FAKULTAT FUR INFORMATIK
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Lehrstuhl fur Sicherheit in der Informatik

Resizing Threats: Developing Methodologies and
Techniques for Large-scale Security Analytics

George Davis Webster 111

Vollstandiger Abdruck der von der Fakultéat fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Jorg Ott

Priifer der Dissertation:

1. Prof. Dr. Claudia Eckert
2. Prof. Dr. Jens Grossklags

Die Dissertation wurde am 19.08.2019 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultat fiir Informatik am 07.03.2020 angenommen.

Acknowledgements

Computer security has long been my passion, and many have fostered my interest and
mentored me over the years. Foremost, I would like to express my appreciation to my
advisor, Prof. Dr. Claudia Eckert. It has been an honor to have studied under her
tutelage. With unwavering enthusiasm, she has supported my pursuits, mentored me
in academic research, provided funding to make my efforts, and encouraged me to push
through my bouts of frustration. In the same vein, I would like to thank my second
advisor Prof. Dr. Jens Grossklags. He was paramount in helping to flesh out my concepts
and guide me through the academic process. I always looked forward to my brainstorming
session with him over coffee and Skype. They have been an wonderful advisement team
and they made this work possible.

To my loving, supportive, and understanding family, thank you. You have been my
ultimate cheerleaders and provided me with ample opportunities to explore my passions.
In particular, thank you to my remarkable wife Kristi, my bundle of joy Sebastian, and
our little monster on the way. You have brought so much happiness, love, and joy into
my life.

With special gratitude to the mentors who molded me over the years. Scott Boehm,
Colonel Munster, and Lisa Smith, for guiding me in the workplace, providing me with
the opportunities to succeed, and pushing me to attain greatness. Dr. Clinton Edwards,
Dr. Michael Caloynnides, William Parrish, and Dr. Sawyer, for sparking my interest
in academia and being phenomenal professors. To Dr. Michael van Putte for your
stimulating discussions and teaching me how to push the bounds of research. And to the
countless others that have been there for me over the years.

Thank you to my TUM colleagues and HiWi army for creating an atmosphere conducive
for collaboration, friendship, and sparking my passion in teaching. Collectively you have
made my stint in academia a wonderful experience that I will always look fondly upon.

With much appreciation to my friends in the security community: Andre Ludwig,
Zachary Hanif, Ryan Harris, Bruce Hembree, Jacob Torrey, and the nameless for the great
discussions, imparting unique viewpoints on the concepts, and enabling my research. And
finally to my colleagues at the USAF, DARPA, FBI, and other agencies who provided a
sense of fun, enjoyment, and accomplishment in the work environment.

il

Abstract

Computer security practices are stuck in a time when the lone analyst was enough
to solve the world’s problems. Unfortunately, this has not been the case since the
Morris worm of 1988. Yet, security analysts are still reliant on one-off tools, stove-piped
processes, and immature methods with the end goal being a signature or an Indicator
of Compromise for a single event. Sadly, this is a reactive process that takes months,
while malicious actors move from victim A to victim B in less than 24 hours. As such, it
should be no surprise that major incidents are regular news stories and 20% of companies
report a major incident every year.

This dissertation explores how to break the current paradigm in computer security.
As such, this work takes the approach that defensive methods must evolve to empower
analysts to function across the Intelligence Cycle and pool the collective knowledge and
resources of the community together. Specifically, we seek to change how the security
community approaches the challenges of investigating malicious activities and generating
defensive mitigation actions. In doing so, we provide the technical concepts required and
guide how the analytics of malicious activities should be approached. After all, it is the
process and the philosophy that matters most. To help guide achieving these goals, we
develop an architecture that allows analysts to perform large-scale analysis using any
object type. We then expand the architecture to create a new model for sharing and
collaboration. This model allows analysts to develop a global perspective and assess
threats as a collective whole. To emphasize that the concepts presented in this dissertation
can apply to the real world, we then present a working prototype. This prototype has
performed complex investigations and enabled active mitigation operations. Finally, we
exemplify the power of the approach this dissertation prescribes by demonstrating these
methods. In doing so, we reveal a hidden aspect of the PE32 file type and create two
triage methods that perform rapid similarity matching and fingerprint the actor’s build
environment.

Zusammenfassung

Computersicherheitspraktiken stecken noch immer in einer Zeit fest, in der der einsame
Analyst ausreichte, um alle Probleme der Welt zu l6sen. Ungliicklicherweise ist das bereits
seit dem Morris Wurm von 1988 nicht mehr der Fall. Trotzdem verlassen sich Sicher-
heitsanalysten noch immer auf Einmal-Werkzeuge, Trichter-Prozesse und unausgereifte
Methoden, um am Ende eine Signatur oder einen Indikator fiir die Kompromittierung
eines simplen Ereignisses zu erhalten. Leider ist dies ein reaktiver Prozess der mitunter
Monate dauert, wahrend bosartige Akteure in nur 24 Stunden von Opfer A zu Opfer B
springen. Es ist deshalb nicht verwunderlich, dass regelméaflig von grofSeren Vorfallen
in den Nachrichten berichtet wird und jahrlich auch von 20 Prozent der Unternehmen
gemeldet werden.

Diese Doktorarbeit erforscht, wie man in der Computersicherheit aus diesen Muster
ausbrechen kann. Sie verfolgt den Ansatz, dass sich defensive Methoden weiterentwickeln
miissen, um Analysten darin zu starken iiber den gesamten Informationszyklus hinweg zu
funktionieren sowie das kollektive Wissen und die Ressourcen der Community zu biindeln.
Wir versuchen insbesondere die Herangehensweise der Sicherheits-Community bei der
Untersuchung von bosartigen Aktivitdten und Planen von Vorgehensweisen zur Schadens-
minderung zu verandern. Hierfiir stellen wir die bendtigten technischen Konzepte bereit
und bieten einen Leitfaden fiir die Vorgehensweise bei der Analyse bosartiger Aktionen,
denn schlussendlich sind die Prozesse und Philosophien noch immer ausschlaggebend.
Um diese Ziele zu erreichen, entwickeln wir eine Architektur die es Analysten erlaubt eine
grofl angelegte Analyse von beliebigen Objekten durchzufiihren. Anschliefend erweitern
wir unsere Architektur um ein neues Modell, mit dem Ziel einen besseren Datenaustausch
und eine bessere Zusammenarbeit zu erreichen. Dieses Modell ermdglicht es Analysten
eine umfassendere Sichtweise zu entwickeln und Bedrohungen im Kollektiv einzuschatzen.
Um deutlich zu machen, dass die in dieser Doktorarbeit vorgestellten Konzepte in der
realen Welt Anwendung finden konnen, stellen wir darauffolgend einen funktionierenden
Prototyp vor. Dieser Prototyp iibernahm komplexe Untersuchungen und ermoglichte
aktiv Schadensminderung in laufenden Operationen. Abschlieend veranschaulichen
wir die Kraft unserer in dieser Doktorarbeit beschriebenen Methoden, indem wir sie an
einem konkreten Fall demonstrieren. Wir zeigen hierzu einen versteckten Aspekt des
PE32 Formats auf und schaffen zwei Selektierungsmethoden, die jeweils eine schnelle
Ahnlichkeitssuche durchfithren und so die Buildumgebung des Akteurs kategorisieren
konnen.

Vil

Contents

Scientific Publications
Industrial Conferences

1. Introduction
1.1. Motivation
1.2. Contributions
1.3, Scope . ..o
1.4. Organization

2. Fundamentals

2.1. Analytic Modelso
2.1.1. Data Information Knowledge Wisdom (DIKW) Model
2.1.2. Intelligence Cycle oL

2.2. Data Based Analytic Methods
2.2.1. Static Analysis oo
2.2.2. Dynamic Analysis
2.2.3. Third Party Information Gathering

2.3. Information-Based Analytic Techniques
2.3.1. Statistical and Knowledge-based Approaches
2.3.2. Machine Learningo
2.3.3. Graph Analysis

2.4. Large-Scale Infrastructure Techniques
2.4.1. Concurrent Programming Paradigms
2.4.2. Service Oriented Architectures
2.4.3. Microservices

2.5. Providing Trust for Decentralized Records and Transactions
2.5.1. Blockchaino
2.5.2. Smart Contract

2.6. SUMMATY

1X

Contents

3. Developing an Architecture for Large-scale Investigations and Analytics 29
3.1. Introduction 30
3.2. System Overview 33

3.2.1. Planner 34
3.2.2. Planner Themes 36
3.2.3. Service 39
3.2.4. Transporto 40
3.3. System Wide Aspects 41
3.3.1. Quality of Service 42
3.3.2. Access Control Layer 43
3.4. Evaluation 43
3.4.1. Experimental Environment 43
3.4.2. Scalability 44
3.4.3. Resilience 46
3.4.4. Flexibility 47
3.5, UseCases 48
3.5.1. Sharing Resources with Geographically Distributed Partners . . . 48
3.5.2. Sharing Derived Information with Partners 49
3.6. Lessons Learned 49
3.7. Related Work 50
3.8, Summary ... oL 51

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace 53
4.1. Introduction 54
4.2. The Problem in Perspective 55
4.3. The Realities of the Current Sharing Paradigm 57

4.3.1. Wisdom Without Context is Merely Data 58
4.3.2. The Need For Speed 59
4.3.3. Lack of Trust In Exchanged Items 60
4.4. The CARE Model 60
4.4.1. CARE Architecture 61
4.4.2. CAREconomy 64
4.5. Discussion 66
4.5.1. Creating Collaborative Communities 67
4.5.2. Sharing Partners L oo 68
4.5.3. New Opportunities, 69
4.6. Limitations and Future Work 69
4.6.1. Secrecy and Privacy Considerations 70
4.6.2. Identification of Shareable Resources 70
4.7. Related Work 71
4.8, SUMMATY o v o 72

Contents

5. Prototyping the Concepts 73
5.1. Inmtroductiono 73
5.2. Architectural Overview 74
5.3. Planners and Serviceso 75

5.3.1. Holmes-Gateway 75
5.3.2. Holmes-Totem and Holmes-Totem-Dynamic 76
5.3.3. Holmes-Storage 80
5.3.4. Holmes-Analytics 83
5.3.5. Presentation oL 85
5.4. Transport 86
5.5. Lessons Learned L 87
5.50.1. Languages L 87
5.5.2. Actorversus CSP 88
5.5.3. The DIKW Model and Loosely Coupled Design 88
5.6. Future Work 89
5.6.1. Merge the Investigation Planners 89
5.6.2. Deployment and System Management 89
5.6.3. Improve ACL 89
5.6.4. Providing Native Streaming Support 90
5.7, Summary ... oL 90

6. Proving the Concept: PE32 Malware Triage and Similarity Matching 93
6.1. Introduction 94
6.2. Backgroundo 95

6.2.1. Portable Executable File Format Headers 96
6.2.2. Compiler Linking o0 98
6.3. Rich Header 98
6.3.1. History of Previous Investigation into the Rich Header 98
6.3.2. Previous Efforts to Extract The Rich Header 99
6.4. Revealing the Rich Header 100
6.4.1. Core Structure L 100
6.4.2. Hashes Contained Within the Rich Header 102
6.4.3. Generation of @comp.id and ProdlD 103
6.4.4. Adding the Rich Header to the PE32 File Format 104
6.5. Knowledge Based Statistical Analysis 104
6.5.1. Data Sources 104
6.5.2. Information Gathering 105
6.5.3. Statistical Resultso 0oL 105
6.6. Machine Learning Based Analysis 108
6.6.1. Similarity Matching with the APT1 Dataset 109
6.6.2. Similarity Matching with the Citadel Dataset 110
6.6.3. Similarity Matching with the Mediyes Dataset 111

x1

Contents

6.7.
6.8.
6.9.
6.10.

Future Work and Limitations
Discussion

Related Work

SUMMArY

7. Conclusion
7.1. A Moment of Reflection

7.2.
7.3.
7.4.

Appendi

Contributions
Looking Forward
Final Words

ces

A. Availability

B. Mapping of Known ProdIDs in the Rich Header Generated by MSVC

List of Abbreviations

Glossary

Bibliography

xii

List of Figures

1.1.

2.1.
2.2.
2.3.

3.1.
3.2.
3.3.
3.4.

4.1.
4.2.
4.3.

4.4.

5.1.
5.2.
5.3.
0.4.

6.1.
6.2.
6.3.

Submissions to VirusTotal for the Week of December 2017. 2
The Layers of the DIKW Model. 10
Intelligence Cycle with The Operational Environment. 12
Components for Virtual Machine Introspection (VMI) Analysis with Drakvuf 15
Submissions to VirusTotal for the Week of December 2017. 30
Organization of SKALD’s components and core themes. 34
Interaction between the core components of SKALD 39
Interaction between the Transports and Planners. 40

DIKW Pyramid with Respect to Average Mitigation Time and Sharing . 58
CARE architectural components and interaction. 61
Planner interaction when an artifact exists in STORAGE: (1) GATEWAY
receives and validates a peer request, (2) the artifact is identified in STOR-
AGE, (3) STORAGE transmits the artifact to GATEWAY, and (4) GATEWAY
provides the results to the requestor. 62
Planner interaction when Information needs to be generated: (1) GATE-
WAY receives and validates a peer request, (2) GATEWAY submits a request
to INVESTIGATION to generate the Information, (3) INVESTIGATION trans-
mits the artifact to STORAGE, (4) GATEWAY retrieves the Information
from STORAGE, and (5) GATEWAY provides the results to the requestor. 63

Architecture of Holmes-Totem 7
Architecture of Holmes-Totem-Dynamic 78
Architecture for Holmes-Analytics 84
Communication Flow in Holmes Processing 86
High level view of the Portable Executable (PE32) format 96
Mlustration of the MSVC Compiler Toolchain 97
Structure of the Rich Header 100

xlil

List of Tables

3.1.
3.2.

5.1.
5.2.

6.1.
6.2.
6.3.
6.4.

Average time to process samples in seconds. L. 45
Critical failures in sample processing. 47

Included analytic Services in Holmes-Totem and Holmes-Totem-Dynamic 79

Supported database back-ends in Holmes-Storage 81
Subset of ProdIDs generated by Visual Studio 2015 104
Samples containing a Rich Header with total percentages rounded 105
Samples not containing a Rich Header 106
Samples containing a Rich Header that have duplicate entries and invalid

checksums 107

XV

List of Algorithms

1. Yara Signature for APT1’s LIGHTDART Malware 17
2. GATEWAY receives a transaction request for artifact from user, with value

of n CARECOINS 64
3. GATEWAY receives a transaction request for an artifact at CARECOIN . . 65

Xvil

Scientific Publications

George D. Webster, Ryan L. Harris, Zachary D. Hanif, Bruce A. Hembree, Jens
Grossklags, and Claudia Eckert. Sharing is Caring: Collaborative Analysis and Real-
time Enquiry for Security Analytics. In Proceedings of the IEEE International Symposium
on Recent Advances on Blockchain and Its Applications (BlockchainApp). 2018.

Bojan Kolosnjaji, Ghadir Eraisha, George Webster, Apostolis Zarras, and Claudia
Eckert. Empowering convolutional networks for malware classification and analysis. In
2017 International Joint Conference on Neural Networks (IJCNN), pages 3838-3845.
Anchorage, AK, USA, 2017.

George D. Webster, Bojan Kolosnjaji, Christian von Pentz, Julian Kirsch, Zachary D.
Hanif, Apostolis Zarras, and Claudia Eckert. Finding the Needle: A Study of the PE32
Rich Header and Respective Malware Triage. In Michalis Polychronakis and Michael
Meier, editors, Detection of Intrusions and Malware, and Vulnerability Assessment: 14th
International Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings,
volume 10327 LNCS, pages 119-138. Springer International Publishing, Cham, 2017.

Bojan Kolosnjaji, Apostolis Zarras, Tamas Lengyel, George Webster, and Claudia
Eckert. Adaptive Semantics-Aware Malware Classification. In Juan Caballero, Urko
Zurutuza, and Ricardo J Rodriguez, editors, Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International Conference, DIMVA 2016, San Sebastidn,
Spain, July 7-8, 2016, Proceedings, volume 9721, pages 419-439. Springer International
Publishing, Cham, 2016.

Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. Deep learning
for classification of malware system call sequences. In Byeong Ho Kang and Quan
Bai, editors, AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in
Computer Science, volume 9992 LNAI, pages 137-149. Springer International Publishing,
Cham, 2016.

George D. Webster, Zachary D. Hanif, Andre L. P. Ludwig, Tamas K. Lengyel, Apostolis
Zarras, and Claudia Eckert. SKALD: A Scalable Architecture for Feature Extraction,

XixX

Scientific Publications

Multi-user Analysis, and Real-Time Information Sharing. In Matt Bishop and Anderson
C A Nascimento, editors, Information Security: 19th International Conference, 1SC
2016, Honolulu, HI, USA, September 3-6, 2016. Proceedings, pages 231-249. Springer
International Publishing, Cham, 2016.

Tamas K. Lengyel, Thomas Kittel, George D. Webster, Jacob Torrey, and Claudia
Eckert. Pitfalls of virtual machine introspection on modern hardware. In 1st Workshop
on Malware Memory Forensics (MMF). New Orleans, Louisiana, USA, 2014.

Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian Vogl,
and Aggelos Kiayias. Scalability, fidelity and stealth in the DRAKVUF dynamic malware
analysis system. In Proceedings of the 30th Annual Computer Security Applications
Conference on - ACSAC 1/, pages 386-395. New Orleans, Louisiana, USA, 2014.

XX

Industrial Conferences

Space Based Industrial Control Security Evaluation. In DARPA RSGS Satellite Work-
shop, 2017.

George D. Webster, Zach Hanif, and Bojan Kolosnjaji. Spoilers: Effective Malware
Triage Using Hidden Fields. In Microsoft DCC, 2017.

George D. Webster and Christian von Pentz. Size Matters: Open-Source Framework for
Large Scale Analysis. In Microsoft DCC, 2017.

George D. Webster and Zach Hanif. From Mole Hills to Mountains: Revealing Rich
Header and Malware Triage. In RSA USA, 2017.

Challenges in the Analysis and Visualization of Cyber Operations as Scale. In DARPA
Cyber Forum 10, 2016.

George D. Webster and Julian Kirsch. A Study of the Rich Header and Respective
Malware Triage. In Hacktivity, 2016.

Zach Hanif, Tamas K. Lengyel, and George D. Webster. Internet-scale file analysis. In
Black Hat USA, August 2015.

Cyber Information Sharing. In DARPA Cyber Forum 8, 2015.

xx1

Chapter 1

Introduction

28% of corporations have high confidence they can detect a successful
attack

20% of corporations have reported a successful attack

19% of corporations have high confidence they can prevent an attack
19% of corporations have high confidence they can recover from an attack
10s of millions in damage for each corporate attack

Microsoft’s 2018 Global Cyber Risk Perception Survey [1]

The state of computer security is not pretty. In 2017, 20% of companies reported
that they were victimized by a successful cyber attack [1]. However, only 28% of these
companies had high confidence they could even identify if an attack occurred in the
first place [1]. To put these percentages in perspective, it takes around 198 days for a

company to discover they have been victimized, with some taking upwards of six years [2].

These numbers are alarming. Especially because each attack is costing upwards of 10s
of millions of dollars in lost revenue [1]. Outside of financial implications though, the
state of computer security becomes downright frightening. 145.5 million individuals
had their sensitive personal information stolen in the recent Equifax hack [3]. Even the
United States government witnessed the theft of 21 million personnel records, including
employees’ background investigations [4]. Sadly, the state of security becomes even
more petrifying when we consider the risks to the democratic process, vulnerable critical
infrastructure, and the increasing use of hacking as a weapon of war [5, 6].

The world is not idle and blind to the state of affairs. Most companies place computer
security within their top five priorities and it is estimated that defensive spending will
exceed one trillion dollars within the next five years [1,7]. Governments are also working
to combat the threat and have issued numerous legislative acts and executive orders
hoping to stop the tsunami of malicious activity [8-11]. Yet, the security communities’
defensive methods, tools, and capabilities are still falling short and struggle to counter
the threat. Malicious actors are continually improving their techniques, tactics, and
methods and it is commonplace to hear of a major computer security incident.

—
—
(D]
=
o
()

=

O

1. Introduction

Submissions

2,000,000
1,500,000
1,000,000 __///__—’__
500,000
0
Dec 5, 2017 Dec 7, 2017 Dec 9, 2017 Dec 11, 2017

—— Total files = Distinct files Distinct files detected by one engine or more = Distinct new files

Figure 1.1.: Submissions to VirusTotal for the Week of December 2017.

1.1. Motivation

Malicious actors are no longer composed of curious individuals and misguided youths.
These are dedicated teams that command highly sophisticated tools, infrastructures, and
possess the resources required to stay ahead of the defender [12,13]. With respect to just
processing the sheer volume of artifacts malicious actors produce, our defensive analytic
systems are struggling to cope [14-16]. To put the problem in perspective, in 2012,
McAfee received over 100 thousand samples per day [17], yet in 2015, VirusTotal received
over a million unique samples in just one day [18]. Unfortunately, as shown in Figure 1.1,
over a million samples a day is the new norm and the rate is only growing. Case in point,
on December 7" of 2017, VirusTotal received over 1.6 million samples. Unfortunately, this
number becomes more overwhelming considering that 97% of those samples were unique
and 74% have never been seen before by VirusTotal. Disproportionately, traditional
defensive methods are lagging behind. As Figure 1.1 shows, about 30% of these artifacts
can be identified as malicious by an Antivirus (AV) vendor. As a result, it should come
as no surprise that old school malware analysis tools and methods are struggling to scale
to meet this challenge and present a clear picture of criminal activity [14-16]. This is
because, while those numbers are impressive, they only account for file-based samples
that are already suspicious. However, the reality is that security practitioners need to
stay abreast of these daily threats, while also analyzing the considerable volume of benign
traffic and keeping track of historic activities.

One of the main culprits behind why defenders cannot keep up is because defensive
tools are not designed to be used together, work in an automated fashion, and enable a
collaborative environment [14-16]. This is not surprising though, as defensive toolsets grew
from the early days of security, when the lone analyst was enough. As stated by MITRE,
the reliance on one-off tools causes a situation where analysts often regenerate information
and duplicate the work of their peers—a huge waste of time and resources [14]. However,
this state of mind is still prevalent. For example, one of the major automation tools,
VIPER, is designed for a single user and is expected to be installed on a workstation [19].

1.1. Motivation

While other tools such as Collaborative Research Into Threats (CRITs) and Model-based
Analysis of Threat Intelligence Sources (MANTIS) do support a team environment, they
fall short of the goal that their acronym implies [14,20]. One of the reasons is because
they struggle to scale and provide the fault-tolerance required to support the volume of
data needed to be processed; specifically, CRITSs fails with a load of only 50 thousand
samples [21]. This is caused by a design that is based on a linear, monolithic, and “tightly
coupled” processing pipeline. Another reason these tools have failed is because they are
only designed to support the extraction of information from raw data, and in the case of
MANTIS, also enabling the sharing of Indicators of Compromise (IOCs). Unfortunately,
they do not support other critical aspects of a security investigation, namely how to
analyze and make sense of all the information the tools generate or even support the
creation of robust IOCs. This model hinders the ability for teams to work together
and view the problems from a holistic perspective. As a result, it is no surprise that
defenders struggle to present a clear picture of criminal activity, and analysis is limited
in its effectiveness.

While security tools are struggling to keep up, another major hindrance in defensive
capabilities is caused by the stove-piping of security teams and the inability for them to
share and collaborate. This creates multiple problems. One problem is that performing
assessments on limited sets of data causes analysts to draw conclusions and make
correlations that do not fully encompass the situation [22-24]. Another problem is that
each team must perform their own end-to-end investigation. However, investigations are
a resource-intensive and time-consuming task. For instance, it takes even a specialized

company 54 days to perform an investigation and deploy a mitigation solution [25].

This is a waste of resources and as previously discussed, analytic pipelines are already

overwhelmed. Sadly, this stove-piping creates another problem that is more concerning.

Because the community is not working together, malicious actors have a large window in
which to move between victims using the same methods. To illustrate this problem, even
after a well-publicized and major security incident, a year later the malicious actors still

used the same methods to steal 100s of millions from hardened banking targets [26-28].

For decades, it has been acknowledged that these stove-pipes need to be broken and
that the sharing of security information and collaboration between security practitioners
is a necessity. To this end, a gamut of legislative acts, executive orders, academic works,
and private sector initiatives have pontificated about the problem and aimed to be the
catalyst needed to fix the situation [8-11]. But it has been 30 years since these efforts
started. The stove-pipes still exist; sharing and collaboration is a technically complicated,
slow, and untrusted task that is regularly impeded by bureaucratic woes [29,30]. As
a result, effective sharing and collaboration is rare. However, even when sharing does
occur, the shared artifacts are lacking the context needed to be useful. Thus, researchers
can either blindly deploy the rules that were shared or spend considerable effort to
rebuild the context behind the shared artifacts by performing their own investigations.
However, malicious actors can stay ahead of shared artifacts by using methods such
as polymorphism, metamorphism, and Domain Generating Algorithms (DGAs). In

—
—
(D]
=
o
()

=

O

1. Introduction

addition, performing an investigation is costly and time-consuming [25]. Given this, it is
no revelation that it takes around 198 days for a company to discover they have been
victimized, with some taking upwards of six years [2].

1.2. Contributions

The lone reverse engineer analyzing a binary or the crafty security researcher dissecting
network traffic is no longer adequate. However, a technological tool or novel technique
will also not overcome this challenge. A paradigm shift is needed for how defenders
tackle the problems of computer security. This requires taking a holistic approach and
consolidating the concepts and ideas from multiple domains. In this vein, defensive
methods, tools, and techniques need to evolve to face the current and future threats. In
particular, defensive methods must empower analysts to function across the Intelligence
Cycle and pool the collective knowledge and resources of the community together.

This dissertation does not aim to provide a definitive technical solution or tool that
solves all the problems in the security world. Instead, this work seeks to change how
the security community approaches the challenges of studying malicious activities and
generating defensive mitigation actions. In particular, we seek to provide the technical
concepts required and guide how analytics and investigation of malicious activities should
be approached. At the end of the day, it is the process and the philosophy that matters
most. To help guide the achievement of these goals, this dissertation makes the following
major contributions:

e We present a novel architecture which guides the creation of analytic

systems to support the investigations of malicious activities plaguing
computer systems, named SKALD.
At its core, the SKALD architecture enables large-scale investigations across the
Intelligence Cycle and fosters analytic collaboration. SKALD guides the creation
of analytic systems that can: (i) cope with the growing volume of data, (ii) be
resilient to system failures, and (iii) be flexible enough to incorporate the latest
technology trends. SKALD provides this by identifying the core categories of
analytic activities, based on the Intelligence Cycle, and creates a “loosely coupled”
architecture around these concepts. As such, systems designed using SKALD are
able to receive raw data, extract valuable information from the data, perform
assessments across sets of information using advanced analytics, and aid analysts
in collectively making a determination. Furthermore, SKALD provides a central
repository for raw artifacts and analytic results that is segregated according to the
Data-Information-Knowledge-Wisdom (DIKW) model. This way defenders can
break the stove-pipping between teams and collaborate on a single system. Thus,
the SKALD architecture reduces the need for each team to reprocess artifacts and
also allows each team member to focus on their core area of expertise.

1.2. Contributions

We demonstrate the concepts of SKALD by presenting a prototype and conduct
extensive experiments. We show that our architecture has a near-linear growth
rate and is able to eliminate critical failures when extracting Information across
millions of PE32 samples. Furthermore, we show major performance gains with
the ability to conduct feature extraction at a rate of 3.1 milliseconds per PE32
sample, compared to 2.6 seconds when using existing systems. Finally, we discuss
how the SKALD architecture provides a platform for analysis on a collective set
of security artifacts, thus enabling more accurate analysis of malicious activity
and real-time discovery while minimizing the need for redundant processing and
thereby reducing analysis time and infrastructure cost. Showing our claims have
merit, systems developed based on the SKALD architecture have been used to
conduct complex investigations, generate academic research, and execute defensive
mitigation activities [31-36].

We extend the SKALD architecture to create a new model for sharing
and collaboration, CARE.

SKALD provides the architectural underpinnings for performing analysis across the
Intelligence Cycle. CARE, on the other hand, extends this architecture and furthers
the goals of the Intelligence Cycle by encouraging collaboration and empowering
the dissemination of the results. We first discuss the recent failures of real-world
initiatives for sharing security artifacts and dissect the associated challenges. With
an understanding of these challenges, we then extend the SKALD architecture to
encourage sharing and collaboration across the DIKW model. As such, CARE
provides the mechanisms required to perform analytic collaboration with a collective
pool of knowledge in near real-time. It does this by creating a cryptographically
backed exchange for sharing, derived through a set of common, verifiable extraction
methods and analytic algorithms. As a result, CARE provides the foundations for
overcoming the privacy and secrecy issues with sharing; it maintains the context and
lineage associated with derived information; and it provides a common structure to
allow shared artifacts to be easily ingested in analytic pipelines. Furthermore, the
cryptographically backed method increases overall trust in the system, while also

providing the ledger and infrastructure required to develop a sharing marketplace.

In turn, this provides the necessary incentives needed to encourage companies and
individuals to share, and it manages the immutable records needed to identify
offenders of trust. Thus, CARE allows the sharing and dissemination to occur
while providing new opportunities for business models, insurance risk assessments,
and government backed incentivisation. While the concepts and prototypes of
CARE are in their infancy, the concepts have already gained the attention of
major corporations and government agencies.

We demonstrate the feasibility and utility of our architecture by creating
a working prototype that has aided research and real investigation.

—
—
(D]
=
o
()

=

O

1. Introduction

We present a working prototype that was created to explore and realize the concepts
presented in SKALD and CARE, in particular, by guiding computer security
investigations to break down the process according to the Intelligence Cycle and
view the derived artifacts as part of a collective whole. Thus, the prototype fuses
together analytic specialties and empowers teams to collaborate. Furthermore, the
design of Holmes Processing allows the system to support extremely large datasets,
remain flexible to incorporate changes, and be resilient to failures.

While the prototype is academic in nature and not a robust product, it has been
used to empower research and perform real investigations against sophisticated
and complex actors. Adding validity to our concepts, we have been invited to
speak about Holmes Processing and our derived work at numerous highly acclaimed
venues, such as Black Hat USA, Microsoft DCC, RSA USA, Hacktivity, and DARPA
meetings [2-§].

e We exemplify the power of this approach by revealing a hidden aspect
of the PE32 file type and creating two triage methods.
We use the working prototype to perform the first accurate assessment of the Rich
Header and detail how to extract its clandestine information and perform advanced
analytics. The breakthrough in understanding the Rich Header was achieved by
leveraging the power of the prototype to study millions of malware and benign
samples. We then present a series of statistical studies and describe two proof-of-
concept methods that use only the extracted Rich Header information to generate
knowledge about samples. The first method allows for the rapid detection of post-
modified and packed binaries through the identification of anomalies. The second
method can be used to identify similar malware, different versions of malware,
and when malware has been built under different build environments; revealing
potentially distinct actors. Furthermore, we are able to perform these operations in
near real-time, i.e., in less than 6.73 ms, on commodity hardware across our studied
samples.

Of significant interest, this work is used by the security community to identify
potentially malicious activities and perform investigations against complex actors.
In one specific case, Kaspersky described how the Rich Header was used to reveal
the tools used by the Lazarus Group and perform attribution [37]. However, what is
most interesting is that Kaspersky also identified anomalies between the Rich Header
information and what is contained in the actual binary; one of our recommendations
for future work. As such, Kaspersky concluded that this discrepancy was deliberate
and that the identified operation was a potential false flag by another actor—to the
author’s knowledge, an industry first. In summary, this example demonstrates how
the methods presented in this dissertation can provide a major boon for performing
computer security investigations.

1.3. Scope

1.3. Scope

This dissertation focuses on enhancing the capabilities and methods for security analytics.

This is a wide topic area and incorporates many areas of specialization. As such, it is
important to narrow the scope of the research. Specifically, this work researches the
methods needed to change how the security community conducts investigations and
analytics. The focus is on the concepts behind investigations of malicious activities and
developing a new paradigm for how this work should be approached. While much attention
has been paid to log management and Security Information and Event Management
(SIEM) systems, this work is targeted towards file-based analysis and the evaluation is
focused on the PE32 file type. This focus was chosen because large-scale file analysis
is a challenging topic, ripe in potential, and one deserving of more attention. This is
especially true due to recent breakthroughs in machine learning and other advanced
analytic techniques that can provide valuable insights into the plethora of information
that file-based analysis can provide. Additionally, we selected our evaluation around the
PE32 file type as this provides access to quality datasets of significant size and enables
comparisons to existing tools and methods.

Supplementary to the above, this dissertation is targeted on how to enable advanced
analytic capabilities that can empower the security analyst to make better decisions and
share the findings with the world. We have purposefully made no effort in designing
techniques that center around automatic decisions that determine if a file is benign or
malicious.

1.4. Organization

Chapter 2 begins the dissertation by providing the foundational knowledge on which
this work is built. In this chapter, we will first discuss relevant analytic models that
are commonly used in other domains. This is done to articulate the ideal role of
security analysts and develop an understanding for how the divisions of labor are
connected. Building upon this, we will then describe the three core categories for
extracting Information from security artifacts. We follow this discussion by providing
a quick overview of the big data analytic techniques used for turning Information
into Knowledge. We then conclude this chapter by introducing the methods used for
managing decentralized records and transactions as well as the techniques used for
creating large-scale architectures.

The core of the dissertation’s work begins with chapter 3. In this chapter, we introduce
a new architecture for developing the next generation of analytic systems, SKALD. We
describe how SKALD’s design enables the development of security analytic platforms
that are scalable, flexible, and resilient. In turn, we argue that this provides analysts

with the tools needed for performing object-based analysis at real-world speed and scale.

Additionally, we argue that the design of SKALD enables analysts to work across the

—
—
(D]
=
o
()

=

O

1. Introduction

Intelligence Cycle and empower collaborative human-based analytics.

Chapter 4 builds upon the architecture presented in Chapter 3 to provide a method
for enabling effective sharing and collaboration with peers. The chapter first illustrates
the major issues surrounding the current sharing paradigm and discusses the critical
need to improve the sharing paradigm. We then introduce our model for overcoming
these issues, CARE. We argue that the CARE model presents a new way forward in
how sharing can occur that alleviates the issues of the current paradigm while providing
better opportunities for collaboration. In addition, we show how the CARE model
incentivizes sharing and encourages a healthy community by providing the foundations
on which an economy can be built, named CAREcoNOMY.

Chapter 5 presents the prototype developed around the concepts prescribed by SKALD
and CARE. In this chapter, we describe the engineering solutions and explain our
implementation decisions.

In Chapter 6, we demonstrate how the prototype empowers advanced analytics. We do
this by developing an understanding of the PE32 Rich Header and creating a service that
extracts the obfuscated Information. We next run the Service over 1 million samples,
including labeled sets that were donated by the security community. We conclude by
presenting our results and describe how our findings can enable rapid triage and perform
similarity matching based on the build environment and program function.

Finally, Chapter 7 discusses our findings and highlights the potential opportunities
these new methods present for security researchers.

Chapter 2

Fundamentals

“The truth is rarely pure and never simple.”

Oscar Wilde

In this chapter, we present a synopsis for the topics that provide the foundation on which
this dissertation is built. We begin the discussion by presenting two models for analysis.
These models provide the guiding principles that shape this work’s architecture. The first
model focuses on how to transform raw data into forms that can aid understanding and
help make a judgment. The next model presents a popular and widely used end-to-end
process for performing an investigation. As we are analyzing large volumes of raw data,
the next section discusses the core analytic categories used in security to extract details
from raw security artifacts and then the techniques used to study these details as a
collective whole. In the succeeding sections, we then shift topics to focus on the relevant
techniques and technologies that are used to develop large-scale enterprise class systems.
These techniques are leveraged by this work to develop the prototype that evaluates
our model. We first present the major two models for concurrence programming, which
enable highly parallel computation. Next, we expand beyond a single computer and
discuss the architectural patterns for developing distributed systems. Widening the scope
of the discussion, we then discuss the technologies for providing secure and trustworthy
interactions, without requiring a 3'¢ party, across multiple users that are geographically
distributed.

2.1. Analytic Models

This section introduces two analytic models for the purpose of identifying how analytics
and investigations should be performed. A key focus is on the specific steps taken and
the types of data each step generates.

2. Fundamentals

EI Information

Identify Details l a

Create Collective Understanding

Collect Samples Knowledge

Interpret Results

Figure 2.1.: The Layers of the DIKW Model.

2.1.1. Data Information Knowledge Wisdom (DIKW) Model

The DIKW model describes a process for transforming data into value or understanding.
While the origin of the DIKW is uncertain, Ackoff receives the most credit for defining
its current form and evolving its representation to that of a pyramid [38]. In this form,
each layer of the DIKW model builds upon its predecessor until a determination or
final judgment can be reached [39]. Furthermore, Ackoff notes that logic can define the
transformation between Data, Information, and Knowledge. However, he states that the
transformation to Wisdom is best left to a human because this step requires a judgment
or value determination which is rooted in subtleties such as experience and context.

The definition for each layer of the DIKW model has evolved over the years and is
often specific to the context in which the model is used. For the sake of clarity, in this
work we leverage the original layer definitions provided by Ackoff and define each layer
as follows:

e Data - A raw object with no further meaning. A PE32, Packet CAPture (PCAP),
memory dump, domain name, and an Internet Protocol (IP) address are all examples
of objects that are often observed during a computer security investigation.

e Information - Details obtained by asking who, what, where, when, and “how
many” questions of Data. These details are often the outcome of static analysis,
dynamic analysis, or other extraction method when applied to a piece of Data.

e Knowledge - Organizing a set or a subset of Information into useful forms by

10

2.1. Analytic Models

asking “how-to” questions. This is performed using statistics, knowledge-based
rules, machine learning, and similar analytic techniques across a set or subset of
Information.

e Wisdom - The results from the development of understanding based on sets of
Knowledge and analytic experience.

Under these definitions, the process, as shown in Figure 2.1, for how to make a judgment
when presented with a single or set of security objects or samples can begin to evolve.
Specifically, an object by itself is Data. To begin to work with this Data, the first analytic
act is to extract details about the Data to create a set of Information. This extraction
often occurs with static and dynamic analyses and help answer questions such as: “what
is the size of the Data?”, “what are the file headers and their respective values for a
piece of Data?”, “what is the control flow of the Data?”, “what network artifacts does
the Data produce when executed?”, etc. Using multiple sets of Information, an analysts
can then create Knowledge by applying techniques such as statistical modeling, machine
learning, and graph theory to identify patterns and draw correlations. For example,
these techniques can be used to ask questions such as: “what is the Information similar
to?”, “is the Information related to a known threat?”, and “how is this Information
different or similar to a benign sample?”. With this Knowledge, an analyst is then able to
create Wisdom by making a judgment based on what has been observed and an analysts
experience. For instance, “is the PE32 file malicious?”, “should the domain be blocked
from the network?”, and “who is responsible for this activity??”.

In this dissertation, we use the DIKW model to define the different categories of
security artifacts and separate the various tasks involved in performing a computer
security investigation.

2.1.2. Intelligence Cycle

The Intelligence Cycle was created by the United States Intelligence Community (IC)
as a guide for how to perform successful intelligence investigations [40]. This model
has since been adopted by multiple military, intelligence, and law enforcement agencies
around the world [41-43]. In a similar vein to the DIKW model, the IC model is focused
on turning Data into useful forms that can aid in making a decision or judgment.

As Figure 2.2 shows, the Intelligence Cycle is broken down into six main parts. These
parts flow together in a never ending cyclical fashion and continually feed itself until
the overall goal has been reached. Additionally, while seemingly linear, the parts of the
Intelligence Cycle can operate asynchronously and can be performed in any order. These
parts are as follows:

¢ Planning and Direction - A continual process that sets the strategic goals of the
investigation. Additionally, this part monitors the other parts of the Intelligence
Cycle to ensure they are performing efficiently and meeting the needs of the

11

2. Fundamentals

Operational

Collection Dissemination & Integration

Production

Environment Feedback &

12

Evaluation

Planning & Direction Process & Exploitation

Figure 2.2.: Intelligence Cycle with The Operational Environment.

investigation. This step is an endless cycle because the investigation’s goals should
be adjusted as a new understanding is reached.

Collection - The process of collecting needed Data. This is not restricted to one
type of Data but should include a collection of different types of Data from multiple
sources to ensure that an investigation considers multiple angles and takes into
consideration a holistic viewpoint.

Processing and Exploitation - The transformation of Data into useful forms. At
its basic level, this part of the cycle includes converting the Data into standardized
formats and storing the Data where it can be easily utilized. At its more advanced
level, this involves interpreting the Data and investigating its aspects. Together,
this is akin to generating Information in the DIKW model.

Production - The analysis of Information to derive meaning and understanding.
This includes evaluating the validity of new Information, analyzing sets of Infor-
mation, integrating what is learned from analysis to identify patterns and build
understanding, and drawing conclusions from the analysis. The first three stages
in this step are similar to deriving Knowledge from Information, while the fourth
stage is akin to creating Wisdom from Knowledge.

Dissemination and Integration - The packing of Knowledge and Wisdom into
usable forms that address the needs of the consumer. Additionally, this includes
distributing the results and sharing what is learned.

Feedback and Evaluation - A ceaseless process where the holistic effort and
parts of the investigation are evaluated and refined. This can be done through
informal feedback and discussion as well as formal reviews.

