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Abstract

The topic of this bachelor thesis is the utilization of the single-dimension spatially adap-
tive sparse grid refinement strategy for uncertainty quantification. Frequent uncertainty
quantification tasks are the calculation of moments and polynomial chaos expansion
coefficents. Since these calculations require weighted multidimensional integration, the
sparseSpACE Python framework is extended to support probability distributions as
weight functions for high-dimensional adaptive quadrature. The adaptive refinement
strategy operates on the individual problem function’s input dimensions. This could
make it especially suitable for uncertainty quantification if the independent uncertain
parameters are loosely coupled. The test results indicate that for composite trapezoidal
quadrature the implemented weighted integration is more accurate than integration
with the inverse transformation method.

In dieser Bachelorarbeit wird die Single-Dimension räumlich-adaptive Sparse Grid
Verfeinerungsstrategie für Uncertainty Quantification verwendet. Bei Uncertainty
Quantification werden oft Momente und Polynomial Chaos Expansion Koeffizienten
berechnet. Da dazu eine mehrdimensionale Funktion mit einer Gewichtungsfunk-
tion integriert wird, wurde das sparseSpACE Python Framework erweitert, damit es
Wahrscheinlichkeitsfunktionen für die Gewichtung bei hochdimensionaler adaptiver
Quadratur unterstützt. Die adaptive Verfeinerung wird bei den individuellen Ein-
gangsparametern der Funktion durchgeführt. Das Verfahren könnte sich insbesondere
für Uncertainty Quantification eignen, wenn die unabhängigen unsicheren Parameter
lose gekoppelt sind. Testergebnisse mit Trapezquadratur zeigen, dass die implemen-
tierte gewichtete Integration genauere Ergebnisse erzielt als Integration mittels der
Inversionsmethode.
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1. Introduction

When probability is involved in a problem, a frequent task is the integration of some
function multiplied with a weight function. In uncertainty quantification (UQ), some
input parameters of a function do not have a fixed value; instead they have a probability
distribution. Here, we may need to calculate moments, with which we can then obtain
the expectation and variance. In addition to the function’s expectation and variance, we
may want to obtain a polynomial chaos expansion, which involves weighted integration
when calculating polynomial coefficients. Often more than one function parameter is
uncertain which leads to a multidimensional integration task. To perform this task
efficiently, it is possible to employ sparse grid integration methods. There exist a big
number of variants of these methods; for example the sparse grid can be based on
Composite Trapezoidal or on Clenshaw Curtis quadrature rules. Some methods refine
the sparse grids adaptively, which means that they find quadrature poins and weights
which fit well for a specific function. In this Bachelor Thesis, the single dimension
spatially adaptive refinement method is employed for uncertainty quantification. The re-
finement and grid point and weight calculation differ from constant-weight integration
because they need to be adjusted for the probability distributions.

As the name implies, the Background chapter explains background information
about uncertainty quantification and sparse grids. The Spatially Adaptive Refinement
for Uncertainty Quantification chapter describes how quadrature weight calculations
and grid refinements work in theory. Some numerical issues with these calculations
and information about how the Python code is structured can be found in the imple-
mentation chapter. Finally, the Test Results chapter shows how the adaptive refinement
program performs with the Predator Prey differential equation, a simple test function
where analytic solutions are available, and a discontinuous function.
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2. Background

The first section in this chapter introduces Uncertainty Quantification. It describes the
polynomial chaos expansion calculations, which can involve sensitivity analysis. The
sparse grids section gives information about the sparse grid concept and hierarchical
bases, and then it explaines the adaptive refinement method which is used in this
thesis and is based on the combination technique. The last section shortly describes
a dimension-adaptive refinement for uncertainty quantification from a related master
thesis.

2.1. Uncertainty Quantification

When calculating a function output, we may not know the exact value of some input
parameters. For example, a car crash test simulation could involve four uncertain tyre
pressures and the overall vehicle weight. Some of these parameters have a common
impact on the function output; in the example, the car may drive to the left when
the left tyres have less pressure than the right ones. Uncertainty Quantification (UQ)
addresses this vague input parameter problem if we can assign a probability density
function (PDF) to these parameters and the parameters are independently distributed.
Given the probability distributions, we can use the expectation as output value of
the function and the variance vaguely represents the reliability of this output value.
To determine how much impact an uncertain parameter has on the variance, we can
employ sensitivity analysis. Further information, such as statistical moments, may also
be of interest. [Nec18]

The deterministic function parameters, i.e. parameters without uncertainty, are fixed
when calculating the expectation, variance or other UQ related values; therefore they
are omitted here for brevity.

2.1.1. Polynomial Chaos Expansion

To efficiently calculate the sensitivity analysis, we can approximate the function with
Polynomial Chaos Expansion (PCE). For simplicity, let us first assume that there is only
one uncertain parameter x. In PCE, the function is transformed into a sum of pairwise
orthogonal polynomials φk multiplied with weights ak. The index k defines the degree
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2. Background

of the polynomial. Two polynomials φk and φl are orthogonal with respect to a PDF p
if their inner product is zero:

〈φk, φl〉p =
∫

Ω
φk(ω)φl(ω)p(ω)dω = 0

The optimal choice of the polynomials depends on the probability distributions; for
example, Hermite polynomials work best with normal distributions and Gauß-Legendre
polynomials are optimal for Uniform distributions. A summand’s impact on the output
value depends on the polynomial degree, so as an approximation, the sum is truncated
to exclude high order polynomials.

fpce(x) =
P−1

∑
k=0

akφk(x)

The calculation of the coefficients ak depends on the application. The Galerkin projection
minimizes the error norm ‖ f (x) − fpce(x)‖2, which gives good results for smooth
functions, whereas least squares regression minimizes a mean squared error over
specified sampling points, which works well for noisy functions. [al15]

In case of Galerkin projection, the coefficient can be calculated as follows:

ak =
〈 f , φk〉p
〈φk, φk〉p

The denominator can be omitted if the polynomials are normalized. In the so-called
pseudospectral approach, the numerator is approximated with numerical quadrature:

〈 f , φk〉p ≈
C−1

∑
j=0

f (xj)φk(xj)wjdx

If f has d uncertain parameters instead of only one,~k ∈ Nd
0 is a multidimensional

index and the polynomials are the products of the respective single-dimensional
polynomials. The degree of φ~k is then the manhattan norm of k: ‖~k‖1, and the
truncation omits the polynomials which have a degree higher than or equal to P.

φ~k(~x) =
d

∏
i=1

φki(xi)

fpce(~x) = ∑
‖~k‖1<P

a~kφ~k(~x)

The pseudospectral calculation of the coefficients a~k now constitutes a multidimensional
numerical quadrature where we can employ, for example, the Monte Carlo method or
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2. Background

sparse grids. If the maximum polynomial degree P goes to infinity and the coefficients
are analytically calculated, the approximation fpce is the same as f .

Since the polynomials are orthogonal and the first one is a constant function, we can
calculate the expectation and variance from the PCE coefficients. If the polynomials are
normed, all norms 〈φ~k, φ~k〉p are one in the following equations.

