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Remotely sensed data controlled forest inventory concept
Adelheid Wallner, Alata Elatawneh, Thomas Schneider, Mengistie Kindu, Britta Ossig and Thomas Knoke

Institute of Forest Management, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany

ABSTRACT
Nowadays, the image of the forest in Germany is changing from monoculture areas to very
mixed forests, where individual stands are no longer clearly visible. The objective of this study
was to examine the use of remotely sensed data at enterprise level for pre-stratification and
sample plot allocation in the planning stage of forest inventories in a very heterogeneous
forest. On the basis of RapidEye satellite data and object-based image analysis, a stratified
segment-based non-permanent sampling design was developed and evaluated against the
results of a permanent systematic sampling design. The relative efficiency (RE) was calculated
based on variance estimators for simple random sampling and stratified random sampling for
the variable timber volume [m3/ha]. By stratification of the sample designs, we achieved an
RE of 1.25 for the systematic sampling and 1.34 with the segment-based sampling design.
Based on a targeted standard error of 4.6%, the sampling designs were compared with
respect to the required sample size. The stratified segment-based sampling design reduced
the number of sample plots compared to the systematic sampling design by 28%.
Furthermore, it was shown that the possible reduction of sampling plots leads to a cost
saving of 21%.
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Introduction

At present, a change in the forest management con-
cept from monoculture stands to very heterogeneous
mixing stands is taking place in Germany (Teuffel
et al., 2005). Terrestrial forest inventories are the
main suppliers for quantitative and qualitative attri-
butes of the forest structure, including forest types,
tree species composition, age class, tree height and
other information (Gregoire & Valentine, 2008; Van
Laar & Akça, 2007). In Germany, the inventory sam-
pling designs commonly used for the National Forest
Inventory (NFI) and for forest enterprises are perma-
nent systematic sampling designs. Forest inventory
cycles for the NFI and for the enterprise level are
targeted every 10 years (Knoke, 2012). For conduct-
ing a permanent systematic sampling inventory, dif-
ferent grid sizes are used. In Bavaria at forest
enterprise level, the common grid size is 200 m ×
200 m (Neufanger, 2011). The number of sample
plots collectable per day depends, inter alia, on the
spatial connection of the forest area and its topogra-
phy (Van Laar & Akça, 2007). As a result, data
collection across a regular sampling grid is labour-
intensive and costs are proportional to the number of
sampling plots (Van Laar & Akça, 2007).
Additionally, the new forest restructuring will be a
challenge for the conventional sampling design to
have the targeted precision.

To keep the forest inventory practices efficient, the
sampling techniques may rely on ancillary informa-
tion for stratification, which includes characteristics
of the forest or estimates of forest structural informa-
tion (West, 2015). Stratified sampling can lead to
more precise estimates when relatively homogenous
and distinctive strata (classes) are delineated com-
pared to simple random or systematic sampling
(Saborowski & Cancino, 2007; Särndal, Swensson, &
Wretman, 1992). Stratification strives to reduce var-
iance within each stratum, when a significant differ-
ence between the strata values exists, and increases
the efficiency of inventory sampling designs
(Bickford, 1952; Saborowski & Cancino, 2007).

For improving the precision of forest inventories,
the implementation of ancillary information from
remotely sensed data offers an efficient and inexpen-
sive opportunity (McRoberts & Tomppo, 2007).
Recent technological improvements in remote sen-
sing systems deliver data frequently at comparably
low costs and wide area coverage (McRoberts &
Tomppo, 2007). According to McRoberts, Holden,
Nelson, Liknes and Gormanson (2005), this means
increased speed, efficiency and precision, as well as
higher cost-effectiveness and a more efficient use of
time can be achieved for forest inventories.

Approaches of remote sensing-based stratified
sampling related to forestry were investigated in the
USA as part of the second Northeast Forest Survey,
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conducted by Bickford (1952), and were later applied
in Finland by Poso (1972). Nowadays, such remote
sensing supported stratified sampling designs are
used for NFI in different countries (e.g. Switzerland,
Finland and USA) (Dahm, 1995; Dees, 2006; Köhl &
Sutter, 1991; McRoberts et al., 2005).

Grafström, Saarela and Ene (2014a) showed the
potential of remote sensing information for stratification
prior to field sampling. This procedure can be useful in
the initial planning stages of field sampling, when the
sampling design is established. Two different procedures
of pre-stratification by means of ancillary data are possi-
ble: on the one hand to reduce the sample size
(Grafström, 2013) and/or on the other hand to establish
a more efficient sampling design (Nothdurft, Borchers,
Niggemeyer, Saborowski & Kändler, 2009). Both possi-
bilities allow for area proportional and spatially distrib-
uted sampling supported by the stratification effect
(Grafström, 2013; Grafström et al., 2014a; Grafström &
Schelin, 2014b).McRoberts and Tomppo (2007) describe
examples of locating inventory sample plots in specific
strata using pre-stratification to ensure that an efficient
(but reduced) sample of plots is selected in the relevant
forest area. At the planning stage of enterprise forest
surveys, the use of remote sensing-based stratification
into forest types (deciduous and coniferous) is currently
state of the art and regularly applied, such as in Lower
Saxony, Germany (Böckmann, Saborowski, Dahm,
Nagel & Spellmann, 1998).

