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ABSTRACT 
 

The dynamic interaction between the structure, the foundation and the underlying soil has a relevant influence 
on the global dynamic behavior of wind turbines and can affect its functionality. The Soil-Structure Interaction 
(SSI) effects can be estimated with numerical models. As in many other application of civil engineering, the 
simulation of tower-like buildings can be conducted by means of idealized one-dimensional dynamic systems. 
Usually, these structures are modeled as cantilever beam elements, fixed at the base. However, it is important 
to include the effects of the elastic soil on the dynamic response of wind turbines in the modeling process, 
keeping the computational time affordable and the model reliable. In this contribution, we present a practical 
semi-analytical model for the estimation of the SSI response of wind turbines in the frequency domain. We 
show a validation of the implementation in Matlab through benchmark problems. Finally, we demonstrate its 
use analyzing the influence of soil stiffness, soil layering, foundation embedment and variations in the seismic 
input on the seismic response of wind turbines. 
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INTRODUCTION 
 
Soil-structure interaction (SSI) analyses assess the interplay of two coupled systems: the structure and its 
underlying soil. In general, these two systems are connected to each other through the foundations. Due to 
SSI effects the response of a building-soil system differs from the response of the building rigidly 
constrained at its base. The latter case is a purely theoretical condition and does not exist in reality, but is 
commonly assumed in practice. 
 
The SSI leads to two main effects: 1) kinematic interaction, that is the SSI causes the input motions to 
deviate from the free-field motions due to the presence of a rigid foundation, 2) inertial interaction between 
structure and soil. It is important to stress that these two aspects can act in opposite directions and it is not 
possible to establish deductively whether the dynamic response of the structure will be adversely or 
beneficially influenced. For each specific configuration of wind turbine and underlying soil an exhaustive 
investigation is necessary.  
 
Several methods for the SSI analysis have been proposed and successfully applied to wind turbines (Schauer 
& Rodriguez, 2018; Schauer, Taddei, & Morawietz, 2018; Taddei, Butenweg, & Klinkel, 2015; Taddei, 
Schauer, & Meinerzhagen, 2017). In these previous studies it was demonstrated that soil-structure interaction 
issues are particularly important for the exact estimation of the seismic response of wind turbines, leading to 
more reliable performance assessments and costs estimations. 
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In this contribution, we propose an alternative to three dimensional complex numerical methods for SSI 
analyses, which can be used for fast parametric studies. This method is developed in the frequency domain 
and thus restricted to the case of linear systems.  

The soil sub-model is based on previous developments of (Wolf & Deeks, 2004) which simulate the 
propagation of waves into an infinite medium similarly to a tapered bar with its cross area increasing along 
the axis. Embedded foundations with quite arbitrary shapes in layered soil deposits underlain by either a rigid 
base or an infinite half space can be addressed.  
The sub-model for the wind turbine tower is based on 1-D Euler-Bernoulli assumptions. Seismic loads as 
well as external loads due to aerodynamics, wind and water waves can be applied to the model.  
Several application of the soil cones models can be found in literature, such as in (Butenweg, Rosin, & 
Holler, 2017; Harte & Basu, 2013; Harte, Basu, & Nielsen, 2012; Mohasseb & Abdollahi, 2009), where it is 
demonstrated that they provide enough accuracy for typical engineering applications. 
 
The salient properties of this model are: 

- the structure is represented by an analytical 1-D Euler-Bernoulli beam with a constant distributed 
mass and bending stiffness, as described by (Koloušek & McLean, 1973) 

- the soil is represented by a truncated cone model, as described by (Wolf & Deeks, 2004) 
- the foundation is represented by rigid disks on the surface or embedded in the soil, as described by 

(Wolf & Deeks, 2004); 
- the seismic loads take into account the amplification effects of the site and can be applied at different 

levels, as described in (Wolf & Deeks, 2004). 
The proposed model is thought for practitioners, to develop their own SSI model. Of particular interest is the 
extension of the Matlab program CONAN (Wolf & Deeks, 2004), which includes the developed features and 
provides a starting point for custom-designed solutions.  
 
