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Abstract Flavour- and CP-violating electromagnetic or
chromomagnetic dipole operators in the quark sector are
generated in a large class of new physics models and are
strongly constrained by measurements of the neutron electric
dipole moment and observables sensitive to flavour-changing
neutral currents, such as the B → Xsγ branching ratio and
ε′/ε. After a model-independent discussion of the relevant
constraints, we analyze these effects in models with partial
compositeness, where the quarks get their masses by mixing
with vector-like composite fermions. These scenarios can be
seen as the low-energy limit of composite Higgs or warped
extra dimensional models. We study different choices for
the electroweak representations of the composite fermions
motivated by electroweak precision tests as well as differ-
ent flavour structures, including flavour anarchy and U (3)3

or U (2)3 flavour symmetries in the strong sector. In models
with “wrong-chirality” Yukawa couplings, we find a strong
bound from the neutron electric dipole moment, irrespective
of the flavour structure. In the case of flavour anarchy, we
also find strong bounds from flavour-violating dipoles, while
these constraints are mild in the flavour-symmetric models.

1 Introduction

The discovery of the Higgs boson [1,2] has made the ques-
tion what stabilises the electroweak scale more acute and has
reduced the implementation of weak-scale naturalness to two
possibilities: supersymmetry and Higgs compositeness. In
this paper, we study the latter possibility, which arguably has
received less attention in the literature. This is in part due
to the difficulty in treating the strong interactions that are
responsible for the Higgs bound state. Much progress has
been made in recent years by warped compactifications of
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higher-dimensional space-times [3–5], providing a weakly
coupled dual description of the strong interactions in four
dimensions. On the other hand, purely four-dimensional (4D)
models have been constructed as well [6–10], with a partic-
ularly well-motivated example being models in which the
Higgs arises as a pseudo Nambu–Goldstone boson, explain-
ing its lightness with respect to the other, as yet unobserved,
resonances.1

In all these models, indirect constraints from low-energy
precision observables play a crucial role. Generating fermion
masses without excessive flavour violation singles out the
mechanism of partial compositeness where, from a 4D effec-
tive theory point of view, the elementary Standard Model
(SM) fermions obtain masses by mixing linearly with com-
posite vector-like fermion resonances [12]. Since the degree
of compositeness is required to be smaller for light quarks,
tree-level flavour-changing neutral currents (FCNCs) medi-
ated by composite resonances are automatically suppressed
[13–15]. However, unless one is willing to accept a fine tun-
ing of a few per cent, for TeV-scale resonances this suppres-
sion mechanism is not quite strong enough to suppress CP
violation in kaon mixing, if no additional flavour symmetry is
assumed [16–19]. In addition to flavour constraints, the mix-
ing of the SM fermions with composite states with different
electroweak quantum numbers leads to potentially large cor-
rections to electroweak precision observables. In particular,
custodial symmetry should be imposed on the strong sector
to avoid a tree-level correction to the T parameter, and the
representations of the composite fermions have to be cho-
sen to avoid large tree-level corrections to the Zb̄L bL vertex
[20,21].

In addition to electroweak precision observables and tree-
level flavour-changing processes, an important class of con-
straints on these models is given by loop-induced dipole oper-
ators that contribute to radiative FCNC decays or fermionic

1 See also [11] for a recent review of the composite Higgs model land-
scape in the light of the Higgs discovery.
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dipole moments. The presence of heavy vector-like fermions
charged under the electroweak gauge group implies a poten-
tial enhancement of these chirality-violating operators com-
pared to the SM. A number of studies of dipole operators
have been presented in the literature, either for Randall–
Sundrum models in the KK basis [16,22–25], for purely 4D
models [26], or genuine five-dimensional (5D) calculations
[27–29]. The aim of this work is to exploit the computational
simplicity of the 4D models to study the impact of differ-
ent choices for the fermion representations and of different
flavour symmetries on the constraints from observables sen-
sitive to dipole operators. To this end, we will use a gener-
alisation of the framework of Ref. [6], considering one set
of composite partners for each SM field, plus the additional
states required for custodial protection of T and Z → bL b̄L .
Our work can be seen as a complement to similar studies
of electroweak and tree-level flavour constraints [30] and Z -
mediated rare decays [31] in the same models.

The remainder of this paper is organised as follows. In
Sect. 2 we define our model setup. Section 3 is devoted
to a model-independent discussion of dipole operators, the
observables probing them and the constraints obtained from
existing measurements. In Sect. 4 we derive approximate ana-
lytical expressions for the leading contributions to the Wilson
coefficients of the dipole operators within our setup and esti-
mate the size of subleading contributions. These results are
then used in Sect. 5 to obtain numerical bounds on the masses
of composite resonances derived from the various observ-
ables sensitive to dipole operators. While depending weakly
on the choice of fermion representations, these bounds will
depend strongly on the presence or not of a flavour symme-
try in the strong sector. We will discuss the explicit exam-
ples of a U (3)3 or a U (2)3 flavour symmetry, only broken
by the left- or right-handed composite–elementary mixings
[32–35]. Since some results in the literature partially overlap
with our results, it is mandatory that we compare our find-
ings to them; we do this in Sect. 6. Section 7 contains our
conclusions.

2 Setup

We consider simple 4D models, in which partial compos-
iteness is implemented along the lines of Ref. [6]2: the SM
field content (without the Higgs) is complemented by a com-
posite Higgs, a set of vector resonances transforming under
the global symmetry Gc = SU (3)c × SU (2)L × SU (2)R ×
U (1)X and a set of fermion resonances that fill complete rep-
resentations of Gc. SM fermions and gauge bosons obtain

2 See Sect. 7 for a comment on the applicability of our discussion of
more fundamental models, where the Higgs arises as a pseudo Nambu–
Goldstone boson.

masses from linear mixing terms with the composite states.
Since Gc is larger than the SM gauge group, there is some
freedom in the choice of the fermion representations. In addi-
tion to the simplest case, involving just one SU (2)L doublet
and one SU (2)R doublet (“doublet model”), we consider two
cases (“triplet model”, “bidoublet model”), which are moti-
vated by the custodial protection of the Zbb̄ coupling.

Using a notation where lower-case letters refer to elemen-
tary fields, while upper-case letters denote composite states,
the part of the Lagrangian involving fermions reads

• In the doublet model,

Ldoublet
s = −Q̄i

ami
Q Qi

a − R̄i
ami

R Ri
a

−
(

Y i j Q̄i
L aHab R j

R b + Ỹ i j R̄i
L aH∗

ba Q j
R b + h.c.

)
, (1)

Ldoublet
mix = λ

i j
L q̄i

L a Q j
R a + λ

i j
RuŪ i

L t j
R + λ

i j
Rd D̄i

Lb j
R , (2)

where H = (iσ2 H∗, H) is the Higgs bidoublet, Q =
(T B)T transforms as a (2, 1)1/6 under SU (2)L ×
SU (2)R × U (1)X , and R = (U D) transforms as a
(1, 2)1/6. Here and in the following, i, j are flavour indices
and a, b, c are SU (2)L or SU (2)R indices. Fermion fields
without a chirality index are to be understood as ψ =
ψL +ψR , so that the mass terms for these fields are of the
form ψ̄mψψ = mψ(ψ̄LψR + ψ̄RψL).

