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Abstract: The smart grid initiative has encouraged utility companies worldwide to roll-out new and
smarter versions of energy meters. Before an extensive roll-out, which is both labor-intensive and
incurs high capital costs, consumers need to be incentivised to reap the long-term benefits of such
smart meters. Off-the-shelf energy monitors (e-monitors) can provide consumers with an insight
into such potential benefits. As e-monitors are owned by the consumer, the consumer has greater
control over the data, which significantly reduces the privacy and data confidentiality concerns.
Because only limited online technical information is available about e-monitors, we evaluate several
existing e-monitors using an online technical survey directly from the vendors. Besides automated
e-monitoring, the use of different off-the-shelf e-monitors can also help to demonstrate state-of-the-art
techniques such as non-intrusive load monitoring (NILM), data analytics, and the predictive
maintenance of appliances. Our survey indicates a trend towards the incorporation of such
state-of-the-art capabilities, particularly the appliance-level e-monitoring and load disaggregation.
We have also discussed some essential requirements to implement load disaggregation in the next
generation e-monitors. In future, these intelligent e-monitoring techniques will encourage effective
consumer participation in the demand-side management (DSM) programs.

Keywords: demand-side management; load disaggregation; energy monitoring; non-intrusive load
monitoring; smart grid

1. Introduction

The recent transition in energy policy from traditional fossil fuels to cleaner renewable energy
resources has fostered the wide acceptability of green energy technology [1,2]. The smart grid concept
is expected to embed the necessary digital intelligence in our electrical system from generation to the
transmission, distribution, consumption, and pricing of electrical energy. The discussions regarding the
smart grid are often centered on energy generation, for which most of the energy saving is expected [3].
Apart from generation, considerable savings can be achieved through the proper monitoring and
planning of efficient energy usage through demand-side management (DSM) [4,5].

The integration of weather-driven renewable energy into the system requires more flexibility in
the generation, distribution, and utilization [6]. To some extent, this flexibility can be achieved through
advanced metering infrastructure (AMI), providing better load forecasting and anomaly detection [7],
and also through proactive grid management [8]. Consumers play an important role in the future
grid, as renewables are expected to increase on the demand side. Being at the heart of any smart
grid infrastructure, consumers need to gain an adequate understanding of smart metering solutions.
Consumers can be incentivized to participate effectively if provided with adequate information to help
them understand the potential advantages of the smart grid.

The primary aim of any household or building manager is to intelligently utilize appliances
with regard to user comfort and preferences while emphasizing energy efficiency. To manage the
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amount of energy spent, it is necessary to measure how and where this energy is consumed. Under
the smart grid paradigm, the next-generation smart buildings will require bidirectional power and
data communication to reduce demand during high wholesale market prices or grid malfunctions [9].
This situation calls for highly interactive metering technologies that act as middleware to seamlessly
gather data regardless of the vendor or communication protocol.

The concept of electricity monitoring emerged immediately after the inception of electricity
generation and distribution systems during the late 19th century. The first commercial use of
electricity was direct current (DC), and electrochemical meters were introduced initially to measure
electricity consumption [10]. These meters were labor-intensive as they required the periodic
removal and weighing of plates from an electrolytic cell. Electrochemical meters were then replaced
by electromechanical meters, also known as induction meters or Ferraris meters [11]. The early
electromechanical meters measured charge in ampere-hours and calculated energy consumed during
the billing period.

In the beginning, electricity was primarily utilized by lighting systems and to a lesser extent
for operating electric loads such as electric motors. As more industries shifted from oil and gas to
electricity, there was an enormous increase in energy demand and hence the need to measure electricity
use accurately. Modern buildings, both residential and commercial, constitute a major portion of the
electricity demand. It is estimated that around 73% of electricity in the United States is consumed by
buildings [12]. From 1999 to 2004, the consumption of electricity in the residential sector of European
Union (EU) alone has increased by 10.8% [13]. In Europe, the energy consumption in buildings
accounts for 41% of the primary energy consumption, for which a major chunk of this primary energy
(85%) is utilized to achieve a comfortable room temperature (mostly through oil and gas heating),
and the remaining 15% is consumed as electrical energy [14].

With this paper, we explore the different energy monitors (e-monitors) currently available to
consumers. The main goal of our work is to help researchers, building managers, and consumers
choose the e-monitor best suited for their specific applications. Although some of these e-monitors
are appropriate to manage renewables and can provide added features, such as load disaggregation
for appliance-level monitoring, they are often overlooked as a result of a lack of available technical
data about their capabilities. Similarly, as compared to a smart meter, which is owned by the utility
company, the e-monitor is bought and managed by the consumer. The e-monitor allows consumers to
have more control over data. The consumer can even share non-private data collected by the e-monitor
with the utility company to facilitate in load-forecasting.

The main contributions of this paper are listed below.

• Through our online survey, we directly contacted 54 different companies to obtain technical
information regarding 79 different e-monitors.

• We obtained useful information regarding the architecture and operation of 27 e-monitors,
a response ratio of 34.1%. Some technical information is not publicly available.

• We also explored the available online literature from 9 companies for 14 different products.
These companies did not participate in the survey but provided enough technical information as
technical notes.

• We provide an in-depth analysis of non-intrusive load monitoring (NILM) and highlight key
requirements for NILM-enabled data acquisition (DAQ) systems. This helped us to understand
how the state-of-the-art e-monitors can be upgraded to perform load disaggregation.