2.2. Data Based Analytic Methods

Besides these six parts, we have included an additional part named the Operational
Environment. This is because security investigations often have an active component
that would be outside the scope of a traditional investigation activity. For example,
during an investigation an analysts might adjust a firewall configuration or deploy a
signature to remove a specific file from the network. As such, in this work we define
the Operational Environment as a step in the process where the environment is
considered, and an active action is taken or contemplated on part of the defender. For
instance, to mitigate existing malicious activity or proactively take measures to defend
the environment.

In this dissertation, the Intelligence Cycle is used as a foundational guide for the
steps needed to perform a successful computer security investigation and drives the
structure. This is because the Intelligence Cycle has had wide success in performing
complex investigation and producing accurate analysis. Furthermore, computer security
investigations are similar to intelligence investigations in that the artifacts available
during an investigation are often incomplete, designed to provide false leads, noisy, false
positives, or simply not needed. The Intelligence Cycle accounts for these issues during
multiple steps. For instance, the Collection part states that multiple pieces of Data
from multiple different sources should be used to provide a holistic understanding of
what is being investigated. Additionally, the Production part states that Information
should be regularly validated to ensure it should be included or remain included during
the investigation. However, the main part of the Intelligence Cycle that counters these
issues is the Feedback and Evaluation phase. In this phase, the investigation is regularly
assessed to ensure the scope is proper, the analytic focus is addressing the needs of the
investigation, and the artifacts being collected and generated are satisfying the needs of
the investigation.

As strong parallels can be drawn between an intelligence investigation and that of
a computer security investigation, it should come as no surprise that many of the
more successful security analytic processes resemble parts of the Intelligence Cycle.
As a case in point, Recorded Future’s description of the Threat Intelligence Lifecycle
is described according to the phases of the Intelligence Cycle [44]. The work in this
dissertation Moreover, it is not a coincidence that the DIKW model strongly reflects
how the Intelligence Cycle breaks down each part. The major differences are that the
DIKW model focuses on the transformation and the associated types of data, while
the Intelligence Cycle focuses on the process for performing a successful investigation.
Additionally, we will sometimes refer to the Intelligence Cycle as the analytic life cycle.
This was done to emphasize the analytic focus of the method.

2.2. Data Based Analytic Methods

The previous section summarizes two models for performing a successful investigation
and the various stages for which an object is analyzed to the point where judgment

13

2. Fundamentals

or determination can be made. In this section, we expand upon this discussion by
introducing three major categories for extracting Information from Data with respect
to a security investigation: static analysis, dynamic analysis, and 3" party information
gathering. Furthermore, it is important to note that each category has benefits and
drawbacks that should be considered when developing an analytic system. Additionally,
and as highlighted in the Intelligence Cycle, no one solution or category is adequate for a
full investigation and they should complement each other.

2.2.1. Static Analysis

Static analysis is the act of investigating an object without execution. These methods
focus on analyzing the source code, object code, and structure of the Data in question.
Tools based on static analysis are commonly used to uncover potential vulnerabilities,
identify programming errors, extract details about the Data, and formally verify the
code will behave as expected [45].

One popular use for static analysis is to analyze software during the development cycle.
These testing tools; such as Synopsys’ Coverity, RogueWave Software’s KlocWork, and
MathWorks’ PolySpace; scan the programming code to identify programming errors,
maintainability issues, and detect potential security vulnerabilities before a binary is
created [46]. With the adoption of agile development, these methods have seen wide
adoption; upwards of 60% of major open source projects [47]. Furthermore, these
techniques can be easily incorporated into agile’s continuous integration process to ensure
newly submitted changes can be safely merged and assessed for security vulnerabilities [48].
For example, the Travis CI and Jenkins build systems include add-ons for Coverity and
a slew of other static analysis methods [49,50]. Interestingly enough, incorporating
these techniques with continuous integration can also lessen development overhead. As
stated in a Microsoft report, continuous integration with static analysis accounts for a
greater than 40% reduction in the overhead cost associated with merging in new code
changes [51].

Specific to malware analysis, many triage systems focus on leveraging static analysis for
the first assessment of new Data. One of the primary reasons for this is because these tools
typically have a predictable and short execution time. For example, in our experiences
the popular static analysis tool pefile will complete execution in approximately two
seconds [52]. However, in this time, pefile will provide a wealth of Information that
includes the headers and their respective values as well as the structure of a PE32 file. In
turn, these headers can provide details on the libraries used to create the PE32, fingerprint
the build environment, identify if the binary is cryptographically signed and by whom,
and other key details that can be critical in an investigation [53]. Additionally, as we will
show in Chapter 6, this PE32-based Information can reveal details that Knowledge-based
analysis can leverage to identify if the binary is packed or obfuscated, allow the ability
to identify similar malware, and fingerprint the actors.

Malware authors are not blind to the threat posed by static analysis. In turn, they

14

2.2. Data Based Analytic Methods

a Xen VMM)
VLAN NAT Open vSwitch Origin VM
- WT-d Trunk - e LAN RAM LVM Disk
domo Clone VM 1
VLAN 1 CoW RAM CoW Disk
DRAKVUF R — 1
: Clone VM 2
VLAN 2 CoW RAM CoW Disk
I -
Clone VM X
b VLAN X CoW RAM CoW Disk
_ - "
DMA —————— Network «--------ooo Copy-on-write

Figure 2.3.: Components for VMI Analysis with Drakvuf

use code obfuscation techniques such as packers, polymorphism, anti-reverse engineering
tricks, and “hiding in the noise” to thwart the efforts of static analysis and triage
systems [54,55]. In addition to these efforts, malware authors will also leverage multi-
stage attacks in which the originally deployed malware is relatively benign but will
download additional components or other malware after the foothold is established [55].
Moreover, this cycle can continue beyond a couple states, as witnessed by the attacks
conducted by the Lazarus Group [31]. In sum, these efforts create a cat-and-mouse
scenario where each side is continually evolving their techniques to gain an advantage.

2.2.2. Dynamic Analysis

Dynamic analysis is the process of investigating an object while it executes. This is
often done to observe the behavior of the object, understand code paths, and identify
run-time bugs. Additionally, and of importance to computer security, dynamic analysis
can be used to aid the process of unpacking a binary, decrypting code, and capturing the
malware used during the different stages of an attack [56,57].

When performing dynamic analysis to study the behavior of malware, three popular
methods are traditionally used: in-guest, VMI, and bare-metal. In-guest approaches,
for example Cuckoo Sandbox, leverage a software agent that lives inside the analysis
environment [58]. This allows for easy monitoring but has the drawbacks of being easily
tampered with and detectable. VMI seeks to overcome the challenges with in-guest based
methods by inspecting the execution of an object through the hypervisor that controls
the virtual machine; see, for example, the analytic system Drakvuf [59,60]. As illustrated
in Figure 2.3, this provides additional tamper resistance as the inspection element lives
outside the environment being inspected and is thus more difficult to detect then in-guest
methods. The downside of this approach is that it is challenging to interpret the actual
meaning of the symbols passed through the hypervisor, referred to as the semantic gap.

15

2. Fundamentals

An additional downside is that it is all but impossible to obfuscate that the malware is
being executed in a virtual environment and thus potentially being analyzed. Approaches
based on bare-metal, such as BareCloud, seek to investigate malware in as clean an
environment as possible by not leveraging in-guest agents or virtual environments [61].
However, these systems are costly and difficult to implement. As such, pure bare-metal
approaches are most often leveraged only after other methods have detected abnormalities
that require further inspection.

While the above three mentioned approaches are arguably the most popular methods
used during a computer security investigation, their are many other dynamic analysis
methods can can provide valuable Information for a computer security investigation.
These methods cover a wide range of area such as memory profiling, inspecting cache,
fuzzing a programs inputs, generating a binary’s call-graph, dynamic packet or protocol
analysis, hybrid static analysis approaches such as concolic testing, and many others.
However, in this dissertation we focus our research around the main three methods used
for studying the behavior of malware during an investigation.

It is important to note that any of these methods have the challenge of dealing with
stalling execution or executing benign code paths, known as the halting problem [62,63].
This is because unlike static analysis, dynamic analysis can only capture what is being
executed. This presents a problem as software can have an innumerable number of
states and run indefinitely; whereas dynamic analysis platforms require costly resources
to run and need to return a result to an analyst in a reasonable amount of time.
Regarding malware analysis, this can cause major challenges as a malware program can
stall execution or otherwise not exhibit malicious behavior during the allotted time for
dynamic analysis. For example, a malware author only needs to incorporate a delay that
is greater than 5 minutes to defeat most Cuckoo Sandbox based analysis because Cuckoo
Sandbox has a default timeout of 5 minutes.

2.2.3. Third Party Information Gathering

Gathering Information from a third party is a method for investigating objects where the
investigating process is performed or the Information is obtained from an outside source.
This can be a powerful method because the analysts can receive details about the object
that would otherwise not be obtainable. For example, when confronted with a domain
name, the analysts can query current and historic Domain Name System (DNS) records.
This can provide Information about where the domain resolves to, where it historically
resolved, where the servers are hosted, who hosts the servers, how old the domain is, etc.
Another example of valuable Information that third parties can provide is the detection
status and signature labels for numerous AV products, provided by VirusTotal.

16

2.3. Information-Based Analytic Techniques

2.3. Information-Based Analytic Techniques

In this section, we will introduce three common categories in computer security for
transforming Information into Knowledge: statistical and knowledge based, machine
learning, and graph analysis. While other approaches exist, these techniques encompass
much of the current research and product landscape. Additionally, similar to the previous
section, each method and technique has a valuable role to play in providing the Knowledge
needed to make an accurate judgment. For example, these techniques can answer questions
similar to, “how is this Information similar to a previously observed threat?”, “how is
this Information different from a benign sample?”, and “how is this Information linked
to other activity I am observing?” Combining this Knowledge together aids the analysts
in understanding what is being investigated.

2.3.1. Statistical and Knowledge-based Approaches

Algorithm 1 Yara Signature for APT1’s LIGHTDART Malware
rule LIGHTDART_APT1 {

meta:

author = “AlienVault Labs”

info = “CommentCrew-threat-apt1”

strings:

$s1 = “ret.log” wide ascii

$52 = “Microsoft Internet Explorer 6.0” wide ascii

$s3 = “szURL Fail” wide ascii
$s4 = “szURL Successfully” wide ascii
$s5 = “Ys&sdate=%041d-%021d-%021d” wide ascii

condition:
all of them

}

Statistical analysis and knowledge-based approaches seek to analyze Information based
on known patterns and rules [64]. At its basic level, signatures are used to match the
Information from unknown objects to previously observed objects. This can be as simple
as identifying a PE32 sample based on a hash—such as MD5 or SHA-256—or identifying
suspicious IP traffic based on a port and protocol. More robust forms of signatures take
this a step further by seeking to identify and classify samples based on a set of defined
textural or binary patterns [65]. This type of signature allows the creation of rules that
flag against unique pieces of Information contained within a sample versus the overall

17

2. Fundamentals

structure and generic communication methods. For a concrete example, Algorithm 1%,
shows a Yara signature, a popular method used for identifying unique binary or textural
patterns, for the APT1 actor’s LIGHTDART malware. In this algorithm, AlienVault
Labs has defined a rule that states that if all five strings, s[1 — 5], appear in a binary
then label the binary LIGHTDART _APT1.

Not blind to the risk these signatures face, malware authors have adopted polymorphic
and metamorphic techniques as well as random communication methods such as DGA.
This allows malware to automatically adjust its code structure, execution footprint,
and communication pattern on the fly. Thus, increasing the difficulty in writing a
static signature [55,66]. To contend with this new evolution, defenders have created
techniques that identify and classify objects based on statistical characteristics. For
instance, PEHash is based on the properties of PE32 files and impfuzzy creates a fuzzy
hash of the PE32 header import table [67,68]. Regarding network traffic, methods have
been created that model the stochastic behavior of a benign network over time and seek
to flag anomalies [64].

The negative of these approaches is that a signature or rule author must first reach a
level of understanding for what they are searching for before rules or signatures can be
created. This creates a situation where defenses are reactive in nature and defending
against new and previously unseen attacks proves challenging. Additionally, as the rise
in new malware is accelerating, the ability to keep pace in writing signatures becomes a
losing battle. For instance, in December 2017, only 29% of newly submitted samples to
VirusTotal were identified by any AV product [69]. Furthermore, if a malware author
knows which Information, i.e. the string s[1 — 5] in Algorithm 1 or general statistical
characteristics, the rule is flagging against, then the malware authors are able to adjust
any new versions of their malware family to bypass the rule.

2.3.2. Machine Learning

Machine learning algorithms fall under two primary categories, supervised learning and
unsupervised learning. In supervised learning, the algorithm incorporates a training
phase that uses labeled input that states what the output should be. The algorithm then
processes the labeled input and tries to create a mathematical model that returns the
desired output. This mathematical model is then used with new input to achieve the
program’s goals. In unsupervised learning, there is no training phase that uses labeled
input. Instead, the algorithm identifies the patterns that exist in the input to determine
what the output should look like. For example, the algorithm could cluster the input
into multiple sets. However, in practice it is not uncommon to see both categories being
used together. To illustrate, a program could leverage unsupervised learning to establish
which input features or their weights would be best to use with a supervised learning

1Source: https://github.com/AlienVault-Labs/AlienVaultLabs/blob/master/
malware_analysis/CommentCrew/aptl.yara

18

https://github.com/AlienVault-Labs/AlienVaultLabs/blob/master/malware_analysis/CommentCrew/apt1.yara
https://github.com/AlienVault-Labs/AlienVaultLabs/blob/master/malware_analysis/CommentCrew/apt1.yara

2.3. Information-Based Analytic Techniques

algorithm.

Security analysts have begun to leverage machine learning in their investigation
workflows and the security products they create. This is because machine learning is
effective at processing large sets of Information to identify patterns and answer how-
questions. However, unlike statistical and knowledge-based approaches, machine learning
does not require that a specific rule was previously written. For example, these algorithms
can help identify if a file is likely to be malicious or related to another sample without
requiring a signature [33,34]. Regarding web traffic, these algorithms can help determine
if communication to a domain is malicious without requiring the domain to be listed on
a blacklist or whitelist [64,70]. These techniques are also major boons for investigations,
because they allow analysts to identify patterns of activity they might otherwise have
missed. For instance, by finding similar samples to one that is being investigated or
revealing similar patterns of activity to a known malicious event [35].

While powerful, machine learning is not without its downsides. One of the major
challenges in using machine learning is because the effectiveness of the algorithm is
based on the Information it receives during its training and execution. As a result, if an
algorithm was trained with incomplete or improperly labeled artifacts, the result will be
inaccurate. Furthermore, if the Information provided to the algorithm was obfuscated
or incorrect, the algorithm will be non-the-wiser. Unfortunately, in computer security,
well-labeled artifacts are difficult to come by and malicious actors are incentivized to
make the extraction of Information challenging. As another downside, techniques used
by malware are not always distinct from benign activity. As a prime example, it is hard
to identify if the capability to download and execute a file is for deploying malware
packages or for providing regular and legitimate updates. Regarding network traffic,
it is not uncommon for a malicious actor to hijack benign network infrastructure for
their activities and DGA infrastructure can display strong similarities to content delivery
networks. Another major challenge is that it is hard to verify and validate how a machine
learning algorithm is functioning. This is especially true with the subset of machine
learning called deep learning. As such, it can be difficult to use the results from machine
learning algorithms for legal proceedings and to ensure that regulatory violations do not
occur during an investigation.

2.3.3. Graph Analysis

Graph analysis is a powerful technique used to understand complex criminal activity.
While this technique has multiple names, such as link analysis and network analysis, the
concept is the same. The goal of graph analysis is to identify and study the relationships
between artifacts. This allows analysts to generate Knowledge by organizing how pieces
of Information fit together to identify connections and infer meaning. Graph analysis is
particularly useful for helping to drive the direction of an investigation [43]. Furthermore,
deep insights can be brought to light by leveraging graph analysis in conjunction with
the Intelligence Cycle. For example, Valdis Krebs unraveled the covert terrorist network

19

2. Fundamentals

that conducted the September 11th terrorist attack through the use of graph analysis
with four types of relationships [71].

The ancient technique of graph analysis should be familiar to any fan of Sherlock
Holmes, CSI, or any mystery series; for example, when seeing the characters in these
series studying pictures posted to a wall with different colored string connecting them.
However, the tools used for graph analysis have become an interesting field of research
and have evolved under three main generations [72,73]. Under the first generation, an
analyst reviews the information to identify relationships and records them in sets of
matrices for each type of relationship [74]. The analyst then uses these matrices to create
a graph and the results. While this is effective, it is a time-consuming and tedious task.
The second generation focuses on the use of specialized tools, such as Analyst’s Notebook,
Palantir, and Maltego, to help capture the relationships and graph the results [73]. This
has the benefit of allowing the analysts to incorporate multiple relationship types and
manipulate the resultant graphs to help in their understanding. The third generation
of graph analysis, referred to as Social Network Analysis (SNA), aids the analysts in
understanding the relationships by combining other analytic methods. These methods
include identifying additional relationships, highlighting sub-groups, revealing patterns
between artifacts, and highlighting where there is a need for more Information [72,73].

Investigations into criminal activity are not the only domain of computer security that
profits from graph analysis [75]. There has been much recent attention in using graph
analysis to identify vulnerability paths in a computer network and the components of a
system. This type of graph is referred to as an attack graph. Recent efforts in research
have made great strides in how to scale the creation of these graphs and highlighting
paths for weaknesses. Similar to SNA, these methods borrow from multiples domains,
such as machine learning and formal methods [76-79).

Like all analytic methods, graph analysis has its weaknesses. One area of trouble is
caused by trying to graph too much Information [80]. This can lead to a graph where
everything appears related, or the graph becomes intractable for a human. Another
issue is that the SNA methods for revealing relationships and clustering subgroups can
be susceptible to adversarial learning, for instance, injecting noise into how artifacts
are related [81]. Unfortunately, the obfuscation techniques used by malicious actions
naturally have these side effects, such as using hacked infrastructure and Tor nodes.

2.4. Large-Scale Infrastructure Techniques

The previous sections focused on the steps required for performing a computer security
investigation. In this section, we discuss the architectural building blocks needed to
combine these steps to build a large-scale analytic system. We will first discuss how
to develop highly parallelized programs and perform concurrent operations. We then
expand these concepts from beyond a single computer and focus on the architectural
patterns for developing and organizing distributed systems.

20

2.4. Large-Scale Infrastructure Techniques

2.4.1. Concurrent Programming Paradigms

While there are multiple models for concurrent programming, the Actor Model and
Communicating Sequential Processes (CSP) model have become the dominant methods
used in large programs and programming languages for parallel processing and distributed
computing. For example, modern implementations of the Actor Model include the Erlang
programming language and the Akka toolkit, while the CSP model has been implemented
in the Go and Clojure programming languages [82-85]. In these models, the components
are “loosely coupled” computational primitives and only communicate with each other
by sending a message. This is in contrast to traditional concurrent designs that were
based on shared memory and the use of threads, locks, semaphores, and mutexes. This
difference allows the development of highly concurrent programs that can take advantage
of parallel architectures while also being easy to reason about and mathematically model.
In this section, we will briefly discuss the key concepts behind the Actor Model and CSP
model.

The Actor Model originated in 1973 as an architecture in which to build efficient
and highly parallel artificial intelligence systems [86]. In this model, the Actor is the
“fundamental unit of computation” and primary primitive that is composed of three
essential elements: processing, storage, and communication [87]. Systems based on
the Actor Model are then composed of multiple Actors that are linked together to
perform the program’s goal. The core design of the Actor Model is centered on the
concepts of physics versus traditional mathematical approaches [87]. Because of this, the
Actor Model makes the assumption that communication and interaction is inherently
asynchronous [88]. To handle this assumption, Actors communicate with each other
by only sending messages using internal mailboxes. As Actors can only process one
message at a time, the internal mailbox stores newly received messages in a queue until
the Actor is available to handle the message. When an Actor receives a message, it is
able to processes the message and perform three types of operations: create more Actors,
send a message to other Actors it knows about, and designate how the Actor will handle
the next message it receives [87]. This design allows highly parallel systems, which can
also be easily distributed, as the actors are not reliant on each other for processing, and
messaging is decoupled. Furthermore, this allows the creation of concurrent systems that
are easy to reason about [89].

The CSP model was created to be a formal algebraic mathematical model for describing
concurrent programs [90]. Similar to the Actor Model, each process can only communicate
with another process by exchanging messages. However, in the CSP model processes
communicate with each other using the concept of channels. Under this concept, processes
directly transmit messages to each other. As a process can only perform one function at
a time, a process must wait until the receiver is available to accept a message before it
can transmit. Additionally, the receiver block will block any other transmission. This
eliminates the need in the CSP model to require any form of a queue or mailbox when
transmitting messages. Thus, this creates a concurrent system that is synchronous as

21

2. Fundamentals

messages are processed in the order they were sent [91]. Furthermore, this allows the
system to be easily mathematically modeled and the management or concern of queue
size is no longer an issue.

The key difference between the Actor Model and CSP model comes down to the theory
in how messages are transmitted—and unfortunately developer’s tribal beliefs. On the
one hand, the CSP model is based on direct communication that is synchronous. On the
other hand, the Actor Model uses the concept of mailboxes that contain a queue and is
asynchronous. Thus, a delay in processing can occur in the CSP model because blocking
is required during a message transmission while the Actor Model’s queue mitigates
these issues. However, the Actor Model’s queue can delay the processing of synchronous
transitions and make reasoning about the program’s logic more difficult. That said, it
is possible to define a synchronous system that is asynchronous and an asynchronous
system that is synchronous. In fact, current implements of CSP allow a buffer between
elements and implementations of the Actor Model allow Actors to have a mailbox queue
size of one [84,85]. Even still, these theoretical differences translate to a higher level
of abstraction and decoupling with Actors. This makes designing distributed systems
easier with implementations of the Actor Model, while it is easier to control the flow of a
programming under CSP.

2.4.2. Service Oriented Architectures

Service Oriented Architectures (SOA) is an architectural approach, and arguably a matter
of philosophy, for how to structure enterprise systems [92]. At its core, SOA seeks to
organize enterprise architectures around business processes [93]. While the specifics for
how SOA is defined are numerous, and often in conflict, this core principal is always
the same [94]. That said, Sprott and Wilkes provide the definition that we use in this
dissertation. This definition states that SOA is:

“The policies, practices, frameworks that enable application functionality
to be provided and consumed as sets of services published at a granularity
relevant to the service consumer. Services can be invoked, published and
discovered, and are abstracted away from the implementation using a single,
standards-based form of interface.” [95]

The key with this definition is two-fold. First, SOA is not just an architecture for
designing computer programs but incorporates business structure and practices. Second,
SOA is not specific to a piece of technology but a fundamental concept. Providing merit
to this definition, this same view is embodied in the works by Papazoglou [96].

Under this definition, SOA seeks to break “tightly coupled” and monolithic programs
into multiple “loosely coupled” independent programs. Furthermore, SOA aims to provide
a bridge to traditionally siloed applications to allow them to more freely interact [93].
In turn, these programs and applications are called Services and these Services fulfill a
business-based operation or need [97]. To create a system, Services’ communicate with

22

2.4. Large-Scale Infrastructure Techniques

each other using a common interface. This communication is often supported by an
Enterprise Service Bus (ESB) that provides routing, monitoring, standard enforcement,
Quality of Service (QoS), and other management tasks [98].

The principals and philosophical design choices imposed by SOA have created many
benefits in the deployment and development of systems [97]. One of the main reasons
behind these benefits is the “loosely coupled” nature of Services. This is because it
allows systems to become more flexible and more easily evolve to changing business
needs. Additionally, this benefit applies not only to the software architecture but the
development process as well. This is because this level of abstraction between different
Services allows teams of developers to work independently and concurrently on different
aspects of the system. An additional benefit provided by the “loosely coupled” design is
that it empowers distributed computing and scalability [97].

2.4.3. Microservices

Microservices is an increasingly popular architectural style for developing enterprise
systems. Perhaps microservices is nothing more than a stripped-down version of SOA.
Adding worthiness to this argument, for years Netflix referred to their implementation
of the microservices architectural pattern as SOA using “fine grained Services” [99].
However, microservices evolved from the challenges many implementors faced with SOA
deployments and SOA’s ill-defined nature [100]. This has led to key conceptual differences.
Specifically, the role of a Service, how a Service communicates, and how a Service should
be deployed. Thus, it can be argued that microservices is a fundamental shift in how
to design enterprise systems and merits a clear distinction from the term SOA. Further,
microservices have seen wide adoption and popularity in systems that need to scale and
take advantage of cloud-based infrastructures.

Akin to SOA, a system in the microservices style is still created from interconnected
Services. However, Services in microservices focus on providing a capability instead of
fulfilling a business process [100]. The distinction is that a capability provides a single
functionality and is self-sufficient [100]. To illustrate this concept in computer security,
a monolithic system will perform the end-to-end functionality for analysis. This can
include the user interface, analytic methods focused on Data, analytic methods focused
on Information, storage and retrieval, and any other features a customer desires. In SOA,
the system will become separated into Services based on business lines. For example, one
Service will provide the user interface while another Service will perform the full scale
of DIKW analysis. The microservices based approach breaks the system down further.
Looking just at analytic methods for Data, one Service would orchestrate the execution
of additional Services for static analysis. These other Services would then perform a
specific static analysis task, such as extracting the headers from a PE32 file.

To enable the self-sufficient nature of this new type of Service, Services are designed
differently. Specifically, a Service must become its own product, able to optimally execute
its capability, as “loosely coupled” as possible [101]. In this, a Service is expected to

23

2. Fundamentals

receive a tasking, perform its operation, and output the results. Additionally, the ESB is
removed to eliminate the “tightly coupled” nature between the ESB and a Service. One
effect of this is that a Service now provides its own generic lightweight communication
method that is ideally asynchronous. Such as the REpresentational State Transfer
(RESTful), the Advanced Message Queuing Protocol (AMQP), and Protocol Buffers
(protobuf). Another effect is that routing and orchestration becomes handled by Services.

This architectural pattern creates an extremely “loosely coupled” system. With this it
creates complexity in the design but also immense freedom. This provides major benefits
regarding the scalability, flexibility, and resiliency of the system. With respect to scale, a
monolithic program can incorporate a load balancer, but the entire program still needs
to be replicated. Scaling an SOA system allows more control, but this still forces scaling
parts of the system that are not needed. Microservices, on the other hand, allow the
scaling of only the specific Service that is needed. This saves resources and infrastructure
cost. An additional benefit is that the “loosely coupled” nature allows systems to be
immensely flexible. For example, a Service can be adjusted or changed without requiring
changes to other components. Furthermore, this allows Services to be written in whatever
language or technology that is best suited for the job or the developers. With respect
to resiliency, a system deployed using the microservices architecture often has multiple
redundant Services running in tandem while tasking is routed through load balancers or
a message bus. This pattern allows redundant Services to seamlessly take on the load of
a failed Service. Additionally, the “loosely coupled” design further minimizes the risk of
failure propagation because of the lack of interdependencies.

There are numerous benefits to a microservices based architecture, but it is not the
optimal solution for every use case. It is important to keep in mind that the microservices
pattern adds complexity to design, development, deployment, and maintenance of systems.
As such, the pros and cons of microservices should be carefully considered before this
approach is undertaken. For instance, when scale and cloud-based deployments are not a
concern, it can often be more appropriate to select a different architectural pattern or
even write a single application using a well-structured monolithic approach.

Lastly, while SOA and microservices seem similar to the Actor Model and CSP, the
key difference lies in the scope of the problem these patterns are attempting to solve.
Specifically, the Actor Model and the CSP model are used for concurrent programming and
primarily serve to empower a single program. On the other hand, SOA and microservices
are guides for how to design an overall system that is composed of multiple programs.
To help illustrate this concept, you can write a Service using the Actor Model and some
Actors can be viewed as a Service. However, Services focus on achieving a functional
goal of the overall system and are inherently independent programs.

24

2.5. Providing Trust for Decentralized Records and Transactions

2.5. Providing Trust for Decentralized Records and
Transactions

In this section, we will discuss the techniques for realizing the Intelligence Cycle’s
requirement for disseminating what is uncovered during an investigation. To do this,
trust in the records and transactions must be established between the exchanging parties.
As such, we will present an overview for the key technology for creating a secure and
immutable ledger and orchestrating secure contracts and transactions.

2.5.1. Blockchain

The concept of a blockchain was first proposed in 2009 by Satoshi Nakamoto with his
paper that introduced Bitcoin [102]. In his ground breaking work, Nakamoto created the
concept of a blockchain for creating a verifiable and immutable public ledger for enabling
monetary transactions. At its core, blockchains are a form of distributed database that is
optimized for security and byzantine fault tolerance. This has seen wide use in achieving
a distributed consensus for transactions and solidifying the ownership and transfer of
resources.

A blockchain is composed of blocks that are linked together based on the cryptographic
hash of the previous blocks [102]. Each block contains a list of transactions that are
hashed and encoded as a Merkle tree [103]. Adding blocks to the blockchain is based on
distributed consensus. This consensus is reached through two core techniques, Proof of
Work (PoW) and Proof of Stake (PoS). To provide a high level overview, PoW adds new
blocks to the blockchain through a process where participants solve cryptographic puzzles
to identify new blocks, referred to as mining [102,104]. On the other hand, PoS adds
new blocks through a consensus of validity. In this, each miner votes on the validity of a
new block with their votes being weighed by how many blocks they own. Unfortunately,
blockchain implementations used for consensus are not flawless. For example, under
both methods, agreement on consensus by the majority of participants takes precedence.
However, this can expose systems to vulnerabilities of trust, known as the 51% attack,
where if one party or group gains a majority stake, they can reverse transactions, allow
double spending, and halt transactions all together. Furthermore, PoW relies on solving
complex computational problems that increase in difficulty. Thus, as more problems are
solved, more energy and computing power is required. Eventually, a state occurs where
mining becomes exceedingly expensive for a minimal return on the part of the miner.

While exceedingly popular, the blockchain is not an ideal solution for providing a
trusted distributed database in all use cases [105,106]. For example, one issue is that
adjustments to the blockchain can impose a taxing latency and cause slow throughput
for transactions. Additionally, the computational power required to reach consensus
can add additional computational and infrastructure costs. Another issue is that public
blockchains often impose transactional fees to incentivize miners which can outweigh the

25

2. Fundamentals

benefits received from the transactions. As such, care must be taken to determine if the
advantages of a trusted distributed database without a 3™ party are truly needed in a
specific use case. Otherwise, other techniques such as IOTA or a database with trust
being provided by a 3™ party might be a more performant and cost-effective approach.

2.5.2. Smart Contract

In 1997, Nick Szabo published the theoretical concept for smart contracts [107]. This
theory is based on how traditional business contracts operate and applies this concept
to the digital world. At its root, a smart contract provides the means to formalize
and secure a relationship, otherwise known as a contract, between parties. However,
smart contracts take the concept of traditional paper contracts further. Specifically,
while it formalizes the rules and penalties like a traditional paper contract, a smart
contract also provides the ability to automatically execute the agreement and enforce the
obligations. Furthermore, a smart contract discourages a breach of contract by making it
prohibitively costly and keeps the details about the specifics of the contract private in so
far as necessary. This is done without requiring a trusted 3'¢ party.

The first real-world realization of a smart contract system was in the form of an
economic framework for peer-to-peer file sharing. This system, called KARMA, used
smart contracts to encourage healthy participation by making freeloading (also known as
free riding) costly. This system was implemented using a specialized Distributed Hash
Table named Pastry and recorded transactions in a secured ledger [108]. This ledger
allowed KARMA to create a currency for transactions. Thus, sending a file earned a user
“karma” which could be used to purchase other files.

While other smart contract systems have emerged, the next major evolution in imple-
mentation is arguably Ethereum. Ethereum creates a smart contract system by providing
a Turing-complete language on top of the blockchain [109]. In turn, this allows the
creation of any type of contract while providing validation and enforcement through a
cryptographically backed, decentralized, and immutable ledger. This is a major leap
forward. However, the theoretical concept for smart contracts requires that minimal
information about the contract and its execution be publicly available. Unfortunately,
traditional implementations of the blockchain transparently store the contract and any
transactional details.

To overcome this, recent blockchain models have implemented methods for proving work
without requiring complete knowledge of what was exchanged. The research powering
this ability goes back decades. For instance, the breakthrough is how to use only a string
to prove a statement without requiring prior knowledge and interaction between the
parties occurred in 1988 [110]. However, applying these theories at a generic level, while
allowing the ability to verify computations, and keeping the verification distinct from the
working being proved was finally achieved with Zero Knowledge Succinct Noninteractive
ARgument of Knowledge (zk-SNARK) [111]. Simply put, zk-SNARK provides the ability
to verify a blockchain without revealing any transactional information. The first major

26

2.6. Summary

implementation of a blockchain using zk-SNARK was used to add transactional privacy
with cryptocurrencies, Zerocash [112]. Finally, bringing these concepts to the realm of
smart contracts to provide privacy for the transaction and contract details was realized
with HAWK in 2016 and the Byzantium version of Ethereum in 2017 [113,114]. However,
zk-SNARK not only realized the original privacy goals of the smart contract theory, but
also had the added benefit of reducing the size of the blockchain. This is because only the
information needed to verify the transaction is required on the blockchain. The details
behind the contract, the goods exchanged, and the who took part in the transaction are
no longer required to exist on the blockchain.

To summarize, current implementation of smart contracts provide the ability to
transfer security artifacts between multiple distributed users in a way that preserves
trust and has a verifiable immutable ledger. However, the immutable nature of smart
contracts and how verification of blockchains work present unique drawbacks that must
be appropriately considered when implementing a smart contract system using the
blockchain. For instance, one concern is that smart contracts published on the blockchain
are immutable. While workarounds exist for changing published contracts, such as
Ethereum’s SELFDESTRUCT they are challenging to use and often require adequate
foresight. As such, care must be taken when publishing a contract to ensure security
vulnerabilities are minimized [115].

2.6. Summary

The fundamentals presented in this chapter provide the foundational pillars needed to
understand how to perform a computer security investigation and design a supporting
system. In the next chapter, we will investigate how to develop an architecture that
supports collaborative analysis across the Intelligence Cycle while overcoming the unique
challenges computer security presents.

27

Chapter 3

Developing an Architecture for Large-scale
Investigations and Analytics

“I will not follow where the path may lead, but I will go where there is no
path, and I will leave a trail.”

Muriel Strode

As discussed in Chapter 1, only 28% of companies have high confidence that they can
identify malicious activity [1]. Furthermore, it takes around 198 days for a company to
discover they have been victimized, with some taking upwards of six years [2]. Yet, it
takes less then twenty-four hours for a malicious actor to move from the first victim to the
second victim. These statistics paint a destitute situation; however, these statistic should
not be shocking. Defensive tools are primarily retrospective, are predominantly made as
one-offs, do not work together, and fail at supporting teams of analysts in performing an
end-to-end investigation. As a result, companies lack the ability to process artifacts at
the scale and fidelity required to contend with malicious activity. Unfortunately, this
culminates into a situation where analysts struggle to effectively and accurately identify
adversaries’ activities and create effective mitigation strategies.

In this chapter, we explore how to begin to shift the current defensive paradigm by
introducing an architecture that supports teams of analysts in performing large-scale
end-to-end investigations against any type of artifact, named SKALD. SKALD brings
together the concepts discussed in Chapter 2 to guide the creation of analytic systems
that can: (i) cope with the growing volume of data, (i7) be resilient to system failures,
and (i7i) be flexible enough to incorporate the latest technology trends. SKALD provides
this by identifying the core categories of analytic activities, based on the Intelligence
Cycle, and creates a “loosely coupled” architecture around these concepts. As such,
systems designed using SKALD are able to receive raw Data, extract valuable Information
from the Data, perform assessments across sets of Information to create Knowledge,
and aid analysts in collectively making a determination. Furthermore, SKALD provides
a central repository for artifacts and analytic results that is segregated according to
the DIKW model. This way, defenders can break the stove-pipping between teams and

29

3. Developing an Architecture for Large-scale Investigations and Analytics

Submissions

2,000,000
1,500,000
1,000,000 __///__—’__
500,000
0
Dec 5, 2017 Dec 7, 2017 Dec 9, 2017 Dec 11, 2017

—— Total files = Distinct files Distinct files detected by one engine or more = Distinct new files

Figure 3.1.: Submissions to VirusTotal for the Week of December 2017.

collaborate on a single system. Thus, systems design based on SKALD reduces the need
for each team to reprocess artifacts and also allows each team member to focus on their
core area of expertise. In chapter 5, we will discuss how we built a working prototype
that is based on the SKALD architecture.

3.1. Introduction

Malicious actors are no longer composed of curious individuals and misguided youths.
These are dedicated teams that command highly sophisticated tools, infrastructures,
and possess the resources required to stay ahead of the defender [12,13]. Unfortunately,
malware analysis systems are struggling to meet this challenge and present a clear picture
of criminal activity [14-16]. To put the problem in perspective, in 2012, McAfee received
over 100 thousand samples per day [17], yet on one day in 2015, VirusTotal received
over a million unique samples [18]. Unfortunately, as shown in Figure 3.1, over a million
samples a day is the new norm and the rate is only growing. Case in point, on December
7 of 2017, VirusTotal received over 1.6 million samples. Disproportionately, traditional
defensive methods, such as AV, are lagging behind. As shown in Figure 3.1, only 29% of
those samples could be identified by any AV vendor. We posit that a core reason behind
this state of affairs is because the mindset of the defender has not evolved beyond the
time when malicious actors were simple and a lone analyst was enough to conduct an
investigation. As such, defensive tools have been predominantly made as one-offs, do
not work together, and fail at supporting analysis across the Intelligence Cycle. Hence,
analysis is limited in accurately identifying the full scale of adversaries’ activities and
developing effective mitigation strategies. A solution to this problem is twofold: (i) how
can defenders analyze artifacts and retain a central repository at scale and (i) how can
security researchers collaborate in a timely manner without exposing sensitive data and
retain essential context.

The volume of malware being released has strained the ability of security teams to
analyze the volume of current threats and present a clear picture of criminal activity [14—

30

3.1. Introduction

16]. With respect to analytic systems, a million samples a day is impressive but it
becomes overwhelming when it is considered that 97% of those samples were unique and
74% have never been seen before by VirusTotal. As such, each unique sample is required
to be processed and an investigation into the threat performed. However, our defensive
systems cannot keep up. For example, it takes an average of 54 days for a specialized
company to perform an investigation and deploy a mitigation technique [25]. This is
emphasized in the low detection rate that VirusTotal reports for security products when
faced with new samples. One of the main culprits behind why defenders cannot keep up is
because defensive tools are not designed to be used together in an automated fashion and
enable a collaborative environment [14-16]. As stated by MITRE, this causes a situation
where analysts often regenerate information and duplicate the work of their peers—a
huge waste of time and resources [14]. With respect to collaboration with industry
peers, the second problem is that it is difficult to share and work together with security
partners in a manner that is timely, retains context, and protects the collection methods.
Although, rapid information sharing is an essential element of effective cybersecurity,
and will lessen the volume companies need to process, companies are weary of sharing
data for fear of tarnishing their business reputation, loosing market share, impairing
profits, privacy violations, and revealing internal sources and methods [30,116,117]. As
a result, it is now common practice to share only with trusted groups large sets of data
with minimal context or select post-processed Wisdom.

In an attempt to alleviate the burden of analysis, a number of solutions have been
developed to help triage Data and create a central repository of the collected Informa-
tion [14,19,20]. Unfortunately, many of these tools struggle to scale and provide the
fault-tolerance required to support the sheer volume of data needed to be processed in
part due to the linear, monolithic, and tightly coupled processing pipeline. For instance,
analysis tools, like CRITs [14] and MANTIS [20], are not separated from the core Djan-
go/Apache system and are executed on the same physical host, while VIPER [19] has
been developed for a single user with the intention of being deployed on a workstation.
Consequently, when these systems become overloaded, a bottleneck occurs that prevents
the analytic tools from executing properly. To make things even worse, when one of the
aforementioned tools fails, it is difficult to perform a graceful exit or cleanup, and the
system becomes overwhelmed with a load of only a few thousand malware samples. This
results in a situation in which analytic tasks cannot be performed quickly and at scale
using current technologies and architectures. Furthermore, these tools do not incorporate
what is prescribed by the Intelligence Cycle. Specifically, they are only designed to
facilitate the extraction of Information from Data. These systems ignore the other
critical aspects of a security investigation, namely how to analyze and make sense of all
the Information the tools generate. This hinders the ability for teams to work together,
view the problems from a holistic perspective, and perform complex investigations.

To counter the problem of lack of collaboration, the security community has developed
methods for sharing based on extracted features called IOC. Unfortunately, IOCs only
tackle the problem of how to capture features in a format that is understandable among

31

3. Developing an Architecture for Large-scale Investigations and Analytics

peers. They do not address the larger issues of how to share analytic results in a timely
manner, retain the context around the features, and protect sensitive information often
attached to raw data. With respect to how to share features in a timely manner and
retain the context around the features, IOCs fall short because the creation of IOCs
takes time and valuable resources, and the methods used to generate the features are not
always uniform and trusted [118]. Hence, the receiving parties spend additional time
and resources to reprocess Data to generate their own artifacts before they can perform
analysis. Regarding the protection of sensitive information attached to raw Data, IOCs
are often sanitized and only released for sharing after the results are validated [29]. Sadly,
this causes a bias in results as performing analysis on limited sets is problematic because
it causes analysts to draw conclusions and make correlations that are inaccurate and do
not fully encompass the problem [22-24].

