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Abstract— The recent generation of compliant robots enables
kinesthetic teaching of novel skills by human demonstration.
This enables strategies to transfer tasks to the robot in a more
intuitive way than conventional programming interfaces. Pro-
gramming physical interactions can be achieved by manually
guiding the robot to learn the behavior from the motion and
force data. To let the robot react to changes in the environment,
force sensing can be used to identify constraints and act
accordingly. While autonomous exploration strategies in the
whole workspace are time consuming, we propose a way to learn
these schemes from human demonstrations in an object targeted
manner. The presented teaching strategy and the learning
framework allow to generate adaptive robot behaviors relying
on the robot’s sense of touch in a systematically changing
environment. A generated behavior consists of a hierarchical
representation of skills, where haptic exploration skills are
used to touch the environment with the end effector, and
relative manipulation skills, which are parameterized according
to previous exploration events. The effectiveness of the approach
has been proven in a manipulation task, where the adaptive
task structure is able to generalize to unseen object locations.
The robot autonomously manipulates objects without relying
on visual feedback.

I. INTRODUCTION

In human daily life scenarios, interaction forces are an
important means of detecting and exploring the surround-
ings. Besides visual observations, haptic feedback is often
used as an additional source of information when exploring
or manipulating an uncertain environment [1]–[4]. This is
achieved by relying on the sense of touch in a region of the
human’s spatial imagery where a physical contact is expected
[5]. Especially when a human cannot rely on vision alone,
haptic sensing is purposeful to gain feedback about object
locations. In contrast to humans, technical systems might
not be equipped with a vision system. Moreover, vision is
not always applicable due to occlusions, adverse camera
angle, weak illumination, or small color gradients. In service
robotics or in human-robot shared workspaces, there is a
demand to act in unstructured or uncertain environments.
Examples are variable pick/place positions, a manually filled
stack with mutable structure or a staple which varies in
height.

Programming a robot to use exploration motions by con-
ventional interfaces is elaborate and requires expert knowl-
edge. To ease this procedure, learning from demonstration
[6] is employed as teaching interface to directly extract the
desired behavior. Hereby, the user demonstrates the task

1 German Aerospace Center (DLR), Institute of Robotics and Mecha-
tronics, Wessling, Germany

2 Technical University of Munich, Chair of Human-centered Assistive
Robotics, Munich, Germany
{thomas.eiband, matteo.saveriano, dongheui.lee}@dlr.de

D
em

o
n
st

ra
ti

o
n
s  

Demonstrated 

Trajectories 

Distribution of 

contact key-points 

and its 1st principal 

component 

Learned exploration 

trajectory with 

extended exploration 

segment 

𝑥sp  

switching 

of contact 

observer 

𝑥ep  

Explore until 

contact 

Update 

transformation 

Compute new 

motion 

Execute 

adapted skill 

Gripper open (GO) 

Gripper close (GC) 

Movement, free (MF) 

Haptic exploration (HE) 

𝑥s 

𝑥g 

  

𝑥s 

𝑥g 

𝑥g′ 𝑥s′ 

Learning Execution 

  

Demonstration 

Execution 

Identify skills 

Learn skill 

relations 

Learn DMP 

weights 

Segment 

Fig. 1. The skill demonstration, learning and execution framework to
execute parameterized motions. Motion start and end points are adapted by
previously observed constraints during exploration of the environment. All
behaviors are extracted from human demonstrations via kinesthetic teaching.

consisting of exploration and manipulation motions multiple
times by kinesthetic teaching. The locations of the involved
objects are changed in a region where they are expected to be
positioned during execution. This is an intuitive input method
for a novice user, where also pick and place actions can be
easily demonstrated by controlling the gripper with a foot
pedal or a button.

Having this in mind, we propose a strategy to segment
multiple demonstrations of a task into parametrizable robotic
skills, considering intended variations of the environment.
We developed a method, which extracts position-based re-
lations between skills grounded on the observed variance
during the demonstrations. Further, we propose a strategy
to learn exploration paths from demonstrations to enable
adaptive movements in an uncertain environment.