E[ fpce(~x)] =
∫

Ω
fpce(~x)p(~x)d~x =

∫
Ω

fpce(~x)
φ~0(~x)
〈φ~0, φ~0〉p

p(~x)d~x =
〈 f , φ~0〉p
〈φ~0, φ~0〉p

= a~0

Var[ fpce(~x)] = E[( fpce(~x)−E[ fpce(~x)])2] = E[( ∑
‖~k‖1<P

a~kφ~k(~x)− a~0)
2]

= E[( ∑
0<‖~k‖1<P

a~kφ~k(~x))
2] = E[ ∑

0<‖~k‖1<P

(a~kφ~k(~x))
2] = ∑

0<‖~k‖1<P

a2
~k
〈φ~k, φ~k〉p

2.1.2. Global Sensitivity Analysis

To analyse how much impact specific uncertain parameters have on the variance, we
can calculate the sobol indices, which are based on the analysis of variance (ANOVA)
decomposition. The ANOVA decomposition is defined as follows:

f (~x) = f∅() +
d

∑
i=1

fi(xi) + ∑
1<=i<k<=d

fi,k(xi, xk) + . . . + f1,...,d(~x)

= ∑
u⊂U

fu(~xu), U = {1, . . . , d}

∀u ⊂ U, i ∈ u :
∫

fu(~xu)p(xi)dxi = 0

It is possible to calculate the functions fu recursively:

f∅() = E[ f ] =
∫

f (~x)p(~x)d~x

fu(~xu) = E[ f |Xu]− fU\u =
∫

f (~xU)p(~xU\u)d~xU\u − ∑
m(u

fm(~xm)

The sum of the functions fm, m ⊂ u corresponds to an adjusted function which has
only the parameters ~xu, and the summand fu represents the effect of all parameters ~xu

together without the effect of subsets of these parameters. Therefore the variance of
fu, which is denoted by the Sobol variance Du, estimates the common impact of the
parameters ~xu. [SGL15] The first-order Sobol index Su is calculated by normalizing the
Sobol variance so that it lies within [0, 1]; to this end, it is divided by the function’s
variance, which is the same as the sum of all Sobol variances Du, u ⊂ U. The total-order
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2. Background

Sobol index ST
u contains the variances of all combinations of uncertain parameters

which include the parameters ~xu; it is the sum of all Sm where m is a subset of u.

Du =
∫

fu(~xu)
2 p(~xu)d~xu =

∫ (∫
f (~x)p(~xU\u)d~xU\u

)2

p(~xu)d~xu − ∑
m(u

Dm

DT
u = ∑

u⊂m⊂U
Dm

Su =
Du

DU
=

Du

Var[ f (~x)]

ST
u = ∑

u⊂m⊂U
Sm =

DT
u

Var[ f (~x)]

After a polynomial chaos expansion, it is possible to calculate the approximate Sobol
variances with the coefficients, which is similar to the calculation of the variance of the
PCE approximation. The formula sums up the squared coefficients of the polynomials
which have zero degree in all dimensions which are not in u and a positive degree in
all the other dimensions.

Au = {~k ∈Nd
0 | ∀i ∈ U : ki > 0⇔ i ∈ u}

Du = ∑
~k∈Au

a2
~k
〈φ~k, φ~k〉p

When calculating the total-order Sobol index with the PCE coefficients, the set of
coefficient indices for the sobol variances is {~k ∈ Nd

0 | ∀i ∈ u : ki > 0} instead of Au.
[al15]
The total order indices are generally more suited to estimate the parameter’s importan-
tances. If the function has a big number of uncertain parameters, these Sobol indices
help to make a decision on which parameter can be replaced with a fixed value so that,
for instance, an accurate expectation computation takes less time.

2.2. Sparse Grids

Sparse grids constitute a mitigation against the so-called curse of dimensionality,
which is a common problem in numerical methods. In comparison to Monte Carlo
sampling or similar methods, they retain a high convergence rate. In particular, when
comparing sparse and full grids and N is the maximum number of grid points in
one dimension, standard sparse grids require only O(N log(N)d−1) instead of O(Nd)

function evaluations. [BG04] The Monte Carlo method does not rely on the creation
of a grid, so it is exempt from the curse of dimensionality; however, its accuracy is in
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2. Background

O( 1√
M
) for M function evaluations. Sparse grids have many application areas, such as

interpolation, quadrature and solving partial differential equations.
In this thesis, we employ sparse grids only for quadrature. For simplicity, let us

assume that we use composite trapezoidal, d-dimensional quadrature. Let us first
define the hat function and full grids. The mother hat function φ(~x) is defined as
follows:

φ(~x) =
d

∏
i=1

max{1− |xi|, 0}

A grid defines how a multi-dimensional function input is discretised for numerical
quadrature. A full grid is a tensor product of single-dimensional point lists. The full
grids considered in this section have equidistant points in the single dimensions, so
the full grid of level ~l ∈ Nd

0 is a rectangular grid that has 2li + 1 points in the i-th
dimension; for example, a full grid of level (2, 3) is a 5x9 grid. A point of a full grid
can be indexed with a vector~i which fulfils~i ∈Nd

0 ∧ ∀k ∈ [d] : 0 ≤ ik ≤ 2lk . To obtain a
basis for the full grid, a transformed version of the hat function is set as basis function
for each grid point. The set which contains all the transformed functions spans the
nodal space V~l for this grid.

φ~l,~i(x1, . . . , xd) = φ(x12l1 − i1, . . . , xd2ld − id)

V~l = span{φ~l,~i |~i ∈Nd
0 ∧ ∀k ∈ [d] : 0 ≤ ik ≤ 2lk}

With a given full grid, the quadrature result is the sum of the function values at each
point multiplied with the volume of the corresponding φ~l,~i function; with homogeneous

boundaries this volume is the same for each grid point as it depends only on~l.
To define a sparse grid, we firstly decompose the full grid into disjoint hierarchical

increment spaces:

W~l = span{φ~l,~i | ∀k ∈ [d] : ik ∈ {0, . . . , 2lk} ∧ ik is odd}

A sparse grid of level lmax uses a specific subset of points of the level
~l = (lmax, lmax, ..., lmax) full grid. Whereas the full grid space V~l is the combina-
tion of all W~k, ∀i : ki <= lmax, the standard sparse grid uses only the grid points where
the transformed hat function’s volume is below a threshold which minimizes the mean
squared error:

V~l = ⊕|~k|∞≤lmaxW~k

Vsparse
~l

= ⊕|~k|1≤lmax+d−1W~k

Figure 2.1 shows hierarchical and non-hierarchical bases and the combination of the
hierarchical bases to obtain a full or sparse grid.
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2. Background

Figure 2.1.: Basis functions for the composite trapezoidal rule without boundary points;
left: single-dimensional hierarchical and non-hierarchical bases;
right: two-dimensional hierarchical bases, the sparse grid uses only the
bases above the dashed line.
The images are originally taken from [Bad17]

The calculation of an integral with the hierarchical basis requires a different formula
than the calculation with the non-hierarchical basis because the grid points do not all
belong to the same level, which results in a strong overlapping of the basis functions
with basis functions of neighbouring points. Instead of the function values of the
respective grid points, the difference to the function value of the parent point is used.
Let u~l,~i be the function value at the grid point indexed by~i in the full grid of level~l,
and let the surplus û~l,~i be this difference. In the single-dimensional case, û~l,~i can be
calculated with a formula which is similar to this one:

ûl,i = ul,i − 0.5(uparent_le f t + uparent_right)

The left and right parents are the points with level l− 1 that have the lowest distance to
point i with level l. With multiple dimensions, the formula is applied in the direction
of each dimension one after another; here is the two-dimensional case:

u1
(l1,l2),(i1,i2) = u(l1,l2),(i1,i2) − 0.5(u(l1−1,l2),(i_le f t,i2) + u(l1−1,l2),(i_right,i2))

û(l1,l2),(i1,i2) = u1
(l1,l2),(i1,i2) − 0.5(u1

(l1,l2−1),(i1,i_below) + u1
(l1,l2−1),(i1,i_above))

These formulas are very simplificated because they ignore boundaries and only work
for the linear hat basis function. In the numerical quadrature sum, the surplus is
multiplied with the volume of the transformed hat function. When the boundaries are
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2. Background

not zero, we can either add boundary points to the initial sparse grid or use a modified
hat function, which is explained in [Pfl10]. Sparse grids quadrature also works with
other basis functions. Detailed information on sparse grids can be found in [BG04].