In this chapter we present SKALD, a novel architecture to create systems that can
perform analysis across the Intelligence Cycle at scale and provide a robust platform for
analytic collaboration and the sharing of security artifacts. In essence, SKALD provides
the required infrastructure to perform analysis that can: (i) cope with the growing
volume of artifacts, (i7) be resilient to system failures, and (iii) be flexible enough to
incorporate the latest technology trends. In addition, SKALD takes a new approach in
terms of how artifacts are shared by providing a platform that grants analysts’ tools
access to the entire sets of Information without requiring the analysts, and their tools,
to have direct access to the raw malware samples or other primary analytic objects,
such as a domain name or an [P address. This enables correlations, clustering, and
data discovery over the entire set of collected Information, while still protecting the
raw object, the sources, and the methods used to obtain the Data. To this end, we
develop an open-source prototype, discussed in detail in chapter 5, and conduct extensive
experiments that demonstrate that our architecture has a near linear growth rate and is
able to eliminate critical failures when extracting Information across millions of PE32
samples. Furthermore, we show major performance gains with the ability to conduct
Information extraction at a rate of 3.1 milliseconds per PE32 sample, compared to 2.6
seconds when using existing systems. Finally, we discuss how our methodology provides a
platform for analysis on a collective set of artifacts, which enables more accurate analysis
of malicious activity and real-time discovery while minimizing the need for redundant
processing and thereby reducing analysis time and infrastructure cost.

In summary, we make the following main contributions:

e We develop a framework for end-to-end computer security analytics that is scalable,
flexible, and resilient, while it demonstrates near linear growth with zero critical
errors over millions of samples.

e We display major speed improvements over traditional techniques using only 3.1
ms per sample when utilizing 100 workers.

32

3.2. System Overview

e We exhibit the ability of our approach to allow partner organizations to submit
new raw analysis objects in real-time leveraging the infrastructure from multiple
organizations on different continents.

e We show SKALD’s capacity to share resultant extracted features and analysis with
geographically and organizationally diverse partners who are not sufficiently trusted
to have unrestricted access to the raw analysis objects.

3.2. System Overview

SKALD is an architecture for developing analytic platforms for teams working to thwart
cyber crime. At its core, SKALD dictates the required structure to perform the steps of
the Intelligence Cycle. It scales these actions horizontally, at a near linear rate, across
millions of objects, while remaining resilient to failures and providing the necessary
flexibility to change analytic methods and core components. SKALD additionally provides
the necessary infrastructure to perform advanced analytics to turn Information into
Knowledge, while empowering analysts to retrieve and share information using their
preferred tools and scripting interface. Furthermore, SKALD’s design allows the sharing
of artifacts with partners without requiring the release of Data. This is because SKALD
segregates analysis according to the DIKW model and SKALD’s Access Control Layer
(ACL) and intelligent core components allow analytics to be executed across a combination
of central instance and in-house replicas. Ergo, artifacts can be easily shared, enabling
analysis over a more complete and collective set of data, which overcomes biases caused
by informational gaps.

SKALD’s achievements are primarily due to the approach of logically abstracting the
system into “loosely coupled” themes and core components, as depicted in Figure 3.2;
allowing the creation of systems that are scalable, flexible, and resilient. This level of
abstraction between system elements is critically missing in widely-used systems such as
CRITs, VIPER, and MANTIS. This has lead these systems to become monolithic and
“tightly coupled” in design; creating a major hindrance in allowing them to evolve and
scale by leveraging distributed computing techniques. However, SKALD — apart from the
scalability it offers — enables systems to evolve so they can meet the challenges posed
by future cyber criminals by allowing components to be easily exchanged, added, or
subtracted. Thus, if a newer, better, or simply different method is discovered, this can be
easily incorporated alongside existing methods or simply replace the old ones. This also
allows system components to be outsourced to a company, institution, or organization
specializing in that work. Finally, this design allows SKALD to orchestrate tasking, which
creates an efficient system by substantially reducing the infrastructure and network
overhead for transmitting data to and from multiple Services.

The structure of SKALD is based on a microservices design and is composed of three
main components: Transport, Planners, and Services. As Figure 3.2 illustrates, Transport

33

3. Developing an Architecture for Large-scale Investigations and Analytics

Machine

Ui Learning

Statistic

Storage Interrogation

‘ Transport ‘

Investigation

Dynamic Static

Open Source

. Transport — Moves data between . Planner - Orchestrates execution of ~ [l}] Service — Executes work
planners taskings

Figure 3.2.: Organization of SKALD’s components and core themes.

is the main orchestrator and moves data and tasking to the Planners. Then, Planners
allocate infrastructure, enforce security, and oversee the execution of Services. Services in
turn perform the requested work and provide the resultant response along with pertinent
meta information, such as error messages, back to Planners. This is further described in
the following subsections.

3.2.1. Planner

The Planner’s primary purpose is to serve as an intelligent orchestrator for Services.
At its core, it manages tasking, allocates resources, enforces the ACL, and provides an
abstraction between the Services and other aspects of SKALD. The Planner also informs
the Transport what Services are available for tasking and provides status information
back to the system core. As previously mentioned, Planners are “loosely coupled” with
other parts of SKALD. In this way, they provide flexibility by ensuring that changes to
the core aspects of a Planner will not affect other parts of the system. This helps to
improve resiliency by allowing the Transport to delegate tasking to redundant Planners
during system failures [97,119]. Furthermore, this allows the system to horizontally scale
by permitting the Transport component to instantiate additional Planners under heavy
load while also allowing the Planners to schedule the tasking of Services and allocate
additional resources on internal servers and cloud infrastructure.

In this section we will describe some of the core aspects of the Planner and discuss
the five Planner themes in SKALD.

34

3.2. System Overview

3.2.1.1. Service Orchestration and Management

The Planner’s primary function is to serve as an orchestration engine for Services. How-
ever, this poses a challenge under the microservices paradigm when analyzing computer
security artifacts across a distributed architecture. This is because the movement of
large objects, such as a file based Data artifact, across the network can impose significant
network transmission costs. Unfortunately, this is a common occurrence in computer
security because of the nature of the artifacts being analyzed. For instance, a Data
artifacts can be a few megabytes in the case of a PE32 file and extracted Information can
be in the range of 100s of megs when capturing the Application Programming Interface
(API) calls executed during dynamic analysis. To make matters worse, the Services
required for computer security investigations often have dependencies that can conflict
with parts of the system or are difficult to configure.

SKALD prescribes two approaches for tackling the above challenge. The first approach
calls for the isolation of Services through the use of configuration management tools and
containers for large Services and leveraging the Actor Model or CSP model for smaller
Services. The second approach is to enable the Planner to smartly package together to
optimize the execution of Services. In effect, this allows a SKALD system to ship the
analytic execution to the artifact instead of shipping the artifact to be analyzed.

This provides three core benefits with respect to speed, flexibility, and resiliency [120].
Regarding speed, the packaging of multiple isolated Services under one Planner reduces
the volume and frequency of large artifacts passing through the network. This in turn is
a major advantage with distributed and cloud-based systems because it reduces network
latency. Furthermore, packaging Services increases the flexibility of SKALD-based systems
by allowing the rapid deployment of new Services without concern for complex dependency
management while ensuring discrete versions of Services and configurations. Finally,
containers easily allow QoS operations to automatically re-instantiate critically failed
Seruvices.

3.2.1.2. Communication with Services

A “loosely coupled” design and flexibility is a critical core tenant to the design of SKALD.
This poses a challenge of how to create a generic design for communicating with a
Service while also allowing the flexibility for how that Service operates. To overcome
this challenge, SKALD prescribes a two pronged approach.

The first approach focuses on how a Planner communicates a task and the results with
an independent Service. For more complex tasks a Planner communicates with Services
using Hypertext Transfer Protocol (HTTP) over the Transport Layer Security (TLS)
protocol. wever, SKALD does not dictate the format of messages transmitted over HT'TP
with TLS. That said, our prototype, discussed in chapter 5 provides developers with
interfaces for typed JavaScript Object Notation (JSON) message parsing for stronger
message safety and a loosely-typed Map data structure when message safety is not a

35

3. Developing an Architecture for Large-scale Investigations and Analytics

concern. We use this method for three main reasons. First, HT'TP is widely understood
and is capable of transferring a variety of data types. Second, the wide adoption of
the HTTP protocol allows analysts to be able to add new analytics in the language
they feel most comfortable this is because HTTP is a widely supported protocol and
native to most major languages. Third, HT'TP communication allows Services to be
deployed either locally or across network partitions. For lighter tasks, SKALD leverages
the communication methods inherent to the CSP and the Actor Model.

The second approach in SKALD provides two methods for the Planner to communicate
objects to Services. For local analytics, the object is delivered via a read-only RAM
disk, with fail-over to local disks based on size. This creates a fast and easily-available
data-store for analytic file reads across multiple local Services. For external Services,
the Planner will deliver the object via HI'TP. When interacting with Services that do
not require a local file, the Planner will attach the pertinent meta-data to the tasking
message. We select this method for transmitting objects as many existing analytics tools
require a local file to be read. As such, this allows existing tools to maintain relevance
through leveraging SKALD’s ability to distribute and scale workloads. Furthermore, this
improves performance since each Service does not require a costly network transmission
to access an object.

3.2.1.3. Access Control Layer Enforcement

As previously discussed, computer security investigations must support collaborative
analysis. However, most current systems do not support a multi-tenancy environment
or enable a tasking to restrict how a Service executes. This creates an all-or-nothing
approach when granting access to an analytic system and exposes a system to potential
malicious abuse or data leakage by not allowing the limiting the capabilities of a Service.

In SKALD, this issue is overcome by having the Planner be is the primary element
responsible for managing the ACL, further described in section 3.3.2. As such, the Planner
is responsible for ensuring that tasking is authorized. The Planner also limits potential
exposure caused by analyzing an object by enforcing Service execution restrictions
through the use of ACL meta-tags. This is done by allowing tasking to state that the
execution should only run, for example, on internal hardware, without Internet access,
and restrict DNS lookups.

3.2.2. Planner Themes

SKALD breaks down Planners into five discrete themes as depicted in Figure 3.2. This
segregation is done to prevent the systems from becoming monolithic, enforce the
separation of analytic tasks in line with the Intelligence Cycle, and ease the isolation
between types of artifacts according to the DIKW model. For instance, the GATEWAY
Planner receives artifacts and prepares them for processing which is akin to the Intelligence
Cycle’s Collection step. Similar to the Process and Exploitation step of the Intelligence

36

3.2. System Overview

Cycle, INVESTIGATION turns Data into useful forms through the extraction of Information.
Moreover, INTERROGATION acts in a similar vein to the Production step by executing
analysis across sets of Information to generate Knowledge and empowering analysts to
perform assessments of Knowledge to create Wisdom. In total, the Planner themes are
one of the following: GATEWAY, INVESTIGATION, STORAGE, INTERROGATION, and
PRESENTATION. In this section, we will explore these themes in detail and provide details
on their functionality.

3.2.2.1. Gateway

The GATEWAY’s primary purpose is to receive taskings and push them to Transport.
When tasking is received, the GATEWAY first performs an ACL check to guarantee that
the tasking is authorized. If authorized, GATEWAY then ensures taskings are valid,
scheme-compliant, and that the pipeline can handle the requested work. The GATEWAY
can also automatically assign tasking based on an object type. Together this ensures that
pipeline resources are not wasted and provides the first level of system security. How we
implemented a GATEWAY is further discussed in chapter 5.3.1.

3.2.2.2. Investigation

This theme is responsible for extracting Information from Data. When tasking is received,
the Planner schedules the execution of its Services which are capable of performing
static analysis and dynamic analysis as well as gather data from third parties. During
scheduling it optimizes the execution of Services by packaging them together and directly
providing them the Data needed for analysis. As taskings are executed, it performs
the two-fold QoS strategy by monitoring the health of Services and validating received
results. Additionally, it enforces the ACL and ensures Services adhere to the meta-tags
configured restrictions.

Section 5.3.2 discusses how we implemented the above requirements. However, to help
illustrate the high level goals of the INVESTIGATION Planner, the following describes an
ideal execution flow. The Transport layer T2 (see Section 3.2.4) submits an object for
INVESTIGATION along with a set of taskings and ACL tags. The Planner first identifies
which Services are available for tasking and configures them according to the tasking
request and ACL meta-tags. Next, it either packages an object together with a set of
Services for execution on one node, or sends the object to a preexisting node dedicated
to a Service. The Planner will then monitor the health of the Service and perform any
remediation action as needed. For instance, if a Service is unable to gather Information
from a third-party source due to a query cap, the Planner will reschedule the Service’s
execution once the cap has expired. When the results of a Service are received, the
Planner passes them to the Transport layer which then commands the STORAGE Planner
to archive them. Additionally, if a Service returns new objects, the Planner will submit
the object back to the Transport layer with the pertinent ACL tags for storage and

37

3. Developing an Architecture for Large-scale Investigations and Analytics

tasking to the GATEWAY.

3.2.2.3. Storage

This Planner, which implementation is described in section 5.3.3, controls how artifacts
are stored and retrieved in SKALD. At its core, it is an abstraction layer for database
Services and maintains a central repository of artifacts. The STORAGE Planner enforces
a standard storage scheme, segregates artifacts according to the DIKW model, and passes
the requests to the appropriate database elements, identified by Universally Unique
[Dentifier v4 (UUIDv4). This enables SKALD to be storage system agnostic and utilize
a single or hybrid data storage scheme for resultant artifacts and objects of analysis.
The benefit of this approach is that artifacts can be stored in databases optimized for
the data type while also easing the inclusion of legacy archives. For example, objects
can use Amazon’s Simple Storage Service (S3) while the Information can be stored in
a system optimized for text such as Cassandra [121]. This approach additionally has a
major benefit of allowing industry partners to perform in-house replication of selected
sets of Data, Information, and Knowledge while enforcing restrictions on more restricted
artifacts. For instance, in our prototype, raw objects are stored in restricted datasets
hosted by the originator while the extracted Information is replicated across all partners.
When access to restricted artifacts is required, the Planner provides contact information
to the requester and once approved the Planner will automatically configure access.
The design also enabled the STORAGE Planner to perform storage-based optimiza-
tions, for example, performing deduplication, compression, and deconflict updates and
deletions of temporally sensitive datasets. Finally, the Planners overarching view of the
system allows it to automatically perform QoS-based operations such as automatically
instantiating additional storage shards and coordinating multi-datacenter replication.

3.2.2.4. Interrogation

The INTERROGATION Planner focuses on how to turn the sets of Information into
Knowledge and Wisdom in two distinct forms. Aside these forms, the Planner is
responsible for scaling the number of Services to balance system load, for instance,
by instantiating additional Apache Spark workers when required. In the first form,
INTERROGATION Services process system artifacts for retrieval through mechanisms such
as an API, plugin, or website. This deviates from previous systems by separating the
generation of artifacts from the rendering of results. Thus, displaying Information is not
bound to the extraction or analytic method and can change based on what a user desires.
For example, a Service can display the VirusTotal score along side Yara rule matches and
the results from a clustering algorithm. In the second form, an INTERROGATION Service
orchestrates the execution of analytics to turn sets of Information into Knowledge, for
example, by clustering objects together with the use of machine learning, identifying
relationships through link analysis, and revealing similar malware through PE32 header

38

3.2. System Overview

Transport Planner

Figure 3.3.: Interaction between the core components of SKALD

analysis. To do this, the Planner distributes the work load across available Services to
complete the task at hand. This load balancing allows the integration with mini-batch
training techniques to achieve large-scale model training, model generation, and serve as
a distribution layer for pre-trained models. Details for how we have implemented this
planner are presented in section 5.3.4.

3.2.2.5. Presentation

This Planner provides a standard mechanism for externally interacting with stored
artifacts that SKALD generates. When requests are received, it first ensures that the
request is authenticated and scheme-compliant. As this Planner theme is the most likely
to vary based on individual use cases, we opt to keep its definition as minimal as possible.
That being said, the PRESENTATION Planner can be imagined as a microservices fog
surrounding the datastores queried by the INTERROGATION Planner. How we have
implemented this is detailed in section 5.3.5.

3.2.3. Service

Services perform the work being orchestrated by a Planner. The key concepts of a
SKALD Service are that they are “loosely coupled” and only interact with their parent
Planner, as depicted in Figure 3.3. As discussed by Papazoglou et al. [97] and prescribed
by the microservices design pattern, this highly decentralized model allows Services to
be platform-independent and scale as needed. Additionally, this improves fault-tolerance
as no Service is reliant on the successful execution of another Service. Furthermore, the
atomic nature of Services provides a great level of flexibility by allowing them to be
exchanged as new technology emerges and requirements change.

In essence, a Service is attached to a Planner and performs work associated with
that Planner’s theme. Examples of various Services for each Planner are discussed in

39

3. Developing an Architecture for Large-scale Investigations and Analytics

Investigation Storage

Interrogation Presentation
. Transport — Moves data between . Planner - Orchestrates execution of
planners taskings

Figure 3.4.: Interaction between the Transports and Planners.

section 5.3. However, for a high-level illustration under the INVESTIGATION Planner,
Services can gather Information from VirusTotal, generate a PEHash [67], and perform
dynamic analysis with Cuckoo Sandbox [58] and Drakvuf [60]. An INTERROGATION
Service, on the other hand, will perform an action across a set or subset of Information
through statistical analysis, machine learning, or by leveraging other data mining and
exploration techniques and provide a mechanism to display the results [34].

3.2.4. Transport

Transport’s main task is to move data among the Planners. In addition, the Transport
layer monitors the health of the Planners and performs remediation actions to support
QoS. This enables a robust level of resilience by ensuring that requested work is always
stored in a queue and that results and taskings are never lost. Additionally, the Transport
layer improves SKALD’s ability to scale by reducing adverse effects of system overloads
by allowing the distribution of work across multiple Planners. This is a huge benefit over
current and openly available computer security systems because they are only designed
to scale vertically.

The Transport consists of four main parts (T1, T2, T3, and T4) as Figure 3.4 illustrates.
This permits the selection of optimized technology to handle the interaction among
Planners. In the following, we introduce these parts and a description of how we
implemented these parts of our working prototype can be found in section 5.4.

3.2.4.1. Transport - T1

T1 is focused on moving data to the INVESTIGATION Planner for analysis. To do this,
T1 is required to perform three primary actions. The first action is to receive tasking
from the GATEWAY Planner and schedule their transmission to the INVESTIGATION
Planner. The second is to receive tasking from T2 and submit them to the GATEWAY

40

3.3. System Wide Aspects

Planner for validation. The final action is to monitor the health of the INTERROGATION
Planner and perform QoS management. When implementing T1, we recommend the
utilization of a distributed message broker such as Apache Kafka or RabbitMQ.

3.2.4.2. Transport - T2

T2 is focused on receiving objects and results from the INVESTIGATION and INTERRO-
GATION Planners. To do this, T2 has two primary actions. The first action is to receive
artifacts from the INVESTIGATION and INTERROGATION Planners and schedule their
submission to the T3 for STORAGE. This is separated from T3 to allow a message queue
service to be implemented to help throttle the storage of data during peak loads as
storage operations can be costly but are often not time-critical. The secondary action is
to receive objects from the INVESTIGATION and INTERROGATION Planners and pass
them to T1 for further analysis. Like T'1, we recommend the use of a distributed message

broker.

3.2.4.3. Transport - T3

T3 is focused on submitting and retrieving data from the STORAGE Planner. As such, T3
is responsible for three primary actions: (i) providing Data from the STORAGE Planner
directly to the INVESTIGATION and INTERROGATION Planner, (ii) receive results from
T2 and passing the artifacts on to the STORAGE Planner, and (7i7) managing the QoS
of the STORAGE Planner. We recommend the first two actions to be implemented with
no message queues between the STORAGE Planner and the databases. This permits
database Services to rely on their own optimization frameworks during the retrieval of
artifacts. This is because databases are often heavily optimized for retrieval of data and
implement their own form of message queues.

3.2.4.4. Transport - T4

T4 handles the exchange of Knowledge and Wisdom between the INTERROGATION and
PRESENTATION Planners. The first action is to provide a conduit for communication
between the PRESENTATION and INTERROGATION Planners. The second is to monitor
the health of the INVESTIGATION Planner and perform QoS management. As the
INTERROGATION Planner will typically provide Knowledge and Wisdom through HT'TP
calls, we recommend implementing T4 as HT'TP load balancers.

3.3. System Wide Aspects

In this section, we present system wide aspects of SKALD. We first introduce the QoS
strategy we follow and then discuss the ACL requirements.

41

3. Developing an Architecture for Large-scale Investigations and Analytics

3.3.1. Quality of Service

Malware authors are incentivized to thwart analysis and as a result the failure of Services
should be expected. To counter this, SKALD automatically recovers from issues arising
from the execution of Services by leveraging a robust QoS pattern for resilience during
analysis. It does this through a two-fold QoS philosophy of monitoring the actual Service
and the resultant response from a Service. Thus, SKALD accounts for the scenario of
when the returned work has failed or even if the actual Service has failed and accounts
for them differently.

To implement the QoS strategy, the Planner monitors the health of the Service using
container status messages and HTTP response codes. The Planner then evaluates the
availability, response time, and throughput of each attached Service. If the evaluation
responds by stating the Service is operating within normal bounds, the Planner will
then send the results to the second stage to evaluate the returned work. This allows
Service authors to specify deep level checks and perform automated remediation actions
that are Service specific. If a failure occurs at either step, the Planner will determine if
the Service has entered a failed state and perform remediation actions, such as restarting
the Service container. If the Service appears to be healthy, the Planner will re-queue
the work that has demonstrated failure while saving otherwise successful Service results.

The unique aspect of this strategy is that SKALD views the tasking of each Service as
single elements and processes them individually. When the Service or returned work fails,
SKALD will only discard failed work as opposed to abandoning combined tasking and
queued work. This is a key difference between SKALD and previously proposed systems.
For example, the methodology used by systems which rely on the Hadoop Distributed
File System (HDFS) and MapReduce model for their data and task distribution, such as
BinaryPig [122] and BitShred [123], will cease processing or discard successful results
when percentages of work fail. However in SKALD, even if there is a high number of
failed jobs, any successful result will be saved and failed work will be reattempted.
Furthermore, in the event of pathological failure, SKALD will store the tasking in a
separate queue for human intervention. Our evaluation showed this new approach
provides significant performance benefits and was outright required when executing large,
historical, analytic tasks across computer security Data as the Data is often designed to
confound investigations and cause failures.

SKALD’s QoS system also accounts for congestion during times of peak load as well
as Service shutdown and instantiation. To do this, the Planner enforces throttling of
Services using a pull-based pattern with an “at least once” message delivery scheme [124].
In this scheme, the Planner is aware of the system’s current message load and pulls
a configurable number of messages from the Transport layer. Each requested message
is then tracked within the Planner as a discrete entity. Upon completion of work, the
Planner notifies the Transport of the work status, pushes the results to the queue, and
pulls additional tasking. This allows SKALD to prevent the overburdening of Planners
while also ensuring that no work is lost due to component failure. This approach also

42

3.4. Evaluation

reduces the chance that a failed Service state will replicate to other parts of the system
and cause a work stoppage due to being overburdened.

3.3.2. Access Control Layer

The nature of handling unique and sensitive artifacts within SKALD requires the incor-
poration of a complex ACL system. Unfortunately, the standard ACL model used in
computer security only allows for isolation based on the source of the raw Data or a user’s
role. However, the problem is that this does not address access to sensitive capabilities,
differentiate Services from users, or separate raw Data from associated artifacts such
as Information, Knowledge, and Wisdom. This creates an “all or nothing” approach
to access. Therefore, the systems cannot be designed to easily allow analysts or even a
Service to derive Knowledge across a collective set of Information without granting the
analysts access to all sources of artifacts and any sensitive capabilities.

To overcome this, SKALD creates a new ACL model by granting access based on
User, Capability, Source, and Meta-tags. The User defines the users and components
of the system. While Capabilities map to Services and their derived Information and
Knowledge, Source maps the origin of the raw Data or artifact. Finally, Meta-tags provide
Planners with Service execution restrictions. For example, these tags can specify that
dynamic analysis can only execute without Internet access. While implemented in our
prototype, the full definition of the ACL is left to future work.

3.4. Evaluation

To evaluate SKALD, we created an open-source prototype and performed a series of
experiments. This prototype is described in detail in chapter 5. However, in this chapter
we focus on the ability of the prototype to extract Information from Data. As such,
we use first generation versions of the INVESTIGATION Planner and STORAGE Planner.
This was done to allow the evaluation to compare SKALD with existing systems.

We acknowledge that SKALD focuses on the structure of a system and does not
prescribe implementation methods. While this can create varying performance metrics,
we feel it is prudent to present a baseline implementation to demonstrate the significant
improvements afforded by the SKALD architecture.

Throughout this section, we use the prototype to evaluate the architecture’s (i) scala-
bility, (i7) resiliency, and (iii) flexibility.

3.4.1. Experimental Environment

We leveraged three hardware profiles for our evaluation. The first profile was used
as a control and deployed CRITs using their recommended setup with the following
nodes: (i) Ingest VM: 2 cores 4GB RAM, (ii) MongoDB VM: 10 cores 32GB RAM,

43

3. Developing an Architecture for Large-scale Investigations and Analytics

and (7ii) CRITs VM: 6 cores 32GB RAM. CRITs was selected for our control as it is
an industry standard for performing multi-user analytics. Additionally, we made the
assumption that CRITs performs similarly to other systems such as MANTIS [20], as
the architectures are remarkably similar and Django-based. The second profile deploys
our prototype using a similar hardware profile as the control. In this profile, we deployed
the prototype in a cloud-based environment using the following nodes: (i) Workers!:
three AWS EC2 M3 large instances, (i7) Transport: One AWS M3 xlarge instance, and
(7i1) Storage: One AWS M3 medium instance. Finally, the third profile was used to
evaluate the horizontal scalability of the SKALD architecture. In this profile, we used the
following nodes: (i) Workers: 100 AWS EC2 M3 large instances, (i7) Transport: One
AWS M3 xlarge instance, and (iii) Storage: One AWS M3 medium instance.

In all experiments, we used a diverse set of malicious PE32 samples from VirusShare,
Maltrieve, Shadowserver, and private donations. This set of binaries encompasses
traditional criminal malware, highly advanced state-sponsored malware, and programs
which are not confirmed as malicious but are suspicious.

3.4.2. Scalability

To provide a meaningful evaluation of SKALD’s scalability, we studied the ability to
ingest PE32 samples and then execute a series of three INVESTIGATION Services. We
selected PE32s as this provides a direct mapping to CRITs and our prototype performs
at a near identical level when processing domain names, PCAPs, IP Addresses, and other
Data artifacts. To this end, we did not perform any experiments related to the storage
of Service results because these experiments would vary depending on the data-store
used. Furthermore, we omitted experiments on the INTERROGATION Services as this
architectural model is relatively similar to INVESTIGATION and it is difficult to perform
clear correlations among other existing systems.

During the first part of our experiments, we used four sets of Data: 1000, 5000, 10,000,
and 50,000 randomly selected samples. As SKALD is intended to scale to support large
datasets, the second part of the experiment ran SKALD with a set of one million samples.
In both cases, we pushed the samples into each system through a linear sequence of
RESTHful calls with no delays between each call. We did this to evaluate the ability of
the systems to queue work and simulate batch queues that we regularly encounter during
investigation work. Additionally, to ensure that the evaluation was as fair as possible,
we leveraged existing CRITs Services. To do this, we added a RESTful wrapper around
original CRITs Services to make them compatible with our prototype. These Services
gather Information from PEInfo, check the file against the VirusTotal private API, and
run each sample against 12,431 Yara signatures provided by Yara Exchange [125].

Focusing on up to 50,000 samples, our first finding was that our prototype of SKALD
was able to outperforms existing systems, as shown in the first two rows of Table 3.1.

IWe describe worker to be the combination of a Planner and its relevant Services

44

3.4. Evaluation

Framework 1K 5K 10K 50K
CRITs 2.8000 3.1774 3.3781 1.1929
3 Workers 0.0502 0.0558 0.0616 0.1303

100 Workers 0.0032 0.0032 0.0032 0.0025

Table 3.1.: Average time to process samples in seconds.

This in an interesting finding because even with similar hardware, 3 workers, the design
was able to process each sample at an average rate of 130.3 ms. In terms of speed, this
is a significant improvement over CRITS’ average rate of 1.1929 seconds per sample.
To put this into context, it took about 28 hours and 37 minutes for CRITs and about
1 hour and 48 minutes for the 3 worker SKALD prototype to process 50,000 samples.
Furthermore, these results highlight one of the critical issues plaguing existing systems.
The perceived rate increase with CRITs at 50,000 samples was caused by an overload of
the CRITSs system. When the overload occurred, the operating system began to randomly
kill processes before completion, producing a false appearance of speed improvements.
However, the tasking was not completed in CRITs and an inspection of the resulting
Information showed incomplete and corrupted entries. As such, the real speed for CRITs
to process 50,000 samples is closer to 44 hours and 8 minutes. The SKALD prototype,
with a 3 worker and 100 worker deployment, on the other hand was able to scale to
50,000 samples and performed all the work tasked in that 1 hour and 48 minutes.

Our second finding was that the SKALD prototype was able to scale to 100 workers with
minimal effort. To scale, we initiating new workers and the Transport layer automatically
identified each worker and began to issue tasking. No further action was required on
behalf of the operator. Our second finding was that the 100 worker SKALD prototype
was able to process 50,000 sample at an approximate rate of 2.5 ms per sample. As the
processing rate was similar to the results found when processing the smaller sets, we are
confident that the system was able to scale to a large number of workers.

The above experiment established SKALD’s performance in processing was superior to
existing systems with a similar hardware profile and that SKALD was able to horizontally
scale its infrastructure to 100 workers. To push the SKALD prototype further, we then
studied the prototype’s ability to scale to meet the demand of extremely large sample
sets. In this experiment we used 100 workers to process the same type of work as above
but with a set of 1 million samples. Unfortunately, a direct comparison with CRITs was
not possible because, try as we might?, the CRITSs system could not maintain stability
beyond 50,000 samples. Accordingly, we did not use the 3 worker configuration because
a direct comparison of CRITs was not possible.

We found that the SKALD prototype was able to scale to meet this extremely large

2We submitted numerous patches that improved stability to the CRITs’ upstream repository.

45

3. Developing an Architecture for Large-scale Investigations and Analytics

sample size. With 1 million samples, the prototype performed at an approximate rate
of 3.4 ms per sample using 100 workers. This rate was similar to what we found in the
previous experiment when processing smaller sample sets and this gives us confidence
that the system was able to handle the large work load. To perform a comparison of
sorts with CRITs and put this number into perspective, the SKALD 100 worker prototype
was able to process 1 million samples in about 56 minutes while CRITs, at an average
processing rate of 3.174 seconds per sample ?, would have taken approximately 36.7 days.

In both experiments we noticed that the processing rates increased and decreased
depending on the size of taskings. For instance, at 50,000 samples the three worker
showed significant slowdown while the 100 worker showed a speed increase. Furthermore,
the speed increase reverted back to the norm at 1 million samples. This increasing and
decreasing rate is an interesting finding but one that could be explained through the
normalization of the implemented scheduler in the Transport layer. Through investigation
we were able to see that the large tasking size required disk IO which caused a slowdown
over time that affected both configurations equally. However, the implementation of the
Transport layer’s caching mechanism had a delay before it activated. As a result, the
faster pull rate with 100 workers only allowed the scheduler to begin to cache the next
task for processing at around 10,000 samples where the slower pull rate with 3 workers
allowed the caching mechanism to active when less samples were processed. This was
shown with the near linear rate of 3.2ms per sample up to about 10,000 samples with
100 workers and a steady rate of improvement leading up to 2.5ms per sample at 50,000
samples. The rate then reverted to the norm due to the requirement of disk IO which
was caused by the large tasking size. As such, the variations in speed were caused by the
Transport layer’s implementation having a caching delay and requiring disk reads because
of the large tasking size. This, however, was a constant rate and we are confident that
SKALD performs at a similar rate irrespective of the volume of samples.

3.4.3. Resilience

We executed two experiments to study the resiliency of SKALD for handling troublesome
work and continuing processing even with failed components. For the first experiment, we
wrote 26KB worth of random bytes across 20% of the samples. This was done by creating
a script that used /dev/random to randomly selected 20% of the bytes of a sample and
rewrote these bytes with the values of /dev/random. This was done to generate Data
objects that would potentially confuse and fail analytic tasks. As such, this allowed us to
evaluate SKALD’s ability to cope with failed, long-running, and troublesome work that is
typically found during security investigations because of the desire of malicious actors to
thwart defensive investigations. For the second experiment, we studied how SKALD-based
systems perform while core components of the infrastructure are unavailable or entered

3This rate was selected because it was the last speed at which CRITs was able to process samples with
a loaded and without critical errors.

46

3.4. Evaluation

Framework 1K 5K 10K 50K

CRITs 0 0 151 17,012
3 Workers 0 0 0 0
100 Workers 0 0 0 0

Table 3.2.: Critical failures in sample processing.

a failed state. We did this by running a script that randomly killed and restarted
the machines, in isolation and in unison, hosting the Planner, Transport, and Service
components of the system. During both experiments, we reran the newly generated
sample sets through each hardware profile using the same method as in the scalability
experiments.

The results of the experiment showed that SKALD’s design and QoS paradigm greatly
outperformed current systems. In the first experiment, as Table 3.2 shows, our proto-
type encountered zero critical errors, defined as a Service failing to complete tasking.
Additionally, When the Services did fail, the Planners successfully recovered from all
errors encountered by Services and continued processing with other unaffected Services.
This is in direct contrast with CRITs reporting 17,012 critical errors using a set of
50,000 samples. In an investigation of the results, the high critical error rate was because
the CRITs platform was unable to handle the load caused by failed CRITs Services.
Unfortunately, when a CRITs Service failed, these Services entered a locked state that
consumed valuable resources and could not be efficiently reallocated, or were killed by
the operating system before results could be submitted for storage.

During the second experiment, SKALD remained tolerant of faults. While the overall
processing speed was decreased, our prototype’s QoS paradigm was able to identify failed
states and re-queue the tasking without any operator interaction. The final outcomes
revealed that no work was lost and 100% of the tasking were completed with no critical
errors.

These results showed that the SKALD design provided resilient when processing poorly
performing Services but also easily handled failures to critical components of the system.
Furthermore, these results revealed the benefits of SKALD’s QoS structure because work
was never lost and the system never entered a failed state. By contrast, CRITSs’ failed
Services remained in a failed state and human intervention would be required to clean
faulty results from the database, reset the Services, and re-task the system.

3.4.4. Flexibility

In order to examine SKALD’s flexibility, we first evaluated SKALD’s ability to incorporate
existing Information extraction methods. To do so, we created an INTERROGATION
Service by modifying the existing CRITs PEInfo Service. This required the modification

47

3. Developing an Architecture for Large-scale Investigations and Analytics

of less than 50 lines of code in order to remove CRITSs specific commands and provide
a RESTful HTTP wrapper. During evaluation, we noted that the wrapped Seruvice
performed with no discernible difference when compared to natively written SKALD
Services. The prototype was able to seamlessly incorporate the Service to include
performing QoS operations. In summary, this demonstrated SKALD’s ability to provide
flexibility by showing a minimal level of required work to incorporate a non-native Service.

Next, we wanted to study SKALD’s flexibility in changing a core component. We did
this by testing the ability of our prototype to directly work with the CRITs database.
This experiment was selected because the original implementation of SKALD’S STORAGE
Planner used Cassandra and S3 as the database back-end. In contrast, the CRITSs
framework uses MongoDB for documents and MongoDB’s GridF'S for large objects. Thus,
we were not only required to change the underlying scheme for storing artifacts but also
the core database technologies. To do this, we made three modifications to the original
prototype: (i) we created a STORAGE Service that parsed the results into the CRITs
database scheme, (i) we introduced an additional STORAGE Service that queried the
existing CRITs database system to retrieve raw objects, and (iii) we included logic in
the STORAGE Planner to identify which STORAGE Services to select when handling
tasking. In total, we were able to make these changes using less than 100 lines of code.
Furthermore, no modifications to the other parts of SKALD were required.

In summary, we are confident that SKALD provides the flexibility required to relatively
easily change Services as well as core components of a system. We are confident that
these results are applicable to other parts of the system.

3.5. Use Cases

In this section, we present use cases to demonstrate how SKALD can overcome many
of the current limitations in sharing artifacts among industry partners. These use
cases are based on our experience in using our framework to manage a collective set of
millions of objects, including their associated artifacts, across three globally distributed
organizations.

3.5.1. Sharing Resources with Geographically Distributed Partners

Security partners rarely share infrastructure for fear that this will lead to unintended
information exposure. This fear is well founded as it has in the past tarnished business
reputations, reduced market share, impaired profits, caused privacy violations, and
revealed internal sources and methods [30, 116, 117]. This poses a problem where
processing resources leads to duplicated efforts and large capital is required for their
maintenance. While we acknowledge that SKALD cannot overcome the reasons behind
why artifacts are restricted, our framework can overcome the problem of how to develop
a shared infrastructure.

48

3.6. Lessons Learned

This is because SKALD allows each partner to leverage their own STORAGE Planner
to restrict the transfer of restricted artifacts and configure the Transport to acknowledge
internal and external Planners. This in turn allows partners to leverage a collective set
of hardware resources while allowing the creation of INVESTIGATION Services capable
of performing data discovery, clustering, and colorations over the entire set of collective
artifacts.

3.5.2. Sharing Derived Information with Partners

Computer security investigations are mostly retrospective in nature and based on identi-
fying previously observed attack patterns. Sharing artifacts are vital in this process as it
allows analysts to make better correlations and create a more accurate picture of what is
happening. Unfortunately, current methods for sharing artifacts among partners require
too much time to be truly effective. This is because artifacts first need to be identified
as important, processed, validated as sharable, and then transmitted to partners often in
the form of IOCs. This is an inherently slow process but an even more critical issue is
that methods used during the process to create an IOC is not uniform and vary among
industry partners [118]. This causes the receiving party to rerun analytic methods before
any received artifacts can be leveraged by their analysts’ systems.

SKALD overcomes the above issue by providing a platform that supports breaking
the traditional paradigm of how artifacts are shared. This is accomplished by providing
the infrastructure to allow partners to directly share a central repository of artifacts
(segregated according to the DIKW model) and jointly perform analysis against these
artifacts. This approach allows partners: (i) to have a common set of analytic methods
that is understood by all parties, (i7) to have real-time access to current artifacts, and
(7ii) to have a wider view of the malicious activity during the investigation.

SKALD makes the aforementioned setup an easy task. In our deployment, we created this
setup with globally distributed partners by adding a STORAGE Service that contained the
logic required to replicate Information between industry peers while restricting sensitive
raw Data. Thus, this created a uniform platform that allowed all partners to leverage a
collective pool of Information. Furthermore, when working with INVESTIGATION tasking,
the taskings can leverage the ACL meta-tags, discussed in Section 3.2.1, to inform the
system if it should only use in-house resources or use collective resources.

3.6. Lessons Learned

Throughout our evaluation period a number of additional discoveries were made that
were unrelated to the performance of the SKALD prototype. The first discovery is that
SKALD must be carefully implemented when calling Services that rely on third-party
network resources. This is because the potential query rate of a SKALD based system
means that users can very easily exceed API query and rate limits. This can lead to

49

3. Developing an Architecture for Large-scale Investigations and Analytics

the creation of potential issues along the processing pipeline, with more pronounced
effects if the SKALD deployment relies on a single API key. During the experiments, our
prototype’s ability to remain robust in the face of such conditions was demonstrated
by exceeding our VirusTotal per minute query limit. Despite this, the resultant errors
were captured and marked by our INVESTIGATION Planner to be reprocessed while
other analytic processing continued unabated. Although this slowed down processing,
the SKALD prototype continued to work properly. More precisely, results were emitted
from the PEInfo and Yara Services, while tasking intended for the VirusTotal Service
was re-queued for a second attempt. Thus, it is strongly recommended that SKALD
implementors configure their Planners so that they automatically rate limit their calls
to external, especially third-party Services. Although failing to do so will not disrupt
the stability of SKALD, it can slow down overall task completion. Furthermore, it will
annoy the Service provider. In our case, we overextended VirusTotal’s infrastructure and
caused their API to crash.

3.7. Related Work

The need for a large-scale malware analysis framework has been well discussed in prior
work. Bitshred is a prime example and can perform malware correlation based on hashes
of extracted features (a subset of Information), thus greatly increasing the throughput
of the analysis system [123]. To address the issues of how to more agilely work with
extracted features, Chau et al. created Polonium [126]. Polonium identifies correlations
based on a set of features. Leveraging techniques similar to Pregel [127], Polonium takes a
set of known features and performs machine learning against new samples to identify the
probability of “goodness”. However, both systems only address the problem of dealing
with already extracted features and are reliant on other systems to generate Information
and feature extraction. In turn, Hanif et al. [122] attempted to solve the problem of
performing scalable feature extraction in their work on BinaryPig. This was done by
performing feature extraction in a distributed fashion through the use of a Apache
Hadoop based back-end. Unfortunately, BinaryPig is limited to only performing static
analysis of malware binaries to generate features. Additionally, this system does not
support performing analysis over the features and the QoS schedule cannot appropriately
handle failed work. While these systems are promising and major achievements, they
are only a piece of the solution when performing a computer security investigation.
Specifically, neither of these systems support end-to-end investigations and do not easily
allow analysts to work with different types of artifacts to ask questions that are outside
of the original scope of the system’s design.