METHODS 
 
Soil model: cone models  
The cone models after (Wolf & Deeks, 2004) simulate the propagation of waves into an infinite medium 
similarly to a tapered bar with its cross section area increasing along the bar axis. The area of the cone increases 
in the direction of the wave propagation representing the spreading of the disturbance in a medium. Thus, the 
cones (or cone segments) are ‘radiating’ and fulfill the radiation condition. If the soil is layered, several 
physical cones are combined in series to account for reflection and refraction at the interface between layers.  
 
The foundation is placed on the top of the cone series or is embedded into the soil. The waves propagate in 
outward direction from the foundation, get reflected at the fixed boundary. At the free surface, the waves 
propagate in their own cones. The embedded foundation is modelled with a stack of disks in that part of the 
soil which will be excavated, with the actual layers subdivided into fictitious layers of thickness ݀. In order to 
ensure a correct wave propagation, the fictitious thickness must be chosen such that ݀ ൏

గ௖

ହன
 holds, where ω 

represents the loading circular frequency and ܿ designates the appropriate wave velocity for the considered 
seismic motion, either ܿ ௦ for S-waves or ܿ ௣ for P-waves. In this contribution we focus on vertically propagating 
S-waves, where the particle motion is only in horizontal direction, since this motion appears to be the most 
relevant for wind turbines. 
 
Using the cone models, the free field motion ݑ௙	results from the amplification of the seismic signal defined at 
the outcrop, also called ‘control motion’ ݑ௖. This is sketched on the left part of Figure 1. In absence of a 
foundation embedment, the free field motion ݑ௙	coincides with the foundation input motion	ݑ଴

௚. When the 
foundation is embedded, the kinematic interaction between the soil and the foundation leads to a discrepancy 
between the free field motion ݑ௙	and the foundation input motion	ݑ଴

௚. These aspects are accounted for in the 
computation of the dynamic soil stiffness. In more detail, the dynamic flexibility of the free field with respect 
to the relevant degrees of freedom of the rigid foundation (right part of Figure 1) is established addressing the 
wave pattern in the layered half space. The inversion of this relationship, an enforcement of the rigid body 
motion of the foundation, and the excavation of the trapped material yield the dynamic-stiffness coefficients 
of the embedded foundation and the effective foundation input motion ݑ଴

௚ (Wolf & Deeks, 2004). 



  
Figure 1. Sketch of the wave amplification effect for a vertically-propagating horizontal S-wave: on the 

left, without the presence of the structure (free field) and, on the right, including the rigid foundation with 
the relevant degrees of freedom activated by the S-wave 

 
In the following we briefly recall the basics of the cone model after (Wolf & Deeks, 2004). Assuming the case 
of a disk of radius ݎ଴, embedded into a homogeneous half-space with shear modulus ܩ௦ , Poisson’s ratio ߥ௦ , 
mass density ߩ௦ and hysteretic damping ratio ߦ௦ , modelled as a (one-sided) truncated semi-infinite cone with 
the same material properties as the half-space. To introduce hysteretic material damping, the real shear 
modulus is multiplied by ሺ1 ൅  ௦ሻ. The relationship between the amplitudes of the horizontal load ܳ଴ሺ߱ሻߦ2݅
and moment  ܴ଴ሺ߱ሻ, applied to the disk, and the coupled horizontal and rocking motions of the disk with 
amplitude ݑ଴ሺ߱ሻ and ߴ଴ሺ߱ሻ is: 
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where ܁௙ሺ߱ሻ and ܁ణ
௙ሺ߱ሻ are the dynamic stiffness coefficients of the soil, for the horizontal and rocking motion 

respectively, without foundation and excavated part (free field), ۯ is the kinematic-constraint matrix with 
values 1 (or equal to the distances between the disks and the tower base) or 0 for the rigid body motion of the 
foundation, and ۻ is the trapped mass matrix for the rigid body motion of the excavated part of the soil. For 
conciseness, Equation 1 rewrites: 
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where ܁଴଴

௚ ሺ߱ሻ is the dynamic-stiffness matrix of the embedded foundation. The effective foundation input 
motion consists of an averaged horizontal component and a rocking component with amplitudes: 
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The free-field displacements ܝ௙ሺ߱ሻ are to be determined at the locations of the subdisks for the vertically 
propagating S-waves (and possibly also for P-waves in case of a vertical earthquake). The spectral amplitude 
of the control motion ݑ௖ሺ߱ሻ can be defined either at the free surface of the site, or at an assumed fictitious 
rock outcrop.  
 
