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their improvements on our manuscript on thermodynamic criticality. I particularly wish
to thank Srinivas Turaga for his advice and direct contributions to my second publication
on fitting models to subsampled data. It was a joy to listen to and learn from his many
great ideas for our project. Our results would also not have been possible without the
discussions with Lars Buesing, William Bishop and Prof. Yu that Dr. Turaga made
possible at the Janelia Research Campus. I have to acknowledge my predecessors Pedro
Goncalves, Jan-Matthis Lückmann and Kaan Öcal for laying the strong basis of our
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Abstract

The impressive capabilities of the brain result from the orchestrated activity of many
individual cells. For most neuroscientific model systems, the vast numbers of neurons
is still far beyond what modern population recording techniques can simultaneously
record at single-cell resolution. Scientists trying to understand neural computations thus
regularly deal with very incomplete views on neural circuits. Many relevant neurons are
missing from the recordings, and the input they provide to the recorded neurons is also
unknown. The implications of this subsampling for the analysis of neural data have
gained increased attention, but are far from fully understood. We need data analysis
methods which are adapted to severe subsampling of neural population recordings.

The results presented in this publication-based thesis span both statistical modeling
and the interpretation of data analysis. My first publication demonstrates the effects
of subsampling on the outcome of a test for criticality in neural systems. A recent se-
ries of studies targeted the scaling properties of neural codes when neural populations
grow in size, and found signatures of thermodynamic criticality in the spiking activity.
We re-investigated their analyses, and could relate the observation of criticality to com-
monly studied quantities such as neuronal firing rates and pair-wise correlations. Using
numerical simulations and theoretical analysis, we found that the reported signatures of
criticality can be explained by subsampling effects alone.

My second publication develops new methods for statistical modeling of neural data
that explicitly address subsampling. New recording techniques allow us to study large
neural populations by recording one subpopulation at a time. We can assemble a full
picture of the neural activity by fitting a model of the full population to the sequence of
partial recordings. Exploiting the structure of the resulting observation patterns allows
us to scale this approach to systems with millions of variables. We show empirically that
our methods can read out population activity spread over thousands of neurons from
severely subsampled recordings when combining several of them.

Our results stress the importance of actively incorporating knowledge about the in-
completeness of the neural population recordings when trying to make sense of the
observed population activity, and show how new recording techniques can be used to
greatly alleviate the problem.

Keywords: neural population activity, statistical modeling, missing data, neural code
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1 Publication Record

During the course of this thesis, two peer-reviewed publications were published with me
as first author:

1. Nonnenmacher M, Behrens C, Berens P, Bethge M, Macke JH. Signatures of
criticality arise from random subsampling in simple population models. PLoS
Comput Biol. 2017;(13)10:e1005718

2. Nonnenmacher M, Turaga SC, Macke JH. Extracting low-dimensional dynam-
ics from multiple large-scale neural population recordings by learning to predict
correlations. In: Advances in Neural Information Processing Systems; 2017. p.
5706–5716.

This publication-based dissertation rests on the work presented in these two papers.
Following an introduction explaining the general context of my thesis, both publications
are included in ths manuscript alongside a short summary.

Both first-author publications directly dealt with the effects of subsampling on our
understanding of neural computations. For both studies, the application of mathematical
models to data made up a considerable part of the work. In the later stages of my
doctoral studies, I then focused more on this aspect of applying the models to data.
This resulted in two more peer-reviewed papers published on conferences for machine
learning:

3. Lueckmann JM, Gonçalves PJ, Bassetto B, Öcal K, Nonnenmacher M, Macke
JH. Flexible statistical inference for mechanistic models of neural dynamics. In:
Advances in Neural Information Processing Systems; 2017. p. 1289-1299

4. Greenberg DS, Nonnenmacher M, Macke JH. Automatic Posterior Transfor-
mation for Likelihood-free inference. Proceedings of the 36th International Con-
ference on Machine Learning, in PMLR 97, p. 2404-2414

These latter publications contain applications of our newly developed methods to models
from computational neuroscience in a general context, but we think that these methods
will also be useful for the particular context of sparse neural recordings. For this reason,
I included short segments on this work in introduction and discussion.
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2 Introduction

2.1 Modeling in neuroscience

How the brain works has been a marvel for a very long time. Ramon y Cajal’s ‘neu-
ron doctrine’ [29, 158] famously described the brain as being made up from individual
neurons, and raised the question how large networks of neurons perform information pro-
cessing, decision making and action planning. A long series of improvements in scientific
recording methodology allowed to study the activity of neurons under better control and
in ever greater detail.

This development in recording techniques was accompanied by mathematical modeling
from an early time on. The aim of that modeling is to understand the principles of neural
processing that underly the recorded data. A mathematical model is a tool that allows us
to reason about what is important to explain the observations and what is not. Desgning
a model requires us to define model variables, and thus forces us to think about which
entities and concepts we believe to play a role. The model also expresses a hypothesis
of how those entities interact through one or several mathematical equations involving
those variables. The choice of included variables and form of equations can be motivated
by insights into the (bio-)physical processes, by flexibility and expressive power, or by
mere ease of solving them. We can compare model predictions against experimental
measurements. Through predictions that do no match the data, we come to question,
improve or discard the model and ultimately design a new one. Predictions that do
match the data prompt us to investigate why the model produced these results — which
aspects are essential, how would the model react in different situations, and what do we
learn about the modelled processes?

Early mathematical models used in neuroscience were desined to help understand the
activity of individual neurons, as it was only possible to measure activity in individual
neurons. The Hodgkin-Huxley model results from a seminal study of action potential
generation [59]. Action potentials are short and stereotypical events of current flow across
the charged neural membrane. They are also referred to as ‘spikes’, and sequences of
action potentials as spike trains. Action potentials are generally considered the primary
means of communivation within the brain used by neurons to convey information within
the neural network. Through voltage-clamp measurements [33] with a micropipette
on the squid giant axon, Hodgkin and Huxley established which ion flows across the
membrane and controlling gating mechanisms are central to the formation of action
potentials and the temporal evolution of voltage changes. Their model comprised a set
of equations for a dynamical system describing voltage-gated ion currents across the
cell membrane. With its detailed representation of biophysical quantities, the Hodgkin-
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2 Introduction

Huxley model is an early example for a biophysical model. Biophysical models are
designed from insights into physical or chemical processes understood to underlie the
observed activity. They can be very useful to study these mechanisms, but are often
hard to adjust to a specific dataset. Hodgkin and Huxley set the free model parameters
such that the model under the experimental protocol would reproduce the empirically
recorded data.

Another classical model for single-cell activity is the perceptron [125]. Unlike the
Hodgkin-Huxley model, the perceptron does not model any biophysical processes in-
volved in shaping the form of action potentials, and instead focuses on modeling on how
incoming activity from other cells functionally influences the output activity of a neu-
ron [51]. The perceptron emits an action potential in a given short time interval if the
weighted sum of incoming activity within that time interval exceeds a pre-set threshold.
Thus unlike the Hodgkin-Huxley model, the output here consists of a sequence of binary
variables, i.e. a spike train. The parameters of this model are the input weights—one
per input neuron—and the threshold level. As a model for a single artificial neurons,
the perceptron formed the building block for feed-forward artificial neural networks [126]
and the field of deep learning. Its linear summation assumption was later verified to
hold to some degree in real neurons [30], but the perceptron proved more important
for further innovations in theoretical neuroscience than for applied data analysis. Un-
like the Hodgkin-Huxley model, the perceptron is an example for a phenomenologically
motivated model. In contrast to biophysical models, phenomenological models are not
necessarily derived from first principles or insights from physics or biology, and their vari-
ables and parameters often do not directly correspond to real-world objects or processes.
Phomenologocial models are instead often grounded in probability theory and designed
for expressiveness and/or ease of use. They consequently focus on closely capturing the
observed data and often have high predictive power.

Knowledge about specific processes underlying the data generation can be worked
into these models through statistical dependencies between model variables [65]—the
probability of a spike to occur at a given point in time can for instance be made depe-
dendent on the recent history of spiking activity through a temporal filter [100, 117].
Phenomenological models however are generally hard to interpret in terms of the bio-
physical mechanisms that drive the observed activity.

The Hodgkin-Huxley equations and perceptron were important examples of early
models to understand the activity of individual neurons. With further developments
on recording techniques that allow to simultaneously record the activity of large pop-
ulations of interconnected neurons, also the mathematical modeling of neuroscientific
data saw a shift towards high-dimensional dynamics [141]. Contemporary neuroscien-
tific recording techniques produce vast amounts of data, and modeling has become an
integral tool to make sense of these large datasets [107].

2.1.1 Neural recordings

The perceptron aims to describe neural activity given as action potentials, whereas the
Hodkgin-Huxley equations model the membrane voltage of neuron, which is a graded
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2.1 Modeling in neuroscience

signal. Which type of data we deal with in a neural recording depends on the recording
technique that was used to obtain the data, but also on the amount of data (pre-)
processing.

Action potentials are typically extracted from recordings through well-established pre-
processing steps on the raw recorded signals. The least pre-processing is necessary for
intracellular recordings, where electrodes record voltage changes across the membrane
directly from within the neurons [80, 60, 99]. Extracellular electrical recordings, where
electrodes are held near cell bodies, require more pre-processing [1]. Since the elec-
trodes can pick up signals from several close-by cells, identified action potentials have
to assigned to the correct cell [78].

In recent years, optical recording methods became important tools to study neural ac-
tivity [72, 53, 70]. The most widespread form of optical imaging is calcium imaging [153].
Calcium imaging records changes in fluorescence caused by the changes in intracellular
calcium concentration during and after an action potential [19]. The calcium signal is
slow compared to the voltage changes underlying the action potentials (response times
of several dozen milliseconds for the commonly used calcium indicator GCamp6f [9]),
and graded rather than binary. Much recent work [157, 118] focuses on extracting binary
spike signals from calcium imaging signals, but models often also work directly on the
calcium signal (or on the derived ∆F/F [31], which highlights changes in fluorescence
relative to a moving baseline).

The work presented in this thesis considers both binary spike trains and graded neural
output signals such as result from optical recording methods. We will later introduce
different families of statistical models that are designed for either binary or graded data.