The objective of this study was to investigate an
innovative sampling design, for a highly structured
test site forest in order to either achieve a higher
inventory precision or allow a smaller sample size
for a required precision and therefore reduced cost.
Hence, the research question focused on whether a
segment-based design is able to achieve a result con-
sistent with the conventional permanent systematic
sampling design. The innovative sampling design
used the method of object-based segmentation and
pre-classification of RapidEye data. We assume that
the segmentation based on spectral features and a
subsequent classification resulted in strata that
retained the condition of homogeneity for the forest
canopy features and should represent in reality tree
patches, which are smaller than forest stands.

Materials and methods

Test site

The study was conducted in the municipal forest
owned by the city of Traunstein, located in south-
eastern Bavaria, Germany. Geographical coordinates
of the test site are 47°52ʹ N and at 12°39ʹ E (Figure 1
(a)). The region of interest covers a broad range of
the pre-alpine landscape, particularly areas with
steep slopes. Elevations range from 600 to 700 m
above sea level. The soils are of glacial sediments,

Figure 1. (a) RapidEye data from 7 September 2009 displayed as a colour-infrared (CIR) composite with the following bands: NIR
(red), red (green) and green (blue); (b) Second-level classification result with segment boundaries of the test site into coniferous-
dominated (green) and deciduous-dominated (red) forest classes; (c) Systematic distribution of 2008 forest inventory sample
plots (orange points); (d) Stratified random distribution of 2010 inventory sample plots (green points).
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originally left by receding glaciers at the culmination
of previous ice ages. The climatic conditions are
characterized by a mean annual precipitation of
1600 mm and a mean annual temperature of 7.3°C
(Moshammer & Pretzsch, 2010). The forest covers
an area of ~232 ha, and the dominant tree species
are Norway spruce (Picea abies (L.) H. Karsten)
(49%), European beech (Fagus sylvatica L.) (21%)
and White fir (Abies alba Mill.) (15%). The stand-
type structures range from even-aged spruce mono-
culture stands to uneven-aged mixed stands,
depending on management history and soil condi-
tions (Moshammer & Pretzsch, 2010).

Data preparation

Data set
For the presented work level, 3A products provided
by RapidEye Science Archive (RESA) at the German
Aerospace Centre (DLR) were used as subsets to the
test site (shown in Figure 1(a)). For further quality
control, the radiometric, sensor and geometric cor-
rected RapidEye image was checked for geometric
correctness using ENVI® 4.3 (ENVI, 2009). For the
mono-temporal analysis, we had two reasons to use
an image acquired on 7 September 2009. First, only
one year had passed since the last field inventory in
the area. Second, Elatawneh, Rappl, Rehush,
Schneider and Knoke (2013) found that September
represented in Bavaria the best period of the year to
use image classification for distinguishing between
coniferous and deciduous tree species.

Stratification
RapidEye data were analysed with the object-oriented
image processing approach offered by the
eCognition® Developer 9 software package
(eCognition Developer 9.0 2004). A hierarchical
two-level classification based on the membership
function was developed. At the first level, we differ-
entiated forest versus non-forest, and at the second
level, the forest types coniferous and deciduous domi-
nated. The segmentation was performed with the
multi-resolution algorithm (Baatz & Schäpe, 2000)
considering the spectral information supplemented

by the Normalized Differenced Vegetation Index
(NDVI) (Rouse, Haas, Schell, Deering, & Harlan,
1974) and the simple ratio of the blue/green bands
(Kindu, Schneider, Teketay, & Knoke, 2013;
Schneider et al., 2013). The different homogeneity
settings for scale, shape and compactness were
defined empirically by trial and error. The result
was an image divided into segments with respect to
the spectral values and indices (Pekkarinen &
Tuominen, 2003).

Based on the first segmentation level, we per-
formed an initial stratification into urban, water and
forest via knowledge-based classification employing
eCognition® and the implemented membership func-
tion concept. Urban and water segments were classi-
fied based on the values for the NDVI. Forest area
was classified based on the values derived from the
standard deviation of the near-infrared (NIR).

At the second segmentation level, we classified the
forest class into coniferous- and deciduous-domi-
nated forest. Special attention was given to the seg-
ment size and the spectrally homogenous
demarcation of the forest types (deciduous, resp. con-
iferous dominated). The weights for the bands and
indices were set according to our a priori knowledge
of the forest class. For classification, the digital values
of the NIR and NDVI were used. Thresholds for the
spectral values and for the applied membership func-
tions are given in Table 1 and the classification result
is shown in Figure 1(b). The second-level segments of
our test site had a size range between 100 m² and
6100 m2, with an average size of 1300 m2.

