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Abstract

The Linked-Cell algorithm is used as an underlying data structure in Molecular dynamics
simulations to store and organize particles. It allows us to quickly find neighbors of a particle
within a given radius without checking all stored particles, which is necessary to effectively
simulate short-range interactions. In this thesis, four different approaches for faster neighbor
search and improved SIMD performance are presented and evaluated. First of all, the
variation of the cell size is discussed, continuing with two schemes to combine multiple cells
to maximize their performance using Single Instruction, Multiple Data operations. Further,
the reduction of search space for possible neighbors using sorted cells is discussed. The
last chapter deals with an outlook on adaptive approaches which allows a combination of
different cell sizes and sorted cells. All these techniques show a performance improvement
depending on the characteristics of the simulated experiment, especially on the density of
particles and their distribution inside the domain.
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Zusammenfassung

Der Linked-Cell Algorithmus beschreibt eine grundlegende Datenstruktur zum Speichern
und Organisieren von Partikeln in Molekulardynamik Simulationen. Er ermöglicht insbeson-
dere das schnelle Ermitteln von benachbarten Partikeln innerhalb eines festgelegten Radiusses,
was für die effektive Simulation von Potentialen mit kurzer Reichweite unabdingbar ist. In
dieser Thesis werden vier Möglichkeiten der Verbesserung der Nachbarschaftssuche und der
beschleunigten Auswertung von SIMD Operationen präsentiert. Beginnend mit der Varia-
tion der Zellengröße, werden zwei Algorithmen zum Kombinieren mehrerer Zellen gezeigt,
wodurch sich die Performanz von SIMD Operationen deutlich erhöht. Anschließend wird die
Suchraumminimierung mit Hilfe der Sortierung von Partikeln innerhalb der Zellen diskutiert.
Abschließend wird ein Ausblick auf adaptive Varianten des Linked-Cell Algorithmus gegeben,
wobei eine Kombinierung von verschiedenen Zellgrößen sowie der Sortierung von Partikeln
ermöglicht wird. Alle präsentierten Optimierungen zeigen eine Verbesserung der Performanz
in Abhängigkeit von den Eigenschaften des simulierten Experiments. Insbesondere ist ein
starker Einfluss der Partikeldichte und der Verteilung der Partikel im Simulationsgebiet zu
verzeichnen.
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1. Introduction

Molecular dynamics (MD) simulations allow researchers from different fields to explore the
interactions of up to trillions of particles on a nanometer level. The applications reach from
molecular biology [Tid97] over thermodynamics to chemistry and are categorized in two
major groups. First of all, Biological experiments, like protein unfolding, often involve only a
small number of highly complex molecules. Moreover, there are engineering applications, such
as thermodynamics and chemistry, which usually involve simple molecules, but experiments
consist of many more particles. Recent developments in hard- and software allow running
simulations that are sufficiently large to be compared with actual measurements in real
experiments [TSH+19].

The simulated objects interact with each other by creating contracting or repelling forces.
This phenomenon can be observed on a macroscopic (planets) and microscopic (molecules)
level and is called N-body problem. Since each object interacts with all other objects, the
solution has a quadratic complexity O(N2), which doesn’t scale to trillions of particles.
Quadratic complexity can be avoided by exploiting the characteristics of the active potential
fields. Many important potentials, like the Lennard-Jones potential, are so-called short-range
potentials. In contrast to long-range potentials, like gravity, short-range potentials show
a fast decay in magnitude, which allows interactions beyond a chosen cut-off radius to be
omitted without losing much precision. Besides the actual computation of the potentials,
the search for particles within the cut-off radius is the most expensive task in simulations.
To avoid a full search, which again would have quadratic complexity, space partitioning data
structures are used to reduce search space.

These data structures provide the highest potential for improvements since they are
independent of the calculated physical potential. Furthermore, the search for close neighbors
can consume more than 50% of the computation time1 of an MD-simulation, hence already
small improvements show a significant time reduction. In the following thesis, we introduce
different techniques to optimize the neighbor search and improve SIMD performance using
the Linked-Cell (LC) algorithm.

LCs, also called Cell-Lists, and Verlet-Lists (VL) are used to find neighboring particles
quickly. Both are space portioning data structures where LC applies a partitioning based on
the domain and VL based on the position of the particles. LC divides the whole domain into
a Cartesian grid of adjacent blocks/cells which contain the particles for their represented
region. The search for neighboring particles is then reduced to the cell of the particle and
the surrounding cells. If particles leave the space of its cell, an update of the LC container
is necessary, which rearranges all particles into the correct cell.

1slide deck from Univ.-Prof. Dr. Michael Bader: https://www5.in.tum.de/lehre/vorlesungen/sci_

compII/ss12/moldyn_03.pdf
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VLs store a list of neighboring particles within a ”skin” radius2 for each particle [Ver67].
If a particle leaves or enters the sphere defined by the ”skin” radius, the VL needs to be
updated. The size of the skin radius determines the time after which an update is necessary.
The ”skin” radius has the cut-off radius as its lower bound, but to reduce the number of
updates the radius is usually set to a larger value. This allows the particles to move slightly
while keeping the data structure valid. VL are fast in finding neighbors but the construction
and update procedure is quite expensive because it requires a full search. This can be
avoided by coupling LC and VL. The LC container is only used to update the VL, while
VL are used for computation.

Since LCs are used directly and as a basis for VLs, their performance is crucial for
simulations.

2The definition of ”skin” radius is not consistent. Here, it is used as a total radius around a particle in
which neighbors are added to the VL. In AutoPas, the ”skin” is an additional term, which must be
combined with the cut-off radius to retrieve the total radius.
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2. Theoretical Background

2.1. Intermolecular Potential

Particles exert different potentials on each other, which results in forces and movement.
These potentials can be categorized in long and short-range potentials. Long-range potentials,
such as gravity, do even have a significant impact when the objects are far away from each
other. Short-range potentials are characterized by a fast decay of magnitude. Therefore, it
is possible to omit the effect of this potentials if the objects exceed a certain cut-off distance
to each other. This distance is called cut-off radius rc. Also, potentials used for simulations
are only an approximation of the real behavior since the correct formulas are too complex
to be computed efficiently.

One of the most important potentials for Molecular dynamics (MD) is the Lennard-
Jones (LJ) 12-6 potential [Rap04]. The potential between two particles i and j with position
xi and xj is given by:

uLJ(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
, with r = ||xi − xj || (2.1)

The LJ potential combines Pauli repulsion and van der Waals forces. σ describes the
distance where neither repulsion nor contraction are present, uLJ(σ) = 0. ε is the depth
of the potential well. Figure 2.1 shows that this potential quickly goes to zero. Since the
evaluation of potentials is a computationally expensive task (high exponents), it is reasonable
to avoid as many evaluations as possible. The amount of evaluated potentials is regulated
by the cut-off radius.

Furthermore, the potentials are often adapted for easier computation. This explains the
chosen exponents in the LJ potential. The higher exponent is exactly twice the smaller
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r
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σ

Figure 2.1.: Lennard-Jones-Potential for ε = 1.1, σ = 1.2
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2.2. Newton 3 Optimization

exponent, resulting in only one square operation.
Potentials manifest themselves into forces which lead to movement. The force which is

caused by a potential u(r) is calculated according to Equation 2.2.

f(r) = −∇u(r) (2.2)

Simulations often directly use the force equations because the velocity of a particle depends
on the active force.

2.2. Newton 3 Optimization

Newton’s third law of motion states that ”When one body exerts a force on a second body,
the second body simultaneously exerts a force equal in magnitude and opposite in direction
on the first body”[New87]. This law can be used to cut the number of force calculations in
half. By calculating the force between two particles i and j, the calculated force f is added
to fi and subtracted from fj . The resulting complexity still is in O(N2), but only half of
the time is needed. When this optimization is applied, it is necessary to keep track of which
interactions are already evaluated. This limits possible traversal schemes, which are going
to be discussed in Section 2.5.

