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A B S T R A C T

During the service life, laminated composites may be subject to some random thermal environment.
Quantification of the uncertainty in static and dynamic response of the composites under such condition is still a
challenging issue. This work presents a stochastic dynamic response analysis of a graphite-epoxy composite plate
using generalized polynomial chaos (gPC) expansion due to random mean temperature increment. A stochastic
finite element method (SFEM) based on the first-order shear deformation theory (FSDT) is used to describe the
free and forced vibration response of the graphite-epoxy composite plate under a uniform distribution of the
temperature throughout the plate. Newmark’s time integration scheme is used to predict the time-dependent
displacement response under dynamic loading. The collocation-based non-intrusive gPC expansion method is
used for stochastic dynamic analysis of the graphite-epoxy composite plate. The increment in the temperature is
considered as an uncertain parameter and presented by the truncated gPC expansion. The stochastic system
response of the plate is projected to the deterministic solver by using the stochastic Galerkin method. The
statistical response of eigen frequencies and dynamic displacements of the composite plate at incremental
random mean temperature are investigated, and are compared with the results of the Monte Carlo simulation.
The numerical studies show a reduction in amplitude of the dynamic mean displacements with the increment in
the time and it increases with the increment in the random mean temperature. The characteristics of loading
have also significantly influenced the uncertainty in the time-dependent displacement response.

1. Introduction

Applicability of laminated composites in manufacturing important
and critical components of the aircraft, rocket, space station, high-speed
train, and racing car has widely increased nowadays for exploiting
various inherent advantages from their material properties such as high
strength-to-weight and high stiffness-to-weight ratios, long fatigue life,
and dimensional stability during temperature change. The specific parts
of the structures such as the nose and wings of the aircraft experience a
wide range of temperature variation during the service life due to the
movement at supersonic speeds. Similarly, due to the high speeds, the
body of the racing car does also experience elevated temperatures. The
increase in temperature is very random in nature depending upon
various unpredictable influences. Due to high dimensional stability, low
coefficient of thermal expansion (CTE), high strength, and high glass
transition temperature graphite-epoxy composite is used to manu-
facture some of the critical components in the structures. Therefore, the
variations in the temperature increment exhibit a significant range of

uncertainties in the response of the graphite-epoxy composite structure.
Moreover, adequate information on variability of the structural re-
sponse is essential to design a thermally sensitive part of the structure
using graphite-epoxy composite. On the other hand, structural strength
of the composite plate is also random in nature. Stochastic studies of the
graphite-epoxy plate under dynamic loading is essential to estimate the
probability of failure in uncertain thermal environment. Thus, for the
safe and reliable design of the structural components subjected to the
uncertain temperature and different types of loading conditions in-
stigate to study the stochastic dynamic response of the graphite-epoxy
composite plate in the random thermal environment.

The analysis of fiber reinforced composite (FRC) plate in the
thermal environment was initiated by Halpin [1], and was followed by
Whitney and Ashton [2]. They had presented deterministic elastic re-
sponse of the symmetric and anti-symmetric composite plates using
generalized Duhamel-Neumann form of Hooke’s law including the ef-
fect of moisture and thermal strain. Ram and Sinha [3] had presented a
finite element (FE) method using first-order shear deformation theory
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(FSDT) to determine eigen frequency of the laminated composite plate
with increasing uniform temperature and moisture concentration. They
had shown that the eigen frequency of the composite plate decreases
with increasing temperature and moisture concentration for symmetric
and anti-symmetric angle-ply laminates with simply-supported and
fixed boundary conditions. Rao and Sinha [4] had developed a three-
dimensional FE model to represent the eigen frequency and transient
response of the multidimensional composite plate using 20-node iso-
parametric quadratic elements at elevated temperature and moisture
concentration. Mallikarjuna and Kant [5] and Kant and Mallikarjuna
[6] had presented large deflection response of the composite plate using
higher-order shear deformation theory (HSDT) with the application of
C0 isoparametric element. Rather extensive deterministic studies of the
laminated plates and shells had appeared in the literature on the non-
linear transient response albeit without considering thermal and
moisture effects [7–10]. Huang and Tauchert [11] had investigated
temperature-induced large deflection behavior of the laminated com-
posite plates and spherical panels. Patel et al. [12] had studied hygro-
thermal effects on thick laminated composite plate using higher-order
theory. They had shown that eigen frequencies obtained from the ap-
plication of the higher-order theory for thin laminated composite plate
are comparable to those obtained from the FSDT in hygrothermal en-
vironment. Ganapathi et al. [13] had studied nonlinear dynamic re-
sponse of the thick composite and sandwich plates subjected to thermal
and mechanical loading using higher-order theory. Huang et al. [14]
had studied the effects of deterministic nonlinear vibration and dy-
namic response of the FRC plate using the HSDT in the hygrothermal
environment. They had obtained nonlinear frequencies and dynamic
response of the composite plate by an improved perturbation technique.
The nonlinear free vibration analysis and evaluation of transient re-
sponse of a doubly-curved shell structure, by incorporating Green-La-
grange type nonlinear strain into the FSDT, using FE formulation was
presented by Naidu and Sinha [15,16]. They had used Newmark’s
average acceleration method for the transient analysis conducted from
the nonlinear governing equations of motion. Ribeiro and Jansen [17]
had presented nonlinear transient response of the composite laminated
shallow shells subjected to the simultaneous application of the thermal
field and mechanical excitation. The FE model was based on the FSDT
with hierarchical basis function. Mahapatra et al. [18,19] had in-
vestigated nonlinear frequency response of the singly- or doubly-curved
laminated composite shell panels considering the HSDT and Green-La-
grange type nonlinearity. Nanda and Pradyumna [20] had presented
nonlinear free vibration analysis and evaluation of transient response of
the imperfect laminated composite shell in hygrothermal environment.
The formulation was based on the FSDT and von Kármán-type non-
linear kinematics. Biswal et al. [21] had reported a numerical study of
free vibration of woven fiber glass-epoxy laminated composite shallow
shell under hygrothermal environment using the FSDT; wherein, the
numerically simulated results were well supported by the experimental
measurements. In all these studies, the elastic parameters had been
considered as deterministic, and deterministic dynamic response of the
structures was presented at various deterministic temperatures. How-
ever, in practical situations the temperature increment is not always
deterministic necessarily, rather it is quite random in nature. Therefore,
the probabilistic study of the dynamic response of the graphite-epoxy
composite plate at elevated random temperature is deemed essential.

