Tuil

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Dependable and Modular Command and Data
Handling Platform for Small Spacecraft using
MicroPython on RODOS

Tejas Kale

0

Tuil

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Dependable and Modular Command and Data
Handling Platform for Small Spacecraft using
MicroPython on RODOS

Zuverlassige und Modulare Steuer- und
Datenverarbeitungsplattform fur kleine
Raumfahrzeuge mittels MicroPython und RODOS

Author: Tejas Kale
Supervisor: Prof. Dr. rer. nat. Martin Schulz
Advisors: M.Sc. Dai Yang

M.Sc. Sebastian Riickerl
M.Sc. Vladimir Podolskiy
Submission Date: 15th September 2019

0

I confirm that this master’s thesis in informatics is my own work and I have documented all sources and
material used.

Munich, 15th September 2019 Tejas Kale

Abstract

In this thesis, MicroPython is integrated into RODOS with the goal of using it as a scripting language
for next generation of small satellites being developed at the Chair of Astronautics. MicroPython
runs as a RODOS application, sharing its stack with the application’s stack and uses a statically
allocated heap area for its internal memory allocations. The process of running MicroPython scripts,
and extending the base MicroPython libraries with user modules is explored in this thesis. Further, a
development board using a STM32F4 microcontroller, 2 CAN transceivers and several sensors is designed,
manufactured and programmed. The development board enables testing of MicroPython, RODOS, CAN
bus communications and the integrated sensors. Additionally, one can also connect external sensors
using the exposed interfaces to the microcontroller. Using this board, several performance analyses are
carried out to characterize the impact of using an interpreted language like MicroPython as compared to
a native machine language like C. The various available code emitters of the MicroPython compiler are
also tested and their performance characterized.

iii

Contents

Abstract

1. Introduction
1.1. Motivation.
1.2. Goal
1.3. Outline

2. Background
21. RODOS
2.2. Micropython.
2.2.1. MicroPython Internals
2.2.2. Micropython Compiler
2.2.3. Garbage collection

3. Related work
3.1. RODOS
3.1.1. TubiX Nanosatellite Platform . . .
3.1.2. MAIUS-T
3.1.3. Other RODOS Use Cases
3.2. Use of Scripting Languages in Spacecrafts
3.2.1. MOVE-II Cubesat
3.2.2. PyCubed Platform
3.2.3. LEON 3 MicroPython port
3.2.4. James Webb Space Telescope . .

4. Micropython Port on RODOS
4.1. MicroPython Build Process
4.2. Micropython Core Configuration
4.3. RODOS API Wrappers
44. UserCModule

5. RODOS Development Board
5.1. Microcontroller
5.2. CAN Transceivers
53. PowerSupply
5.4. Peripherals
54.1. Sensors

=0
=1
=2

[N N I BN BN Be) o) Sie) W) N AW W W N N =

O o

iv

Contents

5.5. Physicaldesign

6. Evaluation

6.1. Experimental Setup

6.1.1.

Micropython Configuration.

6.2. Experiments e e e

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.

Overheads due to Parsing and Compilation
Matrix Multiplication : CPU Bound Application
Large Array Sorting : Memory Bound Application
Micropython Script execution overhead
Garbage Collection

6.3. DiScuSSiOn e e

7. Conclusion and Future Work

A. Development board schematics

B. Micropython Configuration

C. Rodos Configuration

D. Example MicroPython C Module

List of Figures

Listings

Bibliography

25

26

33

36

38

40

41

42

1. Introduction

1.1. Motivation

Command and Data Handling (CDH) subsystem, sometimes referred to as the On Board Computer
(OBCQ), is the heart of small satellites and spacecraft. This subsystem is the main onboard flight computer
and handles data from all other subsystems. The CDH provides a functional interface to the satellite
for ground based controllers via the communications subsystem. It receives commands from ground,
executes them and relays the results back. As the CDH is typically connected to all the other subsystems
on the satellite, it can control them. The Electronic Power System (EPS) houses the power system of
the satellite, including the batteries, solar cells, circuitry to charge the batteries and power conversion
circuitry to provide the other subsystems with their desired voltage levels. The CDH can thus control the
power states of all the other subsystems of the satellite using the EPS.

Spacecrafts are commanded using tele-commands from ground. These tele-commands can be statically
defined and frozen into the CDH software, or can be defined as a commanding language that allows
for dynamically defining complex tasks. The commanding language can be a custom defined language
like Plan Execution Interchange Language (PLEXIL) [1] [2] or System Test and Operations Language
(STOL). However the development of a custom language presents a significant challenge and risk. As
compared to other mainstream scripting languages, such a custom language is difficult to test and validate
fully. As an alternative, more mainstream scripting languages such as Bash(for Linux based systems),
Javascript, Python etc. can be used. The primary advantage to using these languages is that they are
already widely used in other applications, thus have been extensively tested and validated. Additionally
these languages are easy to understand as they use a human readable syntax. Users of the satellite who
may not be familiar with programming, can thus easily understand the scripts, reducing development
effort and errors.

On a hardware level, CDH systems are implemented using small microprocessors capable of hosting
complete Linux environment or also on small low power microcontrollers that can only support a basic
real time operating system. The size limitations imposed by satellite structure standards (For e.g cubesats
[3]) limit the available power for the satellite. Reducing power consumption of the CDH is thus a primary
design goal. While Linux based CDH systems are extremely powerful and flexible, they also are quite
power hungry. This power consumption can be reduced drastically by using low power microcontrollers
like the STM32LA4.

Building on experience gathered from the MOVE-II project, where the Linux based CDH system was
one of the contributing factors for the insufficient power budget [4], the MOVE-BEYOND project plans
to use multiple low power STM32L4 microcontrollers as a modular flight computer with each node
running RODOS as its Operating System (OS). MicroPython would be the ideal choice for a scripting
language on this system.

1. Introduction

1.2. Goal

The main goal of this thesis is to port MicroPython to work as an application on Realtime Onboard
Dependable Operating System (RODOS). This will allow the use of MicroPython as a programming
language for future Munich Orbital Verification Experiment (MOVE) projects. MicroPython, being and
interpreted language, is expected to be worse in performance as compared to a native C implementation.
Knowing how much of a performance impact MicroPython has is important as this allows the programmer
to know when to use native C code as opposed to MicroPython. Thus MicroPython performance is
characterized and compared to a native C implementation. To enable testing and development on realistic
hardware, a development board is designed and manufactured. The board is designed in a way so that it
can serve as a starting point for future designs.

1.3. Outline

The thesis is structured as follows: Chapter 2 gives the reader a background on RODOS and MicroPython.
Chapter 3 summarizes the use of RODOS, scripting languages in other satellite missions. It also looks
at the MOVE-II satellite and how scripting was critical in controlling it after launch. Chapter 4
explains how the MicroPython port works on RODOS. Chapter 5 details the hardware design of the
development board. Chapter 6 uses the development board to evaluate the performance impacts of
using MicroPython. Chapter 7 concludes the thesis by summarizing the results and looks at some
possible future enhancements to the MicroPython port and development board.

2. Background

2.1. RODOS

RODOS is a real-time operating system designed for embedded systems where high dependability
is desired [5]. It uses a priority based real-time scheduler which is fully preemptive; using round-
robin scheduling for threads with the same priority. The microkernel provides support for thread
synchronization, resource management and interrupt handling. The Application Programming Interface
(API) is implemented in C++ using a object oriented framework.

RODOS provides a middleware layer that enables transparent communication between both remote
and local applications. All communication is asynchronous using the publisher - subscriber protocol.
Publishers publish messages tagged with a specific unique topic id. Subscribers receive only those
messages which they subscribe to. By default all published messages are only routed to the local
subscribers. However, using a Gateway, they may be exposed externally; enabling communication across
nodes. Logical tasks can be encapsulated into applications. Each application could be composed of
multiple threads, event handlers, subscribers and publishers. The idea being to integrate all services
related to a specific task into a single unit.

The RODOS API and middleware are implemented independent of any hardware dependent libraries.
All hardware dependent functionality is provided by the Hardware Abstraction Layer (HAL). Thus
RODOS can be easily ported multiple embedded platforms, using the HAL specific to that platform.
Such a separation of hardware and software domains, allows RODOS applications to be very portable.
The applications themselves can be run unmodified on multiple target hardware platforms provided a
RODOS port exists for it.

2.2. Micropython

MicroPython is an implementation of the Python 3 programming language that is optimized to run
on microcontrollers and resource constrained environments. It is implemented in C with a focus on
minimizing memory usage and code size, allowing it to run in as little as 8 Kb of RAM with a binary size
of only about 70 Kb [6]. MicroPython includes a compiler and a full Python like runtime. Using this, at
runtime, it can compile and execute code, or also load and execute pre-compiled code. It supports most
of the Python 3 features including arbitrary precision integers, closures, list comprehension, floating
point operations and also exception handling. Care is taken to follow the Python 3 syntax as closely as
possible, however there are some differences stemming from the need to conserve every bit of memory.

A subset of the Python standard library is also included. Moreover, users can extend MicroPython
with either MicroPython libraries or C modules. A few libraries from Python Package Index (PyPI) have
already been ported to Micropython. Dependencies on external code are kept to as low as possible. This

2. Background

enables MicroPython to be ported to almost any platform. Popular ports include the STM32 port which
is used on the popular Pyboards, a ESP32 and ESP8266 port, a PIC16 port and even a Javascript port.

2.2.1. MicroPython Internals

] Generates
REPL Input Eval String J: L Runtime

| | A

i A4 i P
Bvtecode Executed by | MicroPython
EE—
Lexer y o
7

’ User Script

Y

« «
Tokens ° . = =
A 4 Q »| Native Code (&) O
3
Parser <]
o
» Viper Code
Parse Tree

v A 4
c i External
omprier Bindings

Figure 2.1.: MicroPython internals showing how the compiler, runtime and virtual machine interact with
each other.