2.1.2 Neural population recordings

The focus of this thesis lies on neural population recordings, i.e. activity data that is
recorded simultaneously from a potentially large number of neurons. Techniques for
recording neural activity vary in temporal and spatial resolution, from single-cell intra-
cellular patch-clamp recordings [98] to large-scale methods like electroencephalography
[101] or functional magnetic resonance tomography [18]. A drawback of the two men-
tioned large-scale techniques is that they lack the temporal and/or spatial resolution
to resolve the temporal activity of individual cells. For the study of network function
and principles of neural information processing, we will focus on methods that allow to
identify individual action potentials. Several techniques allow to study the activity of
neural populations at the required resolution.

Electrodes pick up the signals of several nearby neurons, which led to early recordings
of groups of neurons, albeit with very little control over which neurons are recorded from,
or if and how they are interconnected [55]. Multi-shank electrodes and multi-electrode
arrays extended the covered area and the coverage of neurons within that area [146, 13].
In some areas, multi-electrode arrays can be used to sample a local population of cells
densely, i.e. cover close to 100% of cells within a confined area. One such area is the
layer of retinal ganglion cells in a patch of retina [88], and we will cover this example in
more detail in chapter 2.2.1.
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2 Introduction

More recently, advances in optical imaging [73, 88] largely extended the number of
simultaneously recorded neurons up to several thousand [144, 108]. This enabled to
empirically study the activity of much larger neuronal populations than were previously
accessible with electrode recordings.

Optical methods such as single- and two-photon imaging [153, 143] currently obtain the
largest population recordings at cell-resolution with up to tens of thousands of neurons
[144]. Optical methods allow tracking population activity with single-cell resolution for
entire nervous systems e.g. for the nematode C. Elegans and larval zebrafish [3, 2].
These two particular cases however heavily rely on specifics of the respective species—
the small diameter of the C. Elegans body and the translucency of the larval zebrafish
brain, respectively. For most other important experimental animals such as drosophila,
mice or primates, whole-brain imaging with optimal methods is not yet available.

An important concept for optical methods is their field of view (FOV), which limits
the size of recorded populations. Fields of view for optical techniques such as single-
and two-photon imaging are planar. Laser-scanning approaches move the focal point
of the scanning laser in planar patterns, typically in a grid of scan lines with a fast
and slow axis. With line-scanning speeds being typically fixed, the density of these grid
constitutes a trade-off between frame rates and spatial resolution.

Light-sheet microscopy is a technique that simultaneously illuminates a plane of tis-
sue rather than a line [71, 3]. Many brain structures of interest of interest cover a
three-dimensional volume and are not fully captured by a single imaging plane, such as
the 6-layered neocortex in mammals. To cover volumes, laser-scanning techniques can
move the imaging plane through several imaging depths [34]. The cost of this is that
the imaging frequency becomes proportional to the inverse of the number of imaging
depths—again a direct trade-off between temporal and spatial resolution. The acquisi-
tion time for individual planes influences how sharp the resulting images are and thus
constitutes another trade-off [47].

Optical methods require an extra step of data processing to identify individual neu-
rons within the high-dimensional image frames. This can be done by eye and manual
annotations of the data videos with so-called regions of interest, or in semi- or fully
automated [46, 108] fashion with dedicated algorithms. For simplicity, we will ignore
this for most of this thesis and refer to the processed data as neural population activity,
with one signal dimension per neuron.

2.1.3 Modeling for neural population recordings

The availability of neural population activity datasets shifted the focus of neuroscientific
studies from single-cell activity to understanding how neurons jointly represent and
process incoming stimuli through their complex interactions at the population level.
This led to new analysis methods that aim to better understand these high-dimensional
time-varying signals: Recent modeling tools for neural population activity [82, 36, 149]
were developed to examine the statistics of large neural populations and search for
principles underlying their collective dynamics [32, 27, 92, 48]. The availability of large
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2.1 Modeling in neuroscience

datasets has led to new ways of thinking about theoretical neuroscience [111] that was
referred to as ‘golden age of computational neuroscience’ [112].

A major distinction among mathematical models used in neuroscience remains be-
tween phenomenological and biophysical models. In the recent past, many relevant
models of population data have been phenomenological. An important reason for this is
that we have principled methods to apply phenomenological models to data, as we will
see in the next section. Another distinction between models is whether they operate
on continuous neuron outputs or on binary signals such as action potentials. This dis-
tinction is relevant when it comes to applying a model to data. The next two sections
will introduce two families for population analysis models that were fundamental for the
work presented in this thesis.

2.1.3.1 Maximum entropy models

One basic goal in the study of neural population activity is to characterise the ‘vocab-
ulary’ of neural populations, and study the prevalence e.g. of synchronous firing events
within the population [105, 149] from finite amounts of recorded data. This can be done
in a very targeted fashion with maximum entropy models [63], which describe multivari-
ate probability distributions P (x) that capture selected aspects of the data x, but are
otherwise as ‘unspecific’ as possible. Maximum entropy models are an important model
class for neural population analysis on spiking data [128, 148, 127, 149]. We will in
the following focus on models for multivariate binary data, although maximum entropy
models also exist for continuous signals [64].

A maximum entropy models is designed to capture selected aspects of the data. The
selected aspects are expressed through a feature function F (x) applied to data vectors
x. The model is constraint by the expected values of these features F attaining specific
(measured) values µ, i.e. E[F (x)] =

∑
x F (x)P (x) = µ. Being ‘unspecific’ here is

quantified by the entropy of the described probability distribution — for this model
class the entropy is maximal given the chosen constraints. Typical constraints chosen to
describe neural population activity are the firing rates (first statistical moments), and
the pairwise correlations (second statistical moments) between neurons [128, 135]. For
binary (spiking) data, these constraints lead to a model sometimes simply called pairwise
maximum entropy model. In statistical physics, it is also studied as the spin glass
[42, 132], and goes back to the well-known Ising model [62]. For continuous data, the
corresponding maximum entropy model with these constraints would be the multivariate
Normal distribution.

More formally, a binary maximum entropy model for neural population data assigns
a probability P (x) to each spike-pattern x ∈ {0, 1}n, and can be written as

P (x|θ) =
1

Z
exp (−E(x|θ)) , , (2.1)

where the energy function E(x|θ) = θ>F (x) constitutes a linear combination between
the parameter vector θ of the model and the feature vector F (x). The recorded neural
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2 Introduction

population activity {xt}Tt=1 forms a length-T discrete-time sequence of n-dimensional
binary vectors.

The selected data features that we want the maximum entropy distribution to match
become the components of the feature vector:

Eθ[F (x)] =
∑

x

F (x) P (x|θ) = 〈F (x)〉, (2.2)

where 〈F (x)〉 = 1
T

∑T
t=1 F (xt) is the average value of the feature across the data.

Adding components to the feature vector allows to extend the maximum entropy
model to match additional statistics of the data distribution. The ‘K-pairwise’ maximum
entropy model [149] for spike patterns x is an extension of pairwise maximum entropy
models which reproduce the firing rates and pairwise covariances, and has additional
terms to capture population spike-counts [149],

P (x|θ) =
1

Z(θ)
exp

(
h>x + x>Jx +

n∑

k=0

Vkδ (K(x) = k)

)
. (2.3)

The model parameters are h, J and V . The vector h ∈ Rn and the upper-triangular ma-
trix J ∈ Rn×n correspond to the bias terms and interaction terms in a pairwise maximum
entropy model [128], respectively. V is a vector whose entries control the distribution
over so-called population spike-counts. Population spike-counts K(x) =

∑n
i=1 xi are

given by the total number of spikes across the population within a single time bin. The
indicator-term δ (K = k) equals to 1 if the population spike-count is k, and is 0 otherwise.
The term

∑n
k=0 Vkδ (K = k) was introduced [149] to ensure that the model precisely

captures the population spike-count distribution of the data using n additional free pa-
rameters. The partition function Z(θ) =

∑
x exp

(
h>x + x>Jx +

∑n
k=0 Vkδ (K(x) = k)

)

ensures that the probabilities given by the model sum to 1. The K-pairwise model is a
model of instantaneous population activity and doe not model temporal dependencies
in the data. Maximum entropy models can also capture dynamics e.g. by including
time-lagged moments as features in F (x) [96].

Maximum likelihood estimation Applying high-dimensional maximum entropy mod-
els to data is a challenging computational problem [45, 39, 137, 130]. A common
method is to use maximum likelihood estimation (MLE) and Markov chain Monte Carlo
(MCMC) [25].

Optimizing the parameters θ = {h, J, V } of the K-pairwise model using maximum
likelihood means minimizing a loss L [40, 6] over the data D = {x1,x2, . . . ,xT} with
respect to the parameters,

L(h, J, V ) : = −
T∑

t=1

logP (xt|h, J, V )

. (2.4)

8



2.1 Modeling in neuroscience

The loss can additionally be regularized, i.e. terms are added to eq. 2.4 which control
the magnitudes of parameters h, J , that favour sparse coupling matrices J , or that
ensures that the variables Vk controlling the spike-count distribution vary smoothly in
k. A smoothness prior on V can be helpful for very large spike counts—these are rarely
observed in limited recording times, and hence the model has to interpolate between
parameters for spike-counts for which the number of observations is small.
Markov chain Monte Carlo is necessary to estimate statistical moments of P (x|θ). The
(K-)pairwise maximum entropy model requires the moments Eθ[F (x)] given current θ
to calculate gradients, as seen from the gradient of the l-th paramter component

δ

δθl

T∑

t=1

logP (xt|θ) =
δ

δθl

T∑

t=1

(
θ>F (xt)− logZ(θ)

)

=
T∑

t=1

δ

δθl
θ>f(xt)−

δ

δθl
T log

∑

x

exp
(
θ>F (x)

)

=
T∑

t=1

Fl(xt)− T
∑

x θl exp
(
θ>F (x)

)
∑

x exp (θ>F (x))

= T

(
1

T

T∑

t=1

Fl(xt)− Eθ[Fl(x)]

)
. (2.5)

For the K-pairwise model, the components Fl(x) of the feature vector include x(i), x(i)x(j)

and the indicator functions δ
(∑

i x
(i)) = k

)
. Thus we need to estimate all first- and

second-order moments under the model, as well as the distribution of population spike-
counts P (K(x) = k) = E[δ

(∑
i x

(i)) = k
)
], for population spike-count

∑
i x

(i) = K(x)
and k = 0, . . . , n. These expected values in turn require summations over all 2n possible
states x ∈ {0, 1}n. Since this is prohibitively expensive to compute for n > 20, MCMC
is commonly used to approximate the moments. Previous work [25] established Gibbs
sampling as a simple and reliable tool to approximate the relevant expectations. Gibbs
sampling here updates the activity of one neuron i at a time by re-sampling its state
from the conditional distribution given the state of the other n − 1 neurons in the
population, P (x(i)|x∼i, θ = {h, J, V }). In practice the MCMC sampling is by far the
computationally most expensive part of the algorithm, and within MCMC the estimates
of the quadratically many pairwise covariances tend to take the longest to converge.

