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Abstract

Electric Vehicles (EVs) are set to play a crucial role in making transportation systems more
sustainable. However, charging infrastructure needs to be built up before EV adoption can
increase. A crucial factor that is ignored in most existing studies of optimal charging station
(CS) deployment is the role played by the charging behaviour of drivers. In this study, through
an agent-based traffic simulation, we analyse the impact of different driver charging behaviour
under the assumption that CSs are placed at existing petrol stations and residential car park lo-
cations in Singapore. Three models are implemented: a simple model with a charging threshold
and two more sophisticated models where the driver takes the current trip distance and existing
CS locations into account. We analyse the performance of these three charging behaviours with
respect to a number of different measures. Results suggest that charging behaviours do indeed
have a significant impact on the simulation outcome. We also discover that the sensitivity of
model parameters in each charging behaviour is an important factor to consider as variations
in model parameter can lead to significant different results.

Keywords: Charging Station, Charging Behavior, Traffic Simulation, Electric Mobility

1 Introduction

A wide adoption of Electric Vehicles (EVs) is important in moving towards a sustainable trans-
portation system. An EV offers the advantage of zero local emissions; this is especially useful
in mega-cities where dense vehicle population can cause significant health concerns. In order
to prevent range related anxiety, two approaches exist. On the one hand, there is significant
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research being done in advancement of battery technology for increased range and decreasing
battery cost [25]; on the other hand, there is a recognition that an efficient charging infrastruc-
ture is also crucial.

In the last few years, much research has focused on the charging station (CS) placement
problem. Different optimisation objectives are chosen to address the problem, such as cost,
travel time and waiting time at CS. However, most of these charging infrastructure optimisation
work either neglects the charging behaviour of the EV driver, or at best, considers very simple
charging behaviours. A fixed threshold of the battery state-of-charge (SOC) is defined at which
the EV driver decides to go charging [19].

In this paper, we analyse the impact that different charging behaviours can have on the ef-
fectiveness of CS placement. In particular, we consider three charging behaviour with different
level of complexity. The least complex one makes charging decision based on a battery SOC
threshold as in [19]. The next charging behaviour makes estimation on the trip energy con-
sumption. The most complex one takes the CS locations at the trip destination into account,
additionally to the energy consumption estimation in the previous behaviour. For our analysis,
we investigate a Singapore based scenario.

The major contribution of this paper is the analysis of the effect that different charging
behaviours can have on a realistic electric mobility scenario in the case study of Singapore.
We discuss our findings with respect to real world traffic data and a realistic vehicle energy
consumption model. Results show that different charging behaviours do have an influence
on the electric mobility system as a whole. Performance differences are also observed within
one charging behaviour but using different model parameters. These results suggest that the
charging behaviour plays an important role when optimising for CS locations.

The remainder of the paper is organized as follows: Section 2 describes related work regard-
ing the CS placement problem using analytical and simulation-based approaches. This section
also highlights work addressing charging behaviour modelling from a psychological perspective.
Section 3 explains the three charging behaviours in more detail. Section 4 provides an overview
of the simulation setup. Section 5 presents the experimental results. Section 6 discusses the
work and gives an outlook for future work.

2 Related Work

Different optimisation objectives are used to solve the CS placement problem. Operation costs,
maintenance and network loss costs of the CSs [34], CS coverage and convenience for EV
drivers to reach CSs [23] as well as energy cost for vehicles to travel to CSs [8] are objectives
for minimization in addition to investment costs. [6] estimated the optimal density of EV CSs
accounting for the delay time cost of charging and access cost to the CS besides the investment
and operation costs. The cost for EV drivers to go charging is modelled as the travel time
to [32] and queuing time at the CS [26]. [16] and [21] maximises the CS coverage. [31] has the
objective to optimise the amount of energy recharged with a focus on different type of chargers.