Significant research has been put forward in distributed setups addressing the issues
of scaling, flexibility, and resilience. SOA breaks systems down into business processes,
i.e., Services, and integrates them in an asynchronous event-driven manner through an
ESB [98]. By establishing disjoint components, SOA enables distributed systems by

20

3.8. Summary

defining how Services communicate versus their implementation. The xSOA architecture
expands upon traditional SOA by allowing multiple Services to be combined under
a single composite Service [97]. This composite server then provides a management
layer which can perform Service orchestration, routing, provisioning, as well as integrity
checking. Verma et al. [128] has taken xSOA a step further in their work on large-scale
cluster management with Borg. They developed a xSOA-like system and optimized
it by introducing a BorgMaster. The BorgMaster serves as the master for Services
and schedules their execution across Borglets. Together, the BorgMaster and Borglets
intelligently manage the execution of Services and perform necessary actions to improve
resilience, flexibility, and scalability. Additionally, Borg packages Services together
for execution to improve efficiency by cutting down on transmission time, network
bandwidth, and resource utilization. However, these architectures are not meant to deal
with computer security work as malware is often designed to cause component failures
and SKALD’s additional abstraction is required.

3.8. Summary

In this chapter, we introduced an architecture to support Intelligence Cycle based
investigations against the ever-growing volume of malicious activities plaguing computer
systems. The architecture, named SKALD, enables the design of a large-scale, distributed
system that is applicable in the security domain. To this end, SKALD supports multiple
users and scales horizontally to perform analysis across millions of artifacts. Furthermore,
SKALD breaks the paradigm that the automated extraction of Information is the ultimate
goal and takes the viewpoint that providing a flexible architecture to empower human
analysts is king. Specifically, SKALD provides mechanisms for analysts to leverage static
analysis and dynamic analysis techniques to extract Information and apply advanced
analytics across Information to generate Knowledge and create Wisdom while maintaining
a central repository of artifacts. Empirical results confirm that SKALD can scale these
tasks horizontally, at near linear growth, and is able to process artifacts at a rate of
3.1 milliseconds with zero critical errors in contrast to existing system’s rate of 2.6
seconds and thousands of critical errors. SKALD’s design also creates the building blocks
needed to overcome the limitation of current sharing models. This is done by providing
the infrastructure needed to allow industry peers to perform analysis across collective
sets of artifacts while protecting sensitive data. Thus, SKALD enables more accurate
investigations of malicious activities and real-time data discovery while minimizing the
need for redundant systems and thereby reduces analysis time and infrastructure cost.

In the next chapter, we expand upon the concepts of SKALD to develop a sharing
platform to further overcome the stove-piping of security teams.

ol

Chapter 4

Expanding the Architecture to Enable
Collaborative Analysis and a Sharing
Marketplace

“It is a capital mistake to theorize before one has data.”

Arthur Conan Dole

SKALD provides the architectural underpinnings for performing large-scale analysis
across the Intelligence Cycle. However, another critical aspect that hinders defensive
capabilities is caused by the stove-piping of security teams and the inability to collaborate
and share. For decades it has been acknowledged that sharing security artifacts and
collaboration between security practitioners is a necessity. Yet, effective sharing and
collaboration is rare. A gamut of legislative acts, executive orders, academic works, and
private sector initiatives have discussed aspects of the problem and aimed to be the
catalyst needed to fix the situation. But almost 30 years since these efforts started,
and even now the state of sharing and collaboration is technically complicated, slow,
untrusted, and impeded by bureaucratic woes.

Unfortunately, this creates multiple problems. One problem is that performing assess-
ments on limited sets of data causes analysts to draw conclusions and state correlations
that do not fully encompass the situation [22-24]|. Another problem is that each team
must perform their own end-to-end investigation. However, investigations are a resource-
intensive and time-consuming task. This is a waste of resources and as we previously
discussed, analytic pipelines are already overwhelmed. Sadly, this stove-piping creates
another problem that is more concerning. Because the community is not working together,
malicious actors have a large window in which to move between victims using the same
methods.

This chapter identifies the challenges of sharing and uses real-world examples to
illustrate our findings. Based on this knowledge, we propose a new model for sharing and
collaboration, CARE. The CARE architecture builds upon the foundation of SKALD
to ease many of the privacy, secrecy, lineage, and structure issues that plague current

53

<
.
5
o+
o
©
<
9

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

sharing communities and platforms. We then leverage this foundation to introduce
a marketplace based on smart contracts with transactional privacy over a distributed
blockchain. Therefore, CARE incentivizes sharing, combats free riding, and provides
an immutable ledger for the attribution of events. This paradigm shift overcomes the
challenges of sharing while providing new opportunities for business models, insurance
risk assessments, and government backed incentivisation.

4.1. Introduction

The modern day security team struggles with deriving accurate analytic assessments
and with overcoming the status quo of just-too-late reactive defensive strategies. We
posit that a core reason behind the current state of affairs is that our defensive tools
and processes struggle to enable truly collaborative environments, and sharing security
artifacts between industry peers is a technically complicated, slow, untrusted, and an
overly bureaucratic task [29,30]. As a result, analytic insights and assessments are less
accurate and defensive actions are delayed or ineffective [116,117].

Compounding the issues above, shared security artifacts do not provide the impact
needed to defend systems. For instance, after a well-publicized and major security
incident, the malicious actors still used similar tools and techniques to steal millions from
hardened banking targets [26-28]. This should be no surprise to the informed security
expert. Most research in this problem area has focused on the necessities of sharing and
the ontologies to use [30]. But this research does not address the underlying problems.
There is a reluctance to share, and the context needed to make shared artifacts valuable
is often stripped. This makes adjusting defenses challenging and hinders proactive
investigations and collaboration. To illustrate, the United States Computer Emergency
Response Team (US-CERT) proudly released a slew of IOCs for a significant security
incident [129]. However, these IOCs were nothing more than a collection of hashes with a
quick description (i.e. “Lightweight backdoor”), a set of signatures with no details on how
or why they were created, and IP addresses with a port and country. Thus, researchers
given these IOCs can either blindly deploy the rules, or spend considerable effort to
rebuild the context and perform their own investigation. However, deploying these rules
will not prevent attacks by any moderately devoted malicious actor, because these actors
can simply move infrastructure and conduct a re-signature of their tools [130]. In fact,
actors can automate this process with methods such as polymorphism, metamorphism,
and DGAs. On the other hand, performing an investigation is costly and on average
takes even specialized companies 54 days [25]. Given this, it is no revelation it takes
around 198 days for a company to discover they have been victimized, with some taking
upwards of 6 years [2].

To move forward, we need a change in paradigm. To do this, we propose a new model
for sharing computer security artifacts, CARE, which aims to provide the mechanisms
required to perform analytic collaboration with a collective pool of artifacts in near

o4

4.2. The Problem in Perspective

real-time. It does this by providing a cryptographically backed exchange for sharing,
derived through a set of common, verifiable extraction methods and analytic algorithms.
As a result, this model provides the foundations for overcoming the privacy and secrecy
issues with sharing; it maintains the context and lineage associated with derived artifacts;
and it provides a common structure to allow shared artifacts to be easily ingested in
analytic pipelines. Furthermore, the cryptographically backed method increases overall
trust in the system, while also providing the ledger and infrastructure required to develop
a sharing marketplace. In turn, this provides the necessary incentives needed to encourage
companies and individuals to share, and have the immutable records needed to identify
offenders of trust.

Our work makes the following main contributions:

e We discuss recent failures of real-world initiatives for security information sharing
and dissect the associated challenges.

e We develop an architectural model for sharing that alleviates many of the privacy,
secrecy, lineage, and structure issues associated with sharing initiatives.

e We introduce a secure ledger model that records who shared what, with whom,
and when; and also guarantees the lineage and structure for shared artifacts.

e We present a design pattern for a cryptographically backed method for sharing
that creates a marketplace based on smart contracts with transactional privacy
over a distributed blockchain.

e We describe how our model creates new opportunities through the creation of new
business models, providing metrics for identifying insurance risk, and providing the
structure needed for allowing governments to provide tax incentives.

4.2. The Problem in Perspective

In November 2014, Sony Pictures Entertainment became the victim of an unprecedented
attack that not only leaked Sony’s private business records and communications but also
destroyed valuable data [31]. In response, a combined governmental and corporate initia-
tive immediately went into action to identify the threat, perform mitigation operations,
and share across the community in the hopes of preventing future attacks [129,131]. This
effort was deemed a major success and a textbook example after which future responses
should be modeled; now named the “Sony Model” [131]. One of the reasons behind why
the response was deemed so successful is because the Federal Bureau of Investigation
(FBI) treated the victims as a partner and encouraged the proactive sharing of IOCs.
Sadly, a year later millions of dollars were stolen from a bank by means of fraudulent So-
ciety for Worldwide Interbank Financial Telecommunications (SWIFT) transactions [28].

%)

<t
-
()
o+
o
Q]
<
@)

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

Initially the SWIFT and Sony attacks appeared unrelated. However, security researchers
were able to attribute the attacks to the same actor, the Lazarus Group, and conclude
that multiple other banks were also victims [26,27].

The quick response to the Sony attack and the fact that details of the Sony attack
greatly aided the SWIFT investigation clearly demonstrates the value of sharing within
the security community. For example, the breakthrough in the SWIFT investigation,
and attribution to the Lazarus Group, was in large part due to the widespread sharing of
IOCs [27]. However, this example also highlights many of the major failures in the current
sharing paradigm. For instance, the IOCs shared by the FBI through US-CERT were
not what was cited as providing significant value during the SWIFT investigation. This
credit went to an independent mitigation operation that occurred two years later, called
Operation Blockbuster [26,27,31]. This is because the information originally shared
by the FBI was heavily stripped of context to protect privacy, secrecy, and tradecraft.
Taking a more critical point of view, one could even consider it a significant failure that
the Lazarus Group was still able to use similar tools and techniques a year after the Sony
attack in the SWIFT attack; even more so since the Sony attack received much publicity.

This episode highlights the potential benefits of sharing, but also the problems with the
current sharing paradigm, which are rooted in a storied history. Dating back to the 1980s,
numerous legislative acts, executive orders, and private sector initiatives have singled out
sharing as a necessity for effective computer security and the lack of sharing as a major
weakness. In response, these acts and initiatives were intended to be the catalyst needed
to fix the problems with sharing within the security community [8-11]. Subsequently,
communities and organizations were formed to act as facilitators for sharing, specifically
Computer Emergency Response Teams (CERTS), sector-specific Information Sharing and
Analysis Center (ISACs), and private tight-knit community trust groups [9, 10,29, 132].
Furthermore, these private trust groups are often orientated around a single mission. For
example, Yara Exchange is an exclusive group of researchers that focuses on creating a
collective set of Yara signatures [125], while Ops-T is a vetted community that aims to
thwart malicious behavior through collective action and sharing blacklists [133]. As these
associations matured, they created common ways for their participants to communicate
through the development of numerous standardized ontologies for cataloging information
about computer security incidents, collectively known as IOCs [30]. Furthermore, to
facilitate the communication of these IOCs, multiple sharing protocols and platforms
were formed along with a new business sector focusing on cyber threat intelligence
feeds [30,134,135].

Despite the above efforts, most sharing is typically done (7) through an ad hoc exchange
of Data and unstructured Information by means of work acquaintances, small community
trust groups, and between individual ISAC members, or (ii) via cyber threat intelligence
feeds that are delayed and of questionable value [15,29,136]. Despite the delay in sharing
actionable details, the level of sharing that occurred after the Sony attack and the details
that were provided as part of Operation Blockbuster are a positive anomaly. Simply
put, widespread sharing and collaboration of timely artifacts that crosses sectors rarely

o6

4.3. The Realities of the Current Sharing Paradigm

happens and when it does its impact is often less than it should be [136,137].

4.3. The Realities of the Current Sharing Paradigm

The major issues surrounding why sharing and collaboration do not regularly occur and
lack effectiveness, when it happens, can be summarized as follows [29,30,116,117,137-140]:

Privacy of Victims - Exchanging raw Data can leak information regarding the
victim’s identity and their sensitive data. This inadvertent disclosure can directly
harm the victim and their reputation, eroding market share, as well as cause
contractual, legal, and regulatory violations on behalf of the sharer.

Secrecy of Attack Patterns - Raw Data can divulge the methods and techniques
used by the attacker as well as details about the victims’ infrastructure and computer
security posture. This can empower and encourage other malicious actors. In
an infamous case, Zeus’ leaked source code was used to create Citadel and ICE
IX [141].

Tradecraft of Investigators - Requesting and exchanging artifacts can alert
attackers that an investigation is occurring. This can allow attackers to shift tactics
and increase their chances of evading future detection by defensive monitoring and
controls. Additionally, this can leak business secrets to peers, which can reduce
competitive advantage.

Lack of lineage - Shared artifacts are often stripped of vital context, and how the
artifacts were obtained and generated is unknown. This causes a situation where
shared artifacts are untrusted, the relevance to the recipient is not immediately
apparent, and the artifacts must be reprocessed or amended through informal
channels to be useful for the receiving party.

Lack of structure - Shared artifacts may be unstructured, poorly structured,
or in a myriad of different IOC formats. As such, significant time and manual
intervention is required to ingest the feeds in the recipient’s own workflow.

Absence of ledger - No universal method to track verifiably who shared what,
with whom, and when exists. This leaves little potential to identify offenders of
trust or allow for crediting of the contributors of valuable artifacts.

Lack of incentives - There is no directly apparent economic benefit to community-
wide sharing. Additionally, commercial security companies may be disincentivized
to share freely for fear of diminishing their competitive advantage.

In total, these reasons create an environment where organizations and individuals are
reluctant to share and when sharing occurs the artifacts are stripped to the point that the

57

<
.
5
o+
o
©
<
9

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing

Marketplace

Figure 4.1.: DIKW Pyramid with Respect to Average Mitigation Time and Sharing

immediate value becomes questionable. Unfortunately, this culminates into a paradigm
where potentially vital details that can mitigate threats often never reaches (potential)
victims in time.

4.3.1. Wisdom Without Context is Merely Data

In the Sony case study, the response team proactively shared artifacts, including a
summary of some of the attacker’s tools and unstructured IOCs containing import table
hashes, binary MDb5s, command-and-control IP addresses, Snort Signatures, and Yara
rules [129]. While sharing publicly at this level is rare, what was shared is typical of the
the types of artifacts that are broadcasted via ISACs, community trust groups, and cyber
threat intelligence feeds. For example, the Financial Services - Information Sharing and
Analysis Center (FS-ISAC) advertises that they provide the sharing of different types of
reports and the means for members to ask for further information through submitting a
Request for Information (RFI) [142]. Similar to ISACs, two of the most popular trust
groups, Yara Exchange, and Ops-T, regularly share Yara signatures, lists of blacklisted
domains, hashes for malicious samples, and allow members to directly request additional
information about an object [125,133].

Regretfully, this proactive sharing of IOCs was not enough to hinder the Lazarus Group
from using similar tools and techniques during the SWIFT attacks. The issues around
why this occurred are best described when viewing security analytics and investigations
under the perspective of the DIKW model [39]. As illustrated in Figure 4.1, analytic
insight or action is achieved by building upon each layer of the DIKW model: Data,
Information, Knowledge, and Wisdom. Applying this to computer security analytics, we
can derive the following:

e Data - The raw object: PE32, PCAP, memory dump, domain, IP, file, etc.

o8

4.3. The Realities of the Current Sharing Paradigm

e Information - Details about the Data that can be determined through static
analysis, dynamic analysis, or other extraction mechanisms.

e Knowledge - Organizing a set or a subset of Information into useful forms using
statistics, knowledge-based rules, machine learning, or other analytic techniques.

e Wisdom - Developing an understanding of the Knowledge, based on experience,
to allow a judgment or action to be made.

Only once Wisdom has been derived, can the defender fully comprehend the threat and
formulate an effective response. Thus, the common practice of sharing IOCs that contain
nothing more than the derived Wisdom without the lineage of how there were generated
(for instance, various lists of hashes, IP addresses, a specific import used by a binary,
or a signature) does not greatly assist in the analytic loop. Shared Wisdom without
context is just Data. In turn, this makes it difficult for the recipient to work with or
generate Wisdom when they do not understand the context of how the Information
was generated and how the Knowledge was pieced together. This makes it challenging
to apply the received Wisdom to their own investigation and ask different questions to
derive a different meaning. Furthermore, without a common structure it is not easy for
shared artifacts to be merged into the recipient’s analytic pipeline in order to identify
further meaning or understanding. Hence, the situation occurs where the receiving party
needs to gather the original Data behind shared IOCs and reprocess them before further
analytics or effective action can take place. However, a catch-22 occurs because the
original Data is often restricted and rarely exchanged due to issues of privacy, secrecy,
and tradecraft.

4.3.2. The Need For Speed

The current paradigm is lacking in timeliness to be effective. For instance, the Lazarus
Group used the same tools and techniques to attack multiple victims over a period lasting
longer than a year. This is unsettling, but it should come as no surprise. As shown
in Figure 4.1, it takes an average of 54 days for a specialized company to move from

Data to Wisdom and develop a response after a malicious action has been identified [25].

Furthermore, 15% of known malicious files are still not detected, let alone mitigated,
until 180 days after being released [25]. The Sony case was faster than average, sharing
an initial set of IOCs in less than 30 days and then amending the IOCs about a year
and a half afterwards [129]. Unfortunately, this is still much too slow, especially when
considering that 75% of attacks spread from the first victim to the second in less than 24
hours [143].

Regrettably, even when information is shared, the security community still faces an
issue where the sharing recipients must enter a cycle of reprocessing any received Data,
then ask for more Data based on what they identified, and then reprocess this newly
received Data to generate the Information and create the Knowledge needed to develop

59

<t
-
()
o+
o
Q]
<
@)

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

their own Wisdom. This process is required because what is shared is a static snapshot
of a previous attack and does not contain any lineage. As such, given a shared IOC the
recipient can only understand, at a general level, what was previously used in an attack
and the details are obfuscated. Unfortunately, this allows attackers to easily overcome the
threat posed by sharing. Specifically, an attacker can move infrastructure and obfuscate
malicious code using any method as long as it is faster than the defender can complete
this resource-intensive cycle [130].

4.3.3. Lack of Trust In Exchanged ltems

The current sharing paradigm does not have a verifiable lineage. The Sony case study is
no different in that the originally shared Information provided minimal context and little
details regarding how the Information was generated. Unfortunately, this causes issues
of trust between sharing partners and inaccurate assessments. One of the reasons behind
this is that different methods can be used for generating similar types of Information.
However, while similar, the Information is not always interchangeable and may even
contain flaws. For example, Wesley Shields recently reported that the implementation
of PEHash [67] used by widely popular tools such as Totalhash [144], CRITs [14],
and VIPER [145] incorrectly generated the hashes [118]. This caused a problem when
generating Knowledge and Wisdom based on shared Information because the hashes
would not match and inaccurate results were produced. Unfortunately, this issue is not
rare and as such it is common practice to validate any received IOCs until a level of trust
in the originator can be established [138].

Eroding trust further, the current model’s reliance on sharing by either massively
distributing IOCs or providing specifically requested details among peers exacerbates the
concerns surrounding privacy, secrecy, and tradecraft. This is because these methods
lack a universal and trusted ledger of what was shared, with whom, and when. As such,
the originator loses traceability, which hinders the identification of abuses of trust. Thus,
it is nearly impossible to enforce any security and privacy controls or perform retribution
against violators. This fear is evident in the exclusivity of trust groups and ISACs as
well as the level of context that was stripped from the originally released IOCs in our
case study.

4.4. The CARE Model

CARE is a design pattern for developing analytic systems that enable collaboration
and alleviate the current issues with sharing. At its core, CARE is an architectural
foundation for generating and exchanging security artifacts across the DIKW model; thus,
allowing partners to overcome the challenging and time-consuming burden of rebuilding
the context and Information behind 10Cs, finished reporting, and Data. Building upon
this foundation, CARE then leverages smart contracts on top of blockchain technology

60

4.4. The CARE Model

‘ Investigation

Storage

Gateway

Interrogation

Figure 4.2.: CARE architectural components and interaction.

to enable a cryptographically backed exchange (CARECONOMY).

The design for CARE is based on the SKALD framework and extends the original
design to enable healthy collaboration and create a sharing marketplace [21]. As discussed
in the previous chapter, SKALD is an architecture for performing large-scale computer
security analysis across the Intelligence Cycle. While not just theoretical, prototypes of
SKALD have been successful in enabling multidisciplinary teams to perform rapid and
complex analysis against sophisticated malicious actors, e.g., during the Blockbuster
investigation [31]. However, we note that the CARE model can be extended to other
frameworks, such as the Malware Information Sharing Platform (MISP) and CRITs [14,
135]. That said, SKALD was particularly selected because of its uniqueness in supporting
Intelligence Cycle based analytics and segregating the processes across the DIKW model.
While MISP and CRITs are powerful and effective, both systems only focus on generating
Information from Data and sharing a myriad of IOC formats. As such, SKALD is a
natural fit for breaking the paradigm and achieving the goals of CARE.

In this section, we will describe the CARE architecture, explain the CAREcoONOMY,
and lastly discuss how sharing partners interact with the system.

4.4.1. CARE Architecture

The architecture for CARE builds upon the SKALD concept of Planners and Services. In
this, the Planner is centered on supporting the goals for a specific theme and orchestrates
the execution of Services. The Service component is “loosely coupled” and performs
the execution of a task. For example, the INVESTIGATION Planner smartly orchestrates
Information extraction Services for Data. Under this structure, the CARE architecture
primarily provides (i) the ability to manage partner interaction, (i) the generation
of artifacts, and (éi7) it creates an abstract method for storing artifacts and system
data. As shown in Figure 4.2, the architecture is composed of four core Planners:
GATEWAY, INVESTIGATION, INTERROGATION, and STORAGE. The 5™ SKALD Planner,
PRESENTATION, is not directly addressed in CARE. This is because while it is important
for controlling user interaction, it is out of scope for creating a sharing marketplace. As
will be discussed in this section, these Planners are designed to overcome the privacy and
secrecy issues with sharing Data; to maintain the lineage associated with Information,
Knowledge, and Wisdom; and to provide a common structure for sharing. Together this

61

<t
-
()
o+
o
Q]
<
@)

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

% Gateway %

Storage

Figure 4.3.: Planner interaction when an artifact exists in STORAGE: (1) GATEWAY
receives and validates a peer request, (2) the artifact is identified in STORAGE,
(3) STORAGE transmits the artifact to GATEWAY, and (4) GATEWAY provides
the results to the requestor.

empowers peers to exchange across the DIKW model and more effectively collaborate.

The GATEWAY Planner is central for managing partner interactions and exchanging
artifacts across the DIKW model. The GATEWAY provides four key functionalities:
(1) notifying peers what artifacts are available, (i7) authenticating and validating requests,
(ii) orchestrating the exchange of artifacts, and (iv) administrating the CARECONOMY.

GATEWAYs communicate with each other in a peer-to-peer fashion. This communication
method keeps the artifacts in the control of the owner while also providing the foundational
building blocks on which collaborative trust groups can be built. The peer-to-peer
approach also allows peers to have fine-grained control over what artifacts are available
and who can access their system. For instance, a peer can restrict the sharing of an
artifact based on a taxonomy or specific Services as well as which peers are able to access
these artifacts. This is a dramatic difference over traditional sharing platforms, such as
CRITs and MISP, because those model access based around the concept of group-level
access or access based on the source of Data in which the artifact was generated [14, 135].
Furthermore, the peer-to-peer method removes the necessity of trusting a sharing platform
provider with protecting all the assets; a key finding highlighted by Clemens et al. [30].

Mlustrating how GATEWAY functions, in CARE, partners submit all requests for
exchanging artifacts through GATEWAY. When GATEWAY receives a request, it first
authenticates the requester and validates that the request is properly formatted. After
that, GATEWAY gathers the requested artifact from STORAGE (Figure 4.3) or submits
a request to INVESTIGATION or INTERROGATION to generate the requested artifact
(Figure 4.4). In its final step, GATEWAY gathers the artifact, adds the pertinent metadata
to the artifact, updates the distributed ledger, and submits the results back to the
requester.

The next set of Planners, INVESTIGATION and INTERROGATION, are charged with
transforming artifacts to the next higher level in the DIKW model. Regarding the
INVESTIGATION Planner, this Planner is responsible for generating Information from
Data. INVESTIGATION does this by orchestrating the execution of Services that perform
static analysis and dynamic analysis as well as gathering Information from 3¢ parties. In
a similar vein to INVESTIGATION, the INTERROGATION Planner focuses on transforming
information into Knowledge and empowering an analyst to create Wisdom through
assessing collective Knowledge. For example, an INTERROGATION Service can execute
a machine learning algorithm to cluster samples or help to label artifacts by executing

62

4.4. The CARE Model

Storage

Investigation

Figure 4.4.: Planner interaction when Information needs to be generated: (1) GATEWAY
receives and validates a peer request, (2) GATEWAY submits a request to
INVESTIGATION to generate the Information, (3) INVESTIGATION transmits
the artifact to STORAGE, (4) GATEWAY retrieves the Information from
STORAGE, and (5) GATEWAY provides the results to the requestor.

statistical or knowledge-based analysis. With respect to Wisdom, a Service could help
with visualizing sets of artifacts, creating a standardized set of 10Cs, or generating
blacklists.

In this model, the INVESTIGATION and INTERROGATION Services that are available for
sharing are known, with cryptography guarantees, and agreed upon by the peers or an
ombudsman. This helps to overcome some major challenges with sharing unstructured
artifacts or IOCs, because the lineage and structure is maintained and understood by all
parties. As such, the results a Service provides and how the artifacts propagated through
the system are known. This allows these results to be immediately incorporated into
the receiver’s analytic pipeline because the context is understood. Thus, it reduces the
time required to process any newly shared artifact a party receives. Additionally, this
overcomes the challenges that stem from only providing an exchange for IOCs even if
the lineage is known. As discussed prior, and can be witnessed with the MISP platform,
there are a plethora of different ontologies that can be classified as an IOC and these
ontologies can have extensive vocabularies. To illustrate, the MISP document that
describes the subset of vocabulary for ontologies they support is 326 pages [146]. This
makes immediately leveraging a shared IOC difficult because the receiver of an IOC must
first validate the format, ensure it is being used in the same way, and convert the format
to the in-house style.

Lastly, this method helps to overcome the privacy and secrecy issues that stem from
sharing Data. This is because the context behind an artifact is known and the methods
for transforming Information and Knowledge are available, direct access to Data is not
required for an investigation.

The STORAGE Planner in CARE is akin to the original design of SKALD. Specific
to sharing, STORAGE manages the repository of Data, Information, Knowledge, and
Wisdom for each peer in addition to CARE-specific data. STORAGE also provides an
abstraction layer between database systems. This abstraction allows peers to incorporate
the model over existing systems, leverage a single or hybrid back-end solution, and select
the database backed of their preference.

63

<t
-
()
o+
o
Q]
<
@)

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

4.4.2. CAREconomy

The CARE architecture provides a foundation for generating and exchanging security
artifacts in a way that alleviates the current sharing paradigm’s issues of privacy, secrecy,
lineage, and structure. However, many of the issues with sharing are caused from the
fact that sharing platforms are based on the reputation of individual contributors [30].
This can erode trust in these groups due to accident or malice by the participants. For
example, original authorship can be mis-attributed or forgotten, community engagement
can go unnoticed, and breaches of confidence can occur. Unfortunately, these fears are
well-founded. Greed, the desire for recognition, and forgotten ownership has caused
sharing partners to release or act upon restricted details early at the detriment of the
collaborative effort [147]. For example, during the Mariposa botnet take-down, the DNS
registrar was successfully bribed into helping the malicious actors regain control of the
botnet [148]. Furthermore, as groups grow, the problem of free riding, where participants
reap the benefits but do not contribute, becomes prevalent [117,149]. If left unchecked,
these issues will erode participation and wear down the perceived benefits to sharing. To
combat these issues, CAREcCONOMY is focused on developing overall trust in CARE.
This is done with a smart contract system based on the blockchain. As such, CARE
provides an immutable ledger, allows for distributed trust among mistrusting peers, and
providing incentives to share by creating a marketplace.

4.4.2.1. Developing a Marketplace

Algorithm 2 GATEWAY receives a transaction request for artifact from user, with value
of n CARECOINs
Ensure: user, is authorized
Ensure: ledger|requester] > CARECOIN
ledger[requester| < ledger[requester] — CARECOIN
ledger[sender] < ledger|sender| + CARECOIN
transmit artifact to requester
update global ledger

Conceived in the late 1990s, smart contracts provide the theoretical underpinnings
for establishing, executing, and enforcing contractual clauses in the digital realm [107].
Unlike their paper predecessors, smart contracts have the added benefit of allowing the
automatic execution of contract terms and remove the requirement of having a trusted
third party to guarantee transactions. Modern implementations, such as Ethereum,
realize the concept of smart contracts by provide a Turing complete language on top
of blockchain technology [109]. This provides the ability to execute small programs
while recording the interactions in an immutable and distributed ledger. Additionally,
techniques such as PoW and PoS verify modifications to the blockchain and thus provide
trust for the transaction and ensure contractual breaches are prohibitively costly.

64

4.4. The CARE Model

In other sectors, smart contract based systems have nurtured healthy sharing. For
instance, KARMA used smart contracts to create an economic system for peer-to-peer
file sharing [150]. This system created healthy sharing by enforcing a balance of what was
provided to the community versus what was taken. Furthermore, BitTorrent communities

that leveraged similar concepts saw a drastic reduction in free riding behavior [151].

Shockingly, many of these communities reported upwards of 100 seeders per leecher,
whereas open systems only averaged a ratio in the single digits. This directly benefited
the communities and resulted in higher download speeds (3-5 times faster) and stronger
rates of connectivity.

Using these concepts, the CARECONOMY is based on using smart contracts on the
blockchain to create a community-maintained marketplace for sharing security artifacts
in CARE. Under CARE, the community selects who can participate and what is
available for trade by approving which Services are allowed to be executed to created
other DIKW artifacts. The GATEWAY then enforces these decisions and manages the
exchange of artifacts between authorized users using a cryptocurrency, hereafter referred
to as CARECOINs. Shown in Algorithm 2, at a basic level this permits the buying,
selling, and reselling of security artifacts between peers which allows the creation of an
economy and generates incentives. As explained in more details later, under this model
Data artifacts can be added at will but the Services used to generate Information and
Knowledge are controlled. This limits the ability for fraud as the the market deems which

Data artifacts, and their associated artifacts higher up the DIKW chain, are of value.

Additionally, the immutable ledger records all transactions which overcomes the problems
of tracking community engagement, author attribution, and identification of breakers
of trust and fraud. For example, in cases where a partner releases information early or
for their own gain, the immutable ledger would allow identifying of who accessed what,
and when, and where the artifact came from. While this does not guarantee malicious or
harmful inadvertent acts will not occur, it can provide details to track what happened
and be used as a deterrent or justification for removing that participant. Lastly, the
blockchain backing of these smart contracts allows for a level of trust in the system that
is currently lacking among sharing communities. This is because the blockchain provides
distributed trust even when multiple parties need to modify the state of the system and
are fundamentally mistrusting of each other and the intentions of any third party.

Algorithm 3 GATEWAY receives a transaction request for an artifact at CARECOIN

Ensure: user, is authorized

Ensure: ledger|requester] > CARECOIN
ledger(requester] < ledger[requester] — CARECOIN
ledger[sender] < ledger|sender| + CARECOIN
add SNARK details to ledger
update global ledger
allow transmission of artifact to requester

65

<t
-
()
o+
o
Q]
<
@)

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

4.4.2.2. Verifiable Lineage

One of the main issues with current sharing paradigms is that there is no way to verify
what method was used to generate the artifact that is being shared and the object itself.
CAREcoNOMY addresses this issue by leveraging zk-SNARK to verify the execution
of programs that live outside the blockchain [152]. As shown in Algorithm 4.4.2.1, this
is done by adding the zk-SNARK proofs, to the ledger. This has two direct benefits.
The first is that zk-SNARK provides the ability to verify which Service was used to
generate the exchanged artifact and the exchanged artifact. As such, the recipient is
guaranteed to understand the structure and lineage of shared artifacts as well as have
trust in what was being purchased is what was requested. The second benefit is that the
code used for a Service and the artifact can live outside the blockchain. This provides
the ability to leverage more complex Services, update Services more easily, and it also
reduces the size of the blockchain. Additionally, while CARE aims to lessen the risks
associated with widely sharing, especially Data, these risks are not eliminated. However,
zk-SNARK-based transactions do not expose the private information to the blockchain
and thus still allow for the appropriate remediation to occur.

4.4.2.3. Transactional Privacy

As previously discussed, a major factor to consider when sharing security artifacts is
in preserving the tradecraft of the investigators. For instance, revealing the tradecraft
secrets of what is being investigated can tip off a malicious actor that an investigation into
their activities is ongoing and cause them to disappear or shift tactics before a mitigation
action can occur. Furthermore, revealing what is being investigated can lead to suspicion
that an exposure has occurred which can cause bad publicity, degrade market value, or
erode market share. CARE addresses this concern by expanding to use zk-SNARK to
add trust to the system by allowing the incorporation of transactional privacy [113]. This
is done by using zk-SNARK to encrypt the details recorded in the ledger behind what
was shared between two parties. In turn, this further adds trust to CARE by granting
peers the ability to share artifacts without exposing what was shared.

4.5. Discussion

The CARE model creates a new way forward for sharing and collaborating in the
security community. In this section, we will discuss how this new model presents
previously unattainable opportunities for the creation of sharing partnerships, expands
how contributors can take part, and presents new possibilities for incentivizing and
assessing partner collaboration and effectiveness of sharing.

66

4.5. Discussion

4.5.1. Creating Collaborative Communities

Security communities have historically been established to fill a community need or to
service a specific sector. For example, FS-ISAC was created to foster collaboration and
sharing in the financial sector, Yara Exchange was created to crowdsource the creation of
Yara signatures, and Ops-T brought together vetted security practitioners with the goal
of exchanging information to collaborate in the mitigation of security threats. For reasons
explained in the previous section, these groups are almost universally tight-knit and have
processes in place that attempt to vet new members, encourage participation, and overall
maintain a level of trust. Unfortunately, this is often a losing battle and over time the

level of quality in what is shared degrades and member participation declines [117,149].

In sum, while the goals of these communities are noble, the effectiveness and utility of
these communities and cyber threat intelligence feeds are often left in question.

4.5.1.1. Sharing Communities

CARE empowers these communities and intelligence feeds by overcoming the challenges
discussed in Section 4.3. In turn, this enables traditional security communities to more
effectively share and collaborate while providing the infrastructure needed to keep them
healthy and encourage participation. Additionally, the secure ledger and incentives
that CAREcONOMY provides open the opportunity for larger collaborative efforts by
lessening free riding and overcoming the risks associated with sharing data widely. CARE
is envisioned as becoming the new method for collaboration and exchanging artifacts
within private trust groups, ISACs and CERTS, corporate partnerships, and be the
driver needed to enable the creation of large communities that span multiple sectors and
security specializations.

To help illustrate the above, the new paradigm afforded by CARE allows the buying
and selling of artifacts that can be immediately plugged into the analytic pipelines of the
recipients. This is because the context and lineage around the original artifact or any
subsequently generated artifact is known and trusted by the sharing partners. This opens
up the market and allows participants to focus on an area of specialization verse being
typical broker of raw material or finished analysis. As one of many possible examples,
Partner A can specialize in the sourcing of Data artifacts and make them available for sale
on the marketplace. Partner B can then specialize in the extraction of Information from
Data and sell this service or the resulting Information. Partner C can then specialize in
generating Knowledge based on their sets of Information. The resulting Wisdom that
can highlight other Data that can be of value, inform what items should be removed or
blocked from a network, provide insights that can assist in a mitigation operation, or
produce an investigative result can then be disseminated by another Partner. In turn,
each partner is able to participate in their own unique way while furthering the goals of
a collective community and marketplace.

67

<t
-
()
o+
o
Q]
<
@)

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

4.5.1.2. Community Management

To manage sharing communities, CARE necessitates the use of an ombudsman or other
structured form of governance. In the traditional cryptocurrency world, an informal
method of governance has been the dominating force [153,154]. These governance models
provide many benefits and have been surprisingly long lasting. However, they also have
their issues, specifically with managing access, evolving to change, and responding to
abuse [155,156]. Furthermore, a smart contract that lives on the blockchain is immutable
by nature. Unfortunately, these contracts can be challenging to write and are not immune
to vulnerabilities [115]. For instance, the Decentralized Autonomous Organization (DAO)
smart contract that provided a form of informal governance had numerous flaws in its
design [155]. In one particular case, this allowed an attacker to steal 50 million dollars
while the community could only watch [157].

When these issues with decentralized governance models are posed together with the
unique challenges created by computer security investigations and the handling of security
artifacts, it is clear that a different approach to governance is required. As such, we
propose that CARE models its community management in a manner that is more akin
to the ISAC model. In this, the community should have a structured form of governance
that serves to foster trust and encourage collaboration within the community [158]. At a
minimum, we propose that the management of a sharing community should provide:

e Management of users - Approve access to the community and perform traditional
user management functions.

e Organization of the CAREcCONOMY - Declare sanctioned contract types, main-
tain a set of approved Services, take action against fraud, select the method for
generating money and validate the blockchain, and oversee the economy.

¢ Remediation for security and privacy concerns - Mediate member disputes
and perform remedies in cases of information leaks and inadvertent exposures.

e Proactive reduction of security risks - Vet service code and the code used for
creating smart contracts.

4.5.2. Sharing Partners

The current sharing paradigm has fostered ad hoc exchanges and intelligence feeds of
questionable value. As discussed, these exchanges are often delayed, and the received
artifacts need to be re-validated and reprocessed before they can provide utility. Within
a sharing community, this creates an all-or-nothing situation where participants typically
must perform all the steps required to create and disseminate IOCs or otherwise advance
the community’s mission. However, the ability in CARE to share artifacts across the
DIKW model presents new opportunities and grants sharing partners the ability to
collaborate with asymmetric resources in near real-time. This allows participants the

68

4.6. Limitations and Future Work

ability to specialize in different types of threat research while still furthering the collective
knowledge of the community. For example, independent researchers can maintain sets of
honeypots that collect Data and leverage the community’s Knowledge to help identify
what was collected. University researchers can obtain Information that enables research
in new machine learning algorithms and return the Knowledge they derive. Corporate
security teams can perform automated triage, such as PE32 header extraction, on new
Data to generate Information and leverage the collective knowledge to better defend
their networks. And threat intelligence providers can sell Wisdom (e.g., actionable I0Cs)
or specialized Information and Knowledge.

4.5.3. New Opportunities

Critics of historic efforts to promote sharing and collaboration in the security community
have identified that the government needs to incentivize healthy sharing and security
practices. Unfortunately, the identification of how to measure the effectiveness of a security
team and their sharing practices has been a hotly discussed item for decades [159]. The
underlying reasons have been discussed in this work but the core issue is that there
are no good metrics for what makes a security team effective and what defines the
value of shared artifacts. Moreover, the current sharing paradigm does not provide the
infrastructure and records needed to create these metrics.

The CARE model provides a ledger that records all interactions; even if the details of
what specifically is exchanged can be encrypted. This presents new possibilities in how to
determine and rate how companies collaborate and in turn the effectiveness of the security
teams’ efforts. This can provide the metrics needed for developing useful government
incentives. Additionally, insurance companies can use these metrics to determine the
risk factors associated with insuring a company and adjust rates accordingly. These
incentives and overhead adjustments combined with the ability to accumulate wealth
through the CARECONOMY helps break the mold of corporate security groups being
taxing cost centers. In turn, this provides the potential of these groups to become not
just a necessary evil in the form of a red-line on a balance sheet to mitigate risk but
profit centers or at least groups that can articulate their worth.

4.6. Limitations and Future Work

The complexities of issues surrounding sharing makes the design of a sharing model
challenging and imperfect. Additionally, as CARE creates a new paradigm for how
sharing can be effectively conducted, it would be arrogant to foreshadow how these
concepts can be implemented and evolve. In this section, we will discuss potential pitfalls
we have identified and areas for future research.

69

<
.
5
o+
o
©
<
9

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

4.6.1. Secrecy and Privacy Considerations

The CARE architecture allows for sharing security artifacts while maintaining the
associated context and lineage. This is done by separating artifacts across the DIKW
model and leveraging the immutable ledger provided by the blockchain for maintaining
the lineage and context of shared items. However, the immutable natures of smart
contracts and how verification of the blockchains work, present unique drawbacks and
must be appropriately considered when implementing a CARE system.

One concern is that smart contracts published on the blockchain are immutable.
While workarounds do exists for changing published contracts, such as Ethereum’s
SELFDESTRUCT; they are challenging to use and often require adequate foresight.
As such, care must be taken when publishing a contract to ensure security vulnerabilities
are minimized [115]. While we highlight this concern, we leave the handling of this issue
to the governance model selected by the sharing community. This is to allow flexibility
in the governance model and allow the adoption on future methods as this is a ripe area
of research.