After completing the second segmentation level, the
accuracy was assessed using colour-infrared (CIR) aer-
ial images from 2009 provided by the Bavarian State
Office for Digitizing, Broadband and Survey (LDBV)
with a spatial resolution of 0.2 m. The images were also
set to the extent of the test site and overlaid with a grid
of 50 m by 50 m. The 435 grid points were buffered to
the size of a sample plot (500 m2). The images were
visually interpreted based on the same definition as
Straub, Stepper, Seitz and Waser (2013) (coniferous
stratum if percentage of coniferous >50% and decid-
uous stratum if percentage of coniferous ≤50%) to
produce the verification data. The accuracy assessment

Table 1. Parameters used in each of the two different segmentation levels and for the classification in level 2 applied to the
RapidEye data using eCognition® software.
Process Strata Level Scale Shape Compactness Bands Weight

Segmentation Forest/non-forest 1 60 0.2 0.3 Red edge 5
Blue/green, green 3
Red, NIR and NDVI 1

Segmentation Forest types 2 50 0.2 0.6 NDVI, NIR 5
Green, blue/green, Red edge, blue 3
Red 1

Classification Coniferous dominated Classification (membership function) NIR
35.6–62.5%

NIR: near-infrared; NDVI: Normalized Differenced Vegetation Index

EUROPEAN JOURNAL OF REMOTE SENSING 77



was conducted by creating an errormatrix that included
the overall accuracy, producer and user accuracy.
Furthermore, a Kappa analysis (Congalton, 1991) and
the total disagreement, separated into components of
quantity and allocation (Pontius & Millones, 2011),
were performed.

Segment-based sample plot allocation
As a precondition for the segment-based sampling
design, a sample size reduced by 50% of the con-
ventional sampling design was set (representing
114 inventory plots). The sample plot position
was defined by the automatically calculated centre
of gravity (COG) of the selected segments and
represented a class characterized by a total area
inventory based on spectral features. This is con-
sidered a novel application of COG, as it is usually
used in neighbourhood distance calculation in
digital image processing (Baatz et al., 2004;
Rutzinger, Höfle, Pfeifer, Geist, & Stötter, 2006),
for noise identification in grey-level images (Van
Assen, Egmont-Petersen, & Reiber, 2002) or as an
offset for position accuracy using laser data
(Morsdorf, Meier, Allgöwer, & Nilesch, 2003).

The classification result and the COG points
were exported from eCognition® as shape files for
further analysis in a geographic information system
(GIS). Furthermore, we assumed that all segments
assigned to a class carry the class properties. This
allows for introducing an area threshold (larger
than 500 m2) for sample plot segment candidates,
assuring that the sample plot allocated via the COG
is completely within the segment. Additionally, to
realize an equal distribution of the inventory plots
and to avoid clustered sampling, the test site was
manually divided into four sub-areas. The area-pro-
portional allocation of the experimental sample
design with the predefined sample size of 114 sam-
ple plots was calculated based on the equation
described in Cochran (1977). The defined areas of
sample plots serve to link the spectral properties
with forest canopy features, in our case the timber
volume. For data collection, the locations of the
sample plots in the forest were reached via differ-
ential global navigation satellite systems.

Inventory field data

The conventional forest inventory (systematic sam-
pling) was performed in 2008 by the Chair of
Forest Growth and Yield Science at the Technical
University of Munich (TUM). Measurements were
taken on 228 inventory sample plots of the perma-
nent regular sampling grid of 100 m × 100 m
(illustrated in Figure 1(c)). The second inventory
was carried out in 2010 by the Institute of Forest
Management of the TUM. According to the

targeted 50% reduction goal, 114 plots based on
the innovative sampling design as described in the
section segment-based sample plot allocation
(Figure 1(d)) were defined.

Both sampling surveys were conducted according
to the Bavarian State forest inventory guideline
(Neufanger, 2011), which is based on three con-
centric circles. This method involves three nested
circles: a small circular plot with 31 m2 (3.15 m
radius), a medium circular plot with 125 m2

(6.31 m radius) and a large circular plot with
500 m2 (12.62 m radius). First, all trees with a
diameter at breast height (the diameter of a tree is
measured at 1.3 m above ground) smaller than
10 cm and located in the smallest (31 m2) circular
plot were recorded. Second, all trees with a DBH
between 10 cm and 30 cm within the medium cir-
cular plot were recorded, and finally, all trees within
the largest circle (500 m2) with a DBH greater than
30 cm were measured and recorded (Neufanger,
2011). The main variables recorded at the inventory
plots are DBH, tree species, tree height, age class and
position with respect to the sample point. The mea-
sured tree height and DBH were used to generate
height–diameter models for each inventory plot,
based on the equation by Petterson (1955) and
adjusted for Bavaria. This model was used for each
inventory plot to receive height information for
trees without in situ recorded height measurements.
Height information, DBH and the tree species-spe-
cific form factor (Van Laar & Akça, 2007) were
combined in allometric models and used to estimate
the volume of a single tree. Based on the allometric
models, the timber volume (in cubic meters per
hectare) at plot level was calculated.

