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Abstract

Through this thesis we provide a mathematical modeling approach to describe tumor
growth and behavior in metastatic melanoma under immunotherapy treatment via PD-1
blockade (specifically treatment with Pembrolizumab). We impart needed basics in
biological, medicinal and mathematical contexts and move on to explore two modeling
approaches. A system of Ordinary Differential Equations models the interaction between
cancer cells and the patient’s immune response under PD-1 blockade. A system of Partial
Differential Equations expands on these dynamics and includes vascular cells, introduces
several classes of cancer cells and examines the spatial behavior of a tumor over time.
Both models are simulated and compared to clinical data of three patients and display
good fit as well as the ability to emulate characteristic tumor behavior such as response,
stable disease and progress. The results offer evidence, that Pembrolizumab treatment
can even have a significant effect on tumors displaying low PD-L1 expression levels.
They further indicate the importance of synergy effects with adjuvant treatments to
immunotherapy as well as the possibility of acquired resistance to treatment through
modified tumor structure.

Zusammenfassung

Im Rahmen dieser Arbeit werden mathematische Modellierungsanséitze entwickelt, die
Tumorwachstum und -verhalten des metastasierten Melanoms unter Einfluss von Im-
muntherapie durch PD-1 Immun-Checkpoint-Inhibitoren (explizit durch das Medikament
Pembrolizumab) beschreiben. Es werden die notigen biologischen, medizinischen und
mathematischen Grundlagen vermittelt und anschliefend zwei Modellierungsanséitze
behandelt. Ein System Gewohnlicher Differentialgleichungen beschreibt die Interaktionen
zwischen Krebszellen und der Immunantwort des Patienten unter Einfluss von PD-1
Immun-Checkpoint-Inhibitoren. Ein System Partieller Differentialgleichungen erweitert
diese Dynamik durch Inklusion vaskuldrer Zellen und verschiedener Typen von Krebs-
zellen, um das rdumliche Verhalten von Tumoren im Verlauf der Zeit zu untersuchen.
Beide Modelle werden anschlielend simuliert und mit Messdaten von drei Patienten
verglichen. Die Modelle passen gut zu den Datensatzen und konnten charakteristisches
Verhalten eines Tumors wie Progress, Remission oder “Stable Disease” reproduzieren.
Die Ergebnisse unterstiitzen die Hypothese, dass Behandlung mit Pembrolizumab auch
signifikante Auswirkungen auf Tumore mit geringer Proteinexpression von PD-L1 haben
kann. Auflerdem weisen sie daraufhin, dass Synergieeffekte mit adjuvanten Therapien
grofien Einfluss haben kénnen und der Tumor (durch eine verdnderte Struktur) Resistenz
gegeniiber der Behandlung entwickeln kann.
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Chapter 1
Introduction

Over the past decades cancer has ascended as one of the leading causes of death in many
nations worldwide and it is abundantly clear that the threat of cancerous cell mutations
is one that might occupy research capacities for years to come and rightfully so. Research
regarding several aspects from evolutionary cancer dynamics to long-term behavior
along with deep examination of various treatment options has been prevalent in the
scientific community since the emergence of oncology in the 19th century . To further
emphasize the importance of cancer research it shall be mentioned, that the 2018 Nobel
Prize in Physiology or Medicine was awarded for the development of revolutionary cancer
treatment options in the field of immunotherapy.

While often times associated solely with medicine as a scientific field, cancer research
has been conducted in various disciplines. Mathematics has long outgrown its supporting
role in the statistical evaluation of clinical trials. Medicinal oncology and mathematics
have been two sides of the same coin for a while now, striving to produce a comprehensive
explanation of cancer, treatment options and all defining dynamics involved.

The mathematics concerned when it comes to modeling the behavior of cancers can
roughly be divided in probabilistic, allowing for some measurement of randomness through
stochastics, and deterministic approaches. An example for the former is the modeling of
evolutionary processes that lead to cancerous mutations in the first place. As we will
examine the growth behavior of tumors, we opt for the latter approach as (in theory) the
number of cells involved simply eliminates the need for probabilistic elements. Specifically,
we will examine the effects of anti-PD-1 treatment, an immunotherapy medication, on
tumor growth in metastatic melanoma. This treatment method is based upon the research
that was awarded this year’s Nobel prize and is one of the most promising treatment
options currently available .

Chapters [2] and [B] serve to provide the biological foundation for cancer and treatment
options and Chapter [] will convey some mathematical basics. After presentation and
discussion of the data utilized later on (Chapter [5)), we start by employing a spatially
homogeneous modeling approach through Ordinary Differential Equations to emulate the
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dynamics between cancer, immune system and anti-PD-1 medication in Chapter [6] In
an attempt to better understand the precise structure of tumors, we employ a spatially
heterogeneous modeling approach involving Partial Differential Equations in Chapter
[7l For this we introduce several classes of cancer cells, depending on oxygen saturation
and include the local vasculature - angiogenesis-induced by the tumor and preexisting.
We will conclude this thesis with a summarizing conclusion and provide an outlook on
possible extensions of the research at hand.



Chapter 2

Cancer - The Scourge of our Time

2.1 A Brief History of Cancer

The first recorded diagnosis of cancer dates back to around 2625 BC, when the Egyptian
physician Imhotep observed “bulging masses” in a patient . Because of its current
prominence, cancer is often though of as a modern disease, but diagnosis of various cancer
types and the overwhelming feeling of impotence in curing it date back to ancient Egypt
and are found throughout a number of time periods . The first recorded course
of treatment was removing the tumors. This remained the main course of action for a
long time - throughout the ancient Greek civilization (as recorded by Herodotus in 440
BC ) as well as later on, albeit more refined . While these records are certainly
quite indicative of and believed to be cases of cancer, concrete evidence was furthermore
procured from several excavations in Peru and Egypt (the latter dating back to about
400 AD) in the form of preserved cancer tissue .

As medicine took a decline throughout the middle ages, so did the understanding
and treatment of cancer. In the 16th to 18th century, surgery prospered and with it its
impact on cancer treatment . Finally, in the 19th century the field of scientific oncolgy
emerged when new research options presented themselves. In particular the first written
description of melanoma was recorded by René Laennec, the inventor of the stethoscope
[34]. Today cancer is one of the leading causes of death in many industrial nations and
for example, only second to heart disease in the United States of America (U.S.) [103],
[35]. Projections such as in the works of Weir et al. ([113]) propose that cancer might
even overtake heart disease as the number one cause of death in the U.S. as soon as 2020.

2.2 Cancer and its Causes

As old as the disease are the attempts to explain and ultimately cure it. While for a
long time and all throughout the middle ages cancer was believed to be an imbalance in
the four humors (i.e. body fluids) as defined by Hippocrates, nowadays we can explain
the disease much better - yet many aspects still remain a mystery . The term
“cancer” itself is merely an umbrella term for over one hundred genetical conditions that
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cause cells to grow and proliferate uncontrollably . The mutated genes that lead
to cancer are generally believed to fall into one of two groups: Oncogenes and Tumor
Suppressor Genes . Oncogenes take a more active role and “encode proteins that
control cell proliferation, apoptosis, or both” ; their products (categorized in six groups
as per ) act as cancer inducing through their manipulation of cellular growth and/or
proliferation [86]. Tumor Suppressor Genes on the other hand impose a negative effect
on the cell cycle and if mutation causes loss of function for these genes, it can lead to
abnormal cell development. Further research shows a vast number of interactions between
genes classified in these categories, making the categorization somewhat arbitrary .

An important role in the development and growth of cancer is attributed to vascular
structures inside the tumor, the creation of which is known as angiogenesis . While
cancer starts with one mutated cell and continues to grow through the induced pro-
liferation, when the tumor reaches a certain size, the needed supply of nutrients and
oxygen grows to levels too high to support from the outside. To support further growth,
angiogenesis sets in at tumors of about 1 mm — 2mm in diameter [3§].

Lastly, when talking about tumors, we need to differentiate between malignant tumors
(i.e. cancer) and benign tumors. Where a tumor in general is a local accumulation
of cells displaying abnormal behavior (such as enhanced growth), a benign tumor will
not invade blood vessels, attack surrounding tissue or indeed undergo metastasis (see
Figure . Cancers are then classified as either Sarcoma (originating from connective
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Figure 2.1: Rough comparison of pathology and behavior of benign and malignant tumors.
Source: [84]

tissue), Leukemia/Lymphoma (blood or blood-forming tissue), Myeloma (bone marrow)
or Carcinoma (epithelial tissue); Melanoma along with 90 % of diagnosed cancers belongs
to the latter group . For a more detailed classification see .
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2.3 Malignant Melanoma

Skin cancer is the most common type of cancer and incidence is increasing worldwide.
However, the largest proportion is made of cases of Basal-cell carcinoma, which is unlikely
to metastasize and has very low mortality rates . We focus on malignant melanoma,
in this discourse, which is rarer, but displays significantly higher risk of spreading and
mortality rates if left untreated , .

The risk of metastasis increases with tumor depth ( @ and is quite low in the early
stages , making early prevention measures crucial ﬂ§_5|] The majority risk factor
for the development of primary cutaneous melanoma has been shown to be ultraviolet
radiation. Genetics can also play a key role in melanoma risk, as several genes increase
risk and susceptibility to melanoma m Of course, further risk factors (such as gender,
age etc.) can be identified. One standard of cutaneous melanoma classification is to
differentiate four stages :

e Stage I & II - Localized melanoma:

In these stages the tumor depth can already be up to 4mm and ulceration may or
may not occur. Most importantly the melanoma is restricted to one locality, i.e. no
spread has occurred yet. While the prognosis is generally quite good for diagnosed
Stage I/1T melanoma, a significant decrease in survival rates with increasing primary
tumor thickness has been observed . Ulceration, the lack of intact dermis over
the primary tumor, is also considered a strong independent predictor of survival
along with tumor depth: Chance of survival is significantly lower for patients with
ulcerated melanoma compared to those without.

e Stage III - Local Spread:

Patients in this category display regional metastasis (regional lymph node, satellite,
in-transit metastasis) making this group a very heterogeneous one. Ulceration may
or may not occur in this category, but presence generally lowers 5-year-survival
rates by several percentage points. The regional lymph nodes are most commonly
affected first and thus make the best predictor. Early on, size of nodes containing
metastasis was used as a criterion, whereas eventually the number of affected nodes
proved to be more effective. The heterogeneity of patients with metastasis in
regional lymph nodes in Stage III reflects in the wide spread of 5-year-survival
rates, ranging from 29% to 82% depending on the number of nodal micrometastases,
nodal macrometastases [l and ulceration.