Another concern is that validating the blockchain requires agreement by the majority
of peers and is often implemented using methods such as PoW and PoS. In both cases the
agreement of the majority takes precedence. This can expose a system to vulnerabilities
of trust, known as the 51% attack, where if one party or group gains a majority stake,
they can reverse transactions, allow double spending, and halt transactions all together.
Furthermore, PoW relies on solving complex problems, aka mining. As more problems
are solved, more energy and computing power is required. Eventually, a state occurs
where mining becomes exceedingly expensive for a minimal return on the part of the
miner. However, the CARE architecture does not dictate what consensus method is
used for mining. This was done to allow a community to select which consensus model
best fits their organizational structure and allow the adoption of future methods. For
instance, if a community wishes to be public, leveraging an existing blockchain, such as
Ethereum, would allow the community to use the wider community’s consensus method to
reduce the possibility of cheating. However, if a different community wishes to maintain a
private blockchain, CARE grants them the flexibility to create a new or unique consensus
model that best fits their use case, such as one based on participation. That said, when
managing a CARE sharing platform, care must be taken to ensure an appropriate
consensus method is used to minimize the possibility of malicious actions and ensure a
stable and functioning system.

4.6.2. ldentification of Shareable Resources

The CARE model makes the assumption that partners are aware of the resources
available in the CAREcoNoMY. This was done to allow flexibility in how CARE is
implemented and the CARECONOMY is organized. While the model leaves the design
and analysis of resource identification to further research, we provided the following to

70

4.7. Related Work

aid the discussion:
e Bounty - Partners can post requests for artifacts to their GATEWAY.

e Gateway Inquiry - Partners can issue an inquiry about the availability of artifacts
to connected GATEWAYS.

e Replication of Metadata - Partners can replicate the metadata associated with
their artifacts that are available for sharing.

e Relationship Identification - The ombudsman can orchestrate the creation of a
graph identifying related artifacts and transmit these to partners.

4.7. Related Work

The belief that sharing security information among peers will improve the overall defensive
posture of the community has been well-established. For instance, after the Morris Worm
attack the U.S. government created CERT, and PDD-63 created ISACs to help combat
the perceived threat to critical infrastructure [9,132]. Providing academic rigor behind
the notion that sharing is critical, Gordon et al. evaluated the state of sharing and
developed an economic model that analyzed the organizational cost [149]. This work
was then expanded by Gal-Or et al. who used game theory to study the demand side
effects occurring under the current sharing paradigm [117]. Both works are critical to
understanding the major benefits that sharing provides to the participants and community
at large while also identifying the underlying flaws in the current system. Specifically
that sharing provides mutual benefits to security and cost savings, but the effects are
negated because the current sharing paradigm does not provide incentives to prevent
free riding and overcome participants’ concerns. Unfortunately, as shown in a recent
incentive study, the identification of incentives is still a ripe area for research [159].

Little research has been conducted about the technologies to enable sharing in the
security community. To address this, Sauerwein et al. perform an exploratory study of
twenty-two cyber threat intelligence platforms and the state of scientific research [30].
Their analysis identifies eight key findings and highlights the current issues of trust,
structure, speed, and overall need to migrate these systems from sharing IOCs to sharing
information across the Intelligence Cycle. Another notable work is PRACIS, which adds
format-preserving and homomorphic encryption to increase trust in how information is
exchanged by protecting the privacy of the request and requester [160].

The theoretical concept of smart contracts for formalizing and securing digital rela-
tionships dates back to the late 1990s [107]. One of the first implementations of this
concept based on PoW was KARMA [150]. In KARMA, the researchers devised a method
for overcoming freeloaders (free riding) in peer-to-peer file exchanges through the use
of a secure decentralized ledger. In a similar vein, Nakamoto proposed a hash-based

71

<
.
5
o+
o
©
<
9

4. Expanding the Architecture to Enable Collaborative Analysis and a Sharing
Marketplace

PoW system for payment, which is now famously named Bitcoin [102]. While Bitcoin’s
blockchain has given rise to numerous applications, its scripting language is not Turing
complete and difficult to retrofit. Ethereum addresses this issue and provides a blockchain
with a Turing-complete language with the possibility to implement smart contracts [109].
Expanding on the concepts of Ethereum, Kosba et al. present a blockchain based smart
contract system that incorporates transactional privacy, HAWK [113].

These works highlight many of the underlying problems and provide parts of the
solutions to the issues of sharing security information. However, these works only identify
the problems or provide solutions to specific issues that are surrounding the challenges of
sharing computer security artifacts. Our work combines and builds upon these works and
is the first to our knowledge that combines these concepts to tackle the holistic problem
of developing a framework for securely exchanging computer security artifacts across the
Intelligence Cycle, while overcoming the issues of privacy, secrecy, tradecraft, lineage,
structure, ledger, and incentives.

4.8. Summary

In this chapter, we presented a new model for sharing security artifacts, CARE. We
discussed how CARE breaks the existing sharing paradigm and alleviates many of the
issues with why sharing is often ineffective. We first discussed the need for the new
model by presenting a study of the current state of sharing and identified the associated
issues. We then show how CARE overcomes these issues by providing the ability to
exchange security artifacts across the DIKW model while preserving the artifacts’ lineage
and mitigating privacy and secrecy concerns. We then discuss the CAREcoONOMY
and describe how this cryptographically backed method incentivizes sharing through
the creation of a marketplace and provides new opportunities to encourage healthy
collaboration and develop trust. Finally, we discuss how CARE opens new possibilities
in how security groups can collaborate, governments can foster effective security practices,
and insurance companies can more accurately identify risk through the secure and
distributed ledger.

Together SKALD and CARE provide the architecture and model performing large-scale
investigations against computer security threats and collaborate these findings with peers.
The next chapter describes the prototype created from these theoretical foundations.

72

Chapter 5

Prototyping the Concepts

“Theory without practice cannot survive and dies as quickly as it lives.”

Leonardo da Vinci

SKALD and CARE provide the architectural blueprints for how to design a large-scale
and collaborative analytic system that supports investigations across the Intelligence
Cycle. In this chapter, we will introduce a working prototype for these concepts, named
Holmes Processing. In our description, we discuss our design decisions, the key features for
the components, and outline a subset of the included analytic Services. Furthermore, we
will introduce other relevant prototype and analytic work we have performed. Specifically,
an advanced VMI platform for efficient and large-scale dynamic analysis called Drakvuf.

5.1. Introduction

As discussed in the previous chapters, computer security tools are disjointed and do
not support an end-to-end analytic process. While efforts have been attempted to fuse
these tools together, they fall short because of a tightly coupled and monolithic design.
Furthermore, these efforts remain stove-piped and only support a single activity in the
Intelligence Cycle. This hinders the analysts’ ability to derive meaning from large sets
of artifacts in a reasonable time. More troubling though is that the current situation
forces a reactive defensive posture and one that cannot evolve with the latest trends in
malicious activity.

We developed SKALD and CARE to create the concepts needed to shift the current
paradigm in computer security. However, we created the Holmes Processing prototype to
develop a working system that realizes these concepts and help iterate over our concepts
using real-world examples. This proved to be a boon in refining SKALD and CARE.
More interestingly though, it allowed us to explore advanced engineering concepts such
as concurrent programming, large-scale architectures, and advanced analytic methods.
Furthermore, developing the Holmes Processing showed that our concepts are valid
through its ability to empower our research and perform real investigations against

73

5. Prototyping the Concepts

sophisticated and complex (malicious) actions. Adding validity to our claims, we have
been invited to speak about Holmes Processing and our derived work at numerous highly
acclaimed venues, such as Black Hat USA, Microsoft DCC, RSA USA, Hacktivity, and
DARPA [2-8].

In this chapter, we will present the architecture for Holmes Processing and describe its
key features. We will highlight how Holmes Processing helps break down an investigation
according to the Intelligence Cycle and enables analysts to view the derived artifacts
as part of a collective whole through the DIKW model. Thus, Holmes Processing fuses
together analytic specialties and empowers teams to collaborate. We will also present
how the design of Holmes Processing supports analysis across extremely large datasets,
remains flexible to incorporate changes, and is resilient to failures.

The Holmes Processing prototype makes the following main contributions:

e We present a working prototype for large-scale analysis across the Intelligence
Cycle.

e We explain the techniques used to make our prototype highly scalable, easily
incorporate new analytic methods, and remain resilient to failures.

e We detail the advanced engineering concepts that are incorporated into the design
of Holmes Processing.

e We present the analytic Services we created for enabling real computer security
investigations.

e We document our lessons learned to empower future efforts.

5.2. Architectural Overview

The Holmes Processing architecture is a “loosely coupled” microservices design based
on the concepts of SKALD and CARE. Similar to SKALD, it is composed of three main
components: Transport, Planners, and Services. Together these components create a
system that can perform large-scale analysis of security artifacts and empower teams of
specialists to collaborate while working through the process of the Intelligence Cycle.
The design of Holmes Processing creates a system that can scale, be resilient to failure,
and evolve. While there are multiple techniques used to achieve these goals, these are
afforded to the system due to its “loosely coupled” and distributed microservices design.
For instance, regarding scaling, the Holmes Processing’s design allows any component to
be easily distributed. Thus, multiple Planners of the same type can live in the system
and work together in parallel. Moreover, this pattern exists for the Transport and Service
components. In fact, we regularly spawn multiple Planners and Services of the same type
when operating Holmes Processing. Resiliency on the other hand is primarily achieved

74

5.3. Planners and Services

because key parts of the system are “loosely coupled” and not reliant on other aspects. As
such, failures in any part of the system do not propagate. Additionally, the replication of
components and orchestration of tasking to these components by their Planner allows the
system to pick up tasking where it left off or automatically reissue tasking when recovery
is not possible. In case of a pathological failure, the Planner is able to adjust the tasking,
resubmit the tasking to a specialized component that can handle the failure, or ship
the tasking to a failure queue for human intervention. Furthermore, this design allows
the system to evolve. Specifically, the “loosely coupled” design and abstraction from
the technology executing work allows parts of the system to change without requiring
adjustments to other parts of the system.

In this section, we will further explore the architecture of Holmes Processing, identify
where it fits in the Intelligence Cycle, and discuss our key design considerations.

5.3. Planners and Services

Each project in Holmes Processing is in essence a SKALD Planner along with their
relevant Services. These projects are designed to encapsulate a core function of the
Intelligence Cycle while also providing the foundations for creating an artifact based
computer security analytic system. While each project can be used individually, they are
designed to be combined to create a holistic system that can perform and investigation
according to the Intelligence Cycle. These projects are Holmes-Gateway, Holmes-Totem,
Holmes-Totem-Dynamic, Holmes-Storage, Holmes-Analytics, and Holmes-Presentation.
In the following, we will outline the goals of each project and highlight key features.

5.3.1. Holmes-Gateway

Holmes-Gateway provides the foundations needed for supporting the collection step of
the Intelligence Cycle. As such, Holmes-Gateway focuses on managing the ingestion
of artifacts and taskings into the Holmes Processing system while allowing multiple
individuals to work together by providing the foundation for access control and user
segregation. In total, its primary purpose is to provide a single interface for analysts to
submit artifacts and taskings while preventing analysts from directly interfacing with
other components of the system, except for Holmes-Presentation. The other purpose of
Holmes-Gateway is to orchestrate the execution of Services that ease the burden on the
analysts and provide key functionality. Together these Services:

e Authenticate users and ensure they have the appropriate permissions for their
request.

e Validate that submissions are properly formatted.

e Provide an interface for collaborating with partners.

75

5. Prototyping the Concepts

e Attach meta-information about the submission and who submitted the tasking.
e Automate the tasking of analytics for newly submitted artifacts.
e Push packaged artifacts and taskings to the appropriate Transport channel.

We developed Holmes-Gateway using the Go programming language. Go was selected
for a few reasons. The first reason was because we wanted to explore concurrency with
the CSP model. Since Go is one of the few languages based upon CSP, this was a natural
choice. The second reason is that Go is a simple language with a small learning curve. As
such, the Planner could be developed and maintained by a cadre of graduate assistance.
For the most part, we found implementing the Planner in Go to be fairly straightforward
and were impressed with its simplicity. Additionally, Services in Holmes-Gateway were
created as separate programming classes and not as true microservices. This is a partial
deviation from the goal in SKALD to have all Services function as separate entities.
However, we chose to do this because the Services were lightweight and not overly
complex. For instance, these Services perform authentication, validate that submitted
tasking is properly formatted, attach submission details (which analysts, date and time,
source, etc), and extract meta-information about submitted Data artifacts, and allow
the creation of rules for automated tasking based on mime-type. As such, we worried
that the overhead from providing a more strict microservices design would negatively
impact performance.

Of note, the current implementation for collaboration more closely follows the design
outlined in SKALD. As such, it is currently based on ACL rules and configuration details
that describe what analysts and partnered corporations can task. While we originally
included a more robust collaboration method that achieved some of the goals outlined in
CARE, this was scratched from the current implementation. We did this because we
found the method did not overcome many of the challenges faced with sharing. This is
what led us to research a better way forward and create the concepts that evolved into

the CARE model. In the future, we plan incorporating additional Services that achieve
goals of CARE.

5.3.2. Holmes-Totem and Holmes-Totem-Dynamic

Holmes Processing implements the INVESTIGATION Planner as two separate projects,
Holmes-Totem and Holmes-Totem-Dynamic, to realize Intelligence Cycle’s Process and
Exploitation step. Together, these projects leverage Data based analytic methods to
transform Data into Information. Specifically, by orchestrating the tasking of Services
that perform static analysis, dynamic analysis, and gathering Information from 3™
party sources. Of additional note, both projects are artifact agnostic and support the
analysis of any type of file or identifier (such as a domain name or IP address). The
only requirement for extracting Information from an artifact is that the Planner has a
Service that is capable of performing the analytic operation.

76

5.3. Planners and Services

Submit task Task service

L »
Submit result Gather results
. Transport - Moves data between . Planner - Orchestrates execution of - Executes work
planners taskings
—»>Communication - RESTful - AMQP

Figure 5.1.: Architecture of Holmes-Totem

As noted above, we split the development efforts of the INVESTIGATION Planner into
two separate projects. The first project, Holmes-Totem was created to optimize the
execution of Services that display a deterministic run-time or have a short execution
time. In practice, Services in Holmes-Totem predominately execute static analysis and
gathering Information from 3" party providers. The second project, Holmes-Totem-
Dynamic, focuses on the challenges of executing Services that have an indeterministic
run-time or take a long time to complete, as is typically seen with dynamic analysis
and interfacing with 3'¢ party providers that perform a function on our behalf; for
example, when submitting a new file to VirusTotal for analysis. Nevertheless, this
split was done mainly for practical reasons that are related to academic research and
expediency. Specifically, Holmes-Totem allowed us to study the Actor Model, while
Holmes-Totem-Dynamic enabled us to explore the CSP model and investigate techniques
for managing Services with an indeterministic run-time.

Holmes-Totem and Holmes-Totem-Dynamic have two main differences. The first
difference is that Holmes-Totem was developed using the Scala programming language
and the Akka toolkit for concurrency using the Actor Model, while Holmes-Totem-
Dynamic was created using the Go programming language and leverages its native
support for CSP. The other major difference is in how Holmes-Totem and Holmes-Totem-
Dynamic task and monitor the execution of a Service. In Holmes-Totem, tasking feeds
directly to a Service, and the Planner leaves a connection open to receive the results,
as shown in Figure 5.1. This paradigm improves performance by reducing network
latency by not requiring that a communication path be reopened and removing the wait
time caused by a polling operation to check if the analytic task being performed by
a Service is complete. However, we found this method to be inefficient when dealing

7

5. Prototyping the Concepts

Totem-Dynamic

Submit task Task service

Gather results

feed

- submit
Submit result

Transport - Moves data between Planner - Orchestrates execution of . Service — Executes work
planners taskings

—>Communication - RESTful —> Communication - AMQP

Figure 5.2.: Architecture of Holmes-Totem-Dynamic

with Services that are long-running or a have an indeterministic execution time. This
is because the Planner leaves the communication path open and is unable to move on
to the next task or reallocate resources. To overcome this challenge, Holmes-Totem-
Dynamic incorporates an additional step, named check, when executing a Service and
uses AMQP for communicating between each step, as shown in Figure 5.2. As such,
Holmes-Totem-Dynamic first submits a task to a Service using the feed function and then
submits a notification message via AMQP. The next step, check, receives the message
and begins a polling operation to monitor the execution of the Service to identify when
it is finished. When it has identified that a Service has completed its task, it sends a
notification message, again via AMQP, that the Service has finished and where to receive
the results. The final step, submit, receives the AMQP message and gathers the results
from the Service and performs any post-processing task. Unlike Holmes-Totem, this
process provides the benefit of isolating each step of the Service to complete its execution
and staging the results due to the use of queuing thought AMQP messaging. Additionally,
the reliance on AMQP allows Holmes-Totem-Dynamic to record the execution state
of a Service and thereby allows Holmes-Totem-Dynamic to resume the last state of
execution of a Service in cases of a Planner failure. As an additional benefit, this
method allows Holmes-Totem-Dynamic to distribute the execution steps between any
Holmes-Totem-Dynamic Planner. As a drawback, this method increases the complexity
of executing and creating a Service. With the added downside of imposing performance
penalties against short running tasks due to network latency.

In both Holmes-Totem and Holmes-Totem-Dynamic, Services contain the parts of
the Planner that perform the actual analytic operation for extracting Information from

78

5.3. Planners and Services

Name Type Description

ASNMeta 3'd party Identifies the registered Autonomous System Number (ASN) for an IP address
cfg Static analysis Extracts the Control Flow Graph (CFG) from a binary using Nucleus [161]
cfgangr Static analysis Extracts the CFG from a binary using Angr [162]

Cuckoo Dynamic analysis ~ Detonates a binary or Uniform Resource Locator (URL) using Cuckoo Sandbox
DNSMeta 34 party Identifies the DNS records and the true Time to Live (T'TL) for a domain
Drakvuf Dynamic analysis Detonates a binary using the DRAKVUF VMI analysis system

goGadget Static analysis Extracts the gadgets from a binary using ROPGadget [163]

objDump Static analysis Returns details of a binary derived from objdump

PassiveTotal 3™ party Returns historic DNS records from Passive Total

PDFParse Static analysis Extracts the elements of a Portable Document Format (PDF) file [164]

PEiD Static analysis Identifies the compiler, packer, and other build tools used to create a binary
PElInfo Static analysis Extracts the PE32 headers from a PE32 file using PEInfo [165]

PEMeta Static analysis Extracts the PE32 headers from a PE32 file

Richheader Static analysis Extracts the Rich Header from a PE32 file

Shodan 3'd party Returns information about an IP from Shodan

VirusTotal 34 party Returns information about an binary from VirusTotal

Yara Static analysis Performs Yara signature matching with a default rule pack or custom rule
ZipMeta Static analysis Extracts the meta information contained in a zip file

Table 5.1.: Included analytic Services in Holmes-Totem and Holmes-Totem-Dynamic

Data. To date, we have created a handful of private Services and eighteen public Services
that are detailed in Table 5.1. While some Services are straightforward, many of them
were complex undertakings and were created to support the efforts of separate research
projects. For instance, Drakvuf was developed by Tamas Lengyel as part of his PhD
and co-authored by the author of this dissertation. This work was developed to provide
a scalable and stealthy method for dynamic analysis that uses an agentless approach
with VMI; in turn, allowing analysts to more accurately record how an artifact being
analyzed behaves. In addition, PEMeta Service was made to create a new method for
extracting the headers of a PE32 file that was ten times faster than PEInfo while also
providing a more accurate extraction of these headers. This Service was used to gather
the Information used to enable the research of multiple knowledge based analytics using
machine learning. Lastly, the Richheader Service is the first publicly available method
that accurately extracts this obscure and obfuscated PE32 header, while also identifying
the meaning behind the features. This work empowers teams of analysts to perform
rapid triage of PE32 files, identify binaries that are similar in nature, and fingerprint the
build environment. The Rich Header work will be further discussed in Chapter 6.

While the Holmes-Totem and Holmes-Totem-Dynamic projects include these Services
as part of the repository, it is important to note a few key features. The first feature is
that both projects provide support for Services to be locally or remotely deployed. That
said, in cases where the Service is locally deployed, both systems will use a RAM Disk
to optimize the transmission of the artifact to the tasked Services to reduce network
load. This can provide significant performance gains when an analyst desires to execute
multiple Services against the same artifact. The second feature is that there are no
hard requirements for which communication method is used to communicate between

79

5. Prototyping the Concepts

a Planner and Service. While the Services packaged by both projects used a RESTful
interface for communication, this is not necessary and in both projects the incorporation
of a different protocol is painless. For instance, in Holmes-Totem, the Scala code file
contains the logic for how the project communicates with the Service. As such, replacing
the RESTful communication method with protobuf would only require changes to this
Service specific file. The last feature is that both projects encapsulate Services as Docker
containers and use Docker Compose for container management. This is to minimize the
dependency management of the system while also providing benefits from a practical
and security perspective. With respect to scaling, this allowed the quick spawning of
replica Services when a Service became overburdened. Furthermore, when faced with
a misbehaving Service, the Service could be restarted with a single command. Lastly,
the containerization provided further robustness and security because its execution and
failures were encapsulated and did not easily propagate to other parts of the system.

It is worthwhile to state that we originally attempted to extend CRITSs to support the
goals of the SKALD INVESTIGATION Planner. To this end, we significantly enhanced
CRITs performance and submitted our patches to the CRITs project. However, we
encountered numerous challenges that forced us to abandon this task. The first issue
was that CRITS’ core used a considerable amount of resources when executing a CRITSs
Service. Through our investigation, and the support we received from the CRITSs’ lead
developers, it was determined that the issue was caused by CRITS’ reliance on spawning
Services through the Apache Web Server and the inefficiencies of Python. Unfortunately,
this limited our ability to submit large volumes of taskings because of physical resource
constraints. Another challenge was that if a CRITs Service failed, the error would
replicate through the entire system or consume resources that could not be reallocated
in time. This became an intractable issue and one that caused a hard limit on executing
more than fifty thousand tasks at the same time without significant cool-down periods. In
practice, we found that we were only able to run one thousand Services every hour. The
final major challenge was that we could not scale CRITs beyond instantiating additional
database shards. Unfortunately, this could not be overcome with simple patches. This
is because CRITs monolithic design with “tightly coupled” Services required that the
entire core be rewritten. Deploying a load balancer in front of multiple CRITSs’ instances
and creating an orchestration engine that recovered the instances when they failed would
have alleviated the problem. However, the solution is a brute force approach that will
reappear as the volume of artifacts and tasks increases. Furthermore, the solution would
have done nothing to overcome the issue of retrieving artifacts. Thankfully, the CRITs
engineers were helpful and even reviewed the pre-publication version of SKALD to help
refine the design.

5.3.3. Holmes-Storage

Holmes-Storage realizes the goals of the STORAGE Planner that are outlined by SKALD
and CARE. At its primary level, Holmes-Storage provides an abstraction layer for the

80

5.3. Planners and Services

Name Type Description

Cassandra textural Distributed non-relational database inspired by Amazon’s Dynamo and Google’s BigTable
CRITs textural and Object Legacy support for the popular analytic triage solution by MITRE

Flat file Object Hosts files located in a folder

MongoDB textural Distributed document-oriented NoSQL database

S3 Object Object-store databases compatible with Amazon’s S3 protocol

Table 5.2.: Supported database back-ends in Holmes-Storage

interactions with its database Services and maintains a central repository for artifacts.
This repository segregates artifacts according to the DIKW model and provides optimal
schemes, across multiple different databases, that support large-scale analytics, internal
queries from other Holmes Processing components, and user interactions. In doing so,
Holmes-Storage provides a support function for Holmes Processing that helps facilitate
multiple steps of the Intelligence Cycle. These steps are namely Processing and Exploita-
tion by organizing artifacts in standardized formation and Dissemination and Integration
by adding newly derives artifacts into the systems collective whole. While not an entire
list, Holmes-Storage provides the following capabilities:

e Automatic fetching analytic results via AMQP.

e Receiving new artifacts via a RESTful API.

e Providing a RESTful API for artifact retrieval.

e Managing Holmes Processing’s deployment-specific configuration details.

e Segregating artifacts according to internal policy requirements.

e De-duplicating Data artifacts while appending details to their textural records.

e Optimizing the schemes for large-scale analytics, user interactions, and internal
queries.

e Enriching artifacts with meta-information that support usability, de-duplication,
the ACL model, and archiving.

e Compressing artifacts to minimize network overhead.

We developed Holmes-Storage using the Go programming language and design it to
be a reference implementation for a SKALD STORAGE Planner while being optimized
for our use case. However, our primary concern with creating Holmes-Storage was to
overcome the challenges of locking into one database technology to provide flexibility in
how artifacts were stored and allow Holmes Processing to be attached to legacy systems.
This challenge was overcome by providing an abstraction layer that could select various

81

5. Prototyping the Concepts

storage Services for different database back-ends. At the time of this writing, five different
database types are supported, as shown in Table 5.2. However, it is important to note,
that any of these back-ends can be used or combined together. For instance, a user
of Holmes-Storage can use a database specialized on the storage of objects for large
binary blobs while delegating the storage of analytic results in a database that is better
suited for text, such as NoSQL. However, as we were primarily concerned with efficient
large-scale analytics, we eventually focused our efforts with S3 and Cassandra and have
heavily optimized their interactions. As a testament to to this paradigm, our internal
deployment regularly contains 10s of millions of Data artifacts and five times that volume
in extracted Information and generated Knowledge. However, even with this volume
we are able to receive the results of our queries in near real-time and support intensive
machine learning and statistical operations across the entire dataset in under a minute.

MongoDB was our first choice as a database back-end. This was because of its simplicity
with managing textural artifacts and we already had a large MongoDB cluster. However,
we encountered performance issues when we started to reach millions of stored artifacts
and we found it cumbersome to use with machine learning engines. While we could have
continued to scale the database Service, this would increase the cost beyond a university
budget. Our first solution allowed Holmes-Storage to use an S3 compatible database as
an object store. We found this solution to be highly efficient, allowing the system to
easily leverage the cloud, and significantly increasing our performance. Unfortunately,
we still had performance issues when dealing with artifacts further up the DIKW chain
that were more textural in nature. We explored a few different solutions but eventually
selected Cassandra. Our reasons for doing this is because we found its ability to scale
while remaining to be highly performant to be down right remarkable. Furthermore, it
supported complex machine learning queries with remarkable efficiency. That all said, we
still expanded our back-end support to show the power in the Holmes-Storage design and
improved ease of use. Specifically, we created the ability to support a flat-file style object
storage for small testing deployment and added legacy support for CRITs back-end. We
also experimented with using Apache Hadoop HDFS but eventually dropped support
because S3 was easier to use and we could not identify any performance gains. Of note,
Holmes-Storage is not limited to only using these database back-ends. Expanding support
to include other technologies would only require a class file that includes the logic for how
Holmes-Storage should interact with the Service. Thus, if a user of Holmes Processing
desires to incorporate an Elastic style index for searching or would like to incorporate
AMQP notifications for stream processing, the amount of effort required should not
exceed a few days.

We optimized the system for large-scale analytics and easy of use by mainly focusing
on the Cassandra scheme design. Our first attempt was to provide support for Cassandra
SASI indexing. This creates an index for searching within the Cassandra ecosystem.
While initially we found this to be highly effective, we ran into trouble when our
datasets expanded in size. Unfortunately, this identified a bug in the Cassandra SASI
implementation and we were advised by the lead developers of Cassandra to drop support

82

5.3. Planners and Services

until they can identify a way forward. Fortunately, this effort led us to Material Views.
Under this storage paradigm, the database creates multiple tables that contain the same
data but under different scheme designs. This allowed us to create separate tables for
artifacts that were optimized for machine learning queries, searching, retrieving specific
artifacts, and standard user queries. This proved to be highly efficient from both a storage
standpoint and drastically reduced our query time. The only remaining optimization
we implemented was to compress stored textural artifacts to reduce the volume that
needed to transit the network. While seemingly trivial, this resulted in massive benefits.
Specifically, it reduced the time it took for a Knowledge based analytic method using link
analysis from two-and-a-half years to minutes. Collectively, these optimizations are a
major achievement and have allowed our analysts to perform investigations and research
that would normally not be achievable.

In the future, we plan to expand Holmes-Storage to increase functionality and automate
administrative features. Regarding functionality, we plan to add support for search
engines technology such as Elastic or Solr. This is because while Apache Spark is
able to accomplish the goals of searching, it requires support from an INTERROGATION
style Planner. With respect to administrative features, we intend to provide three core
aspects. The first goal is to support maintaining the database Services by automating
administrative tasks such as repair and compaction. The second goal is to embed an
optimized proxy for communicating with database clusters. The third goal is to allow
Holmes-Storage to automatically scale and de-scale the database back-ends based on
the load. As a more research-oriented expansion, we also desire to investigate ways to
automate the scheme design to improve the performance of Holmes-Storage based on
usage.

5.3.4. Holmes-Analytics

Holmes-Analytics has two primary missions that are akin to the Production step in
the Intelligence Cycle. The first mission is to orchestrate Information based analytic
methods to enable the creation of Knowledge. The second mission it to present an analyst
with various representations of the artifacts contained in Holmes Processing to support
their investigations and create Wisdom. Together Holmes-Analytics supports computer
security analysts with understanding the copious volumes of artifacts they are presented
with and making more effective judgments and mitigation actions. Furthermore, this
allows the analysts to drive the investigations because they are not restricted to only
being able to work with small sets of artifacts and can manipulate the viewing of artifacts
as best suits the individual.

The first mission is achieved through the scheduling of two categories of Services in
Holmes-Analytics, analytic engine and analytic service. Together these perform advanced
analytics using techniques such as machine learning, link analysis, and statistics to make
sense out of sets of Information. These Services have been split into two categories
because advanced analytic techniques often use multiple algorithms and analytic engines

83

5. Prototyping the Concepts

Analytics Supervisor

Analytic Service
Manager

Analytic Engine
Manager

Replicator

AMQP Consumer Scheduler

Analytic Engine

[l Planner - Part of the Planner's core [ll] Service - Executes work

Figure 5.3.: Architecture for Holmes-Analytics

to achieve their goals. As a simple example, an analytic work-flow could leverage
the Apache Spark analytic engine to gather Information, perform feature extraction,
and vectorize the results while using Google’s TensorFlow for performing clustering
operations. To this end, our internal deployment of Holmes Processing provides analytic
engine Services for Apache Spark, Spark GraphX, TensorFlow, and multiple engines that
fall under the Apache Hadoop family, while our analytic Service implements the logic
required for the analysis operation; such as, performing clustering, similarity matching,
automatic link analysis, and gathering statistics from the artifacts.

The second mission is handled through the orchestration of Services that focus on
providing access to artifacts through an API or display engine. This is a deliberate
separation because the process of manipulating how artifacts are displayed is a vital
analytic step in its own right. For example, understanding the results of graph analysis
and manipulating how the graph is displayed can provide vital insights for a human
analyst. Additionally, we strongly felt that an analyst should not be limited to how
a tool says an artifact should be rendered and should be free to adjust this rendering
as she sees fit, including using other tools that are outside of Holmes Processing. At
this time, we have implemented Services that empower manipulating artifacts through
Apache Zeppelin, a website for viewing artifacts and pivoting on results, and an API for
interfacing with custom scripts and 3'% party analytic tools.

Our initial attempts for creating Holmes-Analytics was centered on Apache Hadoop
and web-based front-ends. However, this became intractable due to the steep learning
curve it imposed on the analysts and the DevOps nightmare caused by maintaining the
multiple analytic engines. Through multiple iterations—and frustrations—we settled
on a design that leveraged Scala and the Akka toolkit to achieve our desired result. In

84

5.3. Planners and Services

particular, Scala with Akka allowed us to handle asynchronous requests and support
multi-tenancy with a simple design. This model also allowed us to remove the analysts
from the details for the infrastructure and let them focus on their analytic algorithm. As
shown in Figure 5.3, Holmes-Analytics is composed of nine types of actors:

e Analytic Supervisor - Acts as the main overseer and initializes the Core, Analytic
Engine Manager, and Analytic Service Manager.

e Core - Oversees the execution of the Web Server, AMQP Consumer, and Scheduler.
e Web Server - Provides a RESTful API and web front-ends.

e AMQP Consumer - Enables AMQP based communications.

e Scheduler - Schedules the creation of a Job and manages its execution.

e Job - Enables the execution of an analytic task.

e Analytic Engine Manager - Orchestrates the execution of an Analytic Engine
Seruvice.

e Analytic Engine - Provides the logic needed for interacting with an analytic
engine Service and encapsulates its execution.

e Analytic Service Manager - Orchestrates the execution of the logic for an
analytic Service.

We contemplated incorporating frameworks such as Apache Livy and Apache Beam
to accomplish the goals of Holmes-Analytics. The rationale was that Apache Livy has
promise for enabling remote queries and supporting multi-tenancy through an API, while
Apache Beam appears ideal for creating algorithms that are analytic engine agnostic.
Unfortunately, these products were too immature at the time of our development. As
such, Holmes-Analytics implements its own methods for multi-tenancy, remote queries
through AMQP and a RESTful API, and is abstracting the algorithm logic from the
analytic engine. However, we plan to monitor the progress of Apache Beam and Apache
Livy and incorporate these projects when it makes sense.

5.3.5. Presentation

Holmes-Presentation is a simple but necessary Planner. Its single purpose is to provide
a unified point of entry into Holmes Processing and manage the flow of communications
from outside the system, thus helping to facilitate the Dissemination and Integration
step of the Intelligence Cycle. To this end, we implemented Holmes-Presentation as an
HAProxy server that incorporates authentication. As such, it orchestrates the connections
from outside the Holmes Processing system and provides a layer of abstraction from
internal components.

85

5. Prototyping the Concepts

Upload a sample Send out tasks
> g Investigation
Submit task t

Service
Display results
Request analysis

Presentation e INvestigation

y

Interrogation Storage

Gather objects

Submit results

—Transport - RESTful - AMQP —>Transport - RESTful & AMQP

Figure 5.4.: Communication Flow in Holmes Processing

5.4. Transport

The Transport component in Holmes Processing manages the communication between
other components in the system. Similar to SKALD, this has been implemented more as a
concept and a set of best practices instead of an independent project. As such, the other
Planners in Holmes Processing will automatically identify how to effectively communicate
and configure the servers providing the functionality. In effect, the Transport component
is based on a RESTful API and the AMQP protocol. We selected these two methods
because they are easily understood, flexible, and have robust enterprise solutions. For
instance, the RESTful protocol is well suited for facilitating direct interactions. However,
when performance, scheduling, and horizontal scaling is required, AMQP provides an
efficient lightweight transport mechanism that inherently queues tasking.

The specific communication methods between components in Holmes Processing are
illustrated in Figure 5.4. As can be determined, the managing of large-scale tasking is
effectively delegated to AMQP. For instance, Holmes-Gateway provides tasking to Holmes-
Totem and Holmes-Totem-Dynamic using AMQP. This allows Holmes Processing to
receive massive amounts of Data based analytic taskings while enabling an indeterminate
number of Holmes-Totem and Holmes-Totem-Dynamic Planners to be instantiated. When
a new INVESTIGATION Planner is instantiated, Holmes Processing will automatically
register these Planners with the AMQP server and the Planners will begin to pull the
tasking from the AMQP server. In practice, this has allowed us to scale the analysis
of Data to over a hundred INVESTIGATION Planners with minimal effort and overhead.

86

5.5. Lessons Learned

Furthermore, using AMQP allows Holmes-Storage to manage the burden of receiving
massive quantities of analytic results without imposing delays or overwhelming the
system. This is done by allowing Holmes-Storage to pull analytic results, provided
by Holmes-Totem or Holmes-Totem-Dynamic, in bulk from the AMQP server. Thus,
the influx of network connectivity directly against Holmes-Storage is minimized while
allowing additional Holmes-Storage Planners to be instantiated and enabling the database
technologies to manage their own workload. That said, when direct asynchronous
interaction is required, such as gathering a Data artifact or responding to an API query,
the RESTful protocol is better suited.

Our internal deployment of Holmes Processing currently uses Python’s Tornado, Go’s
HTTP library, and Scala HTTP to implement a RESTful API. These were selected
because they are easy of use and exhibit high performance characteristics. On the other
hand, we implemented the AMQP protocol and server using RabbitMQ. This was selected
because it is simple to deploy and we have found no reason to look for an alternative.
While the approach of using AMQP has allowed the components of Holmes Processing
to efficiently communicate and remove networking bottlenecks, it does come at a cost.
Namely, it increased the complexity of a new deployment and requires an administrator to
be concerned with an additional server. As Holmes Processing evolves, we plan to research
the feasibility of replacing AMQP with a more tightly coupled design such as Akka
Cluster. In theory, this will allow the Planners of Holmes Processing to communicate
with the benefits of AMQP without requiring an external AMQP-compliant server to
be deployed. Adding a further benefit, this will allow Transport to streamline the ACL
implementation between all Planners and allow the addition of logic to automatically
scale and manage Holmes Processing Planners.

5.5. Lessons Learned

We learned many valuable lessons through the process of implementing Holmes Processing
and leveraging its capabilities. In this section, we will discuss a few highlights.

5.5.1. Languages

We originally used Python for creating the INVESTIGATION Planner, Holmes-Totem,
and a number of extraction Services. While this simplified development and allowed for
a clear comparison with CRITSs, the limitations of the Python language created many
challenges.

One critical issue stemmed from Python’s immature support for multiprocessing. When
dealing with extremely large tasks, this caused Holmes Processing to require an excessive
amount of resources and we identified flaws in execution due to memory caps imposed by
the Python interpreter. While we originally worked to optimize our Python code base,
these efforts only alleviated the immediate problems and the overall challenges persisted.

87

5. Prototyping the Concepts

We finally solved the challenges by implementing the INVESTIGATION Planner using
a language designed for concurrent execution, Scala with the Akka toolkit. Another
challenge we identified was that Services written in Python displayed clear performance
penalties. While this was more or less fine for simple Services, the penalty to execution
time in intensive operations greatly slowed down the system when dealing with large
task loads.

5.5.2. Actor versus CSP

The CSP and Actor Model have intensive followings with clear lines of loyalty. To explore
this, we leveraged both models when creating Planners in Holmes Processing. We found
that both models provided major benefits for concurrent execution. In particular, we
found that CSP performed remarkably well for Holmes-Storage and Holmes-Gateway
and had a reduced development learning curve. However, we found that the Actor
Model’s asynchronous nature provided benefits when orchestrating the execution of
multiple Services. Namely, toolkits designed around the Actor Model provided native
support for robust messaging. This allowed us to achieve our implementation goals, and
some, with a smaller code base and less system complexity. Unfortunately, this caused
a steeper development learning curve as it is more challenging to reason about. While
we acknowledge that the noticed differences can be due to the languages and toolkits
we selected, we found this pattern to exist in other implementations of these models.
That said, we overall found that the Actor Model was well-suited to the challenges in
performing an analysis of computer security artifacts.

5.5.3. The DIKW Model and Loosely Coupled Design

No design is perfect and will stand the test of time. We need to constantly seek to better
our methods and leverage what we know to identify new and better ways forward. The
constant evolution that occurs in computer security highlights this principle. Fortunately,
we found that segregating artifacts according to the DIKW model and imposing a
“loosely coupled” design made evolving the system and exploring new analytic methods
an easy task. As an example, when leveraging Holmes Processing for researching new
information based analytic techniques the process became simple and quick. We found
that researchers began to only worry about how to tweak which features were being
selected and how best to design their algorithm. This is because the Information already
existed in the system and the time required to extract additional Information was no
longer required. Furthermore, the “loosely coupled” design allowed the researchers to be
ignorant in how the Information was extracted in the first place. In another example, we
found that when issues arose in any Service the process for adjusting that Service was
remarkably simple. In particular, the maintainer only needed to focus on the Service
code and not how other parts of the system interacted. In practice, this allowed changes
in the system to occur in days if not the same day.

38

5.6. Future Work

5.6. Future Work

The work of a prototype is never done. In this section, we will discuss major efforts we
plan to undertake in the near future. Specifically, how to improve the INVESTIGATION
Planner, enhance system administration and management, and provide a robust ACL
model.

5.6.1. Merge the Investigation Planners

The INVESTIGATION Planner for Holmes Processing is currently split into two projects,
Holmes-Totem and Holmes-Totem-Dynamic. This was done to reduce the complexity
required to design a Planner that can manage both the execution of Services with a
short and deterministic execution time while also supporting Services with a long and
indeterministic execution time. Furthermore, splitting the Planner into two parts also
allowed the study of the Actor Model versus the CSP model. While this was adequate
for research, this greatly increases the complexity of the system. Moving forward, we
plan to merge these Planners.

5.6.2. Deployment and System Management

Holmes Processing is a working prototype that has been used for complex investigations
and academic research. However, it is still an academic prototype and simplifying the
administration of the system was not a priority. To gain wider adoption, we plan to
address this issue by easing the deployment and management of Holmes Processing.
Specifically, by allowing automatic deployments using Kubernetes, Mesos DC/OS, and
other DevOps tools. Furthermore, we plan to remove the requirement for Apache Hadoop
when deploying Holmes-Analytics.

5.6.3. Improve ACL

Security artifacts have associated sensitivities and restrictions that require special han-
dling. To accommodate these requirements, security analytic systems need to incorporate
a design that supports isolation and an appropriate ACL model. The most basic re-
quirement for an ACL model of this type is to segregate Data and associated artifacts
by the source of the Data and/or the submitting user. While most existing analytic
systems use this model, this model incurs analytic limitation and can expose sensitive
details. For instance, this type of model creates an all-or-nothing situation for access.
Specifically, there is no distinction between types of artifacts, where an artifact lives
along the DIKW model, and analytic task. As such, an analyst focusing on generating
Knowledge using machine learning would require full access to the source of the Data
and all associated artifacts. Additionally, this model does not allow limited access to
sensitive or rate limited analytic capabilities.