Uncertainty quantification in the system response of the FRC plate
using the FE method has been investigated in the recent decade con-
sidering the aleatory uncertainties due to the randomness in the ma-
terial properties of the composite. Stochastic static and dynamic ana-
lyses of the FRC plate using perturbation method were presented in
details by Engelstad and Reddy [22], Park et al. [23], Salim et al. [24],
Chen et al. [25], Singh et al. [26], Onkar and Yadav [27], and Lal et al.
[28]. In perturbation method, the uncertain parameters are expanded
by Taylor’s series expansion about the mean value. However, the lim-
itation of this method is, the deviation of the randomness cannot be too

large with respect to the mean value of the parameters. The brute-force,
Monte Carlo simulation (MCS) method is relatively simple and ex-
tensively applied to quantify the uncertainty in the static and dynamic
response evaluation of the composite plates. Nevertheless, a large
numbers of Monte Carlo (MC) realizations are required for achieving
good accuracy in the simulation, which is time consuming and com-
putationally inefficient. Application of the MC-based simulation for
studying reliability of the laminated composite plate was shown by
Zhang et al. [29]. To address the issue of computational efficiency, the
spectrum-based generalized polynomial chaos (gPC) expansion method
[30–35] has received a significant attention due to its computational
efficiency with reasonable accuracy in the simulation over the sam-
pling-based MCS. Sepahvand et al. [36–38] presented the application of
the gPC expansion method to represent the uncertainty in the eigen
frequencies and eigen modes of the FRC plates due to the uncertainty in
the elastic moduli and fiber orientations. More details on the applica-
tions of the method can be found in [39,40].

In the recent past, some studies have been reported which address
the uncertainty in the eigen frequency response of the composite plate
in the thermal environment. Lal and Singh [41] had investigated the
uncertainty in the first eigen frequency arising due to a small level of
uncertainty in the individual system parameters of the composite plate
at different temperatures. The system parameters included elastic
moduli, Poisson’s ratio, and thickness of the composite plate. They had
used first-order perturbation technique (FOPT) in conjunction with the
HSDT in the FE method for the composite plate. Singh and Verma [42]
had studied the uncertainty in predicting the buckling load due to the
uncertainty in the geometric and material properties of the composite
plate at different moisture and temperature conditions using the HSDT
and FOPT. They [41,42] had adopted simply-supported and fixed
boundary conditions for the plates in the analysis. Kumar et al. [43] had
studied stochastic free vibration response of the laminated composite
plate resting on elastic foundation under hygrothermal environment
using the HSDT. Dey et al. [44] had applied surrogate modeling ap-
proach to investigate the stochasticity in the first three natural fre-
quencies of the laminated composite plate due to the uncertainty in the
temperature, elastic moduli, and fiber angle/ orientations. They had
considered cantilever laminated composite plate for the analysis.
Kumar [45,46] had studied the mean and coefficient of variation (COV)
of the first mode of linear and nonlinear eigen frequencies, respectively
with the increment in the temperature and moisture content con-
sidering randomness in the elastic moduli, coefficient of thermal ex-
pansion, and moisture content using the FOPT. Nevertheless, the sto-
chastic static and free vibration response of the composite plate due to
the randomness in the material properties at various temperatures using
the FOPT has been investigated in [45,46], considering limitation in the
applicability of the COV equal to 0.1.

The perusal of the earlier works reveals that research is conducted
on probabilistic study of the static response and eigen frequency re-
sponse at higher temperatures due to the uncertainty in the system
parameters using the FOPT. However, probabilistic dynamic analysis of
the composite plate due to the random temperature increment is
completely missing, though it is such an important consideration.
Therefore, the present study intends to report the effect of random
mean temperature increment on the eigen frequency and dynamic re-
sponse of the composite plate with various stacking sequences using the
gPC expansion method. Moreover, the application of the gPC expansion
technique may be able to address the issue regarding consideration of
the large uncertainty over the perturbation technique. The collocation-
based non-intrusive gPC expansion method is applied to model the
stochastic response of the eigen frequencies and the time-dependent
displacement field. The stochastic response at each time step has been
determined to describe the effect of the temperature uncertainty on the
dynamic response of the composite plate. A deterministic FE model has
been developed to realize the dynamic response considering the tem-
perature-dependent elastic properties of the graphite-epoxy composite
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plate. This FE model is developed to analyze the laminated composite
plate in the thermal environment to evaluate the structural response
from the non-intrusive stochastic model. The major contribution from
this paper is, to study the effect of thermal stochasticity by using sto-
chastic finite element method (SFEM) with the application of the gPC to
evaluate the uncertainty in the eigen frequency and dynamic central
displacement. Numerical dynamic analysis has been carried out with
suddenly applied pulse and impulse loading to investigate the variation
of uncertainty in the time domain for the cross-ply and angle-ply la-
minates.

The paper is organized as follows: development of the stochastic
formulation of the graphite-epoxy composite laminated plate for the
uncertainty in the temperature increment is presented in the next sec-
tion. A step-by-step procedure for the numerical study is demonstrated
in Section 3. Validation of the stochastic model and numerical results
are given in Section 4, followed by conclusions in the last section of this
paper.

2. Stochastic formulation for the random temperature increment

In the present study, a laminated composite plate of length L, width
W, and uniform thickness h is considered consisting of n numbers of
unidirectional lamina. It is assumed that each lamina of the composite
plate is orthotropic, and bonded together with infinitely thin bonds to
act as an integral part of the composite plate. The thickness of the
composite plate is considered to be very small as compared to the in-
plane dimensions, and shear deformation of the composite plate is
constant throughout the thickness. Consequently, the FSDT is employed
in the present study considering the desirable accuracy with improved
computational efficiency [47]. A shear correction factor is applied here
to account for the non-uniform distribution of the transverse shear
strain along the thickness of the laminate.