Figure 2.1 shows the key components of how the MicroPython environment works. The MicroPython
runtime, on the top right, is responsible for providing all the necessary components required for executing
MicroPython code. It implements the MicroPython built in types like float, tuples, dicts etc. External C
bindings with a MicroPython interface allow it to interact with hardware.

The MicroPython Virtual Machine (VM) is responsible for maintaining the global state of the
MicroPython environment. Bytecode execution is done by the VM. Some operations like basic
arithmetic, binary operations etc. are directly executed by the VM. For other more complex operations
like for eg. list sorting, the VM calls helper functions provided by the runtime environment. Hardware
access or access to external API’s is also provided via wrapper functions that are defined as part of the
runtime environment. The runtime call stack is also maintained by the VM. Memory allocations are
done by the VM on the heap and when required , a garbage collector is run to try and free up some
memory. Pre-compiled code, which can be stored either as native machine code or optimized viper code,
can also be loaded and executed directly by the runtime.

2.2.2. Micropython Compiler

On the left side of Figure 2.1 are the parts related to the MicroPython compiler. The lexer is the first
stage of the compilation process. It can receive strings as inputs from various sources, like the Read Eval
Print Loop (REPL), eval strings generated by the MicroPython runtime environment or user scripts. It
breaks down the input into a stream of tokens and passes it to the parser. The parser then generates a

2. Background

parse tree out of the token stream which is then passed on to the compiler to generate bytecode or native
machine code.

i @Gmicropython.bytecode 1 00: b0® LOAD_FAST_0
> def x(a,b): > 01: bo LOAD_FAST_1
return a + b 3 02: db BINARY_OP_ADD
4 1+ 03: 5b RETURN_VALUE
Listing 2.1: A MicroPython function. Listing 2.2: The generated bytecode

The MicroPython compiler features 3 different code generators(called code emitters).Each of the three
code emitters offer varying performance levels which are measured in chapter 6.

Bytecode Emitter produces bytecode that can be interpreted by the MicroPython virtual machine.
The VM decodes each bytecode and calls the appropriate C runtime function. Listing 2.1 shows an
example of a MicroPython function and Listing 2.2 shows the corresponding generated bytecode.
This is the default mode, but can be forced with the @micropython.bytecode annotation.

Native Code Emitter generates native machine code by inlining the function corresponding to
each bytecode. This removes the function call overhead when executing each bytecode, significantly
speeding up the execution. Currently x86, x64, armv6, armv7m and xtensa architectures are
supported by the native code emitter. This emitter can be invoked with the @micropython.native
annotation.

Viper Code Emitter builds on top of the Native code emitter by using the fact that many bytecode
operations(for eg. the addition shown in Listing 2.1) can be realized with a single machine
instruction. Thus rather than calling the appropriate C runtime function, it emits native machine
code. However, not all of the MicroPython bytecodes are currently supported. This can be invoked
with the @micropython.viper annotation.

Inline Assembler allows for embedding assembly code in MicroPython scripts.This code is
translated directly to machine instructions at runtime and executed. Currently only a subset [7] of
the ARM Thumb-2 instruction set is supported. The inline assembler can be invoked with the
@micropython.asm annotation.

MicroPython also provides a cross compiler which can be used to compile MicroPython scripts to
both bytecode and native/viper code offline. This can be used to precompile user scripts to save storage
space and save compile time onboard the microcontroller.

2.2.3. Garbage collection

The MicroPython heap space is managed by the garbage collector. The available memory is divided into
a set of blocks, with each block having a 2 bit allocation status attached to it. The garbage collector
is a simple mark and sweep garbage collector which maintains an allocation table to keep track of
allocated memory. By default the garbage triggers automatically when a memory allocation is requested
but no free memory can be found. This may not be desirable as it makes the runtime of the program
unpredictable. However to avoid this problem, the GC can be triggered manually.

3. Related work

RODOS due to its real-time capabilities and task communication via a publisher subscriber model is used
in various time critical control tasks including quadcopter control, rocket telemetry and telecommand
system and satellite CDH software. Scripting languages, being easy to learn and understand have been
widely used for task automation in traditional software tasks. However they can also be used as high
level programming languages for complex control tasks on embedded devices. Bash, JavaScript and
Python have been used for applications ranging from small Internet of Things (IOT) devices to control of
large spacecraft. This chapter provides and overview on the use of RODOS, MicroPython and JavaScript
in various applications.

3.1. RODOS

3.1.1. TubiX Nanosatellite Platform

The TU Berlin inovative neXt generation satellite bus (TUBiX) is nanosatellite platform series developed
at TU berlin for use in satellites with masses ranging from 10kg(TUBiX10) to 20 kg(TUBiX?20).
The platform focuses on modularity and reusability as its core design concepts in both the hardware
and software domains. In the hardware domain, a base set of common components including the
microcontroller and Controller Area Network (CAN) transceiver’s are used. Each subsystem is realized
as a node, with each node having its own hardware and software. A CAN bus is used as the system bus
providing inter-subsystem communication. The use of the same microcontroller on each nodes , allows
each of them to run RODOS. All subsystem functionality is split in to applications which exchange
data via topics managed and abstracted by the middleware. Inter-subsystem communication is achieved
by publishing the topic data on the CAN bus. As the inter-subsystem communication is facilitated via
the RODOS middleware, Hardware in the Loop (HiL) testing is carried out by emulating middleware
on a Linux host PC. This allows for easy communication between the simulation software and target
subsystems [8][5]. The Technosat mission is one such mission that uses the TUBiX20 platform [9].

3.1.2. MAIUS-I

MAIUS-I is a 2 stage sounding rocket developed as a demonstration mission for creation of Bose-Einstein
condensates in space The onboard telemetry and telecommand system for the rocket is based on
RODOS. The different software modules are implemented as independent RODOS applications(called
services) that communicate with each other using RODOS middleware topics. The BoardConfig service
gathers housekeeping data. The ConfigManager is used read the stored configuration databases. The
FlightParameter service is used for gathering sensor data from Global Positioning System (GPS) and
other sensors. The MassStorage service provides an interface to the onboard mass storage device. The

3. Related work

Timing service allows for synchronization with a GPS clock. The Telemetry and Telecommand (TMTC)
service acts as a gateway between the middleware topics and ground support equipment [10].

3.1.3. Other RODOS Use Cases

RODOS as a realtime OS has also been used in various other applications. It was used as the onboard
OS for the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment.
The experiment was launched on the Berlin Infrared Optical System (BIROS) satellite. The software
consists of a set of RODOS applications which are run every 30s [11] [12]. It is also being used as a
real-time OS on mini Unmanned Aerial Vehicle (UAV)s and quadcopters [13] [14].

3.2. Use of Scripting Languages in Spacecrafts

3.2.1. MOVE-II Cubesat

Munich Orbital Verification Experiment II (MOVE-II) is a 1-Unit cubesat developed at the Chair of
Astronautics. The CDH system for the satellite is powered by a SAMASD2 processor. A custom Linux
kernel is used as the base operating system. The system consists of a multiple background services
called daemons. Each subsystem has one daemon and all communication to the subsystem is handled by
it. Most subsystems only have a data connection to the CDH. Inter-subsystem communication is handled
by using a software bus(called D-bus), which the individual daemons can send and receive messages on.
In-orbit commanding and control is achieved through uploading Bash scripts from the ground station
over Ultra High Frequency (UHF) link.

After launch, MOVE-II was found to be spinning extremely fast with rotational rates over 500 °s~!
[4]. The resulting unstable communication line severely limited the uplink bandwidth and a two way
communication link was never reliably established. Only very small commands were found to be reliably
uplinked and no data download other than the exit status of the script was received back on the ground.
However, eventual control of the satellite was achieved by shortening the Bash scripts by relying on Bash
parameter expansions and creating short symlinks to frequently used scripts. This allowed the eventual
recovery of the satellite by activating the Attitude Determination and Control System (ADCS) system
over a period of 7 months.

3.2.2. PyCubed Platform

The PyCubed platform is an Cubesat platform that combines an EPS, CDH, an ADCS and a communica-
tions system into a single PC/104 compatible module. The hardware is radiation tested and has been
flight proven on the KickSat2 mission. The software architecture is based on CircuitPython which is a
fork of the MicroPython project that adds many additional libraries. All of the flight software is written
using the Python syntax and is executed by the MicroPython interpreter [15].

3.2.3. LEON 3 MicroPython port

LEON 3 is a 32-bit microprocessor core based on the SPARC-VS8 instruction set. It was developed at
European Space Research and Technology Centre (ESTEC) which is a part of European Space Agency

3. Related work

(ESA). The processor core is designed in VHDL and is highly configurable to the specific needs of the
applications. Fault tolerance and protection against single event latchups is a core design principle fot
this microprocessor architecture, making it particularly suitable for use in the harsh space environment
[16]. The MicroPython interpreter has been ported to the LEON 3 microprocessor architecture for
use as the primary On Board Control Procedure (OBCP) controller. The MicroPython interpreter is
highly configurable and controllable, allowing complete control over it by the underlying operating
system. Efforts have also been made to formally test and qualify the MicroPython interpreter according
to European Cooperation for Space Standardization (ECSS) standards(ECSS-E-ST-70-01C [17]) [18].

3.2.4. James Webb Space Telescope

The James Webb Space Telescope (JWST) is a large space based telescope with a 6.5 meter primary
mirror. It images in the infrared range to look at the origins of the universe [19]. The telescope uses and
event driven system architecture that uses a Javascript execution environment. All operations related
tasks are programmed as scripts written in using Javascript with some custom extensions to allow it to
talk to the telescope hardware. The ScriptEase Javascript engine is embedded into the payload computers
real time operating system(VxWorks). The engine runs as an self contained application with sufficient
isolation to ensure that if the engine itself crashes, other parts of the system are unaffected [20].