The rest of the paper is organized as follows. Section 2 describes the e-monitoring basics with
relevant technical details. In Section 3, we explain our survey results, while Section 4 gives an
overview of NILM. Section 5 lists key requirements of any DAQ system capable of performing load
disaggregation, and Section 6 includes key findings and suitable suggestions for choosing e-monitors.
In Section 7, we conclude our study.
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2. Basic Energy Monitoring

Before going into detail, it is necessary to differentiate between a smart meter and an e-monitor.
A smart meter is the next-generation meter capable of linking a building with the utility company to
enable two-way communication and power exchange between them [15]. A smart meter also assists in
remote billing and instant load feedback to the utility for load forecasting. As it is owned by the utility,
the smart meter comes with inherent drawbacks related to data confidentiality and privacy [16–18].
On the contrary, an e-monitor is owned by the consumer and works independently alongside existing
energy meters, without any direct effect on the billing. E-monitors are preferred because of their
ability to observe energy consumption patterns in real-time through a user-friendly visual interface,
and they are helpful in making informed energy-conservation decisions. They can be easily installed
by clipping their current sensors around a current-carrying wire or directly inserting them into a power
plug. As a result of local and private cloud storage, the e-monitor can minimize privacy concerns and
added features, such as disaggregation and the efficient integration of renewables, and can encourage
consumers and building managers to participate in DSM effectively.

For a fair comparison, it is important to view how different vendors and platforms measure
and calculate energy consumption. For load monitoring, there are two main categories of e-monitors
available on the market: single- and multi-point e-monitors. The single-point e-monitors capture the
aggregate energy consumption of the whole house, building or industrial facility. The multi-point
e-monitors constantly capture measurement data at several locations and are preferred for detailed
load monitoring, such as monitoring the power usage of individual appliances. Monitoring at the
appliance-level can result in more engaged consumer participation as consumers can better identify
power-hungry appliances and accordingly manage their peak load. For a rational comparison of
e-monitors, we have outlined six dimensions, the types of parameters, the sampling frequency, the
accuracy, the resolution, the application area, and the cost of monitoring equipment on which we base
our comparisons.

2.1. Parameter Type

Except for voltage and current, most of the parameters (if utilized) are calculated using standard
mathematical formulations. These parameters are derived internally, and for the most part, a subset of
these parameters is utilized and displayed to consumers. Some basic parameters are described below.

2.1.1. Voltage and Current Waveform

Voltage waveform measurement assists in making corrective measures against harmful low and
high voltage levels. Usually, the voltage transformers (AC–AC adaptors) are used to measure the
peak and root-mean-square (RMS) voltages of the line. Unlike the voltage waveform, the current
waveforms are not stable sine waves; they vary considerably depending upon the type of operating
load, as illustrated in Figure 1. Each load type (resistive, inductive or capacitive load) has a different
influence on the current curve, and often the inrush current features are used for appliance segregation
using NILM.

2.1.2. Power and Power Factor

The main feature used by almost every energy-metering device is the real power. This is the true
rate at which energy is used and is calculated through the voltage and current measurements [19].
Similarly, the power factor is used to distinguish between resistive, inductive and capacitive appliances.
It determines the phase difference caused by the inductive and capacitive components. A positive
phase angle indicates a net inductive reactance of the circuit, where the current lags voltage. On the
contrary, a negative phase angle indicates a net capacitive reactance of the circuit as the current
leads the voltage.
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Figure 1. Instantaneous voltage and current waveforms.

2.1.3. Harmonics

Harmonics or higher-frequency components occur as a result of pulsating devices (such as
frequency drive, electric welders, etc.), resulting in system heating and overvoltage [20]. The harmonics
are created by different electronic components present in the appliance circuitry. They produce a new
distinct waveform as a result of the superposition of different harmonics. The fast Fourier transform
(FFT) resolves the superimposed waves into their constituent waves. In e-monitors, another term
commonly associated with harmonics is the total harmonic distortion (THD). This refers to the presence
of harmonic distortion caused by the non-linear loads. THD determines the power quality of the system,
where a lower THD indicates a reduction in heating, peak currents, and losses [21]. As a result of these
distinctive features, the higher-order harmonics are useful for power disaggregation applications.

2.2. Resolution

The resolution is determined by the number of bits of the analog to digital converters (ADCs) and
defines the number of codes that can be formed digitally using these bits. Because the voltage and
current signals are continuous in nature (analog), to calculate the other set of features (e.g., real power,
RMS voltage and current, power factor, etc.), analog signals need to be converted to digital signals.
The uncertainty in the digital signal is determined by the measurement accuracy in the analog input
and is known as the resolution of the signal. The resolution is determined by the number of bits
used to represent each variable (bits of ADCs), which defines the quantization levels and hence the
uncertainty.

2.3. Sampling Frequency

For e-monitoring, the choice of any specific sampling frequency or sampling rate depends upon
the amount of information we are interested in obtaining from these signals. The sampling frequency
may range from the hourly reading to the high-frequency (MHz) range. In general, to observe the
harmonics and transient switching response of the appliances, it is better to utilize a higher sampling
frequency. It is also important to mention that the sampling done for analog to digital conversion
might not be the same as samples reported for display. Although all e-monitors have a sampling rate
sufficient to satisfy the Nyquist criteria and accurately calculate the consumed power, most of the
modern e-monitors downsample to lower sampling rates to reduce storage requirements.

2.4. Accuracy

The accuracy is determined by the difference between the measured and the true consumption.
A study on commercial smart meters indicated an accuracy of around 99.96% within a +/−2% accuracy
range [22]. Generally, the accuracy is considered the most specified feature for any meter, and often a
0.5% minimum accuracy is considered adequate for revenue billing [20]. The inaccuracies mainly stem
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from the ADCs and transformers (both voltage and current). The ADCs introduce a quantization error,
which can be reduced using a higher-bit ADC corresponding to the smaller step-size.

2.5. Application Environment

The e-monitors are utilized almost everywhere electricity monitoring is required, but how they
are utilized differs on the basis of the area of application. The residential sector consists of housing
units; the commercial sector consists of non-manufacturing business establishments (e.g., warehouses,
hotels, restaurants, etc.), and the industrial sector consists of manufacturing units with fixed machinery
(e.g., motors, drives, generators, etc.) [23]. In residential and commercial buildings, the aggregate
load is mostly monitored using electromechanical meters. This single-point sensing can be single-
or three-phase monitoring at the whole house or building level. If one is interested in more detailed
energy consumption information, circuit-level monitoring can be applied, which can be termed as
multi-point energy sensing.