2.1. Constitutive relationship of the composite plate

Mid-plane of the composite plate is considered as a reference plane
to evaluate the displacement fields. According to the FSDT, normal to
the mid-plane remains straight before and after deformation. The po-
sitive sign convention for the in-plane translations u and v, out-of-plane
translation w, the rotations of the transverse normal x and y of the
composite plate about y and x axes, respectively, and fiber orientations
of the lamina are shown in Fig. 1. The generalized displacement vector

=d u v w{ } { }x y
T of the composite plate at a distance z from

the mid-plane is expressed as

= + = =u u z v v z w w, , .0 y 0 x 0 (1)

Here, u v,0 0, and w0 are the mid-plane displacements along x y, , and z
directions, respectively. Shear rotations x and y in x z and y z

planes, respectively, are expressed as

= + =w w, , , .x x y y y x (2)

Components of linear strain vector { } of the laminate at distance z from
the mid-plane are derived from Eq. (1) as
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Linear strain terms are redefined as
= = = + = =u v u v, , ( ), ,x x y y xy y x x y x y x y0 0, 0 0, 0 0, 0, , , , and
= ( )xy y y x x, , . When composite plate is subjected to the uniform

distribution of the temperature, the stress-strain relationship for the kth

lamina with reference to the laminate axes (x y z, , ) is written as

= Q T{ } [ ] [{ } { } ],k k k k (4)

in which ={ } { }x y xy xz yz
T is stress vector, thermal ex-

pansion coefficient vector is written as ={ } { 0 0}x y xy
T and

T is the increment in temperature over reference temperature. Here,
Q[ ]k is the stress-strain relationship matrix for the kth lamina with re-
ference to the laminate axes, cf. [47,48] for further details. The force
and moment resultant of the laminate are obtained by integrating Eq.
(4) over the thickness and written as

=F D e{ } [ ][{ } { }].r (5)

In this equation, the resultant force and moment vector is

=F N N N M M M Q Q{ } { } ,r x y xy x y xy x y
T (6)

generalized mid-plain strain vector is

={ } { } ,x y xy x y xy xz yz0 0 0
T (7)

generalized thermal strain vector is

=e e e e{ } { 0 0 0 0 0} ,x y xy
T (8)

and D[ ] is the load-strain relationship matrix of the laminated composite
plate. Accordingly, Eq. (5) can be rewritten in a compact form as

=F D F{ } [ ]{ } { },r N (9)

in which the thermal resultant force and moment vector are given by

=F N N N M M M{ } { 0 0} .N x
N

y
N

xy
N

x
N

y
N

xy
N T

(10)

Initial strain { }nt due to thermal load is represented by the nonlinear
portion [3,49] of the overall strain as
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The Eq. (11) can be rewritten in a compact form with reference to the
Eq. (1) as

= R d{ } 1
2

[ ]{ },nt (12)

where =d u u v v w w{ } { }x y x y x y x x x y y x y y x y0, 0, 0, 0, , , , , , ,
T,

and [R] is the strain-displacement relationship matrix of the nonlinear
strain.

Fig. 1. Laminate geometry, and fiber angle orientations with respect to the
global axes.
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2.2. Equations of motion

The equations of motion of the laminated composite plate are pre-
sented here using the Hamilton variational principle [48], stated as

=td 0,
t

t

1

2

(13)

where and are total potential and kinetic energies, respectively,
during the time interval (t t,1 2). The total potential energy can be
written as = , where represents the strain energy of the
plate, and is the work done by the externally applied forces. The
total potential energy of the composite plate in the thermal en-
vironment is expressed as

= + +( )D A d S d A d F A F A1
2

{ } [ ]{ }d 1
2

{ } [ ]{ }d { } { }d { } { }d ,r NA
T

A
T

A
T

A
T

(14)

in which S[ ]r is residual stress resultant matrix, see Appendix A.1; and
F{ } is externally applied transverse load vector per unit area in the di-
rection of the generalized displacement vector d{ }. The kinetic energy
of the composite plate is presented as

= d M d A1
2

{ } [ ]{ }d .
A

T
(15)

Here, d{ } is a generalized velocity vector corresponding to d{ }, and M[ ]
is the distributed inertia matrix of the laminated composite plate. Ac-
cordingly, mathematical expression for the dynamic motions is formed
by combining Eqs. (14) and (15) into the Hamilton variational prin-
ciple, see Eq. (13), as

+

=
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2
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t

t
r

N
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A
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A
T

A
T
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2

(16)

2.3. Stochastic modeling of uncertain parameters

Stochastic response of the dynamical system due to independent and
identically distributed (iid) random parameters can be represented by
generalized polynomial chaos (gPC) theory. The concept of application
of the chaos theory to represent the stochastic response was first coined
by Wiener [50]. A set of orthogonal polynomials is used to project the
random variables onto the stochastic space. Consider a probability
space represented by ( P, , ), in which is the random sample space,

is a -algebra on , and P is a probability measure on the sample
space. Any uncertain parameter : with finite variance can be
expressed as [32]

=
=

a ( ).
i

i i
01

1 1
(17)

This is the gPC expansion of the uncertain parameter in a compact
form. The random orthogonal polynomial i1 is a multidimensional
function of random variables, = = …i n{ }, 1, 2, ,i in the particular
sample space. Selection of the orthogonal polynomial is dependent on
the type of sample space of the random variables. It is convenient to use
the truncated series for the expansion considering the accuracy and the
sample space of the random variables. The unknown coefficients a{ }i1
are determined by the Galerkin projection technique.

In the present study, uniform temperature increment of the com-
posite plate is considered as a random variable. It is reported earlier
that the elastic moduli of the graphite-epoxy composite plate varies
with the variation in the temperature [51–53]. The elastic moduli of the
graphite-epoxy composite is varied according to the random tempera-
ture increment, and consequently the dynamic response of the com-
posite becomes stochastic in nature. Hence, uncertainty in the tem-
perature increment can be represented by the truncated gPC expansion

as

= =
=

aT a( ) ( ) ,
i

N

i i
0

T

1

1

1 1
(18)

in which =a a{ }i1 is the vector of deterministic unknown coefficients
and N1 is the finite number of terms of the gPC expansion of the random
temperature. The orthogonality relation of the multidimensional poly-
nomial functions, = { ( )}i1 is written as

= = = …p i j N[ , ] [ ] , , 0, 1, 2, , ,i j i i j i i j
2 2

1 1 11 1 1 1 1 1 1 1 (19)

in which i j1 1 and pi1 represent Kronecker delta and the norm of the
polynomials, respectively. The unknown coefficients a{ }i1 are de-
termined using Galerkin projection technique as

f=a T{ } 1 ( ) ( ) ( )d ,i
i

i21
1

1
(20)

where i
2
1 denotes the inner products in the Hilbert space, and f is the

probability density function (PDF) of random variable . Once a{ }i1 are
known, any statistical property of the random parameter can be cal-
culated. For instance, the expected value µT and the variance T

2 take
the following forms

= =
=

µ a a p, .T T
i

N

i i0
2

1

2 2

1

1

1 1 (21)

Due to the increment in the random mean temperature, elastic prop-
erties of the composite are varied. The structural response of the
composite also becomes uncertain. Accordingly, the random eigen
frequency f ( ) and time-dependent random displacement d t( , ) are
approximated by truncated finite number of terms N2 using the gPC
expansions as

= =
=

bf b( ) ( ) ,
i

N

i i
0

T

2

2

2 2
(22)

= =
=

cd t c t, ( ) ( ) .
i

N

i i
0

T

2

2

2 2
(23)

Here, =b b{ }i2 and =c c t{ ( )}i2 are the deterministic unknown coeffi-
cients for the random eigen frequency and random dynamic displace-
ment at each time step, respectively, and = { ( )}i2 is the orthogonal
polynomial function.