4. Micropython Port on RODOS

/ RODOS \

',// MicroPython \
— I',
/' MicroPython MicroPython
RODOS ,' Heap Runtime

Aplications e

~— .
f’,
MicroPython :
L Frozen . MicroPython C
Application L _ - [Modules/LibrariesJ [User Scripts } [Modules J

N— 2

Figure 4.1.: The MicroPython application running inside RODOS.

Figure 4.1 shows the anatomy of a MicroPython instance running as a RODOS application. RODOS
applications are a convenient way of encapsulating the MicroPython instance, allowing for a clear
isolation of the MicroPython stack and heap space from the other applications running in the system.
The MicroPython call stack is shared with the application’s stack. This is a direct consequence of the
fact that most bytecode operands are realized as C functions.

4.1. MicroPython Build Process

MicroPython itself is compiled as a static library(1ibmicropython. a) using a Makefile. The Makefile
and mpconfigport.h (Appendix B) defines all the necessary configuration required to build MicroPy-
thon. Only the target architecture related flags are set by the RODOS build process, enabling MicroPython
to be compiled for the correct target platform that RODOS is being compiled for. During the build
process, the MicroPython core, comprising of the the VM, compiler and runtime are combined. Weak
references to the some of the RODOS API calls needed by MicroPython are left undefined at this state.
These are filled up later when the static libraries is linked against the RODOS API.

MicroPython can be extended by defining C modules with MicroPython bindings to make them
available for use in the MicroPython environment. Such modules are compiled and stored along with
the other Micropython core components. The external C modules with MicroPython bindings are also
added to the build for the MicroPython VM.

4. Micropython Port on RODOS

. Port External
MicroPython Configuration Modules, Exlerlnal F:’ython Frozen Python
Core 3 Libraries Modules
(mpconfigport.h) User C modules

|
L

{ RVOVDOS AP HMicroPython VM}
rappers

MicroPython
Cross Compiler

||

MicroPython MicroPython Static
H Llbrary
Build (libmicropython.a)

RODOS Core RODQS _User RQDOS_
Applications Configuration

vl

Executable

RODOS
Build

Figure 4.2.: The Micropython build process.

The MicroPython cross compiler is used to precompile the external libraries and user scripts. These
precompiled libraries(called frozen modules) are then combined with the MicroPython VM core and
archived into a static library. The frozen modules can then be used in MicroPython code by importing

them.

The RODOS build process defines the target architecture in its configuration files(dosis.build).
This enables MicroPython to be automatically built for the target that RODOS is being built for. Figure 4.2
gives an overview of the MicroPython build process.

4.2

Micropython Core Configuration

The file mpconfigport.h defines all of the options that control the MicroPython build process. The
following options are enabled for the port:

MICROPY_ENABLE_COMPILER : Enables the compiler and adds it to the binary.

MICROPY_EMIT_INLINE_THUMB : Allows the compiler to use the Native and Viper code emitters
to generate inline ARM Thumb-2 instructions.

MICROPY_REPL_EVENT_DRIVEN : Configures the REPL to use a event driven architecture, triggered
by a character received on the UART.

MICROPY_ENABLE_GC : Enables the garbage collector. The garbage collection threshold is set to 0
to disable automatic garbage collection.

MICROPY_MODULE_FROZEN_MPY : Causes frozen modules to be loaded at runtime.

10

4. Micropython Port on RODOS

A more complete configuration file can be found in Appendix B.

4.3.

RODOS API Wrappers

A MicroPython port requires the following functions to be defined in the context of the parent OS:

4.4.

Print Functions are used by MicroPython to output data and render the REPL environment.
MicroPython uses the RODOS PRINTF functions for this purpose.

Along with the RODOS print functions, the UART API is also used to provide character input to
the REPL application.

For time measurement, MicroPython uses the getNano(),

mp_hal_ticks_ms(), mp_hal_ticks_us() and mp_hal_ticks_cpu() functions. These are
mapped to the RODOS NOW() function with appropriate conversions for CPU ticks, milliseconds
and nanoseconds.

The mp_hal_delay_ms() and mp_hal_delay_us() functions use the RODOS
Thread: : suspendCallerUntil (time) function to suspend the MicroPython thread.

mp_import_stat() and mp_lexer_new_from_file() provide access to the filesystem API
via RODOS.

Uncaught MicroPython exceptions cause the control flow to call the nlr_jump_fail () function
which currently prints an error message and enters into a infinite while loop.

User C Module

User defined C modules can be used to extend the MicroPython language by providing functionality to
access hardware and operating system API’s. They are implemented as C functions with some boilerplate
code to add them the the global MicroPython runtime environment.

Appendix D shows an example module which defines a function to add 2 integers.

11

5. RODOS Development Board

The RODOS development board was designed to enable rapid testing of RODOS and MicroPython on
realistic hardware. By defining a standard design for some of the more commonly used components, it
also endeavors to be used as a starting point for future hardware designs. Figure 5.1 shows the various
logical components of the development board. This chapter explains the design choices for the various
components used on the development board Printed Circuit Board (PCB) and also the overall physical
design of the board. Complete schematics for the development board can be found in Appendix A. The
first page shows the overall hardware architecture.

5.1. Microcontroller

The STM32F407(specifically STM32F407ZGT6) [21] microcontroller is used as the central processor
for the development board. It features an ARM®?32-bit Cortex®-M4 CPU with a Floating point unit. It
has 1 Mbytes of flash storage and 192 Kbytes of SRAM. It supports 15 communication configurable
interfaces including 3 x 2C, 4 x USART, 3 x SPIL 2 x CAN and a SDIO interface. Also available are up
to 136 GPIO ports.

The STM32F4 microcontroller family was chosen primarily because both RODOS and MicroPython
have already been ported to the STM32F4 microcontrollers. The microcontroller is programmed using
a JTAG interface. The required programming connections are made using the debug header located
above the microcontroller. Using this interface. the development board can be programmed using a
standard STM32F4 Discovery board. The debug header also includes a UART connector which can used
to print debug messages and send data back to the microcontroller. The SDIO interface is connected
to a microSD card holder allowing for high capacity data storage to be attached to the development
board. Figure 5.1 shows the microcontroller along with all the peripherals around it. Also labelled are
the interfaces used by each peripheral to interface with the microcontroller. Page 2 of Appendix A shows
the complete schematic of the microcontroller.

5.2. CAN Transceivers

Each of the CAN controllers on the microcontroller(CAN T1 and CAN T2) are connected to a TCAN332D
[22] transceiver from Texas Instruments. The TCAN332D also operates at 3.3 V and can be powered
from the same 3.3 V power supply as the microcontroller. It supports a 1 Mbps CAN interface and
has a wide operating temperature range from —45 °C to 125 °C which is useful for space applications.
The 120 Q CAN termination resistors are connected to ground over a 100 pF capacitor. When plugging
multiple boards together, only one of the boards needs to have the termination resistors. Figure 5.3
shows the connections of CAN T1 on the development board.

12

5. RODOS Development Board

V_BAT
r <€ >
- 3 3V3_EXT = >
o <€ > 2
=
o
: 8
~ 2 E
: s I DEBUG /
5 < & < PROGRAMMING
4| 8|2
— < = SD Card
& ox o Holder
<<
e ol =)
- 2| o SDIO
D] o
a
= l 12C
<
o
> —> v v
<€<— BNOOSS5 BME680
3v3 Stm32F407VGTX IMU ENV
> 3V3 > Microcontroller
”| Converter L
 Z
12C CAN TCR CAN TCR
INA226 1 2
A
= & CAN 1, CAN 2 L).:N
“«—> zZ < > zZ «—>
S <
O S} : O (@)

Figure 5.1.: Logical architecture of the development board showing the microcontroller and the various
sensors(Not to Scale).

CANTI
PAI2 i 8
GND 7] D SISTB ——X CANI H
GND___ 2 GNp caNH
_ CANI3V3 3 6 CANI T,
| T PALl 3 vee CANL =5 SR10
25 RxD SHDN/F ———< LRI 20

Cap Semi | (C26 CANTransceiver TCAN332D 30
WwF | 1000F
Loy

= Cap
GND 100pF

GND

Figure 5.2.: Connections for CAN T1 on the development board.

13

5. RODOS Development Board

5.3. Power Supply

The development can be supplied with 2 different power sources: unregulated battery voltage(Vpar)
or externally regulated 3.3 V (3V3Egxr) supply. In case of being supplied with the battery voltage, the
voltage needs to be stepped down to 3.3 V for the microcontroller and other peripherals. For this purpose,
the LMZM?23601 [23] from Texas Instruments is used. It supports an input voltage range of 4 - 36 V,
thus supporting most common battery voltages. On its output, it is capable of delivering an output
current of upto 1 A. The LMZM?23600 was particularly chosen because of its extremely small size. Input
and output decoupling capacitors are the only other required external components. A jumper header
allows for selection between the onboard 3.3 V supply or the externally regulated 3.3 V supply.

Immediately after the power selection header, a 0.1 Q shunt resistor is placed. This is used by the
INA226(described in section 5.4) current sensor to measure power the consumption of the development
board. Both Vpar and 3V3gxr are fused using resettable polyfuses that prevent short circuits, can also
be reset by removing the fault. A LED placed at the output of the LMZM23601 serves as a power status
indicator. Page 3 of Appendix A shows the power supply related components.

GND LMZ23600 GND
1 GND GND W | b9
G { MODSYNC LEDI
Cdp 7“ Cdp GNDT
) GNDT | GND
PowerRails_Supply FUSE" 7PF VIN R20
VBAT FB B 1K
 PowerRai l<Qunnlv
<_PowerRailsSupply> 3V3_EXT FUSE] EN
oD 3V3 EXT F P co% vour YouT 3V3 REG
—_L (G—E899D | pGo0p
= Teet Poi C35 D72
GND est Point Regulator LMZM23600 Cap -

47uF

S

Q
Z
=)

Figure 5.3.: The onboard LMZM23601 DC-DC converter.