Tower model: Kolousek functions 
(Koloušek & McLean, 1973) gave the analytical solutions for a continuous prismatic Euler-Bernoulli-beam 
with different boundary conditions subjected to harmonic loads. These solutions establish the relationship 
between forces and displacements at the beam ends, as shown in Figure 2b. They are exact for the case of loads 
applied at the beam ends and are expressed in terms of sinusoidal and hyperbolic sinusoidal functions. Thus, 
the derivation of the exact dynamic stiffness matrix of the structure is straightforward. 
 
 



Figure 2. a) Model b) Exact forces and displacements at the ends of the beam after the convention of 
(Koloušek & McLean, 1973) c) External and internal nodal forces 

 
For the element described in Figure 2b, the relationship between forces and displacement at the beam ends 
reads as in Equation 4: 
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The functions ܨ௡ depend on the parameter ߣ, which is related to excitation frequency ߱. The complete 
expressions for the ܨ௡ሺߣሻ are shown in Annex A.  
The generalized displacements at the beam ends, can be substituted with those defined in Figure 2a: 
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Setting the equilibrium of horizontal forces and moment at the node ݄ and at both nodes (݄ ൅ ݃): 
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(6) 



In Equation 6 we considered the loads and moments at node ݄ (which are in equilibrium and their sum is 
zero) also in the equilibrium for both nodes ݄+݃. This is cumbersome and could be improved by considering 
the equilibrium only at ݄ and only at ݃, instead of ሺ݄ ൅ ݃ሻ. However, here we chose this less efficient 
formulation, in order to follow the procedure described in (Wolf & Deeks, 2004). 

Substituting Equation 4, 5 and 6 and reassembling the expressions with respect of the unknown variables 

଴ݑ in matrix form, bringing the known terms with the seismic inputs ߴ and ݑ	,଴ߴ	,଴ݑ
௚	and ߴ଴

௚ on the right side 

(the dependency on ߣ is omitted for clarity) leads to the SSI system of equations in Equation 7 to 11.  
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Equation 6 can be extended to include aerodynamic loads at the tower head or wave loads for offshore 
structures at the foundation level. Therefore, an extended version of the proposed method can be applied also 
to offshore wind turbines. Moreover, the functions F୬	are only valid for a constant section along the beam axis. 
A tower with a variable section can be simulated approximating it with several beam elements with constant 
cross section and coupling them by enforcing equilibrium at the coupling nodes. 
 
Validation 
Let us consider the steady-state response of a bending beam grounded on a very stiff soil subjected to a 
vertically-propagating horizontal assuming a control motion ݑ௖ሺ߱ሻ= 0.1 m, constant throughout the frequency 
range and applied on a fictitious rock outcrop. The beam foundation is a circular disk with a radius equal to 1 
m. There are no additional lumped masses at the top and bottom of the tower, only a distributed mass along 
the beam. By giving a very high value to the shear modulus of the soil, the beam can be considered fixed at its 
base and therefore its response must be equal to the analytical solution of a cantilever beam. Table 1 shows 
the natural frequency of a cantilever beam with normalized properties. Figure 3a shows the transfer functions 
of the relative tower head displacements ݑሺ߱ሻ (or structural distortion) with respect to both the control motion 
଴ݑ ௖ሺ߱ሻ and the input motionݑ

௚ሺ߱ሻ. The two lines coincide for a stiff soil and represent the transfer functions 
of a cantilever beam subjected to a root point excitation ݑ௖ሺ߱ሻ with fixed base conditions, validating the 
method for the structural part. 
The validation is also confirmed in Figure 3b, which compares ݑ௧ሺ߱ሻ with the total foundation motion ݑ଴

௧ሺ߱ሻ, 
the input motion ݑ଴

௚ሺ߱ሻ, the control motion ݑ௖ሺ߱ሻ and the free field motion ݑ௙ሺ߱ሻ. All the curves except the 
total tower head displacements coincide with the control motion ݑ௖ሺ߱ሻ. Figure 3a and Figure 3b show also the 
resonance frequencies of the system with a stiff soil, which matches the analytical values given in Table 1.  
 