'Microscopic disease refers to metastatic deposits detected on histological analysis following elective
lymph node dissection, or more commonly, SLN biopsy. Macroscopic disease refers to nodal metastases
that are clinically or radiographically apparent and pathologically confirmed .
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o Stage IV - Distant Spread:
Once metastasis to distant locations such as organs or even other skin locations is
diagnosed, patients are determined to be in the Stage IV category. 5-year survival
rates are significantly lower and tend to fall under 10 - 30 % (see Figure .
This of course is dependent on several factors, such as the location of metastasis:
Patients displaying metastasis to distant skin locations, for example, have twice the
survival rate (62%) of those with non-pulmonary visceral metastasis. One other
factor that can impact survival rates heavily, is serum lactate dehydrogenase (LDH)

level (see Figure [2.2| B).
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Figure 2.2: Survival of 7635 Stage IV melanoma patients in years grouped by site of metastasis
in (A) and by serum lactate dehydrogenase (LDH) levels in (B) where data is
available. Source:

Another widely acknowledged option is to discard the four stages introduced above for
TNM Staging (used for many different cancers), looking at three distinct characteristics:
Tumor depth (in combination with ulceration), the spread to nearby lymph Nodes and
the Metastasis to distant sites. These basically are the same characteristics as above in
stages I-IV, so the two systems are somewhat interchangeable (indeed every category
from TNM Staging can be attributed to one stage). An in-depth overview over both
staging systems and how conversion from one to the other is possible can be found in
Appendix A. Appendix A also offers a brief distinction between clinical staging and
pathological staging, which is not hugely relevant for our purposes.

In addition to the TNM characteristics it has been proposed to examine primary tumor
mitotic rate as an independent predictor, since increasing mitotic rate was shown to be
associated with decreased survival (see ) The models proposed in later sections of
this thesis are aimed at filiae of metastatic melanoma, i.e. Stage IV melanoma.
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2.4 Immune Response to Cancer

The immune system is closely linked with cancer: The immune system can be weakened
by cancer through spread into the bone marrow. Certain therapy options, such as chemo-
or targeted therapy, can weaken the immune system as well by attacking the neutrophil
count (white blood cells involved in the immune response to bacteria, viruses and fungi).
Critically however, the immune system can help fight the disease by attacking cancerous
cells. When examining the immune system, we need to differentiate between two closely
related cascades: innate immunity and acquired immunity . Innate immunity comprises
of several different mechanisms such as inflammation and recruiting of certain leukocytes
to specific sites.

A number of different cells contribute to the innate immune strategies, e.g. epithelial
cells, innate leukocytes (such as Natural Killer Cells (NKC) or Eosinophils) among many
others . Acquired (adaptive) immunity includes genetic modification of two types of
leukocytes: B lymphocytes and T lymphocytes . While other cells, such as dendritic
cells are involved in the adaptive immune response, B and T lymphocytes essentially
define it. T cells express T cell receptors and B cells express antibodies on their surface.
These in turn can bind to corresponding antigens, which are expressed on the surface of
pathogens or through major histocompatibility complex (MHC) classes I and II . T
cells involved are CD4" and CD8" T cells, starting out as naive T cells and activated
through binding of the T cell receptor to an antigen. They then move on to destroy
cells expressing the same antigen or support the immune response by interacting with
macrophages or B cells. On the other hand, B cells, upon recognizing an antigen will
process it and then present the antigen to a CD4™ T cell via MHC class II in order to
activate the T cell. B cells can then become memory B cells or plasma cells creating
corresponding antibodies to the processed antigen. Antibodies will react directly with
the antigen (neutralization) or induce complement effects, e.g. by coating the antigen
(opsonization) to promote phagocytosis or lysis [2]. The complex structures of inter-cell
communication are further aided by cytokines. We don’t want to go too deep into the
general workings of the immune system (interested readers shall be referred to [2] for a
comprehensive introduction that was written to complement the understanding of the
immune system’s interactions with cancerous cells).

The adaptive response of the immune system to cancer works in the outlined way aided
by dendritic cells and cytokines. Specifically, dendritic cells are activated through necrosis
of cancer cells and start producing the cytokine IL-12, which supports the activation of
CD4" and CD8™ T cells, that will start attacking cancer cells (as outlined above). C'D4*
T cells additionally enact the role of helper T cells and e.g. exert the cytokine IL-2, which
induces further proliferation of effector T cells. While this describes interactions on a
micro level, the dynamics on a macro scale (the entire tumor in this case) are interesting
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also.

Penetration of the tumor by (especially CD8%) T cells is a good prognostic tool for
survival , but it is not fully understood what induces a high infiltration. Even in
malignant melanoma, which is generally known as an immunogenic tumor and most
susceptible to immunotherapy, 40% of tumors show only sparse infiltration. Especially
the movement of the different T cell species is still a point of contention as the migration
of T cells appears to be influenced by a number of factors, such as antigen expression,
necrosis and the presence of collagen fibers or blood vessels; the velocities at which T cells
move are also quite heterogeneous. The density of tumor infiltrating T cells increases, if
the corresponding antigen is expressed on tumor cells, but the infiltration is believed to
be affected by other factors, such as the interaction with tumor-associated macrophages

92

Another hypothesis states, that the mutational load is a key factor with increasing
number of mutations leading to increased T cell infiltration of the tumor . This is

Figure 2.3: Comparison of heavy lymphocytic infiltration in a basal phenotype breast carcinoma
(A), with a sparse infiltration in a different basal phenotype breast carcinoma (B).
Similar comparison between a marked C'D8% T cell infiltrate in a mismatch repair-
deficient colon cancer (C), and the sparse infiltrate in a mismatch repair-proficient
colon cancer (D). CD8" T cells are seen both within the tumor epithelium (closed
arrowhead) and in the tumor stroma (open arrowhead) (original magnification by a
factor of 200). Source: @

supported by the fact, that most cancers, that react well to immunotherapy (malignant
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melanoma among others) display a high mutational load . A further factor might be
the role of tumor vasculature not permitting the entry of T cells into the microenvironment
[46]. In conclusion, additionally to the complex processes of the immune system in terms
of activation and proliferation, the migration and movement of T cells can pose further
challenges in understanding the intricate workings of the immune response to cancer. A
good visualization of how heavy infiltration vs sparse infiltration can present in the same
type of tumor can be found in Figure 23] Figure [2.3] also hints at the heterogeneous
patterns of T cell movement and local accumulations of effector cells.
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Cancer Treatment

3.1 An Overview over Treatment Options

This Section shall offer a quick study in the treatment options for cancer and their role
in melanoma treatment. Other therapies of course exist (such as hormonal therapy e.g.),
but will not be covered here.

Surgery

As seen in Chapter [2 surgery has a long history when it comes to cancer treatment.
While the main aim is generally to excise all cancerous cells, surgery has a multitude of
purposes in the treatment of cancers today. It can additionally serve diagnostical (through
biopsy) or prevention purposes and even be a help in palliative treatment . Even
today, it remains one of the, if not the most effective modality of cancer treatment
when it comes to curing. While this is critically dependent on the exact circumstances, if
the cancer is contained in one locality and shows no sign of metastasis, surgery might be
sufficient to cure the cancer completely.

Importantly, over the last decades, cancer surgery has evolved to be much more conser-
vative and thus it is easier to retain organs completely and employ the invasive procedures
with minimal damage to body structures . In case of melanoma (and indeed all skin
cancers) surgery is the preferred method of treatment as the excision imposes extremely
low risk in comparison to other cancers due to the location [73]. Up to and including
Stage I, surgery may be enough to cure the melanoma in its entirety .

For later stages, especially when the patient displays heavy metastatic burden, surgery
will often be used in conjunction with other kinds of treatments, such as chemotherapy,
radiotherapy or immunotherapy. While these other treatments will attack cancerous
cells everywhere, surgery may be used to excise the primary tumor or (parts of) bigger
metastases. This approach is of course not limited to malignant melanoma, but widely
used in the treatments of various kinds of cancer (and benign tumors). Another option,
especially for melanoma, is the removal of local lymph nodes through surgery, as they

11
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are the first targets for the metastasis of melanoma (see Section [2.3)).

Overall, while surgery remains vastly important today, the general hope is, that in the
future, surgery will become somewhat superfluous as a treatment option and be reduced
to the role of diagnosis through biopsy, as time will give rise to better methods for curing
cancer.

Chemotherapy

Chemotherapy utilizes drugs to destroy cancer cells via insertion locally (directly into the
tumor) or into the blood stream, from where the drugs can reach any place in the body
[64]. While the specific drug depends on the type of cancer, stage etc., chemotherapy
generally aims to eliminate cancer cells, prevent further metastasis or preempt a relapse.
As chemotherapy attacks and slows the growth and proliferation of cancer cells, it is
known to have similar effects on healthy cells, as the drugs do not differentiate. Especially
cells with a high proliferation rate, such as e.g. hair follicles, are at risk . This limits
the use of chemotherapy, so as not to overexert the capacities of healthy cells and leads
to a treatment via cycles, in which the drugs are administered.

The uses of chemotherapy when it comes to cutaneous malignancies is unfortunately
limited . In the specific case of melanoma, chemotherapy has had a major role over
the last decades, despite the known resistance of melanoma to conventional chemotherapy
[96]. Dacarbazine and temozolomide, two alkylating agents, are generally the treatment
of choice, though some debate exists if a multiple-agent regime might be more beneficial
. Lastly, biochemotherapy, the combination of chemotherapy agents with certain
immune-based therapies, is another option showing good results as compared to conven-
tional chemotherapy, albeit being extremely toxic . Studies are not fully conclusive
concerning biochemotherapy, but indicate an improved response rate without a significant
impact on survival rates.

Radiation Therapy

Radiation therapy equates to using high-energy rays to destroy cancer cells. The use of
crude radium as a source for radiation, marking the onset of radiation therapy, has now
given way to a number of more refined and sophisticated techniques . Tonizing, high
frequency radiation has become a standard and is a legitimate choice for the destruction
of living tissue. The exact workings of radiation therapy are an extensive research subject
involving a good understanding of physics and we will not delve into the subject too
deeply. It shall be noted, that a technique, allowing higher frequencies, is to utilize
radiation from several angles with the beams crossing at the tumor site. This produces a
higher radiation level at the tumor, while not exposing any healthy tissue to the same

12
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level of stress . Radiation therapy often serves as an adjuvant therapy option, as for
example in melanomaEl (see below and Figure [3.1]).

In the treatment of cutaneous malignancies and skin cancer in general, surgery and
radiation may be used somewhat interchangeably when attacking the primary tumor.
For malignant melanoma, which had been believed to be quite radio-resistant in the past,
surgery is usually preferred in this respect. However, in recent research this was
disproved and nowadays melanoma cells are considered responsive to radiation therapy.
In addition to primary radiation, this includes the above-mentioned adjuvant therapy
through radiation. It can be used to aid surgery by post-operatively treating the tumor
site (including the regional lymph nodes) and kill residual cancer cells. All in all however,
even adjuvant radiotherapy is not the norm and relegated to specific cases, but can
certainly be relevant to the treatment of patients displaying macrometastases under
certain circumstances.