5.4. Peripherals

The following peripherals are included on the development board.

5.4.1. Sensors
INA226 Current Sensor

The INA226 [24] current sensor measures the current consumption of the microcontroller and the
peripherals by measuring the voltage drop over a small shunt resistor(0.1 Q). It is connected the the
microcontroller over the I>C bus.

BNOO55 IMU

The Bosch BNOOS5S5 [25] Inertial Measurement Unit (IMU) integrates a 3-axis accelerometer, a 3-axis
gyroscope and a 3-axis magnetometer into one device. Additionally, it also features on-board configurable

14

5. RODOS Development Board

sensor fusion which uses the data from all 3 sensors and provides an absolute orientation in the form of a
quaternion. It also uses the 72C interface of the microcontroller.

BME 680 Enviornment Sensor

The BMEG680 [26] is a low power gas resistance, pressure, humidity and temperature sensor. It has
a extremely low power consumption(few mA for gas resistance measurements and few uA for other
measurements. It is also connected to the microcontroller using the I>C bus.

Extension Headers

In order to provide easy access to the microcontroller’s peripherals, the pins from the microcontroller are
exposed externally via an expansion header. The header has the following digital and analog signals
present: Serial Peripheral Interconnect (SPI), Universal Asynchronous Reciever/Transmitter (UART),
I*C, 4 Analog Inputs, 6 Timer I/O’s which can be used as Pulse Width Modulation (PWM) outputs,
6 General Purpose Input/Output (GPIO) pins from port F of the microcontroller and 3.3 V power and
ground connections. All the extension header and other connectors are shown in detail on page 6 of
Appendix A.

5.5. Physical design

Figure 5.4.: 3 Development boards connected together. They are powered from a laboratory power
supply connected at the top left.

Physical design of the development board was guided by the following requirements:

* The development board should have a 10 x 10 cm form factor. As this is the most common size for
electronics boards in cubesats [3].

* Multiple boards should be able to be connected to each other, enabling testing of the common
CAN bus shared amongst them.

* When stacked, the boards should share a power over the connector.

15

5. RODOS Development Board

* When stacked, the boards should be freely accessible to allow easy access to all the connectors.

* The microcontroller, CAN controllers and the power supply components should accommodate as
low a area as possible on the PCB, leaving most of the area free for other future components on
the board.

Horizontal board to board connectors are placed on the four corners of the PCB. This enables multiple
development boards to be connected together as shown in Figure 5.4. Connectors on the top side of the
board are used to interconnect the battery voltage(Vpar) and the external 3V3(3V3gx7) supply across
boards. The bottom connectors carry the 2 CAN bus signals. This placement of the connectors allows
multiple boards to be plugged in to each other while lying on a flat surface. Debug headers of each
board can be easily reached form the top. The shared power and CAN bus signals can also be probed by
connecting to the respective connectors on the first or the last board. The whole setup needs only one
external power connection, and power is distributed to all the boards over the top connectors. Figure 5.1
shows the rough placement of all the components and the data/power signals between them on the PCB.
Figure 5.4 shows a photograph of 3 development boards connected to each other.

The bottom left of the board houses the power supply components. A jumper header is provided to
switch between the onboard DC-DC converter(i.e using Vp ar) and the external 3V3(3V3gxr) supply. In
the middle is the large microcontroller surrounded by its decoupling capacitors and Realtime Clock (RTC)
oscillator crystal. Its programming header is located above it. On the left are the 2 CAN transceivers.
These components form the basis of future hardware designs. Additional sensors(described in detail in
section 5.4) are located above the CAN transceivers, along with a SD card holder module. The LED’s
and expansion header is located on the top right of the PCB.

16

6. Evaluation

MicroPython being an interpreted language, inherently has a performance disadvantage to a pure C/C++
implementation. Knowledge of what overheads exist and what steps can be taken to mitigate them is
crucial in determining when MicroPython is the appropriate language of choice. This chapter provides a
quantitative analysis of MicroPython performance by measuring the overheads in executing MicroPython
code. It also performs a comparative analysis between MicroPython code and a pure C implementation
of the same algorithm. Additionally, the power consumption of the development board is also measured
using the included INA226 sensor.

6.1. Experimental Setup

The RODOS development board described in chapter 5 is the base hardware for all the performance
evaluations. A lab power supply provides 10 V over the Vg o7 input. The microcontroller is clocked to
run at a base clock speed of 168 MHz. A STM32F4 Discovery board is used to program the development
board. The Discovery board also serves as a USB to UART converter, which is used to log debug
messages to a computer. All measured timings are recorded using this method.

Individual stages of MicroPython execution are measured by timing each stage of the execution(Parsing,
compilation and execution) using the NOW() function in RODOS. The NOW() function uses a hardware
timer that ticks with a resolution of 166.66 ns and returns the current time in nanoseconds. As printing
data to the debug UART output is a slow operation, care is taken to ensure that the measurements do not
include any print statements. All data is printed after the measurement is complete.

RODOS is built with the following compile time options; hardware floating point support is enabled
with the -mfloat-abi=hard and -mfpu=£fpv4-sp-d16 options, the GCC optimization level is set
to -03 and all debugging flags are disabled. A more complete build configuration can be found in
Appendix B. Only a single RODOS application is loaded which has a single thread that executes the
desired test.

6.1.1. Micropython Configuration

The MicroPython VM is built with the following configuration parameters (Configured inmpconfigport.h):
* The Thumb and Inline Thumb code emitters are enabled.

» The garbage collector is enabled but its automatic garbage collection threshold is set to O; effectively
disabling automatic garbage collection. The garbage collector is manually called after each test
run. This excludes the garbage collector runtime from the measurements.

* MicroPython compiler support is enabled.

17

6. Evaluation

* Frozen bytecode and Frozen string modules are enabled.
* Hardware floating point support is enabled.

* Arbitrary precision integer support is enabled and uses the MICROPY_LONGINT_IMPL_MPZ
implementation.

MicroPython is run as a RODOS application. A separate 32 Kb of heap space is allocated to
MicroPython at compile time. All scripts which are measured for their runtime are stored as frozen
modules on the microcontroller flash. A full listing of the MicroPython build configuration can be found
in Appendix B.

6.2. Experiments

C++ implementations, being compiled directly to machine code are inherently much faster than a
interpreted MicroPython scripts. The MicroPython compiler generates bytecode. Each bytecode
operand is implemented as a C function call, thus adding a function call overhead to each line of
code in Micropython. MicroPython does feature a native code emitter that produces native machine
code, however this still does not provide performance comparable to a C++ implementation as it only
avoids the function call overhead. The viper optimized native code, as described in chapter 2, is only
useful in certain situations like register access and bit operations. Additionally, in order to use the
viper optimization, one must step away from standard Python syntax and use special data type hints.
This section described the various performance evaluations done and how they help in characterizing
MicroPython performance.

6.2.1. Overheads due to Parsing and Compilation

As described in chapter 2, before a MicroPython program is executed, it needs to be parsed and then
compiled to machine code. In order to characterize the performance of the MicroPython parser and
compiler, a MicroPython script of increasing length was parsed and compiled. The script simply defines
a MicroPython function which is a repeated series of additions of 2 variables. Listing 6.1 shows the
function being parsed and compiled. Starting with a single addition statement, at each iteration, the
same line is appended to the end of the function and the resulting longer script is parsed from scratch.
As we are only in characterizing the parsing and compilation time, the function is never called. Thus the
execution time remains minimal and can be ignored for this test.

def £O:
a=1
b=2
c=a+b
c=a+b

Listing 6.1: The MicroPython function used to test the parsing and compilation performance. The ¢ =
a + b line is repeated multiple times to generate a long script.

18

6. Evaluation

Figure 6.1 shows the time required for each of the three steps(parsing, compilation and execution) as a
function of the script length. A very linear relationship is observed. In Figure 6.2 we can clearly see that
the percentage of time required for each of the 3 steps remains constant with increasing script size.

6.2.2. Matrix Multiplication : CPU Bound Application

In order to measure the execution speed of a Central Processing Unit (CPU) bound workload, a 3 x 3
matrix multiplication is implemented using MicroPython arrays. The multiplication is carried out using
nested loops and the 3 required matrices are pre-allocated. Listing 6.2 and Listing 6.3 lists the respective
MicroPython and C functions that are timed.

| def matrix_mul(Q):
[, 2, 31, [4, 5, 6], [7, 8, 9]]
s b = [[3, 2, 11, [6, 5, 41, [9, 8, 711
s ¢ = [[0 for row in range(3)] for col in range(3)]
sx = 0.0;
¢ for reps in range(1000):
for i in range(3):
8 for j in range(3):
9 c[il[j1 = 0
10 for k in range(3):
1 c[il[j] = c[i1[3j] + al[il[k]* b[k][j]

» matrix_mul O

Q
1l

Listing 6.2: MicroPython 3x3 matrix multiplication.

ruint64_t matrix_mul() {
uint64_t t = NOWQ);

S uint32_t a[3]1[3] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
4 uint32_t b[3][3] {{3, 2, 1}, {6, 5, 4}, {9, 8, 7}};
: uint32_t c[3][3] = {{0, 6, 0}, {0, 0, 0}, {6, 0, 0}};
6 for (uintl6_t n = 0; n < 1000; n++) {

for (uint8_t i =0; i < 3; i++) {
8 for (uint8_t j =0; j < 3; j++) {
9 c[il[j] = 0;
10 for (uint8_t k = 0; k < 3; k++) {
1 c[il[j] += alillk] * b[kI[j];

12 }

13 11}

14 return NOW(Q) - t;
15 }

Listing 6.3: C++ 3x3 matrix multiplication

Each is run independently of each other and the time taken to execute the script or function is
measured as an average of 1000 runs. Figure 6.3 compares the runtime of the MicroPython with the

19

6. Evaluation

m Execution m Compilation m Parsing

150
3 100
c
3
2
E
=1
L
5
g
2 50
[
E
'_
0
53 173 293 413 533 653 737
Code Length
Figure 6.1.: Total time required for parsing, compiling and executing Micropython code.
W Execution m Compilation m Parsing
100%
. 75%
c
(]
Q.
(%)
()
£
v 50%
o
()
oo
s
c
8
S 25%
a
0%

53 173 293 413 533 653 737

Code Length

Figure 6.2.: The time spent(in %) in the various stages of Micropython code execution as a function of
code size.