Our work is outlined as follows: Section II summarizes
related work in the domain of haptic exploration and contact-
based localization. Section III describes our approach for
segmentation and skill identification and Sec. IV describes
our method for learning skill relations. The experiments are
presented in Sec. V. Finally, conclusions and future work are
stated in Sec. VI.

II. RELATED WORK

Learning of force-based robot skills from demonstrations
has been shown in a variety of applications like door-opening
and ironing [7], pouring from a bottle [8], screw driving [9],
grasping [10], engraving [11], wood planing [12] or writing
[13]. Further, in collaborative setups such as assembly [14]



or transportation tasks [15], [16]. However, none of these
approaches addressed sensing of object locations in the
environment. A force-based learning framework is proposed
in [17], where the robot continuously reacts to force variables
which have been identified by Mutual Information analy-
sis. The framework does not consider motion segmentation
required to reach absolute positions alongside with several
robot skills, such as pick and place. Continuous online
movement adaption by force perceptions is also presented in
[10], [17] and [18] but they are again not suitable in a task
requiring both fixed and adaptive positions. Learning force-
based tasks combined with motion segmentation in different
frames of reference is proposed in [19], which requires
vision-tracked object positions, where our approach extracts
important points vision-free during demonstration. Another
learning scheme pairs vision with tactile sensing [20] and
focuses on material and object detection. The system is not
bootstrapped from demonstration and the inferred class is
not used to adapt the robot’s behavior. In the context of
segmenting and sequencing, [21] proposes the prediction of
manipulation phases and [22] shows learning of hierarchical
skills by reinforcement learning, where both approaches
require object tracking if the object is not initially in the
hand. Learning of complex tasks using kinematic and video
data is proposed in [23]. In [24], compliant manipulation is
achieved by interaction-based phase transitions in a Hidden
Markov Model, where non-linear motions in free space and
exact goal points in free space were not addressed. In [25],
autonomous exploration of the whole workspace is combined
with tactile-based object discrimination. In [26], the search
policy is learned from human behavior to act in the whole
workspace, where we instead focus on the transfer of spe-
cialized skills to rapidly program and execute a novel task.
The approach in [27] combines in-hand object localization
using a tactile sensor array with tactile based manipulation.
During execution, a DMP approach is used similarly to [28],
which reproduces both desired motion and tactile trajectory.
More elaborate sensing techniques make use of embedded
sensors in gripper fingers [29], or tactile sensor arrays for
object recognition [30]. The latter authors use sampling-
based motion planning [31], which requires a model of the
environment or a huge number of real robot executions.
Learning from human hand motion observation is presented
in [32], with the goal to correct wrongly observed hand
postures with the sensed contact information while grasping.
The authors of [33] present teaching of stiffness profiles,
where a haptic interaction lies between robot and human
in order to adapt the compliance to the task requirements.
A large review about tactile sensing in [34] shows that a
variety of sensors is available but the major challenge lies in
development of novel manipulation algorithms.

III. SKILL IDENTIFICATION FROM HUMAN
DEMONSTRATIONS

We propose a learning from demonstration framework,
which extracts skills from a demonstrated task. A skill
is a predefined robot behavior [35] parameterized by the
demonstrations. First, we introduce our Task Demonstration
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Fig. 2. Kinesthetic teaching by manually guiding the robot (a) and
controlling gripper actions and demo recording by a foot pedal (b). Labeled
segments and identified skills (c)

System and explain how the user transfers the sequence
of skills to the robot (starting in Fig. 1 at the top left).
The Task Segmentation produces labeled segments of the
demonstration data. The next step in our learning framework
is the Skill Identification, where we construct predefined
skills from the previously labeled segments.