2.3. Data representation: SoA and AoS

Simulation data consists of objects (Particles, Planets, etc), which are defined by their
attribute values. These attribute values can be stored in two different ways: inside a
Structure of Arrays (SoA) or an Array of Structures (AoS). AoS is an object-oriented
approach which groups different attributes belonging to a single object in one structure.
The data of multiple objects is then stored in a single continuous array. In contrast, SoA
groups attributes according to their purpose. For example, all positions on the x-axis are
stored in one array and the positions on the y-axis in another array. The data of a particular
object can be retrieved by collecting all attributes out of the arrays using the same index.

Both data layouts have advantages and disadvantages. AoS allows simple insertion and
deletion of objects since all values are stored together. If the total size of an object’s
attributes is smaller than the size of a cache line (constructive interference size) it is possible
to retrieve the information of one object by a single memory access. SoA offers the same
effect for attributes of the same purpose. This is useful to fill Single Instruction, Multiple
Data (SIMD) registers and apply operations to multiple values at the same time.

In the context of Molecular simulations, it is not possible to clearly identify the best suited
data layout since object based as well as attribute based access is needed.

5



2. Theoretical Background

2.4. Linked-Cell Algorithm

LCs is a space partitioning algorithm which allows efficient neighbor search. The simulation
domain is divided into a Cartesian grid of adjacent cells. Each cell stores all particles within
the region represented by itself. The 3D index of the cells can be transformed into a 1D-index,
which allows storage of all cells in a continuous 1D-array. Most of the time, the cell size is
chosen to match the cut-off radius. Sometimes, this is not possible since the domain size
is not divisible by the cut-off radius. In this case, the next greater integer divisor of the
domain size is used. As the cell size is equal or bigger than the cut-off radius, all particles
which are potential interaction partners must be located in the cell of the particle or in the
surrounding 3dimension − 1 cells, which share a face, edge or vertex. The surrounding cells
can easily be found due to the regular partitioning of the Cartesian grid. The number of
particles inside a cell is bounded, thus the maximum number of possible interaction partners
is fixed. This reduces the complexity from O(N2) for a full search to O(N). If the cell size
exactly matches the cut-off radius, the probability that a particle within the search space is
a neighboring particle is shown in Equation 2.3.

HR =
4
3πr

3

(3 · r)3
=

4

3 · 27
π ≈ 0.155 = 15, 5% (2.3)

This probability is called hit rate (HR) and the corresponding complementary probability is
an important indicator for unnecessary distance calculations during the simulation.

When particles leave their cell, it is necessary to perform an update and rearrange all
particles to the correct cells. The update process has linear complexity O(N), since the
procedure of checking and updating the cell applied to each particle has constant complexity
O(1).

There are different options for particles which move outside of the boundary of the domain
[GKZ07, p. 37-38]:

Outflow The leaving particles are deleted. This wouldn’t happen in real experiments
because real particles cannot get lost.

Reflecting The particles bounce back at the domain boundary. This can be implemented
by adding a ”ghost” particle which is created when the particle is near to the
boundary. Due to repulsive forces the particle is redirected and stays inside
the domain. The ghost particle has the same distance to the boundary as
the approaching particle and is located mirror-inverted. It is important that
the ”ghost” particle only affects the approaching particle it was created for
[GKZ07, p. 69].

Periodic If a particle moves out of the domain, it moves into the domain on the opposite
side of the domain. This simulates an infinite domain size.

Specialized Besides the previously mentioned boundary conditions, there are specialized
variants to mimic different kinds of physical effects like a heated reflecting
boundary.

6



2.5. Traversals

(a) C01 (b) C18 (c) C08

interacting cell base cell bounding box of modifications

Figure 2.2.: Traversal base steps: During a domain traversal, base steps are applied to each
cell. The base cell represents the current cell. All interactions are defined
relative to the base cell. To avoid data races, it is necessary to define read-only
and modified cells. Modified cells are represented by a rectangular bounding
box. The rectangular shape allows a simple domain partitioning.

2.5. Traversals

We now want to consider different domain traversal schemes to find all possible interaction
partners. A traversal scheme consists of a domain partitioning and a base step which is
applied to each cell. Domain partitioning is important for parallelization since the elements
can be assigned to multiple threads. We will discuss partitioning based on domain coloring
and slicing. Each cell must interact with all surrounding cells but the ordering of interactions
can vary. If a cell i is adjacent with a cell j, it is not important whether the particle
interactions between those cells take place when i or j is the currently worked on cell. A
base step is an interaction pattern which represents one specific ordering, thus it determines
if the interactions are calculated in i or j.

2.5.1. Base steps

If all interactions from a base cell and its surrounding cells should be evaluated, a star-
like pattern is the simplest approach (Figure 2.2a). This base step is called C01 and all
interactions take place within a single base step. The same interactions are as well computed
for all other base steps but are distributed among different base cells. C01 is completely
symmetric, making it impossible to use Newton 3 (N3) optimization. Otherwise interactions
would be evaluated multiple times. Without N3 optimization, changes are only applied to
the base cell while other cells are only read. Therefore, multiple threads can work on cells
in arbitrary order without interfering.

To enable N3 optimization, the symmetry must be removed. This happens in the so-called
C18 traversal (Figure 2.2b). The number of cell interaction is halved, but these interactions
apply to both interacting cells. Therefore, all interactions from C01 still happen, but are
spread over multiple base steps. For example, the interaction of the base cell with the

7



2. Theoretical Background

(a) C18 (b) C08

usable cells

Figure 2.3.: Domain coloring: Each color is executed separately to prevent interference and
data races. The C18 base step operates on a 2× 3 grid, requiring 6 colors. One
C08 base step only affects cells on a 2× 2 grid, causing the usage of 4 colors

bottom left cell in C01 now takes place if the bottom left cell is the base cell. Since all
interactions of cells affect both cells, the only difference between enabled and disabled N3
optimization is the duplication of calculations.

C08 (Figure 2.2c) is a variation of C18, trying to condense all interactions inside the
smallest possible area (3D version shown in Figure 5.3 ). This allows a higher degree of
parallelism and increases the cache-efficiency since less cells are touched in a single base
step. The only difference between C08 and C18 is the interaction to the bottom right in C18
which is now shifted one cell to the top. As a result, not all interactions involve the base cell.

All base steps access other cells. If the base cell is directly located at the boundary of
the LC container, not all requested cells are present. To avoid requests of non-existing
cells, the interactions which require these cells can be removed for the cells at the boundary,
introducing much more complexity. Another solution is to add an additional halo cell layer
around the domain and only apply the base step to the cells inside the domain boundary.
Now, all requested cells are present. For C18 and C08, it is not necessary to add halo layers
to all direction as seen in Figure 2.3 (usable cells).

2.5.2. Domain coloring

Parallelization is crucial for MD simulations to compute all interactions in a reasonable
amount of time and is applied at different levels: data level, node level and multi-node level.
Data level parallelism is discussed in more detail in Chapter 6. Node level and multi-node
level function according to a similar principle: The domain is divided into multiple chunks
and each chunk is evaluated from a different thread/node. Parallelism is not going to
be discussed on the multi-node level in more detail but rather concentrate on node level
parallelism based on threads.

Except for the C01 traversal base step, all base steps modify additional cells. Modification
is a mutual exclusive action, thus interference of different threads must be strictly avoided.

8



2.5. Traversals

Interference doesn’t take place if two threads are not working on overlapping regions at
the same time. A region is given by the cells modified by a base step. To keep it simple, we
only consider cubic (in 2D: rectangular) regions of modifications. This causes a region to
have the size of the minimal enclosing bounding box shown in Figure 2.2.

Finding non-overlapping schedules is a graph coloring problem. The interactions between
cells resemble a graph, which is colored with the base step pattern (Figure 2.3).

For C01, no interference can take place because no surrounding cells are modified. Hence,
only one color is needed and threads can work on each base cell completely independent
from each other.