20

6. Evaluation

C++ implementation. For the MicroPython implementation, all 3 types of code emitters are separately
measured. Additionally a MicroPython C - module which implements the matrix multiplication in C
code is also measured.

Bytecode is the worst measuring at about 0.383 ms per matrix multiplication. Moving to the native
code emitter, we see a 40% performance improvement(0.231 ms) as compared to bytecode. The native
and viper code emitters have a very similar runtime as the viper optimizations have no effect on standard
MicroPython objects. They are rather meant to be used for pointer and register manipulation operations.
The RODOS and MicroPython C module implementations are significantly faster. They require only
0.0120 ms and 0.0125 ms per matrix multiplication; a gain of 96%!

0.4

0.3

0.2
0.1
0o DS 0 PSS e R 2O .

Bytecode Native Viper CModule RODOS
Optimized

Time(milliseconds)

Figure 6.3.: Comparison of runtime of a 3x3 matrix multiplication implemented in MicroPython and
RODOS

6.2.3. Large Array Sorting : Memory Bound Application

Memory bound operations like accessing large static arrays stored in flash memory are also compared.
For this, a 500 element array containing random integers generated using the Python random library.
A simple bubble sort algorithm is implemented in MicroPython, C++ and as a MicroPython module.
Additionally the inbuilt list sort function is also included in the timings. It should be noted that the
inbuilt sort function uses the quicksort algorithm rather than bubble sort. Listing 6.4 shows the bubble
sort script in MicroPython and Listing 6.5 shows the sorting implemented in C++.

1 # ’large’ is an array with 500 integers.

21

5

3

4

5

6

9

6. Evaluation

large = [708, 383, 644,]
@micropython.native
def bubble_sort():
for i in range(500):
for j in range(i, 500):
if(large[i] > large[j]):
large[i], large[j] = large[j], large[i]
bubble_sort()

Listing 6.4: Bubble sort implemented in MicroPython and compiled using the native code emitter.

static uint32_t large[500] = {708, 383, 644, ...};

> uint64_t bubble_sort() {

uint64_t t = NOWQ);
for (uintl6e_t i = 0; i < 500; i++) {
for (uintl6_t j = 0; j < 500; j++) {
if (large[i] > large[j]) {
uint32_t temp = large[i];
large[i] = large[j];
large[j] temp;

}
return NOW(Q) - t;

Listing 6.5: C++ bubble sort implementation.

Figure 6.4 shows the runtime of the array sort script using different implementations. We see a 15%
increase in performance when using the native code emitter as compared to bytecode. Bytecode needs
3.69 s, Native needs 3.18 s and the Viper emitter needs also 3.18 s for sorting the array. Again, the Native
and Viper emitters are closely matched. The C++ bubble sort implementation is more than 98% faster
and needs only 50 ms. For memory bound operations, the native code emitter has a much lesser impact
on the runtime as compared to CPU bound operations.

6.2.4. Micropython Script execution overhead

MicroPython scripts in this project are primarily aimed at being used in time critical scenarios, where
the script is executed as a reaction to some external event like an interrupt. Execution of a script includes
several overheads like script load, parse and compilation. When executing a pre-compiled frozen script,
the parsing overhead is absent. Additionally, if any import statements are present, the module in question
is loaded, parsed and compiled if required, before proceeding with script execution. In realistic scenarios,
scripts would likely contain multiple import statements and multiple functions, class definitions etc;
However we can establish a baseline by measuring the time required for importing a single MicroPython

22

)

6. Evaluation

4000
5000
——
[#5]
e
c
o)
[]
T,
A 2000
2
£
= 1000
0

Bytecode MNative Yiper Optimized List Sart RODOS

Figure 6.4.: Comparison of runtime of sorting a 500 element array.

module. Using the test module which defines a single function(Appendix D), it is found that on an
average, importing the test module requires 1.82 ms.

6.2.5. Garbage Collection

In all of the above tests, automatic garbage is disabled to prevent it from influencing the measurements.
This also makes sense in time critical applications where a automatic garbage collection can cause the
runtime to be unpredictable. To schedule manual garbage collection , its useful to know how much time
the garbage collector requires on average. The garbage collector runtime was measured by triggering a
manual garbage collection after each of the above mentioned tests. The average runtime of the garbage
collector was 0.341 ms. For a worst case analysis, the script shown in Listing 6.6 was run. The script
creates new MicroPython dictionary objects and appends it to an array, exhausting almost all of the 32
Kb heap space. After the script ends, the array goes out of scope and subsequently all the dict objects
and the array itself are garbage collected. The average worst case runtime for the garbage collector is
1.943 ms.

a =[]
for i in range(1,500):
a.append({10:20.03})

Listing 6.6: Script for measuring worst case runtime for the garbage collector.

23

6. Evaluation

6.3. Discussion

MicroPython, at first glance, seems to be orders of magnitude worse in performance. However its primary
use is as a scripting language to control and automate tasks rather than to perform computationally heavy
tasks. MicroPython is perfectly adequate for reading a sensor value and saving it once every second.
However if the task is computationally expensive, like grabbing an image from a camera and compressing
it before saving, a pure MicroPython implementation would be a severe performance bottleneck.

MicroPython makes several optimization options available to the user. When constrained to only
MicroPython code, the Native code emitter, depending on the situation, offers up to 40% improvement in
performance. When dealing with bit operations, register manipulations and other low level operations,
the Viper code emitter performs a little better than the Native code emitter. Performance critical and
computationally expensive code can be outsourced to MicroPython C modules. Their performance is on
par with a plain C/C++ implementation.

The script compilation and execution overheads can be also be reduced in certain cases. The
MicroPython cross compiler allows for offline precompilation of MicroPython code to either bytecode
or native machine code. At runtime, for frequently used scripts, a caching strategy can be used. The
compilation would only be required on the first run and subsequent runs will be faster.

24

7. Conclusion and Future Work

The MicroPython port for RODOS was programmed with the objective of using MicroPython as a
scripting language for future MOVE projects. The hardware development board proved very useful in
the development and testing of not only MicroPython but also other RODOS applications. The board
has been setup as a testing and development environment with remote access. The CAN transceivers
integrated onto the development board have enabled testing of the CAN bus and its latencies.

During the development several areas of future work were identified. While the MicroPython port
works, it still is running in a sandboxed environment as it has no access to hardware. As we want to
rely on the hardware abstractions provided by RODOS, a possible solution to this problem would be to
implement MicroPython wrappers for the RODOS API. This will enable MicroPython applications to
fully utilize the capabilities of the hardware while still interacting with the other parts of the system in a
safe manner. A starting point to this would be the RODOS Topic API. Porting this would immediately
enable MicroPython applications to communicate with other applications by publishing or receiving
messages.

The STM32F4 microcontroller used currently on the development board consumes a lot of power.
The power consumption of the board can be lowered by changing the microcontroller to a STM32L4.
Both the microcontrollers are pin compatible with only a few changes to some of the power pins. Thus,
from a hardware point of view, migrating to a SMT32L4 microcontroller is easy. However RODOS does
not have a working STM32L4 port yet. The current development board does not feature an external
clock oscillator for providing the system clock. While the internal oscillator works fine for testing, it is
not very stable over long periods of time or varying temperature. Adding an external oscillator crystal
will improve the stability of the clock.

25

A. Development board schematics

26

€

20QydS°|eAa|doy sisod\pieog SISOQ\SIsey] JAISEN\:Z 3]l
9 JO TI98YS | BT:L0T BWIL 610¢/S0/ve -ered
@ T:uoisIney “Ta8quinN DAVARCTAS
HHVM afey selol
IR 13A31d0OL SISO @nL
Alddnssrediemod <
ene <
- _ovir U
= ® 1¥vn 9naaa
> sng_eNvo mmmm - Sunv “
> sng INVO 2757 N3X
000
20Qy2S°S10398UU0D
$J0J23UU0D
o
000
. VTUUVT $LC 1esey 1
[05T]4d s moomn oI> 0Loog
Giaer 5T
INVD COINVD S 2l ~ »
NV > ZNVO 1¥vn ong3aa <
1021 Dt ovie <
ayvoas < > ayvoas
> SNETINVD
> sna eNvo m 3
[[
o
ene < M M ene <

204Qyds sfeseyduiad
s|eJaydiiad Josuas

20QUdS NIW sIsoqQ
13][013U020IIIN|

> EAE

2ozl <

‘STldd [s

[0)

=

Addngsjreyuamod <

20QUdSIore|nbay
Ajddnsiamod

8 L 9 S 14 € 4 T

20QydSNow sisog\pseog sI1sod\sisay L J8Ise|N\:Z
* 9 JO 2193YS [B8T:L0:YT BWIL 10¢/50/vC_31ed
ey @ * *Eo_m_\,mi "2 aquINN gV s
M
HHYM .
I NJOIN S1SOQ °mL

MLy ALYy
zsay

NOW DOA
sdnjind ozl
919Z/0v42ENLS

SO SN s1ad
}v NO ¥ad ¥10d s
— &) gl008 ¢1ad
8
8
7
7
7
2

€1ad
¢1ad

NOW O0A 01009 8ET Z1ad

T1ad
01ad
6ad
8ad
1ad
9ad
Sad
Aad
e
2ad

4dgzt
dep

2ad 1IN0 ¢€0s0 ood
IVLX 220
TAL ddgzt
dep
Srod] TG 26950 008 B
o NI ¢€050 00 NI ¢€0S0 00d
120
S0
a