The variable timber volume of the two inven-
tory databases (2008 and 2010) was used to com-
pare the different sampling designs (segment-
based sampling design and systematic sampling
design). The data sets used had a two-year differ-
ence and appeared appropriate for comparison of
the sampling designs because the harvested
amount of timber volume was mostly equal to
the annual increment (Moshammer & Pretzsch,
2010). We used two approaches to check if this
assumption was true. First, to rule out differences
in the data sets, the statistical similarity of var-
iances was evaluated by an F-test with a prede-
fined significance threshold of p = 0.05. Assuming
harvest and increment occurred uniformly across
the study area, we thus expected the same var-
iance of standing timber volumes from both
inventory methods. Second, we applied a Chi-
square test to check the similarity of the distribu-
tion of timber volumes between the two data sets.
To achieve this, the empirical distribution in 2010
was compared with the expected distribution.
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Sampling methods

Simple random sampling estimators
For evaluating structural forest information (e.g.
volume in timber inventories), simple random sam-
pling (SRS) estimators are usually applied to a systema-
tic sampling approach (Dees, 2006; Kangas &Maltamo,
2006; Köhl, Magnussen, & Marchetti, 2006; Shiver &
Borders, 1996). For example, Shiver and Borders (1996)
showed that variance estimators developed for SRS can
also be applied to systematic sampling as valid, but
conservative estimates of the population variance.
However, criticism by Cochran (1977) and Köhl et al.
(2006) pointed out that using SRS estimators with sys-
tematic sampling could lead to an overestimate, on
average, of the actual error. We accepted this potential
disadvantage and assumed that the systematic sampling
represents a random distribution over the population of
this very heterogeneous forest because the starting point
of the sampling grid was random. The SRS estimators
were also used for the segment-based sampling because
the distribution of the population was random.
Furthermore, the estimators used in our study should
be simple, easy to calculate, valid with respect to accu-
racy and transferable to practice.

According to McRoberts, Nelson and Wendt (2002),
the estimated variance of the mean is used to calculate
the relative efficiency (RE) for comparing the stratifica-
tion effect of two different sampling methods whereby n
needs to be constant. The standard error of the sample
mean s�y is a measure of precision and is used to compare
the precision obtained by SRS with other estimators
(Cochran, 1977). The estimated variance of the mean
and the standard deviation are all calculated without
using a finite population correction (fpc) factor because
less than 5% of the population has been sampled
(Cochran, 1977; Shiver & Borders, 1996; Dees, 2006).

Stratified sampling
Stratified sampling (Str) was introduced to facilitate a
more efficient sampling scheme in heterogeneous
areas (Knoke, 2012; Shiver & Borders, 1996). Using
this method, the population of the study site was
divided (stratified) into spectrally homogeneous
sub-populations (Cochran, 1977; Kangas &
Maltamo, 2006; Dees, 2006), which we refer to here
as strata (deciduous- and coniferous-dominated for-
est). The stratum weights, Wh were defined as the
proportion of each stratum size in relation to the total
population area ðWh ¼ Nh

N Þ, where Nh is the size of

stratum h, and N is the population size ðN ¼ Ph¼1

L
NhÞ

(Table 4). The estimated variance of the stratified
population mean, s2�ystr , and the relative standard
error of the stratified population mean, rs�ystr , were
calculated based on the formulas provided by
Cochran (1977).

However, if post-stratification violates the assump-
tion of an area-proportional allocation of sample
plots, it is necessary to apply a correction term.
Thus, for the analysis of the effects of post-stratifying
the data obtained in 2008, an appropriate correction
was made according to Cochran (1977), which had
the effect of increasing the calculated variance (by
only 0.4%). The relative standard error of the strati-
fied population was estimated by the ratio of the
estimated standard error and the estimated mean of
the stratified population. It is an index of relative
precision of the estimate (Köhl et al., 2006).

Variance analysis of different sampling designs
The RE was used to quantify the efficiency of the
different designs in combination with stratified sam-
pling (McRoberts et al., 2002). To compute this ratio,
it is first necessary to calculate the estimated variance
of the population mean of each data set whereby n is
constant. In this case, we compared the estimated
variance of the estimated population mean of
SRS ðs2�y) as a “benchmark” design, with the estimated
variance of the estimated population mean of
Str s2�ystr

� �
as a candidate design. We defined RE

according to McRoberts et al. (2002) as:

RE ¼ s2�y
s2�ystr

; (1)

where RE >1.0 indicates a precision gain, when the
variance of the estimated population mean of the
candidate design is less than the variance of the over-
all estimated mean of the benchmark design.

Determining sample size
The ideal sample sizes for a desired precision were
calculated for systematic sampling and segment-
based sampling, with and without stratification. The
strata obtained by the 2010 survey were used for
carrying out a post-stratification for the systematic
sampling design. The formulas for determining the
ideal sample sizes both dependent on and indepen-
dent of the stratification are described below. The
calculation of an ideal sample size for a desired pre-
cision was used to compare the efficiency of different
sample designs. The equation for the ideal sample
size n of SRS for a desired precision (s2y;desired) can
be calculated as follows from Cochran (1977):

s2�y;desired �
s2y
n

(2)

n � sy
sy;desired

� �2

(3)

For a desired precision (s2y;desired), the ideal sample
size n for Str with an area-proportional sample plot
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allocation can be calculated according to Cochran
(1977) with the equation:

s2y;desired �
1
n
�
XL

h¼1
Wh�s2h (4)

n �
PL

h¼1 Wh�s2h
s2y;desired

(5)

Cost comparison between pure terrestrial and
RapidEye data supported forest inventory