A. Task Demonstration System

The system is able to identify a sequence of predefined
robot skills, which can be motion in free space (MF), haptic
exploration (HE), and motions ending with gripper open
(GO) or gripper close (GC). The software framework is im-
plemented in Python, communicating via a realtime-capable
C++ middleware with Matlab/Simulink models connected
to the robot. In order to demonstrate a task consisting of
a sequence of skills, the robot is guided by kinesthetic
teaching. Hereby, the user guides the robot using a hold
close to the tip of the robot (see Fig. 2a). Whenever the
user wants the robot to explore a part of the environment,
the user lets the gripper fingers or other parts of the gripper
touch the desired object while the gripper state can be open
or closed. The interaction forces are recorded by a force-
torque (FT) sensor, mounted between robot tip and gripper.
Gripper actions can be triggered by a foot pedal (see Fig. 2b).
During teaching, the robot position xp ∈ R3 and orientation
quaternions elements xo ∈ R4, interaction FT measurement
f ∈ R6 and gripper state g are recorded. A FT measurement
consists of f = [fx, fy, fz, tx, ty, tz]

T and the gripper state
is defined by g = {1 if gripper open;−1 if gripper closed}.
The whole input vector is denoted as x = [xp,xo,f , g]

T .
Each sample of user demonstration i is stacked in a matrix
Xi ∈ RNd×Ni

, where Nd is the number of input dimen-
sions and N i the number of samples in demo i. The set
T = {X1, ...,XI} consists of I demonstrations, where our
method requires a minimum number of I = 2. Ideally, the
user covers significant changes in object locations to extract
the variance in the data. In fact, the length of an exploration
path is derived from the exposed variance during teaching.



B. Task Segmentation

a) Pre-processing: All demonstrations recorded for one
task are preprocessed to allow a robust segmentation into
skills. First, the FT measurements are filtered by a 1st
order low-pass Butterworth filter with a cutoff frequency of
fco = 1Hz. Periods in which the robot movement does not
exceed a defined threshold in translation or rotation over time
are removed.

Dynamic Time Warping (DTW) [36] is used to align each
demo in the set T with a medoid demo. A medoid demo can
be found by pairwise computing DTW distances between
all demos and selecting the demo with minimum sum of
squared distances to all other demos. The output is stored in
C = [X̃p, X̃o, F̃ , G̃]T ∈ RI×Nd×Ñ , with forces and torques
in F̃ = [Ff,Ft]

T and with Ñ samples.
The average of Ff and Ft over demonstrations is calculated

as Fm,f =
1
Ñ

∑I
i=1 Ff and Fm,t =

1
Ñ

∑I
i=1 Ft, which reduces

artifacts when segmenting the contact state. Hereby, the num-
ber and quality of demonstrations influence the robustness.
Possible artifacts are multiple bumps when the user touches a
rather stiff environment, accidentally touching the tool below
the FT sensor with a part of the hand, or unintended force
interactions while picking and placing an object. The goal
of the subsequent segmentation is to separate contact states
and free movement as well as to split segments by the binary
gripper state.

b) Segmentation of contact states: The in-contact seg-
mentation relies on predefined force and torque thresholds
δf and δt compared with the Euclidean norm of force and
torque measurements respectively. Algorithm 1 detects rising
and falling edges in the force and torque domain. Whenever
a rising edge is detected in one domain, the subsequent
segment is labeled as IC. For every falling edge, the subse-
quent segment is labeled as MF. The independent comparison
of force and torque increases segmentation robustness as
these signals can occur independently when in contact with
the environment. Reaching the threshold in one modality is
sufficient to trigger an IC state while both modalities need
to be below their thresholds to reset it, leading to the start of
an MF segment. For instance, force and torque can alternate
while the tool is continuously in contact, which leads to only
one IC segment.

c) Segmentation by gripper state: The MF segments
coming from the previous segmentation are further split
when a gripper action occurs in the task. All indexes for
gripper open (GO) ni

GO and gripper close (GC) ni
GC are

extracted for each demo i and then averaged over demos,
resulting in the averaged indexes n̄GO = 1

I

∑I
i=1 n

i
GO and

n̄GC = 1
I

∑I
i=1 n

i
GC respectively. Segments before these

indexes are labeled as gripper open (GO) or gripper close
(GC) accordingly.