2.6. Cost

Cost is one of the most important factors when purchasing an e-monitor. A large-scale longitudinal
survey was carried out by the Department of Energy and Climate in the United Kingdom to estimate
the cost of different monitoring solutions for electricity and gas. The survey results recommend three
different e-monitoring packages ranging from £210 to £950 per dwelling [24].

3. Survey and Comparison Results

For this research, we conducted a comprehensive online survey [25] of various e-monitoring
solutions available on the market. The purpose of the online survey was to obtain detailed technical
information regarding e-monitors, as limited information is publicly available. A total of 54 different
companies were shortlisted and invited to participate in the survey. The survey included 79 different
e-monitors, all of which were off-the-shelf monitors and hence owned directly by the customers.
For three respondents, we were not allowed to publish the data, but their information is included in
the results. We received responses from 18 companies for 27 e-monitors through the online forms,
a response ratio of 34.1%. We further collected information from 9 companies on their 14 e-monitors
through online literature. In the survey, we grouped similar monitors from the same vendor together.
For complete data, please refer to our technical note in Appendix A.

3.1. Application Environment

We identified the applications of the available e-monitors and divided these into three main
categories: residential, commercial (including buildings and offices) and industry. Some of these
e-monitors could be deployed in multiple environments. According to the survey, more than 90%
of the e-monitors could be utilized in the residential sector, while over 60% could be utilized for
commercial use. Similarly, more than 30% of the e-monitors could be utilized for industrial use.

3.2. Monitor Categories

For our survey, we categorized different monitors on the basis of their installation and
measurement position in the electrical network of buildings. These included smart plugs, which are
mounted on the wall outlet to measure individual end appliances. These smart plugs are utilized
for the collection and validation of turn-on/off events to establish ground truth, to verify the load
disaggregation algorithms. The smart e-monitors, such as smart-me, are installed between the
electricity mains and distribution box inside the building. Because these monitors were owned and
controlled directly by the customer, they were included in the survey. The majority of the e-monitors
included in this study were installed in the fuse box or attached directly to the electric main and meters.
These e-monitors usually incorporated electricity monitoring and analytics aimed at reducing the
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monthly electric bill through effective customer participation. This study also includes the gateways
installed between the e-monitoring unit and the Internet to upload information directly to a cloud.
Over 75% of the surveyed e-monitors included e-monitors followed by the smart plugs (Figure 2).

Figure 2. Different categories of e-monitors.

3.3. System Compatability

We surveyed the different monitoring solutions and their compatibility with either single- or
three-phase systems. According to our survey, over 70% of the e-monitors were compatible with both
single- and three-phase systems (Figure 3). The single-phase e-monitors could be scaled to three phases
by using multiple units, and they could be calibrated using a pure resistive load so that the voltage
and current curves did not mismatch.

Figure 3. E-monitor utilization system.

3.4. Sensor Type

Some e-monitors only measure the current of the system while assuming a constant voltage; for
three-phase systems, it is essential to include the voltage for at least one phase, if not for all phases.
The three phases are ideally considered balanced, but if the load is not evenly distributed in each
phase, which is very often the case, then different phases tend to have different voltages. The survey
results indicate that nearly 60% of the monitoring systems used current transformers (CTs) and some
utilized Rogowski coils for the measurement of the current (Figure 4).

Although Rogowski coils are safer to use than regular CTs and offer a broader measurement range,
they are still underutilized. A recent study [26] compared Rogowski coil-equipped digital meters with
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Ferraris principle-based electromechanical meters. The experiments indicated an increased reading of
376% as compared to conventional meters, which was mainly caused by electromagnetic interference
in digital meters. A higher cost, as compared to the CT, is also a factor for the underdeployment of
Rogowski coils. It is also noteworthy that only 21% of the e-monitoring solutions independently
measured voltage. Some monitoring solutions directly used a shunt, pulse count, and optical
measurement from the meter (see Appendix A).

Figure 4. Types of sensor used by e-monitors.

3.5. Sensor Rating

The type of sensor utilized depends on the application and is defined by the maximum load to
be measured. A CT consists of an iron core with primary and secondary coils wrapped around it.
The survey results indicate a wide variety of CTs utilized by different e-monitors (Figure 5). The results
also indicate that around 70% of the CTs were rated up to 200 A. This was due to the extensive use of
e-monitors in the residential sector, for which the maximum load at any given time does not typically
exceed 200 A.

Figure 5. Rating of current transformers.

3.6. Parameters

E-monitors primarily measure the system voltage and current passing through a point at any
given point in time. On the basis of these measurements, many different parameters can be calculated.
According to the survey results, most of the e-monitors utilized a single parameter, followed by the use
of five or more parameters (Figure 6). Although almost all of the e-monitors measured the voltage and
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current (except when the voltage was assumed constant), these measurements were not necessarily
displayed to the user. Approximately 80% of e-monitors utilize current and real power to indicate
load, followed by voltage (Figure 7). The inclusion of load-specific parameters enhances the distinction
among the appliances. In our survey, some e-monitors utilized up to nine distinct parameters.

Figure 6. Number of e-monitor parameters used.

Figure 7. Parameters used by the e-monitors.

3.7. Sampling Frequency

The sampling frequency is an important dimension for comparison and is required for the proper
conversion of an analog signal to digital. The voltage waveform is usually quite stable and can be
reconstructed easily, but the current waveform is not even close to a proper sine-wave and hence
requires increased sampling for proper digital reconstruction. Our survey indicated that a 1 s to 1 min
sampling rate was commonly used by these e-monitors (Figure 8).

Not all the participants disclosed the number of bits, but most ADCs lay between 10 and 16 bits.
From the received data, most of the monitors were using 16-bit ADCs. Another important parameter
associated with resolution is the power resolution, that is, the minimum level of power measured
by these appliances. Most e-monitors have a power resolution of between 1 and 5 W, making them
capable of exact and accurate metering.