Targeted Therapy

The term targeted therapy is a little more vague than previous terminology, which is
ironic as the aim of targeted cancer therapy is that of maximal specificity. One of the big
drawbacks to chemotherapy is the undesired effect on healthy cells; targeted therapy tries
to avoid this while still employing a drug-oriented approach. It aims to utilize specific
drugs whose effects are limited to tumorous cells through characteristic genes or proteins
, . Targeted therapy attempts to regulate the cell cycle, block proliferation or
induce apoptosis in cancerous cells, but minimize off-target effects. We will further
explain the idea of targeted therapy through an example of melanoma treatment: BRAF
inhibition.

Rapidly Accelerated Fibrosarcoma (RAF) is a kinase involved in the RAS-RAF-MEK-
ERK signal transduction cascade, a pathway regulating cell proliferation . Three
variations exist, but crucial for the treatment of melanoma is BRAF . Since BRAF
is ultimately inducing cell proliferation, we can categorize it as a proto-oncogene and
an oncogene post mutation per Section 2.2 The pathway in question starts with the
activation of RAS through a signal meant to induce cell proliferation, differentiation
and growth. RAS in turn activates (B)RAF, which leads to the activation of MEK and
ultimately ERK. This then sends a signal to the nucleus producing the desired effect
. Under normal conditions, this cascade is only triggered if the respective growth
factors are present to activate RAS in the first place . Melanoma cells can evolve

2Though some may argue, that radiation indeed is the primary therapy. Often the term “adjuvant
therapy” refers to additional measures to surgery in the context of melanoma . In the end, this
terminology is of secondary interest to the effect of said therapy and the roles of primary and adjuvant
therapy depend on the specific treatment case.

13
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a so-called BRAF mutation, which leads to constant triggering of the cascade through
BRAF (without the previous signals) and thus to a continuous sending of signals to the
nucleus which ultimately leads to the characteristic and unnatural behavior of cancer

cells .

The treatment of choice is then so called BRAF inhibition preventing or mitigating the
constant activation of this pathway. A similar method is employed for MEK inhibition.
A combination therapy of both BRAF and MEK inhibition is generally administered,
offering practically no disadvantages over single agent therapy . Unfortunately, in
many cases BRAF inhibition only offers a temporary effect with a majority of patients
showing relapse after some time .

Immunotherapy

Immunotherapy is an umbrella term for treatment options that aid the body’s immune
system in combating cancer as it is meant to be (see Section [2.4]). This can range
from actively supporting the immune system to battling mutations that help cancerous
cells avoid normal immune reactions. Immunotherapies include, but are not limited to
the administration of monoclonal antibodies, dendritic cells, T cells or even vaccines.
Immunotherapy has proven to be an immense success and maybe most importantly
displayed long-term survival benefits for patients responding to treatment .

Immunotherapy is often aided by a certain combination of adjuvant therapies. It can
also be used alongside other therapy options as adjuvant therapy to surgery. An overview
over adjuvant options to surgery for Stage III melanoma patients can be seen in Figure
[B1] This gives an impression of the complexity and heterogeneity of treatments - with
new immunotherapy options emerging further choices become available constantly.

Since the first time the role of the immune system in tumor suppression was proposed
to be an important one by Paul Ehrlich in 1909, researchers were set on exploiting this
fact. Several drugs have been approved by the U. S. Food and Drug Administration
(FDA) since then, starting in 1975 and even resulting in the Nobel Prize 2018 in
Physiology or Medicine to Tasuku Honjo and James P. Allison for their (separate) work
and “their discovery of cancer therapy by inhibition of negative immune regulation” [107].
Honjo in particular was credited with discovering PD-1 and PD-L1 signaling pathways
and first proposing the treatment method of PD-1 blockade. We will in this thesis focus
on this revolutionary method of cancer treatment.

An overview concerning relevant, FDA-approved drugs used for the treatment of melanoma
can be found in Appendix B.

14
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Figure 3.1: Recommendations of the Society for Immunotherapy of Cancer on adjuvant therapy
in the treatment of Stage III melanoma patients, visualized in a flow diagram. Source

3.2 Immunotherapy Approach via PD-1 and PD-L1 Inhibition

Programmed cell death ligand-1 (PD-L1) is normally expressed on cells involved in the
immune response such as T cells, B cells or Natural Killer Cells . Together with the
checkpoint molecule programmed cell death protein-1 (PD-1), expressed on activated T
cells, it can form a pathway inhibiting immune response. From a physiological stand point,
the PD-1/PD-L1 pathway evolved to limit inflammation when an antigen is expressed,
so healthy tissue is exempted from harm. Thus the pathway is a mechanism set in place,
so the immune system does not work uncontrollably .

Some cancers evolve a mutation abusing this signaling pathway to evade immunoediting.
They overexpress PD-L1 to ultimately suppress anti-cancer immune response. Specifically
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Chapter 3 Cancer Treatment

in tumor immune response, certain antigens are expressed on the tumorous cells, which
would normally lead to T cells killing those cancer cells after detection of the antigen. The
same antigen was previously presented through MHC molecules in order to activate the T
cell. If, in addition to detecting the tumor specific antigen through T cell receptors, a PD-
1-PD-L1 complex is formed, this will lead to immune tolerance even though the actionable
antigen is present . As the PD-1-PD-L1 complex emerges, this leads to dysfunction
and/or exhaustion of the T cell. The presence of complexes inhibits further T cell activa-
tion and proliferation , Eﬂ A visual representation of this can be found in Figure A.

Tumor cell Tumor cell
death

Figure 3.2: Rough sketch of the proteins and pathways involved in tumor immune evasion
through PD-L1 expression (A) and the impact of PD-1 or PD-L1 blockade on those

dynamics. Source: [119].

This is where PD-1 (and PD-L1) inhibition tries to interfere. It has shown great results,
especially in later stage melanoma treatment, compared to other therapies and even other
immunotherapy approaches, exhibiting greatly improved survival rates in several studies
, . We will in this thesis examine the effects of a medication called Pembrolizumab,
which has shown greatly improved survival rates and success over similar treatment
options, such as e.g. Ipilimumab, a monoclonal antibody aimed at the protein CTLA-4.
For exact and extensive trial results see , for example. Pembrolizumab is currently
considered to be the most effective single agent immunotherapy against melanoma .

The PD-1 inhibiting substance (anti PD-1 for short) binds to PD-1 expressed on
active T cells and thus prevents the creation of PD-1-PD-L1 complexes, and therefore
undermining the evading mechanisms of the cancer El as is roughly seen in Figure

3PD-L1 inhibition works in a similar way, but instead binding to PD-L1, which also prevents the
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3.2 Immunotherapy Approach via PD-1 and PD-L1 Inhibition

B. While even today, PD-1 inhibition is largely associated with melanoma treatment, it
has also shown good results in other cancers, such as non-small cell lung carcinoma or
bladder cancer. PD-L1 expression was confirmed to be correlated with overall survival
and response to PD-1 inhibition in lung cancer treatment by Zhang et al. in [118§].

When it comes to melanoma, the situation is further complicated, as currently the
usefulness of PD-L1 expression on tumors as an indicator for treatment success is ex-
tremely controversial . Wilmott et al. in concluded that even in a single patient
receiving anti-PD-1 treatment some tumors respond, while others show resistance to the
treatment and the extent of local PD-L1 expression gives no indication as to respon-
siveness versus resistance. They refer to other results indicating the improved response
in tumors expressing PD-L1, but the data they present indicates no correlation. They
introduce some uncertainty in these results and hypothesize the timing of biopsies may be
a reason for their findings, as initially responding metastases may have acquired resistance
. Wilmott et al. propose a similarity to targeted BRAF and MEK inhibitors, where
“epigenetic changes and tumor microenvironment factors are known to confer resistance”.
Specifically, they noticed a significantly upregulated expression of the laminin-3 subunit
(LAMA3) in tumors resistant to anti-PD-1 treatment.

Gong et al. in propose that there is enough evidence in support of the hypothesis
that a high mutational load correlates positively with the benefits from immune checkpoint
inhibition (in various tumor types). Overall, reliable indicators for response to anti-PD-1
treatment remain an area of interest as current results are sparse and controversial. We
hope, that the mathematical models proposed later in this thesis may contribute a small
part in understanding the intricate workings of PD-1 inhibition.

creation of PD-1-PD-L1 complexes
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Chapter 4

Mathematical Foundation

4.1 Ordinary Differential Equations

The theory of Ordinary Differential is extensive and finds application in numerous fields.
This brief introduction is not intended to give a comprehensive overview, but only impart
some basics to support a better understanding of the following sections. More on Ordinary
Differential Equations in the context of various fields can be found in many works, such
as , , . An Ordinary Differential Equation, simply speaking is a statement
connecting the values of a function to its derivative:

Definition 4.1
Let © ¢ R™"? an open subset with n € N. Let f : Q — R a continuous function. Then

f [t, z(t),zW(t), -,z (t)] = 0 is called an Ordinary Differential Equation of order n
(the degree of the highest derivative, that appears in the equation).

Linear equations are of the special form
aox(n) + alx(n_l) _|_ . + an_lx(l) + any = h(t)’

where no multiples or other nonlinearities in « or the derivatives of x are included.
Solutions to an Ordinary Differential Equation are n-times differentiable functions x
(which can be a vector of state variables), that satisfy the Differential Equation on an open
set. x is the so called dependent variable and depends only on ¢, the independent variable.
In terms of biological context, the entries of x can be thought of as concentrations,
population numbers or similar and their state is dependent on time t.

In our case, we will look at the concentration of certain cell populations (such as
T cells or cancerous cells) in a local tumor microenvironment or a larger area. When
supplementing the Differential Equation with initial values (values a solution is required
take at the starting time ¢ = ¢), thus imposing further restrictions on possible solutions,
this leads to a so called Initial Value Problem. Applying again biological context, this
means we know the exact concentration/population size at time ¢y and look for a solution,
that describes the concentration/population over time and satisfies the Differential
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Chapter 4 Mathematical Foundation

Equation as well as the values taken at .
We are interested in first order Ordinary Differential Equations,

dx

— = f(z,?), 4.1
) (11)
as this helps us understand how the system (cell concentrations) behaves dependent on
its current state. Other notations for the derivative include z, @(t) or 2/(t).

Of special interest tend to be states, where the system will remain as time progresses, so
called steady states :

Definition 4.2
A value z* for the state variables x is called steady state or equilibrium of a first order
Ordinary Differential Equation (4.1)), if it holds

— = f(z*,t) =0, for all t € R.

Finally, for Ordinary Differential Equations and systems, such as will be introduced in
Chapter [6] the Picard-Lindelof Theorem can be of use in determining existence and
uniqueness of a solution [20].