[a] () [a][a] a](a] [a] (=) [a] [a] [a) /] [a) 2] fa) [2)
fod (ol Fod oo Pl o ol Fod ol Fod o Pl o Pl Pl o

o

g dWo olas
ST oIS 10 01as
= £0_0Ias Qyvoas
€0 0IGS, 5~
2a_01as
20 0IGS, 75~
10_01as
1d 988, yq-oi1as
00 0IasS

ayvoas

O|O|0|0|O

ane
[voo1 T avoor T suoor T Juoor T Auoot | Juoor T Juoot T Juoor T 2uoor T auoot T Juoor T MH
4u00T [4u00T | 4U00T | 4U00T | 4U0OT | 4UOOT | SU0OT | JUOOT | SU00T | JU0OT | u00T | 4U00T | u00T
2 80— LED== 980== 020 6IO—— 8IO== LIO=— 9I0=— SIO=— $I0=— €I0=— ¢I0—— TID
% J EE W W A S Ay I Wl Wy R Ui JM
d

ol NOW D20A

1SUNOVLE
84 501 ovir H
1aL 9V el Svit >

MT1OMS OVLL
OIOMS OVLE

ovir

o]
o]
o]
0
o]

[=) (=) (=)=}

a
a
a

SSN_TIdS

¥vd = // < Tds >
Svd 1OS TIdS ﬁ TIdS

ano

4Ly 4Ly
010! 60
9197/074ZENLS
Tad 30T ¢_dVOA LVEA
58d sy dVOA
+43UA

2€ El ET
R vad WaaA 3 1wap n_mul—! 1wag nmol—!
€8d DWO aan 80! = /K
T qon o7 y y
- SSA aan e e
———=7—1 SSA AdA —— I—l I—l
W =s®>1 GT3d STvd SSA aan

OSIN_TIdS
9vd =
Tva 'SOW Tids

TIds

o)
GO A

=]
]]
(¥ [GN [o¥ [

fod ol Fod o Pl o

o)
)

|

r~[ool
o]
a(a

|

9& xw_ms.m,\: A N._.m<3\/
v XL elavn

zLavn

o
D)
o

deeere]

|

1)
o)
a

<
@
o
Y
|

< 2ozl >

TTad vas 1o¢l

—otad 70s 2ozl

nnnn|

o
i
a
o
@
a

'}v{

o

I

4]

Q
o
o
o
a

Tag vas 1oel

—gag 108 192

£ el > y13d SSA Adn —=—f
e13d SSA Aan —s—

SSA AdA ——

SSA aan
SSA aan
SSA aan
VSSA AaA =F 1

gINOW NOW D0A

1021

T13d

63d___63

{ > _63d
¢NVO e

) .3
ZNVO 93,

XL_INVO W < INVD >

SIS
<
=

—7 XL _eNvO
£18d {5
—Sgg Xd ANV

—

—>1 §3d Svd

RIRRRIRIR R[]z
K
3

SISIE|E

<

Z
TTvd

B
4

Vd £vd

XY INVD
INVO

[24
T

o

vd Tvd ano

. \ vino L ans /
x¥_ona3d ﬁ < 18vn on83d » -

ova XL ODmmD) ENE \\
Ldvn ong3a ENE

NOW D0A

Ll

:

gl

-

<

w

i

o

S

g
EYEXERNE TN EERS

] e v]
o
—
w
a
-
&

a

ENE

-
S|

€

20QU0S 10fe|NBag\pJeod SISOQ\SISaUL JOISeNNZ -o|id

BLINEY pun YUUOBeIOYEY
104 YPUOBOWIBSOGNY
SUOIEUOBUOBIM

HHVM

%

9 JO €39YS

6T:L0-T WL

6102/50/v2 eked

suoIsIney

‘:aquinn

v ezs

—dx x x %

JUBWAINSEAN 19MOd 79 Jote|nfiay SAE oL

ano ano
4UQ0T
1S9AIV9ZZYNI 68D
NOT _
ano STy g @2 5 (e EAE
= . INER
6d €
ano - NOOTHAMES- 13 CKCHSREeH] N snan
B o ey W Y e T o z
Ene X3 EAE Trag o YaS NI TA 922N =
-
REST 8Tl 108 NIA (o2 YNl Tra7 s 102l ¢ e >
195 2ol
A oTad
EACE ccr JUBWINSESA JUBLIND eoel
ano ano
uuhv 6
— mmw 009EZINZINT JoteinBay —
aoood i
. 1NOA fboo d —
934 ENAE ﬁ 1NOA NI 4 1X3 €A€ 13503
ST a4 E] LB
ocy EE T 1
ano ___ LaND DI NIA FLIRY = Ajddng~sjieq4amod
1AND ANASAOW 124 dep Hrizy deo
W aow qmolhl €0
6d | X ane
ano
ano 00952ZIN1 ano

mn

v € 4 7 T
30005 S[esaydiiad\pIeog SISOA\SISaUL JaISeAN.Z olid
. 9 J0 PoUS | GTZOWT BWIL 6TOZ/S0/ve eled 1031 .
TR @ M wUoISIAGY "piIaqunN AR 53
* S
HHVM
. 5 ML ‘w\S
1031
N
0T e
84d oTy EAE VIva ¥y
N el
= 4S-S0ENd dnjind 10818 p4eD a3l ST
g SA ELVAIA0 7 rq oias ano e v
2 | ano Zlva 3 1
TS T_2d oldas = ¥y
> ano Tiva 3 ==3
Zs ano o1va 8 1d 0Ids [Xe|
€S £ 04 olas 1031
> ano ST
S8 Ms™ad e
1o 46 83d JuooT BT = ey €dd
anp 5219 01ds 280 | 1wses deg | ¥
ano 3 zad JII 0= a9
d — daan MT
4dgot — ¥ EAE VIVa _
®0 ! g2y
0€0 tas anos %
— sa
1031
_ JuQoT ETE AT
03 QZEENVOL JAIROSURLLNYO 620 | wes dey G T4
3 ST e INGHS O s [T %
Tenvo 9] INVO Q0N ——FReoNvo 108
HNVO aNO — s ST
H eV L aiss ax
g T €1ad T2d 04d — QD 0Ias
ano ZINVD ’y dd y95701as
= a S OIS, A G
oot ane 0O £a_oias Quvods >
ded = za olas ¢d-01ds
120 1q olas (90108
tooige 0a oias
a¥voas
_ 4U00T ET
0g AZEENVOL J8AIBISUBIINYD 920 1wss dep
[S ” 20 vas 1ozl G
o X NG O g [O TR P
1IN0 9 Nvo ane E_EAEINvD 9ad
HINVD L z ano 102
A aLss Al ZIvd ano
TINVO =
iy
R
4U00T ZTad
¥z 30007 INVD
0893Nd == £20—=—
—— 108 oas X1_TNVO q TNVO >
wMM|N vas: olada w MM«M__ X TNVD W
SNg"ZNYD EASINE_ 2| oo o [aNo INVD
- ano 1 8 NIEE]
4SNE eNvD > TINYD G
H ENYO —Shes i
SNg TINVO EAE VLVA
4SNE INVD > TINVD nnm #u_w - ane
% L T INVD 98d EAE EAETTNVD =
HINYO 1 7\wvo 7ad—) vas T
1SuN ONg— ene T —aw TV Yy ano PrEEN
EAE ONG one b
90Q195'5500U4 EAEONE gy
SS00NE ene
eAEINE ey
v € z 7 1

€

T
90QU9S GG00UG\PIEOT SISOC\SISAUL JOISEINVZ _a[1d
* 9 J0 g¥8ys 6T:20:PT BWIL 610¢/S0/v¢ 9ked
iy @ @ < UoISINGY ‘GuaaquInN AL
&
HHYM . L
. « O
ano
=
4U00T
dep
yO=—
LNI ST soyu
waw_&
&|'R|&G[S[R]S] 0| oof~[e 10y
2533303 IZ
Z3zzRr>z24
B BB gp= 90N
o wNfZ
-0
ST 9TNId __ Tsd t=
7 €NOD NId dvO1 100gu w
g ZNOD aan S
10s 5 TNOD anNo m
X
@] < 4U00T
82323£58s c
SEEEEEEEGE £05)
9500Ng Mot
TONd HHH H Nmmm_””_
MNININININ NN NN =
o|r|N|w|s|o|o|~N| €dy
HUOZT
vas 9_8
|
40}
HU8"9
dep
10
ane ene
|_|| ENE
N
anNo
ENE
€ T

4 € z T
20QYydS'si0}oauuod\preoyg sisod\sissy | I8IseiN\:Z :B|l4
x 9 J0 9398US | 02iL0:YT BWIL 6T02/S0/ve :aed
e @ H K:UoISINGY '9:aquinN VAAREYS -
HYVM SSN _TIdS
. x oL LY 5105 TIds TidS >
v OSINCTIdS
v |SOW TIdS
TIdS
XY z1dvn < zvn >
evd |-
vg XL eluvn W
zLavn
T o S
orad
2ozl
7aq LsuN ovir
cag 0dL ovir
Shyq /L ovir < oviL >
va I 1oMs ovLr
OIAMS 9VIr
€Tvd
ovir
Tva Xd_ongaa <_ldvn ong3aad >
ova XL ond3a
o Ldvn ong3a
vd 94d
— 8T ST
Svd Sdd
ovg—— 61 71 -
ad
Lvd 0c €1 £d4d —
ovd ea 23d vy VD (. SNENYD >
evd &7 o d H ¢NvO _
118d i e 04d SNg ¢NVO
orad < @ EAE AND
00d ENE — ano - SN TG
ane ane | % ¢ EAE ano = TIvg VD SN8 TNV >
= XS JapeaH = 2od @ o = ZXS JapeaH H INVD _
€0d SNg INVO
p o5 62 v 0T 6
— A = o€ € —y—— 8 L =
T 2ZNVD PEE H gNVO T ZNVD ano
b € ¢ 9 g =
~ €13d 1 21ad ~ 5 6 =
T INVD y13d g €1ad HINVO z 1 1INVD NG
TNVD ene $ EA
anos NS ano ano ENE
= 4 — ¢XG JopesH = CXG JopeaH = ano ENE
- ! ¢ JopesH _ovd] m._“ m Tvd ma w | anNo
XTI ENE | z 01008 ano 9 g ano LXT EAE o ¢ [LXTEAE IXTEAE iddnssiesiamod >
1 [otoos €Tvd vt €ad v e LXT EAE Toan
LVEA T vTvd 7 1 GTvd 1VEA 7 1 LVEA IVan _
0Td 1SdN 4ad ENE Ajddnss|1eyamod
o ¥3IMOd ong3ad T 43IMOd

B. Micropython Configuration

Listing B.1 is the main file controlling the Micropython build.