C18 modifies surrounding cells. The bounding box of modified cells has a size of 2× 3
(2D) or 2 × 3 × 3 (3D). If all threads work on base cells which are further apart to each
other than the size of the bounding box of modified cells, no data race is possible. We use
the minimal interference free distance and a barrier based synchronization mechanism. For
the configuration shown in Figure 2.2, 6 colors are needed, which results in the domain
coloring shown in Figure 2.3a. The corresponding 3D traversal requires 18 colors. Each
color is shifted so that in the end each cell was executed as base cell.

C08 requires only 2dimension colors. This makes it more efficient than the C18 traversal,
since less iterations and barriers are necessary. Furthermore, smaller regions show better
load balancing since areas with more particles are distributed between more threads.

(a) Base step (b) 3D partitioning

Figure 2.4.: C04 Traversal: The C04 base step describes a cell formation in which each cell
is evaluated using the C08 base step. The 3D partitioning results in 4 colors.
Graphics by Nikolai Tchipev

A special case of domain coloring is the so-called C04 traversal, introduced by Nikolai
Tchipev. It uses the C08 base step, but only subdivides the domain into four colors [TSH+19].
This is only possible because there is an intermediate step. At first, the domain is divided
into regions using the cross-like shape shown in Figure 2.4a, resulting in a partitioning shown
on the right. Now, all threads work on a different region (crosses) of the same color and
apply the C08 base step to each cell within the base step region. The low number of colors
reduces the time consumption of barrier synchronization between each color.

9



2. Theoretical Background

2.5.3. Slice based

Besides coloring, the domain can be partitioned into slices. Each slice is processed by a
single thread. All cells inside a slice are evaluated continuously which provides better locality,
thus a better performance inside the slices. This partitioning is independent from the used
base step, making all base steps applicable inside the slices. Since the interactions between
particles are also present between the slices it is necessary to introduce mechanisms like
locking to avoid data races (not needed for C01). When cell layers (slice of thickness 1),
which are close (less than cut-off) to another slice are evaluated, the slice itself must be
locked. The same applies for layers which are accessed in the base step. As soon as no more
cell of the locked slice is needed, the lock is released. Locking is an expensive operation,
but the probability of waiting for a lock is small. The major issue of sliced partitioning is
load balancing, which is difficult or even impossible. If the objects are not homogeneously
distributed inside the domain, then some slices contain more objects than others. This
causes a longer execution time for these slices, while other threads are already finished and
idle. More slices provide better load balancing but also increase the probability of waiting
for a lock. It is also possible to maintain statistics on how particles are distributed inside
the domain and create slices accordingly.

10



3. Description of Tools

3.1. AutoPas

All optimizations discussed were implemented and tested inside the AutoPas library
[GST+19]. AutoPas is part of the TalPas1 (Task-based Load Balancing and Auto-tuning
in Particle Simulations) project and aims at providing a self-optimizing framework for
N-body simulations. Algorithmic autotuning is an important part of many computer science
applications, but it is new in the context of molecular dynamics. Autotuning solves two
problems:

1. A lot of simulations change their behavior during the simulation. For example: Simu-
lations of spinodal decomposition start with relatively fast-moving objects. Therefore
it is necessary to choose all simulation parameters according to this behavior. The
speed of the objects influences the time step size, which must be small to avoid
missing interactions with fast-moving objects. During the simulation, the object’s
speed decreases and clusters of objects are created. Due to the clustering, some cells
contain a lot of objects while others contain only a few. The starting parameters
are not suitable anymore: time step size could be increased and the cell size adapted
appropriately. If the simulation parameters are static, this is not possible.

2. Researchers using MD usually are not experienced in computer science. However, in
order to run simulations in an acceptable amount of time, a lot of knowledge and
experience in this discipline is needed to implement the parallel algorithms and choose
the fastest configuration. Nevertheless, even for experts, it is not always evident which
configuration will provide the best performance. AutoPas tries to bridge this gap of
knowledge by providing an easy to use interface and finding the optimal configuration
by itself.

Autotuning is done by using statistics and measurements of different configurations which
have a high likelihood to deliver the best performance.

The autotuner can apply several different containers, like Direct Sum (DS), LC, VL and
different variations of those containers which are integrated into the library. Along with the
containers, different domain traversal schemes are implemented (for a full list, see Figure A.2)

The whole library is designed for parallel execution. On the data-level, vectorization
is used to achieve higher throughput. The traversals are parallelized using thread based
parallelism with OpenMP2.

AutoPas is developed to deliver the best node-level performance and includes no function-
ality to run on multiple nodes. To run larger simulations, AutoPas was integrated into ls1

1https://wr.informatik.uni-hamburg.de/research/projects/talpas/start
2https://www.openmp.org/
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3. Description of Tools

CoolMUC-2 SuperMUC-NG

CPU
Intel Haswell
Xeon E5-2697 v3

Intel Skylake
Xeon Platinum 8174

base frequency [GHz] 2.6 3.1

SIMD (AVX) AVX2 AVX2, AVX-512

Level 1 cache size [KB]
14 x 32 instr.
14 x 32 data

24 x 32 instr.
24 x 32 data

Level 2 cache size [KB] 14 x 256 24 x 1024

Level 3 cache size [MB] 35 33

Thermal Design Power (TDP) [W] 145 240

Cores per Node 28 48

RAM per Node [GB] 64
96 (Thin nodes)
768 (Fat nodes)

Table 3.1.: Technical specifications of benchmark platforms

mardyn3 [NBB+14]. This makes it possible to run simulations on multiple nodes by using
ls1 mardyn for MPI communication between nodes and an instance of AutoPas on each
note. The multiple instances of AutoPas allow an adaptive autotuning based on the regions
which are processed by the notes.

AutoPas is open source software4 and licensed under BSD 2-Clause.

3.2. Computation Platforms

All benchmarks were run on infrastructure provided by the Leibnitz Supercomputing
Center5 (LRZ). In the following sections we will briefly introduce the used hardware and
their characteristics.

3.2.1. CoolMUC-2

CoolMUC-2 6 is a Linux (SUSE Linux Enterprise Server 11) cluster attached with Intel
Haswell Xeon E5-2697 v3 7 processors. This processor supports AVX2 which allows 256-bit
wide vector operations. In addition, the huge Level 3 cache relative to the number of cores
(2.5 MB per core) is notable. All benchmark programs on this system were compiled with
GCC 8.3.

3http://www.ls1-mardyn.de/home.html
4https://github.com/AutoPas/AutoPas
5https://www.lrz.de/
6https://www.lrz.de/services/compute/linux-cluster/overview/
7https://ark.intel.com/content/www/us/en/ark/products/81059/intel-xeon-processor-e5-2697-

v3-35m-cache-2-60-ghz.html
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3.2. Computation Platforms

3.2.2. SuperMUC-NG

SuperMUC-NG is the main super computer of the LRZ and takes the ninth place on the
top 500 list8. The system features 311,040 cores and scores 19.476 PFlop/s on LINPACK
benchmark9. This system is of major interest for SIMD operations. The CPU, Intel Skylake
Xeon Platinum 817410, supports AVX-512 which allows to process eight 64-bit wide floating
point numbers at a time.11

To run more energy-efficient the system uses a direct warm water cooling. In addition, the
processors are usually run in 205 W mode instead of 240 W 12. This makes the characteristics
of the processor similar to Xeon Platinum 816813.

8https://www.top500.org/lists/2019/06/
9https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

10https://ark.intel.com/content/www/us/en/ark/products/136874/intel-xeon-platinum-8174-

processor-33m-cache-3-10-ghz.html
11https://doku.lrz.de/display/PUBLIC/Details+of+Compute+Nodes
12Information retrieved from internal correspondence with LRZ
13https://ark.intel.com/content/www/us/en/ark/products/120504/intel-xeon-platinum-8168-

processor-33m-cache-2-70-ghz.html
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4. Related Work

The work of this thesis is based on numerous research topics.
William Mattson and Betsy M. Rice investigated the impact of different cell sizes in

[MR99]. We can confirm their findings for AoS, but not for SoA.
Petro Gonnet proposed to sort particles along the line which is drawn by connecting

the centers of two interacting cells [Gon07]. After projection onto this line, the search for
interaction partners for a fixed particle can stop if the projected positions are further apart
than the cut-off radius. The achieved speed up was approximately 28 % which can be verified
for dense domains by our results shown in Chapter 7. This topic was further investigated by
[WG11]. For their implementation, sorting was always more beneficial than the number of
particles in a cell exceeds ≈ 19. In contrast, for our implementation already ≈ 8 particles
are enough to justify the use of sorting.