Theorem 4.3 (Picard—Lindelof Theorem)

Let U CR X R"™ and f: U — R a continuous function that satisfies a local Lipschitz
condition, then there exists a value € > 0, so that there exists a unique solution §(t) on
[to — €, to + €] to the Initial Value Problem x’ = f(t,y), x(ty) = xo.

More specialized tools that will be relevant for the analysis of systems of Ordinary
Differential Equations in later chapters will be provided in appropriate spots.

Quasi-Steady-State Theory

We have introduced basic steady-state theory above as the existence of states in which
the system does not change over time. Quasi-steady-state assumptions are - in simple
terms - a helpful approximation to simplify a system by focusing on its “bottle-necks”
. Imagine for example an interaction between two substances where Substance A is
always produced/available in extremely high concentrations. There is always enough
present of Substance A to enable the interaction and thus we can basically discard the
changes in concentration of Substance A.

Another example is from reaction kinetics: Assume a chemical reaction that produces
intermediate complexes on the way from reactants to products. These generally are very
short-lived and therefore these intermediates react very quickly. The actual conversion
from reactants to products happens on a much slower timescale and thus we could assume
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4.2 Partial Differential Equations

the intermediate complexes to be at steady state (thus the name quasi-steady-state
assumption), which simplifies things . Mathematically, we e.g. have a 2-dimensional
system of Ordinary Differential Equations

dl’l

T = f(x1,22)
dzr
editZ = 9(1'171'2),

where € very small. It is generally recommended to convert the system to a dimensionless
form, when the exact relations between timescales, concentrations etc. are unclear. Thus,
the small value for € may e.g. result from one concentration’s reference frame being much
larger than another or from different timescales on which the two state variables operate.
We can now assume

~ g(x1,x2) (4.2)
as € very small, thus imposing our quasi-steady-state assumption on the system. Having
one fewer state variable to solve for, makes things easier and often, further information can
be extracted from the resulting equation . While this technique appears attractive to
simplify complex systems, one should be certain that it is an appropriate approximation.
The execution should always be handled with care .

4.2 Partial Differential Equations

In some instances we might not only be interested in the overall development of state
variables over time, but dependent on another variable. For example, thinking back to
cell concentrations, we could ask what the concentration was at a given time at a certain
point in space. Thus, we are looking at a state variable dependent on space and time. Or
we could be interested in the concentration of a substance or temperature in a point of a
two dimensional or even three-dimensional area, thus facing the necessity of examining a
function dependent on spatial coordinates (x,y) or (x,y, z).

This leads us to consider Partial Differential Equations; as before for Ordinary Dif-
ferential Equations, this section is merely intended to offer a brief introduction into the
topic (for further reference see , ) For this thesis we will concentrate on Partial
Differential Equations involving time (¢) and one dimension of space (x) as variables.
Thus, Partial Differential Equations, such as used here and indeed often in physical or
biological applications, are of the form:

I ou Ou oFu B
x’t’“(x’t)’%’ﬁ"”’m =0,
where %, %—? are the partial derivatives. The order of the Partial Differential Equation is

that of the derivative of the highest order [21]. Partial derivatives are derivatives with
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respect to only one of the independent variables and express the change of the function
when moving in the direction of that variable. The partial derivative is technically the
limit as the move shrinks to an infinitesimal size, i.e.

0 Az, t) — t
2% im ue + Az, 1) — uz, >, for the spatial derivative
ox Az Az

t+ At) — t
Ou = lim e t+ A) — ulz, ), for the time derivative.
ot At At

The definition of a linear Partial Differential Equation functions similar to that of a
linear Ordinary Differential Equation. A new term can be introduced in quasilinearity,
however. A Partial Differential Equation is quasilinear, if it is linear in all the highest
order derivatives; they offer some advantages in several applications . Similar to Initial
Value Problems in the Ordinary Differential Equation case, we can supplement a Partial
Differential Equations with so called boundary conditions. If we for example examine a
Partial Differential Equation on a bounded spatial domain 2 € R", additionally to initial
conditions, we need to characterize the behavior on the boundary 0. Typical examples
include

e Dirichlet boundary conditions
Dirichlet boundary conditions specify the value of the function on the boundary of
the domain, i.e.
u = b(x,t) for z€0Q, t>0

Should b = 0 everywhere, we call the Dirichlet boundary conditions homogeneous.

e Neumann boundary conditions
Neumann boundary conditions on the other hand set a value to the normal of the
function on the boundary of the domain, i.e.

Vu-n=b(x,t) for €09, t>0,

where n is the outer normal to 2 at x € 9Q and V is the gradient (in the one
dimensional case this simplifies to %). The homogeneous case is again for b =0
and corresponds to the well-known zero-fluz condition.

e Mized boundary conditions
Mixed boundary conditions are fairly self-explanatory through their name; they
mix Dirichlet and Neumann boundary conditions, i.e.

a(z,t)u+ B(z,t)Vu - n = b(x,t) for xe€0Q, t>0,

We will primarily operate under Neumann boundary conditions.
While Partial Differential Equations offer a vast superiority in modeling options over
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4.3 Reaction Diffusion Equations

Ordinary Differential Equations, it should be noted, that analytical solutions are generally
much harder to find - even numerical analysis is significantly more complicated. Whereas
Theorem [£.3] offers an elegant solution for existence and uniqueness of solutions to a
certain class of Ordinary Differential Equation problems, similar results for the field
of Partial Differential Equations are few and far between. While some specific and
well-known Partial Differential Equations are extensively researched and analyzed, in
general, the analysis of (systems of) Partial Differential Equations proves extremely
complex.

4.3 Reaction Diffusion Equations

Reaction Diffusion Equations are a special subset of Partial Differential Equations and
generally take the form :

diffusion term

ou —
— = DAu + f(z,u,Vu), (4.3)

ot —_————

reaction term

where u(z,t) is again a state variable and generally describes the density/concentration
of a substance or a population (in our case concentration of a certain cell type) for a
certain position z € Q C R" at a given time ¢. V again describes the gradient and A is
the Laplace operator. The right-hand side of equation can be partitioned as follows:
The first term denotes the so called diffusion, i.e. random migratory dispersal, with the
diffusion coefficient D regulating the speed and manner of said dispersal. The second
part, the reaction term, describes factual change through processes such as birth, death
or proliferation among others. Effects such as chemotaxis, which can describe migration
as well, are here included in the reaction term.

The derivation of the general Diffusion Equation (equation without reaction
term), which might seem very abstract to an unfamiliar reader, is a very intuitive one. It
can either be derived from Fick’s Law (as seen in or [59]) or through the Random
Walk (Brownian Motion), which is nicely illustrated in and can also be found in ,
. When looking for existence and uniqueness results regarding Reaction Diffusion
Equations, we can turn to the theory of weak solutions. As this would involve extensive
theory on Sobolev spaces and weak derivatives, the interested reader shall be referred to
[>9], which also provides a comprehensive introduction to Reaction Diffusion Equations.
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Chapter 5
Patient Data and Associated Challenges

For numerical analysis and parameter fitting, we employ a data set kindly provided by
Prof. Dr. Edgar Dippel from Klinikum der Stadt Ludwigshafen (am Rhein gemeinniitzige
GmbH). Overall, data from three patients treated with the PD-1 inhibition medication
Pembrolizumab was provided and will be utilized in later chapters. Four further patient
histories were supplied, but could not be utilized in a sensible manner due to the
employment of different immunotherapies and/or duration of treatment. We need to be
cautious when comparing between different immunotherapy treatments as the mechanisms
involved are very specific. In terms of treatment duration, we are looking to have at least
three separate measurements relevant to effect of Pembrolizumab treatment.

5.1 Relativization of Data

The benefits of adjuvant therapy to immunotherapy were briefly discussed in Section [3.]]
and thus it is not surprising to encounter uses of various adjuvant measures in patient files.
In addition, as Pembrolizumab is a fairly new medication, several patients had previously
undergone other primary treatments (see below). This leads to a potentially vast number
of interactions and implications concerning the mechanisms of PD-1 blockade, which will
be examined fairly isolated in the mathematical models in Chapters[f]-[7] As metastases
appear at different times this implies that even the comparison of different tumors in the
same patient for growth and responsiveness to anti-PD-1 might present some challenges.

This is supported by the findings of Wilmott et al. in , who observed varying
degrees of response in different metastases in the same patient. Additionally, data “blind
spots” can occur through timing of imaging and therapy. When e.g. Pembrolizumab
therapy is started in between two imaging dates (generally three to six months apart)
it is hard to identify proper initial conditions, so to speak. Previously (last image
pre-Pembrolizumab), the old therapy may still have had some effect and by the time the
first images are available, Pembrolizumab already had some time to influence progression
of disease. This also occurs in general when switching therapies, as especially in the early
stages of Pembrolizumab administration, residual effects of the previous treatment or
involuntary combination therapy effects (negative or positive) may occur. These factors
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can make the data somewhat unreliable, as we will explicitly avoid the number of possible
interactions between anti-PD-1 and other effects in our models; we try to emphasize the
key interactions of anti-PD-1 treatment and purposefully avoid overloading the model.

5.2 Data Used In This Thesis

Patient 1 (P1)

P1 had a melanoma excised, which was presumed to be the primary tumor for metastatic
melanoma diagnosed roughly five years post-surgery. A local metastasis was removed
shortly after diagnosis and treatment with Ipilimumab (monoclonal CTLA-4 antibody)
initiated (Pembrolizumab at this point hadn’t even been FDA-approved) and stopped
after four cycles. Shortly after this, a targeted therapy with Dabrafenib was started and
two months later supplemented by treatment through Trametinib.

Two years later aggressive progress with a large number of new metastases (76 visible
metastases) was registered and thus treatment was switched to Pembrolizumab. These
metastases were all located in the brain of the patient; the visible tumor burden in the
rest of the body had reduced to zero at that point. Some images to display the impact
of the newly emerged metastases can be found in Figure The treatment continued
through to end of our data set and minimal adjuvant therapy was conducted during this
time (one general radiation of the brain).

Patient 2 (P2)

P2 developed metastatic melanoma from an unidentified primary tumor and was diag-
nosed with several tumors which turned out to be malignant melanoma. An Interferon
therapy was initiated and supported by excision of additional lymph node metastases as
well as adjuvant radiation therapy. Due to further progress of the disease the therapy
was switched to Ipilimumab 5 months after initial diagnosis. Continuing during the
Ipilumumab treatment period were occurrences of radiation therapy.