Real world data can support the work towards CS placement optimisation. Household
travel survey data is used to generate traffic pattern and break down vehicles are used as an
input for the optimisation [7]. The objective is to minimise the total travelled distance to
access CSs. Similarly, those vehicles where a full charge of battery is not sufficient to cover
their daily commute and require intermediate charging are taken into account for charging cost
optimisation in [17]. Household travel survey data is also used in [10] to select CS locations with
an objective function that minimises the total walking distances from the CS to the destination.
As an alternative to household travel survey, [29] describes the usage of pervasive cell-phone
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data to model the mobility demand in the city of Boston. The total travelled distance from
trip destination to the nearest CS is minimised. Drivers’ discomfort is considered in terms of
maximum hops in a grid partitioned road network. Another way to derive mobility demand
is to use large-scale trajectory data of taxi fleet [9]. Public EV CS locations are identified in
Beijing based on these data. EV taxi trajectory data is used in [24] to optimally locate CSs
and assign optimized number of charging plugs with the objective of minimizing the average
time to find a CS and waiting time before charging.

The CS placement problem can also be addressed from the power grid perspective. A
simulation-based approach for investigating the impact of transport electrification on power
grids is presented in [11]. A case study of Singapore shows that grid congestion and voltage
drops are observed on the low voltage level while the high and medium voltage grid remain
unaffected.

In contrast to those mathematical approaches, we apply a nanoscopic city-scale traffic simu-
lation to study the influence of different charging behaviour on CS placement at existing petrol
stations and residential car park locations in Singapore [30]. In this agent-based nanoscopic
traffic simulation, a driver-vehicle-unit (DVU) consists of driver model and vehicle model [33].
Advantages are that vehicles and drivers can be modelled in greater detail. Realistic vehicle
energy consumption can be simulated with individual driving and charging behaviour of the EV
driver. The emergence of collective dynamic from individual interactions between DVU agents
can be captured [22].

Application of an agent-based simulation to analyse how EV adoption could be affected by
different spatial deployment of CSs can be found in [27]. An agent-based traffic simulation
is used to provide input to a power simulation which determines the optimal charging profile
for EVs [5]. Another work [18] applies agent-based simulation to maximize availability and
profitability of CSs. The load curve generated by EV power demand is studied in [28] where
the agent can only charge at the origin or destination of a trip.

The major disadvantage of existing CS location optimisation work neglects the charging
behaviour of EV drivers or apply simple charging behaviour model. [6] assumes that a charging
event occurs when the SOC is below a threshold. Similarly, vehicles route to the nearest CS
when being low on energy before they continue their journey to the final destination in [19].
Data analysis of 15 EVs over a course of 230 days to predict the probability of an EV deciding
for a charge event at a particular level of SOC is carried out in [20]. This simple stochastic
model only considers SOC as an input.

Looking from the charging behaviour perspective, [14] analyses the psychological dynamics
underlying charging behaviour of EV users assessing data in a EV field study. The authors
attempt to understand how users cope with limited mobility resources and defines a comfortable
range as the lowest remaining battery SOC which is not allowed to fall below. This preferred
range safety margin is reserved against variations of energy consumption. They also find that
user-battery interaction style plays a role in the decision when to start a charging event [15]. The
user battery interaction style is a qualitative classification based on their tendency to charge. [13]
applies expected utility theory to model the charging behaviour of EV drivers considering cost,
charging duration, range, trip distance to be important when making charging decision.

3 Charging Behaviour Models
In this section, we describe the three charging behaviours in greater detail. Their difference is

the amount of information they consider for making charging decisions. The first and simplest
model considers only a SOC threshold for routing to CSs like in other studies [6] and [19], the
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other two models consider trip length and CS locations to base their charging decisions. We also
apply the concept of a range safety margin as in [15]. Price for charging is another potentially
important factor; however, as it is not the subject of this study, we assume a flat rate for
charging service. This is a fair assumption as it was used in the EV test-bed in Singapore [1].