FDPS (Framework Developing Parallel Particle Simulation Codes) is similar to AutoPas /
ls1 mardyn and aims to provide a flexible and easy to use interface for the fast development
of particle simulations. It supports many different short and long-range potentials and comes
with a lot of different configuration options. This library doesn’t support autotuning. One
of the implemented containers is an adaptive KD-tree which divides the domain according
to the distribution of particles [ITH+16].
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5. Varying Cell Sizes

In the following sections we will discuss the influence of the chosen cell size in comparison
to the standard cell size which is equivalent to the cut-off radius. To keep the varied cell
size independent from a particular cut-off radius, it is defined as a factor, which will be
called cell size factor (CSF). Therefore, the absolute cell size is given by CSF · cut-off. The
CSF determines the maximum number of neighboring cells in each direction which needs
to be evaluated to consider all interactions. This number is called overlap. The C01 base
step in Figure 2.2 illustrates this. In this figure the CSF equals 1.0. Thus, it is necessary to
take one cell on the left and right as well as one cell on the top and bottom into account.
Consequently, the overlap equals 1. The mathematical expression of the overlap value is
given in Equation 5.1.

overlap =

⌈
1

CSF

⌉
(5.1)

5.1. Decreasing Cell Sizes

5.1.1. Intuition

Decreasing the cell size allows a better discretization of the interaction sphere (IS). Figure 5.2
illustrates the change in the discretization for different CSF while the cut-off radius is
constantly 1.0. If the CSF equals one, the IS must be approximated by a square. For a CSF
of 1

2 the IS still resembles a square but the search space got already reduced since the base
cell got smaller. If the CSF is divided again, the interactions sphere starts to form a circle.
The cells at the edges can be excluded since they are completely outside of the IS.

Better approximations of the IS decrease the search space for neighboring particles and
therefore increase the HR. Figure 5.1 shows the HR dependent on the applied CSF for a
3D IS. The discontinuities for values smaller than 1.0 are caused by the discretization and
mark exactly the values where additional cells can be excluded or must be included. The
major jumps at 1

2 and 1.0 are values which divide the cut-off radius without remainder. The
HR drops immediately for a smaller value because additional cells are needed to cover all
possible interactions. The additional cells are almost completely outside the IS, increasing
the search space. We want to illustrate this effect for a CSF of 1.0. This CSF allows all
interactions to take place within a 3× 3× 3 cell block. If the factor is infinitesimally smaller
than 1.0 it is no longer possible to use a 3× 3× 3 block. Now, a 5× 5× 5 cell block without
the cells at the edges is required to cover all interactions. In total, 54 additional cells are
needed.

The smaller discontinuities e.g. at ≈0.707 (Equation 5.2) show the previously discussed
case of whole cells being excluded because they are completely outside the IS. Mathematically,
the distance between the closest corners of the base cell and the interacting cell must be
greater or equal to the cut-off radius.
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5.1. Decreasing Cell Sizes

1 2 3 4 5

0.1

0.2

0.3

0.4

CSF

hit rate

Figure 5.1.: Hit Rate for CSF between 1
3 and 5

For ≈0.707 (Equation 5.2) this distance is equivalent to the 2D diagonal:

rc ≤
√

2 · (CSF · rc)2 ⇔ CSF ≥
√

1

2
⇔ CSF ≥ 0.707 (5.2)

With this information we can define a formula for the HR in 2D. The HR is equivalent to
a packing problem and is closely related to the problem of how many lattice points are
contained in a n-dimensional sphere. For a normal circle with radius r the number of lattice
points N(r) inside is defined by the Gauss’s Circle Problem1

N(r) = 1︸︷︷︸
1

+ 4 · brc︸ ︷︷ ︸
2

+ 4 ·
brc∑
i=1

⌊√
r2 − i2

⌋
︸ ︷︷ ︸

3

(5.3)

The formula divides the circle into different regions and computes the number of points
inside for each of them. Starting from a point in the middle (1), all points on the axis are
added (2). The sum reflects a single area at the corners. Since these areas are of equivalent
size, the sum is multiplied by 4 (3).

In our case, the search space is given by a square whose edges are rounded with radius r.
This shape is almost equivalent to a circle, except that additional points were added around
the axis. By adding these points to Equation 5.3 we receive the number of cells within a 2D
IS:

N ′(r) = 1 + 8 · dre+ 4 · dr − 1e+ 4 ·
brc∑
i=1

⌊√
r2 − i2

⌋
(5.4)

Note, that the floor function in (2) is replaced by a ceiling function. The original formula
requires a point to be inside of the circle. Nonetheless, since cells must be already included
if only a part of them is within the IS, the ceiling function is necessary.

1Weisstein, Eric W. ”Gauss’s Circle Problem.” From MathWorld–A Wolfram Web Resource. http://

mathworld.wolfram.com/GausssCircleProblem.html
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5. Varying Cell Sizes

(a) CSF = 1, overlap = 1 (b) CSF = 1
2 , overlap = 2 (c) CSF = 1

4 , overlap = 4

Figure 5.2.: Discretization of the interaction sphere

The 2D-HR is than given by

HR(CSF ) =
π · r2c

N ′(1/CSF ) · (CSF · rc)2
=

π

N ′(1/CSF ) · CSF 2
(5.5)

Equation 5.5 shows that the optimal HR of one is not reachable with a discrete approxi-
mation since a circle could only be packed with infinitesimally small squares. Therefore, the
CSF must go towards zero and it holds that

lim
CSF→0

HR(CSF ) = 1 (5.6)

At the same time the number of cells N ′(1/CSF ) strives towards infinity. However, for
CSF � 0 the number of cells grows rapidly. The caused overhead soon eats up the benefit
of higher HRs. For a CSF of 0.5 it is necessary to take 125 cells into account, these are
almost 5 times more cells than for a CSF of 1.0. For a CSF of 1

3 over 300 cells are required.

5.1.2. Implementation

A decrease in CSF causes an increase of the overlap value. All base steps shown in Figure 2.2
assume an overlap value of one and are no longer sufficient to cover all cells within the cut-off
radius. In case of the C01 and C18 base step, the generalization to greater overlap values is
trivial. Only the search space for valid cells needs to be increased to match the overlap value.
Finding interaction pairs for the C08 traversal is more complex. The simplest variant is to
use the C18 base step and shift all interactions into a cell-block of size (overlap+ 1)3. This
includes all necessary interactions for C08. However, there are multiple possible shifts and
for optimizations discussed in Chapter 6 it is important that the interactions are structured.
Therefore, we propose a new algorithm which can be seen in algorithm 1. The position/index
of a cell is expressed relative to the current base cell, which makes it possible to calculate all
offsets once and only add them to the current base cell position/index.