Finally, a cost comparison between a systematic sam-
pling inventory and segment-based sampling inventory
using RapidEye data was carried out for a desired stan-
dard error of 4.6%. The value was derived from the
systematic sampling design used as a reference (228
sample plots). The analysis considered the costs involved
in each of the following working steps: GIS analysis,
terrestrial inventory sampling, purchasing remotely
sensed data, data preparation and analysis. The cost of
recording one terrestrial inventory plot was estimated to
be around €50 (Walter & Kessler, 2009). The RapidEye
data acquired from the archive and used in this analysis
cost approximately €1 per square kilometre (Apollo
Mapping, 2014) with a minimum order size of 500
km2. The costs for data preparation and data analysis
were calculated based on actual working hours. Based on
the average gross hourly wage, as set out in the public
serve payment scheme in 2015, an experienced worker
(with at least three years working experience) with the
appropriate skills to carry out such analysis costs €38 per
hour. For the preparation and analysis of the RapidEye
data by applying the method described in this study, it
was estimated that eight working hours were needed.
For the subsequent GIS analysis, including the location
of the inventory sample plots and the extraction of their
geographic coordinate, approximately two working
hours were calculated.

Results

Accuracy assessment of the RapidEye
classification

The forest-type classification showed an overall accu-
racy of 84% with the KHAT statistic of 0.78. The

KHAT result shows a substantial level of agreement
for the classified forest. The classification approach
resulted in a total disagreement of 17%. The quantity
disagreement with 7% accounts for more than a
quarter of the total disagreement, whereby two quar-
ters of the total disagreement accounts for allocation
disagreement. For both the coniferous- and decid-
uous-dominated forest classes, the producer’s accu-
racy was greater than 80%. The user’s accuracy for
coniferous-dominated forest was 79%, while that for
deciduous-dominated forest was 87% (Table 2).
Consequently, the error matrix revealed that some
deciduous-dominated forest objects were mistakenly
identified as coniferous-dominated and vice versa.

Post-stratification combined with systematic
sampling

As a first step, a quantitative comparison of the
variance estimator SRS of 2008 data (SRS2008) to
stratified sampling of 2008 data (Str2008) was con-
ducted. Both estimators were tested using the total
of 228 inventory sample plots (Table 3). For the post-
stratification, the same strata as those received from
the remote sensing-based classification were used.
The relative standard error of the Str2008 estimator
was 4.2% compared with 4.6% for the SRS2008 esti-
mator. Furthermore, the RE was calculated with 1.25

Table 2. The error matrix showed the accuracy assessment between areas classified as coniferous- and deciduous-dominated
forest using RapidEye data classification and those identified in the CIR-image interpretation.

Reference data

RapidEye classification Coniferous-dominated forest Deciduous-dominated forest Total UA
Coniferous-dominated forest 145 38 183 0.79
Deciduous-dominated forest 33 219 252 0.87
Total 178 257 435
PA 0.81 0.85
KHAT 0.78 Overall accuracy 0.84

UA: user’s accuracy; PA: producer’s accuracy.
The result of a kappa analysis is the KHAT statistic, which is another measure of accuracy for the classification result (Cohen, 1960).

Table 3. Results of the methods of SRS2008 and Str2008 based
on timber volume [m3/ha] for the inventory data of 2008.

Inventory 2008 (n = 228)

SRS2008 Str2008
�ygrid 325.4 m³/ha �ystr;grid 321.2 m³/ha
sygrid 226.1 m³/ha systr;grid 201.9 m³/ha
sygrid% 69.5% systr;grid% 62.9%
s�y2grid 224.3 (m³/ha)² s�ystr;grid2 179.1 (m³/ha)²
s�ygrid 15.0 m³/ha s�ystr;grid 13.4 m³/ha
rs�ygrid 4.6% rs�ystr;grid 4.2%

RE 1.25

Note: SRS = simple random sampling; n = number of sample plots; �y =
sample mean; sy = standard deviation; sy% = coefficient of variation;
s�y2 = estimated variance of the sample mean; s�y = estimated standard
error of the sample mean; rs�y = relative standard error of the estimate
of the sample mean; Str = stratified sampling; �ystr = mean of the
stratified population; systr = standard deviation of the stratified popula-
tion; sy% = coefficient of variation of the stratified population; s2�ystr =
estimated variance of the stratified population mean; s�ystr = estimated
standard error of the stratified population mean; rs�ystr = relative
standard error of the stratified population mean; RE = relative
efficiency.
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and supports the improvement by post-stratification.
The coefficient of variation and the estimated var-
iance of the stratified population mean underpinned
the above results.

Pre-stratification combined with segment-based
sample plot allocation

The evaluation of the standard error for the 2010 data
illustrated that the technique of pre-stratification com-
bined with segment-based plot allocation was effective.
The estimated standard error for stratified sampling of
2010 data (Str2010) (5.5%) was lower than for SRS of
2010 data (SRS2010) (6.4%, Table 5). Also, the reduced
coefficient of variation was in line with the improve-
ment in precision described above. A more detailed
analysis showed that the coniferous-dominated stratum
was characterized by a lower coefficient of variation
(46.2%) compared to a value of 75.4% for the decid-
uous-dominated stratum (Table 4). These results con-
firmed that the stratification worked well for the
coniferous-dominated stratum but not as well for the
deciduous-dominated stratum. Additionally, the esti-
mated means of the coniferous- and deciduous-domi-
nated strata showed high differences. The coniferous-
dominated stratum had, with 47,118 (m3/ha)2, a higher
estimated variance than the deciduous-dominated stra-
tum, with an estimated variance of 31,750 (m3/ha)2. In
Table 4, the proportion of area to strata size and the
results of the descriptive statistics are listed. A quanti-
tative comparison between the estimators of SRS2010
and Str2010 was conducted to evaluate the effect of the
stratification. The calculated RE for the stratification
approach was 1.34 and therefore greater than 1
(Table 5). As a result, an increase in precision of 0.9
percentage points (14%) was achieved for Str2010 com-
pared to SRS2010.