Energies 2018, 11, 189 9 of 22

Figure 8. Sampling frequency used by e-monitors.

3.8. Measurement Channels

Some load appliances rely on three-phase measurement, while others operate on a single phase,
consequently affecting the number of channels that can be monitored. More than 75% of appliances
support the measurement of one to three distinct channels (Figure 9). With three input channels, one can
either measure three separate single phases or one three-phase. Some e-monitors can simultaneously
measure multiple channels (at the circuit and breaker level) in an electric cabinet. Circuit-level energy
measurement can help in the disaggregation process, as an individual circuit has fewer appliances
as compared to an entire house. As a result of the reduced set of appliances, there is also a smaller
probability of appliances switching on or off at the same time. With Verdigris, one can accurately
measure about 42 different channels/circuits [27]. GridSpy [28] is another example of a system capable
of measuring six circuits per node (wireless data collector) and 30 circuits per hub (collects and uploads
data) and can scale up to 600 circuits per site. CURB Pro is also capable of monitoring 18 breakers
per hub and this breaker level measurement (hardware disaggregation) facilitates disaggregation
algorithms, as the type of load appliance on a particular breaker is already known [29].

Figure 9. Number of channels measured by e-monitor.

3.9. Storage

E-monitors are capable of storing data either locally or by uploading to a cloud to perform further
analytics. Most e-monitors prefer to upload data to a cloud, while others have the dual capability
to store data locally and, at the same time, upload it to a cloud (Figure 10). Issues such as data
privacy and confidentiality can be decreased by using local or private cloud storage. With such data,
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arrangements can be made for the consumer to take advantage of load disaggregation and compute
the appliance-level power consumption.

Figure 10. Different storage options for e-monitors.

3.10. Cost

To compare costs, we converted all prices into euro to help consumers find the best-suited solution
according to their application requirements and budget constraints. According to our survey, the cost of
e-monitors varies between e38 and e3220 for a single product according to its application. The typical
price range is e452 to around e655, depending upon single- or three-phase systems and accessories
utilized with the e-monitors. The prices of smart plugs range between e15 and e79, with an average
price of around e48.

4. Non-Intrusive Load Monitoring

Recently, the use of NILM has increased, as it takes advantage of single-point sensing (i.e.,
at electricity mains) to identify the operating electrical appliances [30,31]. NILM, as shown in
Figure 11, breaks down aggregate power consumption to essentially differentiate between specific
individual loads. As compared to the ILM or other traditional approaches, NILM helps to achieve an
enhanced appliance load profile at a reduced cost. Since its inception in the 1980’s, NILM research has
evolved considerably and has now produced new tools for feature extraction and load-disaggregation
algorithms [32].

Figure 11. Disaggregation using non-intrusive load monitoring (NILM) (adapted from [33]).

NILM is a combination of three main modules, as shown in Figure 12. The DAQ module is
responsible for measuring the aggregate load of a house or building. Depending on the disaggregation
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algorithm and the area of application, data can be acquired at a low frequency (smart meter) or a high
frequency (in kHz to MHz range) [31]. In the feature extraction module, raw data is processed to detect
and extract individual appliance events (on/off). There exist two main classes of feature extraction:

Figure 12. Non-intrusive load monitoring (NILM) architecture (adapted from [33]).

The steady-state load signatures concentrate on the signal amplitude and its smooth variations
from high to low and vice versa. These amplitude changes are not abrupt and hence do not require fast
sampling; they are preferred for appliances with a high power rating. The load identification module
analyzes these features through the application of different disaggregation algorithms [34]. On the
other hand, the transient features capture the abrupt changes in the current waveform to identify
appliances. Transient load signatures essentially capture the unique pattern an appliance follows,
particularly when it is switched on/off [35].

Earlier NILM approaches focused on feature selection and extraction with little emphasis on
learning and inference techniques [36,37]. The advances in computer science and machine learning
techniques have led to innovations in data prediction and disaggregation techniques. Existing
machine learning algorithms such as the support vector machine (SVM) [38], k-nearest neighbor
(k-NN) [39], and artificial neural network (ANN) [40–42] algorithms have had a significant impact on
the development of NILM. However, much effort is still required to bring the error caused by different
prediction and disaggregation algorithms to within an acceptable range. Once data is acquired,
proper handling and screening is required to appropriately present it for disaggregation. Different
compression and storage methods have been suggested in the literature [43,44]. Apart from acquiring
transient features, using high-frequency DAQ also enables load disaggregation in near real-time [31].
The consumers can take advantage of near-real-time disaggregation feedback to adequately utilize
DSM programs and reduce their load during peak hours. Such data can also be used for occupancy
detection and can capture the occupant specific energy consumption [45].

The load or energy consumption profiles help to determine the pattern of energy usage with
respect to time [46]. For consumers, these patterns are helpful in finding energy leakage. Utility
companies use these patterns as a statistical tool for load forecasting. A precise and appliance-level
consumption profile can be produced either through multi-point e-monitoring by using smart plugs or
through load disaggregation techniques using NILM [47]. In addition to calculating power consumed
by the appliance at a particular point in time, the shape of the power consumption profile also provides
useful insight into the energy usage behavior. Consumption profiles are also useful in distinguishing
the multi-state appliances on the basis of identical patterns of peaks during their operation.

5. Key NILM DAQ Requirements

To incorporate NILM and load disaggregation techniques in the next-generation e-monitors,
we have listed some key requirements for NILM. The specific requirements may vary according to the
specific application area of these e-monitors.

5.1. Sampling Frequency

One key requirement for any NILM system is to detect the appliances from the aggregate load
accurately. Accurate appliance detection requires an adequate sampling rate to detect appliance
switching events from the aggregate load. For precise appliance identification, many factors, such as
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appliance diversity, the number of appliances, the operating states of the appliances (e.g., washing
machine, dishwasher, etc.), and the least amount of power consumed by an appliance under
observation, need to be considered. As a general rule for disaggregation, a higher sampling frequency
allows us to distinguish more appliances in near real-time. For example, with a sampling frequency
of 10 to 40 kHz, one can differentiate 20 to 40 appliances. Increasing the sampling frequency beyond
1 MHz can help to distinguish 40 to 100 unique appliances [31]. To be considered for NILM-related
operation, the sampling frequency can either be high or adjustable to fit the specific application.