2.4. Stochastic finite element modeling

Orthotropic composite plate is mathematically modeled by fol-
lowing finite element method (FEM), and the entire plate domain is
discretized by eight-node C0 isoparametric element with five degrees of
freedom (DOF) per node. The stochastic element displacement vector
d t{ ( , )} is expressed in terms of the stochastic nodal displacement
vector d t{ ( , )}e using elemental interpolation functions N[ ], and is
given by

=d t N d t{ ( , )} [ ]{ ( , )}.e (24)

Accordingly, the random mid-plain strain vector t{ ( , )} can be cal-
culated from the stochastic nodal displacement vector d t{ ( , )}e em-
ploying strain-nodal displacement matrix B[ ], with reference to Eqs. (7)
and (24) as

=t B d t{ ( , )} [ ]{ ( , )}.e (25)

The stochastic elemental strain energy for an element e is derived with
reference to Eq. (16)
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+ =

d t B D T B d t

A d t G S T G d t

A d t N F t A d t B

F T A d t N M N d t t
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d { ( , )} [ ] { ( )}d { ( , )} [ ]
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A
T T

A
T T

A
T T

A
T T

1

2

e

e

e e

e

(26)

where G[ ] is the matrix of shape functions given in Appendix A.2. Since,
virtual displacement d t{ ( , )}e is arbitrary in nature, stochastic finite
element model of the element e of the laminated composite plate can be
presented as

+ +
= +

K T K T d t M d t
P t P T

{[ ( ( ))] [ ( ( ))]}{ ( , )} [ ]{ ¨ ( , )}
{ ( )} { ( ( ))}.

e Ge e e e

e N e (27)

The stochastic elemental stiffness matrix K T[ ( ( ))]e , stochastic ele-
mental geometric stiffness matrix K T[ ( ( ))]Ge , and stochastic elemental
thermal load vector P T{ ( ( ))}N e are obtained as

=K T B D T B A( ) [ ] ( ) [ ]d ,e eA
T

e (28)

=K T G S T G A( ) [ ] ( ) [ ]d ,Ge r eA
T

e (29)

=P T B F T A( ) [ ] ( ) d .N e N eA
T

e (30)

The elemental mass matrix M[ ]e and elemental dynamic force vector
P t{ ( )}e are given respectively by

=M N M N A[ ] [ ] [ ][ ]d ,e eA
T

e (31)

=P t N F t A( ) [ ] ( ) d .e eA
T

e (32)

Elemental static load vector can be developed with reference to the Eq.
(32) as

=P N F A{ } [ ] { }d ,Se eA
T

e (33)

and corresponding global static load vector P{ }S is developed after
proper assembling. The global stochastic FE model for the forced vi-
bration can be obtained after assembling the element matrices in the
following form

+ + = +K T K T d t M d t P t P T{[ ( ( ))] [ ( ( ))]}{ ( , )} [ ]{ ¨ ( , )} { ( )} { ( ( ))}.G N

(34)

It is stated earlier that elastic properties of the constituent materials of
the composite are varied with the variation in the temperature
[51–53,3]. Therefore, stiffness matrix, geometric stiffness matrix, and
thermal force vector of the composite are expressed as functions of
random matrices due to randomness in the temperature. The solution of
the stochastic forced vibration problem is sought by Newmark’s in-
tegration technique, and the randomness in the displacement at each
time step is described. The homogeneous solution of Eq. (34) yields the
stochasticity in the eigen frequency f ( ) of the composite plate for the
specified boundary conditions. The stochastic representations, as dis-
cretized in Eqs. (18) and (23), using truncated gPC expansion method
are substituted in Eq. (34), i.e.

+ + = +a a c c aK K M P t P{[ ( )] [ ( )]}( ) [ ](¨ ) { ( )} { ( )}.G N
T T T T T

(35)

The unknown deterministic coefficients for the eigen frequencies bT are
estimated by minimization of the stochastic error t{ ( , )}1 from the
homogeneous solution of Eq. (35) as

= + +a a c ct K K M{ ( , )} {[ ( )] [ ( )]}( ) [ ](¨ ).G1
T T T T (36)

Similarly, the solution of the unknown deterministic coefficients for
time-dependent displacement field cT are derived by minimization of
the stochastic error t{ ( , )}2 from

= + +a a c c at K K M P t P{ ( , )} {[ ( )] [ ( )]}( ) [ ](¨ ) { ( )} { ( )}.G N2 T T T T T

(37)

The minimization of the stochastic error is carried out by calculating
the deterministic response of the system at some specific collocation
points, i.e. at the roots of the higher-order orthogonal polynomials, and
minimizing the error between these response. The response is calcu-
lated by the gPC expansion using least-squares method [32]. The col-
location-based non-intrusive method is implemented here to derive the
unknown coefficient vectors. In this method, deterministic governing
equations of motion are employed as a deterministic solver, and solu-
tions are obtained at the specific collocation points. Selection of the
collocation points depends on the choice of the order of the gPC ex-
pansion representing the randomness in the dynamical system, cf. [32]
for more details.

3. Solution procedure

The solution of the non-intrusive gPC-based stochastic FE model is
evaluated in two parts, i.e. the solution of the deterministic finite ele-
ment model, and the solution of the stochastic model by determining
the unknown coefficients while setting the random errors equal to zero
at some predefined collocation points. The FE model developed for the
laminated composite plate in the thermal environment is used as a
deterministic solver, and runs of the deterministic FE model are re-
peated at the specified realizations of the selected random vector
points. The detailed procedure of the numerical simulation, considering
temperature uncertainty is summarized here in Algorithm 1 and
Algorithm 2.