A segment s is stored in the matrix
Ss = [Xp,s,Xo,s,Fs]

T ∈ RI×13×Ns , with Ns samples
from I demos. It contains position Xi

p,s, orientation Xi
o,s,

and force and torque F i
s for each demonstration i. The

result of the segmentation is the set of all segments, given
by S = {S1, ...,SNs}.

Algorithm 1 IC segmentation
Input: Fm

1: Initialization :
2: c← 1
3: IC ← false
4: for n = 1 . . . Nn do
5: Detect rising edge:
6: if (‖Fm,f(n− 1)‖ < δf and ‖Fm,f(n)‖ > δf ) or
7: (‖Fm,t(n− 1)‖ < δt and ‖Fm,t(n)‖ > δt) and not
8: IC then
9: ICs(c)← n . add segmentation index to list

10: IC ← true . set in-contact flag
11: c← c+ 1
12: end if
13: Detect falling edge:
14: if (‖Fm,f(n)‖ < δf and ‖Fm,t(n)‖ < δt) and
15: IC then
16: ICe(c)← n . add segmentation index to list
17: IC ← false . reset in-contact flag
18: end if
19: end for
20: return ICc, ICe

C. Skill Identification

In our framework, each contact with the tool is considered
as haptic exploration action intended by the user. Further-
more, for object manipulation, skills for robot motion, pick-
ing, and placing are required. To identify a haptic exploration
(HE) skill, an IC segment preceded by a MF segment needs
to be found. Figure 2c) shows the mapping between segments
and skills. If a MF segment occurs before an IC segment,
a HE skill r is generated, provided with the stacked data
Rr = [SMF,SIC] of both segments. The remaining segments,
such as MF, GO and GC are transformed into their according
skills. This leads to a number of skills Nr, less than or equal
to the original number of segments Ns. The identified skills
are stored in a set R = {R1, ...,RNr}.

IV. LEARNING SKILL RELATIONS

A. Relation Learning and Representation

After the Skill Identification, our goal is to infer whether
a skill motion shall be executed relative to another skill or
relative to the origin (root). Therefore, a metric is developed
which pairwise compares all skills to identify how strong
they are related to each other. First, the goal position xi

g,r ∈
R3 of a skill r is extracted for each demonstration i. This
leads to I goal points for skill r, stored in a key-points matrix
Kr = [x1

g,r, . . . ,x
I
g,r]

T ∈ RI×3. All key-points are added to
a set of available key-points given by L = {K1, ...,KNr}.

Next, a dimension-wise metric for the relation distance
between skills m and n with their key-points Km and Kn

in dimension d over all demonstrations is given by

vdm,n = Var



Km(1, d)−Kn(1, d)

...
Km(I, d)−Kn(I, d)


 for m 6= n. (1)

Similarly, the dimension-wise relation distance between a
single skill m with key-point Km and the coordinate origin



Algorithm 2 Constructing the skill relation tree
Input: R,Rrel

1: for each child parent relation c, p in Rrel do
2: T

µp

Kp
← [µp, . . . ,µp]

T −Kp . parent key-point
translations

3: Kc ←Kc + T
µp

Kp
. transform child keypoints

4: Rp,c ← Rp,c +
[
T

µp

Kp
, . . . ,T

µp

Kp

]
. transform skill data

5: tcp ← mean(Kc −Kp) . parent child translation
6: connect nodes with trafo(c, p, tcp)
7: end for
8: return R

O is

vdm,n = Var



Km(1, d)

...
Km(I, d)


 for m = n. (2)

The relation distance over all dimensions for all m,n is
computed using the root mean squared error