5.2. High-Resolution

As discussed earlier, the resolution of any DAQ system is determined by the number of bits of the
ADC. In terms of NILM, this resolution determines the uncertainty introduced by the DAQ system
and hence decides the accuracy of event detection. In general, the sampling frequency is responsible
for the uncertainty along the x-axis, whereas the number of ADC bits defines the uncertainty along the
y-axis during analog to digital conversion. Thus, a high resolution is important to accurately detect the
events from the aggregate load and reduce the chances of simultaneous events.

Similarly, the resolution of ADCs defines the minimum change in the signal level (e.g., power,
current, etc.) detectable from the aggregate load. Assuming no external noise, a house with 50 A
demand can detect a minimum load of 11.23 W using a 10 bit ADC, whereas a minimum detectable
load using a 16 bit ADC for the same house is 0.17 W. The survey results indicate most of the available
e-monitors are capable of measuring a 1–5 W load, which is quite suitable for load disaggregation.

5.3. Accuracy

Throughout the NILM literature, various accuracy definitions have been used and are broadly
covered in some recent studies [31,48–50]. At times, accuracy is defined in terms of the fraction
of correctly recognized events, while sometimes the fraction of correctly explained total energy
determines the accuracy [36]. Norford et al. [34] determined the accuracy by utilizing the difference in
the estimated and apparent power drawn by an appliance.

Similarly, some other NILM accuracy definitions include classification accuracy [51,52],
the appliance-wise fraction of load duration and the fraction of correctly identified or missed switching
events [53], and the receiving operating characteristic (ROC) curve [48]. Makonin et al. [54] utilized
classification and estimation performance (at both the overall and appliance level) for reporting the
NILM accuracy. To compare the accuracies of different NILM studies, Batra et al. [32] developed
a toolkit to check the quality and accuracy of different datasets compared against predefined
NILM algorithms.

5.4. Multi-Environment Operability

Another requirement for NILM is the ability to acquire the consumption data from multiple
channels. The commercial and industrial environments require at least three channel measurements
for measuring three-phase systems. Similarly, sometimes the residential households are also equipped
with a three-phase system; thus a three-channel DAQ system is required to adequately handle the
simultaneous measurements. The number of inputs is doubled if both the voltage and current are
measured simultaneously. Apart from a couple of e-monitors and the smart plugs, the surveyed
e-monitors fulfil the criteria of a three-phase measurement. Some NILM-enabled e-monitors such as
Smappee [55], Verdgris, and CURB acquire the aggregate load at the circuit-level, which facilitates in
appliance classification and detection using the NILM algorithms as a result of a reduced appliance
number in a single circuit.

5.5. Simultaneous Event Detection

Most NILM studies follow the switch continuity principle (SCP) [56], which states that at a given
instant, only one appliance is switched (on/off). Such an assumption may lead to error when a number
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of appliances are operating, such as in the office environment, or when more than one multi-state
appliance, such as a washing machine and dish-washer, is operating together. One way to deal with
this issue is to increase the resolution and sampling frequency of the aggregate DAQ. The effect of data
granularity in an office environment can be observed in Figure 13. The spikes indicate the switching
events caused by the switched-mode power supply (SMPS)-equipped office appliances. For a single
current waveform at 250 kHz (5000 sample points), the switching events are easy to detect, whereas
the downsampled 25 kHz (500 sample points) current waveform introduces two or more simultaneous
events, which are difficult to detect using available disaggregation algorithms.

Figure 13. Current waveform acquired at 250 kHz using CLEAR [57] and downsampled at different
sampling frequencies.

5.6. Appliance Identification Parameters

Apart from basic parameters such as the current, power, energy, and harmonics [58], the new
range of e-monitors are expected to be equipped with advanced sensors and a high processing power
to acquire transient appliance features. These features or parameters are utilized to detect appliance
switching from the aggregate load using machine learning algorithms. Khal et al. [59] have identified
36 such features, including wavelet analysis, voltage-current (V-I) trajectory, inrush current ratio,
waveform approximation, and log attack time, along with other spectral and temporal features.
When considering load disaggregation, it is always better to incorporate more parameters, as certain
parameters work better for particular load types [33,60].

Similarly, the instantaneous admittance waveform (IAW) [49] is a robust feature, as it simplifies the
calculations because small differences in impedance are harder to observe as compared to admittance
(inverse of impedance) [61]; this can introduce some numerical instability as a result of sharp spikes as
the voltage approaches zero. Similarly, the current waveform for dynamic loads such as air-conditioners
varies from cycle to cycle. To capture these variations, we usually perform eigenvalue (EIG) analysis
by rearranging the time-series current waveform into matrix form. The study on appliance load
signatures [49] indicates that power-hungry appliances usually have higher first EIG features. Even the
second and third EIG features of these appliances show a good correlation and can be utilized as a
feature for appliance identification.

In addition to the main features or parameters discussed above, external parameters are also
helpful in the e-monitoring of individual appliances and are known as side-channel features. Features
such as the time of day, weather information, the appliance location in the circuit (single- or
three-phase), and the appliance usage pattern can help to boost the appliance detection process [62].
The side-channel-assisted NILM can significantly enhance the ground truth verification capabilities of
the NILM-based systems. In addition to external parameters, light, sound, and the electromagnetic
field (EMF) are also utilized as side-channel features. To obtain the appliance switching information,
the electromagnetic sensors are placed in close proximity to the appliance under observation (usually a
5–10 cm range) [63]. Similarly, the channel electrical noise can also assist in the appliance identification,
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but this has a strong dependency on the electrical wiring system—the main drawback of using this
approach [64].