Lines 1-4 generate a 3D Cartesian grid of cells in the size of overlap+ 1 in each direction.
This grid will be used to get the position/index of cells in the next step. Afterwards, the
algorithm iterates again over all positions, but now connects cells to form cell pairs.
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5.1. Decreasing Cell Sizes

Algorithm 1: Cell pair algorithm C08

Input: overlap
Output: cellPairs

// generation of 3d coord representing single cells

1 for x ← 0 to overlap + 1 do
2 for y ← 0 to overlap + 1 do
3 for z ← 0 to overlap + 1 do
4 cells.append([x,y,z])

// generation of interactions between cells (3d coord)

5 for x ← 0 to overlap + 1 do
6 for y ← 0 to overlap + 1 do

// store index of current cell on base plate

7 index ← cells[x * (overlap + 1)2 + y * (overlap + 1)]
8 for z ← 0 to overlap + 1 do

// origin (front left)

9 cellPairs.append([ cells[z], index ])
// back left

10 if if y != overlap and z != 0 then
11 cellPairs.append([ cells[(overlap + 1)2 - (overlap + 1) + z], index ])

// front right

12 if x != overlap and (y != 0 or z!= 0) then
13 cellPairs.append([ cells[overlap * (overlap + 1)2 + z], index ])

// back right

14 if y != overlap and x != overlap and z!= 0 then
15 cellPairs.append([ cells[(overlap + 1)3 - (overlap + 1) + z], index ])
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5. Varying Cell Sizes

(a) overlap = 1 (b) overlap = 2

Figure 5.3.: Pairwise interactions of cells according to the C08 base step

Pairs are formed by looking at a cell on the x-y plane (z = 0) and connecting this cell with
cells which are located at the vertical edges (front left(origin), front right, back left and back
right) of the created grid. It is not possible to always connect a point on the x-y plane to all
four vertical edges since this would cause multiple evaluations of the same cell pair when
the base cell changes. The results for overlap 1 and 2 can be seen in Figure 5.3

To keep it simple, the provided pseudo-code doesn’t contain a distance check to skip cell
pairs, whose distance is greater than the cut-off radius.

5.2. Increasing Cell Sizes

Increasing cell size is a contra-intuitive approach to increase performance in special cir-
cumstances. As seen in Section 5.1, the variation of cell sizes must balance the size of the
search space and management overhead introduced by additional cells. The management
overhead decreases for larger CSF, making it faster if this overhead is a significant part of
the computation. This is the case if the domain is sparse. Depending on the density, the
CSF can be arbitrarily increased. The edge case that the cell size equals the domain size is
called DS, since each particle directly interacts with all other particles. Another advantage of
bigger cells is that SoA operations perform better for a higher number of particles (reasoning
in Chapter 6).

Since the interactions cannot be further reduced, the traversal scheme stays the same for
all CSF ≥ 1.0 except for DS. DS consists of only one cell, requiring no traversal scheme.
Figure 5.1 shows the inverse cubic decay of the HR formulated in Equation 5.7 for values of
the cell size factor greater or equal 1.0.

HR(CSF ) =
4
3π

33 · CSF 3
, CSF ≥ 1.0 (5.7)
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5.3. Evaluation

5.3. Evaluation

We tested the impact of varying cell sizes on CoolMUC-2. To avoid distortions, all benchmarks
were run with a single thread. The benchmark for C04 only contains results for CSF ≥ 1.0.
Due to the special domain coloring of C04, it is not possible to implement smaller cell sizes
since this might cause data races.

Figure 5.4 shows the results for C01, C04, C08, and C18. All traversals show a similar
behavior. If the domain is sparsely populated, increasing the cell size yields better results.
This is plausible, since in sparse domains the management overhead becomes more apparent
and explains the poor results for decreased cell sizes. If the domain is more dense, smaller
cell sizes get more beneficial. The management overhead in this case is hidden by the
avoided unnecessary distance calculations. In real world examples, the density usually is not
extremely high, which justifies to not lower the CSF under 1

3 .
Both data layouts are mostly equally affected by the changing cell sizes. SoA performs

worse than AoS when the domain is sparse and always surpasses the performance of AoS if
the domain gets denser.

For AoS and high densities, the reached speed-up for CSF = 0.5 is comparable with the
findings of William Mattson and Betsy M. Rice [MR99]. This is not the case for SoA. SoA
requires even higher densities to be more efficient for CSF = 0.5 than for CSF = 1.0 which
limits the scope of application for SoA in combination with small CSF.

All benchmarks assume a sufficiently homogeneous distribution of particles. If the
distribution is extremely heterogeneous, it is difficult to find an optimal CSF since the
optimal CSF varies for different regions inside the domain. Here, adaptive approaches should
be considered.

The results show that the peak performance can be optimized depending on the density
of the domain. This can be exploited by tuning mechanisms to pick an optimal CSF.
Implementations for auto tuning should be aware of the discontinuities shown in Figure 5.1.
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2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

2 8 2 10 2 12 2 14 2 16 2 18 2 20

M
FU

P
s/
s

NumParticles

(a) C01

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

2 8 2 10 2 12 2 14 2 16 2 18 2 20

M
FU

P
s/
s

NumParticles

(b) C04

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

2 8 2 10 2 12 2 14 2 16 2 18 2 20

M
FU

P
s/
s

NumParticles

(c) C08

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

2 8 2 10 2 12 2 14 2 16 2 18 2 20

M
FU

P
s/
s

NumParticles

(d) C18

 0.0078125
 0.015625

 0.03125
 0.0625

 0.125
 0.25

 0.5
 1
 2

 16
 64

 256
 1024

 4096

 16384

 65536

M
FU

P
s/

s

NumParticles

AoS CSF 0.5
AoS CSF 1.0
AoS CSF 1.5
AoS CSF 2.0

SoA CSF 0.5
SoA CSF 1.0
SoA CSF 1.5
SoA CSF 2.0

Figure 5.4.: Performance impact of different CSF in a simulation with uniformly distributed
particles in a domain of size 20× 20× 20 and cut-off radius 1.0. All traversals
show that smaller CSF are beneficial for high densities whereas higher CSF
provide significant performance improvements for sparse domains.
All benchmarks are executed without Newton 3 optimization.
(benchmark system: CoolMUC-2)
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6. Combining SoA Buffers

6.1. Principle

In AutoPas, the calculation of functors using data layout SoA is done in three steps:

1. Loading: The data attributes needed for calculation are transformed into the SoA
structure. This is usually done for each cell, so that each cell has its own SoA buffer.

2. Evaluation: The functor is applied to the previously build SoA buffers.

3. Extraction: The data is transformed back into the normal storage layout.

The extensive copy operations during the loading and extraction phase require excellent
performance of the evaluation phase. The evaluation phase consists of the actual traversal
and the execution of the functor. The best performance can be achieved when the number of
successive SIMD operations during the functor calculation is as high as possible. Since SIMD
operations consume more energy and therefore produce more heat than scalar operations,
the CPU internal clock frequency calculator lowers the frequency automatically. This effect
varies for different SIMD operations and gets increasingly worse for bigger vector registers.
The Intel manual states that Xeon Skylake processors run about 11-13% slower for AVX2
and even 26-28% for AVX-5121. This slowdown is compensated by the saved clock cycles,
but since the frequency adaption is delayed, it causes scalar operations which directly follow
SIMD operations to be run ineffectively.

The number of successive SIMD operations correlates with the number of particles in
the SoA buffers. Regarding the cell-wise creation of SoA buffers, the performance increases
if more particles are stored inside one cell. To increase the number of particles inside
a single cell the cell sizes could be increased. However, this causes a lot of unnecessary
distance calculations, as shown in Chapter 5. Another approach is to form SoA buffers
which represents a combination of SoA buffers from multiple surrounding cells just before
the evaluation of the functor. The major problem of this approach is the huge number of
copies. To keep the number of copies as low as possible, it is important which neighboring
cells form a new buffer and how this buffer evolves during the traversal. We will discuss this
in detail for the C01 and C08 base step.

6.2. C01

The simple symmetric structure of C01 is optimal for combined SoA buffers. As C01 does
not allow N3 optimization, it is possible to create combined SoA buffers which are only used
to read the data of the interacting cells.

1https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-

scalable-spec-update.pdf
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6. Combining SoA Buffers
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Figure 6.1.: Evolution t→ t+ 1 of interactions (top) and circular buffer (bottom) for C01
with combined SoA buffers
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6.2. C01

Since the values in the combined buffers are never modified, it isn’t necessary to write
information back to the cells other than the base cell. The normal C01 traversals allows an
arbitrary evaluation order of cells inside the domain. Although this would still be possible
with combined SoA buffers, we only discuss the case of successive evaluation of cells along one
axis. Otherwise it would be necessary to store much more data which negatively influences
the performance. The algorithm works with each axis. However, if the domain has not
the form of a cube and the particles are homogeneously distributed, it is reasonable to use
the longest axis, since this reduces the total number initialization operations. For further
description, we use the x-axis. With the previously mentioned evaluation order we have
that each evaluated cell is either a neighbor of the previously evaluated cell or it is the first
evaluated cell on the chosen axis.