39

5. Prototyping the Concepts

Holmes Processing only implements the foundations on which to build a robust ACL
model. Namely, by allowing a fine-grained level of isolation between system components
while providing flexibility in how artifacts are stored and attaching descriptive metadata.
However, the prototype does not currently leverage these features beyond the traditional
ACL model used in other systems. In future work, we plan to research how to replace
the existing ACL. While the new model is still being researched, we currently envision
the model to grant access based on a User, Capability, Source, and Meta-tags. As such,
artifacts can be restricted based on their type, system capabilities or Services can be
protected and controlled, sensitive sources and operations are still guarded, and the
execution of a Service does not require an analyst to have access to every artifact.

5.6.4. Providing Native Streaming Support

We heavily contemplated implementing stream processing in Holmes Processing. However,
these efforts were always abandoned because streaming is more of a function that is
better suited in a production system. Specifically, as we were focused on research and
performing static investigations. As such, Holmes Processing did not require optimizing
the continual collection and processing of new artifacts. That said, enabling stream
processing is a straightforward task and one we desire to accomplish in the near future.
An astute observer of the code base will notice that most of the functionally needed for
streaming is implemented but not advertised.

5.7. Summary

This chapter introduced the Holmes Processing prototype that was developed from
the concepts introduced in Chapters 3 and 4. Holmes Processing enables computer
security investigations to work across the steps of the Intelligence Cycle and view the
derived artifacts as part of a collective whole. As a result, analytic specialties are fused
together and teams are able to effectively collaborate. Furthermore, the design of Holmes
Processing allows the system to support extremely large datasets, remain flexible to
incorporate changes, and be resilient to failures. For instance, the addition of new
Information extraction Services is painless and the developer is not burdened with details
for how the entire system operates. Additionally, analysts working to generate Knowledge
from Information can leverage the work from their peers and are not concerned with
how the Information was created; all while allowing the analysts to work with a corpus
of 10s of millions of artifacts in near real-time.

While the prototype is academic in nature and not a robust product, it has been used
to empowered research and perform real investigation against sophisticated and complex
actors [31-36]. Adding validity to our concepts, we have been invited to speak about
Holmes Processing and our derived work at numerous highly acclaimed venues, such as
Black Hat USA, Microsoft DCC, RSA USA, Hacktivity, and DARPA [2-8].

90

5.7. Summary

In the next chapter, we will begin to explore how to leverage Holmes Processing to
perform a real investigation. We do this by presenting a case study that made a significant
impact in the security community.

91

Chapter 0 |

Proving the Concept: PE32 Malware Triage
and Similarity Matching

‘Information is the oil of the 21st century, and analytics is the combustion
engine.”

Peter Sondergaard

The previous parts of this dissertation focused on the concepts that went into the design
and architecture of a system that empowers analysts to function across the Intelligence
Cycle and pool the collective knowledge and resources of the community together. This
system enables teams to work together while performing large-scale analysis and complex
investigations. In this chapter, we explore the paradigm shift these concepts empower;
namely, the process and the philosophy behind how investigations can be performed and
how individual skills can be leveraged together to tackle the challenges computer security
analysts face.

We begin this discussion by using Holmes Processing and its application to the
Intelligence Cycle to study a hidden PE32 field known as the Rich Header. During
this process the team built upon each others unique skill sets and created an analytic
pipeline that could perform rapid analysis across 964,816 malware samples. By working
together and processing this large volume of Data, the team performed the first accurate
assessment of the Rich Header. In doing so, they were able to uncovered the secrets of the
Rich Header and identified how to extract the Information that Rich Header clandestinely
contains. Though the identification of anomalies they observed during this process, the
team then created a method that is able to quickly identify post-modified and obfuscated
binaries through anomalies in the header. The team then worked to demonstrate how
the now revealed Information contained in the Rich Header can derive Knowledge that
can be leveraged to perform rapid triage across millions of samples, including packed
and obfuscated binaries. This was done by exhibiting the Rich Header’s utility in triage
by presenting a proof of concept similarity matching algorithm which is solely based
on the contents of the Rich Header. With this algorithm the demonstrate how the
contents of the Rich Header can be used to identify similar malware, different versions of

93

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

malware, and when malware has been built under different build environments; revealing
potentially distinct actors. Furthermore, we are able to perform these operations in near
real-time, less than 6.73 ms on commodity hardware across our studied samples. As a
result, we establish that this little-studied header in the PE32 format is a valuable asset
for security analysts and has a breadth of future potential. To put it differently, we
demonstrate the power of using the concepts presented in this dissertation for performing
complex computer security investigations.

6.1. Introduction

The sheer volume of malware samples that analysts have to contend with makes thorough
analysis and understanding of every sample impractical. As a result, effective and timely
triaging techniques are vital for analysts to make sense of the collective Information and
focus their limited time on agglomerated tasks through uncovering commonalities and
similar variants of malicious software. This in turn, allows analysis to better hone in
their effort and avoid wasting costly cycles on previously analyzed or unrelated samples.
Unfortunately, it is common practice for malware authors to design malware that hinders
automated analysis and otherwise thwart triaging efforts; thereby allowing malware to
operate under the radar for a longer period of time.

One of the common practices used in triaging samples is to leverage header information
from the Portable Executable file format (PE32) [34,166,167]. This is primarily done as
the derived Knowledge that can: (i) reveal how the executable was built and who built it,
(77) provide an understanding of what the executable does, and (iii) identify entry points
for disclosing packed and obfuscated code. For example, when investigating the Rustock
Rootkit, the PE32 Headers identified the location of the first deobfuscation routine [167].
Additionally, numerous clustering and similarity matching algorithms are often exclusively
based on the Information derived from the PE32 file format [67,68,168,169].

Unfortunately, malware authors are well aware of the valuable Information contained
in the PE32 file format. As a result, they routinely take steps to strip or otherwise
distort any useful Information from the PE32 format through packing binaries, adjusting
compiler flags, and manually removing Information contained in the headers [170,171].
While unpacking malware and performing manual reverse engineering can recover this
useful Information, the process is extremely costly. As stated by Yan et al. [172], “Who
has the time to reverse all the bytecodes given that security researchers are already
preoccupied with a large backlog of malware?” Needless to say, in practice stripping the
headers leaves little useful Information available for triage and analysis.

Fortunately for security analysis, the PE32 Header contains Information that is often
poorly understood or simply hidden. In this work, we perform an in-depth study of one of
these hidden attributes commonly known as the Rich Header. While rich in Information,
this header is also common in malware, present in 71% of our random sample set, and
is found in any PE32 file assembled by the Microsoft Linker. Through performing an

94

6.2. Background

in-depth investigation of the header using the Intelligence Cycle, we show how to properly
dissect the Information and explain what the resulting Information means. We then
use Holmes Processing to extract the Information from millions of malicious samples,
which we gather from four distinct datasets. Leveraging what we learned in how to
reveal this Information, we present proof of concept methods for deriving Knowledge
that demonstrate the significant value the Rich Header can provide for triage.

In this chapter, we use Holmes Processing and apply the concept of the Intelligence
Cycle to uncover the secrets of the Rich Header. We begin by providing the first accurate
assessment of the Rich Header and detail how to extract its clandestine Information. We
then present a series of statistical studies and describe two proof of concept methods
for deriving Knowledge from the Information contained in the Rich Header. The first
method allows for the rapid detection of post-modified and packed binaries through the
identification of anomalies. The next method leverages machine learning to perform
rapid and effective triage based solely on the values in the Rich Header’s @comp.id
field; specifically, the 516 unique ProdID, 29,460 distinct ProdID and mC'V pairs, and
their Count values that we have identified across 964,816 malicious samples. This
method can identify similar malware variants and build environments in 6.73 ms across
964,816 malware samples using only a consumer grade laptop. As such, we prove that
leveraging the Information contained in this often forgotten and overlooked aspect of
the PE32 file format, called the Rich Header, establishes a major boon for performing
analytic triage operations and opens the door for a plethora of future work. In total, we
show that the Rich Header field is valuable in triage and can be a catalyst for past and
future work. Through this work, we also demonstrate the paradigm shift to security that
the the concepts of this dissertation creates.

In summary, we make the following main contributions:

e We present the first accurate and in-depth study of the Rich Header field and
describe how to extract its Information.

e We demonstrate how anomalies in the Rich Header can identify 84% of the known
packed malware samples.

e We present a proof of concept approach that utilizes machine learning techniques to
derive Knowledge that identifies similar malware variants and build environments
in near real-time, 6.73 ms, by only leveraging the Rich Header.

e We provide a case study that demonstrates collaborative analysis across the Intelli-
gence Cycle and how these concepts propelled the Rich Header breakthroughs.

6.2. Background

To aid in understanding this work, this section provides a synopsis of the Portable
Executable file format, commonly known as PE32, and compiler linking. For simplicity,

95

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

DOS Header

e_Ifanew

Rich Header

COFF Header
Optional Header

Section Table

Figure 6.1.: High level view of the PE32 format

we focus our description on the 32-bit version of the PE32 file format. This is because the
64-bit version has strong parallels to the 32-bit version and the concepts are the same.

6.2.1. Portable Executable File Format Headers

The Portable Executable file format was introduced by Microsoft to provide a common
format for executable files across the Windows Operating System family [53]. As such,
the format is the primary standard used for shared libraries, binaries, and other types of
executable code or images in Windows. The Portable Executable file format is also often
called the Common Object File Format (COFF'), PE/COFF, and PE32.

The PE32 format includes an MS-DOS stub for backwards compatibility, with the
e_1fanew field pointing to the beginning of the COFF Header, as Figure 6.1 illustrates.
The COFF Header, in turn, is followed by optional headers that control (among others)
imports, exports, relocations, and segments [173]. Together, these headers contain
valuable Information that enable program execution, identification, and debugging;
including the base address of the image in virtual memory, the execution entry point,
imported and exported symbols, and Information on the code and data sections that
form the program itself.

The PE32 Header is openly documented by Microsoft and as such its internal mechanics
are well understood by the development community [174]. However, as we will discuss
in this work, the PE32 format does contain undocumented sections that have eluded
understanding for over a decade.

96

6.2. Background

} Start

ml.exe

MS Assembler

cvtres.exe

Resource Conversion

>

Utility
c1.dll
MSVC Front-End
Compiler
: clxx.dll Intermediate File
I
: MSVC++ Front-End
cl.exe ' Compiler
Command-Line ' :
Interpreter c2.dll F Ob_]
| - L,
: Code Generator /) i
§ Back-End Compiler Object File
5 |
: ¢
dumpbin.exe | ||| link.exe *.exe/*.dll
EXE Parser L, Ll
Linker / Dumper / Editor Portabl? E).(eCUt.able/
editbin.exe i / Library Manager Dynamic Link Library
COFF Binary Editor :
lib.exe *_.11ib
Library Manager
Static Library

Figure 6.2.: Illustration of the MSVC Compiler Toolchain

97

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

6.2.2. Compiler Linking

The typical process of building an executable image is subdivided into two parts: the
compilation phase in which the compiler translates code written in a high-level language
into machine code and the linking phase where the linker combines all produced object
files into one executable image. These are both compartmentalized processes introducing
a one-to-one relation between compile units (usually files containing source code) and
the resulting object files.

The Microsoft Visual C++ (MSVC) Compiler Toolchain is a commonly used solution
for building executable images from source code written in a variety of programming
languages. The MSVC system is composed of multiple components and stages, depicted
in Figure 6.2. During the compilation phase cl.exe provides the interface to the Front-
End compilers (c1.d11 and c1xx.dd) as well as the Back-End compiler ¢2.d11. The
Front-End compilers create intermediate files from source code. Then, c2.d11 will create
object files (.obj) from intermediate files or, in the case where an intermediate file is not
required, from source code. While creating the objects, the Microsoft Compiler assigns
each object file an ID, in this work referred to as the @comp.id, and stores the ID in
the header of the respective object file. It is important to note that also the Microsoft
assembler as well as the part of the tool chain, which is responsible for converting resource
files into a format suitable for linking, generated @comp.ids.

Once the compilation phase is complete, 1link.exe will collect the objects needed
and begin to stitch the PE32 file or static library (.1ib) together. Consequently, static
libraries consisting of more than one object contain multiple @comp.ids. For executables
and dynamic link libraries, 1ink.exe builds up the Rich Header during generation of
the appropriate PE32 Headers.

6.3. Rich Header

We begin the investigation by collecting publicly available details about the Rich Header
and analyzing the results. The goal of this collection was to uncover what was known
about the Rich Header to focus our efforts. This action is akin to a mini Intelligence
Cycle investigation with the primary purpose being to help focus the Planning and
Direction step for the larger investigation. While we were able to uncover the history
of the Rich Header and some details, it was surprising how little was publicly available.
This section documents what we were able to uncover about the historic efforts and how
the Rich Header is currently treated by the major PE32 header extraction Services.

6.3.1. History of Previous Investigation into the Rich Header

As previously mentioned, the header is an undocumented field in the PE32 file format
that exists between the MS-DOS and the COFF Headers. Even though the field is
undocumented, it is referred to at the Rich Header because one of the elements in

98

6.3. Rich Header

the header contains the ASCII values for “Rich.” While rumors of its existence and
speculation on its purpose have existed across multiple communities for a long time,
it was not until July 2004 that an article by Lifewire started to unveil details about
the Rich Header [175]. Unfortunately, this article provided limited technically correct
details and the drawn conclusions—especially regarding the purpose of the @comp.id
field—were incorrect. Four years later, on January 2008, Trendy Stephen furthered
the understanding of the Rich Header by discovering some of the meaning behind the
@comp.id field and a relatively correct assessment of how the checksum is generated [176].
A few months later, Daniel Pistelli released an article that provided a guide for extracting
the Rich Header and portions of the @comp.id field [177]. Then, two years later, in
November 2010, Daniel Pistelli updated his article with information describing how the
high value bits in @comp.id correspond to a “Product Identifier” (referred to in this
work as ProdID) [177]. However, while we found that the work of these pioneers provided
crucial details on how to reverse engineer the Rich Header, aspects of the header were
still poorly understood and these articles often conflicted with each other. Specifically,
we determined that the full structure of the @comp.id has not been identified, details
about how to map the ProdlD were unknown, and mistakes were made in the methods
proposed to extract the Information.

6.3.2. Previous Efforts to Extract The Rich Header

Above we discussed that the Rich Header had been identified for a number of years but no
articles completely and accurately explained the header’s structure. As a result, we found
that most common triage engines and libraries that parse the PE32 Headers either ignore,
do not fully process, or perform incorrect parsing of the Rich Header. For example, two
of the most common and openly available malware triage systems, VIPER and MITRE’s
CRITs, do not properly extract this field. In the case of VIPER, the supplied PE32
Header extractor ignores the Rich Header field entirely, whereas CRITs will attempt to
process the Rich Header but performs an incomplete extraction. Specifically, CRITs
will only process the first 0x80 bytes of the Rich Header and does not extract the fields
contained in the @comp.id data structure. Unfortunately, this is not unique to the
Services in triage systems. When looking at major PE32 parsing libraries, we found
that the very popular pefile has a similar issue to CRITs in that it also only parses the
first 0x80 bytes of the Rich Header and does not extract the values contained in the
@comp.id. Furthermore, the PE32 extraction script, pescanner.py, from the Malware
Analyst’s Cookbook [178] ignored the Rich Header field entirely. In summary, we found
that any common method to extract the PE32 headers did not include the Rich Header
or their Rich Header parsing was inaccurate. Further, if the parsing of the Rich Header
was attempted, it falsely assumed that the start location could only occur at 0x80 in the
Data artifact.

99

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

“DanS” Identifier 0 (csum before)

Header
A

0 (csum before) 0 (csum before)

Padding Padding

0

T
® with Checksum

@comp.id
A

Footer
L

1|6 3|2 48 64
bits

Figure 6.3.: Structure of the Rich Header

6.4. Revealing the Rich Header

Our previous investigation into this history of the Rich Header found significant gaps
in understanding and accuracy. To overcome this issue, we developed a custom Holmes
Processing Service to accurately extract the Rich Header Information®. The process in
creating this Service was iterative and closely followed the Intelligence Cycle. Specifically,
we used our Service to extract the Rich Header on a set of Data artifacts. We then
processed the results using a statistical approach powered by Apache Zeppelin to find
anomalies that required further investigation. Based on these anomalies, we focused on
efforts in reverse engineering the MSVC Compiler Toolchain and manually investigated
the structure of the Rich Header in any abnormal Data artifacts. This process was
repeated with a larger sample set until we were confident that we were able to perform a
successful Information extraction.

This section documents the details we uncovered in the Rich Header, which has not
previously been completely and accurately described in any single source. We then
explain how the header is added to PE32 files, reveal the meaning behind the ProdIDs,
and present our algorithm for generating the hashes used to obfuscate the header.

6.4.1. Core Structure

By calling the function CbBuildProdidBlock [177], the Microsoft Linker (link.exe)
adds the Rich Header to the resulting binary during building. Although this action is
performed during the building of the COFF Header, it is undocumented in the Microsoft
specification [174] and begins before the official start of the COFF Header, as designated

IThe source code is available in Appendix A

100

6.4. Revealing the Rich Header

by the symbol e_1fanew in the MS-DOS stub. Additionally, this field is ubiquitous and
cannot be disabled by compilation flags or by selecting different binary formats. The only
notable exception is when the linker is not leveraged. For example, .NET executable
files do not use the MSVC linker and these executables do not contain a detectable Rich
Header.

The Rich Header has been added as far back as 1998 with the release of Microsoft
VC++ 6. Since then, each iteration of the Microsoft Toolchain adjusts how the header is
generated and updates the ProdID mapping that the MSVC can generate. However, we
suspect that this header has been included prior to VC++ 6. This is because we have
seen evidence of a potential Rich Header like field in samples that were generated before
the release of VC++ 6. Unfortunately, it was not possible to confirm this belief because
we were unable to obtain an older version of the Microsoft Linker and received only a
smattering of samples generated before 1998.

Diving deeper, the generated structure of the Rich Header is composed of three distinct
sections: the header, an array of @comp.id blocks, and the footer, as Figure 6.3 depicts.
Together, these provide four core pieces of information: (i) a checksum composed from
a subset of the PE32 MS-DOS header and the @comp.ids, (ii) the ProdID used when
building the binary, (i7i) the minor version information for the compiler used when
building the product, and (iv) the number of times the linker leveraged the product
during building.

The header of the Rich Header is composed of four blocks where each is 0x04 bytes in
length. The first block contains the ASCII representation of “DanS”—it is speculated
that “DanS” probably refers to Daniel Spalding who ran the linker team in 1998 [179]—
while the next three blocks contain null padding. During linking, this section is XORed
with a generated checksum value that is contained in the footer of the Rich Header.

The next section of the Rich Header is represented by an array of @comp.id blocks.
Each block is 0x08 bytes in length and contains information related to the Product
Identifier (ProdID), the minor version information for the compiler used to create the
product (mCV'), and the number of times the product was included during the linking
process (Count). All fields are stored in little endian byte order and XORed with the
previously mentioned checksum value. The @comp.id block consists of the following
three values:

1. The mCV field contains the minor version information for the compiler used
to build the PE32 file. This version information allows the establishment of a
direct relationship between a particular version of the Microsoft Toolchain and
this @comp.id block in the Rich Header. For example, Microsoft’s latest Visual
Studio 2015 release ships version 14.00.23918 of the MSVC compiler (cl.exe).
Therefore, object files created by this compiler will contain the value of 0x5d6e.
During the linking process for the building of a PE32, the value will be added
into the produced PE32’s Rich Header in the mC'V field of the @comp.id block
representing this object.

101

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

2. The ProdID provides information about the identity or type of the objects used
to build the PE32. With respect to type, each Visual Studio Version produces a
distinct range of values for this field. These values indicate whether the referenced
object was a C/C++ file, an assembly blob, or a resource file before compilation
as well as a subset of the compilation flags. For example, a C file compiled with
Visual Studio 2015 will result in the value 0x104 being copied into the Rich Header
as ProdID in all PE32 files that include the respective object file.

3. The Count field indicates how often the object identified by the former two fields
is referenced by this PE32 file. Using a simple C program as an example, this field
will hold the value 0x1 zero-extended to span 32 bits, indicating that the object
file is used once by the PE32.

The final section of the Rich Header, the footer, is composed of three blocks of
information. The first block is 0x04 bytes in length and represents the ASCII equivalent
of “Rich”. The next 0x04 bytes are the checksum value that are used as the XOR key
for enciphering the Rich Header. The final block section is used as padding, typically
null, and ensures that the total length of the Rich Header is a multiple of 8. Unlike the
previous two sections, the footer is not XORed with the checksum value.

6.4.2. Hashes Contained Within the Rich Header

In the Rich Header, the checksum value appears at four distinct places, as shown in
Figure 6.3. The first three occurrences are located immediately after the ASCII-equivalent
of “DanS”. As the linker initially places null values in this location, they only appear
after the header is XORed with the checksum value. The final checksum is located in
the footer and immediately after the ASCII-equivalent of “Rich”.

While checksum values are traditionally straightforward to generate, the Rich Header’s
checksum has interesting properties. Specifically, only 37 of each @comp.id’s 64 bits
are calculated. This appears to have been a previous point of failure in other works.
However, by iterating over numerous samples, we were able to detect the anomaly and
focus our reverse engineering efforts. As such, we present the following algorithm which
produces a valid Rich Header checksum.

The Rich Header checksum is composed of two distinct values ¢4 and ¢, that are
summed together. To calculate c,, we define the rol operator, which zero extends its
first argument to 32 bits and then performs a rotate left operation equal to the second
argument’s value of the first argument’s bits. We define rol as:

rol(val,num) := ((val << num) & Oxffffffff) |
| (val >> (32 — num))

where << and >> denote logical left and right shift, and | and & are the binary OR/AND
operators. Then, the distinct parts of the checksum csum are calculated in the following
way:

102

6.4. Revealing the Rich Header

1. For ¢4, all bytes contained in the MS-DOS header with the “e_lfanew” field (offset
0x3c) set to 0 are rotated to the left by their position relative to the beginning of
the MS-DOS header and summed together. Zeroing the “e_lfanew” field is required
as the linker cannot fill in this value because it does not know the final size of the
Rich Header, and, Therefore, is unable to calculate the offset to the next header.
Let n denote the length of the MS-DOS header in bytes (most commonly 0x80)
and let DOS; be the i-th byte of the (modified) MS-DOS header:

n

Ca = Z rol(Dos;,)

=0

2. To calclulate c,., the algorithm first retrieves the list of m @comp.id blocks. Then
the algorithm combines the corresponding mCV and ProdID parts into one 32 bit
value. Finally, this value is rotated to the left by its respective Count value:

Cr = Zrol(Prod[Dj << 16 | mCV;, Count; & 0x1f)

j=0

It is noteworthy that despite the fact that Count is a 32 bit field, the checksum
algorithm only considers the least significant byte value (& 0xff). Combined with
the fact that m =n mod 32 = rol(v,n) = rol(v,m), it is sufficient to perform
the calculation as indicated above.

The two values ¢ and ¢,, and the size of the MS-DOS header (0x80) are then added
together to form the final checksum value:

csum = 0x80 + ¢4 + ¢,

6.4.3. Generation of @comp.id and ProdID

The @comp.id is generated for each object file before linking. The type of the object
being created is determined during the creation of the object file. With this information,
the respective generator (see Table 6.1) will then assign a ProdID and mCV that maps to
the object type and the Visual Studio release version in which the object was compiled.?
For instance, a ProdID value of 255 to 261 corresponds to a Visual Studio 2015 Resource,
Export, Import, Linker, Assembler, C, and a C++ file respectively. The same range
of values can be shifted to base values Oxab, Oxcf, and Oxel which correspond to
Visual Studio 2010, 2012, and 2013. Additionally, the ProdID is adjusted based on the
compilation flags used to create the object. To date, we have identified that the MSVC
Toolchain is capable of assigning 265 ProdID. During our research, we found that the
generated ProdIDs cannot be manually changed without patching the compiler backend.

2For a mapping of ProdIDs that the MSVC Toolchain can generate, see Appendix B.

103

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

ProdID VS Release Object Type Generator
0x105 2015 C++ c2.d11 via cl.exe
0x104 2015 C c2.d11 via cl.exe
0x103 2015 Assembly c2.d11 via ml.exe
0x102 2015 Linker link.exe

0x101 2015 Imported sym. c¢2.d11 via cl.exe
0x100 2015 Exported sym. ¢2.d11 via cl.exe
Oxff 2015 Resource file cvtres.exe

Table 6.1.: Subset of ProdIDs generated by Visual Studio 2015

In cases where a ProdID is already present, such as a third-party static library (.1ib)
containing multiple object files, the linker uses the preexisting ProdIDs and mC'V's. Inside
of the library, the data is represented as a linked list.

Interestingly enough, in our investigation we have found that these ProdIDs do not
necessarily correlate to what the MSVC Toolchain can generate. Specifically, we have
identified 251 ProdIDs that cannot be generated by MSVC. We analyzed these oddities
over a few million PE32 Data artifacts and identified that they appear correlated to a
bundled library or the libraries supplied by major corporations. However, we could not
find hard evidence to support this claim.

6.4.4. Adding the Rich Header to the PE32 File Format

During the build process, the section that generates the data contained in the Rich
Header is located in the Microsoft Compiler backend (c¢2.dll). The Microsoft Linker
(link.exe) then collects the data required to build the Rich Header and places it in the
generated PE32 file.

6.5. Knowledge Based Statistical Analysis

The previous parts of our investigation revealed the structure of the Rich Header and
guided our ability to create an effective Holmes Processing Service to extract the
Information this header contains. Using the refined Service, this Section studies the
effectiveness of using the Rich Header for triage operations. To do so, we used our Holmes
Processing Service to perform statistical analysis against the Information extracted
across approximately one million malware samples.

6.5.1. Data Sources

To focus our study, we used four sets of PE32 samples. The first set is composed
of 964,816 randomly selected malicious PE32 samples from 2015 and is supplied by
VirusShare [180]. The second set contains 1875 samples from the Mediyes dropper [181].

104

6.5. Knowledge Based Statistical Analysis

Family Total Rich Header Percent
Random Set 964,816 683,238 1%
APT1 292 286 98%
Zeus-Citadel 1928 717 37%
Mediyes 1873 30 2%

Table 6.2.: Samples containing a Rich Header with total percentages rounded

The third set contains 2031 samples related to the Zeus derivative Citadel [141]. The
final set is composed of 293 samples associated with the APT1 espionage group [182].

In total, these binaries represent a diverse set of malware types that range from
traditional criminal malware, highly advanced state-sponsored malware, and programs
which have not been confirmed to be malicious but are highly suspicious. It is worth to
mention that in order to study the effectiveness of the Rich Header during triage, we
made no efforts towards unpacking or deobfuscating these samples.

6.5.2. Information Gathering

To generate sets of Information against these sample sets, we used the Holmes Processing
prototype, out automated infrastructure based on SKALD and CARE, and executed five
Services. These Services (i) extracted the Rich Header using our custom tool, (ii) per-
formed Yara signature matching with 12,693 signatures provided by Yara Exchange [125],
(1) retrieved malicious scan results from VirusTotal, (iv) performed identification on
the compiler and any potential packer used to create the sample, and (v) produced
decompiled C code generated via IDA Pro.

6.5.3. Statistical Results

With our gathered Information we performed a series of statistical studies. This was done
to better understand the Rich Header’s prevalence in malicious samples and identify which
packers or compilers omit the Rich Header. Additionally, we developed a statistical check
that is capable of rapidly identifying packed and post-modified PE32 files, leveraging
data only contained within the Rich Header.

6.5.3.1. Samples with a Rich Header

We identified that a surprisingly high percentage of samples contain the Rich Header,
as shown in Table 6.2. For instance, 71% of the random sample set and 98% of the
APT1 sample set contained parseable versions of the Rich Header. This is surprising as
our initial assumption was that malware authors would use a variety of compilers when
creating samples and potentially attempt to strip the Rich Header. However, the results

105

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

Family No Rich dUP MinGW Borland
Random Set 157,497 135,115 25,387 63,283
APT1 6 4 1 0
Zeus-Citadel 1211 673 93 398
Mediyes 1843 1787 0 194

Table 6.3.: Samples not containing a Rich Header

show that the majority of malware authors are in fact leveraging the Microsoft Linker
and pay no mind to the Rich Header.

Based on the above information, we conclude that the Rich Header is commonly
found in malware and that malware authors do not deliberately strip the Rich Header.
Furthermore, we can conclude that compilation of malicious binaries are most often done
using compilers that leverage the Microsoft Linker.

6.5.3.2. Compilers and Packers without a Rich Header

While the high rate for malware containing a Rich Header is positive for Knowledge
based triage, this was not a uniform result. Specifically, some malware variants reported
a low match for samples containing the Rich Header, such as Mediyes reporting 2%. In
Section 6.2.2, we discussed that the Rich Header is generated by the Microsoft Linker.
This implies that compilation tools not using the official Microsoft Linker should not
generate the Rich Header. While this can explain why some samples do not include the
Rich Header, in this section, we further explore other reasons behind the absence of the
field. Specifically, we identify common tools and packers used by malware to either strip
or corrupt the Rich Header.

To do this, we used our Service that performs compiler and packer identification to
scan all samples without a Rich Header. This was done to identify if there are any
commonalities with these samples. As Table 6.3 shows, the percentage of samples built
by either Borland C++ Builder or MinGW, which is based on GCC, is relatively high
and accounts for approximately a third of all samples that do not contain a Rich Header
in the random and Citadel datasets. However, this was not the case in the APT1 and
Mediyes dataset. Upon further analysis, we identified that most packers, while sometimes
introducing anomalies, did not often strip the Rich Header from samples. With respect
to the Mediyes set, we had a high rate of matches for the Themida Packer [183]. As we
discuss further in Section 6.5.3.2, Themida is one of the packers that rewrites the entire
PE32 file and does not include the Rich Header. Instead, we identified that the absence
of a Rich Header was a result of corruption caused during the packing of the sample.

To identify if other packers caused similar corruption, we leveraged our identification
Service again to detect the most common packers used by our malware datasets. Our
results showed that UPX, ASPacker, mingw, dUP, and the Nullsoft Scriptable Install
System were the top five most commonly used packers. As we already understood that

106

6.5. Knowledge Based Statistical Analysis

Family Total Dup. ID csum Err
Random Set 683,238 15,006 137,965
APT1 286 0 34
Zeus-Citadel 717 17 357
Mediyes 30 0 0

Table 6.4.: Samples containing a Rich Header that have duplicate entries and invalid
checksums

samples created with mingw and dUP will remove or otherwise corrupt the Rich Header,
we manually created test samples with variants of UPX (v1, v2, and v3.91), ASPacker,
and Nullsoft. In every manual test case, we were unable to cause a corruption or exclusion

of the Rich Header field.

6.5.3.3. Identifying Modified Binaries Based on Rich Header Corruption

In our previous results, we found that it was uncommon for malware authors to deliberately
strip the Rich Header. As such, we re-evaluated our samples to search for cases where
the Rich Header was inadvertently corrupted.

The first approach we took was to identify cases where the Rich Header contained
duplicate @comp.id blocks. We took this approach because under normal operation,
the Microsoft Linker should never produce duplicate entries. This is because during the
linking process, the Microsoft Linker will search for existing instances of the ProdID and
mC'V and if identified, will increment the number of times it was used, Count, to the
existing entry.

The second approach we applied was to re-calculate the Rich Header checksum and
compare it to the sample’s reported Rich Header checksum. This was done as an
unsuccessful check would indicate that either the MS-DOS Header or the Rich Header
was modified after the linking process; potentially revealing Trojanized or post modified
binaries.

As Table 6.4 shows, the amount of malicious samples containing a corrupted Rich
Header varies and can rise upwards to 50% based on the malware family. Additionally,
across the random one million dataset, this corruption occurred approximately 31% of
the time. Knowing this and the fact that no official Microsoft Linker should produce
these forms of corruption, identifying corruption of the Rich Header can be a fast and
efficient triage step to use for screening samples for potential maliciousness.

6.5.3.4. @comp.id and mCV Values Present in Malware

To develop an understanding of how we can potentially leverage the Rich Header for more
advanced triage operations, we studied the @comp.id values in our malware datasets.
By doing so, we identified 516 unique ProdlDs. This was surprising as all versions of the

107

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

MSVC Toolchain, dating back to VS++ 6, are only capable of generating 265 ProdIDs.
While researching the 251 unknown ProdIDs, we identified that these appear to more
than likely correlate to bundled libraries and major corporations. However, while in
practice this assumption appears to be accurate, we cannot conclusively confirm this.

Digging in deeper, we discussed in Section 6.3 that the ProdID is paired with the mCV .
Thus, potentially providing more fine-grained Information for identifying specific objects.
To confirm this, we created tuples of all the ProdID and mC'V pairings. We then single
out 29,460 distinct ProdID and mC'V pairs across our approximately one million malware
samples. These numbers show relatively substantial variability in the @comp.ids found
in malware and malware authors’ build environments.

6.6. Machine Learning Based Analysis

The Knowledge obtained in Section 6.5 showed promise in using the Rich Header for more
complex triage operations. This is especially true considering the vast majority of our
datasets are from the same date range and the fact that the Rich Headers of malicious
samples contain numerous @comp.ids along with the number of times the object was
used during linking.

To demonstrate the potential of leveraging the Rich Header in future work, we created
a basic proof of concept Knowledge based Service for Holmes Processing. This Service
utilized machine learning to process the newly revealed Information of the Rich Header,
specifically the @comp.id values. Specifically, the values for ProdID, Count, and mCV . As
the Rich Header identifies linked objects and version information of the build environment,
our Service is specifically focused on identifying similar samples, based on linked objects,
and also samples using a similar build environment. In crafting the machine learning
algorithm, we used a feature hashing strategy which transformed the Information into a
50-dimensional vector. We then leveraged a Stacked Autoencoder to turn our vectorized
features into a denser, lower-dimensional space. Finally, in order to improve performance
and allow us to scale to support datasets containing millions of malware samples, we
utilized a Ball Tree for fast storage and retrieval of the vectors.

In the following case studies, we demonstrate the ability of solely using the Rich Header
to perform similarity matching leveraging our proof of concept Service that is based on
a custom machine learning algorithm. In the case studies, we compare the exemplar
samples, selected at random, with the collected vector similarities from the Ball Tree
populated by the random one million, APT1, and Citadel datasets, and analyze their
closest matches. For our ground truth in the case studies, we compare the results of our
algorithm to the results returned by Kaspersky and Symantec Antivirus, as implemented
by VirusTotal, and perform manual reverse engineering. We selected this ground truth
method primarily due to the limited matches across Yara and the high percentage of no
detection or generic signatures across other popular AV vendors.

108

6.6. Machine Learning Based Analysis

6.6.1. Similarity Matching with the APT1 Dataset

We selected three exemplar samples from the APT1 dataset for our first case study.
APT1 was selected as the actor is a relatively skilled Advanced Persistent Threat (APT)
and 98% of the samples in the APT1 dataset contain a Rich Header.

We randomly selected our first exemplar sample, E1. Kaspersky classifies this sample
as HEUR:Trojan. Win32. Generic which means that through heuristic analysis, Kaspersky
believes that this is a Trojan but has not classified the sample further. When querying
our algorithm, we identified that it had an identical Rich Header feature vector with
another APT1 sample, which we will refer to as E1-R1. Inspecting E1-R1, Kaspersky
classified the sample also as HEUR: Trojan. Win32. Generic. While a generic classification
does not tell us much, manual analysis of the generated source code, produced by IDA
Pro, confirmed that these two samples were in fact identical.

Going a step further, we then queried the nearest neighbor to E1. This returned three
samples: E1-N-R1, E1-N-R2, and E1-N-R3. All three matches were also contained in
the APT1 dataset and shared the HEUR:Trojan. Win32.Generic Kaspersky classification.
Our algorithm reported that the distance between these vectors was 1; the smallest
possible difference without the vectors being identical. We then performed manual
analysis and identified that the generated source code produced by IDA Pro for E1-N-R1
was identical to our exemplar. However, as the vectors were slightly off, we further
analyzed the cause for this and concluded that the variance was caused by slightly
different build environments when compiling the binaries.

The other two nearest neighbor matches, E1-N-R2 and E1-N-R3, produced even
more interesting results. In both cases, the generated source code produced by IDA
Pro had slight differences. In the case of E1-N-R3, E1-N-R3 adds a call to function
FlushFileBuf fers right after it writes the buffer to a file. Furthermore, E1-N-R2
seemed to build upon the changes made to E1-N-R3. Specifically, E1-N-R2 includes
an additional change in that E1-N-R2 adjusted how it wrote the buffer to files. In our
exemplar sample, E1 first writes the buffer to the file and then performs a second write
that adds \r\n to the file. In the case of E1-N-R2, the sample does not write \r\n to
the file and instead calls strcat on the buffer in order to add \n to the buffer before it
writes the buffer to the file.

Our second exemplar, E2, was selected from the APT1 dataset because its signature
was different than E1 and it shares its feature vector with no other samples. After
running our algorithm, we identified E2-N-R1 as the nearest neighbor to E2 at a distance
of 1.732. While it is reasonable to argue that the distance is very near, it is indicative of
a clear similarity between the samples.

When analyzing the results, both E2 and E2-N-R1 are classified by Kaspersky as
“Agents”. However, the generated source code produced by IDA Pro for both samples is
quite different and the programs have different functionality. To understand why our
algorithm identified this as a match, we performed additional research on the binaries
and found that both E2 and E2-N-R1 are very small, had a nearly identical import table

109

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

with only one variation, and were packed with Armadillo v1.71. Looking at the Rich
Header vectors, we found that the vast majority of the objects imported all had identical
version information; which led us to conclude that the samples were more than likely
built on the same machine or the machines at least had an identical build environment.
Open-source research further validated this opinion as both samples were used by APT1
in cyber operations [184]. While not a direct match in terms of functionality, this example
demonstrates the power in using the Rich Header to identify not only similarly behaving
malware but also malware that is related because the malware is presumably built on
the same machine.

Our final exemplar, E3, was selected as it had five samples that shared the same Rich
Header feature vector: E3-R1, E3-R2, E3-R3, E3-R4, and E3-R5. In all cases, these
samples ended up being members of the APT1 dataset and shared the
HEUR:Trojan. Win32. Generic Kaspersky classification. Manual reverse engineering also
showed that the samples shared a nearly identical code base and performed the same
functionality.

We then queried our algorithm for the nearest neighbors to E3 that were not in the
APT1 sample set. The query returned six samples at a distance of 2.236: E3-N-R1, E3-N-
R2, E3-N-R3, E3-N-R4, E3-N-R5, and E3-N-R6. Kaspersky classified E3-N-R2, E3-N-R4,
E3-N-Rb5, and E3-N-R6 as HEUR: Trojan. Win32. Generic. E3-N-R1 and E3-N-R3 were
classified by Kaspersky at Net- Worm. Win32.Cynic.in and Net-Worm. Win32. Cynic.am,
respectively. However, although the Kaspersky classifications were different, manual
analysis revealed that all E3-N-R* samples were nearly identical to each other. The
only differences between the samples in this cluster were caused by artifacts left by the
obfuscation engines and by the language settings on the build environment. Furthermore,
the two clusters for the same vector, E3 and E3-R*, and nearest neighbors, E3-N-R*,
were remarkably similar in functionality.

During the evaluation, we identified that the similarity matching algorithm produced
very strong results for the exemplar samples E1 and E3. However, with E2 and E3,
the algorithm further identified samples of similar nature and with a similar build
environment.

6.6.2. Similarity Matching with the Citadel Dataset

In this case study, we opted to explore the results of two exemplar samples from the
Citadel botnet. We selected this dataset because the Citadel actors are typical of basic
cyber criminals and as such have a different target and mission than the actors behind
the first test case.

Kaspersky classified our first exemplar, E4, as a generic Trojan. Our algorithm
though was able to identify 23 similar samples, E4-R*, which shared the feature vector
of E4. Kaspersky classified them as either HEUR:Trojan. Win32.Generic or not-a-
virus:AdWare. Win32. FakeDownloader.ac whereas Symantec identifies all the E4-R*
samples as Trojan.Gen or Trojan.Zbot. When comparing the IDA Pro generated source

110

6.6. Machine Learning Based Analysis

code, we confirmed that the E4 and E4-R* samples were nearly identical; the differences
in E4 and E4-R1 are that sections of the code were moved under different functions and
that E4 uses a “for loop” while R4-R1 uses a “do while” for their XOR algorithm. Thus,
the difference in E4 and E4-R* appear to be caused by slightly different source code
versions, compiler optimization, or artifacts left by the obfuscation engines.

When looking at the nearest neighbor cluster for E4 we identified four additional
samples: E4-N-R1, E4-N-R2, E4-N-R3, E4-N-R4. While Kaspersky classified the sample
as HEUR:Trojan. Win32. Generic, Symantec identified E4-N-R1 and E4-N-R3 as clean.
However, when looking at the samples, we observed only a slight variation in that E4-N-R*
ran the XOR loop 220,712 times where E4 and E4-R* ran the XOR loop 51,700 times. As
with E4-R*, E4-N-R* also moved code segments into different functions. When verifying
the Rich Header, we observed that the reason for being classified as a nearest neighbor
was because of variations in the number of times one product was included. This is a
clear example where using Rich Header values as a triage system could prove useful for
an investigative team by identifying similar malware samples from potentially different
versions.