We define the following preliminaries for all three models: 1) A charging event stops when
the battery SOC reaches 80% of its maximum capacity. This is the level at which a battery can
be charged without reducing charging power. 2) The driver takes every charging opportunity
at trip destination to charge if there is a CS available. 3) Estimation of energy consumption
for the next trip is made based on 150 Wh per kilometre. This value is the average energy
consumption generated from our agent-based traffic simulation. 4) When an EV breaks down
on the road network, it stays on the current road for 10 minutes and continues to the intended
destination with a full charge. This is to simulate a realistic break down scenario which might
cause traffic congestion due to the depleted EV.

Zero Estimation Model (ZEM). No en- Algorithm 1: Zero Estimation Model
ergy consumption estimation is considered

) . ) For each agent at any time
before or during trips. The driver seeks if currentSOC < SOCThreshold then

the nearest CS (goToNearestCS) when its | goToNearestCS
current SOC (currentS0C) is below cer- else

tain SOC threshold (SOCThreshold). Oth- ‘ ContinueCurrentTﬁp
erwise, the driver continues the current trip end

(continueCurrentTrip).

Algorithm 2: Semi Estimation Model Semi Estimation Model (SEM). Energy
consumption for the next trip is estimated

before a trip starts. If the current SOC is
enough to complete the trip based on esti-
mation (estimateTripConsumption) plus a

For each agent at each trip start
if currentSOC >

estimateT ripConsumption +
safetyMargin then

| " beginCurrent Trip safety margin (safetyMargin), the driver
else starts the trip to his intended destination
| goToNearestCS (beginCurrentTrip). Otherwise, the driver
end seeks the nearest CS from the origin of his trip.

Full Estimation Model (FEM). Energy Algorithm 3: Full Estimation Model
consumption for the next trip together with For each agent at each trip start
the energy to the nearest CS at destination if currentSOC >
(energyToNearestCSAtD) is estimated before estimateTripConsumption +

a trip starts. The driver seeks to find the near- energyToNearestCSALD then

est CS right after a trip starts when its current | beginCurrentTrip

SOC is not enough to cover the estimated en- else

ergy consumption. CS locations at destination | goToNearestCS

is taken into account for this model. end

4 Simulation Setup

For the analysis in this study, a simulation tool SEMSim Traffic[33] is used. It is a nanoscopic
agent-based traffic simulation with driver-vehicle units (DVUs) forming the basic unit of com-
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putation i.e. the agents. A DVU consists of a driver model and a vehicle model. In order to
be able to move on the road network, the driver model contains a car-following model and a
lane-changing model to simulate the traffic patterns realistically. [30] provides a more detailed
description of the SEMSim traffic models. In this paper, we describe the vehicle energy con-
sumption model in greater detail. The energy consumption of components connected to the
battery can be calculated. By extending the car park model to a CS model, it is possible to
simulate the charging process of EVs. All of the above features make this platform well suited
for our simulation setup.

In this experiment, we utilise the Singapore road network data derived from Navteq 2009.
HITS 2012 travel survey data is used to initialise the traffic. This data is in the form of origin-
destination pairs showing a portion of travelling demands in Singapore for a typical whole day
period. Each agent has at least two origin-destination pairs. The origin of the first pair and
destination of the last pair is always the same location, ensuring that the agent is returning to
the starting point of the simulation day. Extrapolation is thus imposed to simulate the realistic
traffic scope of Singapore [30]. We run the simulation with 21500 agents for a 24 hour period.
The number of agents equals the number of charging lots.

4.1 Vehicle Energy Consumption Model

The vehicle battery of 20k h maximum capacity provides power to the motor, air-conditioner
and auxiliary components in the EV. In this experiment, we take vehicle parameters of an
electric vehicle called EVA which is exclusively designed by TUM CREATE for tropical mega-
cities [2].

The motor power P,oi0r i a function of velocity and force. The efficiency factor fioss
reflects losses in the drive train. Depending on the direction of the power flow, Py,ot0r is either
weighted with f,ss when the motor delivers power back to the battery due to regenerative
braking, or with its inverse when the motor requires power from the battery as in Equation 1.
Firotor 18 the force provided by the motor and is needed to overcome resistances forces, such as
air- (Fuir), rolling- (F,o;) and inertia- (Fjpertiq) resistance as in Equation 2 and 3.