The sphere of interacting cells is divided into slices along the y-axis, as seen in Figure 6.1a.
Each slice represents a combined SoA buffer. We assume that the creation of combined SoA
buffers starts at the first evaluated cell of an axis. This assumption is only possible because
arbitrary execution orders are not allowed. Otherwise, the execution could start somewhere
on the axis. Combined SoA buffers are based on reuse of existing data, but if the starting
point is non-deterministic it is unknown whether there is already data to be reused or if the
buffers must be initialized. Since there is no previously evaluated cell on the beginning of
the axis, the whole buffer is initially filled by copying the data from the cells. The combined
SoA buffers are stored in a circular/ring buffer, shown in Figure 6.1b. To keep track of the
position of the first slice inside the circular buffer, an additional variable for the start index
is necessary which is initialized to zero. Inside the combined SoA buffer, the particles are
ordered according their insertion. Note, that the base cell (dark blue) always represents the
first cell in the slice buffer.

Now, all interactions can be calculated by iterating over all slices and compute the
interactions with the current base cell. Since information in the buffers is not persistent, it
is important to use the SoA buffer of the base cell and not the copy inside of the combined
buffer. If the current base cell interacts with the slice which contains a copy of the base
cell, it is necessary to exclude the copy from the calculations. Otherwise, particles would
interact with themselves. It is not possible to remove the copy from the buffer slice, since
the current base cell is an interacting cell of the next base cell. Therefore, the SoA data
structure provides functionalities to define a custom view on the underlying data structure.
Since the copy of the current base cell is the first cell in the buffer slice, it is possible to set
the start of the view to the first particle after the base cell.

In the next step, the sphere of interactions moves one cell further. Figure 6.1 shows that
most of the new and old interaction cells are the same. To reduce the number of copies,
we’ll keep the combined SoA buffers from the previous step and only apply an update to
them. Here, the symmetry of interactions can be exploited. Each combined SoA buffer is a
LIFO (Last In, First Out) buffer, meaning that they are demolished in the reverse order of
their construction. This effect can be seen as well in the circular buffer. The former leftmost
slice goes completely out of scope and can be deleted from the circular buffer. The position
of this slice inside the circular buffer is represented by the start index inside the buffer. At
the same time, a new SoA buffer is created to represent the rightmost slice, which has just
entered the IS. This slice is written on the same index inside the SoA buffer as the former
leftmost slice. Since the first slice has moved inside the circular buffer, the start index is
incremented. Due to the circular characteristics, an additional modulo operation is applied
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6. Combining SoA Buffers

Figure 6.2.: The graphic shows the position and orientation of stripes in the base plate of
the C08 base step (overlap = 2).

to the start index to jump back to the first slice in the ring buffer if the end is reached. At
this point, the buffer is fully updated and all interactions can be evaluated. This procedure
is repeated until the end of the axis is reached.

Since the offsets of the interacting cells relative to the base cell do not change during
the traversal, they can be computed beforehand. All offsets are stored in a 2D-array where
the first dimension represents the individual slices of the IS and the second dimension
represents the cell offsets inside the slice. The cell offsets are sorted to resemble the order
of growth/destruction of the combined SoA buffers. This is important since the initialized
buffer must show the same behavior as a buffer which was updated multiple times.

The described algorithm has no dependencies outside of the current evaluated cell and
can be extended to use multiple threads. Each thread calculates its own line / row of cells
and therefore requires its own circular buffer and the corresponding start index inside. Both
values are often accessed and modified, making it important to avoid false sharing.

6.3. C04SoA

The combination of SoA buffers is also possible for asymmetric base steps, like C08. As for
the C01 traversal, it is again reasonable to use successive evaluation of cells along one axis.
This reduces the number of colors to 4, hence the name C04SoA traversal.

The traversal scheme of C08 shown in Figure 5.3 shows that the base plate (z = 0) of the
base step is most suited for combination. We are going to apply the same principle as for
the C01 base step and cut the base plate into slices which look like stripes, see Figure 6.2.
In contrast to C01, these stripes have the same size. This simplifies the update process,
since it is only necessary to delete the expired stripe and add the new one. Independent of
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Figure 6.3.: Representation of the base offsets 2D array. Each cell contains an offset relative
to a base cell. In the example the cell A interacts with stripe I. Due to the
cut-off radius, only the cells between S and E are needed.

the usage of N3 optimization, the values inside the combined SoA buffers must be written
back into the cells. This adds an additional copy.

All offsets inside the base plate are stored in a two-dimensional array. The first dimension
represents the individual stripes and the second dimension represents the cell offsets inside
the stripe. This data structure is used for the update process which is analogous to C01.

In case of the C01 traversal with combined SoA buffers, a base cell always interacts with
the whole combined slice (except for the base cell). This is not always possible for C04SoA
since the combined stripes are not approximating the IS. To still use only the particles from
cells within the cut-off radius, it is necessary to define intervals of cells inside the stripes.
Again, a two-dimensional array, offsets, is used. The first dimension represents the stripes
used in base offset and the second dimension represents pairs of a cell offset and an interval
of indices in a stripe of the base offsets data structure. The correct stripe index can be
found by using the same index in the base offsets data structure as in offsets.

We want to illustrate this with the example shown in Figure 6.3. Consider a cell with
relative offset A. This cell interacts with multiple stripes, but for a moment we just pick
one of these stripes. This stripe is represented by the index I (here 4) in base offsets. Inside
this stripe, A interacts with multiple cells. Due to the form of the IS, these cells must occur
in a successive order. The first interaction cell in the stripe has the index S (start, here 1)
and the last the index E (end, here 4). Then, a pair of the form [A, [S,E]] is added to the
stripe with index I in offsets. Note that the same index is used as in the base offset data
structure. This procedure is repeated for all other stripes, with those A interacts.

At the beginning of a new line, all stripes need to be initialized. At the same time, we
maintain another data structure OffsetsInBuffers which stores the index of the first particle
of each cell inside the stripes. The last value of each array is the number of particles in the
corresponding stripe. This data structure is also created as two-dimensional array. Next,
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6. Combining SoA Buffers

the computation of interactions starts. Therefore, the traversal iterates over the offsets
data structure and over each array of pairs. In general, the cell represented by the first
element in a pair is the first interaction cell. Further, an appropriate view must be set on
the current stripe, to select only the particles from cells within the cut-off radius. The view
start and end can be retrieved by using the indices S and E of the interval and look up the
corresponding positions inside the stripe in the OffsetsInBuffers data structure.

There are two special cases for which the first element in a pair represents a cell which is
stored in the combined buffers.

The first special case is given for offset zero. This cell represents the current base cell
and interacts with the cells inside of their own buffer stripe as well as with ranges of other
stripes.

The second special case is given by the last cell of the stripe which contains the base cell
(first stripe of base offset). If this cell is given as offset, all possible ranges must be located
in other stripes since the interactions with the current stripe are already covered by the first
special case.

Both special cases are resolved by creating a view on the first stripe which represents
exactly the given cell and letting the particle interact with the particle given by the interval.

6.4. Evaluation

To compare the impact of different sizes of vector registers, we tested combined SoA buffers
on CoolMUC2 and on SuperMUC-NG (single threaded, no N3 optimization).

The benchmark reveals unexpected results. The combination of SoA buffers is especially
useful when the domain is dense. Sparse domains cause a significant slowdown. This effect
arises from the previously mentioned frequency regulation. Even with combined SoA buffers,
the number of successive SIMD operations is relatively small when the domain is sparse and
the management overhead for combination dominates.

Although the vector registers of SuperMUC-NG are twice as large, the results do not
differ significantly in comparison to CoolMUC-2. AVX-512 requires a lot of data to be more
efficient and it is likely that there is still not enough data to leverage the performance of
AVX-512. Furthermore, simulations are usually memory bound which limits the achievable
performance.