Comparing the sampling designs

In the two previous sections, the focus was on the
stratification effect caused by remotely sensed data. In
the following section, the different sampling designs
were analysed regarding efficiency. Descriptive statis-
tical values of the 2008 systematic sampling design
and the 2010 segment-based sampling design showed
high overall similarity for the timber volume [m3/ha]
(Table 6). Furthermore, the resulting tree species
compositions of both inventory methods were

comparable (Table 7). In the study, an F-test was
used in order to show that both sample sets were
selected from the same total population, in spite of
a two-year time difference between sampling. The
results (F(113.227) = 1.02; p > 0.05; n = 342) showed
that the systematic sampling design produced no
significant difference in the variance (Table 3) com-
pared to the segment-based sampling design
(Table 5). Consequently, there is no indication that
the two-year difference had a negative influence on
the sampling data sets. A Chi-square test was con-
ducted to evaluate the effect of segment-based sam-
pling on the whole distribution of the standing
timber volumes. Using the 2008 distribution as the
expected distribution, the segment-based sampling

Table 4. Overview of the stratified 2010 inventory data shown is sample mean, variance and coefficient of variation from the
coniferous- and deciduous-dominated strata based on timber volume.

Area [ha] Wh

Inventory 2010

n �yh [m3/ha] s2h [(m3/ha)2] sy%[%]

Coniferous dom. 94 0.41 46 470 47,118 46.2
Deciduous dom. 138 0.59 68 236 31,750 75.4

Wh: stratum weights; n: number of sample plots; �yh : sample mean; s2h : estimated variance; sy% coefficient of variation of the stratified population.

Table 5. Results of the methods of SRS2010 and Str2010 based
on timber volume [m3/ha] for the inventory data of 2010.

Inventory 2010 (n = 114)

SRS2010 Str2010
�ysegment 330.7 m³/ha �ystr;segment 331.1 m³/ha

sysegment 225.5 m³/ha systr;segment
194.9 m³/ha

sysegment% 68.2% systr;segment
% 58.9%

s�y2segment
446.2 (m³/ha)² s2�ystr;segment

333.1 (m³/ha)²

s�ysegment 21.1 m³/ha s�ystr;segment
18.3 m³/ha

rs�ysegment 6.4 % rs�ystr;segment
5.5 %

RE 1.34

Note: SRS = simple random sampling; n = number of sample plots; �y =
sample mean; sy = standard deviation; sy% = coefficient of variation; s2�y
= estimated variance of the sample mean; s�y = estimated standard
error of the sample mean; rs�y = relative standard error of the estimate
of the sample mean; Str = stratified sampling; �ystr = mean of the
stratified population; systr = standard deviation of the stratified popula-
tion; sy% = coefficient of variation of the stratified population; s2�ystr =
estimated variance of the stratified population mean; s�ystr = estimated
standard error of the stratified population mean; rs�ystr = relative
standard error of the stratified population mean; RE = relative
efficiency

Table 6. Descriptive statistical values are listed in the forest
variable timber volume [m3/ha] from the inventory data of
2008 and 2010.

Inventory data 2008
(systematic sampling)

Inventory data 2010
(segment-based sampling)

Sample size 228 114
Plot type concentric circles concentric circles
Plot size [m²] 500 500

Min: m3=ha½ � 0 0
Max: m3=ha½ � 968.5 1055.5
Mean m3=ha½ � 325.4 330.7
sy m3=ha½ � 226.1 225.5
s2y m

3=ha½ �2 51129 50862

Note: sy = sample standard deviation, s2y = sample variance

EUROPEAN JOURNAL OF REMOTE SENSING 81



design was compared to the systematic sampling
design. The result showed that there is no significant
difference between the expected frequencies using the
percentage distribution from 2008 and the actually
observed frequencies (2010) (p-value of 0.45,
Figure 2). Consequently, in our case, sampling in
spectrally homogenous segments with two-year dif-
ference showed no influence on the sample distribu-
tion. Finally, the stratification showed an RE of 1.34
obtained with the segment-based sampling, which
was greater than the RE of 1.25 with systematic
sampling. This indicates an improved stratification
effect by means of the segment-based sampling
design compared to the systematic sampling design.

Sample size and precision of sampling designs

The two sampling designs (systematic sampling and
segment-based sampling) were evaluated for a desired
standard error of 4.6% derived from the systematic sam-
pling 2008 with 228 sample plots. The systematic sam-
pling was analysed with the estimator for SRS and Str.
The ideal sample size was computed by applying the SRS
estimator to the data of 2008 (Equation (3)) and the
application of the Str estimator to the data of 2008 and
2010 (Equation (5)). A lower number of sample plots

were necessary to obtain a given precision with the
Str2008 and Str2010 estimator (shown in Figure 3 as the
solid and dotted lines) than with the SRS2008 estimator
(shown as the dashed line). One hundred and eighty-
seven sample plots (a reduction by 18%) were necessary
to achieve the desired precision level by using the sys-
tematic sampling design with the Str2008 estimator. The
segment-based sampling design combined with the
Str2010 estimator showed an ideal sample size of 164
sample plots reflecting a 28% reduction. This approach
revealed a lower sample size by 23 sample plots com-
pared to the Str2008 estimator and 64 sample plots less
than the SRS2008 estimator.