• In the triplet model,

Ltriplet
s = L̄i

abmi
Qu

Li
ba − R̄i

ami
R Ri

a − R̄′i
a mi

R R′i
a

−
[
Y i j

(
L̄i

L

)
ab

Hbc

(
R j

R

)
ca

+ Y i j
(

L̄i
L

)
ab

Hbc

(
R′ j

R

)
ca

+ Ỹ i j
(

R̄i
L

)
ab

H∗
cb

(
L j

R

)
ca

+ Ỹ i j
(

R̄′i
L

)
ab

H∗
cb

(
L j

R

)
ca

+ h.c.
]
,

(3)

Ltriplet
mix = λ

i j
L q̄i

L a Q j
R a + λ

i j
RuŪ i

L t j
R + λ

i j
Rd D̄i

L b j
R, (4)

where L is a bidoublet transforming as a (2, 2)2/3, and R
and R′ are SU (2)L and SU (2)R triplets, transforming as
(3, 1)2/3 and (1, 3)2/3, respectively. In component nota-
tion, the multiplets are given by

L = (Q Q′) =
(

T T5/3

B T2/3

)
, R = (U5/3 U D)T,

R′ = (U ′
5/3 U ′ D′). (5)

In the Yukawa couplings, we have also used the triplets
rewritten as 2 × 2 matrices, R(′)ab = ταab R(′)α with τ 1,2 =
(σ 1 ± iσ 2)/2 and τ 3 = σ 3/

√
2.

• In the bidoublet model

Lbidoublet
s = −

(
L̄i

U

)i

ab
mi

Qu

(
Li

U

)
ba

− Ū i mi
U Ui

123



Eur. Phys. J. C (2014) 74:2945 Page 3 of 17 2945

+
[
Y i j

U

(
L̄i

U,L

)
ab

HbaU j
R

+Ỹ i j
U Ū i

LH∗
ba

(
L j

U,R

)
ab

+ h.c
]

+ (U → D), (6)

Lbidoublet
mix =λi j

Luq̄i
L a Q j

Ru a +λi j
RuŪ i

Lu j
R +(U, u → D, d),

(7)

where LU transforms as a (2, 2)2/3 and L D transforms as
a (2, 2)−1/3 under the composite gauge group. U and D
are singlets with the U (1)X charge 2/3 and −1/3, respec-
tively. The components of the multiplets are

LU = (Qu Q′
u) =

(
T T5/3

B T2/3

)
,

L D = (Q′
d Qd) =

(
B−1/3 T ′
B−4/3 B ′

)
. (8)

After rotating to the mass basis, the light and mostly ele-
mentary SM fermions couple to the Higgs through their mix-
ings λwith the composite states. For example, in the doublet
model, the mass matrix of light quarks, after removing the
mixing with the heavy fermions but before rotating to the
mass basis, can be written as

(mu,d)i j = v√
2

(
λLm−1

Q Y m−1
R λRu,d

)
i j

+ O

(
v3

m3
Q,R

)
,

(9)

where v = 246 GeV is the Higgs vacuum expectation value,
and similar expressions hold in the bidoublet and triplet mod-
els. At leading order in v/m Q,R , only the Yukawa couplings
Y (and not Ỹ ) enter the mass matrix, which is why the latter
are sometimes called “wrong-chirality” Yukawa couplings.
Although they are not necessary for the generation of quark
masses, they are present in many models, and we will see that
they play a crucial role in the generation of dipole operators,
so we keep them in our Lagrangians.

3 Model-independent phenomenology of dipole
operators

3.1 Effective Hamiltonian

We are interested in the electromagnetic and chromomag-
netic dipole operators involving quarks, both flavour violat-
ing and flavour conserving. The relevant effective Hamilto-
nian can be written as

Heff = −
∑

i, j,q,V

Cqi q j V Qqi q j V + C ′
qi q j V Q′

qi q j V , (10)

where q = u, d and V = γ, g. We define the dipole operators
as

Qqi q jγ = e mqi

16π2 (q̄ jσ
μν PRqi ) Fμν,

Qqi q j g = gs mqi

16π2 (q̄ jσ
μνT a PRqi )Ga μν, (11)

Q′
qi q jγ

= e mqi

16π2 (q̄ jσ
μν PLqi ) Fμν,

Q′
qi q j g = gs mqi

16π2 (q̄ jσ
μνT a PLqi )Ga μν. (12)

In the flavour-conserving case, one has C ′
qqV = C∗

qqV , so
in total there are 18 magnetic and 18 chromomagnetic quark
dipole operators. Among those, the most phenomenologi-
cally relevant ones are the first-generation flavour-conserving
operators contributing to the neutron EDM, the flavour-
violating ones with down-type quarks contributing to FCNCs
with B and K mesons, as well as Q(′)

cuV relevant for charm
FCNCs. Before discussing the observables probing these
operators in turn, we briefly summarise the QCD evolution
that is necessary to relate the operators generated at a high
new physics scale to the low-energy observables.

3.2 QCD corrections

The operators O(′)
qi q jγ and O(′)

qi q j g are subject to QCD renor-
malisation and undergo mixing. They evolve according to
(omitting flavour indices)
(

Cγ (μl)

Cg(μl)

)
=
(
ηγγ ηγ g

0 ηgg

)(
Cγ (μh)

Cg(μh)

)
, (13)

and equivalently for the primed coefficients. For the running
from some high new physics matching scale μh down to the
top mass mt , one has at leading logarithmic order [36]

ηγγ =
[
αs(μh)

αs(mt )

]16/21

, ηgg =
[
αs(μh)

αs(mt )

]2/3

,

ηγ g = 8

3

([
αs(μh)

αs(mt )

]2/3

−
[
αs(μh)

αs(mt )

]16/21
)
. (14)

For the evolution from mt down to some low scale μl , the
number of active quark flavours change and quark mass
thresholds have to be taken into account. We list numerical
values of the evolution coefficients η for the evolution from
some exemplary high scale values to mt , as well as from mt

to phenomenologically relevant low scales, in Table 1.
In writing Eq. (13), we have neglected the mixing of neu-

tral or charged current-current (four-quark) operators into the
dipole operators [37]. Although such operators are generated
at tree level in our setup, we expect that their contributions
to the dipole operators are small, since they are suppressed
by additional powers of the composite–elementary mixing
angles.
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Table 1 RG coefficients for the
evolution from some high new
physics scale μh to mt (left),
and from mt to some
low-energy scale μl . We use
αs(MZ ) = 0.1185

μh (TeV) ηγγ ηγ g ηgg μl ηγγ ηγ g ηgg

0.5 0.905 0.030 0.917 mW 0.930 0.023 0.939

1 0.856 0.045 0.873 mb 0.603 0.105 0.642

2 0.813 0.057 0.835 2 GeV 0.502 0.120 0.547

5 0.763 0.070 0.789 mc 0.432 0.127 0.480

1 GeV 0.389 0.130 0.438

3.3 Neutron EDM

The electric and chromoelectric dipole moments (EDMs and
CEDMs) of the quarks are related to the Wilson coefficients
of the flavour-conserving dipole operators as

dq = e mq

8π2 Im
(
Cqqγ (μl)

)
, d̃q = gs mq

8π2 Im
(
Cqqg(μl)

)
,

(15)

where μl is a hadronic scale of order 1 GeV. The calculation
of the contributions of the quark (C)EDMs to the neutron
EDM is plagued by considerable hadronic uncertainties. An
estimate obtained using QCD sum rules [38] yields

dn =(1 ± 0.5)
[
1.4

(
dd − 1

4 du
)+1.1e

(
d̃d + 1

2 d̃u

)]
. (16)

Experimentally, the neutron EDM is already strongly con-
strained [39],

|dn| < 2.9 × 10−26 e cm at 90 % C.L. (17)

Several experiments are in construction that plan to improve
this bound by up to two orders of magnitude [40].