5.7. Scalability

Scalability is one basic requirement for any DAQ system, and in terms of NILM, scalability can be
considered as the ability of the e-monitor to detect newly added appliances. This can be achieved either
through supervised or unsupervised learning techniques [65]. Generally, appliances are identified
through their unique load signature in the current waveform during their start-up. Disaggregation
algorithms scan for these abrupt changes to begin the process of classification, inference, and learning.
Once a new appliance is added to the system, the disaggregation algorithms try to match the features
of these newly added appliances with the already developed appliance feature database. Another
use-case regarding scalability is to apply the disaggregation at a district level [66]. This can help
to detect the power-hungry appliances in the district and help the utility companies to manage the
distribution by incorporating more renewable energy.

5.8. Reliability

One of the main requirements regarding NILM-enabled e-monitors is to reliably scan for appliance
switching events from the aggregate load. As a result of the unpredictable nature of appliance
switching, the e-monitors are required to acquire the measurement data around the clock for a long
time (ideally forever). To ensure reliability, an e-monitor is expected to withstand small network
and power outages. The use of the on-board buffers, mass storage devices, and battery banks for
backup power is encouraged. The increase in the sampling frequency and the number of measurement
channels adds to the challenge of maintaining reliability.

5.9. Privacy and Data Confidentiality

Besides many benefits regarding NILM, one drawback often associated with the NILM technique
is the lack of consumer privacy. The fine-grained energy utilization information cannot only reveal
one’s presence in the house, but such data can also help to deduce the activities and habits of the
consumer [67,68]. Lisovich et al. [69] experimented to determine what kind of information can be
extracted from the energy consumption data. They concluded that even with just a 15 s data resolution,
they were able to accurately identify the major operating appliances to infer the eating habits and
sleeping cycles of the residents.

One way to solve this problem is to use a local storage and utilize on-site disaggregation algorithms
to build load profiles. Our survey indicates that more than 60% of the e-monitors are capable of local
storage, which can enable local disaggregation.

5.10. Efficient Data Storage and Analytics

As most of the available disaggregation algorithms work on the precollected measurement data,
the measurement data needs to be collected and stored by the e-monitor. With the simultaneous
measurement of multiple channels, collecting error-free data is a major challenge. The data collection
and storage challenge increases further with the high-frequency measurements requiring large volumes
of data to be stored at a steady rate. It is also important to use well-established file formats to store
the data. HDF5 is a commonly used data format in the NILM research community [32] as a result
of its superior data handling. HDF5 is compatible with input from multiple simultaneous streams
and supports large, complex, and heterogeneous data. Once the data is collected and stored, different
machine learning and data analytic techniques are applied to accurately detect appliances from the
aggregate load.
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5.11. Cost-Effective and User-Friendly

The adaptability of new technology in the public domain is mainly attributed to factors such as
the equipment cost, ease of installation, and user-friendly operation. Our survey indicates an average
price of e375 for NILM-enabled e-monitors. The cost of equipment depends upon the single- or
three-phase system and utilized accessories. Similarly, the NILM-enabled e-monitors in the survey
mostly come with split-core CTs, which can be easily installed by clipping around the mains cable of
an electric meter. The appliance-level energy consumption information captured by these e-monitors
is available to the users through dedicated apps. Disaggregation is an automated process and depends
on whether supervised or unsupervised learning approaches are used, as discussed in Section 5.7.

6. Findings, Observations, and Recommendations

The primary purpose of this study was to gather technical information to facilitate researchers,
facility managers, and general consumers in selecting an e-monitoring system that best fits their
requirements. Commonly, e-monitors are used to track and display the amount of utilized and
conserved energy. The critical differences in e-monitors originate from the application area,
the sampling frequency, the resolution, the system configuration, and the sensor type. Because
the power consumed by e-monitors is quite small, we have not considered it in our study.

We believe that consumers can participate efficiently in DSM programs once they are provided
with real-time energy consumption information, particularly at the appliance level. Information
regarding appliance-level energy consumption can help to identify energy-hungry appliances and
facilitate demand response. Some of the surveyed e-monitors, such as Smappee, Smappee Pro, Neurio,
Verdigris, CURB Pro, and CURB Duo, which made up around 18% of the surveyed e-monitors, already
claim to utilize NILM techniques. Similarly, most of the other e-monitors possess enough resolution,
parameter diversity, processing power, and sampling frequency to employ disaggregation.

In some cases, monitoring appliance health is critical to the overall system operation, particularly
for industrial applications. The load disaggregation techniques can facilitate the prediction of faults
and recommend appliance maintenance before complete breakdown. Similarly, in addition to being a
labor-intensive task, some of the most significant hurdles in the speedy roll-out of smart meters are
data confidentiality and privacy concerns. As a result of the private storage and ownership of both the
e-monitor and data, consumers can virtually experience smart grid benefits without compromising
on privacy.

Most e-monitors can be used in multiple settings and configurations, as they come with numerous
options regarding the sensor rating, the number of inputs, and the application area. Furthermore,
the utility companies can also take advantage of the data from e-monitors (if allowed) to obtain
detailed information regarding high-power appliances operating in an area and enhance the renewable
integration through DSM programs.

Although NILM has been around for three decades, the technology never made its way into the
public domain until recently. This was mainly due to a high equipment cost and a lack of disaggregation
accuracy. Our survey indicates the presence of a new and affordable range of e-monitors, most of
which can be easily upgraded to support NILM and disaggregation.
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7. Conclusions

Recently, there has been a growing interest in appliance-level e-monitoring to help consumers
view fine-grained energy consumption information at the appliance level. The NILM approach
utilizes single-point sensing and machine learning techniques to help disaggregate energy data
and estimate the appliance-specific energy consumption. The goal of this study was to compare
different state-of-the-art e-monitors available on the market and determine their ability to utilize load
disaggregation. Through the online technical survey and detailed product review, we compared
41 e-monitors on the basis of several dimensions, including measured and derived parameters,
the sampling frequency, the accuracy, the resolution, the area of application and the cost.