2.2.1. Combination Scheme

We can construct a sparse grid by linearly combining specific full grids, which are
denoted component grids [GSZ92]. To calculate the final quadrature solution I, it
is sufficient to sum up the solutions of these component grids v~l multiplied with a
coefficient.

I =
d−1

∑
q=0

(−1)q
(

d− 1
q

)
∑

|~k|1=lmax+(lmin(d−1))−q

v~k

The coefficient leads to the removal of duplicate points in the resulting sparse grid;
it is one for the solutions with the highest levels and, depending on the dimension,
positive or negative for lower level component grids. Figure 2.2 shows a combination
scheme example with boundary points, composite trapezoidal rule and lmax set to
three. Since for quadrature the solutions of the full grids are the same with hierarchical
and non-hierarchical basis, we can use the non-hierarchical basis for simplicity. The
combination scheme has several advantages over directly calculating a sparse grid. An
algorithm which employs the combination scheme can use simple arrays for the full
grids, which can lead to straightforward and efficient code. It can calculate the full grid
solutions independently, which makes parallelization possible. Furthermore, methods
which are specialized for full grids can be applied on the component grids.
In general the combination technique leads to different results than the direct sparse
grid approximation but the solutions should be qualitively similar. For quadrature both
representations are equal.

2.2.2. Single-Dimension Spatially Adaptive Refinement Method

The topic of this Bachelor Thesis is the application of the single-dimension spatially
adaptive refinement method to solve UQ problems efficiently. A detailed explanation of
this refinement method can be found in [Möl18]. The method is based on the standard
combination scheme. For each dimension the algorithm stores a list of points and
their hierarchical basis level; in the beginning these lists are initialized based on the
maximum level setting lmax and later the refinement adds or changes points and
levels of some lists. After each refinement step, the algorithm constructs a combination
scheme. To this end, conceptionally it initializes each component grid with level vector
~l to the tensor product of the points (and levels) lists and then it removes all points
whose level vector exceeds~l in at least one dimension from the component grid. The

8
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Figure 2.2.: The standard combination scheme with lmax set to three, boundary points
and composite trapezoidal grids;
left: the full grids and their coefficients (blue) which are involved in the
standard combination scheme; right: the resulting sparse grid

maximum level of this combination scheme is the vector which contains the maxima of
the individual dimension’s level lists. An example of the adaptive refinement is depicted
in Figure 2.3. The adaptive sparse grid refinement happens in single dimensions. To
refine the grid, the algorithm adds a new point and its corresponding level into a point
list. In the implementation, instead of having a list of points, the list contains abstract
refinement objects, which constitute the edges between two neighbouring points; this
means that a refinement object stores two points and their levels from the conceptual
point list. To make a decision on where to add a new point, the algorithm calculates
errors for the grid points and propagates them to the two refinement objects which
contain the point. The volume-guided error for a grid point is the hierarchical surplus
value, which was denoted û~l,~i in a previous subsection, multiplied with the volume of
its hat function φ~l,~i. The refinement objects whose error is above a specified tolerance
are split into half, i.e. the middle between two neighbouring points is added as a
new point to the conceptional point list. The new point’s level is the maximum of the
neighbouring points’ levels plus one. The initial grid points and levels may not be
distributed optimally, so newly added points may be more important than points with
a lower level. To compensate for this, the algorithm has a rebalancing strategy which
can change the grid point levels during the refinement. Since the adaptive refinement
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2. Background

method is based on the sparse grid combination scheme, the quadrature weights are
calculated in the single dimensions for each component grid. To obtain a result integral,
the program sums up component grid solutions, as explained in the previous section.
The quadrature points and weights of a component grid are defined by the tensor
product of the one-dimensional points and weights.

2.3. Related Work

There exist many papers about sparse grids and uncertainty quantification. For instance,
“An overview of uncertainty quantification techniques with application to oceanic and
oil-spill simulations” [al15] gives information about PCE coefficient calculation for
various applications. The master thesis “Dimension-adaptive sparse grid for industrial
applications using Sobol variances” [SGL15] presents the utilization of a dimension-
adaptive sparse grid method to uncertainty quantification, so it can be considered a
highly related work. The method employs the Clenshaw Curtis quadrature rule, or
Fejer when boundaries are omitted, for the grid point positions in the combination
scheme, and for the basis functions it uses Lagrange polynomials. The dimension-
wise refinement resembles the well-known Gerstner & Griebel refinement algorithm
[GG03]. It increments an existing component grid’s level in one dimension and adds
the component grid with the new level into a forward neighbour list if it does not
yet exist in the current combination scheme. Instead of calculating which forward
neighbours lead to a good refinement decision, the algorithm from the master thesis
calculates Sobol indices for the current sparse grid approximation, sorts these indices,
and then adds the forward neighbours where in the respective dimensions the sobol
indices are above a threshold. This means that in comparison to the Gerstner & Griebel
approach, there are no error estimation calculations for the forward neighbours because
the algorithm makes its refinement decisions with only the current grids. The sobol
indices which are considered for the refinement decisions depend on the component
grids’ levels.
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Figure 2.3.: An example combination scheme for the dimension adaptive refinement
with boundary points;
top left: the grid points in the single dimensions;
top right: the resulting sparse grid;
bottom: the combination scheme for the single dimensional points and
levels
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3. Spatially Adaptive Refinement for
Uncertainty Quantification

Applying the single dimension spatially adaptive refinement strategy for uncertainty
quantification purposes is similar to quadrature. In addition to a function to be
integrated, the refinement method has to consider a weight function, which is the joint
PDF of the uncertain parameters. Since the parameters are independently distributed,
and the refinements, quadrature weights and nodes calculation happen in single
dimensions, the program mostly uses the marginal probability density functions. It
calculates the quadrature weights for the individual dimensions and then multiplies
the weights in a tensor product.

This chapter firstly describes how the quadrature weight and grid refinement differ
from non-weighted quadrature by explaining how the program calculates trapezoidal
quadrature weights. After that it describes how the algorithm performs the refinement
when it needs to calculate multiple integrals at once. In the end, and in the next chapter,
the weight calculation for higher order quadrature rules is discussed.

3.1. Composite Trapezoidal Quadrature Weight Calculation

As already mentioned, the quadrature weights are calculated for single-dimensional
point lists, which are used by the adaptive refinement method to generate the combi-
nation scheme component grids. To explain the weight calculation, this section firstly
describes the concept of common composite trapezoidal quadrature.