As a second validation scenario, the frequency-domain response of the beam grounded on a resonant layer 
underlain by a bedrock is analyzed, where the first natural frequency of the soil ௚݂ଵ matches the first natural 
frequency of the structure ଵ݂. The properties of the layer are indicated in Table 2 as ‘Resonant layer 1’. Figure 
3c shows the effects of the resonant layer presence on the transfer functions ݑሺ߱ሻ/ݑ௖ሺ߱ሻ and ݑሺ߱ሻ/ݑ଴

௚ሺ߱ሻ. 
The displacement peck corresponding to the first natural frequency of the structure is amplified of a factor 
equal to ca. 10 with respect to the stiff soil case. The additional peaks ௚݂௡	represent the natural frequencies of 
the layer and are computed correctly. Figure 3d shows that, at higher frequencies, the total displacements are 
damped, due to the additional radiation damping of the soil. In this case, the root-point excitation ݑ଴

௚ሺ߱ሻ and 
the free field ݑ௙ሺ߱ሻ coincide, due to the absence of embedment. 
 
In the third scenario, the beam grounded on a resonant layer underlain by a bedrock is considered, where the 
first natural frequency of the soil ௚݂ଵ matches the second natural frequency of the structure ଶ݂ (Table 2 - 
‘Resonant layer 2’). The simulation is carried out without foundation embedment and with foundation 
embedment ݁ equal to 30% of ܪ. Figure 4a and Figure 4b show the frequency-domain response of the beam-
layer system without embedment and the behavior shows a resonance at ଶ݂ as expected. Figure 4c and Figure 
4d show the effect of the embedment on the input motion ݑ଴

௚ሺ߱ሻ, and therefore on the total displacements, 
which are reduced w.r.t. the case without embedment. One can observe that, when the foundation is embedded, 
the input motion ݑ଴

௚ሺ߱ሻ, the control motion ݑ௖ሺ߱ሻ and the free field motion ݑ௙ሺ߱ሻ no longer coincide, because 
of the kinematic interaction. 
 



Table 1. Natural frequency of a cantilever 
beam of height ܪ, distributed mass ߤ, 

rigidity ܫܧ 

Table 2. Investigated soil parameters for the validation 
scenarios 
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Figure 3. Validation case scenarios where the tower model parameters are normalized according to Table 2, while 

the soil parameters vary according to Table 2 (Resonant layer 1) in order to show the influence of a stiff soil and a 
resonant layer on the structural response 
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Figure 4. Validation case scenarios with the beam grounded on a resonant layer (Table 2 - ‘Resonant layer 
2’): transfer functions without (a, b) and with (c, d) foundation embedment. Symbols are described in Figure 
1 and Figure 2a 

 
CASE STUDY 
 
The application of the proposed method is shown for the case of an idling 5MW onshore wind turbine subjected 
to different strong seismic events of Richter magnitude M>7. The two main axis of the turbine, the side-to-
side and fore-aft (FA) direction are considered as uncoupled and, in this study, only the FA direction is 
analyzed, that is the direction perpendicular to the rotor plane. The main direction of action of the horizontal 
earthquake is assumed to be aligned with the FA direction. Table 3 contains the properties of tower head and 
foundation. The first three natural frequencies of the wind turbine, fixed at its foundation, are 0.3 Hz, 2.4 Hz 
and 5.6 Hz. The investigated soils are either different homogeneous half spaces with different shear moduli or 
different layered soils, made up of one 16m-thick layer underlain by a homogeneous half space.  
 

Table 3. Inertial properties of tower head and foundation 

 Young’s Modulus 2.10 ⋅ 1011 N/m2 ܧ
 Average moment of inertia of the cross section 1.9 m4 ܫ
 Average  area of the cross section  0.5 m2 ܣ
 Tower height 87,6 m ܪ

ߤ ൌ ߩ ⋅  Distributed mass per unit length 4551 kg/m  ܣ
 ߦ	 Damping ratio 5% -- 
݉ଵ  Lumped rotor mass 350000 kg 

 ଵܫ
Lumped rotor mass moment of inertia in fore-aft 

direction 
4.5e+7 kg/m2 

݉ଶ  Lumped foundation mass 772500 ⋅ 105 kg 

 ଶܫ
Lumped foundation moment of inertia in fore-aft 

direction 
1.13e+7 kg 

 ଴ Foundation radius 8 mݎ
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For all the soil profiles, the density is assumed equal to 2000 kg/m3, the Poisson’s ratio equal to 0.33, the 
material damping equal to 5%. The remaining soil properties are listed in Table 4. In the results, the focus lays 
on the relative displacements at the tower head ݑ. However, the model provides also other important quantities 
such as the foundation translations and rotations, the effective input motions and the internal forces and 
moments according to the Euler-Bernoulli theory. 
  