Indirectly, the neutron EDM is also sensitive to the
CEDMs of second- and third-generation quarks. In the QCD
evolution of the CEDMs to low energies, when integrating
out a heavy quark, a finite threshold correction is generated
to the three-gluon Weinberg operator, which directly con-
tributes to the neutron EDM and mixes under renormalisa-
tion with the first-generation quark (C)EDMs [41]. Taking
these effects into account, the bound (17) can be translated
into bounds on the charm, bottom and top CEDMs, which
read [42–44]

|d̃c| < 1.0 × 10−22 cm,

|d̃b| < 1.1 × 10−21 cm,

|d̃t | < 2.1 × 10−19 cm. (18)

3.4 Down-type FCNCs

The most well-measured flavour-changing dipole transitions
are the b → sγ /g processes probed in the inclusive decay
B → Xsγ . The corresponding decay probing the b → dγ /g
transitions is even rarer in the SM due to the stronger CKM

suppression and consequently is measured less precisely.
Normalizing the current experimental measurements to the
SM expectations for the branching ratios,

Rbqγ = BR(B → Xqγ )

BR(B → Xqγ )SM
, with q = s, d, (19)

one has at present [45–48]

Rbsγ = 1.13 ± 0.11, Rbdγ = 0.92 ± 0.40. (20)

Beyond the SM, these quantities are modified as [37,49]

Rbqγ = 1 + 0.97
(

2 Re(R7q)+ |R7q |2 + |R′
7q |2

)
, (21)

where

R(′)7q =
√

2

4G F VtbV ∗
tq

C (′)
bqγ (mb)

Ceff
7 (mb)

, (22)

with Ceff
7 (mb) = −0.3523. For the numerical bounds on

the Wilson coefficients in the next sections, we imposed the
constraints (20) at 2σ .

The s → dγ /g transitions are less constrained experi-
mentally, since the long-distance dominance in K decay pro-
cesses makes it difficult to relate experimental observables to
the short-distance contributions. Nevertheless, a meaningful
bound on the Wilson coefficients C (′)

sdg can be obtained from
the measurement of the parameter ε′/ε. With the conserva-
tive assumption that the new physics contribution to ε′/ε
should not exceed its experimental central value, one obtains
the bound [50]

1

2
Im
(

Csdg − C ′
sdg

)
< 3.1 × 10−8 . (23)

3.5 Charm FCNCs

Recent experimental hints that the direct CP asymmetry dif-
ference �ACP between D → K K and D → ππ decays is
larger than the SM expectation have attracted a lot of interest
as a possible sign of new physics, also in the context of models
with partial compositeness [25,51]. But even if the observed
effect is not due to new physics, the upper bound on �ACP

can be used to put a constraint on the charm chromomag-
netic dipole operator Q′

cug [52]. Following [44], we impose
in the numerical analysis that the new physics contribution
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Table 2 Model-independent
bounds on new physics
contributions to Wilson
coefficients of dipole operators.
The four columns show the
lower bounds on M , where the
Wilson coefficients at the
matching scale of 1 TeV were
assumed to be Cqi q j V (1 TeV) =
(1,−1, i,−i)/M2

Operator Re(C) < M−2

(TeV)
Re(C) > −M−2

(TeV)
Im(C) < M−2

(TeV)
Im(C) > −M−2

(TeV)
Process

Quuγ 1.08 dn

Qddγ 3.11 dn

Quug 1.45 dn

Qddg 3.79 dn

Qccg 1.22 dn

Qbbg 0.67 dn

Qttg 0.30 dn

Qbsγ 0.71 2.81 1.44 1.39 B → Xsγ

Qbsg 0.34 1.34 0.69 0.67 B → Xsγ

Q′
bsγ 1.41 1.31 B → Xsγ

Q′
bsg 0.68 0.68 B → Xsγ

Qbdγ 3.74 1.51 2.91 1.94 B → Xdγ

Qbdg 1.79 0.72 1.40 0.93 B → Xdγ

Q′
bdγ 2.37 2.37 B → Xdγ

Q′
bdg 1.14 1.14 B → Xdγ

Q(′)
sdg 2.80 ε′/ε

Q(′)
cug 2.14 D → K K , ππ

to�ACP, for central values of the hadronic parameters, does
not exceed the world average [45]

�ACP = (−0.319 ± 0.121)%. (24)

3.6 Model-independent bounds

Given all the experimental constraints discussed above, we
can derive model-independent bounds on the Wilson coeffi-
cients of the dipole operators. We list them in Table 2 at a
renormalisation scale of 1 TeV, considering one purely real
or purely imaginary Wilson coefficient at a time.

The only operators in the effective Hamiltonian (10) we
have not considered are the flavour-changing ones involving
top quarks. Although they are not yet strongly constrained,
they will be probed at LHC in the future through the decays
t → qγ and t → qg, where q = u, c.

4 Analytical results for the Wilson coefficients

In this section, we derive approximate analytical expressions
for the Wilson coefficients of the dipole operators for the
three different choices of fermion representations. We denote
by M ∼ m Q,R a generic composite mass, by λ a generic
composite–elementary mixing parameter, by g an elementary
gauge coupling and by gρ the coupling of the composite vec-
tor resonances. Our goal is to obtain expressions for the Wil-
son coefficient to a given order in the small ratios v/M , λ/M ,
and g/gρ . To this end, we first consider the case of a single

generation of elementary and composite fermions. The rele-
vant mass matrices arising in the three models are collected
in Appendix 8. We diagonalise these matrices at a given order
in the small ratios, rotate all couplings to the mass eigenstate
basis and compute the Wilson coefficients. The resulting one-
loop expressions for the contributions to the Wilson coeffi-
cients involving scalars or vectors are listed along with the
relevant loop functions in Appendix 9. It turns out that the
dominant contributions typically arise from diagrams with a
heavy fermion—lifting the chirality suppression—together
with a W , Z or Higgs in the loop. In Sect. 4.1, we first discuss
these contributions in detail, before qualitatively discussing
the additional contributions in Sect. 4.2.

4.1 Leading contributions

For a single generation of fermions, to leading order in the
small parameters v/M , λ/M and in the limit of heavy vec-
tor resonances, we find that the Wilson coefficients can be
written in the form3

CqqV = CSM
qqV + aqV

Y Ỹ
m Qm R

, (25)

where q = u, d and V = γ, g. In this limit, the only relevant
diagrams feature a Higgs, W or Z boson as well as a heavy

3 Here and in the following, to simplify the notation, we will assume
m Qu = m Qd ≡ m Q , mU = m D ≡ m R , YU = YD ≡ Y and ỸU =
ỸD ≡ Ỹ in the bidoublet model.
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Table 3 Coefficients entering the leading-order contribution (25) to
the dipole Wilson coefficients of down-type quarks (left) and up-type
quarks (right)

Doublet Triplet Bidoublet Doublet Triplet Bidoublet

adγ
1
4

1
2 − 1

2 auγ 0 10
3 1

adg
3
4

3
2

3
2 aug

3
4 2 3

2

fermion in the loop. We have computed all coefficients aqV

in the doublet, triplet and bidoublet models and list them
in Table 3. To illustrate our procedure, we give a detailed
account of our calculation of adγ in the bidoublet model in
Appendix 10. We note that the value auγ = 0 in the doublet
model is not due to a symmetry but rather due to an accidental
cancellation between the W , Z and Higgs contributions.

An important result of our calculation is that, at leading
order, there is no quadratic term in Y , as was also emphasised
in Ref. [25] in the context of the c → ug dipole transition4.
This means that in models in which the “wrong-chirality”
Yukawa couplings are absent or suppressed, the dipole oper-
ators will be suppressed as well. We will discuss other contri-
butions, which become the leading ones in the limit Ỹ → 0,
in Sect. 4.2.

The result in Eq. (25) is only valid in the unrealistic case
of a single generation of fermions. Taking into account all
three generations and an arbitrary flavour structure, the full
analytic diagonalisation of the mass matrices is clearly not
feasible. Still, it is possible to obtain an approximate analyt-
ical expression valid for three generations of elementary and
composite quarks by promoting Eq. (25) to a matrix equation
in flavour space. Concretely, for i ≥ j , one has

Cdi d j V = CSM
di d j V + adV

mdi

�d
ji , (26)

C ′
di d j V = adV

mdi

�d
i j , (27)

where �d = v√
2

U †
LdλLm−1

Q Y m−1
R Ỹ m−1

Q Y m−1
R λRdURd ,

(28)

and analogously for up-type quarks,5 where ULq,Rq are the
matrices diagonalizing the quark mass terms (9). We checked
numerically that Eqs. (26)–(28) indeed give a very good
approximation to the exact results obtained by numerically
diagonalizing the mass matrices.