Flat models Due to the quadratic scaling of the number of second-order moments,
applying the full K-pairwise maximum entropy model to data becomes cumbersome
beyond a few dozen neurons. Thus previous work studied a simplified nested model
[150] that does not explicitly capture first- and second-order moments. We refer to it
as ‘flat’ maximum entropy model, as it effectively assumes that all modeled neurons
have identical mean firing rates, pairwise correlations and higher-order correlations [7,
84, 163, 12]. Such a model is fully specified by the population spike-count distribution
P (K = k), and all spike words with the same spike count are equally probable. As a
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2 Introduction

result, the probabilities of individual patterns x can be read off from the spike-count
distribution by

P (x) =

(
n

k

)−1
P (K = k) (2.6)

whenever
∑n

i=1 xi = k. This model can be obtained from the K-pairwise model by
setting hi = 0 and Jij = 0 for all i, j ∈ {1, . . . , n} and only optimising entries of V . This
in particular means that the quadratically many model parameters in matrix J do no
longer need to be adjusted to data. One can fix V0 = 0 [150] without loss of generality,
resulting in n degrees of freedom for the model.
Flat model allow the explicit construction of a limit n→∞, which assumes the existence
of a spike-count density f(r), r ∈ [0, 1] describing the population spike-count distribution
of an infinitely large population. f(r) denotes the probability density of a fraction of r
neurons spiking simultaneously. Finite-size populations of n cells are then obtained as
random subsamples out of this infinitely large system.

2.1.3.2 State-space models

The ongoing exchange of information between individual neurons within a network
means that neural population activity develops sequentially over time. Studying pop-
ulation dynamics is hence important for the understanding neural population activity.
State-space models [66, 21] are a prominent class of models for time-varying signals with
temporal dependencies between observations. In recent years, they became an important
tool for the study of neural population dynamics [110]. One reason for the increased
popularity of these models is their ability to do dimensionality reduction, i.e. to ex-
plain the high-dimensional neural population activity through a much smaller amount
of variables that are easier to interpret.

State-space models assume that the observed activity xt can be described as the
result of an unobserved state trajectory zt that evolves over time and gives rise to the
observations through some probabilistic mapping from the so-called state space onto the
observed space,

xt = g(zt, εt), εt ∼ p(εt), (2.7)

zt+1 = f(zt, ηt), ηt ∼ p(η). (2.8)

We again denote recorded neural population activity by {xt}Tt=1, a length-T discrete-
time sequence of n-dimensional real-valued vectors 1 The mean of the observed activity
is usually assumed to be zero for simplicity, E[x] = 0, which can be ensured through a
simple pre-processing step of subtracting the empirical average activity.

An important degree of freedom of state-space models with continuous latents x is
the dimensionality of the latent space of zt, which can be chosen much smaller than
the dimensionality of the observed data xt. This aspect of dimensionality reduction

1State-space models can just as well be applied on the level of individual pixels or voxels, which are
often several of orders more numerous than the neurons. We in fact used these models in voxel space
in our own work on light-sheet microscopy data [104].
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2.1 Modeling in neuroscience

makes state-space models interesting as ways to summarize complex time-varying sys-
tems through the evolution of only a handful of variables [36, 28, 82, 115, 50]. In this
view, individual components of the latent vector z can be thought of as prominent themes
of the population dynamics, and were e.g. mapped to functional subpopulations [69].
Since dynamics are confined to the latent variables, a low-dimensional latent space can
greatly simplify the description of the population dynamics in cases where they indeed
can be described by a handful of variables. For successful dimensionality reduction,
models have to exploit structured correlations in neural activity across both neurons
and time [32]. Dimensionality reduction has been used to identify low-dimensional state
trajectories that are informative about both stimuli and behaviour, and has yielded
important insights into neural computations [92, 24, 27, 131, 85, 49, 79].

A simple example for a state-space model with discrete states is the Hidden-Markov
Model [14, 122], which has a univariate discrete hidden state zt ∈ {1, . . . , K} and hidden
dynamics governed by a discrete K×K state-transition table. For continuous states, the
linear dynamical system (LDS) [66] with both linear state dynamics f(xt, ηt) = Axt+ηt,
ηt ∼ N (0, Q) and a linear mapping from states onto observations with additive noise,
g(x, ε) = Cx+ε, is a very important example. The latent state trajectory {zt}Tt=1 in this
case is a length-T discrete-time sequence of n-dimensional vectors. In signal processing
and engineering, the linear dynamical system is also known as the multi-input multi-
output (MIMO) linear time-invariant (LTI) mode , and extensively studied in control
theory [68].

State-space models assume that the underlying latent state trajectory zt modulates
the observed variables xt through the mapping f , and that observed temporal structure
in xt is mediated by the latent trajectory and their dynamics defined by f . The Markov
assumption on the latent dynamics expressed through eq. 2.8 is very common when
working with discretized time, and can be extended to involve more than one time
step in the past when determining the next latent state. Many different variants of
state-space models and the linear dynamical system were applied to neural population
recordings. These however typically require specialised methods of applying the models
to data. Gaussian Process Factor Analysis [28] assumes that the latent states change
smoothly over time, which is achieved through a Gaussian process prior assumption over
the latent states. For spiking data, the linear dynamical system with Poisson-distributed
observations is known as Poisson Linear Dynamics System (PLDS) [82]. Other variants
also exist which represent dynamics f and mappings g using flexible (recurrent) neural
networks [75, 67, 145].

Expectation Maximization and spectral methods Applying state-space models to
data via maximum likelihood is challenging due to their latent variables. For MLE, we
want to maximize the likelihood of the data p(x|θ) with respect to θ. The model eqs.
2.7 and 2.7 however only give us p(x, z|θ), from which we still need to marginalize over
all possible latent trajectories z.

One algorithm that is commonly used for state-space models is Expectation Max-
imization [37]. EM increases the likelihood over several iterations of two alternat-
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ing steps. The E- (expectation-) step consists of finding the expected log-likelihood
Ep(z|x,θ)([log p(p(x, z|θ))] under the distribution of latents given the data and current
parameter estimates. For the linear dynamical system, the E-step consists of applying
the Kalman filter [66] with the current parameter estimates to the recorded data x. The
M- (maximization-) step finds the parameters that maximize the current expected log-
likelihood. For the linear dynamical system, the optima of the expected log-likelihood
can be found in closed form [52]. Expectation Maximization is prone to getting stuck in
local optima, and the final results can strongly depend on the initialization. It is thus
common for state-space models to initialize EM with a parameter estimate obtained
from some computationally cheaper class of algorithms [83].

An alternative class of algorithms used primarily for linear state-state models is sub-
space identification (SSID) [156, 68]. SSID algorithms comprise several methods based
on linear algebra for identifying the parameters of the model from data. A subclass of
SSID algorithms [58, 26] is based on matching the moments of the model with those of
the empirical data. The idea here is to first express the time-lagged covariances pre-
dicted by the model as a function of the model parameters. Due to the linearity of
the mapping from latent states to observed neural activity and the Gaussian-distributed
additive noise, the (time-lagged) covariance matrix under the model is simply

Cov[xt] = CCov[zt]C
> +R, (2.9)

Cov[xt+s,xt] = CCov[zt+s, zt]C
>, (2.10)

for time-lag s = 1, . . .. From eqs. 2.9, 2.10, spectral methods such as singular value
decomposition are used to solve for the model parameters after substituting the observed-
variable covariances by empirically measured values. Information from several time-lags
s = 1, . . . , S can be combined in a space-time Hankel matrix, which is a nS × nS block
matrix with individual blocks given by the time-lagged covariances Cov[xt+s,xt]. In
this case we require a singular value decomposition of the space-time Hankel matrix
[58]. An drawback of these methods is the quadratic scaling of pairwise covariances
with population size n, which makes this subclass of SSID algorithms inapplicable in
very high-dimensional settings, where one might not even be able to compute the full
(time-lagged) covariance matrix Cov[xt] ∈ Rn×n.
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2.2 Subsampling effects

2.2 Subsampling effects

Recording errors, errors in storing data and loss of stored data are basic nuisances of
scientific measurement. In consequence, many methods and practices were developed to
deal with incomplete recordings and missing data.

A large body of research in statistics and engineering deals with missing data for spe-
cific models and model fitting algorithms. Specifically in the context of SSID methods
for linear dynamical systems, Markovsky [87, 86] derived conditions for the reconstruc-
tion of missing data from deterministic univariate linear time-invariant signals, and Liu
et al. [81] use a nuclear norm-regularized SSID to reconstruct partially missing data
vectors. Balzano et al. [11, 56] presented a scalable dimensionality reduction approach
for large fractions of missing data. Also the Expectation Maximization algorithm for
training models with latent variables is robust to a limited amount of missing data, as it
can treat individual missing data entries as latent variables. Importantly though, most
of these approaches assume that data is missing at random.

In neuroscience, however, missing data is commonly not missing at random: Access
to neural tissue is often very limited, and for many experimental animals, a skull first
has to be opened. The brain is heavily vascularized and an important blood vessels
may occlude a neuron group of interest. Deeper brain structures are obstructed by more
superficial tissue. And even within a clear field of view, a fluorescent dye might not be
expressed in every single neuron.

As will be discussed in further detail chapter 2.2.2, another limitation relevant in all
but the simplest and smallest experimental animals is the sheer size of the brain and of
functional areas within it, which are still too large to be fully recorded at high rates and
at single-cell resolution.

These factors mean that in many situations, data will be missing not for some random
neurons at isolated points in time, but that we systematically lack data from many
neurons either during the entire recording session or over large contiguous chunks of
time. We will refer to this form of missing data as spatio-temporal subsampling. That
is, these recordings are spatially subsampled because only a subset of neurons is captured,
or they are spatio-temporally subsampled because some neurons are recorded only for
a subset of timepoints and at limited temporal resolution. In the remainder of this
chapter, we will introduce spatial and spatio-temporal subsampling in the context of
neural data analysis. In the next section, we will illustrate effects of spatial subsampling
on the outcome and interpretation of data analysis on the example of a recent series of
studies on neural coding in the early visual system. In the section thereafter, we will
introduce causes and possible solutions to spatio-temporal subsampling in large-scale
optical imaging.