Algorithm 1: Deterministic analysis using FE model of the composite plate in thermal
environment

1 Develop global matrices K[ ] and M[ ] as well as force vectors P P t{ }, { ( )}S , and P{ }N of
the composite plate at the predefined temperature;

2 Calculate initial displacement { }i from bending equation, = +K P P[ ]{ } { } { }i S N ;
3 Substitute initial displacement { }i in Eqs. (25) and (9) to yield the residual stress

resultants F{ }r ;
4 Develop geometric stiffness matrix K[ ]G ;
5 Determine eigen frequencies and mode shapes of the laminated composite plate in

the thermal environment from the homogeneous solution of Eq. (34);
6 Solve Eq. (34) for time-dependent forcing function P t{ ( )} using Newmark’s direct

time integration method at each incremental time step to obtain the dynamic
response.

Gauss quadrature rule is adopted here for integration over the ele-
mental area for calculation of the element matrices. The 3-point Gauss
quadrature rule is adopted to compute the bending stiffness matrix;
whereas, 2-point Gauss quadrature rule is adopted to calculate the
shear stiffness, mass matrix, and force vectors to avoid the shear locking
phenomenon in the thin plate. The constant-average acceleration
scheme is adopted to solve Newmark’s direct time integration method
for obtaining stable solution of the linear problem [54]. A deterministic
MATLab® code has been developed to evaluate the eigen frequencies
and transient response of the laminated composite plate in thermal
environment, as stated in Algorithm 1.
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Algorithm 2: Collocation-based SFEM for analysis of the composite plate due to t-
hermal uncertainty

1 Define deterministic geometry of the model, elastic parameters, lamina sequence of
the composite plate, as well as mean, standard deviation (sd), and probability
space of the random temperature;

2 Represent the uncertainty in the temperature increment using the gPC expansion as
T ( ), see Eq. (18);

3 Estimate the unknown coefficients ai1 for the random temperature increment using
Galerkin projection technique, see Eq. (20);

4 Select the type of orthogonal polynomial ( )i2 based on the random space of the
input random variable, and the order of the polynomial function as N2;

5 Construct the uncertainty in the structural response f ( ) and d t( , ) using the tr-
uncated gPC expansion, see Eqs. (22) and (23);

6 Generate the collocation points from the roots of the higher-order polynomial fu-
nction ( )i2 . Number of collocation points should be at least equal to the nu-
mber of unknown deterministic coefficients bi2 and c t( )i2 ;

7 Generate the random temperature increment at the predefined collocation points;
8 Realize the structural response using the deterministic FE solver at the pre-gener-

ated random incremental temperature. Develop a set of equations from Eqs. (36)
and (37) at the predefined collocation points;

9 Calculate the unknown coefficients bi2 and c t( )i2 for the eigen frequency, and the
time-dependent displacement, respectively from the above set of equations em-
ploying least-squares minimization technique;

10 Estimate the statistical parameters of the structural response, e.g. mean, sd, and
corresponding PDF.

The selection of the orthogonal polynomial basis function depends
on the type of variability in the random input parameters. For instance,
Hermite polynomial is used for normally distributed input parameter,
whereas Jacobi polynomial is used if the input random parameter is in
Gamma distribution. Following Algorithm 2, a collocation-based SFEM
code is developed in MATLab® environment to evaluate the unknown

coefficients of the structural response in the gPC expansion method.
Predefined deterministic FE solver is used to generate structural re-
sponse at the collocation points.

4. Numerical study

Numerical study is conducted to evaluate uncertainty in the eigen
frequency and dynamic response of the graphite-epoxy laminated
composite plate due to random temperature increment using the gPC
expansion method. The stochastic studies are conducted at the mean
temperatures of 325 K, 350 K, 375 K, and 400 K. However, 300 K is
considered as a reference temperature. The temperature-dependent
elastic properties of the graphite-epoxy composite lamina are illustrated
in Table 1. The mean µT and sd T of the random temperature incre-
ment as input parameters are shown in Table 2. In the present study,
elastic moduli, coefficient of thermal expansion, and Poisson’s ratio of
the composite plate are considered as deterministic. The geometric
dimension, elastic properties, density, and stacking sequences of the
composite plate considered here are shown in Table 3. The composite
plates are subjected to the uniformly distributed transverse loads as
given in Table 4.

The polynomial basis function is represented by Hermite poly-
nomial for random input variable, which is normally distributed. The
number of unknown coefficients are increased rapidly if the order of the
polynomial is increased. Herein, one-dimensional 3rd order Hermite
polynomial is used to approximate the stochastic response. Therefore,
Hermite polynomial can be presented in term of the random variable
as = = =1, , ( 1)0 1 2

2 , and = ( 3 )3
3 . The eigen fre-

quency f and the transverse central ( ,L W
2 2 ) displacement d t( ) of the

composite plate are considered here to investigate the uncertainty in
the dynamic response due to random mean temperature increment.

4.1. Validation of the FE model

The FE model of the laminated composite plate in thermal en-
vironment has been developed, and the frequencies extracted are
compared with that reported in the literature. An ANSYS® parametric
design language (APDL) code is employed to calculate the eigen fre-
quencies of the composite plate considering the effect of thermal
prestress during modal analysis. The eigen frequencies of the simply-
supported graphite-epoxy laminated composite plate at the temperature
of 300 K and 325 K are evaluated using the present formulation, and are
compared with the frequencies reported by Ram and Sinha [3] and
ANSYS® simulation to establish validity of the present deterministic
formulation, cf. Table 5.

The parameters of Plate 1 (Table 3) are used for the validation
analysis. The finite element mesh considered here is discretized as

×4 4, based on mesh convergence procedure suggested in [55]. First
four natural frequencies of the composite plate at temperatures of 300 K
and 325 K represent a good agreement with the results reported by Ram
and Sinha [3] and ANSYS® simulation (Table 5), which confirms va-
lidity of the in-house MATLab® code developed and used for further
analysis. Furthermore, the dynamic response of the composite plate at a
temperature of 300 K is compared with that reported by Kant et al. [48]
and Niyogi et al. [56], and a good agreement is observed in the pre-
diction of the results.

The convergence of the dynamic response, i.e. central displacement
at different time steps of the ( ° ° ° °0 /90 /90 /0 ) graphite-epoxy laminated

Table 1
Elastic moduli of graphite-epoxy lamina at different temperatures, cf. [3].