V (m,n) =

√√√√1

3

3∑
d=1

vdm,n
2 for ∀ m,n. (3)

For each skill m, in row m of the relation distance matrix
V ∈ RNr×Nr , the skill which has minimum relation distance
to skill m is found by

k = argmin
k∈{1,...,m}

{V (m, k)} with k ≤ m, (4)

considering all skills in the demonstrated sequence until skill
m to exclude non-causal relations to future skills. The skill k
found with minimum distance is stored in a relation matrix
Rrel ∈ RNr×Nr by Rrel(m, k) = 1. In the case m = k,
the skill is relative to the coordinate origin (root) by setting
Rrel(m,m) = 1, as it does not depend on any other skills.
All other entries in Rrel are set to 0.

A hierarchical structure of skills in form of a relation
tree is constructed from the relation matrix Rrel to represent
translations between skill goal points (Fig. 3), where each
node is a skill. The translations are directed from a parent
skill goal point to a child skill goal point and are updated
during the execution by the previously unknown contact
points of the HE skills. Skills which are directly attached to
the root node (acting as the coordinate origin O) are executed
with absolute motions, such as HE0 and GO3. The first skill
of a task is always attached to root as it cannot be influenced
by any preceding skill. Skills attached in deeper layers are
executed with relative motions to their parent skills. For
instance, the goal point of GC2 is defined relative to the
reached contact point of HE1. As a consequence, a single
HE skill is able to affect multiple child skills. In addition, a
child skills can be executed directly after its parent skill but
also at any later time.

The relation tree is constructed by Algorithm 2, which
uses a mean key-point µp = 1

I

∑I
i=1 K

i
p of a parent skill p

to transform the position data Rp,c and key-points Kc of the
child skill c.

root

HE0

HE1

GC2

GO3

MF4

Fig. 3. Relative skill tree from the box experiment. The goal point
transformation between two skills is a directed relationship from parent
to child skill.

B. Skill Learning
The skills to execute free motions only, such as MF,

GO, and GC are directly learned from the data of multiple
demonstrations. In contrast, a HE skill needs to handle
uncertain environments where the contact point is unknown
before execution. Therefore, a collision aware motion and a
modification of the skill data are necessary

To allow the robot to start exploring outside of the demon-
strated region, the motion learning considers an approaching
path (AP) to reach the exploration area and an extended
exploration path (EEP) inside the exploration area (Fig.4).
In the following, the generation of the full HE motion is
explained, where the subscript HE is used for referring to
any HE skill.

a) Modeling the exploration motion: First, the distri-
bution of HE key-points is modeled as normal distribution
KHE ∼ N (µHE,ΣHE) with mean µHE = 1

I

∑I
i=1 K

i
HE and

covariance ΣHE = Cov(KHE). Note that at least two demon-
strations need to be provided to exploit the variance in the
data, however more demonstrations might cover a wider
range of key-points. It is further assumed that exploration
takes place in a defined region of this distribution and along a
linear exploration path to find an object. To identify this path,
a principal component analysis is applied, using the covari-
ance matrix ΣHE. Its principal eigenvector eHE is termed as
the main exploration vector (Fig. 4 middle). However, its sign
might be inverse to the desired linear exploration direction.
We use the maximum force vector of the skill while in
contact F̂ i

f,IC of each demo i (see Fig. 7 for an example) to get
the average force vector F̄f,IC = 1

I

∑I
i=1 F̂

i
f,IC. The alignment

with the main exploration vector eHE is ensured using the
sign of the dot product F̄f,IC · eHE. If positive, the main
exploration vector eHE needs to be inverted to be aligned
with the approaching path. The position trajectory Rp,EEP
of the EEP is constructed by connecting the exploration
start point xsp = µHE − keeHE and the exploration end point
xep = µHE + keeHE with linearly spaced points, where ke is
a parameter to scale the exploration region (Fig. 4 right). In
contrast to the position, the orientation is kept fixed during
the whole EEP, taken from the quaternions average [37] at
the contact points.