A simple composite trapezoidal quadrature assumes equidistant points including
the boundaries and a weight function which is 1 everywhere inside the boundaries;
the quadrature weights are then h

2 for the two boundary points and h for all the other
points, where h is the distance between two neighbouring points. Conceptually, for the
composite quadrature rule, the whole interval is partitioned into subintervals bounded
by neighbouring points. For each subinterval, trapezoidal quadrature weights are
assigned to the boundaries so that a linear function can be integrated exactly within
this subinterval. Since the weight function is 1, both trapezoidal weights are h

2 . The
composite quadrature weights mentioned before are the trapezoidal weights, where

12



3. Spatially Adaptive Refinement for Uncertainty Quantification

due to the overlapping of the subinterval boundaries, for an inner point the composite
weight is the sum of two trapezoidal weights.

In our case, the points are not equidistant, the weight function is a PDF, and the
boundaries can be excluded from the quadrature points. Trapezoidal quadrature
calculates polynomials up to degree one exactly. Therefore, when the weight function
is a PDF p, following conditions must hold for a subinterval [x1, x2] and weights w1

and w2:

1w1 + 1w2 =
∫ x2

x1

1p(x)dx =: m0

x1w1 + x2w2 =
∫ x2

x1

xp(x)dx =: m1

The integrals m0 and m1 on the right are denoted moments and calculating the weights
by fulfilling these conditions is called the method of undetermined coefficients [Hea02].
The weights calculation happens for a single dimension, so it does not suffer from the
curse of dimensionality. When the moments are known, w1 and w2 are the values of
interest. One can show that these can be calculated as follows:

w2 =
m1 −m0x1

x2 − x1

w1 = m0 − w2

The composite quadrature weight calculation works like the simple composite trape-
zoidal quadrature mentioned before. The calculation of the moments is explained in
section 4.2.3.

Some probability distributions are defined on infinite boundaries, for example the
normal distribution. Due to the initialisation of the component grids, the list of points
always has at least three entries, so x1 and x2 cannot both be infinite at the same time. If
one of them is infinite, the aforementioned formula cannot calculate w2. After applying
L’Hospital to calculate the limit, w2 is m0 for an infinite x1, respectively 0 for an infinite
x2. This means that for infinite boundaries the weights are always zero at the boundary
points; the trapezoidal rule in this subinterval integrates only constant functions.

The problem function should usually not be evaluated on infinite boundary points or
far boundary points where the probabilities or the function are very small. Therefore
the sparse grid refinement scheme allows excluding the boundary points, which leads
to significantly fewer points in the resulting sparse grid. When the omitted boundaries
are finite, the algorithm needs to normalize the relevant quadrature weights so that
their sum is one.

13



3. Spatially Adaptive Refinement for Uncertainty Quantification

3.2. Grid Refinement

The single dimension adaptive refinement strategy refines the grid indirectly by splitting
a refinement object into two new ones. Since the points are weighted with a probability
distribution, the refinement objects are no longer split in the spatial middle, but at a
point which makes the two new ones have the same probability. For this purpose, the
positions are normalized and denormalized with the cumulative distribution function
(CDF) and percent-point function (PPF), which is the inverse CDF. When the refinement
object’s points are x1 and x2, the new refinement objects have the points x1 and mid,
and mid and x2, where mid is calculated with this formula:

pp f = cd f−1

mid = pp f (
cd f (a) + cd f (b)

2
)

Figure 3.1 depicts an example of refinement objects and the corresponding sparse grid
with points which are located based on a triangle probability distribution.
In the surplus volume error calculation, the distance between a point’s two parents x1

and x2 can no longer be used for the width of the pagoda volume because it does not
incorporate the probability density; therefore for weighted integration, the width is set
to cd f (x2)− cd f (x1).

3.3. Refined Functions

The weight function in the adaptive refinement is always the PDF. In addition, the user
chooses the function for which the grid is refined depending on what he/she wants
to calculate. Except for the expectation, the function in the weighted integral is not
the problem function. For instance, when calculating the second moment, which is the
integral of the squared function weighted with the PDF, the function for which the grid
needs to be refined is the squared problem function.

The aim of the adaptive refinement is minimizing the overall number of evaluations
of the problem function. For this reason, it is also possible to refine for multiple
functions at once. This is required when the user is interested in multiple moments
and when calculating the pseudospectral PCE coefficients, where the problem function
is multiplied with each individual polynomial. To this end, these functions are merged
into one multidimensional function, which is then adaptively refined. The refinement
should treat each output dimension as equally important. Therefore the error err which
is used for the refinement decision is a user-defined norm norm of the errors ~e for each
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Figure 3.1.: An example for the dimension adaptive refinement with grid points calcu-
lated for a triangle probability distribution;
the images are arranged as in Figure 2.3
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3. Spatially Adaptive Refinement for Uncertainty Quantification

dimension normalized by the previous integral solution~s:

enormalized,i =

{
ei
si

si 6= 0

ei otherwise

err = norm(~enormalized)

A frequent UQ-related task is the expectation and variance calculation. If the
expectation was calculated independently in the refinement procedure, the refinement
would happen two times or would not be optimal for both values. Therefore, the
variance is calculated from the second moment and the first moment, which is the
expectation.

Var[w] = E[w2]−E[w]2

In this case the program adaptively refines for the first and second moment at once, so
the refined function has a two-dimensional output if the problem function’s output is
scalar.

3.4. Higher Order Quadrature

In addition to the weighted trapezoidal grid, weighted versions of grids for higher
order quadrature rules have been implemented; these are explained in section 4.2.3 and
section 4.2.3. The addition of weigthed grids is not the only way to obtain high order
weights. When the distributions are uniform, an algorithm can use integration without
weighting and then multiply the result integral with the non-zero joint distribution’s
constant value, which is the inverse of the volume of the integration domain ∏dim

d=0(bd −
ad), where ~a and~b are the domain boundaries. Furthermore it is possible to employ
inverse transform sampling, where the single-dimensional distributions’ PPFs are
applied to the input arguments before passing them to the problem function and each
PPF input argument is uniformly distributed in [0, 1]. The inverse transformation
method is generally less accurate.
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4. Implementation in Python

The support for uncertainty quantification is implemented in an existing sparse grid
framework. The first section describes the structure of this framework, which consti-
tutes the background information for the following section. The second section then
covers the implementation of the UQ Operation and details on the quadrature weight
calculation.