After ten months the metastases had reduced in number, but two metastases showed
progression in growth and thus the patient was ultimately switched to Pembrolizumab.
The Pembrolizumab treatment continued through to end of our data set; still some
radiation therapy occurred. The data on radiation (location, time) was partly missing
and could not be transmitted in its entirety, which creates the necessity to handle this
data set with care. Additionally, only two metastases are available for measurement
during Pembrolizumab treatment and respecting the possible differences in tumors in a
single patient (see ), the small data set may put some restrictions on significance of
P2 data.
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Figure 5.1: Comparison of tumor burden in P1, where (a) and (b) as well as (c) and (d) represent
the same slice at different timepoints: At ¢ = 0 (for(a),(c)), shortly before treatment
with Pembrolizumab was started, and at ¢t = 63 (for (b),(d)), the first image after
treatment was started, where t is measured in days. Source: Data provided by F.
Dippel
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Patient 3 (P3)

After excision of the primary melanoma tumor for P3, four local metastases were identified
and immediately fully excised through surgery. Incidentally, a benign tumor was also
diagnosed independently. Treatment with Ipilimumab was initiated and after further
progress of disease changed to another immunotherapy. After continued progress, roughly
a year after initial diagnosis, the method of treatment was switched to chemotherapy,
which did not display the desired effects. Ultimately, a few months later, the patient was
switched to Pembrolizumab. The treatment with Pembrolizumab continued through to
end of our data set; during this interval several pulmonary tumors were partly resected,
as this became necessary to sustain core bodily functions and relieve stress on vital organs.

From this first introduction to our patient data, we can already see the special status
of data set P1. Some of the limitations mentioned above do not apply as strongly: The
extremely aggressive nature of the cancer let’s us reasonably exclude effects from previous
medication. This assumption is further supported by the fact that the metastases occur
only just before Pembrolizumab treatment. In comparison - the metastases we observe in
P2,P3 had existed for a longer time and underwent previous treatments that may have
had an effect on e.g. structure of the tumor.

Data set P1 is purer in a way and additionally we have a large number of metastases,
that are all in the same tissue and environment. P1 is therefore best suited to evaluate
our quantitative models in Chapters [f] and [} We will briefly touch upon specific benefits
to the model at hand when conducting numerical simulations that will be compared to
data set P1.

5.2.1 On Methods of Measurement for Tumor Size

A standard measurement methodology in radiology and oncology sees physicians measur-
ing only in one of the three main body planes: Transverse (Axial), coronal or sagittal
plane . It is a common procedure to identify the longest 1D extension (this goes for
solid tumors as well as lymph nodes) and then use this measurement in conjunction with
the longest (corresponding) perpendicular 1D extension in that plane for classifica-
tion or volume calculation through assuming the tumor shape as spheroid (ellipsoid of
revolution), i.e. a spheroid with two identical semi-diameters . The two measurements
needed for this can be seen on an exemplary metastasis in Figure We will refer to
this method as the Spheroidal Method from here on.

The Response Evaluation Criteria in Solid Tumors (RECIST) is an international stan-
dard in classification of tumors and determining progress over stable disease or remission
[100]. In RECIST, contrary to the method outlined above, only a single 1D measurement
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Figure 5.2: Two measurements in the transverse plane of a brain metastasis: The longest 1D
extension and the corresponding longest, perpendicular 1D extension. Source: Data
provided by E. Dippel.

is collected: that of the shorter extension for lymph nodes and the longest diameter for
other lesions (see [87], for further information). While it shall not be disputed here
that this measurement is sufficient to judge over progress and treatment decisions in
most instances, it may be careless to simply carry over such methods when it comes
to mathematical modeling, as we are employing a more quantitative approach. As the
question for exact volumes of three-dimensional masses in a body is of interest quite often,
models were developed to better calculate the precise volume from 1D measurements of
parallel (de facto) 2D slices even before the widespread ascent of 3D imaging software [77].
One such algorithm is presented in and shall be referred to here as the McKenney
Algorithm.

Even more preferred to get an accurate measurement are advanced imaging techniques
and indeed, today we have access to several software options delivering great results
when it comes to recreating 3D tumor models from MRI or CT imaging. A good example
for this is the software 3D Slicer [1]; we will be using it for the purposes of this thesis
when it comes to imaging/measurement software. Should proper images not be available
or not compatible with the software (through poor quality or incomplete information)
algorithms such as the McKenney Algorithm can still produce more accurate results as
compared to the Spheroidal Method. We will briefly demonstrate the differences that can
occur due to use of the Spheroidal Method in five exemplary metastases from data set P1
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at the first date of imaging after anti-PD-1 treatment initiation. These five metastases
are the five biggest metastases at peak tumor burden (¢ = 63) and will be used later for
numerical analysis:

Metastasis  Spheroid method 3D imaging through 3D Slicer A

M1 887 mm? 1569 mm? —43%
M2 733 mm? 1553 mm? —53%
M3 1239 mm? 1618 mm? —23%
M4 824 mm? 1527 mm? —46%
M5 509 mm? 940 mm? —46%

Table 5.1: Comparison of measurement methodologies (Spheroid Method, 3D imaging through
3D Slicer) on an exemplary set of metastases M1-M5 from P1. Source: Own work in
conjunction with data provided by E. Dippel.

The reasons become evident through Figure While M2 is assigned a significantly
smaller volume than M3 through the Spheroidal Method, it is, in reality, almost equal in
volume. The extension of M2 in the transverse plane appears to be indeed the smallest
of all planes and the growth is restricted in lateral direction (as can be seen in Figure
a). Thus, the orientation of M2 is unfortunate, should we choose the Spheroidal Method,
taking measurements only from the transverse plane. The extension perpendicular to the
transverse plane of M2 is comparatively large, as seen in Figure which accounts for
the volume of M2. This is somewhat fitting with the fact, that M1 and M2 are visible at
t = 0, whereas M3-M5 are not. While not all metastases behave the same way and the
measurement of small metastases can be critical due to the fact that slices are several
mm apart, it still would seem odd, that a metastasis (M2) of 733 mm? at ¢ = 63 would
be visible in earlier imaging, whereas a metastasis (M3) of 1239 mm? at ¢ = 63 is not.
In reality they are the same size at ¢ = 63, which is more agreeable with these observations.

In conclusion, one needs to be extremely careful when evaluating single metastases -
this will become even more evident in later sections. In addition to the individuality of
treatment circumstances and different responses of single tumors in the same patient,
measurements can become inaccurate. As long as image quality allows (and this is not
always the case - especially for smaller metastases), it makes sense to employ a more
accurate method of measurement when it comes to data intended for quantitative use.

5.2.2 Tumor Measurements For Patients

We present the obtained measurements for P1 in Table[5.2] In a similar fashion an equal
presentation for the measurements P2,P3 can be found for in Appendix C. We introduce
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Figure 5.3: Comparison of MRI examining M2 of P1 in the transverse plane (indicated through
red arrow) (a) and a 3D model of M2 created through Slicer 3D displaying the large
extension perpendicular to the transverse plane (b). Source: Own work and data
provided by E. Dippel.

a timeline, where one time unit is equal to one day. The beginning ¢ = 0 for each patient
is set to be the last date images were taken before Pembrolizumab treatment initiation.
The timeline (values for ¢) for each patient combines both measurements and treatment
dates; in the case of P1 e.g. Tables [5.2] and [5.3] utilize the same timeline. Similarly for
the values found in Appendices C and D.

5.2.3 Time and Amount of Medication and Adjuvant Treatment

Here we outline the treatments that P1 underwent during the examined time interval
in Table (in similar form for P2,P3 in Appendix D). As outlined above, we don’t
know the exact dates and other specifics on some of the adjuvant methods. While some
surgeries can at least be linked to a certain window of time as e.g. in the case of P3,
other therapy schedules (e.g. radiation therapy for P2) could not be reconstructed. The
Pembrolizumab treatment schedule was well documented and could be reconstructed in
its entirety for all three patients. In terms of dose administered, the treatment employed
the optimal dose as currently recommended and justified in scientific literature [91], [37].
We will reconsider the issue of optimal dosage, when it comes to quantifying the increase
of concentrations in crucial locations in Chapter [f] For P1, we have fairly complete
data, as there was minimal adjuvant treatment and it is well documented. This again
emphasizes the special status of the data set P1, as Table [5.3] displays the treatment
regime of P1 in its entirety (for the time interval we examine).
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Full Tumor

Time M1 M2 M3 M4 M5

t=0 14 mm? 14 mm? 0mm?3 0 mm? 0 mm? 398 mm?

t=63 1569mm?® 1553mm?® 1618 mm3 1527mm? 940mm3 23735 mm?
t=124 474mm® 1053mm® 614mm® 658 mm® 1198 mm?® 13512mm?
t =223 498mm?® 418mm? 510mm3 408mm?® 772mm?® 9436 mm?
t=285 1248 mm® 284mm?® 260mm® 290mm?® 1084mm?® 11630 mm?
t=2333 1759mm® 587mm?3 879mm> 1363mm?3 1149mm3 13712 mm3

Table 5.2: Measurement data of metastases of P1, including time of measurement and size of

Table 5.3: Treatment data of P1, including time of treatment, medication administered and
amount of medication for each treatment cycle if applicable. Source: Data provided
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metastases. The five biggest metastases (M1 - M5) at ¢ = 63 (heaviest overall tumor
burden) were selected for an individual examination. They are presented alongside
the overall tumor burden of the brain. Source: Own work building on data provided

by E. Dippel.

Time of Administration

Cycle, Medication and Amount

t=14
t=35
t =255
t =68
t =288
t =109
t =129
t =151
t=172
=193
t =213
t =234
t =255
t =276
t =297
t =319

1.) Cycle Pembrolizumab (2 mg/kg)
2.) Cycle Pembrolizumab (2mg/kg)
3.) Cycle Pembrolizumab (2 mg/kg)
Radiation therapy on entire brain
4.) Cycle Pembrolizumab (2mg/kg
5.) Cycle Pembrolizumab (2mg/kg
6.) Cycle Pembrolizumab (2mg/kg
7.) Cycle Pembrolizumab (2mg/kg
8.) Cycle Pembrolizumab (2 mg/kg
9.) Cycle Pembrolizumab (2mg/kg

)
)
)
)
)
)

10.) Cycle Pembrolizumab (2 mg/kg
11.) Cycle Pembrolizumab (2 mg/kg
12.) Cycle Pembrolizumab (2 mg/kg

14.) Cycle Pembrolizumab (2 mg/kg

) )
) ( )
) ( )
13.) Cycle Pembrolizumab (2 mg/kg)
) ( )
15.) Cycle Pembrolizumab (2 mg/kg)

by E. Dippel.



Chapter 6

A Spatially Homogeneous Ordinary
Differential Equation Approach

6.1 The Model

As a first approach we try to concentrate on the dynamic between T cells, tumor cells and
anti-PD-1 in a spatially homogenous model. We attempt to isolate this dynamic from
the combination therapy model as presented in [60]. The comprehensive approach by
Lai and Friedman chooses to include spatial dynamics and several factors in the complex
process of immune response. In order to simplify these extensive pathways and processes
we reduce the number of populations involved, inspired by the approach taken in .