Comparison of cost to sample size and precision

The costs for systematic sampling and segment-based
sampling of stratified remotely sensed data were calcu-
lated on the same level of precision (4.6%) as the above
calculated ideal sample size. Table 8 shows that the
inventory costs for segment-based sampling with strati-
fiedRapidEye datawere 21% lower compared to systema-
tic sampling. The cost calculation revealed a cost
difference of approximately €2400 between the two sam-
pling methods.

Table 7. Tree species composition based on timber volume [m3/ha] calculated from forest inventory sample plots
of 2008 (228 sample plots) and 2010 (114 sample plots).
Survey Inventory 2008 (systematic sampling) (%) Inventory 2010 (segment-based sampling) (%)

Tree species composition
Norway spruce (Picea abies (L.) H. Karsten) 49 46
White fir (Abies alba Mill.) 15 14
Other coniferous 3 2
European beech (Fagus sylvatica L.) 21 22
European ash (Fraxinus excelsior L.) 5 7
Sycamore maple (Acer pseudoplatanus L.) 4 6
Other deciduous 3 3

Figure 2. The expected frequency distribution of 2008 is shown in orange and the segment-based sampling frequency
distribution (2010) in green.
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Discussion

Usability of high-resolution remotely sensed data
in the planning phase

As shown in this study, ancillary data based on
remote sensing information offer great potential to
support forest inventories. Compared to other opti-
cal remote sensing systems, RapidEye has the big
advantage of combining high spatial and temporal
resolution, as it can bypass the problem of cloud
coverage (Dees, 2007; Elatawneh, Wallner, Manakos,
Schneider, & Knoke, 2014). This made the system
quite suitable at enterprise level for forest inventory
and monitoring applications in European forests.
The classification result of the RapidEye data con-
firmed the possibility to classify spectrally homoge-
nous segments of a heterogeneous forest into the
forest classes deciduous dominated and coniferous
dominated. The overall accuracy of the classification
was 84%, and a KHAT value of 0.78 was achieved.
Schneider et al. (2013) reported an overall accuracy
between 66% and 70% in a study using RapidEye
data for deciduous, coniferous and mixed forest
classification for a test site in Freising (Germany).
Stoffels et al. (2015) demonstrated an accuracy of

91% for forest-type classification (coniferous and
deciduous strata) for a spatially adaptive classifica-
tion approach combining RapidEye and SPOT4 and
5 data, based on a spatial resolution of the map
product 10 m × 10 m. The studies of Fehlert
(1984), Kenneweg, Förster and Runkel (1991) and
Wallner, Elatawneh, Schneider and Knoke (2015)
confirm that a pixel size of 5 m spatial resolution
does not allow for the detection of single trees, but
can achieve acceptable accuracies in the detection of
forest types. The total disagreement of 17% with a
quantity disagreement of 7% underlines the state-
ments of the mentioned studies.

The segmentation approach described was con-
ducted on the one hand for an object-based image
classification of the test site and on the other hand
to derive spectrally homogenous segments for
inventory plot allocation. Using the segment-
based stratified allocation design, we intended to
allocate sample plots in spectrally homogenous
segments that represent all parts of the forest,
including forest edges and especially the different
development stages of the forest. Therefore, the
segment size was the most crucial part because a
large minimum segment size results in high

Figure 3. Required sample sizes (x-axis) for certain desired precisions (y-axis, standard error %) for the stratified sampling (Str)
and simple random sampling (SRS) estimators are shown for the 2008 and 2010 inventory data. The dashed line represents the
SRS estimator for 2008 data, and the applied Str estimator are illustrated as the solid line for 2008 data and as the dotted line
for 2010 data. The horizontal solid line represents the desired precision level of 4.6%.

Table 8. Cost comparison of the systematic sampling design and stratified segment-based sampling design of RapidEye data
calculated for ideal sample size and desired standard error of 4.6%.
Categories Systematic sampling design Stratified segment-based sampling design

Remotely sensed data €500 (archive data)
Data preparation and analysis €302
GIS analysis €75 €75
Terrestrial inventory sampling €11,400

(228 sample plots × €50)
€8200

(164 sample plots × €50)
Overall costs €11,475 €9077
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within-segment variation (Nilsson et al., 2003) and
a small minimum segment size in a low within-
segment variation (Pekkarinen & Tuominen,
2003). This effect means that, within large seg-
ments, different forest types could potentially
exist, whereas small segments could represent
homogenous forest types. The result of the field
study confirmed that larger segments (coniferous-
dominated forest) had a higher statistical variance
(47,118 (m3/ha)2) compared to smaller segments
(deciduous-dominated forest) with lower statistical
variance (31,750 (m3/ha)2).