4 The proportionality to the wrong-chirality Yukawa was also found for
the μ → eγ dipole in Ref. [53].
5 In the triplet model, there is an additional factor of 1√

2
in front of�u

compared to Eqs. (26)–(28), cf. the mass matrices in Appendix 8.

4.2 Subleading contributions

Going beyond the leading order in the expansion of
composite–elementary mixings and v/M and beyond the
limit of heavy vector resonances, there are several classes of
contributions that can become relevant in some cases, in par-
ticular in models without wrong-chirality Yukawa couplings.
This can be the case e.g. in Randall–Sundrum models with
the Higgs field strictly localised on the IR brane, where the
presence of wrong-chirality Yukawa couplings is not required
by 5D gauge invariance (see e.g. [54]). In general, no sim-
ple analytical expressions can be given for these subleading
contributions, so our discussion will remain qualitative.

4.2.1 Higher orders in elementary–composite mixing

These contributions are suppressed by λ2/M2 with respect
to Eq. (25) and are relevant for Wilson coefficients involving
the third generation, which can have a sizable degree of com-
positeness, in particular for b → qγ /g. These contributions
can arise

(a) from diagrams with a SM quark and a W or Z in the loop
and an O(v2/M2) correction to the quark-gauge boson
vertex;

(b) from diagrams with a heavy fermion and a W , Z , or Higgs
in the loop that are parametrically of the same order.

We start by discussing the contributions of type (a). In the
case of b → sγ /g and b → dγ /g, there are two contribu-
tions to the W -top loop that are only suppressed by the degree
of compositeness of the right-handed top quark compared to
the leading contribution. They read

δCbqV = 4G F√
2

mt

mb
V ∗

tq (δg
R
W )tb fV (xt ), (29)

δC ′
bqV = 4G F√

2

mt

mb
Vtb (δg

R
W )tq fV (xt ), (30)

where q = d, s, xt = m2
t /m2

W and the W coupling of the
SM quarks is written as

L ⊃ g√
2

ūi

[(
Vi j + (δgL

W )i j

)
γμPL + (δgR

W )i jγ
μPR

]
d j W+

μ .

(31)

In general, one has

(δgL
W )i j = a v2

(
λLm−1

Q Y Y †m−1
Q λL

)
i j
,

(δgR
W )i j = b v2

(
λRum−1

R Y †Y m−1
R λRd

)
i j
, (32)

where the coefficients a and b are given in Table 4.
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Table 4 Coefficients in Eq. (32) relevant for the corrections to the W
couplings in all models

Doublet Triplet Bidoublet

a − 1
2 − 1

4 − 1
4

b 1
2

√
2

4 0

The contribution in Eq. (29) due to the right-handed W tb
coupling was first discussed in Ref. [26]. We emphasise that
the contribution in Eq. (30) can be equally important in spe-
cific models, although it depends on the flavour structure of
δgR

W , while the contribution in Eq. (29) is present even for a
flavour diagonal δgR

W . Concerning the contributions of type
(b), which involve heavy fermions in the loop, we merely
note that they are parameterically of the same order as the
ones of type (a), but can have a different flavour structure and
are therefore more model dependent. Contributions involv-
ing the degree of compositeness of the left-handed bottom
quark are suppressed by mb/mt , and we will neglect them.

4.2.2 Higher orders in inverse powers of the composite
mass scale

We now consider terms that do not involve additional
composite–elementary mixings, but are present even in the
limit Ỹ → 0. These contributions are relevant for Wil-
son coefficients not involving the third generation in mod-
els where the “wrong-chirality” Yukawas Ỹ are absent or
suppressed. Such contributions arise for example from an
expansion of the loop functions of the diagrams with a W ,
Z or Higgs and a heavy fermion to higher order in the ratios
x = m2

ψ/m2
W,Z ,h , where mψ is the heavy fermion mass. In

fact, the analytic cancellation of the contributions propor-
tional to Y 2 works only at the leading order of the expansion
of the loop functions. As an example, we discuss the Higgs
contribution to the down-type quark dipole operator for a
single generation in the bidoublet model for Ỹ = 0. We find

CddV ⊃ −1

6

m2
h

(
m2

Q + m2
R

)
Y 2

m3
Qm3

R

. (33)

There are similar contributions suppressed by m2
W /m

2
ψ

and m2
Z/m

2
ψ . In the case of the W contribution, there is

the special feature that, in addition to the quadratic term
in the mass ratio, there is also a logarithm that becomes
dominant for large fermion resonance mass. In view of this
complicated dependence, we refrain from giving full analyt-
ical expressions for this type of subleading contributions in
all models, but simply keep in mind that, in the absence of
wrong-chirality Yukawa couplings and sizable composite–
elementary mixings, the Higgs, W and Z contributions to

γ

ψj

ψi

q
Z0 h

q q

ψj

Fig. 1 Two-loop Barr–Zee-type diagram contributing to the electro-
magnetic dipole operator

the dipole operators are roughly suppressed by m2
h,W,Z/m2

ψ

compared to the leading contribution for non-zero Ỹ .

4.2.3 Higher loop orders

Two-loop contributions to the dipole operators might be rel-
evant in cases where the wrong-chirality Yukawas are absent
or strongly suppressed, operators not involving the third gen-
eration are considered (in particular, EDMs), and the com-
posite mass scale is large. For operators involving the third
generation, the contributions discussed in Sect. 4.2.1 domi-
nate instead. The last item is relevant because the contribu-
tions discussed in Sect. 4.2.2 decouple with the fourth power
of the inverse mass scale, while at two-loop order, there can
be diagrams that decouple with the square of the inverse
mass scale, but that do not vanish for Ỹ = 0. An example is
given by the Barr–Zee-type diagram shown in Fig. 1, which
is familiar from the two-loop chargino contribution to the
EDM in split supersymmetry [55]. We estimate the contri-
bution of this diagram to the Wilson coefficient in the limit
Ỹ = 0 as

Cqi q j V ∼ g2

16π2

Y 2

m2
ψ

, (34)

up to an O(1) factor. We see that it can be safely neglected
with respect to the leading contribution (25) even for Ỹ ∼
Y , but it can dominate compared to the contribution (33) if
mψ ∼ m Q ∼ m R is in the multi-TeV regime.

4.2.4 Diagrams with heavy vector resonances

Until now, we have only considered one-loop diagrams with
a heavy fermion and a W , Z or Higgs in the loop, but there
are also diagrams with a heavy vector resonance and a heavy
fermion. These contributions are always parametrically sup-
pressed by a factor g2

ρ/m2
ρ , where gρ is the coupling and mρ

the mass of the vector resonance. In general, the analytical
expressions for these contributions are complicated, since,
in contrast to the W or Z contributions considered above,
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one has to keep the full dependence of the loop functions
if the fermion and vector resonance masses are comparable.
However, it is important to notice that in the limit where all
the fermion resonances are degenerate, the contribution to
the dipole operators from these diagrams is real and diag-
onal in the mass basis and thus does not contribute to any
of the observables we consider, which always feature either
flavour or CP violation.6 In general, we find that in the case
of non-zero Ỹ , these contributions are always suppressed by
v2g2

ρ/m2
ρ and/or m2

ψ/m2
ρ (which is preferred to be smaller

than 1 since naturalness prefers light fermion resonances and
electroweak precision tests require heavy vector resonances)
with respect to the leading contribution (25), and we con-
firmed with a numerical scan that they are typically small.
We will not consider this class of contributions in the follow-
ing, but one should keep in mind that, in particular corners
of the parameter space, they might be relevant in specific
models and would tighten the bounds considered below.