The next exemplar, E5, shares its vector hash with 36,606 samples. This is notably high,
no less so due to the fact that Kaspersky fails to identify 16,123 of those samples with a
classification of any kind, not even the most generic of names. However, when comparing
the IDA Pro generated source code, we observed only small variations; specifically the
value for a constant was changed.

The nearest neighbor grouping for E5 has a distance of 2 and contained a total of 1,567
samples, where 511 samples have no Kaspersky listing. In fact, the majority of samples
in both groups are listed as generic Trojans, HEUR: Trojan. Win32. Generic. While the
inclusion of a known Citadel sample is not enough to convict these samples as Citadel
members, it provides an interesting jumping off point for analysis.

6.6.3. Similarity Matching with the Mediyes Dataset

In our final case study, we selected a random Mediyes sample, E6, to use as our exemplar.
We chose this sample because it would allow us to perform out-of-set comparisons as the
Mediyes dataset was not originally vectorized and included in the Ball Tree. As such,
this was used as a comparison metric to see how our algorithm would cope with the
inclusion of an entirely new dataset, which was unlikely to have been included in the
Ball Tree through other means.

Querying our algorithm for identical Rich Header feature vectors, we received a list
of 266 other samples: E6-R*. When querying for the nearest neighbors we receive 86
additional samples, E6-N-R*, with a distance of 1. Analysis of the IDA Pro generated
source code showed a strong correlation between the samples. Furthermore, the vast
majority of both E6-N-R* and E6-R* were classified by Kaspersy as Zango samples; an
instance of adware frequently associated with Mediyes.

111

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

6.7. Future Work and Limitations

In this chapter, we study an important yet little-studied header of PE32, the Rich Header.
We show that the Rich Header has been largely ignored by malware authors and is not
removed by most packers and obfuscation engines. In fact, 71% of the 964,816 samples in
our random dataset include the Rich Header. Our investigation revealed that the Rich
Header contains useful Information that can be leveraged by defenders; and analysis of
the Information contained within the header allows for the rapid triage of samples using
a cost effective approach. This is true even for samples that are stripped and contain
little to no PE32 Header information.

We strongly believe that by leveraging the Rich Header, current and future triage
algorithms will perform a more accurate and cost-effective triage functionality. In future
work, we will explore how to combine the Rich Header features with other aspects of the
PE32 file format to generate robust similarly matching and clustering algorithms. As
the Rich Header artifacts help to identify similar malware as well as characterizing the
build environment in which the malware was built, this presents new opportunities for
attribution and tool-chain identification.

Furthermore, as Knowledge of the Rich Header grows, it is understandable that malware
authors will attempt to obfuscate the Information in this header. This is an expected
outcome but also presents interesting future work potentials when the Rich Header is
combined with additional features. This is because leveraging compiler fingerprinting
and additional PE32 header information can be used to determine if the Rich Header
should be included and approximate the expectant values of this field. As such, future
Knowledge based analysis efforts can identify anomalies in the Rich Header field. This
increases the complexity required when performing obfuscation and adds resiliency.

In fact, Kaspersky successfully performed this recommendation and identified anomalies
between the Rich Header Information and what is contained in the actual Data artifact.
Through additional analysis, Kaspersky concluded that this discrepancy was deliberate
and was an indicator of a potential false flag by another actor—to the authors knowledge,
an industry first.

6.8. Discussion

The breakthrough we achieved in understanding the Rich Header and identifying its utility
during security investigations was greatly aided by the Holmes Processing prototype.
Holmes Processing allowed our team of experts, with different specializations, to seamlessly
to work together across the Intelligence Cycle and rapidly test hypothesis across very large
sample sets. In turn, this allowed the team to more accurately and quickly accomplish
their individual tasks and uncover details that would have been otherwise missed.

Our research into the Rich Header started by the identification of irregularities in
how the Rich Header was handled by various PE32 header information extraction

112

6.8. Discussion

techniques. As previously discussed, these extraction methods would sometimes skip over
the Rich Header or extract Information that was not uniform or complete in appearance.
This piqued our interest and created our investigation requirement to uncover how to
properly extract the Rich Header and identify its potential utility in computer security
investigations.

With our overarching requirement for the Planning and Direction phase, we began
to structure our efforts according to the other steps of the Intelligence Cycle. For
the Collection step, we sourced approximately one million PE32 (Data artifacts) that
included random samples, labeled samples from previous investigations, samples built
under various tool chains, and synthetic samples we created from every MSVC compiler
we could find. Focusing on the Process and Exploitation step, we created an Information
extraction Service for Holmes-Totem that could successfully extract the Information from
the Rich Header. We also leveraged existing Holmes-Totem Services that extracted other
sets of Information based on 12,693 Yara rules, retrieves VirusTotal results, performed a
rough fingerprinting of the samples build environment with PEiD, produced decompiled
C code, and extracted the PE32 headers with PEMeta. To distill these large sets of
Information, 7 million artifacts, we then created Holmes-Analytic Services that could
perform statistics and eventually a similarity matching machine learning algorithm. To
Disseminate our finding, we created polished Holmes Processing Services that could
perform complete and accurate extraction of the Rich Header, perform statistical triage
of PE32 samples, and perform a similarity matching for the malware family and the
malware authors build environment.

This was a monumentally challenging process and required multiple experts in various
fields to focus on their specific task while receiving input from their peers. However,
because of Holmes Processing, including these experts was a seamless process and any
achievements made was immediately Disseminated and Integrated to the rest of the
team. For instance, as we made headway into extracting the Rich Header, we updated
our Information extraction Service for the Rich Header and quickly ran this new version
across millions of samples in a matter of minutes. This updated set of Information
was then immediately available to our machine learning and statistical experts, with no
changes to their algorithm required. This in turn allowed these large-scale experts to
help identify discrepancies and anomalies in our findings which helped focus the reverse
engineering efforts.

The ability of Holmes Processing to support the above described cyclical process and
test the finding across such a large data set directly enabled our biggest breakthrough.
For instance, the ratio of successful to unsuccessful extraction of the rich header, based
on our estimates and the information from PEiD, is what caused the reverse engineers to
identify the error in how the MSVC was creating the Rich Header checksum. Furthermore,
it was the unusual clustering of malware families and the statistical patterns from the
Rich Header 's @comp.id values that lead us to suspect a fingerprinting of the build
environment was occurring and focused our efforts on creating the @comp.id matching
table, Appendix B. Lastly, understanding all of the collective whole allowed us to

113

6. Proving the Concept: PE32 Malware 'Iriage and Similarity Matching

document the Rich Header and show its utility has proved of significant value to the
security community [37].

6.9. Related Work

Leveraging the Information derived from the PE32 file format has been widely explored
for triage purposes. One common technique, as shown by Mandiant’s Imphash, is to
generate a hash of the values located in the PE32 Import Address Table (IAT) [169].
These hashes are then used in analytic queries and by machine learning algorithms to
identify similar strains and families of malware. In this vein, JPCERT recently released
impfuzzy to improve upon this technique through incorporation of a fuzzy hash [68].
However, these algorithms require accurate IAT and their accuracy is greatly reduced if
the malware strips or otherwise provides a misleading IAT.

In light of this issue, more advanced techniques use additional Information that
can be derived from the PE32 file format. For example, PEHash uses the structural
characteristics of the PE32 file format to generate hashes that are then used in clustering
operations [67]. Unfortunately, the above methods only work well when the Information
is available and not being misconstrued.

Identifying the weaknesses in these approaches, specifically PEHash’s lack of robustness,
Jacob et al. [168] expand upon these methods by focusing their efforts on PE32’s code
section. While this approach is more tamper resistant, it is still not immune. On the
other side of the spectrum, Perdisci et al. [185] focused their efforts on using pattern
recognition to identify packed samples and then send those samples to universal unpacking
algorithms before matching occurs. However, while this process does reduce the cost and
improves the accuracy in clustering and similarity matching, unpackers are known to be
unreliable and exceedingly expensive [185,186].

In a change of pace, our investigation, using the methods prescribed in this dissertation,
illustrates a hidden aspect of the PE32 file format, the Rich Header, that has been largely
ignored by malware authors. Using this section of the PE32 file formation, we show how
to cheaply identify packed malware, perform similarity matching solely using this field,
and identify malware that was created using similar build environments. Our work does
not aim to directly compete with the existing research. Instead the Wisdom gained from
our novel approach aims to be a catalyst for triage when combined with these, and other,
triage techniques. In turn, this work enables existing and future algorithms to provide
better results, be more resistant to tampering due to the wider scope, and improve
returned Knowledge by allowing matching based not just on the samples’ characteristics
but also the characteristics of the build environment used to create the samples.

114

6.10. Summary

6.10. Summary

In this chapter, we leveraged the Holmes Processing prototype to perform an Intelligence
Cycle investigation of the Rich Header. As a result, we showed the Rich Header has
significant potential in being leveraged for triaging malicious samples. To the best of our
knowledge, this assessment of the Rich Header is the most complete and accurate report
for this hidden and undisclosed section of the PE32 header so far. With this knowledge,
we created a custom Rich Header parser and extracted the headers’ contents in over
964,816 malicious samples. We demonstrated the Rich Header’s potential in enabling
the rapid triage of malicious samples. By doing so, we showed how to leverage the
Information contained in the Rich Header to create a Knowledge based Service that can
identify post-modified and packed PE32 files, detecting 84% of the known packed malware
samples. We also demonstrate the value in leveraging the Rich Header by developing a
proof of concept Knowledge based Service using machine learning and performing three
case studies. In these studies, we are capable of rapidly returning results in 6.73 ms using
a single CPU core, identifying similar malware variants, and highlight malware developed
under the same build environments.

In total, we demonstrated that the approaches prescribed in this dissertation provided
the catalysis needed to uncover the secrets of the Rich Header. Specifically, we showed
how Holmes Processing provided the flexibility, scalability, and resilience needed to
analyze millions of artifacts. Furthermore, the method of performing an Intelligence
Cycle allowed this breakthrough to occur. This is because it fused the specializations
between the team members and allowed them to work as a collective whole, while
analyzing massive sets of Data artifacts.

115

Chapter {

Conclusion

“The game is afoot.”

Arthur Conan Doyle

At last this dissertation must end and this chapter serves to summarize the work
presented. The first section of this chapter reflects on the challenges of security analytics
and provides a high-level description of the proposed solution. The next section of the
chapter outlines the major contributions of this work. We then discuss the path forward
this dissertation creates for developing new defensive methods and empowering security
research. Finally, we conclude with final thoughts.

7.1. A Moment of Reflection

Performing security investigations is necessary for identifying and countering the threats
from malicious actors. Without the wisdom that investigations provide, security defenses
are blind and unfocused. However, malicious actors are in a rapid state of evolution
and security analytics have fallen behind. The traditional paradigm of a lone analyst
conducting investigations in isolation and performing manual tasks has become insufficient,
inefficient, and ineffective. Traditional approaches and methods cannot keep pace with
the growing volume of artifacts, the sophistication of the actors, and proactively defend
against malicious activity.

Unfortunately, within five years companies are expected to spend over one trillion
dollars on defensive methods and governments continue to issue ineffective legislative
acts that cannot overcome the challenges faced by malicious activities. Without a change
in paradigm for how analytics and investigations are conducted, the defensive tools,
techniques, and mitigation strategies that are created under these traditional methods
will remain insufficient to tackle the challenges posed by malicious activities.

117

N
—
(D]
-
o
(0]
=
O

7. Conclusion

7.2. Contributions

This dissertation has discussed the need for a new approach to computer security analytics.
New techniques and methods must empower analytics across the Intelligence Cycle and
pool the collective knowledge and resources of the community together. Without this
evolution, defensive methods, tools, and techniques will be insufficient and ineffective.

118

e Provided an Architecture for Large-scale Investigations

We began our discussions by presenting a novel architecture that guides the design
of analytic systems that support the investigations against the malicious activities
plaguing computer systems, named SKALD. SKALD creates analytic systems that
can: (i) cope with the growing volume of artifacts, (i7) be resilient to system failures,
and (i7i) be flexible enough to incorporate the latest technology and analytic trends.
SKALD provides this by identifying the core categories of analytic activities, based
on the Intelligence Cycle, and creates a “loosely coupled” architecture around these
concepts. As such, systems designed using SKALD can receive raw Data, extract
valuable Information from the Data, perform assessments across sets of Information
using advanced analytics to generate Knowledge, and aid analysts in collectively
making a determination. Furthermore, SKALD provides a central repository for raw
artifacts and analytic results that are segregated according to the DIKW model.
This way defenders can break the stove-pipping between teams through enabling
analytics across a single system. As a result, the SKALD architecture reduces the
need for each team to reprocess artifacts and also allows each team member to
focus on their core area of expertise.

The overall result of SKALD is that computer security defenders can more rapidly
perform investigations that present a clearer picture of malicious threats. For
instance, the SKALD prototype can extract Information from artifacts at a rate of
3.1 milliseconds with zero critical errors in contrast to the baseline system’s rate
of 2.6 seconds and thousands of critical errors. Showing our claims have merit,
systems developed from the SKALD architecture have been used to conduct com-
plex investigations, generate academic research, and execute defensive mitigation
activities [31-36].

Enabled Collaboration and Sharing of Security Artifacts

Leveraging the foundation provided by SKALD, we then created a new model for
sharing and collaboration amongst security practitioners, named CARE. CARE
furthers the goals of the Intelligence Cycle by encouraging collaboration between
analysts and empowering the wide dissemination of the results they generate. This
is achieved by using real-world collaborative and sharing initiatives and identifying
their challenges and where these initiatives have failed. Using this wisdom, we then
extended the SKALD architecture to create a platform that breaks the existing
sharing paradigm and alleviates many of the issues with why sharing is often

7.2. Contributions

ineffective. CARE overcomes these issues by providing the ability to exchange
security artifacts across the DIKW model while preserving the artifacts’ lineage and
mitigating privacy and secrecy concerns. We then discuss the CAREcoNOMY and
describe how this cryptographically backed method incentivizes sharing through
the creation of a marketplace and provides new opportunities to encourage healthy
collaboration and develop trust. We then presented a discussion on how CARE
opens new possibilities in how security groups can collaborate, governments can
foster effective security practices, and insurance companies can more accurately
identify risk through the secure and distributed ledger.

While our work on CARE is conceptual in nature, it paves the way forward for
enabling a truly collaborative environment that empowers analytics and raises the
effectiveness of mitigation activities. Even though the concepts and prototypes
of CARE are in their infancy, the concepts have already gained the attention of
major corporations and government agencies.

Introduced a Working Prototype

We described our prototype, Holmes Processing, that enables computer security
investigations to work across the steps of the Intelligence Cycle and view the
derived artifacts as part of a collective whole. As a result, analytic specialties
are fused together and teams are able to effectively collaborate. Furthermore, the
design of Holmes Processing allows the system to support extremely large datasets,
remain flexible to incorporate changes, and be resilient to failures. For instance,
the addition of new Information extraction Services are painless and the developer
is not burdened with details for how the entire system operates. Additionally,
analysts working to generate Knowledge from Information can leverage the work
from their peers and are not concerned with how the Information was created. All
while, allowing the analysts to work with a corpus of 10s of millions of artifacts in
near real-time.

While the prototype is academic in nature and not a robust product, it has been
used to empower research and perform real investigation against sophisticated and
complex actors [31-36]. Adding validity to our concepts, we have been invited
to speak about Holmes Processing and our derived work at numerous highly
acclaimed venues, such as Black Hat USA, Microsoft DCC, RSA USA, Hacktivity,
and DARPA [2-8].

Demonstrated the Concepts by Uncovering the Rich Header

We demonstrated the power of our analytic architecture by revealing a hidden
aspect of the PE32 file type and creating two effective triage methods. Using
the working prototype for SKALD and CARE, we performed the first accurate
assessment of the Rich Header and detail how to extract its clandestine Information
and perform advanced analytics. The breakthrough in understanding the Rich
Header was achieved by leveraging the power of the prototype to study millions of

119

N
—
(D]
-
o
(0]
=
O

7. Conclusion

malware and benign samples. We then presented a series of statistical studies and
described two proof-of-concept methods that use only the Information extracted
from the Rich Header to generate Knowledge about the samples. The first method
allows for the rapid detection of post-modified and packed binaries through the
identification of anomalies. The second method can be used to identify similar
malware, different versions of malware, and when malware has been built under
different build environment; revealing potentially distinct actors. Furthermore, we
showed how we are able to perform these operations in near real-time; i.e., in less
than 6.73 ms on commodity hardware.

Of significant interest, this work has been successfully used by the security commu-
nity to identify potentially malicious activities and perform investigations against
complex actors. In one specific case, Kaspersky described how the Rich Header was
used to reveal the tools used of the Lazarus Group and perform attribution [37].
However, what is most interesting is that Kaspersky also identified anomalies
between the Rich Header information and what is contained in the actual binary;
one of our recommendations for future work. As such, Kaspersky concluded that
this discrepancy was deliberate, and that the identified operation was a potential
false flag by another actor set—to the authors knowledge, an industry first. This
example demonstrates how the methods presented in the dissertation can provide
a major boon for performing computer security investigations.

7.3. Looking Forward

The foundations presented in this dissertation pave the way forward for future work and
effective defensive strategies. Specifically, SKALD and CARE enable large-scale and
complex computer security investigations and effective collaborative analytics. This is
done by breaking the problems of an investigation down according to the Intelligence
Cycle and archiving the results in alignment with the DIKW model. This creates a
paradigm where the workflow of a security analyst feeds directly into an overall system
that serves to empower the work of other analysts. As such, analytic teams are able to
work together to derive meaning from the ever-growing corpus of malicious activity and
deduce understanding behind the actions of malicious actors.

Moving forward, the methods presented in this dissertation open new opportunities
for artifact-based analytics. This is due to the ability behind the methods presented in
this dissertation to extract Information from large and diverse sets of artifacts in near
real-time, orchestrate advanced analytics from sets of Information to derive Knowledge,
present this Knowledge in multiple ways that empower the human analysts to make a
judgment, and share their results with their peers. In total, this allows analysts to not
only focus on the immediate threats that they are presented with and have knowledge of,
but view the problem as a collaborative investigation activity that incorporates a global
perspective and historic context.

120

7.4. Final Words

Leveraging the architecture of SKALD and CARE, these methods enable the iden-
tification of new analytic techniques and seamlessly allow them to plug into existing
architectures. This allows the specializations across the research community to come
together to tackle the problems of security as a collective whole. For instance, reverse
engineers and networks specialists can deduce new methods for extracting Information
from raw Data. While, data scientists can focus on the challenges of deducing Knowledge
from a plethora of current and historic Information and presenting this Knowledge in
ways that can empower judgments to be made of the threat faced and effective mitigation
strategies to be crafted. This foundation enables future work to tackle how to create a
holistic picture of malicious activity that identifies the methods behind malicious actions,
the techniques actors are using, and understand an actor’s motivations and weaknesses.

7.4. Final Words

This dissertation has been a culmination of years of thought and effort derived from
tackling some of the hardest problems facing computer security, orchestrating complex
investigations, forcing collaboration across multiple agencies, and tracking some of
the most elusive actors. The work in this dissertation has effectively aided complex
investigations and spurred innovative research initiatives. Moving forward, I hope this
work can empower other activities and serve as a guide for how organizations can work
together and develop advanced investigative solutions. In an ideal world, the research
and prototypes developed by this dissertation will see adoption by a collective of industry
partners and be fueled by a non-profit initiative. To that end, I will focus my efforts on
these goals and look forward to seeing how this work evolves.

121

Appendix A

Availability

The Holmes Processing prototype has been released under the Apache2 license. It can
be located at the following location: https://www.holmesprocessing.com/

123

Appendix B

Mapping of Known ProdIDs in the Rich
Header Generated by MSVC

The following table provides a mapping of the known MSVC ProdIDs in the @comp.id
field of the Rich Header.

ProdID VS Release

Release Number Object Type

0x0000 Visual Studio prior 00.00 prodidUnknown
0x0001 Visual Studio prior 00.00 prodidImport0
0x0002 Visual Studio prior 00.00 prodidLinker510
0x0003 Visual Studio prior 00.00 prodidCvtomf{510
0x0004 Visual Studio prior 00.00 prodidLinker600
0x0005 Visual Studio prior 00.00 prodidCvtomf{600
0x0006 Visual Studio prior 00.00 prodidCvtres500
0x0007 Visual Studio prior 00.00 prodidUtc11_Basic
0x0008 Visual Studio prior 00.00 prodidUtc11_C
0x0009 Visual Studio prior 00.00 prodidUtc12_Basic
0x000a Visual Studio prior 00.00 prodidUtcl12_C
0x000b Visual Studio prior 00.00 prodidUtc12_CPP
0x000c Visual Studio prior 00.00 prodidAliasObj60
0x000d Visual Studio prior 00.00 prodidVisualBasic60
0x000e Visual Studio prior 00.00 prodidMasm613
0x000f Visual Studio prior 00.00 prodidMasm710
0x0010 Visual Studio prior 00.00 prodidLinker511
0x0011 Visual Studio prior 00.00 prodidCvtomf511
0x0012 Visual Studio prior 00.00 prodidMasm614
0x0013 Visual Studio prior 00.00 prodidLinker512
0x0014 Visual Studio prior 00.00 prodidCvtomf{512
0x0015 Visual Studio prior 00.00 prodidUtcl12_C_Std
0x0016 Visual Studio prior 00.00 prodidUtcl12_CPP_Std
0x0017 Visual Studio prior 00.00 prodidUtc12_C_Book

125

B. Mapping of Known ProdlDs in the Rich Header Generated by MSVC

0x0018
0x0019
0x001a
0x001b
0x001c
0x001d
0x001e
0x001f
0x0020
0x0021
0x0022
0x0023
0x0024
0x0025
0x0026
0x0027
0x0028
0x0029
0x002a
0x002b
0x002¢
0x002d
0x002e
0x002f
0x0030
0x0031
0x0032
0x0033
0x0034
0x0035
0x0036
0x0037
0x0038
0x0039
0x003a
0x003b
0x003c
0x003d
0x003e
0x003f
0x0040
0x0041

126

Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior

00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00

prodidUtc12_CPP_Book
prodidImplib700
prodidCvtomf700
prodidUtc13_Basic
prodidUtc13_C
prodidUtc13_CPP
prodidLinker610
prodidCvtomf{610
prodidLinker601
prodidCvtomf601
prodidUtc12_1_Basic
prodidUtc12_1_C
prodidUtcl12_1_CPP
prodidLinker620
prodidCvtomf{620
prodidAliasObj70
prodidLinker621
prodidCvtomf{621
prodidMasm615
prodidUtcl13_LTCG_C
prodidUtc13_LTCG_CPP
prodidMasm620
prodidILAsm100
prodidUtc12_2_Basic
prodidUtc12_2_C
prodidUtc12_2_CPP
prodidUtc12_2_C_Std
prodidUtc12_2_CPP_Std
prodidUtc12_2_C_Book
prodidUtc12_2_CPP_Book
prodidImplib622
prodidCvtomf{622
prodidCvtresb501
prodidUtc13_C_Std
prodidUtc13_CPP_Std
prodidCvtpgd1300
prodidLinker622
prodidLinker700
prodidExport622
prodidExport700
prodidMasm700
prodidUtc13_.POGO_I1_C

0x0042
0x0043
0x0044
0x0045
0x0046
0x0047
0x0048
0x0049
0x004a,
0x004b
0x004c
0x004d
0x004e
0x004f
0x0050
0x0051
0x0052
0x0053
0x0054
0x0055
0x0056
0x0057
0x0058
0x0059
0x005a
0x005b
0x005¢
0x005d
0x005e
0x005f
0x0060
0x0061
0x0062
0x0063
0x0064
0x0065
0x0066
0x0067
0x0068
0x0069
0x006a
0x006b

Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio prior
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003
Visual Studio 2003

00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10
07.10

prodidUtc13_.POGO_I_.CPP
prodidUtc13_ POGO_O_C
prodidUtc13_POGO_O_CPP
prodidCvtres700
prodidCvtres710p
prodidLinker710p
prodidCvtomf{710p
prodidExport710p
prodidImplib710p
prodidMasm710p
prodidUtc1310p_C
prodidUtc1310p_CPP
prodidUtc1310p_C_Std
prodidUtc1310p_CPP_Std
prodidUtc1310p_ LTCG_C
prodidUtc1310p_LTCG_CPP
prodidUtc1310p_POGO_1.C
prodidUtc1310p_ POGO_I_CPP
prodidUtc1310p_ POGO_O_C
prodidUtc1310p_POGO_O_CPP
prodidLinker624
prodidCvtom{624
prodidExport624
prodidImplib624
prodidLinker710
prodidCvtomf{710
prodidExport710
prodidImplib710
prodidCvtres710
prodidUtc1310_C
prodidUtc1310_CPP
prodidUtc1310_C_Std
prodidUtc1310_CPP_Std
prodidUtc1310_ LTCG_C
prodidUtc1310_LTCG_CPP
prodidUtc1310_POGO_I_C
prodidUtc1310_ POGO_I_CPP
prodidUtc1310_ POGO_O_C
prodidUtc1310_ POGO_O_CPP
prodidAliasObj710
prodidAliasObj710p
prodidCvtpgd1310

127

B. Mapping of Known ProdlDs in the Rich Header Generated by MSVC

0x006¢
0x006d
0x006e
0x006f
0x0070
0x0071
0x0072
0x0073
0x0074
0x0075
0x0076
0x0077
0x0078
0x0079
0x007a
0x007b
0x007c
0x007d
0x007e
0x007f
0x0080
0x0081
0x0082
0x0083
0x0084
0x0085
0x0086
0x0087
0x0088
0x0089
0x008a,
0x008b
0x008c
0x008d
0x008e
0x008f
0x0090
0x0091
0x0092
0x0093
0x0094
0x0095

128

Visual Studio 2003
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2005
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008
Visual Studio 2008

07.10
07.10
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
08.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00
09.00

prodidCvtpgd1310p
prodidUtc1400_C
prodidUtc1400_CPP
prodidUtc1400_C_Std
prodidUtc1400_CPP_Std
prodidUtc1400_LTCG_C
prodidUtc1400_LTCG_CPP
prodidUtc1400_POGO_1_C
prodidUtc1400_POGO_I_CPP
prodidUtc1400_.POGO_O_C
prodidUtc1400_.POGO_O_CPP
prodidCvtpgd1400
prodidLinker800
prodidCvtomf800
prodidExport800
prodidImplib800
prodidCvtres800
prodidMasm800
prodidAliasObj800
prodidPhoenixPrerelease
prodidUtc1400_CVTCIL_C
prodidUtc1400_CVTCIL_CPP
prodidUtc1400_LTCG_MSIL
prodidUtc1500_C
prodidUtc1500_CPP
prodidUtc1500_C_Std
prodidUtc1500_-CPP_Std
prodidUtc1500_-CVTCIL_C
prodidUtc1500_CVTCIL_CPP
prodidUtc1500_LTCG_C
prodidUtc1500_LTCG_CPP
prodidUtc1500_LTCG_MSIL
prodidUtc1500_ POGO_1_C
prodidUtc1500_.POGO_1_CPP
prodidUtc1500_.POGO_O_C
prodidUtc1500_POGO_O_CPP
prodidCvtpgd1500
prodidLinker900
prodidExport900
prodidImplib900
prodidCvtres900
prodidMasm900

0x0096
0x0097
0x0098
0x0099
0x009a
0x009b
0x009c

0x009d
0x009e

0x009f

0x00a0
0x00al

0x00a2
0x00a3
0x00a4
0x00ab
0x00a6
0x00a7
0x00a8
0x00a9
0x00aa
0x00ab
0x00ac

0x00ad
0x00ae

0x00af

0x00b0
0x00b1
0x00b2
0x00b3
0x00b4
0x00b5
0x00b6
0x00b7
0x00b8
0x00b9
0x00ba
0x00bb
0x00bc
0x00bd
0x00be
0x00bf

Visual Studio 2008
Visual Studio 2008
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010

09.00
09.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.10
10.10
10.10
10.10
10.10
10.10
10.10
10.10
10.10
10.10
10.10

prodidAliasObj900
prodidResource
prodidAliasObj1000
prodidCvtpgd1600
prodidCvtres1000
prodidExport1000
prodidImplib1000
prodidLinker1000
prodidMasm1000
prodidPhx1600_C
prodidPhx1600_CPP
prodidPhx1600_CVTCIL_C
prodidPhx1600_CVTCIL_CPP
prodidPhx1600_LTCG_C
prodidPhx1600_LTCG_CPP
prodidPhx1600_LTCG_MSIL
prodidPhx1600_POGO_1_C
prodidPhx1600_POGO_1_CPP
prodidPhx1600_.POGO_O_C
prodidPhx1600_POGO_O_CPP
prodidUtc1600_C
prodidUtc1600_CPP
prodidUtc1600_ CVTCIL_C
prodidUtc1600_CVTCIL_CPP
prodidUtc1600_LTCG_C
prodidUtc1600_LTCG_CPP
prodidUtc1600_LTCG_MSIL
prodidUtc1600_.POGO_1_C
prodidUtc1600_POGO_I_CPP
prodidUtc1600_ POGO_O_C
prodidUtc1600_POGO_O_CPP
prodidAliasObj1010
prodidCvtpgd1610
prodidCvtres1010
prodidExport1010
prodidImplib1010
prodidLinker1010
prodidMasm1010
prodidUtc1610_C
prodidUtc1610_CPP
prodidUtc1610_CVTCIL_C
prodidUtc1610_CVTCIL_CPP

129

B. Mapping of Known ProdlDs in the Rich Header Generated by MSVC

0x00c0
0x00c1

0x00c2
0x00c3
0x00c4
0x00ch
0x00c6
0x00cT7
0x00c8
0x00c9
0x00ca
0x00cb
0x00cc

0x00cd
0x00ce

0x00cf

0x00d0
0x00d1
0x00d2
0x00d3
0x00d4
0x00d5
0x00d6
0x00d7
0x00d8
0x00d9
0x00da
0x00db
0x00dc
0x00dd
0x00de
0x00df
0x00e0
0x00el

0x00e2
0x00d3
0x00e4
0x00eb
0x00e6
0x00e7
0x00e8
0x00e9

130

Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2010
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2012
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013
Visual Studio 2013

10.10
10.10
10.10
10.10
10.10
10.10
10.10
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
11.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00

prodidUtc1610_LTCG_C
prodidUtc1610_LTCG_CPP
prodidUtc1610_LTCG_MSIL
prodidUtc1610_POGO_1_C
prodidUtc1610_POGO_1_CPP
prodidUtc1610_ POGO_O_C
prodidUtc1610_.POGO_O_CPP
prodidAliasObj1100
prodidCvtpgd1700
prodidCvtres1100
prodidExport1100
prodidImplib1100
prodidLinker1100
prodidMasm1100
prodidUtc1700_C
prodidUtc1700_CPP
prodidUtc1700_CVTCIL_C
prodidUtc1700_CVTCIL_CPP
prodidUtc1700_LTCG_C
prodidUtc1700_LTCG_CPP
prodidUtc1700_LTCG_MSIL
prodidUtc1700_POGO_1_C
prodidUtc1700_.POGO_1_CPP
prodidUtc1700_.POGO_O_C
prodidUtc1700_POGO_O_CPP
prodidAliasObj1200
prodidCvtpgd1800
prodidCvtres1200
prodidExport1200
prodidImplib1200
prodidLinker1200
prodidMasm1200
prodidUtc1800_C
prodidUtc1800_CPP
prodidUtc1800_CVTCIL_C
prodidUtc1800_CVTCIL_CPP
prodidUtc1800_LTCG_C
prodidUtc1800_LTCG_CPP
prodidUtc1800_LTCG_MSIL
prodidUtc1800_POGO_1_C
prodidUtc1800_POGO_I_CPP
prodidUtc1800_.POGO_O_C

0x00ea Visual Studio 2013 12.00 prodidUtc1800-POGO_O_CPP

0x00eb Visual Studio 2013 12.10 prodidAliasObj1210

0x00ec Visual Studio 2013 12.10 prodidCvtpgd1810

0x00ed Visual Studio 2013 12.10 prodidCvtres1210

0x00ee Visual Studio 2013 12.10 prodidExport1210

0x00ef Visual Studio 2013 12.10 prodidImplib1210

0x00£0 Visual Studio 2013 12.10 prodidLinker1210

0x00f1 Visual Studio 2013 12.10 prodidMasm1210

0x00f2 Visual Studio 2013 12.10 prodidUtc1810_C

0x00£3 Visual Studio 2013 12.10 prodidUtc1810_CPP

0x00f4 Visual Studio 2013 12.10 prodidUtc1810_CVTCIL_C
0x00£5 Visual Studio 2013 12.10 prodidUtc1810_CVTCIL_CPP
0x00£6 Visual Studio 2013 12.10 prodidUtc1810_ LTCG_C
0x00f7 Visual Studio 2013 12.10 prodidUtc1810_LTCG_CPP
0x00£8 Visual Studio 2013 12.10 prodidUtc1810_LTCG_MSIL
0x00f9 Visual Studio 2013 12.10 prodidUtc1810_.POGO_I1_C
0x00fa Visual Studio 2013 12.10 prodidUtc1810_POGO_I_.CPP
0x00fb Visual Studio 2013 12.10 prodidUtc1810_ POGO_O_C
0x00fc Visual Studio 2013 12.10 prodidUtc1810_ POGO_O_CPP
0x00fd Visual Studio 2015 14.00 prodidAliasObj1400

0x00fe Visual Studio 2015 14.00 prodidCvtpgd1900

0x00ff Visual Studio 2015 14.00 prodidCvtres1400

0x0100 Visual Studio 2015 14.00 prodidExport1400

0x0101 Visual Studio 2015 14.00 prodidImplib1400

0x0102 Visual Studio 2015 14.00 prodidLinker1400

0x0103 Visual Studio 2015 14.00 prodidMasm1400

0x0104 Visual Studio 2015 14.00 prodidUtc1900_C

0x0105 Visual Studio 2015 14.00 prodidUtc1900_CPP

0x0106 Visual Studio 2015 14.00 prodidUtc1900_CVTCIL_C
0x0107 Visual Studio 2015 14.00 prodidUtc1900_CVTCIL_CPP
0x0108 Visual Studio 2015 14.00 prodidUtc1900_LTCG_C
0x0109 Visual Studio 2015 14.00 prodidUtc1900_LTCG_CPP
0x010a Visual Studio 2015 14.00 prodidUtc1900_LTCG_MSIL
0x010b Visual Studio 2015 14.00 prodidUtc1900_ POGO_1_C
0x010c Visual Studio 2015 14.00 prodidUtc1900_ POGO_1_CPP
0x010d Visual Studio 2015 14.00 prodidUtc1900_POGO_O_C
0x010e Visual Studio 2015 14.00 prodidUtc1900_ POGO_O_CP

131

List of Abbreviations

ACL Access Control Layer.

AMQP Advanced Message Queuing Protocol.
API Application Programming Interface.
APT Advanced Persistent Threat.

ASN Autonomous System Number.

AV Antivirus.

CERT Computer Emergency Response Team.
CFG Control Flow Graph.

CRITs Collaborative Research Into Threats. See Glossary: CRITs.

CSP Communicating Sequential Processes. See Glossary: CSP.

DAOQO Decentralized Autonomous Organization.
DGA Domain Generating Algorithm.
DIKW Data-Information-Knowledge-Wisdom. See Glossary: DIKW.

DNS Domain Name System.
ESB Enterprise Service Bus.

FBI Federal Bureau of Investigation.

FS-ISAC Financial Services - Information Sharing and Analysis Center. See Glossary:
Information Sharing and Analysis Center.

133

List of Abbreviations

HDFS Hadoop Distributed File System. See Glossary: HDFS.

HTTP Hypertext Transfer Protocol.

IAT Import Address Table.

IC Intelligence Community.

I0C Indicator of Compromise. See Glossary: 10C.
IP Internet Protocol.

ISAC Information Sharing and Analysis Center. See Glossary: Information Sharing
and Analysis Center.

JSON JavaScript Object Notation.

MANTIS Model-based Analysis of Threat Intelligence Sources. See Glossary: MANTIS.
MISP Malware Information Sharing Platform. See Glossary: MISP.

MSVC Microsoft Visual C++.

PCAP Packet CAPture.

PDF Portable Document Format.
PE32 Portable Executable.

PoS Proof of Stake.

PoW Proof of Work.

protobuf Protocol Buffers.
QoS Quality of Service.

RESTful REpresentational State Transfer.

RFI Request for Information.

S3 Amazon’s Simple Storage Service.
SIEM Security Information and Event Management.

SNA Social Network Analysis.

134

List of Abbreviations

SOA Service Oriented Architectures.

SWIFT Society for Worldwide Interbank Financial Telecommunications.

TLS Transport Layer Security.
TTL Time to Live.

URL Uniform Resource Locator.
US-CERT United States Computer Emergency Response Team.

UUIDv4 Universally Unique IDentifier v4. See Glossary: UUID.
VMI Virtual Machine Introspection.

zk-SNARK Zero Knowledge Succinct Noninteractive ARgument of Knowledge.

135

Glossary

Actor Model The Actor Model is a model for designing concurrent programs that uses
asynchronous mailboxes for message passing. See Section: 2.4.1.

Apache Hadoop A framework for processing very large data sets that are reliable,
scalable, and distributed. Originally designed as an open source implementation of
the MapReduce algorithm, Apache Hadoop is now comprised of multiple components
that support the analysis of structured and unstructured data.

Apache Kafka Apache Kafka is a distributed message broker that is focused on high
performance and scalability. While originally designed for log files, Kafka is
commonly used for moving messages in stream processing systems.

APT1 An APT actor commonly attributed to the Chinese Government.

blockchain A distributed database that is optimized for security and byzantine fault
tolerance. This has been popularized by Bitcoin because blockchain provides the
technical foundations.

CARE A new model for sharing computer security artifacts which aims to provide the
mechanisms required to perform analytic collaboration with a collective pool of
knowledge in near real-time. See Chapter: 4.

CareCoin An economic unit that is used for transmitting artifacts between peers under
the CARE model.

CAREconomy An economic model for how to incentive sharing under the CARE model.

Citadel A family of malware based on the leaked Zeus Trojan targeting backing activity.
Often called Citadel or Zeus-Citadel.

CRITs A popular analytic tool developed by MITRE for conducting triage of objects.
CRITs is designed to support multi-users and be deployed on servers.

137

Glossary

CSP Communicating Sequential Processes is a model for designing concurrent programs
that uses synchronous channels for message passing. See Section: 2.4.1.

Cuckoo Sandbox A widely popular host-based dynamic analysis system.

Data A layer of the DIKW model which is defined as a raw object with no further
meaning.

DIKW A model for how to transform raw Data into usable forms that can empower
understanding and a judgment. See Section: 2.1.1.

Drakvuf A dynamic analysis system based on VMI.

dynamic analysis The process of extracting Information from Data through executing
Data and observing its behavior. See Section: 2.2.2.

Feature extraction The process of refining Information for the purpose of machine
learning.

free riding The situation where participants in an economy reap the benefits of the
collective whole but do not provide a meaningful contribution.

Gateway A SKALD Planner whose primary purpose is to receive tasking. See Section:
3.2.2.1.

HDFS A core component of the Apache Hadoop ecosystem that provides a distributed
file system for managing very large data sets.

Holmes Processing An open-source platform that realized the goals of SKALD and
enables large-scale analysis of security artifacts. More information can be learned
in chapter 5 and https://www.holmesprocessing.com/.

impfuzzy Performs fuzzy hashing of the IAT that is reported in the headers of the PE32
file format.

Information A layer of the DIKW model which is defined as the details obtained by
asking who, what, where, when, and how questions of Data.

Information Sharing and Analysis Center Created by the United States Federal Gov-
ernment in 2003 with the mission of facilitating sharing between peers in critical
sectors and the federal government.

Intelligence Cycle A process for performing investigations that has been widely adopted
by the intelligence and law enforcement communities. See Section: 2.1.2.

138

https://www.holmesprocessing.com/

Glossary

Interrogation A SKALD Planner whose primary purpose is to turn Information into
Knowledge. See Section: 3.2.2.4.

Investigation A SKALD Planner whose primary purpose is to orchestrate Information
extraction against Data. See Section: 3.2.2.2.

I0C An ontology for cataloging details about an object or event.

Knowledge A layer of the DIKW model which is defined as organizing a set or subset
of Information into useful forms by asking “how-to” questions.

Lazarus Group An APT actor responsible for the Sony and SWIFT attacks.

Loosely coupled A design pattern where a component of a system is not reliant on
another component.

Machine Learning A field of computer science that focuses on creating algorithms that
learn how to solve a problem without being provided specific instructions. See
Section: 2.3.2.

Maltrieve A distribution feed that collects malware samples from blacklists.

MANTIS Created by Siemens Corporations to be a scalable competitor to CRITs that
also focused on sharing IOCs. This system was abandoned by Siemens as the
popularity of MISP increased.

MapReduce A programming model for processing large data sets across distributed
clusters.

MD5 A one way hashing algorithm that creates a message digest of 128 bits. Originally
was the dominant hashing algorithm used to identify malicious binaries.

Mediyes A signed malware dropper that used a valid signature and heavily targeted
western countries, particularly Germany.