Table 4. Investigated soil profiles. ܩ௦ுௌand ܩ௦௅ are the shear moduli of the half space and of the layer 
respectively. ܿ௦௅/ܿ௦ுௌ	is the layer/half space shear velocity ratio. 
 

 homogeneous half spaces layered soils 
 stiff medium soft L-stiff L-medium L-soft 

 ௦ுௌ 5.9 ⋅ 108 N/m2 1.5 ⋅ 108 N/m2 1.3 ⋅ 107 N/m2 8.0 ⋅ 107 N/m2 8.0 ⋅ 107 N/m2 8.0 ⋅ 107 N/m2ܩ
 ௦௅ -- -- -- 5.9 ⋅ 108 N/m2 1.5 ⋅ 108 N/m2 1.3 ⋅ 107 N/m2ܩ

ܿ௦௅/ܿ௦ுௌ -- -- -- 2.7 1.3 0.4 
D -- -- -- 16 m 16 m 16 m 

 

The seismic action is modelled selecting recorded seismic strong motions with fitting characteristics for the 
specific analysis. The earthquake recordings were selected providing the criterion of an average shear wave 
velocity of the top 30 m (ܿଷ଴) of the soil equal to 200±10m/s. Additionally, a Richter Magnitude between 7 
and 8 is assumed. The selected seismic motions represent the reference control motion ݑ௖		applied on a 
fictitious rock outcrop: 

 Chi Chi, Taiwan, 1999, M=7.62, ܿଷ଴=199 m/s 
 Darfield, New Zealand, 2010, M=7.0, ܿଷ଴=198 m/s 
 El Mayor, Cucapah, 2010, M=7.2, ܿଷ଴=197 m/s 

 
Influence of soil stiffness and stratification 
First, the idling wind turbine coupled to three different homogeneous half spaces and subjected to the Chi Chi 
earthquake is investigated. The foundation is not embedded. The stiffer soil has a greater shear modulus than 
the soft soil, so that the shear wave velocities vary from 543 m/s to 81 m/s respectively.  Figure 5a shows the 
transfer function for the relative displacement at the tower head for the three different half spaces. The first 
natural frequency of the system is less affected by the presence of the soil than the higher natural frequencies, 
which shift considerably towards left as the soil shear wave velocity decreases. Also the amplitudes of the 
displacements ݑ are affected by the SSI and this can be clearly seen in the transient response in Figure 5c. In 
this case, the ‘stiff’ and ‘medium’ soils lead to very similar results, while the ‘soft’ soil reduces the maximum 
relative displacement from 0.5 m to ca. 0.35 m. Then, for the same seismic event, layered soil conditions as 
described in Table 4 are considered. The final results are very similar to the case of half space. After a careful 
comparison between the transient signals in Figure 5c and Figure 5d for the cases ‘soft’ and ‘L-soft’, one can 
observe a small increase of amplitude when a the soft soil becomes a layer underlain by a stiffer half space. 
This is due to the reflections and refractions of the waves at the interface between layer and half space, which 
lead to trapped energy in the layer-tower system.   
 
Influence of embedment 
Using again the seismic signal of “Chi Chi”, a foundation embedment of 4 m is considered. Figure 6a shows 
the transfer functions for the relative displacement at the tower head with and without embedment and for 
fixed-base conditions. The transient response in terms of relative displacement at the tower head is affected by 
the presence of the embedment, which leads to a shift of the natural frequencies w.r.t. the superficial foundation 
and a modification of the amplitudes of the transfer functions. The presence of the embedment increases 
noticeably the computational time from few second to few hours.  
 