// Options to control how MicroPython is built
> // Checkout micropython/py/mpconfig.h for a brief
5 // description of each option.

#define
#define

#define
#define
#define
#define

5 #define

#define
#define
#define
#define
#define
#define
#define
#define
#define

s #define

#define
#define
#define
#define

»x #define
2 #define
1 #define
51 #define
»» #define

13 #define

#define

MICROPY_HW_BOARD_NAME
MICROPY_HW_MCU_NAME

MICROPY_ALLOC_PATH_MAX (128)
MICROPY_ALLOC_PARSE_CHUNK_INIT (16)
MICROPY_EMIT_THUMB @D)
MICROPY_EMIT_INLINE_THUMB (1

MICROPY_COMP_MODULE_CONST ®
MICROPY_COMP_CONST ®
MICROPY_COMP_DOUBLE_TUPLE_ASSIGN (1)
MICROPY_COMP_TRIPLE_TUPLE_ASSIGN (1)

MICROPY_MEM_STATS ®
MICROPY_DEBUG_PRINTERS ®
MICROPY_ENABLE_GC D
MICROPY_GC_ALLOC_THRESHOLD (®)
MICROPY_ENABLE_COMPILER D
MICROPY_REPL_EVENT_DRIVEN @D)
MICROPY_HELPER_REPL @D)
MICROPY_HELPER_LEXER_UNIX D

MICROPY_ENABLE_SOURCE_LINE (0)

MICROPY_ENABLE_DOC_STRING ®

MICROPY_ERROR_REPORTING (MICROPY_ERROR_REPORTING_TERSE)
MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG (1)
MICROPY_PY_ASYNC_AWAIT ®
MICROPY_PY_BUILTINS_BYTEARRAY (1)
MICROPY_PY_BUILTINS_DICT_FROMKEYS (1)
MICROPY_PY_BUILTINS_MEMORYVIEW (1)
MICROPY_PY_BUILTINS_ENUMERATE (1)
MICROPY_PY_BUILTINS_FILTER (1)

33

B. Micropython Configuration

;5 #define
3 #define
;7 #define

#define

3 #define

#define
#define
#define
#define
#define
#define
#define

 #define

#define
#define
#define

51 #define

#define

5 #define

#define

55 #define
sc #define

#define

s #define
5o #define

#define

#define

s #define

MICROPY_PY_BUILTINS_SET

1

MICROPY_PY_BUILTINS_FROZENSET (0)
MICROPY_PY_BUILTINS_REVERSED (1)

MICROPY_PY_BUILTINS_SLICE

1

MICROPY_PY_BUILTINS_PROPERTY (0)

MICROPY_PY_BUILTINS_MIN_MAX

(1

MICROPY_PY_BUILTINS_STR_COUNT (1)
MICROPY_PY_BUILTINS_STR_OP_MODULO (1)

MICROPY_PY___FILE_ _
MICROPY_PY_GC
MICROPY_PY_ARRAY
MICROPY_PY_ATTRTUPLE
MICROPY_PY_COLLECTIONS
MICROPY_PY_MATH
MICROPY_PY_CMATH
MICROPY_PY_IO
MICROPY_PY_STRUCT
MICROPY_PY_SYS
MICROPY_MODULE_FROZEN_MPY
MICROPY_MODULE_FROZEN_STR
MICROPY_QSTR_BYTES_IN_HASH
MICROPY_QSTR_EXTRA_POOL
MICROPY_CPYTHON_COMPAT
MICROPY_LONGINT_IMPL
MICROPY_FLOAT_IMPL
MICROPY_USE_INTERNAL_PRINTF

» // Extended modules
; #define

MICROPY_PY_UTIMEQ
MICROPY_PY_UTIME_MP_HAL
MODULE_EXAMPLE_ENABLED

// #define MICROPY_PY_URANDOM

(D

(D

@D

@Y

(D

(D

@D

®

(D

(®

@D

(D

(D
(mp_gstr_frozen_const_pool)
(®
(MICROPY_LONGINT_IMPL_MPZ)
(MICROPY_FLOAT_IMPL_FLOAT)
®

€N
(1
(1

(1

#define MP_PLAT_PRINT_STRN(str, len) mp_hal_stdout_tx_strn_cooked(str, len)

#define MICROPY_PORT_BUILTIN_MODULES \

{ MP_OBJ_NEW_QSTR(MP_QSTR_example),

(mp_obj_t)&example_user_cmodule }, \

{ MP_OBJ_NEW_QSTR(MP_QSTR_argex), (mp_obj_t)&mp_module_argex }, \

34

77

78

~

9

80

o

2

o

83

84

85

86

87

88

89

90

91

©
1

©

3

4

95

96

7

©

8

99

100

101

102

103

104

105

106

107

B. Micropython Configuration

#define MICROPY_MAKE_POINTER_CALLABLE(p) ((void*) ((mp_uint_t)(p) | 1))

// This port is intended to be 32-bit, but unfortunately, int32_t for
// different targets may be defined in different ways - either as int
// or as long. This requires different printf formatting specifiers
// to print such value. So, we avoid int32_t and use int directly.
#define UINT_FMT "%u"

#define INT_FMT "%d"

typedef int mp_int_t; // must be pointer size

typedef unsigned mp_uint_t; // must be pointer size

// extra modules available to uPy.
extern const struct _mp_obj_module_t mp_module_mymodule;
extern const struct _mp_obj_module_t mp_module_argex;

#define MP_STATE_PORT MP_STATE_VM
#define MICROPY_PORT_ROOT_POINTERS \
const char *readline_hist[8];\

typedef int mp_int_t; // must be pointer size
typedef unsigned int mp_uint_t; // must be pointer size
typedef long mp_off_t;

#include <alloca.h>
Listing B.1: Micropython configuration header : mpconfigport.h

35

C. Rodos Configuration

Listing C.1 and Listing C.2 show the RODOS build time configuration. The dosis.build defines the
target environment including the cross compiler to use(arm-none-eabi-g++, version 8.2.1 20181213
(release) [gcc-8-branch revision 267074] in this case) and any other target specific options that are

S}

S

w

~

v

=)

needed.

target_hw_flags = [’-mcpu=cortex-m4’, ’-mthumb’, ’-mfloat-abi=hard’,
fpvd-sp-dl16’, ’-fno-pic’]
target_c_args = target_hw_flags + [
’-gdwarf-2’,

’-DHSI_VALUE=16000000",
’-DSTM32F40_41xxx’,
’-DUSE_STM32_DISCOVERY’,
’-DUSE_STDPERIPH_DRIVER’,
'_03’

]

target_cpp_args = target_c_args + [’'-fno-rtti’, '-fno-exceptions’]

target_link_args = target_hw_flags + [
"-T’ + meson.current_source_dir() + '/scripts/stm32_flash.ld’,
’-nostartfiles’,
’-nodefaultlibs’,
’-nostdlib’,
’-Xlinker’,
’--gc-sections’,
’-fno-unwind-tables’,
’-fno-asynchronous-unwind-tables’

]
target_file_ext = '.elf’
Listing C.1: Meson build configuration for RODOS
[binaries]
c = ’/opt/arm-toolchain/latest/bin/arm-none-eabi-gcc’
cpp = '/opt/arm-toolchain/latest/bin/arm-none-eabi-g++’
1d = ’/opt/arm-toolchain/latest/bin/arm-none-eabi-gcc’
ar = ’'/opt/arm-toolchain/latest/bin/arm-none-eabi-ar’
strip = ’/opt/arm-toolchain/latest/bin/arm-none-eabi-strip’

36

C. Rodos Configuration

¢ [host_machine]
o system =

10 cpu_family =
1 cpu =

> endian =

13

11 [properties]
15 board =

Listing C.2: The Development board target definition build file.

37

D. Example MicroPython C Module

1 // Include required definitions first.
» #include "py/obj.h"

; #include "py/runtime.h"

4 #include "py/builtin.h"

5

6 // This is the function which will be called from Python as example.add_ints(

a, b).
7 STATIC mp_obj_t example_add_ints(mp_obj_t a_obj, mp_obj_t b_obj) {
8 // Extract the ints from the micropython input objects

9 int a = mp_obj_get_int(a_obj);
10 int b = mp_obj_get_int(b_obj);

// Calculate the addition and convert to MicroPython object.

13 return mp_obj_new_int(a + b);

4}

15 // Define a Python reference to the function above

1 STATIC MP_DEFINE_CONST_FUN_OBJ_2(example_add_ints_obj, example_add_ints);
17

s // Define all properties of the example module.

v // Table entries are key/value pairs of the attribute name (a string)

w0 // and the MicroPython object reference.

1 // All identifiers and strings are written as MP_QSTR_xxx and will be

» // optimized to word-sized integers by the build system (interned strings).
STATIC const mp_rom_map_elem_t example_module_globals_table[] = {

24 { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_example) },

25 { MP_ROM_QSTR(MP_QSTR_add_ints), MP_ROM_PTR(&example_add_ints_obj) },
% };

»7 STATIC MP_DEFINE_CONST_DICT(example_module_globals,
example_module_globals_table);

=)

)
@

2 // Define module object.