The comparison suggests that most e-monitors possess enough capabilities and processing power
to incorporate advanced monitoring techniques and upgrade into next-generation intelligent energy
metering units. In the future, these intelligent meters can act as the point of contact between smart
buildings for local demand response and renewable resource sharing. Before the complete roll-out
of smart meters, consumers can realize the offered advantages by selecting and using intelligent
off-the-shelf e-monitors.
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Appendix A

The abbreviations used in the technical note are explained in Table A1. The technical note, as
shown in Figures A1 and A2, lists all the information collected from different vendors [27,28,55,70–94].

Table A1. Abbreviations used in the technical note.

Parameter Notation

Voltage V
Current I

Real power P
Apparent power Papp
Reactive power Preac

Power factor cosφ
Energy E

Frequency f
RMS voltage VRMS
RMS current IRMS

Current transformer CT
Voltage transformer VT

Rogowski coil RC
Side-channel information SC
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Company Name Product 
Details 

Application 
Area 

Device 
Type 

System 
Type 

Sensor 
Type Sensor Rating Parameters Sample 

Freq. 
Resolution 

 (bits/Power) Accuracy Channels Storage Cost1 

OpenEnergy 
Monitor  emonTx V3 Residential Energy 

Monitor 
Single 
phase CT, VT 100 A V, I, P, VRMS, 

1s- 
1 min 

 

10 bits/ 
10 W 

< 100W (>10%) 
> 100W (<10%) 
> 150W (<6%) 
> 250W (<4%) 
> 500W (< 2%) 

4 Requires Base 
Station  

£60 
 

OpenEnergy 
Monitor  emonPi Residential Energy 

Monitor 
Single 
 phase CT, VT 100 A V, I, P, VRMS 

1s- 
1 min 

10 bits/ 
10 W Same as above 2 Local & 

Cloud £155 

Brultech  
Research Inc.  

GreenEye 
Monitor 

Residential 
Commercial 

Energy 
Monitor 

Single & 
three phase CT, VT 

50 A, 100 A, 
200 A, 400 A, 

600 A, 40 

V, I, P, VRMS, 
IRMS 

16kHz - 2 
kHz 

12 bits/ 
1 W 

1% Channel Accuracy 
+ CT Accuracy (1-3%)  

2% (at most) 
32 Local, 

DashBox $399-$597 

GridSpy  GridNode + 
Hub 

Residential 
Commercial 

Energy 
Monitor 

Single & 
three phase 

CT, VT RC, 
Pulse inputs 
(from retail 

meter) 

15A, 60A, 200 A, 
400 A, 600 A, 
800A, 1000A, 
2000A, 5000A 

V, I, P, Papp, Preac, 
VRMS, IRMS, cos Φ, 

Analog inputs, 
temp. 

1s- 
1 min 

16 bits/ 
1 W 

+/- 1% current or 
voltage. +/- 2% for 

wattage 

6 per node, 
30 per hub, 
600 per site. 

Local-1s data: 
6 month 

Cloud-1 min: 
forever 

NZD $1000 
+ $600+ = 

$1,6002 

Smappee  Smappee Residential Energy 
Monitor 

Single & 
three phase CT, VT 50 A, 100 A, 

200 A 

V, I, P, Papp, Preac, 
VRMS, IRMS, cos Φ, 

E, Harmonics 
> 1KHz 

 
N-A / 
1 W 

1%  
(Class 1) 3 Cloud €229 

Smappee  Smappee 
Pro 

Commercial 
Industrial 

Energy 
Monitor 

Single & 
three phase CT, VT 50A, 100A, 200A, 

400A, 800A Same as above  16 KHz- 2 
kHz 

N-A / 
1 W 

± 1%  
 9 Cloud starting at 

€600 

HIOKI E.E 
Corporation  

Clamp on 
power 
Logger 

PW3360-21 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single & 
three phase 

CT  
Voltage 

code 
Many options 

V, I, P, Papp, 
E, Preac, VRMS, 
IRMS, cos Φ, 
Harmonics3 

10.24 kHz 16 bits/ 
N-A 

V: ±0.3%rdg. ±0.1%f.s.�
I: ±0.3%rdg. ±0.1%f.s.4  
P: ±0.3%rdg. ±0.1%f.s  

1-3 Local €2,629-
€3,2205 

Verdigris  Verdigris Commercial Energy 
Monitor 

Single & 
three phase CT 

30A, 200A,  400A, 
60A, 75A, 800A, 
other custom sizes 

V, I, P 7.68 kHz 16 bits/ 
10mW +/-2 A upto 42 

breaker 
Cloud storage, 

 4G LTE 
$50-$250 per 

month 

Energy, Inc.  TED - 
series 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single & 
three phase 

VT, CT, 
RC 

20 A, 200 A, 
400 A, 60A, 

2000A, 5000A 

V, I, P, Papp, 
Preac, VRMS, IRMS, 

cos Φ, SC 
1s N-A / 

1 W 0.3-2% 32 Local & 
Cloud 

$ 299- 
$ 1499.95 

CURB Inc.  CURB Pro, 
CURB Duo 

Residential 
Commercial 

Industrial 

Energy 
Monitor6 

Single & 
three phase CT 

30 A, 50 A,  
100 A (up to 

6000 A) 

V, I, P, Papp, Preac, 
VRMS, IRMS,  cos 

Φ, SC 

8 kHz (display 
1s, 1 min, 1 

hr) 

N-A/ 
1 W 2 % 

upto 18 
breaker
/hub7 

Local, Cloud, 
API  

$399 (Pro) 
$749 (Duo) 

Eco-Eye 
  

Elite, Mini 
& Smart 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single & 
three phase CT 100 A, 200 A  I 4s 12 bits/ 

20 W - 3 Local (up to 
128 day) £30-£100 

Blue Line 
Innovations  

PowerCost 
solution 

Residential 
Commercial 

Energy 
Monitor 

Single  
phase 

Optical 
reading - P - N-A 95-99% 1 Cloud, Real 

time display $179 

Smart Energy 
Groups 

SEGmeter 
v2.5 

(complete) 

Residential 
Commercial 

Energy 
Monitor 

Single & 
three phase CT, VT 60 A E 1 min 12 bits/ 

N-A - 8 Cloud AUD 649.95 

 
1 Prices may vary over time 
2 Hub + half node + CTs (if below 60A) 
3 Also includes displacement cos Φ (with lead/lag display), active energy (consumption/regeneration), and reactive energy (lead/lag)  
4 For current (I) and active power (P), also include clamp sensor accuracy 
5 Based on 9661 and 9667-03 CT (discount included) 
6 Also act as gateway for IOT control 
7 Multiple hubs sync per location (e.g., 36, 54, 72, etc.) 