In case of multiple threads, it is possible that the workload balancing is not as optimal as
for uncombined SoA buffers since combined SoA buffers require to compute a whole line
with a single thread. This is only relevant if the particles are aligned along those lines, but
for real world examples this is not the case.
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Figure 6.4.: Benchmark of C01 and C04SoA with combined SoA buffers. For all CSF the
effect of relatively large overhead for small numbers of particles can be seen.
For higher numbers, the overhead is vanished by the gained speed up during
calculation.
(benchmark parameters: CoolMUC-2, domain size = 10× 10× 10, cut-off = 1.0,
no N3 optimization, uniform distribution of particles)
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7. Sorting

In Chapter 5 we have seen that the HR can be optimized by varying the cell size. Small cell
sizes lead to higher HRs since the search space can be reduced. However, if a cell is partly
within the cut-off radius, all particles inside the cell need to be checked. We now want to
reduce the cell internal search space using sorting.

7.1. Implementation

Gonnet proposes to sort particles inside of the cells to reduce the number of unnecessary
distance calculations [Gon07]. In case of cell pairs, the particles are projected onto the
line which connects both cell centers. This projection is done using the dot product of the
particle position xi and the normalized vector r (see Figure 7.1).

pi = xi · r, with ||r|| = 1.0 (7.1)

To avoid recurring calculations of r, it is calculated and stored with the cell offsets.

For larger CSF values, it is reasonable to sort single cells, too. The particles are sorted
along the projected positions pi. Before the distance of two particles is calculated, it is
checked whether the difference of projected positions is smaller than the cut-off radius. If
the difference of projected positions is larger than the cut-off radius, the real distance must
be larger as well and the distance calculation can be avoided.

Sorting can be realized in two different ways. First, it is possible to directly sort the
particles inside their cells. On the one hand, the sorting procedure takes longer because
a lot of data needs to be moved. On the other hand, evaluation during the traversal is
slightly faster because successively evaluated particles are located close to each other which
is advantageous for prefetching and cache efficiency. The second approach is a sorted view.

r

Figure 7.1.: Projection of particle positions onto the line connecting cell centers. The line is
mathematically described by the normalized vector r.
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Figure 7.2.: Benchmark Direct Sum with AoS and no N3 optimization. The sorted version
is on average ≈ 7 times compared to the unsorted version. It is also clear that
it makes no difference if the cell is sorted horizontally or diagonally.
(benchmark parameters: CoolMUC-2, domain size = 10× 10× 10, cut-off = 1.0,
no N3 optimization, uniform distribution of particles)

A sorted view maintains a sorted data structure which contains pairs of projected positions
(1D) and pointers to particles. This data structure can be sorted quickly, but provides a
potentially slow pointer indirection. We have chosen the second approach since it does not
modify the underlying particle data structure. The first approach would require slow locking
operations since multiple threads cannot work with the same cell simultaneously.

The efficiency of sorted cells depends on the number of particles inside. For small
numbers, the sorting overhead subsumes the benefit. Due to heterogeneous distributions, it
is reasonable to decide for each cell/cell-pair whether sorting is likely to be beneficial or not.

7.2. Evaluation

The performance of sorting correlates with the cell size. Therefore, the biggest performance
gain can be expected for DS. Figure 7.2 shows that sorting DS is always beneficial. The
average speedup is 700%. In theory, the speed up should correlate with the reduction of the
search space. DS without sorting search in the whole domain of size X × Y × Z.

The sorted version sorts the particles along the x-axis which result in a search space of
size (2 · rc) × Y × Z. In the measurements, the domain has a size of 10 × 10 × 10 and a
cut-off radius equal to 1.0. Thus, the sorted version should be 10·10·10

(2·1.0)·10·10 = 5 = 500% times
faster. In reality the speed-up is even faster.

In case of cubic cells, Figure 7.2 clearly shows that it makes no difference whether the
cells are sorted horizontally or along the diagonal. If the cells have a different shape, the
chosen axis becomes essential. It is reasonable to choose the axis of the longest cell length.
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Figure 7.3.: Benchmark C08 for a heterogeneous domain: For a small number of particles
there is no notable difference between sorting and normal LC. For more particles,
no sorting achieves a higher performance, since the sorting overhead is large in
comparison. For more than 29 particles, sorting always achieves the best results.
The version with a threshold follows the optimal strategy or surpasses them.
(benchmark parameters: CoolMUC-2, domain size = 10× 10× 10, cut-off = 1.0,
no N3 optimization, Gaussian distribution of particles with standard derivation
1.0)
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7.2. Evaluation

This differentiates the particle position to the highest degree and allows the majority particles
to be excluded from the distance check.

We now want to look at the classical LC algorithm. Sorting is a cell internal optimization,
making the relative performance improvement independent from the traversal base step.

The additional overhead introduced by sorting is only beneficial if enough particles are
present. If the domains are homogeneously filled with particles, it is possible to decide globally
whether sorting should be used. Unfortunately, real experiments often show heterogeneous
behavior. This is accommodated by enabling sorting for each cell or cell-pair depending
on the number of particles inside. Here, it is crucial to find an optimal threshold to start
sorting. We simulated an heterogeneous domain by distributing the particles according to a
Gaussian distribution with a standard deviation of one. Figure 7.3 shows the results for the
C08 base step without sorting, sorting all cells with more than 8 particles and for sorting all
cells. For both CSF values, the version with threshold follows the curve with the highest
performance or even outperforms them.

The results match the results achieved by Gonnet [Gon07], but only if enough particles
are present.

All in all, DS should always use sorting and LC provide the best performance with
threshold based sorting.
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8. Adaptive Linked-Cell algorithm

In Chapter 5 we have seen that the optimal CSF depends on the density of the domain.
This is problematic if the domain is not homogeneous. To achieve best performances for
these scenarios as well, the domain can be partitioned into cells of different sizes where each
cell approximately contains the optimal number of particles.

8.1. Data structure

Many different data structures exist to adaptively partition a domain. Common data
structures are octrees and k-d trees. Octrees use a fractal like partitioning. The domain
is initially divided into a Cartesian grid of 8 blocks of equal size. If further granularity is
needed, each of these blocks can be again recursively divided into 8 blocks. The 2D version
of an octree is called quadtree. The resulting cell structure for an quadtree is shown in
Figure 8.1a. Since it is difficult to use octrees, with cell sizes smaller as the cut-off radius
it is reasonable to limit the refinement. This has the advantage that all cells which would
exist for max. refinement could be created at program start. All cells which are not used,
because the refinement procedure hasn’t used them, are empty. Having all cells of the octree
in one continuous array allows the reuse of many methods of the normal LC algorithm.

8.2. Traversal

The structure of the octree makes it difficult to implement parallel traversals, especially
traversals using N3 optimization. A fixed pattern as shown for C18 in Figure 2.2 is not
directly applicable since it might happen that the granularity of the neighboring cells is not
fine enough. Therefore, the C01 base step is most suited. In contrast to the C01 base step
described in previous chapters, it is not possible to use fixed cell offsets to find neighboring
cells. Each cell must explicitly store its neighbors. These lists must be updated when
the partitioning of the octree changes. One way to find all neighbors is the algorithm1

described by David Geier which is based on [Sam89]. This algorithm starts at the current
cell and searches first for neighbors of greater or equal size. If a neighbor cell shows a higher
granularity, the found cells must be further refined. This is done in a second phase, where
only the cells which are adjacent to the current cell are selected. The result of the neighbor
search can be seen in Figure 8.1b. It is possible to store the address of the neighbor node or
to store the index position inside the cell array which represents the neighbor cell.

During the traversal, each cell is chosen once as base cell and performs the interactions
with their neighbors. This can be optimized by using sorted cells, discussed in Chapter 7.
The normalized vectors, which indicate the relative positions of the neighbor cell to the
current cell, can be stored along with the neighbor node/index.