Figure 5. On the left, transfer functions for the relative displacement at the tower head for different half 
spaces (a) for different layered soils (b). On the right: transient response in terms of relative displacements 
at the tower head for different half spaces (c) for different layered soils (d) 

 
Influence of seismic signal 
Figure 7 shows the control motion in time domain ݑ௖ሺݐሻ	for different seismic events and the corresponding 
spectra ݑ௖ሺ݂ሻ	superimposed with the transfer functions ݑ/ݑ௖ for a stiff soil and for a soft soil. First stiff-soil 
conditions are considered. Even if the “El Mayor” event exhibits a greater maximum absolute control motion 
(input) than the “Darfield” event, the latter causes a greater structural distortion ݑ (output), as shown in Figure 
7c. The spectrum of the “Darfield” event shows a higher spectral amplitude than the “El Mayor” event in 
correspondence with the peak of the transfer function around ଵ݂ ൌ 0.3 Hz, for stiff-soil conditions (dashed line 
in Figure 7b). Now, we assume soft-soil conditions. The structural distortion ݑ for all the seismic events is 
reduced in amplitudes as expected according to the reduced transfer function for soft-soil conditions (dotted 
line in Figure 7b). However, the reduction is not the same for the different events. For example, for the “El 
Mayor” event, the reduced transfer function for soft-soil condition is compensated by the higher spectral 
amplitudes of the input in correspondence of the shifted transfer function peak for soft-soil condition. This 
confirms that the SSI can be both beneficial (thanks to additional damping) and disadvantageous (due to shifted 
natural frequencies with unexpected resonance effects or trapped energy in layered soils). 
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Figure 6. On the left (a): transfer functions for the relative displacement at the tower head for different soil 
and embedment conditions. On the right (b): transient response in terms of relative displacement at the tower 
head for different soil and embedment conditions 

 

 
Figure 7. a) Transient signal ݑ௖ሺݐሻ	of the horizontal earthquake for different seismic events; b) Spectra 
 ௖ for a stiff soil (dashedݑ/ݑ ሻ superimposed with the transfer functionsݐ௖ሺݑ of the input transient signals	௖ሺ݂ሻݑ
line) and for a soft soil (dotted line), for frequency between 0 and 1.5 Hz; c) transient response in terms of 
relative displacement at the tower head for a stiff soil; d) transient response in terms of relative displacement 
at the tower head for a soft soil 

 
CONCLUSIONS 
 
In this contribution, we proposed a semi-analytical model for the analysis of the soil-structure interaction of 
wind turbines subjected to seismic loads and we checked its numerical implementation through classical 
benchmark problems. This model is based on the one-dimensional wave propagation theory developed in the 
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frequency domain and thus restricted to the case of linear systems. We presented an application of the model 
for the analysis of the seismic response of a 5-MW wind turbine grounded on different soils, subjected to 
different earthquakes, with and without SSI. We showed that the relative displacements of the tower top are 
affected by the presence of the soil and the effect is not always beneficial. The method can be extended for 
offshore wind turbines, by including external loads for the aerodynamic and hydrodynamic wave loads. 
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Annex A 
Shape functions after (Koloušek & McLean, 1973) for a prismatic beam 
 

ሻߣଵሺܨ ൌ െߣ
sinh	ߣ െ sin	ߣ
cosh	ߣcos	ߣ െ 1

ሻߣଶሺܨ  ൌ െߣ
cosh ߣ sin ߣ െ cos ߣ sinh ߣ

cosh ߣ cos ߣ െ 1
 

ሻߣଷሺܨ ൌ െߣଶ
cosh	ߣ െ cos	ߣ
cosh	ߣcos	ߣ െ 1

ሻߣସሺܨ  ൌ ଶߣ
sinh	ߣsin	ߣ

cosh	ߣcos	ߣ െ 1
 

ሻߣହሺܨ ൌ ଷߣ
sinh	ߣ ൅ sin	ߣ
cosh	ߣcos	ߣ െ 1

ሻߣ଺ሺܨ  ൌ െߣଷ
cosh ߣ sin ߣ ൅ cos ߣ sinh ߣ

cosh ߣ cos ߣ െ 1
 

With   

ସߣ ൌ ସ߱ଶܪ ߤ
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