= =G G G G, 0.513 12 23 12.

Temperature, T (K)

Elastic moduli (GPa) 300 325 350 375 400 425

E11 130 130 130 130 130 130
E22 9.5 8.5 8.0 7.5 7.0 6.75
G12 6.0 6.0 5.5 5.0 4.75 4.5

Table 2
Mean µT and sd T of the input random parameter.

Random parameter Type of distribution µT (K) T (K)

Temp. increment Normal 25, 50, 75, 100 5, 10, 15, 20

Table 3
Geometric dimension, elastic parameters, density, coefficient of thermal ex-
pansion, lamina sequences of the graphite-epoxy laminated composite plate.

Plate 1 Plate 2

Dimensions (mm) = = =L W h100, 1 = = =L W h100, 2
Elastic moduli = =E E130, 9.511 22 , See Table 1

(GPa) = =G G G6.0,12 13 12,
=G G0.523 12

Poisson’s ratio = 0.312 , = 0.312 ,

= E
E21 12

22
11

= E
E21 12

22
11

Density (kg/mm3) = ×1.6 10 6 = ×1.6 10 6

Coefficient of = ×0.3 101
6, = ×0.3 101

6,
thermal expansion ( K) = ×28.1 102

6 = ×28.1 102
6

Lamina sequence For cross-ply laminate For cross-ply laminate
( ° ° ° °0 /90 /90 /0 ) ( ° ° ° °0 /90 /90 /0 ),

For angle-ply laminate
( ° ° ° °45 / 45 / 45 /45 )

Table 4
Suddenly applied transverse load.

Pulse loading Impulse loading

Loading (N/mm2) =q 0.0010 =q 0.0010
Time of excitation (s) =t 0.25p =t 0.001ip
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composite plate, at a temperature of 325 K is shown in Fig. 2 for Plate 2.
Newmark’s time integration scheme is used for conducting transient
analysis of the composite Plate 2. The converged value for time step

=t 0.001 s is adopted in the present analysis. This FE model is sub-
sequently used as a deterministic FE solver to evaluate the uncertainty
in the eigen frequencies and the dynamic displacement of the graphite-
epoxy laminated composite plate due to the random mean temperature
increment.

4.2. Validation of the stochastic model

The gPC expansion method is a robust technique, which precisely
predict randomness in the system response due to randomness in the

input parameters. Effectiveness of the gPC expansion method is in-
vestigated here by comparing with the realizations generated from
10, 000 Monte Carlo simulations (MCS). Table 6 shows the mean µf and
sd f of the first three eigen frequencies derived using 3rd and 4th order
gPC expansion method at a random mean temperature of 325 K, and are
compared with the MC simulations of 10, 000 sample realizations.

A comparison of the PDFs for the first three eigen frequencies at the
mean random temperature of 325 K for the composite Plate 2 is illu-
strated in Fig. 3. It is evident that, 3rd order gPC expansion is enough to
represent the uncertain response of the composite plate due to random
mean temperature increment.

The deterministic FE model of the laminated composite plate under
uniform temperature is used to determine the unknown coefficients of
3rd order gPC expansion in Eqs. (22) and (23), at 25 sets of random
temperatures using least-squares method. Deterministic dynamic re-
sponse for each predefined temperature is calculated at every incre-
mental time step using Newmark’s step-by-step integration technique.
The total time of study is kept as 0.25 s, and the time step considered is
0.001 s. Uncertainty in the time-dependent central displacement using
3rd order gPC expansion method, incorporating the Hermite poly-
nomials, in Eq. (23) as represented in [57]

= + + +d t c t c t c t c t( , ) ( ) ( )( ) ( )( 1) ( )( 3 ).0 1 2
2

3
3 (38)

The unknown coefficients c t( )i are derived by solving the stochastic Eq.
(38) for a set of 25 collocation points generated from the roots of the 4th

order Hermite polynomial at each incremental time step. Time history
plots of the unknown coefficients for a simply-supported
( ° ° ° °0 /90 /90 /0 ) graphite-epoxy laminate due to suddenly applied pulse
and impulse loading are shown in Figs. 4 and 5, respectively at the
mean temperatures of 325 K, 350 K, 375 K, and 400 K. The first coeffi-
cient c0 indicates the mean response of the central displacement, and
has dominating influence on both the types of loading conditions. On
the other hand, the amplitude of the second coefficient c1, which in-
fluences the sd of the response, is in increasing order with the increase
in the random mean temperature. Moreover, the amplitude of c1 is
comparable with the mean response for the impulse loading at the
random mean temperature of 400 K. It can be stated that, at the same
level of uncertainty in temperature increment, the sensitivity of the
dynamic response increases with the random mean temperature in-
crement. Note that, the amplitude of c0 is decreasing with the increment
in time and is increasing with the increment of the random mean

Fig. 2. Convergence studies of Newmark’s integration method for a simply-
supported ( ° ° ° °0 /90 /90 /0 ) graphite-epoxy Plate 2 subjected to suddenly applied
pulse loading, q0 at =T 325 K.

Table 6
Comparison of the statistical results of first three eigen frequencies of the ( ° ° ° °0 /90 /90 /0 ) laminate graphite-epoxy Plate 2 at a mean temperature, T=325 K.

Method 1st eigen freq. (Hz) 2nd eigen freq. (Hz) 3rd eigen freq. (Hz)

µf f µf f µf f

MCS (10,000) 27.430 0.392 54.365 0.608 99.289 0.308
3rd order gPC 27.440 0.397 54.378 0.615 99.298 0.311

4th order gPC 27.435 0.397 54.375 0.616 99.291 0.313

Table 5
Results of the free vibration analysis of the graphite-epoxy composite Plate 1 at
T=300 K and 325 K.

Mode Temperature Present ANSYS® Ram and Sinha [3]

Nos. T (K) Eigen freq. NDF1 Eigen freq. NDF1

f (Hz) f (Hz)

1 300 14.818 12.083 14.807 –
325 9.929 8.097 9.917 8.088

2 300 29.434 24.001 29.330 –
325 23.665 19.196 23.551 19.297

3 300 51.493 41.988 51.343 –
325 48.428 39.324 48.276 39.324

4 300 62.050 50.600 61.780 –
325 56.615 46.165 56.336 45.431

1 Non-dimensional frequency, = fL E h2 ( / )2
22

2 1/2

Fig. 3. PDFs of first three eigen frequencies (Hz) obtained using 3rd and 4th order gPC expansions compared with the MCS at mean random temperature of 325 K for
Plate 2.
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temperature. The effectiveness of the gPC expansion method is estab-
lished by the convergence of coefficients, c c,1 2, and c3.