4.1. sparseSpACE Framework

The sparseSpACE apronym stands for The Sparse Grid Spatially Adaptive Combina-
tion Environment. [Obe] This framework offers several spatially adaptive sparse grid
refinement strategies, for example the cell and the extend-split strategies; in this thesis
only the single dimension strategy is employed.
Sparse grids can be based on several different grid types, such as the composite trape-
zoidal grid or a Clenshaw-Curtis grid. The functionality to select from various grids is
implemented in the grid classes; the global grids, for example GlobalHighOrderGrid

and GlobalTrapezoidalGrid, are applicable to the single dimension strategy. These
grids have methods for quadrature weight calculation and finding the middle between
points, and some helper methods. The GlobalHighOrderGrid class contains the im-
plementation of the quadrature weight enhancement algorithm which is discussed in
section 4.2.3. Global grids which do not use the linear hat basis function are imple-
mented as subclasses of GlobalBasisGrid; they calculate weights for the hierarchical
surplus values.
The grid operation classes define what the sparse grid is used for; Integration, for
instance, has methods for integral calculation and surplus volume error estimation.
Since the aim of sparse grids is to reduce evaluations of expensive functions, the
framework has Function classes, which cache the problem function’s output and thus
also keep track of the number of evaluations. The eval method calculates the problem
function output without caching and it can return a scalar or an array. The __call__

method is indirectly invoked when calling the class’ instance. It uses the cache and
always returns an array so that the adaptive refinement does not need to treat Functions
with multidimensional output differently. Functions also have methods for calculating
reference solutions, determining the output dimension, or showing a function plot.
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4.2. Extension for UQ

To support uncertainty quantification, sparseSpACE now has the new grid operation
class UncertaintyQuantification, which inherits from the Integration grid opera-
tion. Furthermore, weighted grids were added as subclasses of GlobalTrapezoidalGrid,
GlobalHighOrderGrid and GlobalLagrangeGrid. The new grids support a PDF weight-
ing function instead of a constant weight; the calculation of, for example, composite
trapezoidal quadrature weights is different, which has been explained in chapter 3.

4.2.1. UncertaintyQuantification Grid Operation

The grid opertation is related to what the user wants to calculate. Since there
are many possible calculations in the context of uncertainty quantification, the
UncertaintyQuantification grid operation offers methods for calculating moments,
expectation and variance, sobol indices and more. Its constructor is similar to Inte-
gration’s constructor; it additionally prepares distribution functions from the user’s
input. These distributions are created with the help of the python libraries Chaospy
and SciPy. For flexibility, the user does not directly pass distribution functions but
only the distribution name and parameters for each dimension. UncertaintyQuantifica-
tion uses Chaospy’s pseudo-spectral PCE calculations, e.g. the creation of orthogonal
polynomials, which require Chaospy distributions. For the quadrature weights and
RefinementObject splitting, the distributions’ PDF, CDF and PPF serve as weight
functions.

The user needs to pass a Function to the spatially adaptive refinement which the
refinement algorithm evaluates at the grid points for the error estimation. As explained
in chapter 3, except for the expectation, the function or functions to be integrated is not
the problem function. Therefore dedicated methods return a Function which addresses
this issue; they are explained in detail in the following subsections.

After an adaptive refinement has been performed, the user can invoke methods to
calculate a moment, variance, sobol indices, and more. The user may have selected a
function for the refinement whose integral is not the value which should be calculated
in the end; in this case he/she has to pass a specific argument to the method so that
it uses the generated quadrature points and weights and not directly the integral
from the refinement. Before invoking methods which use the PCE approximation, the
user has to call the calculate_PCE method. It creates the PCE proxy function with
Chaospy and accepts a boolean argument to restrict the polynomial degrees in the
dimensions where the adaptive refinement generated only a few points. The method
uses orthogonal polynomials and norms returned by Chaospy’s orth_ttr function. If
the method can use the integral from the refinement, it creates a Chaospy polynomial
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directly with the integral results and polynomial norms. If this is not the case, the
method passes quadrature points and weigths and the polynomial norms to Chaospy’s
fit_quadrature function. If the norms were not passed, Chaospy would calculate the
polynomial norms with the quadrature points and weights, which can be inaccurate.

4.2.2. Additional Function Classes

This section describes the Function subclasses for the common adaptive refining,
which are returned by UncertaintyQuantification’s methods, and then it explains
Functions which mainly have testing purposes.

Concatenation

The FunctionConcatenate class concatenates the return values of several Functions
when evaluated, which means that it is suited to merge multidimensional functions
to a new higher-dimensional function. This higher-dimensional function may be
passed to the adaptive refinement algorithm so that it calculates the grid points for the
integral calculations of all of the functions which have been merged. Additionally, with
FunctionConcatenate, the user can transform his/her problem function(s) so that it
returns a flat array and the adaptive refinement accepts it.

Moment Calculation

The grid operation’s get_moment_Function method returns an instance of the
FunctionPower class, except when calculating the first moment. This Function is de-
signed for the refinement for the k-th moment calculation. The eval method of this class
first calls the problem Function, whose cached result is reused when possible, and then
it takes each value in the returned array to the power of k; in the end it returns this new
array. UncertaintyQuantification also has a method to obtain a Function for the si-
multaneous refinement of multiple moments: get_moments_Function. This method cre-
ates instances of FunctionPower for each moment and then it uses FunctionConcatenate
to merge them together. If this function is passed to the adaptive refinement, the result-
ing sparse grid should be suitable for the calculation of all of the requested moments.

PCE Coefficient Function

For the pseudo-spectral PCE coefficient calculation, the grid operation’s
get_PCE_Function method returns an instance of FunctionPolysPCE. The construc-
tor of this class takes a Function, Chaospy polynomials and their norms. Its eval
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method multiplies the evaluation of the problem function with evaluations of all poly-
nomials and then merges the results into a flat array, so for a m-dimensional function
and k polynomials, it returns an array with k ·m entries.

Other Functions

Some new Functions are for testing or to help the user with specific tasks. The
FunctionCustom class takes one or multiple python functions in its constructor and
calls them when evaluated. With this class the user can convert his/her problem
function to be compatible with Function and does not have to create a new subclass.
An example for a test function is the G-function; it is explained in detail in the next
chapter.

4.2.3. Weighted Global Grids

The UQ operation supports a weighted trapezoidal, HighOrder and Lagrange grid,
and, if there are only uniform distributions, other basis grids such as the B-Spline grid.
This subsection gives implementation-related information about the refinement object
splitting, which is currently the same for all weighted grids. Then it describes the
implementation of quadrature weight calculation for the weighted trapezoidal grid and
other high order grids.

Refinement Object Splitting

As explained in the section 3.2, during the adaptive refinement, the
RefinementObjects need to be divided to obtain a new grid point and two new
RefinementObjects. The information about where and how points are located in
the grid should belong to the Grid object and not to an abstract refinement object or
container. Therefore, a method of the employed global grid performs the calculation
of the weighted middle between two points; it uses the method shown in Figure 4.1.
In some situations, the CDF and its inverse are not accurate enough to calculate the
middle between points, for instance when the points are very close to each other. If this
problem occurs, the method falls back to a simple non-weighted middle calculation; if
one of the two points is infinite, the other point offset by a small constant is used to
avoid a crash.

To make a decision on where to refine, the program calculates volume-based surplus
errors for each refinement object. As explained in chapter 3, when the function’s
output is multidimensional, the program divides the errors by the previous integral
solutions. This only works if the exact integral solution is not zero. Since the exact
solution is not known beforehand, the volume weight calculation tests if it is near
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@staticmethod

def get_middle_weighted(a, b, cdf, ppf):

cdf_mid = 0.5 * (cdf(a) + cdf(b))

mid = ppf(cdf_mid)

if not a < mid < b:

print("Could not calculate the weighted middle")

mid = 0.5 * (a + b)

if not a < mid < b:

print("Warning: Could not calculate the "

f"middle between {a} and {b}")

if isinf(a):

mid = b - 10 ** -14

elif isinf(b):

mid = a + 10 ** -14

return mid

Figure 4.1.: Refinement object middle calculation

zero with a tolerance of for example 10−10. If this tolerance is too big, the refinement
can overlook the function output dimension where the exact integral is small but not
zero, and if it is too small, the overall error estimation can show huge values and the
algorithm tries to refine for the output dimension where the exact integral is zero. The
volume normalization may make it difficult for the user to abort the refinement when a
specified tolerance has been met; for instance, with FunctionPolysPCE, the error refers
to the relative errors of the gPCE polynomial coefficents and not to the error of the
expectation or another value of interest.