1
Prroror = mFmotorU when Frotor > 0 (1)
JrossFmotorv when Frotor <0
Fmoto’r = Fair + F’r‘oll + Finertia (2)
1 2
Fair = §pAdev ) Frouw = frmearg; Finertia = (1 4+ XN)Mmeara (3)

where v is the velocity in m/s. The parameters in Equation 1 and 3 are shown in Table 1.

Air conditioning is necessary for vehicles in tropical cities like Singapore. Its power is set
to 800W as suggested by EVA specification. Other on-board auxiliary components consist
of lights, engine control unit, infotainment system etc. We assume a power of 750W that is
required to operate these components.

4.2 Charging Station Model

We retrieve petrol station locations from the website [4]. Residential car park locations which
are open to public are provided by Singapore Land Transport Authority [3]. In total, we identify
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Parameter Description Value Parameter Description Value

g Accgleration of 9.81m/s> | A Percentage of. equivalent 0.13
gravity mass of rotating parts

fr Rolling coefficient 0.01 Mear Car weight 1500kg

Cy Drag coefficient 0.4 fioss Losses in the drive train 0.9

0 Air density 1.13kg/m3 | Ay Car frontal area 2.24m?

Table 1: Vehicle energy consumption parameters

2150 CS locations. The spatial distribution of these CSs is illustrated in Fig 1. It is assumed
that each CS can have a queue of infinite length. We assume 10 charging lots at each CS
location. It is simulated that each charging lot is installed with 19.2 kW of charging power as
per SAE J1722 Level 2 standard (240V/80A) [12].

Figure 1: Distribution of charging stations on Singapore road network. Charging stations are
indicated in red dots.

5 Results

In this section, we present the results from our simulation. Section 5.1 highlights findings in a
base scenario. In this base scenario, we analyse the influence of the three charging behaviours
with fixed model parameters on the effectiveness of CS placement as described in Section 4.2.
Section 5.2 discuss the sensitivity of different charging behaviour model parameters with the
base scenario as reference.

5.1 Base Scenario

In the base scenario, we analyse the influence of the three charging behaviours on the effective-
ness of CS placement at existing petrol stations and residential car park locations in Singapore.
For the SOCThreshold in ZEM and safetyMargin in SEM, we implement that both parameters
take 20% of the total battery capacity. Regarding estimation of energy consumption, either
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energyToNearestCSAtD in FEM or estimateTripConsumption in SEM and FEM, we model a
20% increase in energy consumption estimation than the average 150 Wh per kilometre. This
is to account for a conservative energy consumption estimation from the driver’s perspective.
We further assume that all EVs start with 50% of their battery capacity at the beginning of
the simulation.

We compute the average SOC, charging event count and charging energy per agent for these
three charging behaviours as in Fig 2. The SEM scenario shows a higher value of average SOC,
charging event count as well as charging energy per agent than the other two charging behaviour
models. This can be explained by the safetyMargin that this behaviour model contains. This
20% safetyMargin of the SEM leads to earlier charging compared to ZEM with 20% SOC-
Threshold and FEM without safetyMargin in the context of this CS placement scenario. In
particular, the FEM shows a notably smaller number of charging event count and charging
energy per agent. There is no agent break down event in the simulation.
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Figure 2: Average SOC, charging event count and charging energy per agent for the three
charging behaviours

Looking at the CS occupancy, the results in Fig 3 suggest that although some CSs reach
a 80% occupancy at some time in the simulation, the mean occupancy for all three charging
behaviour models is very low. The mean occupancy is calculated as the area under the occupied
charging lots over time figure divided by the 24h simulation period. The number of unused CS
locations are high across all three behaviours. This may serve as an indicator that the current
CS placement is not efficient.
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Figure 3: CS count with more than 80% occupancy, mean occupancy and number of unused
CS locations for the three charging behaviours

