
A High-Order Discontinuous Galerkin Solver with Dynamic
Adaptive Mesh Refinement to Simulate Cloud Formation
Processes

PPAM 2019

Lukas Krenz, Leonhard Rannabauer and Michael Bader
Technical University of Munich

10th September 2019



The ExaHyPE-Engine1

Goals

A PDE ‘engine’ (‘engine’ as in ‘game engine’).
Provides numerics/mesh for user-defined applications.
Allow smaller teams to realize large-scale simulations of hyperbolic PDEs.

Capabilities

• Numerics: ADER-DG (optimized) & Finite Volume
• Dynamic Adaptive Mesh Refinement (AMR)
• Hybrid MPI + Intel TBB Parallelization

Available (open-source) at exahype.eu
1A. Reinarz et al. ‘ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations of Wave Problems’. In: arXiv e-prints (May 2019).
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Two Bubbles: Hydrostatic Equilibrium2

• Air is in hydrostatic equilibrium:
Gravitational force and
pressure-gradient force are exactly
balanced.
• Constant potential temperature

(temperature normalized by pressure)
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Background pressure in equilibrium
2A. Robert. ‘Bubble Convection Experiments with a Semi-implicit Formulation of the Euler Equations’. In: Journal of the Atmospheric Sciences 50.13 (July 1993).
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Two Bubbles: Simulation
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The ADER-DG Approach3

Solve hyperbolic conservation laws of the form

∂

∂t
Q +∇ · F (Q) = S(x , t ,Q) (1)

with Q vector of conserved variables, x position, t time,∇ · F (Q) divergence of flux and
S(x , t ,Q) source term.
Discontinuous Galerkin (DG) divides domain into disjoint elements, approximates
solutions by piecewise-polynomials. Elements are connected by solving the Riemann
problem.
ADER-Approach uses space-time polynomials for time integration instead of Runge-Kutta
procedures.

3M. Dumbser et al. ‘A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes’. In: Journal
of Computational Physics 227.18 (Sept. 2008).
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The Navier-Stokes Equations

∂

∂t

 ρ
ρv
ρE


︸ ︷︷ ︸

Q

+∇ ·

 ρv
v ⊗ ρv + Ip + σ(Q,∇Q)

v · (IρE + Ip + σ(Q,∇Q))− κ∇T


︸ ︷︷ ︸

F (Q,∇Q)

=

 Sρ
−kρg
SρE


︸ ︷︷ ︸

S(Q,x ,t)

(2)

With ρ density of fluid, ρv velocity density, ρE energy density, and k unit vector in
z-direction.
Pressure with gravitational term p(Q, z), stress tensor σ, heat diffusion κ∇T with
temperature T .
Trick: cancel out constant background pressure in flux and source.
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Problem: Not hyperbolic

ExaHyPE (thus far) solves equations of the form (e.g. Euler):

P
∂Q
∂t

+∇ · F (Q) +
d∑

i=1

Bi(Q)
∂Q
∂xi

= S(x , t ,Q) (3)

We have:

P
∂Q
∂t

+∇ · F (Q,∇Q) +
d∑

i=1

Bi(Q)
∂Q
∂xi

= S(x , t ,Q) (4)

Solution: Modify numerical flux (Riemann solver), time step size (CFL-condition) and
boundary conditions to allow diffusive terms4.
No explicit discretization of gradient∇Q.

4M. Dumbser. ‘Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations’. In: Computers & Fluids 39.1 (Jan.
2010); G. Gassner, F. Lörcher and C.-D. Munz. ‘A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi
Dimensions’. In: Journal of Scientific Computing 34.3 (2008).
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Adaptive Mesh Refinement: Indicator

Total Variation

f (x) : RNvars → R maps solution to indicator variable (here: potential temperature).
Total variation of f for a cell C:

TV [f (x)] = ‖
∫

C
|∇f (x) | dx ‖1 (5)

Intuition

• Large total variation 7→ interesting
• Small total variation 7→ boring

‘Edge detection’ of numerical solution
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Adaptive Mesh Refinement: Feature Detection

Chebyshev’s inequality

P(|X − µ| ≥ cσ) ≤ 1/c2 (6)

Mean µ, standard deviation σ, constant c
Better bounds exist with further assumptions on distribution.

Intuition

Not all variables are sufficiently special.
Feature detection
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Adaptive Mesh Refinement: Global Criterion

Criterion

evaluate-refinement(Q, µ, σ) =


refine if TV (f (Q)) ≥ µ+ Trefineσ

delete if TV (f (Q)) < µ+ Tdeleteσ

keep otherwise
(7)

Choose Trefine and Tdelete according to cost-accuracy trade-off.
Computation of mean µ, standard deviation σ with stable, pairwise reduction5.

5T. F. Chan, G. H. Golub and R. J. LeVeque. ‘Updating Formulae and a Pairwise Algorithm for Computing Sample Variances’. In: COMPSTAT 1982 5th
Symposium held at Toulouse 1982. 1982.
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AMR vs. Fully Refined Grid

Settings

AMR Mesh with sizes from 1000/81 m ≈ 12.35 m to 1000/9 m ≈ 111.11 m.
Two levels of dynamic AMR.
Trefine = 2.5 and Tdelete = −0.5.

Reference 81× 81 = 6561 cells.

Both polynomial order 6. Viscosity µ = 0.01. Simulate until tend = 600 s.

Results

AMR grid: 1953 cells. Less than 30% of full grid!
Relative L2-error between AMR and fully refined: 2.6× 10−6.
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AMR vs. Fully Refined Grid: Grid
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AMR vs. Fully Refined Grid: Error

Potential temperature of fully refined solution minus AMR solution.
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3D Cosine Bubble6

• Polynomial Order 3
• 253 cells
• Time: 400 s
• Viscosity: µ = 0.05

6J. F. Kelly and F. X. Giraldo. ‘Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area
mode’. In: Journal of Computational Physics 231.24 (Oct. 2012).
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MUSCL-Hancock Scheme

Finite Volume scheme: store only cell averages
Reconstruction of linear function
Second order in time and space7

Stabilized with (Van Albada8) slope limiter
Very stable, larger numerical viscosity

7B. van Leer. ‘Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method’. In: Journal of Computational Physics 32.1
(July 1979).

8G. Van Albada, B. Van Leer and W. Roberts. ‘A comparative study of computational methods in cosmic gas dynamics’. In: Upwind and High-Resolution
Schemes. 1997.
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Two Bubbles: Finite Volume

• 72 patches with 902 cells each
• Euler equations (µ = 0)
• Numerical viscosity smooths

solution
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Summary

• ADER-DG can be used to simulate Navier-Stokes equations.
• Total variation measures edges of numerical solution.
• Chebyshev’s criterion finds interesting cells.
• Combination of both accurately tracks cloud.
• AMR solution is close to fully refined solution but needs fewer cells.
• Artificial viscosity of Finite Volume has a similar effect as physical viscosity of

Navier-Stokes.
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Shared-Memory Scaling (from9)
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9A. Reinarz et al. ‘ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations of Wave Problems’. In: arXiv e-prints (May 2019).
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