Since we now deal with full and subsampled populations, we will denote the size of
the full population with N , and the size of subpopulations will be denoted as n, with
n ≤ N . Since different recordings may cover a different amount of neurons, we will in
principle deal with multiple different subpopulation sizes n. For the sake of simplicity
and to avoid cluttering subindices, we will in the following however only regard a single
subpopulation at a time that we compare against the full population.
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Figure 2.1: The role of subsampling for the study of thermodynamic ‘criticality’.
Recent publications [151, 96, 61] investigate thermodynamic criticality in neural
population activity. For this, they compute a population statistic (specific heat
capacity) for subpopulations with varying population size n. Neural subsam-
pling is used here to obtain subpopulations of different size n from a single fixed
population recordings (left). Figure reproduced from our paper [103].

2.2.1 Case study: apparent criticality in the early visual system

Which questions about properties of neural population activity can we answer from
strongly subsampled population data? Subsampling effects have previously attracted
interest for neural coding theories [89]. Not accounting for subsampling effects can
profoundly confound the results of data analysis techniques: In particular spatial sub-
sampling can have misleading effects on population-level statistics such as degree of
connectivity [138], clustering and spread of activity [77] within subsampled population.

Subsampling effects can also occur where neural population recordings themselves are
almost complete. Some statistical analyses require random subsampling of activity from
a neural population [139]. With resampling [43, 44], analyses can be averaged over
multiple subsamples to gain generality over a single fixed dataset and to increase the
statistical robustness of the results.

A recent series of publications [151, 96, 61] used the resampling to study whether
neural population recordings of retinal ganglion cells exhibit thermodynamic criticality.
Several random subsamples of the same size n are made from amongst all recorded
neurons. This procedure furthermore allows to make statements over population ‘growth’
when repeated for several increasing population sizes n, The scaling behavior of neural
network properties is an important aspect of computational modeling: Most neural
network models used in theoretical neuroscience were orders of magnitudes smaller than
actual biological circuits, which makes it relevant to know how this scaling gap influences
the usefulness of model predictions [35].
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2.2 Subsampling effects

Critical phenomena have been very helpful in revealing principles underlying the be-
havior of thermodynamic systems, since the behaviour of a system at a critical point
is informative about its intrinsic properties. The recent studies indeed found that the
statistics of neural population activity from large-scale multielectrode array recordings
[88] resemble those of physical systems at a critical point, more specifically a second-
order phase transition. At a phase transition, media qualitatively change their properties
by transitioning from one state of matter into another, e.g. a liquid becomes gaseous at
the boiling point.

An important signature of a second-order phase transitions the divergence of the
specific heat capacity c, a normalized variance of log-probabilities, with population size
n [151]. The specific heat capacity is given by

c(n) =
1

n
Var[logP (x)], (2.11)

where x ∈ {0, 1}n are activity vectors of a neural population of size n, and P (x) is
a probability distribution such as the maximum entropy models introduced in chapter
2.1.3.1. The data used for the analysis however consisted of a dense recording of a single
large population of retinal ganglion cells [88]. The size of the recorded population was
hence fixed, at about 120 neurons. To investigate a range of different population sizes n,
these studies constructed subpopulations by randomly subsampling different amounts of
neurons from this full recording. To the data of each subpopulation, the authors fit a
K-pairwise maximum entropy model that assigns probabilities to every possible pattern
of action potentials. The authors then used MCMC methods to estimate the variance
of log-probabilities from the K-pairwise models, and computed specific heat capacities
from that. When repeating this process of subsampling and model fitting for increasing
population sizes, the authors found that the specific heat capacity seems to diverge as a
function of n over the accessible range of n = 20 to n = 120.

The finding of such thermodynamic criticality could help us better understand how the
activity of large neural population is organized [17, 164] and how neural populations in
sensory areas such as the retina may process sensory information. Specifically, systems
at or close to a thermodynamic critical point were argued to be highly sensitive to
external perturbations [151, 96]. To operate at thermodynamic criticality might be
hence beneficial for early sensory areas to minimize loss of incoming information. More
generally, the occurrence of criticality immediately raises the question of how it came
about. Classically, critical phenomena would only be observable in a small area of the
space of possible systems. Thus, observing that a system operating at a critical point
would be surprising, and we could expect an underlying mechanism that poses the system
at this point. Moreover, in biological systems we might expect homeostatic mechanisms
that keep the system at this point despite constant micro-level changes [95, 151]. This
in turn would give new possible interpretations to known mechanisms of adaptation in
the early visual system [93, 76, 134] and alternative mechanisms of self-organization
[10]. Several studies [97, 20, 140] also made comparable observations in other biological
systems, and it was speculated that criticality might reflect a more general principle of
neural circuit organization [95].
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Several other studies raised criticism against the claims of thermodynamic criticality
in neuroscientific data. A first line of criticism [91] raised that telling whether a system is
truly ‘close’ to an interesting critical point is generally difficult from finite data. Several
groups [84, 129, 4, 5] argued that signatures of criticality in high-dimensional datasets
are by far not as surprising as previously suggested, and that effects often seen in models
applied to neuroscientific data, such as common input, can often account for findings
of criticality. Specifically, studies [129, 4, 5] showed that the occurrence of the critical
phenomenon of ‘Zipf’s law’ [165, 166] is unsurprising for high-dimensional latent-variable
models under a wide range of circumstances. Zip’s law and and the divergence of the
specific heat are closely related [5]. Empirical studies of salamander retina recordings
[155] showed that simple feedforward models of information processing can display Zipf’s
law without particular tuning or tailored criticality-inducing mechanisms. Even before,
simple population model of common input were shown [84] to exhibit signs of diverging
specific heat capacity.

A direct connection between signatures of thermodynamic criticality and subsampling
had previously not been made (Aitchison et al. [5] discussed subsampling effects on
Zipf’s law in response to the pre-print version [102] of our work). Part of the reason why
subsampling may not been recognized as an important factor of the thermodynamic crit-
icality findings is that it was only introduced at the data analysis stage: The used neural
population recordings represent almost the entire RGC population within a small patch
of retina [88]. A related field of neural criticality studies is that of neuronal avalanches
[57, 16], which studies the occurrence and temporal sequence of bursts in population
activity as e.g. captured by the population spike-count. Studies of neuronal avalanche
typically rely on multi-electrode recordings, which have sparser coverage than the RGC
recordings used for thermodynamic criticality studies. Here, the resulting strong spatial
subsampling has been identified as an important potential cause for spurious findings of
criticality [120, 161].

For thermodynamic criticality, we suspected that spatial subsampling similarly is a
major factor in explaining the finding of diverging specific heat capacity in neural pop-
ulation recordings. Intuitively, the construction of the population-size limit based on
random spatial subsampling differs a lot from those studied in statistical physics: In
statistical physics, different population sizes typically correspond to systems of differ-
ent total size, and system properties are thought to scale as a deterministic function,
such as spin-glass parameters being drawn from a Gaussian distribution with variance
proportional to 1/n [133, 94]). As we show in Nonnenmacher et al. (2017a) [103], the
key difference is that random spatial subsampling (i.e. without any reference to the
spatial location of the neurons) transfers basic statistical properties of the full recorded
population onto any large enough subsample—here these were average firing rates and
average pairwise correlations. This has important consequences for the behavior of spe-
cific heat capacity in the large-population limit of almost any system—the specific heat
capacity of almost any realistic system will diverge with population size. The simplicity
of the‘flat’ maximum entropy model was of great help in showing this, since it allows to
analytically construct population-size limits of the specific heat capacity.
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2.2 Subsampling effects

2.2.2 Spatio-temporal subsampling in neural population recordings

Recording the complete central nervous system is still out of reach for all but the simplest
organisms. In consequence, most neural population recordings with single-cell resolution
are spatio-temporally subsampled.

Multi-electrode arrays are limited to record individual cell activity only from the direct
vicinity of the individual recordings. Thus the maximal spatial extent of the recorded
population is limited by the spatial extent of the chip that carries the electrodes, and the
sampling density of the neural population activity depends on the spatial density of the
electrodes. Sampling rates are typically very high, allowing sub-millisecond resolution,
but slow electrode drift can add a form of spatio-temporal subsampling of neural activity:
Some neurons are only identified at the beginning of the session, while activity of others
only appears after some time into the session [38].

Already for important model systems such as drosophila, contemporary recording
techniques cannot provide well-resolved whole-brain activity. For important mammalian
models such as rats and mice, new approaches allow to simultaneously record from large
parts of the cortical surface [152, 142], albeit at the cost of very low sampling rates. New
techniques for fast volumetric imaging such as light-field microscopy [119] are becoming
available, but are still limited in their field of view and require extensive algorithmic
post-processing of the recorded video data.

In particular if the focus of interest lies on neural dynamics, the presence of spatio-
temporal subsampling has important consequences for subsequent analysis of the recorded
data. Spatio-temporal subsampling leads to problems such as the well-known common
input problem [116], which affects a wide range of neural data analyses. The measured
neural population activity is thought to come about both from local interactions within
the recorded population, and from input from other neurons that were not recorded
[106]. Population activity measurements may reflect both local computations and com-
mon input.

2.2.3 Filling in missing gaps by combining multiple incomplete
recordings

Several neural recording techniques allow to densely sample neural activity within a
limited volume of tissue, by recording activity from the majority of neurons within a
limited field of view. Sequentially moving this field of view [136, 147] gives rise to multiple
spatio-temporally subsampled recordings that together represent a larger subsample of
the full population than any individual recording. How can we, from multiple partial
recordings, gain insights into dynamics distributed across entire circuits or multiple brain
areas? Previous work showed that population activity in principle can be reconstructed
from only tens of neurons [160]. While different neurons will be recorded in different
recordings, we can in many cases expect the underlying dynamics to be preserved across
subpopulations and recordings. This gives us a chance to assemble the big picture of
the population dynamics from the pieces found in individual recordings.
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Figure 2.2: Structure of spatio-temporal subsampling in modern optical imaging.
Microscopes used e.g. for two-photon imaging record from an area by scanning it.
The laser that illuminates the tissue is moved in an adjustable pattern (simplified
sketch for illustration). Novel microscopes [136] allow to structure the scanning
pattern to cover multiple regions. a) The classical scanning pattern is a stack of
line scans, with a ‘flyback’ that restarts the image cycle (left). Some microscopes
allow to alternate the scanning between several regions, creating multiple fields
of view (centre). Patterns can be complex, and regions can be designed with a
high degree of freedom (right). b) Different scanning patterns lead to different
patterns of missing data. Structured scanning patterns lead to highly structured
patterns of missing data, with blocks of missing and observed data.
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Combining multiple recordings requires methods that can adapt statistical models to
multiple incomplete datasets. In recent years, several lines of work [154, 138] suggested
to mitigate the problem of subsampling by combining multiple population recordings
into a single global model of population activity. In the following, we will again denote
the full population size as N and the size of a subpopulation as n. We here refer with
‘full’ population to the union of all neurons recorded within any of the individual partial
recordings.