Weighted Global Trapezoidal Grid

The GlobalTrapezoidalGridWeighted grid implements the weighted composite trape-
zoidal quadrature explained in section 3.1; its compute_weights method performs the
quadrature weights calculation. The formula requires the moments m0 and m1 in each
subinterval. The program calculates the zeroth moment with the CDF, and for the the
first moment it calls SciPy’s numerical quadrature function integrate.quad because
the distribution functions from Chaospy or SciPy do not offer a method which calcu-
late the first moment between specified boundaries, so m0 is generally more accurate
than m1. Figure 4.2 shows Python code for the trapezoidal weight calculation. The
actual code in the implementation is slightly different: it reuses previously calculated
moments to increase the performance.
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moment_0 = cdf(x2) - cdf(x1)

moment_1 = integrate.quad(lambda x: x * pdf(x), x1, x2,

epsrel=10 ** -2, epsabs=np.inf)[0]

if math.isinf(x1):

w2 = moment_0

elif math.isinf(x2):

w2 = 0

else:

w2 = (moment_1 - moment_0 * x1) / (x2 - x1)

w1 = moment_0 - w2

Figure 4.2.: Trapezoidal weight calculation

After calculating the composite weights, the method sets negative near-zero weights
to zero; these weights sometimes occur due to numerical errors. Furthermore, it
adjusts the weights when boundaries are excluded, and tests if all weights sum up to
approximately one.

Weighted HighOrder Grid

Composite trapezoidal quadrature can only integrate functions up to degree one
exactly. However, given n arbitrary placed distinct points, it is possible to calcu-
late a quadrature rule with an order of at least n with only positive weights. The
method described in [Huy09] is implemented in the GlobalHighOrderGrid class;
the GlobalHighOrderGridWeighted extends this class for weighted integration. This
quadrature method is denoted HighOrder in the next sections and chapters. It calculates
higher order weights from start values of weights and points, which can be obtained
with, for example, the composite trapezoidal quadrature explained in section 3.1. The
algorithm creates discrete orthogonal polynomials, calculates their moments, and then
uses these moments to compute the new weights. The moments are the integrals
of the polynomials multiplied with the weight function, which is the PDF here. In
comparison to integration without a weight function, the numerical moment calculation
uses Gauß quadrature points and weights which are tailored to the distribution. Since
the method calculates the moments over the whole distribution’s domain, Chaospy’s
generate_quadrature function can return these points and weights. If, however, at
least one of the composite trapezoidal weights is zero, and the zero weight cannot
be truncated away, i.e. it does not belong to the boundary points, the polynomial
calculation does not work and the weight calculation returns the trapezoidal weights.
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Weighted Basis Grids

Another possibility to increase the quadrature order is the use of different basis func-
tions, which is implemented in the GlobalBasisGrid subclasses.
The GlobalLagrangeGridWeighted grid has constrained Lagrange polynomials as basis
functions, which need to be integrated over subintervals with a weight function to ob-
tain quadrature weights. When the probability distribution is uniform, Gauß Legendre
points and weights can be shifted and scaled into the integral boundaries to obtain
an exact integral. This transformation does not work with, for example, the normal
distribution and Gauß Hermite quadrature, so the weights calculation currently uses
SciPy’s numerical integration, which is slow. Furthermore, the numerical integration
errors are directly passed on to the final grid point weights.
The global B-Spline basis grid calculates Spline knots outside the domain boundaries;
these points cannot be transformed for a probability distribution, so there is currently
no weighted global B-Spline grid subclass.
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This chapter presents test results for Lotka-Volterra predator-prey model test cases
and functions with discontinuities. One of the predator-prey model tests is designed
to obtain solutions for all time steps at once, which requires the weighted integration
of a vector-valued function. Another test calculates only the sheep population in a
single time step, which should be easier to refine adaptively. In the G-function tests,
the adaptive refinement outperforms Gaußquadrature; the reason for this may be
the discontinuity in the derivations of the problem function. In all test cases, if not
mentioned otherwise, the maximum level of the initial combination scheme lmax is
two for uniform distributions and three for normal distributions. Without boundaries
and lmax set to two, the adaptive refinement would not have points which constitute
the interaction between input dimensions; this can result in missing or inaccurate
refinement steps. Furthermore, in the tests the HighOrder grid’s max_degree argument
is set to its default value of five, the B-Spline and Lagrange grids, which are mostly
used for uniform distributions, have the polynomial degree argument p set to its
default value of three, the spatially adaptive refinement algorithm version is three, the
error norm used on function output values is the L2 norm, and other configuration
parameters which were not mentioned are set to their default values.

5.1. Predator-Prey Model

The predator-prey differential equations describe the problem where for an initial
population of predator and prey animals, the population size of both animals changes
over time. The prey population is increasing when there are many prey animals, and
decreasing when there is a big number of attacking predators. On the other hand the
predator population is decreasing when there are a many predator and only a few prey
animals, and increasing when a few predators can feed on many prey animals. This
leads to a periodic behaviour regarding the number of prey and predator animals. For
a predator death rate d, voracity v, augmentation rate a and current population nPred,
and prey birth rate b and current population nPrey, the change in predator and prey
populations are as follows:

f (nPred, nPrey, t) = (changePred, changePrey) = ((anPrey − d)nPred, (b− vnPred)nPrey)
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An instance of this problem is the sheep-coyote model; here numbers are assigned to
the parameters:

d = 0.0005, b = 0.005, v = 0.00012, a = 0.002v

nPreyInitial = 2000, nPredInitial = 50

To employ this model for an UQ test, some parameters need to be uncertain. A
farmer probably knows much about the sheep but has only vague knowledge about
wild coyotes. Therefore, let the voracity and initial coyote population be normally
distributed.

v ∼ N (0.00012, 0.0000022)

nPredInitial ∼ N (50, 52)

Now it is possible to compare the spatially adaptive sparse grid method with conven-
tional integration methods to calculate an expectation, variance and more. The next
subsections describe the problem of obtaining a reference solution and the comparison
between weighted integration methods.

5.1.1. Reference Solution

We could be interested in how the expected populations of sheep and coyotes develop
in time and how reliable these values are. This means that the program needs to
evaluate the stochastic values for many time steps. In the implementation the problem
function is set to a multidimensional Function which returns a flat array containing the
sheep population and predator population for each time step. Two of the test programs
calculate the expectation, variance and percentiles for both population sizes with PCE
with a maximum polynomial degree of one; this means that in these tests quadrature
points and weights are used to calculate the three multidimensional PCE coefficients.