4.2.5 Higher-dimensional operators

Finally, in a more complete theory like a composite Higgs
model, there can be additional contributions that are not cap-
tured by our Lagrangians defined at the beginning of Sect. 2
and are therefore not calculable in our setup. This means that
the bounds we obtain below can be viewed as conservative
estimates. It is possible that there are additional contributions
that make the bounds more severe; but, on general grounds,
there is no reason to expect that these additional effects con-
spire with the calculable ones to eliminate the constraints.

5 Phenomenological analysis

We now proceed to a numerical analysis of the bounds on
partial compositeness from observables sensitive to dipole
operators. Since all these observables probe either flavour or
CP violation (or both), the bounds crucially depend on the
assumptions made on the flavour structure of the model. We
start with the most popular assumption of flavour anarchy,
which arises in models aiming at a geometrical explanation
for the quark mass and mixing hierarchies but is known to
have a problem (assuming TeV-scale resonance masses) with
excessive CP violation in K mixing, unless one is willing to
accept an O(10−2) fine tuning of the relevant CP-violating
phase. We then also consider models with a global flavour
symmetry in the strong sector—either U (3)3 or U (2)3—only
broken by the composite–elementary mixings.

6 In the lepton sector, which we do not consider here, the muon anoma-
lous magnetic moment is an important exception, because it does not
require any flavour or CP violation.

Our aim in this section is not to perform a full numerical
analysis of these models and the contributions to dipole oper-
ators. Rather, we aim to provide analytical expressions for
the dominant contributions to the dipole operators and use
them to extract approximate lower bounds on the resonance
masses from the experimental measurements. These results
can then be used to judge how severely a model with a given
choice of fermion representations and with a given flavour
structure is constrained by the observables sensitive to dipole
operators.

5.1 Models with flavour anarchy

We first consider the case of flavour anarchy [13–19], where
all the couplings in the strong sector are assumed to have
O(1) off-diagonal elements and phases. In general, all coef-
ficients then depend on complicated functions of the anar-
chic Yukawa and mass matrix elements. To give simplified
approximate expressions one can use the fact that, up to O(1)
factors, the quark Yukawa couplings and the CKM matrix ele-
ments can be written in terms of the degrees of compositeness
sL ,R (see Appendix 8 for their definition) as

yui ∼Y sLi sRui , ydi ∼Y sLi sRdi , Vi j ∼sLi/sL j ( j > i).

where Y can be understood as an “average” Yukawa cou-
pling. In the following, we provide simplified expressions
for the Wilson coefficients in terms of “average” parameters
Y , Ỹ and mi that keep track of how the quantities scale with
the parameters, but we neglect O(1) factors coming from
the flavour structure. We do, however, take into account the
numerical factors derived in Sect. 4.

The leading contributions to the Wilson coefficients at the
matching scale then read

CqqV ∼ aqV
Y Ỹ

m Qm R
for q = u, d, (35)

CbqV ∼ Vtq adV
Y Ỹ

m Qm R
for q = d, s, (36)

C ′
bqV ∼ mq

mbVtq
adV

Y Ỹ

m Qm R
for q = d, s, (37)

Csdg ∼ Vcd adg
Y Ỹ

m Qm R
, (38)

C ′
sdg ∼ md

ms Vcd
adg

Y Ỹ

m Qm R
, (39)

Ccug ∼ Vus aug
Y Ỹ

m Qm R
, (40)

C ′
cug ∼ mu

mcVus
aug

Y Ỹ

m Qm R
, (41)
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Table 5 Lower bounds on the
average fermion resonance mass
(multiplied by a combination of
parameters, as indicated in the
first row) in flavour anarchic
models with Ỹ 
= 0 (first three
columns), and crude estimates
in the limit Ỹ = 0 (last two
columns). The mass bounds get
stronger for larger Y and/or Ỹ

Bound on:
(

m Q m R

Y Ỹ

)1/2
(

m2
Q

s2
Rt Y 2

)1/2 (m Q m R
Y

)1/2

Operator Doublet (TeV) Triplet (TeV) Bidoublet (TeV) (estimate) (TeV) (estimate) (TeV)

QddV 3.6 5.1 4.1 0.8

QuuV 1.3 0.6 1.4 0.3

Qccg 1.1 1.7 1.5 0.5

Qbbg 0.6 0.9 0.8 0.3

Qttg 0.3 0.4 0.4 0.2

QbsV 0.4 0.5 0.2 0.6 0.3

Q′
bsV 0.7 1.0 0.4 1.1 0.3

QbdV 0.2 0.3 0.1 0.3 0.2

Q′
bdV 0.6 0.8 0.3 0.9 0.3

Qsdg 1.1 1.6 1.6 0.5

Q′
sdg 1.1 1.6 1.6 0.5

Qcug 0.9 1.4 1.3 0.4

Q′
cug 0.2 0.3 0.2 0.2

where V = γ, g. Arbitrary phases and O(1) factors are
understood in all cases. Concerning the relative importance
of the primed and unprimed flavour-changing Wilson coeffi-
cients, it is interesting to note that in b → s and b → d tran-
sitions the flavour prefactor is an order of magnitude larger
for the primed coefficients, so observables in B decays sen-
sitive to the primed Wilson coefficients, i.e. to right-handed
flavour-changing neutral currents, are particularly promising
in the anarchic model (see [56] for an overview of promis-
ing observables). For the s → d transition, the prefactors of
primed and unprimed coefficients are comparable, and for
the c → u transition the unprimed coefficient has a prefactor
that is about a factor 30 larger than the unprimed one.

For the b → s and b → d transitions, there is an additional
important contribution that is only suppressed by the degree
of compositeness of the right-handed top quark, as discussed
in Sect. 4.2. Here, we give only a crude parametric estimate
of this contribution,

δCbqV ∼ Vtq
Y 2

m2
Q

s2
Rt , (42)

δC ′
bqV ∼ mq

mbVtq

Y 2

m2
Q

s2
Rt . (43)

For all Wilson coefficients, there is in addition a sublead-
ing contribution not involving Ỹ that is parametrically sup-
pressed by m2

h,W,Z/(m Qm R) compared to the leading one

(for Ỹ ∼ Y ), as discussed in Sect. 4.2.2.
Having fixed the parametric dependencies of the Wilson

coefficients up to O(1) factors, we can proceed to put numer-
ical bounds on the combination Y Ỹ/(m Qm R) and the corre-
sponding quantities for the subleading contributions. These

bounds are listed in Table 5. We make the following obser-
vations:

• The strongest bounds come from the down quark (C)EDM
and constrain the fermion resonance masses to be above
4–5 TeV for Y ∼ Ỹ ∼ 1.

• For Y ∼ Ỹ ∼ 1, there is a multitude of bounds in the
ballpark of 1–2 TeV. Since these refer to operators with
different phases and flavour structures, we conclude that
it will be hard to avoid all of them by fortuitous cancel-
lations, even if the bounds listed here are subject to O(1)
uncertainties. Consequently, if Y ∼ Ỹ , dipole operators
alone imply that sub-TeV fermion resonances are border-
line and require a Y not much larger than 1.7

• In models with Ỹ = 0, the bounds turn out to be quite mild
and an anarchic flavour and CP structure is compatible with
sub-TeV fermion resonances for Y � 3, if only constraints
from dipole operators are considered.