Soudry et al. (2015) [138] sought to tackle the common input problem by apply-
ing a global model of population activity to a sequence of partial recordings. They
approached population subsampling from the perspective of inferring functional connec-
tivity. Starting from a recurrent network model for the full size-N population and using
several simplifying assumptions valid for large populations, they arrived at a model with
a functional connectivity parameter for each pair of neurons. To be able infer their
associated connectivity parameter, their approach requires each pair of neurons within
the population to be co-observed at some point. The authors discuss several possible
scanning patterns for optical imaging methods to achieve this, but ultimately require
multiple independently-moving scanning devices. It should also be noted that there are
N2 many connectivity parameters to be learned from the data, so their approach in
practice is limited to small or medium population sizes.

Bishop & Yu (2014) [22] studied the conditions under which a covariance-matrix can be
reconstructed from multiple partial measurements. Unlike Soudry et al, they explicitly
regarded the case where not all neurons are co-observed over some interval of time. They
assumed a dimensionality reduction model without dynamics (as given by eq. 2.7 and
ignoring eq. 2.8). Their approach is not based on learning all model parameters jointly.
Instead, the parameters governing the covariances between the n neurons in each partial
recording are estimated separately. A fundamental problem caused by this is that the
parameters identified from different recordings may require a post-hoc alignment, since
they may correspond to different latent coordinate systems z′ = Qz with an unknown
change of coordinates between them given by an unknown (invertible) matrix Q ∈ Rn×n.
The authors established rigorous conditions under which the change of coordinate Q can
be identified alongside the model parameters, and find that neurons overlapping between
different recordings play a crucial role—essentially, every neuron in overlap between two
neural subpopulations observed in different recordings reveals another row of Q.

Turaga et al. (2014) [154] use linear state-space models, i.e. incorporate both eqs. 2.7
and 2.8 and hence also dynamics. The main idea behind the use of state-space models
is that not all neural population activity has to be observed at any point in time in
order to keep track of the latent dynamics. This idea, studied as ‘observability’ [68] in
control theory, states that under certain conditions the parameters of a linear dynamical
system can be retrieved from only a subset of the observed variables. The authors avoid
the problems of explicitly aligning the model parameters recovered from different partial
recordings by fitting a single global dynamical model. They use the term ‘stitching’ to
describe the act of combining multiple partial population recordings. Unlike Bishop &
Yu, they do not explicitly investigate the conditions under which the model parameters
can be recovered, but also notice that overlap between subpopulations clearly helps to
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recover the model parameters. Turaga et al. used Expectation Maximization to learn
the parameters of the global high-dimensional linear dynamical system form multiple
recordings. Their model assumed one latent variable per neuron, assigned to a specific
neuron by the choice of the linear emission matrix C = IN being fixed to be the identity
matrix. Intuitively, each latent variable ‘takes over’ whenever its assigned neuron is not
observed. Because the number of parameters for the latent linear dynamics between N
latent variables scales with N2, this high latent dimensionality in practice limited their
approach to small or medium population sizes (N ≈ 100).

Modern optical imaging methods can simultaneously record thousands of neurons,
and we want to integrate multiple such recordings into a single model to identify dy-
namics shared across multiple subpopulations. As we have seen, several methods to
combine multiple partial recordings exist [154, 22, 138]. We have however also seen that
they have strong limitations, in particular in their applicability to the immense data di-
mensionalities that result from combining multiple high-dimensional neural population
recordings.

In the work presented in Nonnenmacher et al. (2017b) [104], we tried to remedy
these limitations and thus help close the gap between currently available data analysis
techniques and the potential of modern neuroscientific datasets.

In particular, we wanted to combine the strengths of the state-space approach from
Turaga et al. (2014) with those of the dimensionality-reduction approach of Bishop &
Yu (2014). In order to combine temporal dynamics with scaling to large population
sizes and good analytical access, we turned to covariance-based subspace identification
methods (chapter 2.1.3.2). SSID methods are typically written in terms of linear algebra
operations, but can also be expressed as a optimization problems iteratively solvable with
gradient descent [81]. Having an explicit loss function allowed us to handle missing data
much more easily, and gave us some freedom of choice of how to minimize that loss—
using fast stochastic gradient descent greatly improved the scaling of our approach to
large datasets.

Another special challenge to applying covariance-based SSID methods is the quadratic
scaling of the number of pairwise covariances with the total population size N . Here,
again the formulation of model training as stochastic gradient descent provided the so-
lution. By careful reordering of the gradient terms, we could avoid explicit computation
of pairwise covariances, and in fact of any terms that scale with N2 or even just n2.

One central question to us was how including dynamics can improve the conditions
for successful model recovery established by Bishop & Yu. In unpublished work on the
idealized case of infinite data (i.e. without estimation errors on the model parameters),
we found that correctly identified latent linear dynamics can provide constraints on the
unknown latent coordinate systems in a similar way as Bishop & Yu found for overlap
between subpopulations. These constraints can reduce the need for overlap, and for
rich enough dynamics can replace the overlap requirements almost completely—up to a
single bit flip. Our work on these updated stitching conditions is added as an appendix
to this thesis.
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2.2.4 Model-agnostic parameter learning for spatio-temporal
subsampling

In the previous chapter, we sketched how to apply dimensionality-reduction models to
large-scale recordings that were spatio-temporally subsampled. Our method to apply
these models was heavily tailored towards the linear dynamical system, making use of
covariance equations 2.9 and 2.10 and the specific structure of the stochastic gradients
resulting from the model loss. On the positive side, using model structure allows to
optimize the algorithmic implementations for speed and efficiency. A general downside
of model-specific application methods is that even small changes to the model can render
them inappropriate.

More recently, work in machine learning focused on ‘black-box’ fitting methods [123,
8] that can robustly adapt large classes of models to data. This allows flexible data
analysis with models that are tailored to specific experimental datasets and support
rapid testing of hypotheses. A type of black-box inference that is interesting in the
context of subsampled data is likelihood-free or simulation-based inference [15, 54]. Such
methods have previously been used to infer the parameters of state-space models from
complete data [90].

Likelihood-free methods infer model parameters from data without explicit knowledge
of structure of the model or its governing equations. A classical for a model used in
neuroscience that does not easily permit a tractable likelihood is the Hodgkin-Huxley
model introduced in chapter 2.1.

Everything these likelihood-free methods require from a model is to be able to generate
outputs given the model input and a set model parameters θ. Probabilistic models—as
previously with eqs. 2.7, 2.8 and 2.1—define a conditional density p(D|θ) over data
D = {x1,x2, . . . ,xT} given model parameters θ.

With a prior distribution over parameters p(θ), Bayes’ theorem allows to get the
posterior distribution of parameters given the data as

p(θ|D) ∝ p(D, θ) = p(D|θ)p(θ). (2.12)

Bayesian inference is typically much harder than maximum likelihood estimation even
if the likelihood is analytically accessible. Several approaches were developed over the
past decades that are still applicable even if we cannot or do not wish to access the
full likelihood. One promising approach [113] uses the the prior and model as a joint
distribution p(D, θ) = p(D|θ)p(θ) to generate many pairs (Di, θi) of parameters and
‘synthetic’ datasets by first sampling a parameter set θi ∼ p(θ) and then generating a
dataset from the model Di ∼ p(D|θ). The core idea of the approach is to then learn
the conditional density p(θ|D) through a regression from datasets Di into distributions
p(θ|Di) and then afterwards to ‘plug in’ the actual recorded dataset for Di to obtain
the posterior. Many real-world datasets will be way too large to learn a distribution
p(θ|Di) for every possible dataset Di, in particular for large-scale neural population
recordings. It is thus common to compress the datasets by so-called summary features
[162] s(D) ∈ Rd—typically only a handful of hand-selected features—and instead regress
from summary statistics si = s(Di) into distributions p(θ|si). To do this, one optimizes
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2 Introduction

the free parameters ψ of a flexible conditional density estimator qψ(θ|s) via maximum
likelihood.

qψ(θ|s) ≈ p(θ|s) ∝ p(s, θ) = p(s|θ)p(θ) (2.13)

The idea to perform likelihood-free inference through regression was first implemented
with linear-Gaussian conditional densities p(θ|s) [15], i.e.

qψ(θ|s) = N (θ|µ(s),Σ), (2.14)

where µ(s) = Ms was a linear function of the summary statistics and ψ = {M,Σ}. Since
then, several lines of work aimed to improve the approach: Multiple studies developed
methods for the design of better summary features. The intersection between statistical
modeling and deep learning introduced new classes of flexible conditional densities [124,
114, 74].

A major concern for the regression approach lies with how many synthetic data pairs
(si, θi) we need to learn the conditional density p(θ|s). While the effort of generating
a single synthetic dataset Di ∼ p(D|θ) will generally pale against the effort it took
to record the actual neural dataset in a neuroscientific experiment, the generation of
hundreds of thousands Di may still pose a considerable computational burden. To
reduce the number of synthetic datasets needed, several studies developed methods to
iteratively refine the conditional density estimate qψ(θ|s) [23, 113] and use the current-
best posterior estimate to propose model parameters θi rather than to sample them from
the prior p(θ). The underlying idea is to early on identify which regions of parameter
space are likely to generate the actual dataset and focus the resources of the regression
there.

The iterative refinement of the conditional density estimate has shown to be very
useful, especially for high-dimensional model parameters and narrow posteriors (as often
occur for large datasets and good summary statistics). It however also introduced a new
challenge: sampling model parameters from a proposal rather than from the prior leads
to synthetic data pairs (si, θi) that no longer follow p(s, θ) ∝ p(θ|s) for fixed s. To still
learn a conditional density estimator for p(θ|s) from such synthetic data, we have to
correct for the mismatch between prior and proposal. A recent study [113] elegantly
solved this correction issue for a flexible class of conditional density estimators, but
their solution turned out numerically unstable in practice [41]. To explore the use of
likelihood-free inference for large but subsampled neuroscientific datasets, we first had
to ensure that the methods are reliably applicable.