Microservices Is an architectural design pattern similar to SOA. However, Services in
the microservice pattern focuses on small tasks that are required by the overall
application. See Section: 2.4.3.

MISP An IOC sharing and storage platform that is sponsored by the European Union.

Ops-T A cyber security trust group that aims to promote collaboration amongst vetted
security professionals to promote responsible action against malicious activities.

pefile A popular library for extracting the headers and structure from a PE32 binary.

139

Glossary

PEHash A popular hashing technique for PE32 binaries.

PEInfo A commonly used static analysis tool, originally part of CRITs, for extracting
the headers from PE32 binaries.

Planner A component of SKALD that operates as an intelligent orchestrator for Services.
See Section: 3.2.1.

Presentation A SKALD Planner whose primary purpose is to provide a standard mech-
anism for interacting with stored data and the data the INTERROGATION Planner
generates. See Section: 3.2.2.5.

RabbitMQ RabbitMQ is a popular and feature rich message broker. It provides native
support for multiple message formats, such as AMQP, and programming languages.

Service A subset of a system that executes an element of work or a business function.
See Section: 3.2.3.

SHA-256 A one way hashing algorithm originally designed by the NSA that creates a
message digest of 256 bits. Recently has begun to overtake MD5 as the default
hash for malicious binaries.

Shadowserver A cyber security trust group that focuses on gathering intelligence on
malware, botnets, and computer fraud.

Skald An architecture which guides the creation of analytic systems that support the
investigations of malicious activities plaguing computer systems, See Chapter: 3.

smart contract The evolution of paper contracts applied to the digital world. See
Section: 2.5.2.

static analysis The process of extracting Information from Data by investigating the
code or structure of the Data. See Section: 2.2.1.

Storage A SKALD Planner whose primary purpose is to optimize the storage and
retrieval of security artifacts and details that support the functioning of the system.
See Section: 3.2.2.3.

Tightly coupled A design pattern where a component of a system is reliant on another
component.

Transport A component of SKALD that moves data between Planners. See Section:
3.2.4.

140

Glossary

UUID A Universally Unique IDentifier (UUID) that guarantees uniqueness across space
and time.

VIPER An analytic tool for extracting information from raw computer security data
Data. VIPRE is designed to empower a single security practitioner and run on
their workstation.

VirusShare A distribution feed for raw malware samples.

VirusTotal A service provided by Google for analyzing if a file or URL is detected by
an AV product.

Wisdom A layer of the DIKW model which is defined as the results from the development
of understanding based on sets of Knowledge and experience.

Yara A language used to write a signature that is often based on textural or binary
patterns.

Yara Exchange A cyber security trust group which specializes in the exchange of Yara
signatures.

141

Bibliography

1]

2]

[7]

8]
[9]

Microsoft and Marsh, “By the Numbers: Global Cyber Risk Perception Survey,”
2018.

S. Farhang and J. Grossklags, “When to Invest in Security? Empirical
Evidence and a Game-Theoretic Approach for Time-Based Security,” in Workshop
on the Economics of Information Security, June 2017. [Online]. Available:
http://arxiv.org/abs/1706.00302

D. Borak and K. Vasel, “The Equifax Hack Could Be Worse Than We Thought,”
February 2018. [Online]. Available: http://money.cnn.com/2018/02/09/pf/equifax-
hack-senate-disclosure /index.html

J. Chaffetz, M. Meadows, and W. Hurd, “The OPM Data Breach: How the Govern-
ment Jeopardized Our National Security for More than a Generation,” US House of
Representatives Committee on Qversight and Government Reform, 114th Congress,
2016.

D. Volz and T. Gardner, “In a First, U.S. Blames Russia for Cyber Attacks on Energy
Grid,” March 2018.

S. J. Shackelford, “From Nuclear War to Net War: Analogizing Cyber Attacks in
International Law,” Berkeley J. Int’l Law, vol. 27, no. 192, 2009.

S. Morgan, “Cybersecurity Market Report,” Tech. Rep., 2017. [Online]. Available:
https://cybersecurityventures.com/cybersecurity-market-report/

100th Congress, “H.R. 145 - Computer Security Act of 1987, pp. 100-235, 1988.
B. Clinton, “Presidential Decision Directives/NSC-63,” p. 68, 1998.

[10] 107th Congress, “Homeland Security Act of 2002,” pp. 107-296, 2002.

[11] B. Obama, “Promoting Private Sector Cybersecurity Information Sharing, Executive

Order 13691,” 2015.

143

http://arxiv.org/abs/1706.00302
http://money.cnn.com/2018/02/09/pf/equifax-hack-senate-disclosure/index.html
http://money.cnn.com/2018/02/09/pf/equifax-hack-senate-disclosure/index.html
https://cybersecurityventures.com/cybersecurity-market-report/

Bibliography

[12] K. Choo, “The Cyber Threat Landscape: Challenges and Future Research Directions,”
Computers and Security, vol. 30, no. 8, pp. 719-731, 2011.

[13] G. Ollmann, “Behind Today’s Crimeware Installation Lifecycle: How Advanced
Malware Morphs to Remain Stealthy and Persistent,” Damballa, Tech. Rep., 2011.

[14] The MITRE Corporation, “Collaborative Research Into Threats (CRITs),” 2014.

[15] P. Vixie, “Internet Security Marketing: Buyer Beware,” CircleID, April 2015.
[Online|. Available: http://www.circleid.com/posts/20150420_internet_security_
marketing_buyer_beware/

[16] A. Stamo, “The failure of the security industry,” p. 7, April 2015. [Online|. Available:
http://www.scmagazine.com/the-failure-of-the-security-industry /article/403261/

[17] McAfee Labs, “McAfee Threats Report: Fourth Quarter 2011,” Intel Corporation,
vol. Q4, pp. 1-24, 2011.

[18] VirusTotal, “File Statistics,” April 2015. [Online]. Available: https://
www.virustotal.com/en/statistics/

[19] L. Zeltser, “SANS - Managing and Exploring Malware Samples with Viper,”
June 2014. [Online]. Available: https://digital-forensics.sans.org/blog/2014/06/04/

managing-and-exploring-malware-samples-with-viper

[20] B. Grobauer, S. Berger, J. Gobel, T. Schreck, and J. Wallinger, “The MANTIS
Framework: Cyber Threat Intelligence Management for CERTSs,” Proceedings of the
26th Annual FIRST Conference on Computer Security Incident Handling, 2014.

[21] G. Webster, Z. Hanif, A. Ludwig, T. Lengyel, A. Zarras, and C. Eckert, “SKALD:
A Scalable Architecture for Feature Extraction, Multi-user Analysis, and Real-Time
Information Sharing,” in Proceedings of the 19th International Conference on Infor-
mation Security. Springer, 2016, pp. 231-249.

[22] K. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[23] D. D. Woods, E. S. Patterson, E. M. Roth, and K. Christoffersen, “Can We Ever
Escape from Data Overload? A Cognitive Systems Diagnosis,” Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, vol. 43, no. 3, pp. 174-178,
1999.

[24] B. Anderson, C. Storlie, and T. Lane, “Improving Malware Classification: Bridging

the Static/Dynamic Gap,” in ACM Workshop on Security and Artificial Intelligence,
2012.

144

http://www.circleid.com/posts/20150420_internet_security_marketing_buyer_beware/
http://www.circleid.com/posts/20150420_internet_security_marketing_buyer_beware/
http://www.scmagazine.com/the-failure-of-the-security-industry/article/403261/
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/
https://digital-forensics.sans.org/blog/2014/06/04/managing-and-exploring-malware-samples-with-viper
https://digital-forensics.sans.org/blog/2014/06/04/managing-and-exploring-malware-samples-with-viper

Bibliography

[25] Damballa Inc, “3% to 5% of Enterprise Assets are Compromised by
Bot-driven Targeted Attack Malware,” pp. 2008-2010, March 2008. [Online].
Available: https://www.prnewswire.com/news-releases/3-to-5-of-enterprise-assets-
are-compromised-by-bot-driven-targeted-attack-malware-61634867.html

[26] S. Shevchenko and A. Nish, “Cyber Heist Attribution,” BAE Systems Threat
Research Blog, 2016.

[27] Symantec, “SWIFT Attackers’ Malware Linked to More Financial Attacks,” May
2016.

[28] T. Bergin and J. Finkle, “Exclusive: SWIFT Confirms New Cyber Thefts, Hacking
Tactics,” Reuters, December 2016.

[29] G. Fisk, C. Ardi, N. Pickett, J. Heidemann, M. Fisk, and C. Papadopoulos, “Privacy
Principles for Sharing Cyber Security Data,” in Proceedings of the IEEFE International
Workshop on Privacy Engineering. 1EEE, 2015, pp. 193-197.

[30] C. Sauerwein, C. Sillaber, A. Mussmann, and R. Breu, “Threat Intelligence Sharing
Platforms: An Exploratory Study of Software Vendors and Research Perspectives,”
in Proceedings of the 13th International Conference on Wirtschaftsinformatik (W1
2017), 2017, pp. 837-851.

[31] Novetta Threat Research Group, “Operation Blockbuster - Unraveling the Long
Thread of the Sony Attack,” February 2016.

[32] Novetta, “Operation SMN: Axiom Threat Actor Group Report.”

[33] B. Kolosnjaji, G. Eraisha, G. Webster, A. Zarras, and C. Eckert, “Empowering
convolutional networks for malware classification and analysis,” in 2017 International
Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 2017, pp.
3838-3845.

[34] B. Kolosnjaji, A. Zarras, T. Lengyel, G. Webster, and C. Eckert, “Adaptive
Semantics-Aware Malware Classification,” in Detection of Intrusions and Malware,
and Vulnerability Assessment: 15th International Conference, DIMVA 2016, San
Sebastian, Spain, July 7-8, 2016, Proceedings, J. Caballero, U. Zurutuza, and R. J.
Rodriguez, Eds. Cham: Springer International Publishing, 2016, vol. 9721, pp.
419-439.

[35] G. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch, Z. Hanif, A. Zarras, and C. Eckert,
“Finding the Needle: A Study of the PE32 Rich Header and Respective Malware
Triage,” in Detection of Intrusions and Malware, and Vulnerability Assessment: 14th
International Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings,
M. Polychronakis and M. Meier, Eds. Cham: Springer International Publishing,
2017, vol. 10327 LNCS, pp. 119-138.

145

https://www.prnewswire.com/news-releases/3-to-5-of-enterprise-assets-are-compromised-by-bot-driven-targeted-attack-malware-61634867.html
https://www.prnewswire.com/news-releases/3-to-5-of-enterprise-assets-are-compromised-by-bot-driven-targeted-attack-malware-61634867.html

Bibliography

[36] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep Learning for Classification
of Malware System Call Sequences,” in Al 2016: Advances in Artificial Intelligence.
Al 2016. Lecture Notes in Computer Science, B. H. Kang and Q. Bai, Eds. Cham:
Springer International Publishing, 2016, vol. 9992 LNAI, pp. 137-149.

[37] GReAT, “The Devil’s in the Rich Header,” Securelist, March 2018. [Online].
Available: https://securelist.com/the-devils-in-the-rich-header/84348 /

[38] J. Rowley, “The Wisdom Hierarchy: Representations of the DIKW Hierarchy,”
Journal of Information Science, vol. 33, no. 2, pp. 163-180, 2007.

[39] R. Ackoff, “From Data to Wisdom,” Journal of Applied Systems Analysis, vol. 16,
no. 1, p. 3-9, 1989.

[40] Director Of National Intelligence (ODNI), “IC Consumers Guide,” 2011.

[41] UK Ministry of Defence, “Understanding and Intelligence Support to Joint Opera-
tions (JDP 2-00),” Joint Doctrine Publication, p. 155, 2011.

[42] A.S. Hulnick, “What’s Wrong With the Intelligence Cycle,” Intelligence and National
Security, vol. 21, no. 6, pp. 959-979, December 2006.

[43] United Nations, “Criminal intelligence - manual for analysts,” United Nations Office
on Drugs and Crime, 2011.

[44] Recorded Future, “5 Phases of the Threat Intelligence Lifecycle.” [Online]. Available:
https://www.recordedfuture.com/threat-intelligence-lifecycle/

[45] B. Chess and G. McGraw, “Static Analysis for Security,” IEEE Security and Privacy,
vol. 2, no. 6, pp. 76-79, November 2004.

[46] P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial Static Analysis
Tools,” FElectronic Notes in Theoretical Computer Science, vol. 217, no. C, pp. 521,
2008.

[47] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the State of
Static Analysis: A Large-Scale Evaluation in Open Source Software,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering

(SANER), 2016, pp. 470-481.

[48] M. Fowler, “Continuous Integration,” Integration: The VLSI Journal, vol. 26, no. 1,
pp. 1-6, 2006.

[49] Synopsys, “Coverity Scan - Travis CI Integration.” [Online|. Available:
https://scan.coverity.com/travis_ci

146

https://securelist.com/the-devils-in-the-rich-header/84348/
https://www.recordedfuture.com/threat-intelligence-lifecycle/
https://scan.coverity.com/travis_ci

Bibliography

[50] Jenkins, “Coverity Plugin.” [Online|. Available: https://plugins.jenkins.io/coverity

[51] A. Miller, “A Hundred Days of Continuous Integration,” Agile, 2008. AGILE’08.
Conference, pp. 289-293, 2008.

[52] M. Reddy, “Building Example Services For Holmes Processing.” [Online]. Available:
https://www.holmesprocessing.com/gsoc/#portfolioModal5

[53] M. Pietrek, “An In-Depth Look into the Win32 Portable Executable File Format,”
MSDN Magazine, vol. 17, pp. 1-15, February 2002.

[54] P. Okane, S. Sezer, and K. McLaughlin, “Obfuscation: The Hidden Malware,” IEEE
Security and Privacy, vol. 9, no. 5, pp. 41-47, 2011.

[55] U. Bayer, 1. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A View on Current
Malware Behaviors,” Proceedings of the 2nd USENIX Conference on Large-scale
Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, p. 8, 2009.

[56] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware Analysis via
Hardware Virtualization Extensions,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security. New York, New York, USA: ACM Press,
2008, pp. b1-62.

[57] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for
Malware Analysis,” in 2007 IEEE Symposium on Security and Privacy. IEEE, May
2007, pp. 231-245.

[58] The Cuckoo Foundation, “Cuckoo Sandbox,” 2011. [Online|. Available:
http://cuckoosandbox.org

[59] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “SoK: Introspections on
Trust and the Semantic Gap,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, May 2014, pp. 605-620.

[60] T. Lengyel, S. Maresca, B. Payne, G. Webster, S. Vogl, and A. Kiayias, “Scalability,
Fidelity and Stealth in the DRAKVUF Dynamic Malware Analysis System,” in
Proceedings of the 30th Annual Computer Security Applications Conference on -
ACSAC 14, New Orleans, Louisiana, USA, 2014, pp. 386-395.

[61] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal Analysis-based Evasive
Malware Detection,” in Proceedings of the 23rd USENIX Security Symposium, 2014,
pp. 287-301.

[62] A. M. Turing, “On Computable Numbers, with an Application to the Entschei-
dungsproblem,” Proceedings of the London Mathematical Society, vol. s2-42, no. 1,
pp- 230-265, January 1937.

147

https://plugins.jenkins.io/coverity
https://www.holmesprocessing.com/gsoc/#portfolioModal5
http://cuckoosandbox.org

Bibliography

[63] B. J. Copeland, “The Essential Turing Seminal Writings in Computing, Logic,
Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma,”
Cryptologia, vol. 29, p. 613, 2004.

[64] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernd Ndez, and E. V4 Zquez,
“Anomaly-based Network Intrusion Detection: Techniques, Systems and Challenges,”
Computers € Security, vol. 28, pp. 18-28, 2009.

[65] V. M. Alvarez, “Yara,” 2015. [Online]. Available: https://virustotal.github.io/yara/

[66] M. Antonakakis and R. Perdisci, “From Throw-away Traffic to Bots: Detecting the
Rise of DGA-based Malware,” in Proceedings of the 21st USENIX Security Symposium,
2012, p. 16.

[67) G. Wicherski, “peHash: A Novel Approach to Fast Malware Clustering,” in Proceed-
ings of the 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2008.

[68] S. Tomonaga, “Classifying Malware Using Import API and Fuzzy Hashing
-Impfuzzy-,” May 2016. [Online]. Available: http://blog.jpcert.or.jp/2016/05/
classifying-mal-a988.html

[69] VirusTotal, “File Statistics,” 2017. [Online]. Available: https://www.virustotal.com/
en/statistics/

[70] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster, “Building a
Dynamic Reputation System for DNS,” Proceedings of the 19th USENIX Conference
on Security, pp. 1-17, 2010.

[71] V. E. Krebs, “Mapping networks of terrorist cells,” Connections, vol. 24, no. 3, pp.
43-52, 2002.

[72] P. Klerks, “The network paradigm applied to criminal organisations: Theoretical
nitpicking or a relevant doctrine for investigators? recent developments in the
netherlands,” in Transnational Organised Crime. Routledge, 2004, pp. 111-127.

[73] J. Xu and H. Chen, “Criminal network analysis and visualization,” Communications
of the ACM, vol. 48, no. 6, pp. 100-107, 2005.

[74] W. R. Harper and D. H. Harris, “The application of link analysis to police intelligence,”
Human Factors, vol. 17, no. 2, pp. 157-164, 1975.

[75] A. Singhal and X. Ou, “Security risk analysis of enterprise networks using proba-
bilistic attack graphs,” in Network Security Metrics. Springer, 2017, pp. 53-73.

148

https://virustotal.github.io/yara/
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/

Bibliography

[76] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,” in
Computer Security Foundations Workshop, 2002. Proceedings. 15th IEEE. 1EEE,
2002, pp. 49-63.

[77] J. L. Obes, C. Sarraute, and G. Richarte, “Attack planning in the real world,” arXiv
preprint arXiw:1306.4044, 2013.

[78] R. W. Ritchey and P. Ammann, “Using model checking to analyze network vul-
nerabilities,” in Security and Privacy, 2000. SEP 2000. Proceedings. 2000 IEEE
Symposium on. 1EEE, 2000, pp. 156—165.

[79] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing, “Automated generation
and analysis of attack graphs,” in Security and privacy, 2002. Proceedings. 2002
IEEE Symposium on. 1EEE, 2002, pp. 273-284.

[80] E. Casey, Digital evidence and computer crime: Forensic science, computers, and
the internet. Academic press, 2011.

[81] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci, M. Antonakakis, and
N. Vasiloglou, “Practical attacks against graph-based clustering,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 1125-1142.

[82] The Go Project, “The Go Programming Language.” [Online]. Available:
https://golang.org/project/

[83] R. Hickey, “The Clojure Programming Language,” in Proceedings of the 2008
Symposium on Dynamic Languages. New York, New York, USA: ACM Press, 2008,

pp. 1-1.

[84] R. Virding, C. Wikstrom, and M. Williams, Concurrent Programming in ERLANG,
2nd ed., J. Armstrong, Ed. Hertfordshire, UK, UK: Prentice Hall International (UK)
Ltd., 1996.

[85] P. Haller, “On the Integration of the Actor Model in Mainstream Technologies,” in
Proceedings of the 2nd Edition on Programming Systems, Languages and Applications

Based on Actors, Agents, and Decentralized Control Abstractions. New York, New
York, USA: ACM Press, 2012, p. 1.

[86] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR Formalism for
Artificial Intelligence,” in Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1973, pp. 235-245.

[87] E. Meijer, C. Hewitt, and C. Szyperski, “The Actor Model (Everything You Wanted
to Know, but Were Afraid to Ask),” 2012.

149

https://golang.org/project/

Bibliography

[88] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A Foundation for Actor
Computation,” Journal of Functional Programming, vol. 7, no. 1, pp. 1-72, 1997.

[89] G. A. Agha, “ACTORS: A Model of Concurrent Computation in Distributed
Systems,” Massachusetts Inst of Tech Cambridge Artifical Intelligence Lab, Tech.
Rep., 1985.

[90] C. Hoare, “Communicating Sequential Processes,” Communications of the ACM,
vol. 21, no. 8, pp. 666-677, August 1978.

91] R. Cox, “Bell Labs and CSP Threads.” [Online]. Available: https:
//swtch.com/~rsc/thread/

[92] A. Arsanjani, G. Booch, T. Boubez, P. C. Brown, D. Chappell, J. DeVadoss, Thomas
Erl, N. Josuttis, D. Krafzig, M. Little, B. Loesgen, A. T. Manes, Joe McKendrick,
S. Ross-Talbot, S. Tilkov, C. Utschig-Utschig, and H. Wilhelmsen, “SOA Manifesto,”
SOA Manifesto, p. 35, 2009. [Online|. Available: http://www.soa-manifesto.org/

[93] M. P. Papazoglou, “Service-Oriented Computing: Concepts, Characteristics and
Directions,” Proceedings - 4th International Conference on Web Information Systems
Engineering, pp. 3—12, 2003.

[94] M. Fowler, “Service Oriented Ambiguity,” MartinFowler.com, 2005. [Online].
Available: https://martinfowler.com/bliki/ServiceOriented Ambiguity.html

[95] D. Sprott and L. Wilkes, “Understanding Service-Oriented Architecture,” The
Architecture Journal, vol. 1, no. 1, pp. 10-17, 2004.

[96] M. P. Papazoglou and V. D. Heuvel, “Service-Oriented Design and Development
Methodology,” International Journal of Web Engineering and Technology, vol. 2,
no. 4, pp. 412-442, 2006.

[97] M. P. Papazoglou and W. J. Van Den Heuvel, “Service Oriented Architectures:
Approaches, Technologies and Research Issues,” VLDB Journal, vol. 16, no. 3, pp.
389-415, March 2007.

[98] D. Krafzig, K. Banke, and D. Slama, Service-Oriented Architecture Best Practices.
Prentice Hall Professional, 2005.

[99] B. P. Padmanabhan, K. Sadekar, and G. Krishnan, “What’s trending
on Netflix?” Netflix, Tech. Rep., 2015. [Online]. Available: https:
//medium.com /netflix-techblog/whats-trending-on-netflix-f00b4b037{61

[100] J. Lewis and M. Fowler, “Microservices: A Definition of This New
Architectural Term,” MartinFowler.com, 2014. [Online]. Available: https:
//martinfowler.com /articles/microservices.html

150

https://swtch.com/~rsc/thread/
https://swtch.com/~rsc/thread/
http://www.soa-manifesto.org/
https://martinfowler.com/bliki/ServiceOrientedAmbiguity.html
https://medium.com/netflix-techblog/whats-trending-on-netflix-f00b4b037f61
https://medium.com/netflix-techblog/whats-trending-on-netflix-f00b4b037f61
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Bibliography

[101] S. Newman, Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc., 2015.

[102] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.

[103] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,”
Conference on the Theory and Application of Cryptographic Techniques, pp. 369-378,
1988.

[104] M. Jakobsson and A. Juels, “Proofs of Work and Bread Pudding Protocols,” in
Secure Information Networks, B. Preneel, Ed. Boston, MA: Springer US, 1999, pp.
258-272.

[105] K. Wiist and A. Gervais, “Do you need a Blockchain?” TACR Cryptology ePrint
Archive, pp. 1-7, 2017. [Online]. Available: https://eprint.iacr.org/2017/375.pdf

[106] S. Popov, “The Tangle, IOTA Whitepaper,” pp. 1-28, 2017. [Online]. Available:
https://iota.org/IOTA_Whitepaper.pdf

[107] N. Szabo, “Formalizing and Securing Relationships on Public Networks,” First
Monday, vol. 2, no. 9, September 1997.

[108] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems,” in IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing, R. Guerraoui,
Ed. Springer Berlin Heidelberg, 2001, pp. 329-350.

[109] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” Ethereum Project Yellow Paper, 2014. [Online]. Available: http:
//www.cryptopapers.net /papers/ethereum-yellowpaper.pdf

[110] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge and its
applications,” in Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing - STOC '88. New York, New York, USA: ACM Press, 1988, pp. 103-112.

[111] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From Extractable Collision
Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again,”

in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference on
- ITCS ’12. New York, New York, USA: ACM Press, 2012, pp. 326-349.

[112] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, 1. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,” Proceedings
- IEEE Symposium on Security and Privacy, pp. 459-474, 2014. [Online]. Available:
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

151

https://eprint.iacr.org/2017/375.pdf
https://iota.org/IOTA_Whitepaper.pdf
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

Bibliography

[113] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The Blockchain
Model of Cryptography and Privacy-Preserving Smart Contracts,” in Proceedings of
the 2016 IEEE Symposium on Security and Privacy, 2016, pp. 839-858.

[114] E. Team, “Byzantium HF Announcement,” 2017. [Online]. Available:
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

[115] A. Mavridou and A. Laszka, “Designing Secure Ethereum Smart Contracts: A
Finite State Machine Based Approach,” in Proceedings of the 22nd International
Conference Financial Cryptography and Data Security, 2018.

[116] L. Gordon, M. Loeb, and W. Lucyshyn, “An Economics Perspective on the Sharing
of Information Related to Security Breaches: Concepts and Empirical Evidence,” in
Workshop on the Economics of Information Security (WEIS), 2002.

[117] E. Gal-Or and A. Chose, “The Economic Incentives for Sharing Security Informa-
tion,” Information Systems Research, vol. 16, no. 2, pp. 186208, 2005.

[118] W. Shields, “Problems with PeHash Implementations,” 2014. [Online]. Available:
https://gist.github.com/wxsBSD /07a5709fdcb59d346e9e

[119] F. Cristian, “Understanding Fault-tolerant Distributed Systems,” Communications
of the ACM, vol. 34, no. 2, pp. 5678, February 1991.

[120] S. B. Fan, J. Shaw, H. L. Han, and L. P. Zhang, “Software configuration manage-
ment,” in Google Patents, 2012, p. 14.

[121] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured Storage
System,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, p. 35, 2010.

[122] Z. Hanif, T. Calhoun, and J. Trost, “BinaryPig: Scalable Static Binary Analysis
Over Hadoop,” Black Hat USA 2013, p. 5, 2012.

[123] J. Jang, D. Brumley, and S. Venkataraman, “BitShred,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security - CCS 11, 2011, p.
309. [Online|. Available: http://dl.acm.org/citation.cfm?doid=2046707.2046742

[124] HiveMQ, “MQTT Essentials Part 6: Quality of Service 0, 1 & 2,” 2015. [Online].
Available: http://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-
service-levels

[125] DeepEnd Research, “YaraExchange,” May 2017.

[126] D. Horng, P. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos,
“Polonium: Tera-Scale Graph Mining and Inference for Malware Detection,” in Siam
International Conference on Data Mining, 2011, pp. 131-142.

152

https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://gist.github.com/wxsBSD/07a5709fdcb59d346e9e
http://dl.acm.org/citation.cfm?doid=2046707.2046742
http://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels
http://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels

Bibliography

[127] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: a System for Large-scale Graph Processing,” in Proceedings
of the 2010 International Conference on Management of Data, 2010, p. 135.

[128] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale Cluster Management at Google with Borg,” in Proceedings of the 10th
European Conference on Computer Systems, 2015, pp. 1-17.

[129] US-CERT, “Alert (TA14-353A),” December 2014. [Online]. Available: https:
//www.us-cert.gov /ncas/alerts/TA14-353A

[130] D. Bianco, “The Pyramid of Pain,” Enterprise Detection & Response, 2013.

[131] A. Boyd, “How FBI Cyber Division Helps Agencies Investigate Intrusions,” Federal
Times, October 2015.

[132] CERT-Coordination Center, “CSIRT Frequently Asked Questions (FAQ),” pp.
1-10, 2016. [Online]. Available: https://www.cert.org/incident-management/csirt-
development /csirt-faq.cfm?

[133] Operations Security Trust, “Ops-T,” 2017.

[134] J. Connolly, M. Davidson, and C. Schmidt, “The Trusted Automated
eXchange of Indicator Information (TAXII ™)” The MITRE Corporation,
Tech. Rep., 2014. [Online|. Available: http://taxii.mitre.org/about/documents/
Introduction_to_ TAXII_White_Paper_May_2014.pdf

[135] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “MISP: The Design and
Implementation of a Collaborative Threat Intelligence Sharing Platform,” in Pro-
ceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative
Security. ACM, 2016, pp. 49-56.

[136] T. Moore and R. Clayton, “The consequence of non-cooperation in the fight
against phishing,” in Proceedings of the eCrime Researchers Summit (eCrime), 2008.
[Online]. Available: http://www.cl.cam.ac.uk/~rncl/ecrime08pre.pdf

[137] Communications Security, Reliability and Interoperability Council, “Working Group
5: Cybersecurity Information Sharing - Information Sharing Barriers,” no. jun, 2016.

[138] C. Johnson, L. Badger, D. Waltermire, J. Snyder, and C. Skorupka, “Guide to
Cyber Threat Information Sharing,” NIST Special Publication, vol. 800, no. 150,
2016.

[139] P. Cichonski, T. Millar, T. Grance, and K. Scarfone, “Computer Security Incident
Handling Guide - Recommendations of the National Institute of Standards and
Technology,” NIST Special Publication, vol. 800, no. 61, 2012.

153

https://www.us-cert.gov/ncas/alerts/TA14-353A
https://www.us-cert.gov/ncas/alerts/TA14-353A
https://www.cert.org/incident-management/csirt-development/csirt-faq.cfm?
https://www.cert.org/incident-management/csirt-development/csirt-faq.cfm?
http://taxii.mitre.org/about/documents/Introduction_to_TAXII_White_Paper_May_2014.pdf
http://taxii.mitre.org/about/documents/Introduction_to_TAXII_White_Paper_May_2014.pdf
http://www.cl.cam.ac.uk/~rnc1/ecrime08pre.pdf

Bibliography

[140] T. Moore, R. Clayton, and R. Anderson, “The Economics of Online Crime,” Journal
of Economic Perspectives, vol. 23, no. 3—Summer, pp. 3-20, 2009.

[141] J. Milletary, “Citadel Trojan Malware Analysis,” Dell Secure Works, 2012.
[142] FS-ISAC, “Financial Services Information Sharing and Analysis Center,” 2015.
[143] Verizon, “2015 Data Breach Investigations Report,” 2015.

[144] Team Cymru, “#totalhash,” 2018.

[145] C. Guarnieri, “Viper - Time to Do Malware Research Right,” 2015.

[146] MISP Project, “MISP Taxonomies and Classification as Machine Tags,” Tech. Rep.,
2018.

[147] D. Dittrich, “So You Want to Take Over a Botnet ...” Proceedings of the 5th
USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET), pp. 1-8,
2012.

[148] B. Krebs, “’Mariposa’ Botnet Authors May Avoid Jail Time,” March 2010.

[149] L. Gordon, M. Loeb, and W. Lucyshyn, “Sharing Information on Computer Systems
Security: An Economic Analysis,” Journal of Accounting and Public Policy, vol. 22,
no. 6, pp. 461-485, 2003.

[150] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “KARMA: A Secure Economic
Framework for Peer-to-Peer Resource Sharing,” in Workshop on Economics of Peer-
to-Peer Systems, 2003.

[151] M. Meulpolder, L. D’Acunto, and M. Capota, “Public and Private BitTorrent
Communities: A Measurement Study,” Proceedings of the 9th International Workshop
on Peer-to-Peer Systems (IPTPS), p. 10, 2010.

[152] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct Non-Interactive
Arguments for a von Neumann Architecture,” Proceedings of the 23rd USENIX
Security Symposium, pp. 781-796, 2013.

[153] V. Buterin, “Notes on Blockchain Governance,” 2017. [Online|]. Available:
https://vitalik.ca/general /2017/12/17 /voting.html

[154] F. Ehrsam, “Blockchain Governance: Programming Our Future,” Coinbase,
2017. [Online]. Available: https://medium.com/@FEhrsam/blockchain-governance-
programming-our-future-c3bfe30f2d 74

[155] D. Mark, V. Zamfir, and E. G. Sirer, “A Call for a Temporary Moratorium on The
DAO,” Hacking, Distributed, 2016.

154

https://vitalik.ca/general/2017/12/17/voting.html
https://medium.com/@FEhrsam/blockchain-governance-programming-our-future-c3bfe30f2d74
https://medium.com/@FEhrsam/blockchain-governance-programming-our-future-c3bfe30f2d74

Bibliography

[156] R. Bohme, N. Christin, B. Edelman, and T. Moore, “Bitcoin: Economics, Technol-
ogy, and Governance,” Journal of Economic Perspectives, vol. 29, no. 2, pp. 213-238,
2015.

[157] K. Finley, “A $50 Million Hack Just Showed That the DAO Was All Too Human,”
2016. [Online]. Available: https://www.wired.com/2016/06/50-million-hack-just-
showed-dao-human/

[158] Financial Services Information Sharing & Analysis, “Operating Rules,” Tech.
Rep., 2016. [Online]. Available: https://www.fsisac.com/sites/default/files/FS-
ISAC_OperatingRules_June2016.pdf

[159] Department of Homeland Security Integrated Task Force, “Executive Order 13636:
Improving Critical Infrastructure Cybersecurity, Incentives Study Analytic Report,”
2013.

[160] J. M. de Fuentes, L. Gonzalez-Manzano, J. Tapiador, and P. Peris-Lopez, “PRACIS:
Privacy-preserving and Aggregatable Cybersecurity Information Sharing,” Computers
and Security, vol. 69, pp. 127-141, August 2017.

[161] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function detection in
binaries,” in Security and Privacy. 1EEE, 2017, pp. 177-189.

[162] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis,” in IEEE Symposium on Security and
Privacy, 2016.

[163] J. Salwan, “ROPGadget,” 2011. [Online]. Available: http://github.com/
JonathanSalwan /ROPgadget

[164] D. Stevens, “PDF Tools,” 2008. [Online]. Available: https://blog.didierstevens.com/
programs/pdf-tools

[165] The MITRE Corporation, “PEInfo Service.” [Online]. Available: https:
//github.com/crits/crits_services/tree/master/

[166] K. Kendall and C. McMillian, “Practical Malware Analysis,” in Black Hat Confer-
ences, USA, 2007.

[167] K. Chiang and L. Lloyd, “A Case Study of the Rustock Rootkit and Spam Bot,”
in Proceedings of the First Workshop on Hot Topics in Understanding Botnets, 2007,
p- 10.

155

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.fsisac.com/sites/default/files/FS-ISAC_OperatingRules_June2016.pdf
https://www.fsisac.com/sites/default/files/FS-ISAC_OperatingRules_June2016.pdf
http://github.com/JonathanSalwan/ROPgadget
http://github.com/JonathanSalwan/ROPgadget
https://blog.didierstevens.com/programs/pdf-tools
https://blog.didierstevens.com/programs/pdf-tools
https://github.com/crits/crits_services/tree/master/
https://github.com/crits/crits_services/tree/master/

Bibliography

[168] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G. Vigna, “A
Static, Packer-Agnostic Filter to Detect Similar Malware Samples,” in Conference on
Detection of Intrusions and Malware € Vulnerability Assessment (DIMVA), 2012.

[169] Mandiant, “Classifying Malware using Import API and Fuzzy Hashing — impfuzzy
—,” January 2014. [Online]. Available: https://www.mandiant.com/blog/tracking-
malware-import-hashing/

[170] R. Lyda and J. Hamrock, “Using Entropy Analysis to Find Encrypted and Packed
Malware,” IEEFE Security and Privacy, vol. 5, no. 2, pp. 40-45, 2007.

[171] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi,
and L. Wang, “On the Analysis of the Zeus Botnet Crimeware Toolkit,” in 2010 8th
International Conference on Privacy, Security and Trust, 2010, pp. 31-38.

[172] Y. Wei, Z. Zheng, and N. Ansari, “Revealing Packed Malware,” IEEE Security and
Privacy, vol. 6, no. 5, pp. 6569, 2008.

[173] Microsoft, “Common Object File Format - KB121460,” pp. 1-15, 2009. [Online].
Available: https://support.microsoft.com/en-us/kb/121460

[174] , “Microsoft Portable Executable and Common Object File Format Specifica-
tion,” p. 97, 2010.

[175] Lifewire, “Things They Didn’t Tell You About MS Link and the PE Header,” no.
29A. 2004.

[176] T. Stephen, “Rich Header,” January 2008. [Online]. Available: http:
/ /trendystephen.blogspot.de/2008 /01 /rich-header.html

[177] D. Pistelli, “Microsoft’s Rich Signature,” 2010.

[178] M. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware Analyst’s Cookbook and
DVD: Tools and Techniques for Fighting Malicious Code. Wiley Publishing, 2010.

[179] OpenRCE, “Microsoft’s Rich Signature (Undocumented) - Comments,” March
2012.

[180] J.-M. Roberts, “Virus Share,” 2011. [Online|. Available: https://virusshare.com/

[181] V. Zakorzhevsky, “Mediyes - The Dropper With a Valid Signature,” March
2012. [Online]. Available: https://securelist.com/mediyes-the-dropper-with-a-valid-
signature-8/32397/

[182] Mandiant, “APT1 Exposing One of China’s Cyber Espionage Units,” Report,
vol. 27, no. 4, pp. 1-76, 2013. [Online|. Available: http://intelreport.mandiant.com/
Mandiant_ APT1_Report.pdf

156

https://www.mandiant.com/blog/tracking-malware-import-hashing/
https://www.mandiant.com/blog/tracking-malware-import-hashing/
https://support.microsoft.com/en-us/kb/121460
http://trendystephen.blogspot.de/2008/01/rich-header.html
http://trendystephen.blogspot.de/2008/01/rich-header.html
https://virusshare.com/
https://securelist.com/mediyes-the-dropper-with-a-valid-signature-8/32397/
https://securelist.com/mediyes-the-dropper-with-a-valid-signature-8/32397/
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

Bibliography

9

[183] Oreans Technologies, “Themida - Advanced Windows Software Protection System,’
January 2016. [Online|. Available: http://www.oreans.com/themida.php

[184] S. Sarméjeanne, “The HTran Tool Used to Hack Into French Companies,” August
2011.

[185] R. Perdisci, A. Lanzi, and W. Lee, “Classification of Packed Executables for
Accurate Computer Virus Detection,” Pattern Recognition Letters, vol. 29, no. 14,
pp. 1941-1946, 2008.

[186] L. Martignoni, “OmniUnpack: Fast, Generic, and Safe Unpacking of Malware,” in
Annual Computer Security Applications Conference, 2007.

157

http://www.oreans.com/themida.php

	Scientific Publications
	Industrial Conferences
	Introduction
	Motivation
	Contributions
	Scope
	Organization

	Fundamentals
	Analytic Models
	Data Information Knowledge Wisdom (DIKW) Model
	Intelligence Cycle

	Data Based Analytic Methods
	Static Analysis
	Dynamic Analysis
	Third Party Information Gathering

	Information-Based Analytic Techniques
	Statistical and Knowledge-based Approaches
	Machine Learning
	Graph Analysis

	Large-Scale Infrastructure Techniques
	Concurrent Programming Paradigms
	Service Oriented Architectures
	Microservices

	Providing Trust for Decentralized Records and Transactions
	Blockchain
	Smart Contract

	Summary

	Developing an Architecture for Large-scale Investigations and Analytics
	Introduction
	System Overview
	Planner
	Planner Themes
	Service
	Transport

	System Wide Aspects
	Quality of Service
	Access Control Layer

	Evaluation
	Experimental Environment
	Scalability
	Resilience
	Flexibility

	Use Cases
	Sharing Resources with Geographically Distributed Partners
	Sharing Derived Information with Partners

	Lessons Learned
	Related Work
	Summary

	Expanding the Architecture to Enable Collaborative Analysis and a Sharing Marketplace
	Introduction
	The Problem in Perspective
	The Realities of the Current Sharing Paradigm
	Wisdom Without Context is Merely Data
	The Need For Speed
	Lack of Trust In Exchanged Items

	The CARE Model
	CARE Architecture
	CAREconomy

	Discussion
	Creating Collaborative Communities
	Sharing Partners
	New Opportunities

	Limitations and Future Work
	Secrecy and Privacy Considerations
	Identification of Shareable Resources

	Related Work
	Summary

	Prototyping the Concepts
	Introduction
	Architectural Overview
	Planners and Services
	Holmes-Gateway
	Holmes-Totem and Holmes-Totem-Dynamic
	Holmes-Storage
	Holmes-Analytics
	Presentation

	Transport
	Lessons Learned
	Languages
	Actor versus CSP
	The DIKW Model and Loosely Coupled Design

	Future Work
	Merge the Investigation Planners
	Deployment and System Management
	Improve ACL
	Providing Native Streaming Support

	Summary

	Proving the Concept: PE32 Malware Triage and Similarity Matching
	Introduction
	Background
	Portable Executable File Format Headers
	Compiler Linking

	Rich Header
	History of Previous Investigation into the Rich Header
	Previous Efforts to Extract The Rich Header

	Revealing the Rich Header
	Core Structure
	Hashes Contained Within the Rich Header
	Generation of @comp.id and ProdID
	Adding the Rich Header to the PE32 File Format

	Knowledge Based Statistical Analysis
	Data Sources
	Information Gathering
	Statistical Results

	Machine Learning Based Analysis
	Similarity Matching with the APT1 Dataset
	Similarity Matching with the Citadel Dataset
	Similarity Matching with the Mediyes Dataset

	Future Work and Limitations
	Discussion
	Related Work
	Summary

	Conclusion
	A Moment of Reflection
	Contributions
	Looking Forward
	Final Words

	Appendices
	Availability
	Mapping of Known ProdIDs in the Rich Header Generated by MSVC
	List of Abbreviations
	Glossary
	Bibliography