We assume, that there are no other effects, especially including, but not limited to other
treatments and adjuvant measures unless otherwise stated. We make special mention of
the BRAF mutation (see Section , as it occurs in a number of melanoma patients.
We assume, that, once it occurs, the patient is treated with appropriately targeted
medication and thus the effect of the mutation on system behavior is nullified. This
assumption allows us to exclude BRAF mutation effects from our model. Let C' be the
concentration of cancer cells, T' the concentration of (activated, relevant) T cells, A the
concentration of anti-PD-1 immunotherapy medication and D the concentration of free (i.e.
not bound by anti-PD-1) PD-1 expressed on relevant T cells, all in Cm% (see also Table

It is of interest how much of the expressed PD-1 is completely free and how much is
bound to PD-L1. For this we introduce the additional populations (), the concentration of
complexes formed between PD-1 and PD-L1; and L the concentration of free PD-L1 (both
in Cm%) Assuming apr, as the rate of association and dg as the rate of disassociationEI
the dynamic of these complexes can be written as

dq

2 = apLD()LT) — dgQ(r) (6.1)

4At this point we want to note, that - unless otherwise noted - all introduced parameters are constant
and non-negative to ensure biological meaningfulness.
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

State Variable Meaning

Concentration of cancerous cells in g/cm3
Concentration of activated T cells in g/cm?
Concentration of anti-PD-1 in g/cm3
Concentration of free PD-1 expressed on T cells in g/cm?
Concentration of PD-L1 expressed on T and cancer cells in g/cm3
Concentration of PD-1-PD-L1 complexes in g/cm?

QTN AQ

Table 6.1: List of variables involved in the system of Ordinary Differential Equations (6.3)) -

The half-life of a human PD-1-PD-L1 complex is less than one second . The model
- introduced below operates on a vastly different time scale; it is therefore
a reasonable simplification to impose a quasi-steady-state assumption on this dynamic.
Assume e.g. that the dynamic is meaningful on a time scale where one unit represents
one tenth of a second. Now, rescaling to fit the timescale of the remaining system
of Differential Equations, which operates with days as a standard time unit, assume
t =7-10-3600 - 24. Therefore

dr 1 N N

%Q(t) = dilTQ(T) i lapLD(t)L(t) — doQ).

with € = Wloo.zz;' Dropping the hats in this notation leads to
Q~2PLpr, (6.2)
dq

A comprehensive introduction to the rescaling of systems and the theory of quasi steady
states can be found in various literature, such as . With this important dynamic (6.2)
taken care of, we formulate the system of Ordinary Differential Equations:

dC C

— =AcC(1— —=—)—nCT 6.3
g U)o (6.3)
drT 112 I2

— = M\plo——"—F7—+2\,T——F) - F —drT 6.4
dt ( ]12 0K112 + 112 12 KIQ + 1-2) (Q) T ( )
dA

dD I I

— = (A, ly——— 4+ A\, T —) - F —drD — DA. 6.6
o = PPp - (Ang o AN s 12) (Q) —drD — pupa (6.6)

We assume that all cells of one population behave the exact same way, experience the
exact same conditions and that the system is well mixed at all times. We impose logistic
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6.1 The Model

growth for the cancer cells through the growth function G(C) = A\¢C(1 — (JLM) While
this is somewhat arbitrary and not the main focus of the model, it has been proposed
in a similar situation by Lat et al. in . Logistic growth is also suggested to be a
good choice over Gompertz growth in models involving effector cells in [54]. Without
significantly changing the results in a qualitative manner, it is possible to use another
growth function (growth law); Table gives an overview over commonly used dynamics

for tumor growth

Growth Law Differential Equation
ac __ b

Power (Mendelsohn) | %= = aC

Logistic % =aC(1—-0bC)

Gompertz % = aC’ln(%)

von Bertalanfly 9 = 4C[(bC)° —1]

Table 6.2: Overview over commonly used growth functions for tumor growth dynamics in the
context of mathematical modeling through Differential Equations. Source: [82].

The tumor burden grows at rate Ac up to a maximum carrying capacity Cjs of the
tissue as in [60]. In turn, n represents the killing rate of cancer cells by relevant T
cells. Natural cell death and other means of expunging tumor cells from the system are
neglected to realistically emulate the unnatural behavior of cancerous cells El . T cells
leave the system at rate dp. The accumulation of T cells can be divided in two terms:

. Ahﬂbﬁ represents the activation of naive T cells via IL-12 (I12),

e A IQTﬁ the proliferation of already activated T cells in the microenvironment,
2
induced by IL-2(12).

Lai and Friedman in opt to include additional, time dependent populations into the
system, where we decide to simplify by choosing constant values for I1s, I> instead. We
set these to the steady states obtained from the control case in their paper [60]. We
lose some effectiveness of the Michaelis-Menten form chosen in equations , to
regulate saturated effects of the immune response. In contrast to e.g. Kirschner et al. in
our model relies on the inhibition term F'(Q) in combination with a constant death

SFurther possibilities for growth functions can be found in .
6As long as we do not include spatial dynamics or different cancer cell populations the inclusion of
additional, natural death terms for cancer cells serves no purpose in our model.
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

rate dp to regulate immune response and ultimately impose saturation mechanics. Both
the activation and proliferation are therefore inhibited by the presence of PD-1-PD-L1
complexes (Q) through the function

1

F(Q)=71+Q/KTQ,

with @ solely dependent on D, L per our quasi steady state assumption (6.2)). From
and the assumptions on PD-L1 from our model we can express the concentration L(t) as
follows:

L =pr(T+eC).

This makes sense as we assume there is no way for PD-L1 to leave the microenvironment
other than the death of T cells and cancer cells. There is no anti PD-L1 medication or
anything similar present, that could bind to and deplete the PD-L1 available. We can
simplify m further to reduce the number of parameters involved. Due to :

1 1 1

1+Q/Krq ~ 1+ (°EDL)/Krq 1+ (DL)/Krq

with KTQ = O‘d%L /Kr1q. Looking back to Chapters [2land |3 we see that the core dynamic
is not necessarily solely one of inhibition as T cells get deactivated through the PD-1-PD-
L1 pathway. This dynamic can be modeled in multiple ways, but the decision to go for
inhibition is as valid as e.g. the manipulation of the death term instead , . The
anti-PD-1 immunotherapy medication is depleted through binding to PD-1 at rate upa
and leaves the system through decay and other causes at rate d4. The accumulation of
PD-1 is a multiple of the accumulation of T cells, as all T cells are assumed to express an
equal amount of PD-1 (expression rate ppp). Similarly to A, PD-1 is depleted through
binding to anti-PD1 at equal rate upa ([60]) and leaves the system through other causes
at rate dp (with T cells leaving the system).

6.2 Fundamental Analysis of the Introduced System of
Ordinary Differential Equations

6.2.1 Treatment-Free Model

To further our understanding of the core dynamic of the T cell and cancer cell interaction
we reduce system (6.3]) - by setting the population A to be zero constantly (de facto
eliminating it from the system and creating a treatment-free model). This results in:
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6.2 Fundamental Analysis of the Introduced System of Ordinary Differential Equations

— =AcC(1l— =) —nCT 6.7

= AcCl= 7o) - (67)

ar

= = O +0,T) - F(Q) —drT (6.8)

dD

a = pPD - (9]12 + HIQT) . F(Q) —drD. (69)
with 07, = AImﬁTg and 6, = A 12%. Here we can deduce that equation

is somewhat superfluous, as the main reason for including it, the occupation by
anti-PD-1, is no longer present in the system. Furthermore, it does not influence equations
, . Indeed, with corresponding initial conditions, where PDy = pppTp, with
ppp as before the expression level of PD-1 on T cells, it becomes clear that the right-hand
side of is now a multiple of the right hand-side of . We take a look at equation

= dD dT

o~ PPD- (01,,To + 01,T) - F(Q) — drpppT = ppp - a
where we manipulate the death term dpD, which accounts for the loss of PD-1 through
death of T cells. Without any other ways of depletion of PD-1 this is a multiple of the
death term of T cells in equation as per assumption every T cell expresses an equal

amount of PD-1. Therefore, we can conclude

dD
C% = pPD
it
dD

= 5 = PPD = D(t) = pppT(t),

if initial conditions satisfy Dy = ppp - Ty (which they should per our model assumptions).
A simulation of the reduced system with initial conditions satisfying this requirement led
to the same conclusions numerically. The solutions for free PD-1 (D(t)) were close to
being a multiple of the solutions for T cells (7'(¢)) by a factor of ppp. The equality holds
up to an error of magnitude —25. We conclude that it is a reasonable assumption, that
the solution for free PD-1 will be equal to the solution for T cells multiplied by ppp in
the treatment-free case. For the purposes of the treatment-free model we can therefore
write

D(t) = pppT (). (6.10)
This finally leads to a further reduced system:
ac C
— = 1——)—nCT A1
g~ ¢t - e (6.11)
ar
= 0n, +05,T) - F(Q) - drT, (6.12)
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

where we can substitute for D with the help of (6.10) when calculating the term F(Q) =

F(C,T) = W with v = O‘d%L pppprL. Note, that F(Q) = F1(C,T) only holds in
Krg

this treatment-free case.

Proposition 6.1
Solutions to an Initial Value Problem for the system (6.11|) - (6.19) with positive initial
conditions will remain positive and are bounded under the assumption that all parameters
are positive.

Proof. First we examine the populations’ behavior on the boundaries of a biologically
relevant domain Q := {(C,T) € R? | C > 0,T > 0}. We obtain:

dT dC
- N = > RN _n = 0.
o I7=0 = 01, > 0, = lo=o =0

Evidently the trajectories on the boundary 92 stay on the boundary or even point in
positive direction. After ensuring that solutions stay non-negative, we will proceed to
examine boundedness. For C' it holds that

dC C C
= = 1— —)—nCT < 1— —
g = AC= o) =nCT < AC(1 = ),

because of non-negativity. This leaves a standard logistic growth expression and is
therefore bounded by maz{Cy, Car} () Furthermore, according to it holds that

Jiny €)= Coy.
for positive initial condition. For T" we look to the right-hand side of (6.12)). Clearly
(9112 + GIQT) ’ F1(07 T) —drT < (0112 + 912T) ) Fl(ov T) —drT,

as F1(C,T) = W and solutions were shown to be non-negative. Now define

Krq
01, + 601, T
G(T) = 112—5—7’?1% = (0n, +05,T) - F1(0,T)
with 4 = KLTQ' By differentiation we can find the sole maximum of G(T') as

dG(T)  —T?46;, — 27401, + 05,
dar (14-4T72)2 ’

and the numerator of this expression produces two roots. By checking the second

. . . ﬁ(ﬁ0?12+0?2) 0r
derivative and the limits of G(T'), one of these roots, =g, — 3> =i K, can be
2 2
identified as producing a global maximum G(k). Therefore, ultimately
dr

% = (9[12 + 9]2T) . F1<C, T) — dTT S I%lgg(G(T) — dTT = G(lﬁ:) — dTT.
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6.2 Fundamental Analysis of the Introduced System of Ordinary Differential Equations

It holds further by separation of variables:

dT

< drT

g =Gk —drT,
1

———dT < dt
< ) drT -

T <
< /G dTTd —/dt’

& fd—ln(G() drT) <t+C,

& ' e dr(+0) < G(k) — drT,
N e G(r) — ede(t+C)7
dr
and finally this implies:

Similarly to before it is T' < max{Ty, %;)} where Ty is the initial condition and therefore
T bounded. O

6.2.2 Steady States of the Treatment-Free Model

Proposition| 6.2
The system 6.11) - (6.19) has a unique tumor-free equilibrium X} = (0,T}) and, if
”E/\CM <1, 12 <1 p(AT;’) > 0 or % < 1,9% > l,p(ATC) > 0, a unique tumorous
equilibrium X2 (C2,T2).