We addressed the numerical instability issue in two consecutive publications that
each attempted to solve the issue with a different approach. In the first publication
Lueckmann et al. (2017), we also demonstrated the use of likelihood-free inference on
the Hodgkin-Huxley model. The method established in this first publication however still
suffered from a high variance of resulting conditional density estimates and consequently
from the need for a large number of synthetic datasets. Recent innovations in the field
of normalizing flows [124, 114, 74] furthermore made us want to extend the class of
conditional density estimators for which we can correct for parameter proposals and
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2.2 Subsampling effects

apply the iterative refinement. In the second publication Greenberg, Nonnenmacher &
Macke (2019), we not only resolved the stability issues, but also removed most of the
previously existing constraints on the class of the parameter proposals and the class of
conditional density estimators.
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3 First-author publications

This chapter contains the two first-author publications that form the basis of this
publication-based dissertation. A one-page summary for each of the two publications
states my personal contributions.

3.1 Signatures of criticality arise from random
subsampling in simple population models.

Previous studies found signatures of thermodynamic criticality in neural population
activity, but it was unclear how informative about neural computations these findings
actually were. We could indeed show the same signatures of criticality also in synthetic
data from a simplistic simulation of retinal ganglion cells. We were able to relate the
rate of specific heat divergence to basic statistics of the population activity—the stronger
the average correlations between the neurons are, the faster the increase of specific heat
increase with population size. For the K-pairwise model we verified this empirically with
our simulated data, and for the simpler ‘flat’ model we derived analytic relationships
that hold in the limit of large populations. This connection between divergence rates and
correlation strength then led us to spatial subsampling as a sufficient condition for the
divergence of specific heat capacity: The criticality analysis used random subsampling
of neurons to artificially generate neural populations with different sizes from a single
recorded population. Simple derivations and numerical experiments showed that random
subsampling of a neural population preserves basic statistical quantities such as average
firing rate and average correlations. Since the growth rate of specific heat capacity
depends on these basic statistical quantities, the specific heat capacity keeps growing
at a constant rate for subsampled populations, no matter how large the populations
become. Non-random subsampling schemes do not have this issue: subsequently adding
neurons to a subpopulation according to their spatial proximity decreases the average
correlation strength, since retinal ganglion cells that are further apart tend to have
weaker pairwise correlations. The specific heat capacity in this case visibly saturates
with increasing population size.

Prof. Macke has extensive experience with maximum entropy modelling, and had stud-
ied specific heat capacity before in simpler population models. An important method-
ological requirement for the simulation study were fast and accurate algorithms for fitting
maximum entropy models to several synthetic datasets. For this, I both implemented
and state-of-the art algorithms and substantially improved them ( which were at least a
factor of 3 (e.g. reducing the time needed for MCMC sampling by about a third through
Rao-Blackwellization). I did most of the coding, and programmed all of the model fitting
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3 First-author publications

and fit evaluation. Prof. Macke and I contributed equally to the analytical results of
the paper. More specifically, I

• led the design and evaluation of the numerical simulation of retinal ganglion cell
activity. The implementation of the simulation was written by Christian Behrens
under supervision of Prof. Philipp Berens.

• implemented the code for applying the K-pairwise and ‘flat’ models to data, and
the code for evaluating specific heat capacities at different population sizes and
population ‘temperatures’. The code package resulting from this study is available
at https://github.com/mackelab/CorBinian.

• provided new analytical results for the ‘flat model’, e.g. the formula for the asymp-
totic rate of specific heat divergence as function of correlation strength (eq. 3).

• performed the analytical and numerical studies on the effects of subsampling on
average correlations within subsampled populations. The results are summarized
in chapter 4 of the supplementary information of the publication.

• performed all data analysis for this project, including all visualizations and fig-
ures. In particular, I suggested, performed and analyzed the numerical studies on
non-random subsampling strategies to avoid spurious divergence of specific heat
capacity.

• wrote the first draft of the paper, which was subsequently revised by all co-authors.
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3.2 Extracting low-dimensional dynamics from multiple large-scale neural population recordings.

3.2 Extracting low-dimensional dynamics from multiple
large-scale neural population recordings.

Modern optical recording techniques allow to sequentially record activity from multiple
neural populations, but how to combine these recordings and draw conclusions about
the entire system remains an open problem. One promising approach is to apply a
global state-space model to all the partial recordings together. However, no existing
method scaled to the system sizes that result from combining several large-scale datasets
obtained via optical imaging. With concepts from system identification and techniques
from machine learning, we developed a method to quickly apply a state-space model
at scale to several partial recordings. The state-space model here not only serves to
‘stitch’ multiple partial recordings together, but also does dimensionality reduction for
the high-dimensional data through the identification of low-dimensional latent dynamics.
Our algorithm S3ID (Stitching SubSpace IDentification) identifies the parameters of the
state-space model by learning to predict those pairwise covariances between neurons that
are observed within the recorded data. This allows to identify latent dynamics even in
the presence of severe subsampling and small overlap between recordings, as we showed
both on simulated data and a whole-brain imaging recording from larval zebrafish.

The main contributions of this paper were of technical nature. S3ID is an iterative
algorithm based on stochastic gradient descent, and the main challenge was to efficiently
implement the update equations for the estimate of model parameters. To scale well to
high-dimensional data, S3ID has to exploit the particular structure of missing data
that results from sequentially recording multiple neural populations. S3ID also exploits
the linear structure of covariances to keep the computational complexity of stochastic
gradient updates linear in population size, which is crucial for the population sizes
we aim for. For this project, I was the sole programmer and implemented S3ID. I also
performed all numerical simulations and data analysis for this project. More specifically,
my contributions to this study included:

• derivation of stochastic gradient updates (equations 7-9 in the publication).

• implementation of the S3ID algorithm, which is publicly available under
https://github.com/mackelab/S3ID.

• design and implementation of a ‘stitching’ variant of the Expectation Maximization
algorithm for linear state-space models, called ‘sEM’ (stitching-EM). Unlike the
previously published stitching algorithm from Turaga et al. (2013), sEM also
supports dimensionality reduction. sEM was used for performance comparisons in
figures 2 and 5 of the publication.

• design and execution of the numerical experiments (with advice from Prof. Macke
and Dr. Turaga).

• writing the first draft of the paper, which was subsequently revised by Prof. Macke
and Dr. Turaga. I made all visualizations and figures of the publication.

• study of necessary and sufficient conditions for successful stitching (section 2.4 in
the publication). The work on stitching conditions was greatly helped by discus-
sions with Dr. Turaga and Lars Buesing (then at Columbia University, NY).
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4 Discussion

In order to realise the potential of large-scale recordings of neural activity in the search of
a theory of neural computation, we need data analysis methods which are adapted to the
specific properties of biological data, and in particular the fact that neural population
activity is highly subsampled.

To this end, we need to understand the implications of subsampling for data analysis.
From the example of the studies on thermodynamic criticality, we see that sometimes we
have to take a very close look. In this case the data analysis technique itself introduced
spatial subsampling, as a seemingly unproblematic procedure. Whereas several other
studies raised criticism against the criticality findings, we note that we were the first to
identify the random subsampling as being potentially problematic.

We eventually found the random spatial subsampling to be very problematic indeed,
and to actually be sufficient to find diverging specific heat capacity in most studied
systems (only a neural population without any correlations would not show diverging
specific heat capacity). We want to stress that our findings by themselves do not rule out
that critical phenomena play any important role for the organization of neural population
activity, be it in the early visual system or elsewhere. We share with Tkacik et al. that
finding thermodynamic criticality in neural population activity would be an intriguing
scientific result due to the possible insights on the organization of the neural code. Yet a
data analysis method that inherently declares any system with non-zero correlations to
be in a ‘critical’ state is hardly useful. We do not exclude that in the future an adapted
or entirely new method for the study of thermodynamic criticality becomes a useful tool
for the study of neural population activity.

In simple simulated control studies, we did find the spurious signs of specific heat
divergence to disappear when using an adapted subsampling strategy that considers the
spatial location of neurons: we simply added neurons to the studied (sub-)population by
incrementally including neurons according their spatial position along the length of the
recorded area. This ‘spatial’ growth led to specific heat divergences that clearly saturated
as the subpopulation size approached the full N . The spatially-informed subsampling
strategy is much more in line with system growth as studied in thermodynamics, as it
corresponds to an increase of the spatial extent of the neural population, rather than in
increase in physical density. So far, we are not aware of the results when applying the
‘spatial’ subsampling strategy to the RGC population recordings used for the original
studies of thermodynamic criticality. Our work on thermodynamic criticality illustrates
that subsampling has to be specifically addressed when transferring existing population
analyses from other fields to neuroscience.

As in the case of thermodynamic criticality, we generally expect implications of sub-
sampling to be analysis-specific [121]. Thus it is desirable to establish analysis methods
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4 Discussion