;0 const mp_obj_module_t example_user_cmodule = {

31 .base = { &mp_type_module },

£ .globals = (mp_obj_dict_t*)&example_module_globals,

3 ks

38

D. Example MicroPython C Module

34

5 // Register the module to make it available in Python

36 MP_REGISTER_MODULE (MP_QSTR_example, example_user_cmodule,
MODULE_EXAMPLE_ENABLED) ;

Listing D.1: An example module which shows how to define a MicroPython module in C. The Module
simply defines a function which adds 2 integers and returns the result,

39

List of Figures

2.1.

4.1.
4.2.

5.1
5.2.

5.3.
54.

6.1.
6.2.

6.3.

6.4.

MicroPython internals showing how the compiler, runtime and virtual machine interact
witheachother.

The MicroPython application running inside RODOS.
The Micropython build process.

Logical architecture of the development board showing the microcontroller and the
various sensors(Notto Scale).
Connections for CAN T1 on the development board.
The onboard LMZM?23601 DC-DC converter.
3 Development boards connected together. They are powered from a laboratory power
supply connected atthe top left. oL o oL

Total time required for parsing, compiling and executing Micropython code.
The time spent(in %) in the various stages of Micropython code execution as a function
ofcodesize.
Comparison of runtime of a 3x3 matrix multiplication implemented in MicroPython and
RODOS . . .
Comparison of runtime of sorting a 500 element array.

20

40

Listings

2.1.
2.2.

6.1.

6.2.
6.3.
6.4.
6.5.
6.6.

B.1.

C.1.
C.2.

D.1.

A MicroPython function.
The generated bytecode

The MicroPython function used to test the parsing and compilation performance. The c

= a + b line is repeated multiple times to generate a long script.
MicroPython 3x3 matrix multiplication. L.
C++ 3x3 matrix multiplication L
Bubble sort implemented in MicroPython and compiled using the native code emitter. .
C++ bubble sort implementation.o
Script for measuring worst case runtime for the garbage collector.

Micropython configuration header : mpconfigporth

Meson build configuration for RODOS
The Development board target definition build file.

An example module which shows how to define a MicroPython module in C. The Module
simply defines a function which adds 2 integers and returns the result,

41

Bibliography

[1]

[10]

[11]

[12]

V. Verma, T. Estlin, A. Jénsson, C. Pasareanu, R. Simmons, and K. Tso. “Plan execution interchange
language (PLEXIL) for executable plans and command sequences”. In: International symposium
on artificial intelligence, robotics and automation in space (iSAIRAS). 2005.

T. Estlin, A. Jénsson, C. Pasareanu, R. Simmons, K. Tso, and V. Verma. “Plan execution interchange
language (PLEXIL)”. In: (2006).

A. Mehrparvar, D. Pignatelli, J. Carnahan, R. Munakat, W. Lan, A. Toorian, A. Hutputanasin,
and S. Lee. “Cubesat design specification rev. 13”. In: The CubeSat Program, Cal Poly San Luis
Obispo, US 1.2 (2014).

S. Rueckerl, D. MeBmann, N. Appel, J. Kiesbye, F. Schummer, M. Faehling, L. Krempel, T. Kale,
A. Lill, G. Reina, P. Schnierle, S. Wuerl, M. Langer, and M. Luelf. “First Flight Results of the
MOVE-II CubeSat”. In: Session I: A Look Back: Lessons Learned. Technical University of Munich.
June 2019. urL: https://digitalcommons.usu.edu/smallsat/2019/a112019/49/.

S. Montenegro and F. Dannemann. “RODOS-real time kernel design for dependability”. In: DASIA
2009-DAta Systems in Aerospace. Vol. 669. 2009.

MicroPython. MicroPython code statistics.2019. urL: http: //micropython.org/resources/
code-dashboard/ (visited on 09/13/2019).

MicroPython. MicroPython inline assembler supported instructions. 2019. urL: http://docs.
micropython.org/en/vl1.9.3/pyboard/reference/asm_thumb2_index.html#asm-
thumb2-index (visited on 09/13/2019).

K. Gordon. A flexible attitude control system for three-axis stabilized nanosatellites. Vol. 2.
Universititsverlag der TU Berlin, 2018.

M. Barschke, K. GroBekatthofer, and S. Montenegro. “Implementation of a nanosatellite on-board
software based on building-blocks”. In: Proceedings of the Small Satellites Systems and Services
Symposium. Porto Pedro, Spain. 2014.

A. Stamminger, J. Ettl, J. Grosse, M. Horschgen-Eggers, W. Jung, A. Kallenbach, G. Raith,
W. Saedtler, S. Seidel, J. Turner, et al. “MAIUS-1—vehicle, subsystems design and mission

operations”. In: Proceedings of the 22nd ESA Symposium on European Rocket and Balloon
Programmes and Related Research. ESA Special Publication. 2015, pp. 183-190.

J.-S. Ardaens and G. Gaias. “Integrated Solution for Rapid Development of Complex GNC
Software”. In: Proceedings of the Workshop on Simulation for European Space Programmes
(SESP). European Space Agency, ESTEC Noordwijk, The Netherlands. 2015.

M. Wermuth, G. Gaias, and S. D’Amico. “Safe picosatellite release from a small satellite carrier”.
In: Journal of Spacecraft and Rockets 52.5 (2015), pp. 1338-1347.

42

https://digitalcommons.usu.edu/smallsat/2019/all2019/49/
http://micropython.org/resources/code-dashboard/
http://micropython.org/resources/code-dashboard/
http://docs.micropython.org/en/v1.9.3/pyboard/reference/asm_thumb2_index.html#asm-thumb2-index
http://docs.micropython.org/en/v1.9.3/pyboard/reference/asm_thumb2_index.html#asm-thumb2-index
http://docs.micropython.org/en/v1.9.3/pyboard/reference/asm_thumb2_index.html#asm-thumb2-index

Bibliography

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. Montenegro, Q. Ali, and N. Gageik. “A review on distributed control of cooperating mini
UAVs”. In: (2015).

Q. Ali. “Distributed Control of Cooperating Mini UAVs”. In: (2016).

M. Holliday, A. Ramirez, C. Settle, T. Tatum, D. Senesky, and Z. Manchester. “PyCubed: An
Open-Source, Radiation-Tested CubeSat Platform Programmable Entirely in Python”. In: ().

F. Sturesson, J. Gaisler, R. Ginosar, and T. Liran. “Radiation characterization of a dual core
LEONS3-FT processor”. In: 2011 12th European Conference on Radiation and Its Effects on
Components and Systems. IEEE. 2011, pp. 938-944.

E. C. for Space Standardization. Spacecraft on-board control procedures. Apr. 2010. URL:
https://ecss.nl/standard/ecss-e-st-70-01c-on-board-control-procedures/.
D. George, D. Sanchez, and T. Jorge. “Porting of MicroPython to LEON Platforms”. In: Data
Systems in Aerospace (2016).

P. A. Sabelhaus and J. E. Decker. “An overview of the James Webb space telescope (JWST)

project”. In: Optical, Infrared, and Millimeter Space Telescopes. Vol. 5487. International Society
for Optics and Photonics. 2004, pp. 550-563.

V. Balzano and D. Zak. “Event-driven James Webb Space Telescope Operations using on-board
JavaScripts”. In: Advanced Software and Control for Astronomy. Vol. 6274. International Society
for Optics and Photonics. 2006, 62740A.

S. Microelectronics. ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to IMB Flash/192+4KB
RAM. DocID022152. Rev. 8. ST Microelectronics. Sept. 2016.

T. Instruments. TCAN33x 3.3-V CAN Transceivers with CAN FD (Flexible Data Rate). SLLSEQ7D.
Texas Instruments. Apr. 2016.

T. Instruments. LMZM23600 36-V, 0.5-A Step-Down DC/DC Power Module in 3.8-mm x 3-mm
Package. SNVSB53B. Texas Instruments. May 2019.

T. Instruments. INA226 High-Side or Low-Side Measurement, Bi-Directional Current and Power
Monitor with I2C Compatible Interface. SBOS547A. Texas Instruments. Aug. 2015.

B. Sensortec. BNOO0S35, Intelligent 9-axis absolute orientation sensor. BST-BNO055-DS000-14.
Rev 1.6. Bosch. June 2016.

B. Sensortec. BMEG680, Low power gas, pressure, temperature and humidity sensor. BST-BME680-
DS001-03. Rev 1.3. Bosch. July 2019.

43

https://ecss.nl/standard/ecss-e-st-70-01c-on-board-control-procedures/

	Abstract
	Contents
	Introduction
	Motivation
	Goal
	Outline

	Background
	RODOS
	Micropython
	MicroPython Internals
	Micropython Compiler
	Garbage collection

	Related work
	RODOS
	TubiX Nanosatellite Platform
	MAIUS-I
	Other RODOS Use Cases

	Use of Scripting Languages in Spacecrafts
	MOVE-II Cubesat
	PyCubed Platform
	LEON 3 MicroPython port
	James Webb Space Telescope

	Micropython Port on RODOS
	MicroPython Build Process
	Micropython Core Configuration
	RODOS API Wrappers
	User C Module

	RODOS Development Board
	Microcontroller
	CAN Transceivers
	Power Supply
	Peripherals
	Sensors

	Physical design

	Evaluation
	Experimental Setup
	Micropython Configuration

	Experiments
	Overheads due to Parsing and Compilation
	Matrix Multiplication : CPU Bound Application
	Large Array Sorting : Memory Bound Application
	Micropython Script execution overhead
	Garbage Collection

	Discussion

	Conclusion and Future Work
	Development board schematics
	Micropython Configuration
	Rodos Configuration
	Example MicroPython C Module
	List of Figures
	Listings
	Bibliography