Proof. We begin with the tumor-free equilibrium. Let therefore C' = 0. Now to find a
steady state, set ‘% to zero and solve for T'.

9[12 + 912T

:G(T): 1—|—’3/T2

—drT = 0.

We are looking for roots to the function
W(T) = A4drT? + (dp — 01,)T — 07,

First, if we set 0y,,, the activation of T cells through IL-12, to zero, h(7T) simplifies to

A(T) = 3dn T+ (dr = 0)T =T (3272 + (dr —61,) ).
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

For dr > 0y,, h has one root at T11 = 0. For dr < 0y,, two additional roots appear in

07, —d )
T5293 = im along with T5; = 0.

Clearly h(T') is monotonously decreasing in 6r,,. Shifting the graph down by increasing
01,, will create only one positive root in the case dr > 0y, and eventually eliminate the
Or, —dr

ydr
Even having 07,, > 0 suffices to leave only one positive, real root in the case dr < 67,.
Hence, in either possible case, one unique positive real root exists, proving the existence
of a unique tumor-free equilibrium X! = (0, T}).

roots 1oy = 0,Thy = — , leaving only one positive real root in the case dr < 6y,.

For the tumorous equilibrium X2 = (C2,T?2) we follow the approach Kumar et al. in
[57] and employ Descartes rule (Theorem to find the unique steady state. Descartes
rule was first formulated by René Descartes in and became known in the following
form @:

Theorem 6.3

Let p(z) be a polynomial function with real coefficients and the terms arranged in de-
creasing power of x. Then the number of positive zeroes of p is equal to the number of
variations in sign of p(x) or to that number decreased by an even integer.

Now let C,T # 0 and set % =0 and % = 0 from l} l) This implies

nCT = \oC(1 — -2, (6.13)
Cu
T
e Oy Gt (6.14)
Ac
and
drT = (0112 + 0[2T) ’ F(Q)a
& dpT[1+AT(T +eC)] =05, + 01, T. (6.15)
Substituting (6.14]) into (6.15]) finally yields the following
. eC . 6
p(T) = 4dr(1 — ”AicM)T3 + JedrCyT? + dr(1 — d—?)T — 0y, =0 (6.16)

Now we can examine the number of variations in sign of p(7'). Four different configurations
are possible as seen in Table (and the redundant cases created by multiplication by
minus one

"Note, that including the equality, sets the respective coefficient to zero and thus eliminating the
corresponding power of T' from the polynomial. In our case this does not change the number of sign
variations. Notably, zero coefficients are allowed per Theorem .
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6.2 Fundamental Analysis of the Introduced System of Ordinary Differential Equations

’ Case \Number of Variations ‘
1) 10 <1 %2 <1 1 (+++-)

2) 10 > 17 % <1 2 (— ++-)

3.) 1Cu <17 % 51 1(++——)

4.) 1Cu 5 1 7% 5 2 (— 4 ——)

Table 6.3: Overview over possible number of variations of sign in p(T') as defined in (6.16).

In cases 2.) and 4.) we have either two real positive roots or none. But in cases 1.)
and 3.) we have exactly one real positive root T2. Of note aside from the general case:
The parameters found in literature and introduced in section (see Section for an
exhaustive justification for parameters) fall under case 1.) and thus produce a unique
real positive root.

This leaves only to ensure positivity of C2. For this we examine (6.14)):

C%2>0

& 1—gi<1
o 77AT5<1
VN T3<)\—C,
n

where in the second step we used ((6.13]). We therefore require 0 < 722 < Ao Subsequently
we need to ensure that the unique positive real root of p(7') indeed lies within the specified

boundaries. As we operate in a case where it is the unique positive root, we can apply
the Intermediate Value Theorem .

Theorem 6.4 (Intermediate Value Theorem)
A continuous function f : [a,b] — R takes every value 0 between f(a) and f(b) in at least
one point ¢ € |a,b] with f(c) = 0.

If p()‘TC) > 0, since p(0) = —07,, < 0, we must have T2 € (0, )\TC) per Theore where
p is the polynomial above and satisfies the conditions imposed in Theorem [6.3]

Ultimately this shows that, under the conditions in the second part of Proposition [6.2}
we have a biologically meaningful and unique tumorous equilibrium. O
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

6.2.3 Stability Analysis

Having shown the existence of these steady states, we move on to examine the stability.

The Jacobian of the system ([6.11)) - (6.12]) reads as:

JC.T) = Ao(l—2¢) =0T —nC
’ (01, +01,T) - 2=F(C,T) 0,F1(C,T)+ (01, + 01,T) - Z-F1(C,T) — dr

Now we evaluate the Jacobian at the tumor-free equilibrium X' = (0, T}}):

T O, + 0T - ZF(0,TY) 01, F1(0, T + (0n, +05,TY) - - F1(0,T)) — dr

As this results in a lower triangular matrix, we can directly deduce the eigenvalues of
the matrix:

A= Ao — T}

0
Ao =0, F1(0, 1) + (01, + 05,T)) - a*TFl(OvT*l) —dr
Fy(C,T) is a strictly monotonously decreasing function in both variables C' and T' on
R{ x Ry, therefore we know %Fl(O,T*l) and B%Fl(O,Tj) to be negative. If )\TC £ T
A1 has a non-zero real part. As long as dr > 6r,, A2 < 0 and has therefore non-zero real
part as well. This last condition is fulfilled in case 1.) as outlined in Table These
conditions assumed, we can use the Hartman—Grobman theorem to examine stability
of X! by utilizing the linearization of the system. We present here a formulation close
to the one found in as it is very descriptive and perfectly suited to our intended

applicationsﬁ

Theorem 6.5 (Theorem of Hartman Grobman)

Suppose =* is a fived point of the Differential Equation x(t) = f(x) with f € C1(R",R").
The corresponding linearized system is 2 = Az, where A = f'(«*). If * is hyperbolic,
there is a neighborhood U of * and a homeomorphism H : U — R™ with H(z*) = 0,
which maps the trajectories of ©(t) = f(x) one-to-one into trajectories of 2 = Az, with
respect to the time course.

In our case, this means that all solution curves of our non-linear system -
show the same qualitative behavior around a fixed point as those of the linearized system,
given the fixed point is hyperbolic. We may, under these conditions, therefore use the
linearized system to examine stability of fixed points. As shown above, the fixed point
X! = (0,T}) is hyperbolic as long as )\TC £ T} and we can apply the classification of
phase portraits and critical points for 2D systems of Ordinary Differential Equations as

8A more general formulation of the theorem (including rigorous proof) can be found in various

literature such as or .
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6.2 Fundamental Analysis of the Introduced System of Ordinary Differential Equations

outlined for example in [§] to the eigenvalues of the linearized system (Note that we have
even better information as we know all the eigenvalues, but simply for completion’s sake
let it be mentioned that the trace is equal the sum of eigenvalues and the determinant
is equal to the product of eigenvalues as 8] uses this classification). A comprehensive
visualization of said classification can be seen in Figure [6.1]

A=0:
det A det A=1(Tr A)2

l !

degenerate sink degenerate source
P
center

source

uniform
motion

- TrA
1 1
line of stable fixed points saddle line of unstable fixed points

Figure 6.1: Classification of Phase Portraits for two-dimensional Ordinary Differential Equation
systems in the (det A, Tr A)-plane. Source: Own Work, Code based largely on m

From this, we can see that X! = (0,T}) is either locally asymptotically stable, if
/\TC < T} or a saddle point, if /\TC > T}

We employ a similar approach for the tumorous equilibrium X2 = ﬁf, T2). Assume

therefore the conditions % <1, % <1, ,0()‘70) > 0 from Proposition 6.2/ hold. Inserting
in the Jacobian yields:

02
Ao(l—2g5) —nT? —nC?

J(CfvT*Q) = (

We now move on to examine trace and determinant of the Jacobian evaluated at X2 =
(C2,T2?). For the trace this yields:

C? 0
Tr J(C2,T?) = Ac(1 — 2CM) —nT7 + 01, F\(C2,T2) + (01, + 0, T7) - aTFl(Cf’Tf) —dr
2 0
= Ao~ +0L,F(C2,T2) — dp + (01, + 0,T7) - - F1(C2,T7) <0,
Cu oT
N—_——
<0 <0 <0
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

because of (|6.14]) and 12 < 1. As for the determinant, we obtain:

C?
det J(C2,T2) = — Ao—* [01, F1(C2, T2) + (01, + 01,T2) - — Fy (C2, T2) — dr]
Cu oT
0
+ 7703 [(0112 + QIQT* ) ac (037 TE)]

Rearranging to make use of familiar terms and formulations leads to:

C2

det J(C%,T?) = -)\c o (01, F1(C%,T?) — dy)
—
<0 <0
>0
4O+ 0TI | = 22T R(CHT) 40 R(CAT)].
>0 =:A

In order for X2 = (C2,T?) to be locally asymptotically stable, we are looking to have
det J(C2,T?) > 0. One way to ensure this is having A > 0 upheld ([8]). We use a
reparameterization as proposed in [85] and reintroduce F(Q) in place of F}(C,T).

dF(Q) o
aTFl(C T) = dézQ)d% and - ‘9 Fl(C' T) = dé}Q)% and recall Q(C,T) = yT(T + €C).
Using this simplifies the expressmn A:
dF(Q) Ac 0Q | 0Q

A=W | A Y%
a0 cyor T ac}

with g—g = 29T? + veC? and % = veT?. By a similar argument as before for the
variables C, T and Fy(C,T) it is clear, that F/(Q)) is a monotonously decreasing function
in @ on Ra’ and therefore %((52) < 0 on this domain. Hence, if

CL(QWTE +7€C2) > nyeT?
A
o 29 (272 + eC?) > neT?,
Cu
A > 0 will hold. One of the conditions in Proposition requires % < 1. This is

an even stricter requirement as

Ac
= — >
C']w_n6

A
= 28 (272 + €C?) > neT?,
Cwm
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and positivity is ensured through the parameters and C2,T?2 in some critical spots. Ulti-

mately, under the conditions proposed in the second part of Proposition det J(C?,T?) >
0 was shown to hold. We can deduce that in this case X2 = (C2,T?2) is locally asymptot-

ically stable and we can move on to examine global stability. For this we will utilize the

Theorem of Poincaré-Bendizson in conjunction with Dulac’s Criterion.