4.3. PDF of the eigen frequencies

For safe design of the composite plate, and to estimate the factor of
safety at elevated temperature the probabilistic analysis is necessary
over the deterministic analysis. The mean and sd of the first three eigen
frequencies of the symmetric cross-ply laminate at different random
mean temperatures is presented in Table 7. Fig. 6 represents the PDF of
the first three eigen frequencies at various random mean temperatures
in increasing order and corresponding deterministic eigen frequencies
at the mean temperature. It is observed from Table 7 and Fig. 6 that,
deterministic values of the eigen frequencies lie near the maximum
probability density. The sd, which represents the dispersion of the
probability plot, is increased with the increase in the random mean
temperature. The sd of the eigen frequencies at a temperature of 325 K
is less in comparison with the higher random mean temperature. This
indicates the fact that, the random mean temperature increment in-
fluences the variation in the elastic properties of the composite, and
thereby increment in the level of uncertainty in the frequency response
at the higher random temperature.

4.4. Stochastic dynamic response of laminated composite plates

The effect of uncertainty in the temperature increment on the time-
dependent transverse central displacement for the symmetric cross-ply
and angle-ply laminated composite plates for the suddenly applied
pulse and impulse loading are investigated. The time-dependent de-
terministic and mean values of the central displacement for simply-
supported cross-ply laminate under the suddenly applied pulse and

impulse loading are plotted in Figs. 7 and 9, respectively. The ratio of
the sd and mean values of transverse displacement at each time step is
derived to measure the variation in the level of uncertainties in the
dynamic response due to the random mean temperature increment for
the symmetric cross-ply laminate in time domain, which are reported in
Figs. 8 and 10 for the suddenly applied pulse and impulse loading,
respectively. It is observed from Figs. 7 and 9 that deterministic and
mean central displacements are in increasing order due to corre-
sponding degradation in the material properties due to the increment in
the random mean temperature under both types of loading. However,
the mean central displacements are decaying with the time as compared
to the deterministic values, and the decay is faster with the increment in
the random mean temperature under both types of loading. This decay
in the mean amplitude in time domain is due to the increasing ran-
domness with the temperature increment [58]. The ratio of the sd and
mean for the symmetric cross-ply laminate in Fig. 8 represents sudden
peak at troughs of the corresponding time-dependent displacement plot
for the pulse loading. The peak value is decreased with an increment in
the random mean temperature. However, for the impulse loading in

Fig. 4. ime history of the gPC expansion coefficients of central displacement for a
simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate subjected to the pulse loading due to the
randomness in temperature at 325K, 350K, 375K, and 400K, respectively for Plate
2.

Fig. 5. Time history of the gPC expansion coefficients of central displacement
for a simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate subjected to the impulse
loading due to the randomness in temperature at 325 K, 350 K, 375 K, and
400 K, respectively for Plate 2.

Table 7
Statistics of the first three eigen frequencies (Hz) for a simply-supported
( ° ° ° °0 /90 /90 /0 ) laminate due to the mean random temperature increment for
Plate 2.

Temperature 1st mode 2nd mode 3rd mode

µf f µf f µf f

325 K 27.444 0.397 54.378 0.615 99.298 0.311
350 K 25.431 0.788 51.332 1.193 97.664 0.641
375 K 23.565 1.070 48.517 1.602 96.186 0.821
400 K 21.865 1.374 46.034 1.958 94.958 0.969
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Fig. 10 sudden peak for sd/mean plot is observed in-between crests and
troughs of the time-dependent displacement plot. The value of sd/mean
is increased with the random mean temperature increment. It can be
stated that characteristics of loading does influence the level of un-
certainty in the dynamic displacement for uncertain temperature in-
crement.

Figs. 11 and 13 present a comparison of the deterministic and the
mean response of the central displacements for symmetric angle-ply
laminate under pulse and impulse loading, respectively, and corre-
sponding plots of sd/mean are shown in Figs. 12 and 14. When un-
certainty in the response of the symmetric cross-ply and angle-ply la-
minates is compared, the rate of decay in the mean displacement with
respect to time shows a comparable performance. The value of the
sudden peak of sd/mean of corresponding time-dependent displace-
ment for symmetric angle-ply laminate is more as compared to the
symmetric cross-ply laminate.

Due to the suddenly applied impulse loading, the level of un-
certainty in displacement is increased at delayed time domain response
with an increment in the random mean temperature; whereas, the level
of uncertainty is decreased at delayed time domain response of the
central displacement under suddenly applied pulse loading with an
increment in the random mean temperature. Thus, level of uncertainty
in the dynamic displacement is significantly varied in time domain with
the increment in the random mean temperature. Hence, prior to the
engineering application, uncertainty quantification in the dynamic re-
sponse of the composite plate with various anticipated loading condi-
tions and lamina sequences subject to random temperature field is es-
sential to ensure safety in its design.

It can be concluded from the earlier discussion in this section that,
in case of the pulse loading the mean value and sd of the dynamic
central displacement is decreasing at the delayed time domain due to
the random mean temperature increment. However, in case of the im-
pulse loading the amplitude of the mean central dynamic displacement
is diminishing in time domain though the dispersion is increasing in
time domain near the mean position of the amplitude along with the
random mean temperature increment. Therefore, statistical parameters
of the stochastic dynamic response due to the uncertain thermal para-
meters are also influenced by the characteristics of the applied loading.
Application of four-layered symmetric cross-ply and angle-ply lami-
nates does not have significant influence on the stochastic dynamic
response characteristics.

4.5. PDF of peak displacement

The effect of temperature uncertainty on the peak dynamic dis-
placement of the composite plate for the symmetric cross-ply and angle-
ply laminates is demonstrated in Figs. 15 and 16, respectively with the
applied pulse and impulse loading. The distribution of the peak central
displacement due to 0.001 N/mm2 pulse and impulse loading are
plotted at various random mean temperatures in incremental order
with the same level of uncertainty using the gPC expansion method. It is
observed that the dispersion of the PDF increases with the increment in
the random mean temperature, specifically under the pulse loading.
Under the pulse loading, at a random mean temperature of 325 K the
distributions are more symmetric, however at the higher random mean
temperature the distribution became non-Gaussian and unsymmetric.