Applicability for forest inventories

The pre-stratified segment-based plot allocation
method using RapidEye data indicated improved
results compared to systematic sampling. For the
purpose of comparing the cost efficiency of the sam-
pling designs, an ideal sample size was calculated for
the segment-based sampling design of 2010 to obtain
a relative standard error of 4.6%. Using the SRS2008
estimator, 228 sample plots were necessary, while for
the Str2010 estimator, only 164 sample plots were
needed to reach the same level of precision. The
results revealed a reduction potential in sample size
of more than 28% as applied in practice and therefore
also a reduction in costs. Similar results have been
shown by Nothdurft et al. (2009) in his study for a
fixed sample size in an anonymised private forest
enterprise in southern Germany. The approach of
double sampling for stratification based on orthopho-
tos and stand age was used to estimate timber volume
of larger spruce and fir trees as well as larger hard-
wood trees. A cost reduction for coniferous trees of
19% and for hardwood trees of 59% could be
achieved compared to unstratified SRS. Whether the
reduction of the standard error from 5.5% to 4.6% by
increasing the sample plot number from 114 to 164 is
worth the economic costs from the economic point of
view is a decision of the forest management.

Our results further indicate that stratified sam-
pling might be more efficient than systematic sam-
pling if the variability between strata is high (Särndal
et al., 1992). Calculating the RE as a measure for the
stratification effect showed that, for the 2008 and
2010 data sets, the efficiency of the timber volume
estimation was increased. The RE ranged between
1.25 and 1.34. McRoberts et al. (2002) classified a
test area into four strata and obtained RE values for
the total volume ranging from 1.25 to 1.75 using data
from Landsat TM imagery and ancillary data. These
values are quite similar to those found in our study,
even when working with data of much lower spatial
resolution.

However, the stratification of the test site was
conducted solely for two strata which already resulted

in an improvement in precision. Cochran (1977)
described that stratification into more than six strata
provides marginal benefit for precision. The stratifi-
cation was not further refined because ancillary
height information would be necessary for an
improved classification result with respect to the
highly structured forest of the test site. Nevertheless,
our experimental approach still needs to be tested in
further studies with more than two strata.

Our experimental sampling design was based on
an area-proportional design. As recommended by
Grafström (2013), the samples need to be well dis-
tributed in geographical space, which we achieved by
dividing the test site into four sub-areas. The small
variation of the mean timber volume of the 2010
inventory compared to the 2008 data proved that
the design was successful. Nevertheless, the received
high within-strata variance of coniferous-dominated
stratum and the high coefficient of variation for
deciduous-dominated stratum indicated that there is
still leeway for improvement.

Upcoming, free-of-charge remote sensing systems
(e.g. Sentinel-2) with similar sensor technology create
the opportunity to repeat the introduced inventory
design with even lower costs. For forest management,
a repetition of sampling after a couple of years is impor-
tant to collect information on tree increment and mor-
tality. Using a pre-stratified design for monitoring can
be problematic because stratum boundaries can change,
and sampling efficiency will thus be degraded over time.
The magnitude of this effect depends upon how
dynamic the stratum boundaries are. Appropriate,
potentially complicated reallocation of sample plots to
adjust for changing strata boundaries could be required
if there is an increased change on landscape level. For
stratified inventories, themethod of partial replacement
was already successfully applied in former studies
(Bickford, Mayer, & Ware, 1963; Saborowski, Marx,
Nagel, & Böckmann, 2010). In general, this method
combines the advantages of permanent and temporary
sample plots (Van Laar & Akça, 2007). Partial replace-
ment is widely used to resample a certain amount of
sample plots, whereby the remaining numbers of sam-
ple plots are sampled on different occasions. The
method was also applied to avoid special treatment at
inventory plots by forester recognition. Even though the
experimental sample design did not need a higher effort
compared to the systematic sampling approach, but it
should still be tested in further studies.

Conclusions

Three major conclusions can be drawn from this
study. First, the stratification based on RapidEye
data with a 5 m spatial resolution helped to sub-
stantially increase the precision of the forest inven-
tory estimates. Second, stratified segment-based plot
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allocation proved to be more efficient than stratified
systematic sampling. We determined an RE of 1.25
for the stratified systematic sampling and 1.34 for
the stratified segment-based sampling. Third, the
results indicated that cost-efficiency could be
increased while maintaining the same level of pre-
cision of 4.6% due to the reduced sample size.
Specifically, positioning the sample plots in spec-
trally homogenous segments reduced the ideal sam-
ple size by 28% compared to the conventional
applied systematic sampling inventory. Our results
showed the potential of using remotely sensed data
for forest stratification to aid terrestrial inventory
methods. The method could benefit from the
advantages of RapidEye satellite systems, including
the high spatial resolution, which made it applicable
for highly structured forests, as well as the high
temporal resolution, which offered the opportunity
to acquire cloud-free data, and the modest costs for
data acquisition. Completing terrestrial inventories
without the stratified segment-based sampling is
labour-intensive and expensive. Nevertheless, as
shown in the Discussion section, the segment-
based sampling design had some limitations
because the segment size was variable, which
needs to be further investigated. From an opera-
tional point of view, the methodology showed some
potential for practical application, especially to sup-
port forest inventories of highly structured forests.
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