To obtain a reference solution for comparisons with the adaptive sparse grid method,
several quadrature methods offered by Chaospy were tested. In a previous test, the
initial sheep population was normally distributed, too, and the initial predator popula-
tion was less uncertain: nPreyInitial ∼ N (2000, 1.02), nPredInitial ∼ N (50, 0.12). Since the
impact of the initial number of prey on the function output was very small, the current
test uses a fixed value for this number. In that previous test, the Chaospy Clenshaw-
Curtis quadrature results differed significantly between when the polynomials were
normed with the quadrature points, and when the norms returned by cp.orth_ttr

were used; this happened with low and high numbers of quadrature points. With
the Gauß quadrature rule, the problem did not occur and the solutions looked more
promising. Nonetheless, even with a high numbers of points, the maximum of the
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Figure 5.1.: Fullgrid Gauß reference solution for the Predator-Prey model; P10 and P90
are Percentiles

sheep population variance varied between approximately 50000 and 60000 when the
number of points changed a bit, and Chaospy’s Gauß quadrature works only up to
order thirty in this test, probably because negative input values can appear due to
the normal distribution. This suggests that finding a precise reference solution could
be difficult. The standard Monte Carlo method, tested with 20000 points, and the
Monte Carlo method with the Halton sequence resulted in values similar to the Gauß
quadrature results.
The Gaußquadrature reference solution for the two-dimensional test can be seen in
Figure 5.1. The differential equation cannot be evaluated for negative voracity or initial
population values, which can appear because the normal distribution has an infinite
boundary domain. A working truncated normal distribution is not yet available in
Chaospy, and a uniform distribution would lead to less useful test results because
it is almost a non-weighted quadrature. Therefore, the result of Chaospy’s full grid
Gauß quadrature with the order parameter set to 29 is used as approximate reference
solution.

5.1.2. Comparison

In the following, the reference solution is compared to solutions which are obtained
with the adaptive refinement. In the vector-valued test and the single time step test,
the full grid Gaußquadrature surpasses the adaptive refinement. Since the reference
solution is not necessarily very accurate, as explained previously, the deviations may
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only be meaningful for a low number of evaluations. On the other hand, with only
very few evaluations, the adaptive refinement cannot adapt to the function and thus
has more resemblance to a non-adaptive sparse grid. For reliability, the maximum level
lmax of the initial combination scheme is set to three.

Refining All Time Steps

The Predator Prey test with 256 time steps is a use case of the adaptive refinement
where the PCE coefficient refinement function output has a huge number of dimen-
sions: 256 · 2 · (1 + dim) = 1536. While the adaptive refinement results look similar to
Gaußquadrature results when the number of function evaluations is big, the mean abso-
lute deviation to the reference solution decreases faster with full grid Gaußquadrature.
Figure 5.2 shows the function plot and errors for each time step when the refinement
uses the weighted global trapezoidal grid with lmax set to three and 157 problem
function calls. Figure 5.3 displays the development of the mean absolute deviation for
various number of function evaluations. The expectation and variance error plots for
the adaptive refinement resemble a staircase; the error is approximately the same for
some consecutive numbers of function evaluations and then suddenly drops down.
From this we may conclude that the refinement object error estimation is not suited to
refine a function with a huge output dimension or that each output dimension could
behave like a different function, which would make an adaptive refinement pointless.

Refining for a Single Time Step

Instead of creating quadrature points and weights for all time steps and predator
and prey populations, the adaptive refinement can focus only on a single time step
and the number of sheep. The problem function in this test firstly evaluates the
multidimensional problem function from before, and then it takes only the prey
population value of the 25th of 256 time steps from the returned array. Since only two
input parameters are uncertain, the function can be plotted as shown in Figure 5.4. The
parameters are normally distributed and thus have infinite boundaries; therefore the
plots are truncated so that in the single dimensions the cumulative distribution lies
within 0.01 and 0.99.

For the reference solution, the test reuses the Gaußquadrature result from before;
it picks the prey solutions for the 25th time step from the solutions array. In figure
Figure A.1 the relative deviations to the reference solution are plotted. The errors
refer to the expectation and variance of the PCE approximation, so the reference
variance deviates from the function’s variance. The full grid Gaußquadrature still has
lower errors than the proposed refinement solutions for a low number of function
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Figure 5.2.: Solution and errors, respectively deviations, for the adaptive refinement
with the weighted global trapezoidal grid; lmax=3, 157 evaluations
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Figure 5.3.: Mean absolute deviations between adaptive refinement and Gauß quadra-
ture results; lmax=3
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Figure 5.4.: Prey populations in various time steps; left: 25th time step, right: 210th
time step

evaluations. In the beginning, the sparse grid Gauß quadrature, where the standard
combination scheme uses Gauß Hermite quadrature full grids, seems to give the best
results. The Gauß full and sparse grid plots end early because of the occurrence of
negative input values, thus the error values for all quadrature methods with many
function evaluations may not be meaningful. Nonetheless, the weighted trapezoidal
quadrature is probably more accurate than the inverse transform method because it
always has a lower expectation error. Chaospy’s full grid Fejer quadrature, which is
not shown on the plot, has relatively high error values. The Fejer solution could have
the problem which occurred with the Clenshaw Curtis quadrature, mentioned in the
reference solution subsection, i.e. it may generally give wrong results.

The expectation and variance have also been calculated with the zeroth and first
moment for various numbers of function evaluations, as shown on the bottom in
Figure A.1. Here the inverse transform has a lower accuracy again. The reference
solution is the Chaospy full grid Gauß quadrature solution with the order parameter
set to 29; the reference expectation and variance have been calculated with the moments.
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Figure 5.5.: Relative errors for the PCE approximation expectation and variance (top),
and expectation and variance calculated with the moments (bottom) of the
25th time step in the sheep coyote problem;
trans Trapez refers to the trapezoidal grid with the inverse transformation
method.
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Figure 5.6.: Left: g-function, right: squared g-function (for second moment calculation)

5.2. G-Function

The g-function of Sobol is a test function with analytic solutions. [al08]

f (~x) =
dim−1

∏
d=0

|4xd − 2|+ ad

1 + ad

We can configure it with the dimensionality dim and positive values ad, which define a
dimension’s importance. All input parameters are uniformly distributed in [0, 1]. The
expectation of this function is always one and the analytic solution of the variance can
be calculated with this formula:

M2 =
dim−1

∏
d=0

(
1 +

1
3(1 + ad)2

)
Var = M2 − 1

To test this function with the adaptive sparse grid, let us assign values to ad and dim.

a0 = 0, a1 = 0.5, dim = 2

These values lead to a variance of approximately 0.5309. Function plots can be seen in
Figure 5.6.
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5.2.1. Without Shifting

When integrating the G-function, the points of the adaptive sparse grid are aligned
with the positions where the derivative is not defined. Therefore, this test is not a
reliable measure to compare the integration methods. Figure 5.7 shows relative errors
of the expectation and variance, which is calculated with the expectation and second
moment. The global trapezoidal grid works best for the expectation; this is due to how
the function is defined. In the single dimensions it behaves similar to the hat function:
the other dimensions contribute only a constant factor, from 0 to 0.5 the function
linearly decreases, then it linearly increases, and the first derivation is undefined at
0.5. The variance calculation seems to work better with a higher order quadrature
rule. The Lagrange grid performs best for this corner case function; since its weight
calculation currently takes a long time, the errors are only plotted for low numbers
of function evaluations. The full grid Gauß quadrature, which is implemented by
Chaospy’s generate_quadrature method, has the highest expectation and variance
error. Chaospy’s sparse grid Gauß quadrature has even higher errors, which is not
shown in the error plot; it has been tested by enabling the sparse argument.