that allow to avoid or at least mitigate subsampling effects. A major source of sub-
sampling effects is given by the limited field of few of electrical and optical recording
techniques. A new generation of optical recording techniques allow close-to-complete
coverage of neural activity in a incrementally movable field of view [136]. This opens up
way to scale up the empirical study of neural dynamics by sequentially recording from
multiple neural subpopulations. We here investigated how recordings from these exist-
ing techniques can be analysed—after the data is acquired—to effectively increase the
field of view and hence reduce severeness of subsampling. Our work focused on methods
that scale to the large neural populations that are accessible with these extended fields
of view, and may eventually open up applying models to neural populations spanning
entire neural circuits. In one application, we demonstrated the good scaling properties
of our methods to data from whole-brain imaging in fictively behaving larval zebrafish
[3] at sub-cellular resolution. The light-sheet microscopy recordings in this case were not
subsampled, and we assumed a scenario of spatio-temporally subsampling for illustra-
tion purposes. As is shared with other recent large-FOV recording techniques [152, 142],
these recordings were however marked by a fairly low frame rate of 1.15Hz, limiting
our understanding of the fast neural dynamics underlying for instance perception and
decision making. We believe that our methods can also allow combining the resulting
neural activity to yield a high-spatial and temporal resolution portrait of brain-wide
population dynamics: as previously discussed (chapter 2.1.2), light-sheet microscopy
images volumes by stepping through a sequence of imaging planes. The recorded activ-
ity from the different imaging planes are then usually treated as a single image frame
recorded all at once. More accurately however, the activity represents a set of sequen-
tially imaged neural subpopulations, with one subpopulation per imaging plane. By
treating this data as heavily spatio-temporally subsampled, one can in principle increase
the framerate from the time it takes to image a full frame to the time it takes to im-
age a single imaging plane (see figure 4.1a). This ‘frame-rate stitching’ may allow to
quantitatively identify specific neural sub-populations involved in decision-making and
both their causal and computational roles by analysing the structure of these fast-scale
neural dynamics. Several pitfalls for frame-rate stitching exist, such as the potentially
low or even non-existent overlap between imaging planes. A central question of stitching
that may also play a role here is whether the neurons spread across all imaging planes
truly share the same underlying population dynamics. In many cases, we can be op-
timistically expect that external stimuli and experimentally induced behavior impose
brain-wide structure in the neural activity. Another challenge is that in experimental
reality, observation patterns are not always as structured as we so far assumed in our
work. One particular example for this is given by long-term electrical recordings as in
Dhawale et al. (2015). Which neurons fall in or out of recording in subsequent days
depends strongly on the their exact locations and hard-to-control movements of the
electrode.
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Figure 4.1: Other forms of spatio-temporal subsampling in neural population data.
a) Scanning techniques take time to scan the field of view for each frame (sketched
for two-photon imaging, but this also holds for light-sheet microscopy). A frame
is usually treated as an instantaneous measurement, but in reality is better ap-
proximated as a sequence of scans over different subregion and their neural popu-
lations. Then the framerate is given only by the time it takes to scan a subregion
(here about 4x faster). b) Electrode-drift in electrical recordings. Over time, the
exact position of the electrode moves. c) Patterns of observed and missing data
for sub-frame resolved recordings. (d) For electrode drift, the dependence on the
exact location means that observation patterns will be less clearly structured (cf.
figure 4C in [38]).

Our work focused on the well-understood linear dynamical system, but our methods
are also applicable to more recent studies with powerful nonlinear models [109] 1. We
expect that our work on likelihood-free inference will eventually further broaden the
applicability of stitching methods. We can hope that future work improves the scope and
fidelity of neural recording techniques [159] to the point where subsampling eventually
stops being a concern for the analysis of most neuroscientific experiments.

1The state-space model used in Pandarinath et al. (2018) [109] is based on recurrent and feed-
forward neural networks, which themselves feature linear-nonlinear function cascades. We believe
the initialization of the linear function to be very well possible, and to improve upon the initialization
used in their stitching application.
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Kopelowitz, and Bence P Ölveczky. Automated long-term recording and analysis
of neural activity in behaving animals. eLife, 6, 2017.

[39] Miroslav Dudik, Steven J Phillips, and Robert E Schapire. Performance guarantees
for regularized maximum entropy density estimation. In Learning Theory, pages
472–486. Springer, 2004.

[40] Miroslav Dud́ık and Robert E Schapire. Maximum entropy distribution estimation
with generalized regularization. In Learning Theory, pages 123–138. Springer,
2006.

[41] Conor Durkan, George Papamakarios, and Iain Murray. Sequential neural methods
for likelihood-free inference. arXiv preprint arXiv:1811.08723, 2018.

[42] Samuel Frederick Edwards and Phil W Anderson. Theory of spin glasses. Journal
of Physics F: Metal Physics, 5(5):965, 1975.

[43] Bradley Efron. The jackknife, the bootstrap, and other resampling plans, volume 38.
Siam, 1982.

[44] Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs
in statistics, pages 569–593. Springer, 1992.

[45] Alan M Ferrenberg and Robert H Swendsen. New monte carlo technique for
studying phase transitions. Physical review letters, 61(23):2635, 1988.

[46] Michael Francis, Xun Qian, Chimène Charbel, Jonathan Ledoux, James C Parker,
and Mark S Taylor. Automated region of interest analysis of dynamic ca2+ signals
in image sequences. American Journal of Physiology-Cell Physiology, 303(3):C236–
C243, 2012.

[47] Johannes Friedrich, Weijian Yang, Daniel Soudry, Yu Mu, Misha B Ahrens, Rafael
Yuste, Darcy S Peterka, and Liam Paninski. Multi-scale approaches for high-speed
imaging and analysis of large neural populations. PLoS computational biology,
13(8):e1005685, 2017.

[48] Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new
world of large-scale neuroscience. Current opinion in neurobiology, 32:148–155,
2015.

[49] Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new
world of large-scale neuroscience. Curr Opin Neurobiol, 32:148–55, 2015.

[50] Yuanjun Gao, Lars Busing, Krishna V Shenoy, and John P Cunningham. High-
dimensional neural spike train analysis with generalized count linear dynamical
systems. In Advances in Neural Information Processing Systems, pages 2044–2052,
2015.

96



Bibliography

[51] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal
dynamics: From single neurons to networks and models of cognition. Cambridge
University Press, 2014.

[52] Zoubin Ghahramani and Geoffrey E Hinton. Parameter estimation for linear dy-
namical systems. Technical report, Technical Report CRG-TR-96-2, University of
Totronto, Dept. of Computer Science, 1996.

[53] Christine Grienberger and Arthur Konnerth. Imaging calcium in neurons. Neuron,
73(5):862–885, 2012.

[54] Michael U Gutmann and Jukka Corander. Bayesian optimization for likelihood-free
inference of simulator-based statistical models. The Journal of Machine Learning
Research, 17(1):4256–4302, 2016.

[55] Kenneth D Harris, Rodrigo Quian Quiroga, Jeremy Freeman, and Spencer L
Smith. Improving data quality in neuronal population recordings. Nature neu-
roscience, 19(9):1165, 2016.

[56] Jun He, Laura Balzano, and John Lui. Online robust subspace tracking from
partial information. arXiv preprint arXiv:1109.3827, 2011.

[57] Andreas VM Herz and John J Hopfield. Earthquake cycles and neural reverber-
ations: collective oscillations in systems with pulse-coupled threshold elements.
Physical review letters, 75(6):1222, 1995.

[58] BL HO and Rudolph E Kalman. Editorial: Effective construction of linear state-
variable models from input/output functions. at-Automatisierungstechnik, 14(1-
12):545–548, 1966.

[59] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal of
physiology, 117(4):500–544, 1952.

[60] Alan L Hodgkin, Andrew F Huxley, and B Katz. Measurement of current-voltage
relations in the membrane of the giant axon of loligo. The Journal of physiology,
116(4):424–448, 1952.

[61] Mark L Ioffe and J Berry II, Michael. The structuredlow temperature’phase of the
retinal population code. arXiv preprint arXiv:1608.05751, 2016.

[62] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A
Hadrons and Nuclei, 31(1):253–258, 1925.

[63] Edwin T Jaynes. Information theory and statistical mechanics. Physical review,
106(4):620, 1957.

97



Bibliography

[64] Edwin T Jaynes. Probability theory: The logic of science. Cambridge university
press, 2003.

[65] Michael I Jordan et al. Graphical models. Statistical Science, 19(1):140–155, 2004.

[66] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[67] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt.
Deep variational bayes filters: Unsupervised learning of state space models from
raw data. arXiv preprint arXiv:1605.06432, 2016.

[68] Tohru Katayama. Subspace methods for system identification. Springer Science &
Business Media, 2006.

[69] Saul Kato, Harris S Kaplan, Tina Schrödel, Susanne Skora, Theodore H Lindsay,
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[149] Gašper Tkačik, Olivier Marre, Dario Amodei, Elad Schneidman, William Bialek,
and Michael J Berry, 2nd. Searching for collective behavior in a large network of
sensory neurons. PLoS Comput Biol, 10(1):e1003408, 2014.
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B Conditions for Stitching

A central question to stitching asks under which circumstance we can idenfify the pa-
rameters of the state-space model from multiple partial recordings. For concreteness,
we assume the following parametrization of a linear dynamical system:

xt = Czt + εt, εt ∼ N (0, R), (B.1)

zt+1 = Azt + ηt, ηt ∼ N (0, Q). (B.2)

The approach followed by Bishop & Yu (2014) considers the situation of two subpop-
ulations with a given amount of overlap, which are observed one after the other. We
will assume that the latent dynamics are observable from either subpopulation, leading
to two independent system reconstructions θ = {A,Q,C,R}, θ̃ = {Ã, Q̃, C̃, R̃}. For
our target application of dimensionality reduction with very high-dimensional obser-
vations and comparatively low-dimensional dynamics, this assumption is typically not
very problematic in practice. These two sets of model parameters θ, θ̃ for the same linear
dynamical system are related via an unknown change of coordinate system. For easier
comparison with Bishop & Yu (2014) and the notation in my own publication on stitch-
ing, we here denote this change of coordinates as complex-valued matrix M ∈ Cn×n,
where for n is the latent dimensionality.

In the following, we quantify the degrees of freedom on the choice of latent coordinate
system M eliminated by dynamics and overlap by collecting (sparsity) constraints on a
matrix n × n matrix S. S allows to quantify how to trade overlap against dynamics-
related conditions. We find identification of S without overlap is possible up to one bit
flip. The approach is constructive and extends the algorithm of Bishop & Yu (2014).
We also find surprisingly simple failure cases, showing that stitching from dynamics is
far from being ‘magical’.

We assume both θ and θ̃ to be valid system reconstructions of the same underlying
linear dynamics system. This leaves the n2-many degrees of freedom of having different
latent representations x̃ = Mx, described by some change of basis M ∈ Cn×n. We can
stitch if we know M , and thus seek conditions that allow to uniquely identify this matrix.
We first focus on the conditions imposed on the dynamics-related matrices by

Ã = MAM−1 (B.3)

Q̃ = MQM>. (B.4)

The key observation is that M by B.3 defines one canonical basis of Ã, i.e. columns
of M define the (generalized) eigenspaces of Ã. When obtaining a second canonical
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basis V from Ã = V J̃V −1, V inherits the same eigenspace structure, up to the choice of
representation within each generalized eigenspace. We however know one set of spanning
vectors for each generalized eigenspace from columns of V , and hence only need to
identify the unique linear combinations (seperature for each generalized eigenspace) to
find corresponding columns of M . Depending on the spectrum of A, we can thus uniquely
map between V and M using potentially much fewer degrees of freedom (down to n)
than without dynamics (n2). In some cases, Q can be used to fill in the remaining n
degrees of freedom, up to an overall sign flip.