5.2 Flavour-symmetric models

Since the flavour anarchic model is not only plagued by
strong constraints from dipole operators but also from
meson–antimeson mixing induced at tree level, it has been
suggested that the strong sector is invariant under a flavour
symmetry that is only broken by the composite–elementary
mixings of one chirality. The simplest case is a U (3)3

symmetry broken by the composite–elementary mixings of
right-handed quarks (“left-handed compositeness”) or of

7 In the anarchic case, we are only referring to the average fermion res-
onance masses. Individual resonances could still accidentally be much
lighter without necessarily violating flavour bounds.
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left-handed quarks (“right-handed compositeness”) [32–34].
Among the three models considered here, right-handed com-
positeness can only be realised in the bidoublet model, as
it requires different mixings for left-handed up- and down-
type quarks. While the U (3)3 models successfully suppress
FCNCs, they are strongly constrained by electroweak and
dijet constraints, since they predict a significant degree of
compositeness for one chirality of light quarks [30,34]. This
problem is avoided in models with a U (2)3 flavour symme-
try in the strong sector, again broken only by one chirality of
composite–elementary mixings [30,35].

5.2.1 EDM constraints in U (2)3 and U (3)3 models

In U (3)3 flavour models with left- or right-handed compos-
iteness, the parameters in the strong Lagrangian are genera-
tion invariant, e.g. for the triplet model,

(m Q)i j = m Q δi j , (m R)i j = m R δi j , (Y )i j = Y δi j ,

(Ỹ )i j = Ỹ δi j , (44)

and analogously for the other models. It can be shown that
in all models the only physical phases apart from the CKM
phase reside in the wrong-chirality Yukawa couplings Ỹ [34].

In flavour models based on a U (2)3 symmetry, one has
instead

m Q = diag(m Q,m Q,m Q3), Y = diag(Y,Y,Y3), (45)

etc. As a result, there is an additional phase in the composite–
elementary mixings related to the flavour symmetry-breaking
spurions, but in the strong sector it is true as well that the
only physical phases can be chosen to be the ones of the Ỹ
couplings, which can be different for the third and the first
two generations. Below, we will adopt a phase convention
where Y is real.

Consequently, in both U (3)3 and U (2)3 models, there
is a clear-cut prediction for the flavour-conserving first-
generation Wilson coefficients relevant for (C)EDMs,

CqqV = aqV
Y Ỹ

m Qm R
for q = u, d, (46)

where in U (2)3, the masses and Yukawa couplings refer to
those of the first two generations of composite fermions. Note
that, in contrast to the anarchic model above, we have used
a “=” sign, since there is no further O(1) factor in front.

This leads to the bounds on the combination Y ImỸ
m Qm R

shown
in Table 6. We conclude that sub-TeV fermion resonances
in U (3)3 models, or sub-TeV fermion resonances of the first
two generations in U (2)3 models, require

Y ImỸ � 0.05. (47)

Table 6 Bounds from the neutron EDM on the quantity√
m Qm R/

√
Y ImỸ in U (3)3 and U (2)3 models

Operator Doublet (TeV) Triplet (TeV) Bidoublet (TeV)

QddV 3.6 5.1 4.1

QuuV 1.3 0.6 1.4

Qccg 1.1 1.7 1.5

Qbbg 0.6 0.9 0.8

Qttg 0.3 0.4 0.4

As discussed above, in the limit Ỹ → 0 the strong sector
carries no new phase both in U (3)3 and U (2)3 models. The
remaining contributions to the EDMs involving the phases in
the composite–elementary mixings are tiny, and hence there
is no relevant bound.

In the case of the U (2)3 model, if Ỹ = 0 or the first-
generation fermion partners are decoupled, the leading con-
tribution to the up- and down quark (C)EDMs is absent. But
also the third-generation wrong-chirality Yukawa Ỹ3 can con-
tribute to the neutron EDM, if it is complex. On the one hand,
it will generate a contribution to the top CEDM via the Wil-
son coefficient

Cttg = aug
Y3Ỹ3

m Q3m R3
, (48)

which leads to the bound shown in the last row of Table 6. On
the other hand, a two-loop contribution to the first-generation
EDMs proportional to Im(Ỹ3) can arise, e.g. from the diagram
in Fig. 1. Estimating this contribution naively as CqqV ∼
g2Y Ỹ/(16π2m2

ψ), one would obtain a similar bound on mψ

of the order of 0.4 TeV for Y3 ∼ Im(Ỹ3) ∼ 1.

5.2.2 Flavour violation in U (3)3 models

The leading contributions to the flavour-changing dipole
operators in Eq. (25) vanish in models with U (3)3 flavour
symmetry and left- or right-handed compositeness. Sublead-
ing contributions to the unprimed Wilson coefficients arise,
as discussed in Sect. 4.2. The strongest bound is on the coef-
ficient CbsV , for which a crude estimate yields

δCbsV ∼ Vts
Y 2

m2
Q

sRt

sLt Y
, (49)

leading to the bound

Y 2

m2
Q

sRt

sLt Y
�
(

1

0.6 TeV

)2

. (50)
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Table 7 Bound on the quantity
(

Y Ỹ
m Q m R

− Y3Ỹ3
m Q3m R3

)−1/2
in U (2)3

flavour models with left-handed compositeness

Operator Doublet (TeV) Triplet (TeV) Bidoublet (TeV)

QbsV 0.37 0.52 0.22

5.2.3 Flavour violation in U (2)3 models

In U (2)3 flavour models with left-handed compositeness, the
leading contributions to the Wilson coefficients read

CbqV = VtbV ∗
tq

[
adV

(
Y Ỹ

m Qm R
− Y3Ỹ3

m Q3m R3

)]
for q = d, s,

(51)

and all other coefficients are negligible. Again, there are no
additional O(1) factors. Since the coefficients relevant for
b → d and b → s transitions are correlated in these models,
it is sufficient to quote the (stronger) bound derived from the
B → Xsγ branching ratio. It is shown in Table 7.

In U (2)3 models with right-handed compositeness, the
Wilson coefficients vanish at leading order in the composite–
elementary mixings. Beyond the leading order, there are con-
tributions both in left- and right-handed compositeness anal-
ogous to the ones in U (3)3 models. They give rise to a bound
similar to Eq. (50).

6 Comparison with the literature

Since some of the dipole operators have been considered in
the literature in various models similar to the ones we studied
here, we present below a detailed comparison of our findings
with those of existing analyses. We find mostly agreement,
but also some important differences.

• In Ref. [23], the B → Xsγ branching ratio has been
calculated in a model similar to our doublet model, the
difference being that the right-handed quarks do not mix
with an SU (2)R doublet, but with two singlets, such that
the strong Yukawa couplings explicitly break custodial
symmetry. For the leading-order contribution to the Wil-
son coefficient from W , Z or Higgs loops, this difference
is, however, irrelevant. Up to an overall sign, we agree
with the result for the charged Goldstone (W ) contribution
[(adγ )W = 5/12 in our language], but disagree with the
result for the neutral contribution [we find (adγ )h = −1/8
and (adγ )Z = −1/24].

• In Ref. [24], the B → Xsγ branching ratio and the observ-
able ε′/ε have been estimated in a Randall–Sundrum
framework. In the anarchic doublet model, which most
closely resembles their setup, the bounds we obtain from

these processes are consistent with the ones found in that
reference.

• Ref. [34] has given an estimate of the leading contribution
to the B → Xsγ branching ratio from loops with a Higgs
boson or a charged or neutral Goldstone boson (W or Z ),
corresponding to our Eq. (25), in the anarchic bidoublet
model. We disagree with the fact that the leading-order
contribution does not involve the wrong-chirality Yukawa
couplings. In the same reference, EDMs in U (3)3 mod-
els with left-handed compositeness were discussed, and
it was claimed that the new CP-violating phase does not
enter the EDM at leading order, since it can be shifted to
Ỹ . Our analysis shows that the converse is true: the leading
contribution to the EDM is proportional to Ỹ . The bounds
we obtain are shown in Table 6.

• The authors of Ref. [28] have performed a 5D calcula-
tion of b → qγ processes in a Randall–Sundrum setup.
The choice of fermion representations is similar to our
triplet model, but the right-handed up-type quarks cou-
ple to a singlet. Furthermore, the model effectively has
Ỹ = Y . Our numerical estimates for the bound from the
B → Xs,dγ branching fractions are compatible with the
numerical analysis presented in that work.

