (7.1) is g(t) = cT eE−1AtE−1bσ(t) + d δ(t).

Generalized input/output Krylov subspaces. The generalized input and output Krylov
subspaces are

Kq
(
(A− s0E)−1 E, (A− s0E)−1b

)
, (7.4a)

Kq
(
(AT − s0ET )−1 ET , (AT − s0ET )−1c

)
. (7.4b)

Note that the transfer function of the system (7.1) is G(s) = cT (sE−A)−1b + d.

The projection matrices V and W can be calculated using these generalized equations,
thereby avoiding the inverse E−1. The reduced model in implicit form is then:

Er︷ ︸︸ ︷
WTEV ẋr(t) =

Ar︷ ︸︸ ︷
WTAV xr(t) +

br︷ ︸︸ ︷
WTbu(t),

yr(t) = cTV︸ ︷︷ ︸
cT

r

xr(t) + du(t),
(7.5)

where the projector is now given by P = EV(WTEV)−1WT . Hence, the system is projected
onto the subspace U = range(EV), orthogonal to the subspace W = range(W).

This is only mentioned here for the sake of completeness; nevertheless, the derivations of
the generalized equations go beyond the scope of the lecture. The important message is:
from a computational point of view, the inversion of E becomes prohibited in the large-scale
setting and should therefore be circumvented by using adapted/generalized algorithms! The
extension of Krylov subspace methods to the case E 6= I is extensively explained, e.g. in
[Gri97; BG14]. The generalization of Balanced Truncation for E 6= I is not consistent,
and sometimes even wrong, in different references. Therefore, its generalization is briefly
summarized with our nomenclature in the following section.
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7.2 Balanced Truncation for E 6= I

We now consider a (MIMO) state-space model in implicit form

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

(7.6)

which – due to det E 6= 0 – is equivalent to the explicit state-space representation

ẋ(t) =
Ae︷ ︸︸ ︷

E−1A x(t) +
Be︷ ︸︸ ︷

E−1B u(t),
y(t) = Cx(t).

(7.7)

Gramian matrices. As already known, the explicit representation (7.7) can be used to
compute the controllability (Wc) and observability (Wo) Gramians as solutions to the fol-
lowing Lyapunov equations

AeWc + WcAT
e + BeBT

e = 0, (7.8a)
AT
e Wo + WoAe + CTC = 0. (7.8b)

Inserting the relations from (7.7) delivers the following controllability Lyapunov equation

AeWc + WcAT
e + BeBT

e = 0
⇒ E−1AWc + WcATE−T + E−1BBTE−T = 0
⇒ AWcET + EWcAT + BBT = 0. (7.9)

Equations of the form (7.9) are also called generalized Lyapunov equations, for which there
are also adapted algorithms. The computation of the observability Gramian with the implicit
state-space representation (7.6) requires an additional intermediate step:

AT
e Wo + WoAe + CTC = 0

⇒ ATE−TWo + WoE−1A + CTC = 0
⇒ ATW̃oE + ETW̃oA + CTC = 0. (7.10)

where the auxiliary variable W̃o was introduced as the solution of (7.10) according to the
relationship

Wo = ETW̃oE. (7.11)
As already discussed, the “square root” variant of Balanced Truncation is based on the
calculation of the Cholesky factors of the Gramian matrices. Since Cholesky factors for the
solutions of the generalized Lyapunov equations (7.9) and (7.10) can be computed directly,
it makes sense to specify the Cholesky decomposition for Wc and W̃o:

Wc = SST , (7.12a)
W̃o = R̃R̃T . (7.12b)
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Balanced representation. By a suitable state transformation

xb = Tbx (7.13)

(7.6) can be transformed into the balanced representation

Eb︷ ︸︸ ︷
TbET−1

b ẋb(t) =
Ab︷ ︸︸ ︷

TbAT−1
b xb(t) +

Bb︷ ︸︸ ︷
TbB u(t),

y(t) = CT−1
b︸ ︷︷ ︸

Cb

xb(t).
(7.14)

Analogous to the explicit case, the transformed Gramians in balanced representation are

Wc,b = TbWcTT
b , (7.15a)

Wo,b = T−Tb WoT−1
b = T−Tb ETW̃oET−1

b . (7.15b)

The transformation matrix Tb can be derived from the claim Wc,b = Wo,b = Σ with
Σ = diag (σ1, . . . , σn) and σi =

√
λi(WcWo).