Fig. 6. PDF of first three natural frequencies (Hz) of a simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate due to the randomness in temperature at 325 K, 350 K, 375 K, and
400 K, respectively, and corresponding deterministic value (red dashed line) for Plate 2.
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Fig. 7. Comparison of time history of the deterministic central displacement
and mean of the central displacement for a simply-supported ( ° ° ° °0 /90 /90 /0 )
laminate subjected to pulse loading due to the randomness in temperature at
325 K, 350 K, 375 K, and 400 K, respectively for Plate 2.

Fig. 8. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °0 /90 /90 /0 ) laminate subjected to pulse loading due to the randomness in
temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.

Fig. 9. Comparison of time history of the deterministic central displacement
and mean of the central displacement for a simply-supported ( ° ° ° °0 /90 /90 /0 )
laminate subjected to impulse loading due to the randomness in temperature at
325 K, 350 K, 375 K, and 400 K, respectively for Plate 2.

Fig. 10. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °0 /90 /90 /0 ) laminate subjected to impulse loading due to the randomness in
temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.
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Fig. 11. Comparison of time history of the deterministic central displacement
and mean of the central displacement for a simply-supported
( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to pulse loading due to the randomness
in temperature at 325 K, 350 K, 375 K, and 400 K, respectively for Plate 2.

Fig. 12. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to pulse loading due to the randomness in
temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.

Fig. 13. Comparison of time history of the deterministic central displacement and
mean of the central displacement for a simply-supported ( ° ° ° °45 / 45 / 45 /45 ) la-
minate subjected to impulse loading due to the randomness in temperature at 325K,
350K, 375K, and 400K, respectively for Plate 2.

Fig. 14. Time history of sd/mean of the central displacement for a simply-supported
( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to impulse loading due to the randomness
in temperature at 325K, 350K, 375K, and 400K, respectively for Plate 2.
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Under the impulse loading, the distributions are non-Gaussian, and
larger part of the distributions overlap with each other at different
random mean temperatures. Moreover, due to the impulse loading on
the symmetric angle-ply laminate distributions of the peak central
displacement are non-Gaussian, and noticeably unsymmetrical. Hence,
appropriate evaluation of distribution of the peak displacement re-
sponse is recommended for various lamina sequences with different
loading conditions due to uncertainty in the temperature increment
prior to real-field applications. Likewise, the peak failure stress induced
in the composite plate is varied due to random mean temperature in-
crement. A reliability analysis due to random thermal increment is
necessary prior to application in the thermally sensitive part of the
structure. This study has revealed the necessity of conducting further
studies on the graphite-epoxy composite plates due to the random
thermal environment.

5. Conclusions

The stochastic dynamic response of the graphite-epoxy composite
plate under the applied pulse and impulse excitations, considering
randomness in the incremental temperature is presented. The non-in-
trusive generalized polynomial chaos (gPC) expansion method is im-
plemented for the stochastic simulations. The first-order shear de-
formation theory (FSDT) is adopted to analyze the thin composite plate
under uniform temperature increment, and this deterministic finite
element (FE) solver is used to generate the response at prescribed col-
location points. The major advantage of the applicability of the gPC
expansion method is to represent the mean and sd of the time-depen-
dent dynamic response at each time step with reduced computational

efforts. The convergence of the polynomial form of the dynamic re-
sponse indicates the reduction in the error while representing the sto-
chasticity in the temperature by using orthogonal polynomial. The
computational accuracy of the gPC expansion method is well compared
with the Monte Carlo simulations (MCS). Stochastic dynamic response
of the composite plate due to thermal uncertainty is efficiently de-
scribed here with the application of the gPC expansion method. The key
findings from this study are summarized below.

1. The mean eigen frequency of the composite plate decreases with the
increment in the random mean temperature, as elastic moduli of the
composite plate decrease with the temperature.

2. The standard deviation (sd) of the eigen frequencies of the compo-
site plate increases with the increment in the random mean tem-
perature which imply an increment in the variation of the degraded
elastic properties of the composite.

3. The stiffness of the composite plate decreases with the increment in
the temperature, and subsequently amplitude of the dynamic dis-
placement is increasing with the increment in the temperature.
Moreover, the mean amplitude of the dynamic displacement of the
composite plate decays gradually in the time domain with the
random mean temperature increment.

4. The level of uncertainty in the dynamic response under impulse
loading is higher due to higher rate of decay in corresponding mean
transient response in time domain in comparison with the pulse
loading.

5. The level of uncertainty in the dynamic displacement response in
the delayed time domain is more under the suddenly applied im-
pulse loading. Under the applied pulse loading, the level of

Fig. 15. PDF of peak central displacement for simply-supported ( ° ° ° °0 /90 /90 /0 ) laminate subjected to pulse and impulse loading, respectively due to the randomness
in temperature for Plate 2.

Fig. 16. PDF of peak central displacement for simply-supported ( ° ° ° °45 / 45 / 45 /45 ) laminate subjected to pulse and impulse loading, respectively due to the
randomness in temperature for Plate 2.
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uncertainty in the dynamic displacement is decreasing in the de-
layed time domain. The PDF of the stochastic dynamic response in
the random thermal environment should be studied for the various
types of loading at several time steps before practical application.

6. The mean dynamic response is increasing with the increment in the
random mean temperature due to the degradation in the material
properties of the graphite-epoxy composite plate. Moreover, level of
uncertainties are significantly varied in time and temperature do-
mains. Thus, the stochastic studies of graphite-epoxy composite
plate due to random thermal increment exhibited necessity over the
deterministic analysis.

7. The distribution of the peak displacement at the lower random
temperature is symmetrical, more evidently for the pulse loading.
For the higher random temperature, the distribution became un-
symmetric and non-Gaussian.

8. Statistical properties of the dynamic response are not much influ-
enced by providing four layers of symmetric cross-ply and angle-ply
laminates.

The presented methodology for quantifying uncertainty can be

efficiently applied to complex structures. A deterministic FE model with
complex geometry and advanced engineered materials can be devel-
oped in ANSYS® and corresponding modal analysis in thermal en-
vironment then can estimate the dynamic response efficiently. Non-
intrusive gPC expansion can be efficiently used to estimate the sto-
chastic parameters of the eigen frequencies and time-dependent dy-
namic response by limited numbers of realization of the deterministic
FE model at predefined collocation points.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.compstruct.2019.111159.
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