In general, the results suggest that the FEM differs from the ZEM and SEM due to the
lack of a SOCThreshold or safetyMargin. This allows the FEM to better utilise the battery
capacity.
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5.2 Sensitivity of Charging Behaviour Model Parameters

In this section, we investigate how the different model parameters for each of the three behaviour
models influence the outcome of the simulation. For the ZEM, we increase the SOCThresh-
old to 30% and 40% of battery capacity. Concerning energy consumption estimation as in
estimate Trip Consumption and energyToNearestCSAtD, we look at a 40% and 60% increase
compared to the 20% in the base scenario. At the beginning of the simulation, all EVs start
with 50% of their battery capacity.

The results are presented in Table 2. As the SOCThreshold in ZEM increases from 20%
to 40%, there are significantly more charging events occurring. The average SOC and charging
energy per agent also shows the same trend. For SEM and FEM, although we increase the
energy consumption estimation by 40% and 60% compared to the base 150Wh per kilometre,
the increase in average SOC, charging event count and charging energy is moderate. As a result,
the CS occupancy in ZEM grows faster than in SEM and FEM.

Average SOC Charging Charging Energy CS Count with Mean Unused CS
Model .
Parameters | P€L Agent Event Count per Agent more than 80% Occupancy Location

in kWh per Agent in kWh occupancy in % Count
ZEM 20 9.39 0.27 2.48 7 0.83 664
ZEM 30 9.9 0.49 4.42 35 1.37 537
ZEM 40 11.22 0.83 6.46 49 1.9 446
SEM 20 9.52 0.32 2.54 12 0.82 607
SEM 40 9.69 0.38 2.82 9 0.88 555
SEM 60 9.88 0.43 3.07 9 0.92 502
FEM 20 9.15 0.17 1.28 2 0.53 930
FEM 40 9.17 0.18 1.38 3 0.55 890
FEM 60 9.23 0.19 1.49 1 0.56 834

Table 2: Sensitivity of the three charging behaviour model parameters. The numbers in the
model parameters column indicate the paramter value for the respective model in %

6 Discussion and Outlook

EVs are the key to a more sustainable transportation system. The charging infrastructure
supporting the adoption of EVs are crucial and the locations of CS directly influence the
effectiveness of the electrified system. In this paper, we show that charging behaviour is an
important factor to consider besides others. In particular, we apply ZEM, SEM and FEM in
our simulation. Results suggest that especially the FEM differs from the other two behaviour
models due to the lack of a SOCThreshold or safetyMargin. This allows the FEM to better
utilise the battery capacity. Our findings also suggest that not only the different charging
behaviour models impact the simulation outcome, but variations in model parameter values
influence the simulation as well. The sensitivity of different model parameters is surely an
important factor to consider. It is to note that a fixed initial SOC is assumed for all EVs in our
experiments. A more realistic distribution of the initial SOC can be obtained by simulating for
several days until the agents reach a steady state in terms of their SOC.

Despite our charging behaviour modelling effort, there are still many input variables that
can be considered to further improve the model. Information about categories of locations
can be integrated to account for the purpose of the trip being for work, leisure or simply
returning home. Based on these intentions the agent can exhibit different charging behaviours.
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In addition, these location categories can also be used for CS placement, especially deciding on
the charging power of each CS to be installed. Although the cost of charging an EV is relatively
low compared to fossil fuel, the price sensitivity of the user can be an important factor to shift
the charging demand in order to avoid bottle necks in the system. EV users can be incentivised
to change their tempo-spacial charging behaviour for the benefit of a more efficient system.
Another factor is the battery user interaction style which is assumed that the agent charges at
every destination if there is a CS available in this study. This behaviour can be valid for CSs
equipped with wireless charging lots, but might not hold true when manually a cable has to be
plugged in. All these factors mentioned can have an influence on the efficiency of the system.
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