The motion of the HE skill consists of two phases. In the
first phase, the robot follows the AP until the exploration
region is reached. The data Rp,AP for AP is constructed from
samples from the beginning of the corresponding segment
until the index where a sample falls below a distance to the
exploration start point xsp (Fig. 4 right). In the second phase,
we want the robot to follow the EEP where xsp is a desired
via-point before the robot reaches the exploration end-point
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xep. The final definition of the input data of a HE skill is then
Rp,HE = [Rp,AP,Rp,EEP] with an example given in Fig. 7.

b) Motion Encoding: For any skill r, a Gaussian Mix-
ture Model [38] is used to encode position Rp,r, orientation
Ro,r, and a time vector t ∈ RNt from multiple demonstra-
tions in a model MGMM. Expectation Maximization is used
to fit a number of Gaussian distributions on the data from
all stacked demonstrations in

Rin
r =

R1
p,r . . . RI

p,r

R1
o,r . . . RI

o,r

t . . . t

 ; MGMM = GMM(Rin
r ). (5)

Gaussian Mixture Regression is applied to obtain a general-
ized trajectory Rout

r ∈ R7×Nt conditioned on the time vector
t and denoted as

Rout
r =

[
Rout

p,r

Rout
o,r

]
= GMR(MGMM, t) = P (MGMM|t). (6)

The quaternions in Rout
o,r are normalized to unit quaternions

after GMR. The computations of the GMM and GMR
are carried out using pbdlib [39]. We decided to encode
the motion first in a probabilistic model before learning
a dynamical system for execution. Even so, it is possible
to encode multiple demonstrations directly in a Dynamic
Movement Primitive (DMP). DMPs are employed to learn
a stable motion which is guaranteed to converge to a desired
goal point [40]. In this work, the approach from [41] has been
adopted to learn DMPs for position and quaternion based
DMPs by using the quaternion logarithmic and exponential
map. The DMPs enable adaption of starting point and goal
given the transformations in the relation tree. The DMP
weights for a skill r are learned from its motion data Rout

r

generated by the GMR.

C. Skill Sequencing and Execution

The adaptive execution scheme is implemented in Al-
gorithm 3, generating motions with parameterized start xs
and goal point xg by the DMPs learned beforehand. The
coordinate origin is termed as O. During execution of a
HE skill, a contact is detected when the exploration force
or torque exceeds a defined threshold. Whenever a contact
is registered, the controller stops the current motion. The

Algorithm 3 Adaptive task execution
1: for r = 1 . . . Nr do
2: p← get parent skill(r)
3: if skill r is HE skill then
4: xg ← get trafo(O, p) +Rout

p,r(Nn,r)−Rout
p,r(1)

5: else
6: xg ← get trafo(O, r)
7: end if
8: xs ← get robot pos()
9: execute skill(r,xs,xg)

10: if skill r is HE skill then
11: xc ← get contact pos()
12: tcp ← xc − get trafo(O, p)
13: update trafo(r, p, tcp)
14: end if
15: end for

contact point xc is extracted and the goal point translation
between this skill and its parent skill is updated in the relation
tree (Alg. 3, line 13).

If required, object positions can be explored in multiple
dimension, e.g. an arrangement of staples of objects or a
single object in a plane. As relative skill’s motions are
transformed by their parent skills, multiple HE skills can be
chained to allow more complex behaviors, which is shown
in the following Experiments section.

V. EXPERIMENTS

The robot task is to pick boxes from an uncertain location
and place them on a demonstrated position. We use a
DLR LWR4 [42], mounted on a linear axis, equipped with
a two-finger Robotiq 85 gripper and a JR3 force-torque
sensor mounted between robot tip and gripper. The FT
measurements caused by the gripper mass are compensated.
The robot is operated in Cartesian impedance control with
constant stiffness.