• Ref. [26] contains a thorough analysis of the B → Xsγ

branching ratio and the observable ε′/ε, closely following
[23], in the triplet and bidoublet models (denoted TS5 and
TS10, respectively) with flavour anarchy, setting Ỹ = Y .
While we agree on the overall form of the results, we have
several differences in the coefficients aqV . We present
the details of our calculation in the bidoublet model in
Appendix 10.

• In Ref. [25], the c → ug dipole transition was considered
in Randall–Sundrum models in the context of �ACP in
D → K K , ππ decays. In particular, the authors empha-
sise the dependence of the leading contribution on the
wrong-chirality Yukawa coupling, and we confirm their
findings in our 4D setup.

7 Conclusions

Dipole operators with quarks and an on-shell photon or gluon
are generated at the one-loop level in theories based on the
mechanism of partial compositeness, where the quarks get
their masses by mixing with heavy vector-like “composite”
fermions. Paradigm examples in this class of models are com-
posite Higgs models or warped extra dimensions. The dipole
operators contribute to numerous observables, like EDMs or
FCNC decays, which can then be used to constrain these
models. In this paper, we have performed an analysis of all
dipole operators in the quark sector that are constrained by
experiment within a simple 4D setup with a single set of
vector-like fermions. We have chosen this simple framework
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so as to be able to study the effects of choosing different rep-
resentations for the composite fermion fields and of impos-
ing different flavour structures in the strong sector. Our main
findings can be summarised as follows:

• The leading contributions to the Wilson coefficients, dis-
cussed in Sect. 4.1, typically come from diagrams with a
heavy fermion and a W , Z or Higgs in the loop. These
contributions are proportional to the “wrong-chirality”
Yukawa couplings Ỹ .

• Beyond these leading contributions there exist a num-
ber of subleading effects, which we have categorised sys-
tematically and discussed qualitatively in Sect. 4.2. They
can be relevant, e.g., in models where the wrong-chirality
Yukawas are absent or suppressed. In the case of b → s, d
transitions, these subleading contributions can be compa-
rable to the leading ones (due to the sizable degrees of
compositeness of the top quark), while in all other cases
they are typically suppressed by at least an order of mag-
nitude for TeV-scale resonances.

• In models with anarchic flavour and CP structures, the
neutron EDM leads to a stringent constraint. If the aver-
age Yukawa couplings Y and wrong-chirality Yukawa
couplings Ỹ are of O(1), this implies that the average
fermion resonance mass scale should be above 4 TeV or
so. For larger Yukawa couplings, the bounds become even
stronger. Apart from the neutron EDM bound, there is
a multitude of bounds in the 1–2 TeV ballpark, as sum-
marised in Table 5.

• In models in which the wrong-chirality Yukawa couplings
are absent, the bounds from dipole operators are mild, even
for an anarchic flavour and CP structures.

• In models featuring a U (3)3 flavour symmetry broken only
by left- or right-handed composite–elementary mixings,
there is a bound from the neutron EDM that is as strong
as in the anarchic case. It can be avoided by assuming the
wrong-chirality Yukawa coupling to be real (or absent).

• In models with a U (2)3 flavour symmetry broken only by
left- or right-handed composite–elementary mixings, the
EDM bound can be avoided alternatively by raising the
mass of the composite fermions of the first two genera-
tions.

• In U (2)3 flavour models with left-handed compositeness,
there are bounds from flavour-violating dipoles, which are,
however, very mild.

While our results have been obtained in the simple frame-
work defined in Sect. 2, in more complete models the details
of the analysis can be different. Here we only briefly comment
on models where the Higgs is a pseudo Nambu–Goldstone
boson (PNGB) [4,5], which are particularly well motivated
in view of the lightness of the Higgs boson. Strictly speaking,
these models are not a special case of the Lagrangian defined

in Sect. 2. Given that the dominant contributions to the dipole
operators come from diagrams with a heavy fermion and a
Higgs, W or Z and does not depend on the details of the com-
posite spin-1 sector, it is instructive to compare the fermion
mass matrices in the two cases. For example, in the min-
imal composite Higgs model referred to as MCHM5 [57],
the fermion mass matrix can be written in a form (see e.g.
[58]) that, to leading order in the expansion in the Higgs vac-
uum expectation value, corresponds to the mass matrix in
our bidoublet model (see Appendix 8) with Ỹ = Y . Thus we
expect that with the identification Ỹ = Y our results for the
leading contributions to the Wilson coefficients also hold in
composite PNGB models, up to O(1) factors.

There are several ways to extend our analysis. Also in the
charged lepton sector, dipole operators arise and contribute
to �i → � jγ decays, to the electron EDM or to the muon
anomalous magnetic moment [53,59,60] (see also [61–63]).
Finally, a global numerical analysis of all contributions to
�F = 1 and �F = 2 processes, taking into account elec-
troweak constraints, would be interesting. We leave this to a
future publication.
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8 Appendix A: Fermion mass matrices

In this section we list the mass matrices of the heavy fermion
resonances in all three models. In the doublet model, they are
given by

Mu
ψ =

⎛
⎜⎜⎝

tR TR UR

tL 0 −λL 0
TL 0 m Q − Yv√

2

UL −λRu − Ỹv√
2

m R

⎞
⎟⎟⎠,

Md
ψ =

⎛
⎜⎜⎝

bR BR DR

bL 0 −λL 0
BL 0 m Q − Yv√

2

DL −λRd − Ỹv√
2

m R

⎞
⎟⎟⎠. (52)
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In the triplet model, they are

Mu
ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

tR UR U ′
R TR T2/3R

tL 0 0 0 −λL 0

UL −λRu m R 0 − Ỹv
2

Ỹv
2

U ′
L 0 0 m R − Ỹv

2
Ỹv
2

TL 0 −Yv
2 −Yv

2 m Q 0

T2/3L 0 Yv
2

Yv
2 0 m Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Md
ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

bR DR D′
R BR

bL 0 0 0 −λL

DL −λRd m R 0 − Ỹv√
2

D′
L 0 0 m R − Ỹv√

2

BL 0 − Yv√
2

− Yv√
2

m Q

⎞
⎟⎟⎟⎟⎟⎟⎠
, (53)

and

M5/3
ψ =

⎛
⎜⎜⎜⎝

T5/3R U5/3R U ′
5/3R

T5/3L m Q − Yv√
2

− Yv√
2

U5/3L − Ỹv√
2

m R 0

U ′
5/3L − Ỹv√

2
0 m R

⎞
⎟⎟⎟⎠ . (54)

In the bidoublet model, they are

Mu
ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

tR TR T ′
R T2/3R UR

tL 0 −λLu −λLd 0 0
TL 0 m Qu 0 0 − Yv√

2
T ′

L 0 0 m Qd 0 0
T2/3L 0 0 0 m Qu − Yv√

2

UL −λRu − Ỹv√
2

0 − Ỹv√
2

mU

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Md
ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

bR BR B ′
R B−1/3R DR

bL 0 −λLu −λLd 0 0
BL 0 m Qu 0 0 0
B ′

L 0 0 m Qd 0 − Yv√
2

B−1/3L 0 0 0 m Qu − Yv√
2

DL −λRd 0 − Ỹv√
2

− Ỹv√
2

m D

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(55)

In the discussion of our results we have switched from the
mixing parameters λi to the sines of the mixing angles
determining the degree of compositeness. The composite–
elementary mixings are in general given by si ≡ sin ϕi ≈
tan ϕi = λi/mi ; more specifically, for the doublet and triplet
models

sLt = sLb ≡ sL = λL√
m2

Q + λ2
L

,

sRt = λRu√
m2

R + λ2
Ru

, sRb = λRd√
m2

R + λ2
Rd

, (56)

whereas in the bidoublet model

sLt = λLu√
m2

Qu + λ2
Lu

, sRt = λRu√
m2

U + λ2
Ru

,

sLb = λLd√
m2

Qd + λ2
Ld

, sRb = λRd√
m2

D + λ2
Rd

. (57)