1https://geidav.wordpress.com/2017/12/02/advanced-octrees-4-finding-neighbor-nodes/

34

https://geidav.wordpress.com/2017/12/02/advanced-octrees-4-finding-neighbor-nodes/


8.3. Evaluation

(a) Domain partitioning (b) Neighborhood (light blue) around
base cell (dark blue)

Figure 8.1.: Structure and neighborhood relation of a quadtree

In contrast to thread based parallelism used for the normal LC, task based parallelism is
better suited for octree traversals. Tasks are recursively created based on the tree branches.
The creation of tasks is stopped if the number of particles in the children of the current
node is smaller than a threshold value. This allows a good load balancing. The creation of
tasks can be done using OpenMP taskloops in combination with an if-clause which limits
the number of created tasks depending on the node height. The scheduler of the task
environment decides which thread works on which tasks. It would be difficult to use threads
directly because of different workloads for different tree branches.

8.3. Evaluation

Adaptive LC should only be used if the domain is heterogeneous. Otherwise, the additional
complexity for tree construction and neighbor search does not pay of. For heterogeneous
domains it is difficult to predict in advance how the octree will perform. Here, it depends
on the number and size of formed particle clusters. When clusters can be split into multiple
cells, while other areas which contain only a few particles are untouched, high speed-ups are
achievable (10 % and more).

The major disadvantage of using octrees as data structure is their fixed layout. The
number of cells at each edge must be a power of 2. In the worst case, the minimum cell size
is almost twice as big as the cut-off radius. In theory, this issue can be resolved by allowing
CSF smaller 1.0. Nonetheless, this adds a lot of complexity to the neighbor search.

Another disadvantage is the symmetric partitioning with each refinement. If a lot of
particles are located in only one octant, it is necessary to create 8 cells instead of only two.

Octree based LC should only be used in conjunction with autotuning to switch between
normal LC and adaptive LC, when the characteristics of the simulation change.
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8.4. Summary

8.4. Summary

Four variations of the LC algorithm were shown and evaluated: Variation of the cell size,
combination of SoA buffers, sorting of cells and an adaptive approach.

The benefit of varying the cell sizes depends on the density of the domain. Sparsely
populated domains profit from larger cells, while dense domains gain more performance for
smaller cell sizes.

If cell based SoA buffers are used, then a lot of different small SoA buffers need to be
evaluated during the traversal. The combination of these buffers is reasonable for dense
domains to achieve a higher number of successive SIMD operations. For low densities
the overhead of creating the additional buffers subsumes the gained speedup during the
calculation.

We have seen that sorting the cells is extremely beneficial for DS and should be always
applied. For LC, the performance gain depends on the number of particles inside the cells.
To accommodate heterogeneous domains, the decision if sorting is useful or not is taken for
each cell individually.

For heterogeneous domains, adaptive approaches should be considered. We have seen that
chosen data structure and the characteristics of the simulated experiment are critical for
performance.

8.5. Future Work

This thesis only discussed cubic cells, but other cell shapes like tetrahedrons are also possible.
The cell shape determines the size of the search space and the number of neighbor cells, but
also the storage complexity and the neighbor search. The impact of different cell shapes
should be evaluated.

Many different adaptive space partitioning data structures exist. The discussed limitations
of octrees can be avoided by using a more flexible data structure. Therefore, especially those
data structures which allow a flexible partitioning without requiring special characteristics
of the simulated space should be implemented and compared.

Different studies show that the memory layout and thread-based partitioning can be
optimized using spacing filling curves. [WG11] already mentioned an improvement using
this memory layout. Space-filling curves can be used to optimize the normal LC algorithm,
but also the adaptive version.

Optimal workload balance between threads is difficult and often threads idle while waiting
for another thread. This problem arises because the execution of a thread cannot start with
the next time step as long as the whole domain is unfinished. This limitation disappears
when threads are aware of the areas which are not finished. If these areas are known, threads
can already start to compute the next time step for the finished areas. At the moment, it
is unclear whether this in-time parallelism boosts the performance or provides too much
overhead.
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A. AutoPas Software Architecture

To clarify the circumstances of implementation we will briefly discuss the basic software
architecture of AutoPas.

AutoPas is designed to be as generic as possible. There are four basic object types which
are directly relevant for simulations:

1. Particles

2. Containers

3. Traversals

4. Functors

Particles represent the simulated objects. All particle implementations must be a subclass of
ParticleBase, which contains basic attributes (position, velocity, force, mass, id) necessary
for storage and organization inside the library. The attributes’ floating point and integer
type is adaptable with template arguments, which allows variation of the consumed memory
per particle and the floating point precision.
Containers provide the necessary data structures for storing the simulated objects. Cur-
rently, different variations of VLs and LCs as well as DS are implemented. Containers
distinguish between the simulation domain and a halo which represents the area outside of
the domain. The halo is used to temporarily store particles which leave the simulation space.
Library users can access those particles to implement boundary conditions. In addition,
containers offer region iterators, which allows iteration over particles within a specified
region. An AutoPas instance always contains only one container object.
Traversals apply functors to all pairs of objects within a given cut-off radius. Figure A.2
shows all currently available traversals. Some of them are limited to only a specific con-
tainer, while others can operate on multiple containers. All traversals inherit a common
interface from TraversalInterface. The subclass CellPairTraversal implements basic
functionalities for all traversals which operate on cells. Therefore, all traversals for LC and
VL which use LC for construction are subclasses of CellPairTraversal.
Functors represent the actual applied calculation, e.g. LJ potential. Currently, only
short-range interactions are supported.

New functors must inherit from the class Functor. Functor provides some common
functionalities as well as a common interface. If SoA is used as data layout, the storage data
layout (currently, only AoS supported) must be transformed into SoA. Functor provides
implementations of SoALoader and SoAExtractor which performs the transformation and
reverse transformation. To avoid a full copy of all attributes during transformation, the
functor implementations must provide information about which values are needed to perform
a functor calculation and which values are calculated. Since the SoA data structure is based
on tuples, this information must be provided at compile time, because tuple element access
can only be realized with template arguments. C++17 allows no direct static polymorphism
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A. AutoPas Software Architecture

Functor

SoALoader(cell : ParticleCell t&, soa : SoA&, offset = 0 : size t )
SoAExtractor(cell : ParticleCell t&, soa : SoA&, offset = 0 : size t )
...

Particle t,
ParticleCell t,
SoAArraysType,
Impl t

Concrete Functor

getNeededAttr() : AttributeArray
getNeededAttr(std::false type) : AttributeArray
getComputedAttr() : AttributeArray
...

Particle t,
ParticleCell t,
...

Figure A.1.: Class diagram functor

(virtual constexpr functions1 are supported with C++20). To be still able to access the
information defined in a subclass of Functor the curiously recurring template pattern
(CRTP) is applied. This idiom integrates the type of the subclass into the type of the
super class. Functor calls the constexpr methods getNeededAttr and getComputedAttr to
retrieve an array of attributes which must be copied. There are two different getNeededAttr
methods. The version without argument is used to retrieve all needed attributes when
N3 optimization is used whereas the version with argument std::false type provides the
necessary attributes for no N3. Usually, the attributes needed for N3 are the union of the
attributes needed without N3 and the computed attributes.

The user of the library has to implement at least the functors and the simulated objects.
Afterwards, an instance of the AutoPas class is created to interact with the library. Direct
access of internal data types is not recommended.

1https://en.cppreference.com/w/cpp/language/constexpr
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B. Bug reports filled

B.1. GCC

• Bug 90855 - OpenMP: collapse clause rejects template argument as parameter1

B.2. fmtlib/fmt

• #1184: lgtm alerts2

1https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90855
2https://github.com/fmtlib/fmt/issues/1184
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Abbreviations

AoS Array of Structures

CSF cell size factor

DS Direct Sum

HR hit rate

IS interaction sphere

LC Linked-Cell

LJ Lennard-Jones

MD Molecular dynamics

N3 Newton 3

SIMD Single Instruction, Multiple Data

SoA Structure of Arrays

VL Verlet-Lists
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