Figure A1. Technical note.
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Company 
Name 

Product 
Details 

Application 
Area 

Device 
Type 

System 
Type Sensor Type Sensor Rating Parameters Sample 

Freq. 
Resolution 

(bits/Power) Accuracy Channels Storage Cost8 

Smart Energy 
Groups 

SEGmeter 
v2.5 (ready) 

Residential 
Commercial 

Energy 
Monitor 

Single & 
three phase CT, VT 100 A E 1 min 12 bits/ 

N-A - 8 Cloud AUD 479.95 

EFERGY 
Technologies 

Ltd.  

E2 Classic, 
Elite 

Classic 
Residential Energy 

Monitor 
Single & 

three phase CT 100 A, 120 P, E 6s N-A > 90% 1-3 Cloud €84 -€137 

Energeno Ltd.  Wattson 
Classic Residential Energy 

Monitor 
Single & 

three phase CT 50 A P 3-20s N-A/ 
1 W - 1-3 Local up 28 

days £99.95 

Energeno Ltd.  Watson XL Commercial Energy 
Monitor 

Three  
phase CT 200 A P 3-20s N-A/ 

4 W - 3 Local €249. 95 

Gemini  
Tiny Tag 
Energy 

Logger Kit 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single & 
three phase RC 

Device 
compatible up 

to 2000 A 

P, VRMS, IRMS, 
cos Φ 5kHz 

N-A/ 
0.1-0.01 

kWh 

IRMS: 1% of the reading 
±0.5A (>10A) VRMS: 
0.5% of reading, P: 

2% of reading, cos Φ9: 
<0.02 

1-3 
Local( 6 
week @5 

min) 
€920 

Episensor   
ZEM-
30XX, 

ZEM-61 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single & 
three phase CT, RC 

10A, 80A, 
100A, 120A, 
300A, 600A, 

1000A, 3000A 

V, I, P, Preac, 
VRMS, IRMS, cos 

Φ, E 

16 kHz - 2 
kHz 

14/ 
1 W 0.50% 1-3 

Local (Node 
70,000 

values), 4GB 
gateway 

€269-€299 
Single phase 
€575-€950 
three phase 

EKM Metering 
Inc.  

OmniMeter 
Pulse V.4 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single & 
three phase CT 

100A, 200A, 
400A, 600A, 

800A, 1500A, 
5000A 

V, I, P, f, E, 
Preac, cos Φ  2520.20 Hz 

N-A/ 
 under 

50V, 0A, 
0W 

0.5 % 3 
Cloud, local 

PC, Dash 
software 

$220-$2,116 
3-Phase 4- 

wire system 

smart-me  smart-me 
Meter 

Residential 
Commercial 

Industrial 

Energy 
Monitor 

Single  
phase Shunt 32 A, 80 A V, I, P, cos Φ 1-15 min, 

1s-1 min 
N-A/ 
0.5 W 1 % (class 1) 1 Local (60 days) 

Cloud €271 

Neurio  W1, W13P Residential Energy 
Monitor 

Single & 
three phase CT 200 A P, E 10 Hz – 

 1 Hz 

N-A/ 
1 W, 1 

Wh 
- 1-3 Cloud $219.99-

$289.99 

Pikkerton  ZBS-110V2 Residential Energy 
Monitor 

Single  
phase - - V, I, P, cos Φ, f N-A N-A - 1 - €180 

Eco-Eye  Plug-In Residential Smart 
plug 

Single  
phase - - P - N-A/ 0.2 

W - 1 - £11.88 

Digi  XBee Smart 
Plug Residential Smart 

plug 
Single  
phase - - I, P - N-A - 1 - $84 

EFERGY  
Energy 

Monitoring 
Socket 2.0 

Residential Smart 
plug 

Single  
phase - - V, I, P, E,  

cos Φ, f - N-A +/- 2% 1 - €24.90 

EDIMAX  SP-2101W Residential Smart 
plug 

Single  
phase - - I, P, E 5s N-A +/- 3% 1 Cloud €43 

smart-me  smart-me 
Plug 

Residential 
Commercial 

Smart 
plug 

Single  
phase Shunt 16 A V, I, P,   cos 

Φ 1s–1 min N-A/ 
0.1 W 1 % 1 Local (60 days) 

Cloud €119 

Wattvision  Wattvision 
Residential 
Commercial 

Industrial 
Gateway Single & 

three phase Pulse count - P 1s – 
 1 min 

N-A / 
2 W 2% whole 

house Cloud $79 

eGauge systems  Eg30xx 
series 

Residential 
Commercial 

Industrial 
Gateway Single & 

three phase 
CT, VT, 

RC 

20 A, 30 A, 50 
A, 100 A, 200 

A, 400 A, 600A 

V, I, P, Papp, 
Preac, VRMS, 
IRMS, cos Φ 

N-A N-A 
Overall systems (meter 

and CT) = - 0.5% 
accuracy compliant 

12 
inputs Local  

$500-$800 
with (12 

CTs) 
 

 
8 Prices may vary over time 
9 True above 1 kW 

Figure A2. Technical note.
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