9 Appendix B: Model-independent formulae for the
Wilson coefficients

Here we give the exact analytical expressions for the one-
loop Wilson coefficients, which were used to obtain the
approximate expressions given in the text. The Wilson coef-
ficients of the qi → q jγ dipole operators, as defined in
Eqs. (10)–(12) with i > j , can be written as

Cqi q jγ,g =
∑
ψ, X

1

mqi m
2
X

(
mqi V L∗

iψX V L
jψX + mq j V R∗

iψX V R
jψX

)

× F1
X (Qψ, Q X , x) (58)

+ 1

mqi m
2
X

(
mψV L∗

iψX V R
jψX

)
F2

X (Qψ, Q X , x),

(59)

where ψ denotes the fermion entering the loop and X can be
either vector, scalar or a heavy gluon resonance. The parame-
ter x is given by x = m2

ψ/m2
X . The expression for the primed

Wilson coefficient C′
qi q jγ,g can be obtained from Eq. (59) by

interchanging L ↔ R. The loop functions are defined as

F1
V (Qψ, QV , x)

= Qψ

(
5x4 − 14x3 + 39x2 − 18x2 log x − 38x + 8

)

24(x − 1)4

+QV

(
4x4 − 49x3 + 18x3 log x + 78x2 − 43x + 10

)

24(x − 1)4
,

(60)

F2
V (Qψ, QV , x) = Qψ

(−x3 − 3x + 6x log x + 4
)

4(x − 1)3

+QV

(−x3 + 12x2 − 6x2 log x − 15x + 4
)

4(x − 1)3
, (61)

F1
S (Qψ, QS, x) = Qψ

(−x3 + 6x2 − 3x − 6x log x − 2
)

24(x − 1)4

+QS

(
2x3 + 3x2 − 6x2 log x − 6x + 1

)

24(x − 1)4
, (62)
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Table 8 Charge parameters for
the loop functions (63)
depending on contribution

C X QF Q X C X QF Q X

Cddγ h, Z , ρ0 −1/3 0 Cuuγ h, Z , ρ0 2/3 0

W +, ρ+ −4/3 1 W +, ρ+ −1/3 1

W −, ρ− 2/3 −1 W −, ρ− 5/3 −1

G∗ −4/9 0 G∗ 8/9 0

Cddg h,W, ρ 1 0 Cuug h,W, ρ 1 0

G∗ −1/6 3/2 G∗ −1/6 3/2

F2
S (Qψ, QS, x) = Qψ

(−x2 + 4x − 2 log x − 3
)

4(x − 1)3

+QS

(
x2 − 2x log x − 1

)

4(x − 1)3
. (63)

Note that the charge parameters Qψ,V,S in the loop functions
are not necessarily the electric charges of the corresponding
particles but can be colour factors in the cases of either the
external gauge field being a gluon or the loop involving heavy
gluon resonances. A complete reference is given in Table 8.
The couplings V L/R

iψX in Eq. (59) are defined as follows:

(64)

10 Appendix C: Calculation of leading contribution
in the bidoublet model

Here we illustrate the calculation for the leading-order cor-
rection to Cqqγ in the bidoublet model for one generation.

This contribution is governed by diagrams with a heavy
fermion and a W , Z or Higgs in the loop, as shown in Fig. 2.
We obtain

Cbbγ =
∑
ψ,X

mψ

mbm2
X

V R
bψX V L∗

bψX FX
(
Qψ, Q X , x

)
, (65)

where mψ and m X are the masses of the fermion and the
boson in the loop. The V L ,R

bψX are the fermion–gauge couplings
in the mass eigenbasis, as defined in Appendix 9. For the loop
functions, we use the approximations

FV
(
Qψ, QV , x

) ≈ − Qψ + QV

4
, FS

(
Qψ, x

) ≈ − Qψ

x
,

(66)

where we only kept the first non-vanishing order for x → ∞.
The gauge couplings up to quadratic order of the composite–
elementary mixings are given in Table 9. Table 10 lists
the mass eigenstates to order O(v). We have followed the
convention of setting m Qu = m Qd → m Q and mU =
m D → m R everywhere. Putting all the pieces together,
we find the contributions listed in Table 11. Summing up
these contributions, we have obtained the result from Sect. 4,
i.e.

Cbbγ =
∑

i

ci = adγ
Y Ỹ

m Qm R
, (67)

with adγ = −1/2.

γ

bb

W−

T ′
γ

bb

W+

B−4/3

bb

Z0

γ

B ′, B1/3, D

bb

h

γ

B ′, B1/3, D

Fig. 2 Diagrams contributing to the leading correction in the bidoublet
model. The blob on the photon leg denotes the photon either coupling to
the loop fermion or the W boson. We use the same names for the fermion

mass eigenstates as for the fermion fields in the composite–elementary
basis. The mass eigenstates are understood to correspond to the fields
in the original basis with whom they have the largest admixtures
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Table 9 Couplings of the b and
the loop fermion to the loop
boson in the bidoublet model

ψ X V R
bψX V L

bψX

T ′ W −
μ

gY Ỹv2sLb

2
√

2m Rm Q
− gYvsRb

2m Q

B−4/3 W +
μ

gY Ỹv2sLb

2
√

2m Qm R
− gYvsRb

2m Q

B ′ Z0
μ

gYvsRb

2
√

2m Q

√
1 − s2

W

gY
(

Y m R + Ỹ m Q

)
v2sLb

4m R

(
m2

R − m2
Q

)√
1 − s2

W

B1/3 Z0
μ − gYvsRb

2
√

2m Q

√
1 − s2

W

gY
(

Y m Qm R − Ỹ m2
Q + 2Ỹ m2

R

)
v2sLb

4m Qm R

(
m2

R − m2
Q

)√
1 − s2

W

D Z0
μ 0 − gYvsLb

2
√

2m R

√
1 − s2

W

B ′ h
Y sRb√

2

Yv
(

Ỹ m2
Q − 2Ỹ m2

R − Y m Qm R

)
sLb

2m R

(
m2

R − m2
Q

)

B1/3 h
Y sRb√

2

Yv
(

Ỹ m2
Q − 2Ỹ m2

R − Y m Qm R

)
sLb

2m R

(
m2

R − m2
Q

)

D h
Y Ỹv

(
m2

R − 2m2
Q

)
sRb

mL
(

m2
Q − m2

R

) − Y 2vsRb

m2
Q − m2

R

Y sLb√
2

Table 10 Mass eigenstates of the involved fermions at order O(v) in
the bidoublet model

b B ′ B1/3 D T ′ B−4/3

Yv√
2

sLbsRb m Q m Q m R + m R

2
s2

Rb m Q m Q

Table 11 Contributions relevant to the leading order correction of Cbbγ
in the bidoublet model

Loop Fermion Loop Boson ci

T ′ W −
μ

5Y Ỹ

12m Qm R

B−4/3 W +
μ − 7Y Ỹ

12m Qm R

B ′ Z0
μ

Y Ỹ m Q

24
(

m3
R − m2

Qm R

)

B1/3 Z0
μ

Y Ỹ
(

m2
Q − 2m2

R

)

24
(

m Qm3
R − m3

Qm R

)

D Z0
μ 0

B ′ Higgs
Y Ỹ

(
m2

Q − 2m2
R

)

24
(

m Qm3
R − m3

Qm R

)

B1/3 Higgs
Y Ỹ

(
m2

Q − 2m2
R

)

24
(

m Qm3
R − m3

Qm R

)

D Higgs
Y Ỹ

(
2m2

Q − m2
R

)

12
(

m3
Qm R − m Qm3

R

)
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