As shown in Fig. 8 (right), we use a 2-dimensional
arrangement of boxes with 4 possible box locations. The
number of boxes can vary from 1 to 4 and the boxes can be
stapled in different configurations. The experimenter gives
two demonstrations to keep the teaching effort low, where
a subset of 2 box configurations has been used. In the first
demo, boxes are set at locations p11, p21, p22, while in the
second demo, one box is located at p11. As shown in Fig. 5,
during each demonstration one box is touched in horizontal
and vertical direction in order to identify its position. The
demonstrator starts exploring horizontally at the bottom row
because it is guaranteed to find a box when one is available
instead of starting at the top row. Starting in vertical direction
to explore a column would not succeed whenever this column
contains no boxes.

After gathering two demonstrations, the task is segmented
into contact states, free movements, and gripper states. The
result of the segmentation with according labels can be found
in Fig. 6. From the labeled segments, the skills HE0, HE1,
GC2, GO3, MF4 are identified, where the trailing number
denotes the sequential order. Skill relations are learned based
on the relation distance matrix V (Fig. 8 left) and represented
in the tree structure in Fig. 3. The position data Rp,r and
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Fig. 5. Demonstration of the adaptive task. In demonstration A, the
demonstrator touches the bottom row of boxes in horizontal (1A) and the
upper box of the first staple in vertical direction (2A). The box is picked
(3A) and placed (4A) on a fixed position on the table. After rearranging
boxes for demonstration B, the demonstrator touches the residual box in
horizontal (1B) and vertical (2B) direction, picks it (3B) and places it (4B)
on the same position on the table.
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Fig. 6. Segmented task with labeled segments.

learned motion of both HE skills are shown in Fig. 7, where
the motion and according key-points of HE1 are already
transformed by Algorithm 2. The system is able to generalize
to unseen box arrangements, showing the motion and contact
forces in Fig. 9 for a new box configuration {p11, p12, p21}.
See the accompanying video for the task demonstration and
generalization capability of the execution for all seen and
unseen box configurations.

The experiments show that no prior knowledge about the
initial configuration is needed, as long as the same objects1

are consistently used in demonstration and execution. Al-
though our approach works only for a bounded region in
the workspace and does not explore object orientations, it
is tailored to the task requirements of the demonstrator and
able to parameterize subsequent motions.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a framework consisting of a demonstration
system, a segmentation method and a skill learning approach
to execute adaptive tasks relying on haptic exploration skills.
We showed that learning of an adaptive task structure is
possible within only two demonstrations. Segmentation is
applied on averaged demonstration data with the aim to
increase robustness. The haptic exploration skill learning
considers environmental constraints such that the exploration
path starts at a point outside of the demonstrated contact
points to avoid unexpected collisions. We validate that the
HE behaviors can be extended to more than one dimension

1In theory, each object might be manipulated which is touchable and gras-
pable at the same points as the corresponding object used in demonstration.
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Fig. 7. Top: HE0, with skill’s position samples Rp,r (grey dots), GMM
(blue), key-points (×) and learned GMR motion (green). Black arrows show
magnitude and direction of F̂ i

f,IC. Exploration takes place in approximately
horizontal direction. Bottom: HE1, which is executed relative to HE0,
exploring in approximately vertical direction.
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Fig. 8. Left: Relation distance matrix V with extracted relations, where the
red boxes mark which skill (in each row) is relative to a skill in the column.
Right: Arrangement of boxes at locations p11,p12,p21,p22 and approaching
robot at first skill HE0.
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Fig. 9. Measured position and forces for an unseen box configuration {p11,
p12, p21}. Dashed lines show where each skill terminated. Detected contacts
by the HE skills stop the robot movement and adapt the pick position at
GC3. Place position at GO4 is reached with a fixed goal.

and to adapt skills online in a systematically changing en-
vironment. The proposed system does not require computer
vision and purely relies on the robots sense of touch. Future
research addresses the system’s capability in situations with
uncertain object orientations and previously unseen objects.
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