Notation: The notation for the eigen-analysis of general matrices A ∈ Rn×n can be-
come very cluttered. We will try to avoid excessive sub-indexing where possible. We
will generally use j to denote column indices. When working with repeated eigenvalues,
we will use subindex i to refer to each distinct eigenvalue λi, i = 1, . . . , r, r ≤ n, and
subindex j to refer to the repeated λj associated with column j = 1, . . . , n.

B.1 Dynamics matrix A

We start with B.3, which states that A and Ã are similar matrices that share the same
eigenvalues. Typically when studying matrix similarity, one is given M and A and then
seeks to find Ã. Here we go the other way around, starting out with (A, Ã) and seek
constraints on M . Note that we cannot expect (A, Ã) to help identify M in general.
This is most easily seen for the example A = In, which enforces Ã = MM−1 = In
under any M , and thus does not allow us to learn anything about M . We will see
that the problem with the identity I is not so much that all its eigenvalues are non-
distinguishable (repeated eigenvalue λ1 = 1 has algebraic multiplicity µ1 = n), but that
this sole eigenvalue has a geometric multiplicity ρ1 = n > 1. When ρi ≤ 1 for all r-many
distinct eigenvalues λi, i = 1, . . . , r ≤ n, we will see that eq. B.3 reduces the degrees of
freedom on M to one free scale per latent dimension—or one free bit flip when columns
of M are additionally known to be normalized.

Without loss of generality, we assume A = J to be in Jordan normal form. If this was
not the case, we could first apply an initial change of basis to both A and Ã to ensure A
being in Jordan normal form. Denote the column vectors of M = [m1,m2, . . .mn]. We
rewrite B.3 to

ÃM = MJ,

Ãmj =
∑

k

Jkjmk,

where the second line holds for each column index j = 1, . . . , n. Columns of J are
highly sparse with only one (Jjj = λj) or two (additionally Jj−1,j = 1) non-zero entries,
depending on whether (i) j denotes the first column index within a Jordan block of J ,
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or (ii) not. Accordingly,

Ãmj = λjmj if (i),

(Ã− λjI)mj = mj−1 if (ii).

These conditions establish the columns mj as generalized eigenvectors of Ã with eigen-
values λi. Thus columns mj in particular are elements of the respective generalized
eigenspaces eigλi(Ã) and can be uniquely expressed as a linear combination mj = V (i)s̃j

of any valid basis V (i) = [v
(i)
1 , v

(i)
2 , . . . v

(i)
µi ] for eigλi(Ã).

We obtain one possible basis V (i) for each of the generalized eigenspaces from com-
puting the Jordan normal form of Ã = V J̃V −1. V here is a canonical basis for Ã formed
from eigenvectors and generalized eigenvectors of Ã, and the V (i) are given by those
columns vj corresponding to distinct eigenvalue λi. The number of Jordan blocks corre-
sponding to any distinct eigenvalue λi is given by its geometric multiplicity ρi. We can
reorder the Jordan blocks of both J , J̃ such that J̃ = J , i.e.

MJM−1 = V JV −1.

We next need to find coefficients s̃j ∈ Rµi . V forms a valid basis for Cn. Without loss
of generality, we write

M = V S, (B.5)

for S ∈ Cn×n, i.e. the columns mj are linear combinations mj = V sj of the columns
[v1, v2, . . . vn] = V , with up-to-here unknown coefficients sj given by columns of S. The
division of Cn into the generalized eigenspaces of Ã enforces a potentially strong sparsity
on S: Because the block-structures of J = J̃ match, column pairs vj and mj are part
of the (mutually expressable) respective bases for the same generalized eigenspace, and
S is block-diagonal with r-many µi × µi diagonal blocks. The µi-many columns mj

corresponding to one distinct eigenvalue λi form ρi-many Jordan chains (see condition
(ii) above). Due to the recursive definition of Jordan chains from a single ’generator’
vector per chain, all µi-many columns mj for any distinct eigenvalue can be computed
from ρi-many basis vectors. Once the linear coefficients s̃j for the generator vector are
known, we can compute the coefficients for all other generalized eigenvectors for this
distinct eigenvalue as µi × µi coefficient block matrix Si:

Si =




S
(11)
i S

(12)
i . . . S

(1ρi)
i

S
(21)
i S

(22)
i . . . S

(2ρi)
i

...
...

. . .
...

S
(ρi1)
i S

(ρi2)
i . . . S

(ρiρi)
i


 , (B.6)
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where

S
(kl)
i =




. . . s̃
(kl)
i,nk−2 s̃

(kl)
i,nk−1 s̃

(kl)
i,nk

...
...

...

. . . s̃
(kl)
i,1 s̃

(kl)
i,2 s̃

(kl)
i,3

. . . 0 s̃
(kl)
i,1 s̃

(kl)
i,2

. . . 0 0 s̃
(kl)
i,1



∈ Cnk×nl , (B.7)

nk is the size of the k-th Jordan block, and S = diag (S1, S2, . . . , Sr). The Toeplitz form
of B.7 results from V being a canonical basis, i.e. the columns vj associated with distinct
eigenvalue λi also form ρi-many Jordan chains (Ã− λiIn)vj = vj−1.

In summary, to construct S we require ρiµi-many unique coefficients s̃i for each distinct
λi, which over all distinct eigenvalues sums up to n ≤ ∑r

i=1 µiρi ≤ n2-many remaining
degrees of freedom on M = V S.

Pairwise distinct eigenvalues: In the special case of pairwise distinct eigenvalues λi,
we have ρi ≤ µi = 1 for all i = 1, . . . , n and S = diag (S1, S2, . . . , Sn) is a diagonal
matrix holding a single free scale per latent dimension. Since for diagonal S, the entries
Sjj in M = V S just scale the norm of mj, we for column-normalized matrices M obtain
Sjj ∈ {|vj|−1,−|vj|−1}, i.e. each Sjj, j = 1, . . . , n is immediately known up to a single
bit.

B.2 Latent covariance matrix Q

Under a change of basis V −1 that sets Ã = V J̃V −1 to be in Jordan normal form, we
have

Q̃ = MQM> = V SQS>V >,

(B.8)

and

V −1Q̃V −T = SQS>,

and with S = V −1M as in the previous section. We denote V −1Q̃V −T = Q̄ and obtain

Q̄ki =
∑

l,j

SklQljSij,

i.e. the parameter reconstructions Q and Q̄ contain information only on the pairwise
products of entries of S. As we will see, this is sufficient to resolve remaining scale and
relative-sign ambiguities on diagonal S that were not resolved from A and Ã. A flip of
all mathematical signs for all latent coordinates xi however jointly cannot be resolved
from Q, Q̃.
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Pairwise distinct eigenvalues: As we have seen, A, Ã in this case ensure that S is
diagonal and it immediately follows from the above identity that

Sii = ±
√
Q̄ii

Qii

sign(SiiSjj) = sign

(
Q̄ij

Qij

)
∀(i, j) : Qij 6= 0

Note how we require non-zero latent covariances Qij, Q̄ij to identify pairwise products
of mathematical signs. If the latent Gaussian noise is independent under any coordinate
system under which the dynamics matrix is diagonalized, i.e. Q = I (by assumption)
or Q̄ = I (by construction of Q̄), we cannot resolve sign ambiguities. This is somewhat
intuitive, as in the case where both A and Q jointly diagonalize, the latent dynamics
fully decouple.

Note on the general case: We omit the general case here. The hierarchical structure
on S (with upper triangular Toeplitz matrices forming the blocks of diagonal blocks of
S) quickly makes even just the notation cumbersome. Intuitively, this case appears very
challenging, also because the eigenvalue spectra of A and Q are not necessarily related
in any way.

B.3 Emission matrix C

We have

C̃ = CM−1 =
(
CV −1

)
S−1 (B.9)

with unknown target change of basis M and a second change of basis V −1 that sets
Ã = MJM−1 = V J̃V −1 to be in Jordan normal form J̃ . We denote C̄ = CV −1. The
structure on S depends on the geometry of the eigenspaces of (Ã, A). As we will show,
this structure in turn has direct consequences on required overlap between rows observed
both in C̄ and C.

Without incorporating dynamics, Bishop & Yu (2014) required at least n rows of
overlap C̃(k,:), C(k,:) to identify M ∈ Rn×n. Expressing M = V S through the latent

basis V obtained from dynamics matrix Ã = V J̃V −1 allows to work with block-diagonal
matrix S instead of potentially dense M . For the r ≤ n distinct eigenvalues λi, i =
1, . . . , r with 1 < ρi ≤ µi, the matrix S most generally consists of r-many µi × µi
diagonal blocks with in total

∑r
i=1 µiρi unknown values.

Right-multiplication with S (or its inverse S−1 with same block-structure) divides the
columns of C̄ into non-overlapping groups corresponding to the distinct eigenvalues λi.
This decouples the identification of the rows of S−1 corresponding to different λi,

C̄(:,Ii) = C(:,Ii)S
−1
i ,
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where Ii ⊆ {1, . . . , n} collects all columns j associated with distinct eigenvalue λi. This
effectively reduces the problem from a single matrix idenfitication with dimensionality n
to r-many matrix identifications with dimensionalities µi that can be solved in parallel.
Hence the

r∑

i=1

µiρi ≤
r∑

i=1

(µiρmax) = ρmax

r∑

i=1

µi = ρmaxn

many unknown entries of S can be idenfitied from ρmax := maxi{ρi} ≤ n many rows in
overlap.

We fall back onto the demand of n variables in overlap only if A = λ1In is similar to
a scaled version of the identity (which subsumes the case of ’no dynamics’ λ1 = 0). A
second distinct eigenvalue λ2 6= λ1 reduces the required overlap ρmax ≤ n−min(ρ1, ρ2),
and so on.

Pairwise distinct eigenvalues: In the special case of pairwise distinct eigenvalues S
is a diagonal matrix which via B.9 can potentially be idenfitied from a single pair of
corresponding non-zero rows C̄(k,:), C(k,:) from

Sii =
C(k,i)

C̄(k,i)

(B.10)

If C̄(k,i) = 0 for any i = 1, . . . , n for this particular row k, we cannot identify S and require
to observe additional rows. This issue stems from solving r-many matrix identifications
with dimensionalities µi = 1, i.e. we require each C̄(k,i) to be full rank. C̄(k,i) = 0 has
rank zero. On the other hand, a scaling factor Sii = 0 for diagonal S cannot occur as
then the change of basis M is invalid due to |M | = |V ||S| = 0.
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