Theorem 10. The state transformation Tb into balanced representation can be calculated
as follows:

1. Solution of the generalized Lyapunov equations (7.9) and (7.10) to find the Cholesky
factors Wc = SST and W̃o = R̃R̃T .

2. SVD of R̃TES = UΣVT .

Then, Tb and T−1
b result in

Tb := Σ−1/2UT R̃TE, (7.16a)

T−1
b := SVΣ−1/2. (7.16b)

Proof.

Wc,b = TbWcTT
b with Wc = SST

= Σ−
1
2 UT R̃TE

(
SST

)
ET R̃UΣ−

1
2

= Σ−
1
2 UTU︸ ︷︷ ︸

=I

Σ VTV︸ ︷︷ ︸
=I

Σ UTU︸ ︷︷ ︸
=I

Σ−
1
2

= Σ−
1
2 Σ2Σ−

1
2 = Σ.

The proof for Wo,b = Σ is given analogously using (7.15b) and (7.12b).
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Remark 1. One can see that the equations (7.16) boil down for E = I to those given in
Theorem 6.
Remark 2. Note that in the literature sometimes the expression

Tb := Σ−1/2UTR (7.17)

is found. Hereby, it should be noticed that R must result from the Cholesky decomposition
Wo = RRT and – due to (7.11) – R = ET R̃ holds. As long as this relationship is respected,
equations (7.16a) and (7.17) coincide.

Similarly, slight changes in the expressions may occur if the Cholesky factors are defined as
Wc = STS and Wo = R̃T R̃, or the SVD of STET R̃ is performed.

Balanced Truncation. Different from the explicit case E = I, the projection matrices
in case E 6= I do not result from the truncation in the balanced representation. To obtain
a stable, balanced representation for the reduced model, the projection matrices must be
defined as follows

VBT := SVqΣ−1/2
q , (7.18a)

WT
BT := Σ−1/2

q UT
q R̃T . (7.18b)

In particular, (7.18b), as opposed to (7.16a), does not contain an E matrix. It follows

Er = WT
BTEVBT = Σ−1/2

q UT
q

(
R̃T E S

)
VqΣ−1/2

q = Iq, (7.19)

i.e. VBT and WBT are biorthogonal w.r.t. E.

For the reduced controllability Gramian it follows

AWcET + EWcAT + BBT = 0,

=⇒WT
BT

(
AWcET + EWcAT + BBT

)
WBT = 0,

⇐⇒WT
BTA

(
SST

)
ET R̃UqΣ−1/2

q + Σ−1/2
q UT

q R̃TE
(
SST

)
ATWBT + BrBT

r = 0,

⇐⇒WT
BTA

(
SVqΣ−1/2

q

)
Σq + Σq

(
Σ−1/2
q VT

q ST
)

ATWBT + BrBT
r = 0,

⇐⇒ Ar Σq + Σq AT
r + BrBT

r = 0. (7.20)

Similarly, the following applies to the observability Gramian

ATW̃oE + ETW̃oA + CTC = 0,

=⇒VT
BT

(
ATW̃oE + ETW̃oA + CTC

)
VBT = 0,

⇐⇒ VT
BTAT

(
R̃R̃T

)
E SVqΣ−1/2

q + Σ−1/2
q VT

q ST ET (R̃R̃T )AVBT + CT
r Cr = 0,

⇐⇒ VT
BTAT

(
R̃UqΣ−1/2

q

)
Σq + Σq

(
Σ−1/2
q UT

q R̃T
)

AVBT + CT
r Cr = 0,

⇐⇒ AT
r Σq + ΣqAr + CT

r Cr = 0. (7.21)

Thus, it is proven that (7.18) balances the reduced order model and that it only contains
the state directions that belong to the largest q Hankel singular values.
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