The g-function is one of the corner cases where without boundary points and
the default lmax value of two, the adaptive refinement cannot refine correctly at the
beginning. This happens because for at least one dimension, when the input value is
zero in all other dimensions, all output values of the problem function are zero or have
the same value in this dimension. The adaptive refinement calculates wrong integrals
when a corner case occurs, thus the maximum level lmax needs to be set to at least
three so that the refinement can use enough error values.

5.2.2. Shifted G-Function

To have a test which is not a corner case, the G-function is moved by 0.2 in every
dimension. If the moved coordinates are outside [0, 1]2, they are placed back to the
other side so that the expectation and variance are still the same. This means the shifted
G-function g follows this formula:

g(x1, x2) = f ((x1 + 0.2) mod 1, (x2 + 0.2) mod 1)

The derivation now has more discontinuities, which can be seen on Figure 5.8. The
relative errors shown on Figure 5.9 indicate that for a big number of function evaluations
the weighted trapezoidal composite quadrature and other adaptive sparse grid methods
exceed full and sparse grid Gauß quadrature. The shifted G-function has also been
tested with five input dimensions. In this test, the configuration values are set to
ad = d

2 , 0 ≤ d < 5. With boundary points and lmax set to two, the initial sparse grid
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Figure 5.7.: Relative errors for the G-function when employing Chaospy’s full grid Gauß
quadrature, sparseSpACE’s sparse grid Gauß quadrature and adaptive
refinement with trapezoidal, HighOrder, B-Spline and Lagrange grids
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Figure 5.8.: Left: shifted g-function, right: squared shifted g-function (for second
moment calculation)

already has more than thousands of points. Therefore, additionally the modified basis
has been tested with lmax set to three for reliability. Figure 5.10 shows the errors for the
refinement without and with modified basis. With the modified basis, the initial sparse
grid has fewer points, so the adaptive refinement has more freedom in its decision
about where grid points are located. High order quadrature rules cannot lead to much
higher accuracy in the expectation results than low order quadrature because in the
single dimensions the function has order one except for the places with discontinuous
derivation.

5.3. A Discontinuous Test Function

The test function from “Sparse grid collocation schemes for stochastic natural convection
problems” [GZ06], extended into three dimensions, has a discontinuity which is not in
the derivation. The function is defined as follows:

f (x, y, z) = exp(−x2 + 2 · sign(y)) + z

Figure 5.11 shows a plot of the two-dimensional version of the function, where z is set
to zero. In the original problem, each parameters is uniformly distributed in [−1, 1].
To test adaptive weighted integration methods, in this test case the parameters are
normally distributed: x, y, z ∼ N (0.2, 1.02) The parameters’ expectations are set to
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Figure 5.9.: Relative errors for the shifted G-function
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Figure 5.10.: Relative errors for the five-dimensional shifted G-function;
Trapez is the (weighted) global trapezoidal grid with boundary points and
lmax is set to two;
modified_basis Trapez is the same grid but with modified basis instead of
boundary points and lmax is set to three.
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Figure 5.11.: A discontinuous test function (2D version) [GZ06]

0.2 so that the initial grid is not aligned with the discontinuity and other parts of the
function which may make the test an unrealistic corner case. The standard deviations
1.0 should make the set of parameter values where the probability is high approximately
overlap with the original problem domain. The reference solution is calculated with
Chaospy’s Monte Carlo method with the Halton Sequence and 218 points. It is not a
Gauß quadrature solution because Gauß and other quadrature methods cannot perform
very well due to the discontinuity. The plots in Figure 5.12 show relative errors in
expectation and variance for various weighted integration methods. In the adaptive
refinement methods, boundary points are excluded and lmax is set to two. When the
number of function evaluations is relatively low, the sparse grid Gauß solutions, where
the standard combination scheme is employed with Gauß Hermite grids, are more
accurate than Chaospy’s full grid Gauß solutions. The adaptive trapezoidal quadrature
performs best in this test case. It has been tested with the weighted global trapezoidal
grid and the non-weighted version, where the function’s input parameters are changed
with the inverse transformation method. The weighted grid calculates the expectation
more accurately; the variance is obtained with the first and second moments, so its
error can depend on the expectation error.
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Figure 5.12.: Relative errors for the discontinuous function with normal distribution;
trans Trapez refers to non-weighted quadrature with the inverse trans-
formation method, and MC Halton is the Monte Carlo method with the
Halton sequence
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6. Conclusion and Future Work

Weighted multidimensional quadrature has been implemented for the single dimen-
sion spatially adaptive refinement strategy in the sparseSpACE framework; a grid
operation class employs this weighted quadrature to perform UQ-related tasks with
the help of the Chaospy and SciPy Python libraries. The test results reveal that the
adaptive refinement strategy can outperform full and sparse grid Gauß quadrature if
the problem function has discontinuities. The results also show that integration with the
weighted grids is more accurate than the inverse transformation method, which should
be approximately the same as directly integrating the function multiplied with the
weight function. The program has a big number of degrees of freedom regarding the
configuration parameters; examples are the decision on whether the program should
include boundary points or extrapolate these points with a modified basis, and special
grid-specific parameters, such as a maximum polynomial degree. Since the refinement
is adaptive, the user needs to specify an initial lmax parameter, which, as explained in
the test results chapter, can lead to problems in a few situations if it is too small.

The single dimension spatially adaptive refinement method is still under devel-
opment, so a future version of the algorithm may obtain more accurate results. To
investigate in which cases the adaptive refinement is able to surpass Gauß quadrature,
the program could be adjusted to do optimal refinement steps. To this end, instead
of using an error estimator to decide on which refinement objects it splits, for testing
it could try every possible refinement step in advance and then split the refinement
objects where the highest error reduction can be achieved. Furthermore, during the
PCE coefficient calculation, the error estimation could incorporate sobol indices for
the respective dimensions; instead of using only the Sobol indices for the refinement
decisions, which is done in [SGL15], the algorithm could use them to weigh errors
differently in each dimension. Many smooth problem functions can be integrated more
accurately with a higher order quadrature rule; for these functions the weighted trape-
zoidal grid may not be able to surpass the weighted non-adaptive sparse grid Gauß
quadrature. Weighted global grids are not yet or not completely implemented for many
high order quadrature methods. This includes the GlobalHighOrderGrid’s nonnegative
least squares mode, where for given points, the algorithm changes quadrature weights
so that many weights are zero and the quadrature order does not change. The weighted
Lagrange basis grid currently calculates weights with numerical quadrature which is
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very slow; with some probability distributions it is possible to calculate these integrals
exactly; with other distributions, faster, probability-specific quadrature methods could
be implemented. A weighted B-Spline basis grid would require the weighted integra-
tion of polynomials within subintervals, too; it additionally needs to calculate knots
outside the probability domain boundaries, where positions cannot be transformed
with the PPF. A weighted Simpson grid could be implemented similar to the weighted
Trapezoidal grid. Since the first equation in the method of undetermined coefficients
uses the relatively accurate CDF, the composite quadrature rule can probably use a
slightly inaccurate numerical quadrature for the first and second moment calculation
without substantial quality reduction in the final quadrature weights.
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A. Appendix
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Figure A.1.: Relative errors for the expectation and variance, calculated with the mo-
ments, of the 210th time step in the sheep coyote problem;
the reference solution has been obtained with Chaospy’s Monte Carlo
method with the Halton Sequence with 210 points.
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