Theorem 6.6 (Poincaré-Bendirson)

Let D be an open subset of the plane and a differentiable real dynamical system on D
be given. Fiz (x,y) € D and suppose w(x,y) # 0, the limit set of (x,y), is compact,
connected and contains only finitely many fived points. Then one of the following holds:

e w(x,y) is a fized point
e w(z,y) is a reqular periodic orbit
e w(m,y) consists of (finitely many) fized points and a set of orbits connecting them.

A more general version, related Lemmata and extensive proofs can be found in ,.

Theorem 6.7 (Dulac’s Criterion)
Suppose D is a simply connected region of the plane and suppose there exists a continuously
differentiable function B(x,y) where

0

% B(x,y) . f(x,y)} + aay |:B(.T},y) 'g(x7y)

s of constant sign, then the dynamical system

dx
dy
i g(z,y)

has no closed orbits wholly contained in D. In particular, the system has no periodic
solutions lying fully in D.

A proof and further explanation can be found in [32]. For our system (6.11]) - (6.12)

we formulate:

Proposition 6.8
Assume Case 1.) of Table (our relevant case, see Section for system parameters).

If additionally ,0()‘70) > 0 and X} = (0,T}) a saddle point, X2 = (C2%,T2) is globally
asymptotically stable.

Proof. We first examine the existence of closed orbits (periodic or otherwise) in the
system. This leads us to formulate
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Lemma 6.9
The system (6.11)) - (6.14) has no closed orbits on D := {(C,T) € R* | C > 0,T > 0}

and thus, no positive periodic solutions, that are nontrivial, provided % <1.

Proof. We employ Theorem For this we set B(C,T) = % We then evaluate

660 (é - [)\CC(l _ C(’A;) _ nCTD + a‘; <é - [(em +0,T) - F(C,T) — dTTD

9 AcC 1 9

—% )\C—m— T:| +C81_'|:(9]12+0]2T)Fl(C,T)—dTTil
Ao 1 OF(C,T)

= @ + 6 : |:912F1(C’T) + (‘9112 +012T) : T - dT} < 07

on D :={(C,T) € R? | C > 0,T > 0}. Thus, we can apply Dulac’s criterion and conclude
Lemma [6.91 O

Now, going back to the Theorem of Poincaré-Bendizson , Proposition directly
follows. In our case we previously stated that solutions remain non-negative and are
bounded in Proposition [6.1} Under the conditions in Proposition [6.8] the system allows
for a unique positive equilibrium, X2 = (C2, T'?), which is locally asymptotically stable.
The tumor-free equilibrium is a saddle point. Because of Lemmal6.9] we can use Theorem
[6.6] to directly show, that all positive solutions will tend to a fixed point. This directly
implies, that X2 = (C2,T?) attracts all positive solutions and therefore we have shown
global stability under the conditions of Proposition [6.8] O

As a side note, using the same methodology, we can conclude global stability for the
tumor-free equilibrium, when X! = (0,T}) is locally asymptotically stable (and not a
saddle point) and the system does not allow for a tumorous equilibrium.

6.3 Numerical Simulation and Parameter Fitting

After obtaining a first understanding of the core interactions between tumor cells and
T lymphocytes, we reintroduce anti-PD-1 medication into the system and move back
to system - . We are interested in finding the rate of activation for T cells.
This could also give us some indication if activated T cells are able to enter the tumor
microenvironment. For this, respecting the difference in treatment between patients, we
will perform parameter fitting for A7, using the data set of one patient. We use P1, as P1
presents with a significantly higher number of metastases than other patients (see Chapter
and Figure , hopefully mitigating the problem of heterogeneity in tumors somewhat.
As outlined in Chapter[5]P1 also presents several other advantages over the remaining data.
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6.3 Numerical Simulation and Parameter Fitting

We will perform the fitting using the complete tumor burden as reference values and
then qualitatively compare the results with single metastases and other patients. The
location of the observed metastases is also an interesting one, as the blood-brain barrier
filters the blood flow to and from the brain [23] and, to some degree, protects the brain
(relative to other locations) from cancerous cells . We thus have a more isolated
environment when examining tumor burden as a whole; this can only be beneficial to our
results. In addition to the parameters (exhaustive list in Table explanations below)
we will need a value for the concentration of anti-PD-1 after admission. We assume that
anti-PD-1 is instantly homogeneously distributed in the blood volume, which is reasonable
especially for the brain, as the cerebral blood flow is quite high . We calculate the
amount of blood present at a given point in time (i.e. the cerebral blood volume). From
[51] we know that the blood volume per cm? brain tissue is about 3.1 x 1072 ml and
through measurements in Slicer 3D we can calculate the volume of the brain of P1 to be
1410 cm?®. Together this equates to a blood volume of 43.7ml in the brain at one given
point in time. An average male of the appropriate age group has a total blood volume of
about 4.71 in the body . Through the body weight and thus total dose of anti-PD-1
(225 mg from our data), we can now calculate the concentration of anti-PD-1 present in
the brain after administration (given our assumptions) as about 1.5 x 107% g/cm3.

There are additional effects in place, such as the high cerebral blood flow, making
overall more anti-PD-1 available in the brain. We try to emulate this, by multiplying the
identified concentration with a factor of 10. The specific value the anti-PD-1 concentration
increases after each treatment cycle (within a reasonable range) does not qualitatively
change the behavior of the system (not shown here), so the exact amount administered
to the brain is secondary. For our purposes we will use 1.5 x 107° g/cm? as reasoned
above and increase the concentration of anti-PD-1 by this amount at the time points
corresponding to anti-PD-1 treatment cycles in our simulation.

6.3.1 Parameter Values Used in Simulations

As our model populations are set to be in g/em?3, we need to convert the tumor sizes from
Chapter [5] from volume to corresponding concentrations. For this we use the relation
between volume and mass obtained in the control case of @] Therefore, one cm? of tumor
volume will have about 1.25g in mass and we use the obtained mass in conjunction with
the measured brain volume (see above) to obtain concentrations in g/cm?. Our model
(6.3) - has a carrying capacity of tumor cells in the surrounding tissue embedded
through the logistic growth function. However, this is more a local condition and indicates
the maximum concentration of cancer cells, for which supply of oxygen and nutrients can
still be provided. As we are examining the overall tumor burden on the brain it would
be unrealistic to assume that 100% of the brain volume can be occupied by cancerous
cells with a homogeneous concentration of Cy; (or lower, because of T cell activity - the
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tumorous equilibrium) everywhere.

In addition to this local condition we therefore introduce a global restriction to limit
the growth of tumor burden. By this we aim to respect restrictions on growth due to
the segmentation and form of the brain as well as due to a possible lethal burden. An
example for such restrictions from our data was shown before in Figure and now, in
Figure [6.2] a more extreme case is shown from P3. While the lungs in Figure [6.2] are
not at maximum carrying capacity for tumor cells at every single spot, the two tumors
shown are severely restricted in their growth due to spatial and structural properties.

Figure 6.2: Two endobronchial metastases Lungl, Lung3 (indicated by red arrows) at peak size
from P3. Source: Own work in conjunction with data provided by E. Dippel.

We assume in this model that a maximum of 10% of the brain volume can be occupied
by cancerous cells (i.e. is available space for metastases) and we adjust our concentrations
accordingly. Otherwise, as was observed in simulations (not shown here), the model
produces unrealistically high concentrations of tumor cells throughout the brain compared
to our data. Now, we can introduce values for our model parameters: the values used
can be found in Table [6.4} explanations are given below.
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6.3 Numerical Simulation and Parameter Fitting

Parameter Meaning Value Sources (if appl.)
Proliferation rate 1 .

Ac of cancer cells 0.9day Estimate
Carrying capacity 3

O of cancer cells 0.4766 g/cm “
Killing rate of cancer _

n cells by T cells 23day™" - cm®/g ‘@‘
Rate of activation of )

Ay naive T cells To determine
Rate of proliferation of 1

Atz activated T cells 0.25 day

I Concentration of IL-12 1.5 x 10710 g/cm3 60

I Concentration of IL-2 2.37 x 107 g/cm? 60
Concentration of _3 3

To available naive T cells 2x 107 g/em “

K, Half saturation of IL-12 1.5 x 1071%g/cm? 60

Ky, Half saturation of IL-2 2.37x 107 g/cm? 60

- Inhibition of T cells 18 3

Krq through PD-1-PD-L1 1.365 > 107 g/em 169

L gé?iefséinf)fceus 5.22 x 1077 Estimate
Expression of PD-L1 on

¢ tumor cells relative to py, 0.01 ‘@‘

dr Death rate of T cells 0.191 day ! \\
Rate of depletion of 5 3 .

“pA PD-1 by anti-PD-1 2.1 x 10°cm®/(g - day) Estimate

da Decay of anti-PD-1 2.7 x 1072 day ! \@\

PPD Expression of PD-1 2.49 x 1077 Estimate

on T cells

Table 6.4: Parameters used for the simulation of the system of Ordinary Differential Equations
16.3) - unless otherwise noted. This set of parameters is utilized for the main
parameter fitting process. Sources: Own work and as outlined in Table.
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Additional Explanation for Parameters

Proliferation rate Ao

Estimates for doubling times in melanoma vary greatly in literature . Lai et al.
in propose a reasonable range of doubling time in 5 - 15 days and using their method
to deduce a growth rate for logistic growth, we can calculate a value for A\¢. As the
metastasis is extremely aggressive in our data set for P1, we opt for the more aggressive
side of the spectrum (5 days) and therefore obtain Ac = 0.9 day~!.

Carrying capacity Cpyp

In @] a fitting of the logistic growth dynamic is conducted for the capacity, that
tissue can support (locally). We use their value obtained for Cjy;.

Killing rate of cancer n

Killing rates for CD4" as well as C D81 T cells are given in [60]. The ratio of CD4*
to CD8' T cells varies due to several factors, but we assume a healthy state and thus
can reasonably assume a CD4" to C D8 ratio of 2:1 (see , ) We average
46day—! - ecm3/g for CD8*" and 11.5day ! - cm?/g for C D4 accordingly and obtain
n=23day!-cm?/g.

Rate of activation of naive T cells A,
The proliferation rates of both CD4% and CD8' T cells is the same and given in in
a set-up up similar to ours; therefore, we use the same value and set A7, = 0.25day .
Concentration of available naive T cells Ty
The densities of naive T cells are given in as 1.2 x 1073 g/cm? for CD4™ T cells and

8 x 107%g/cm? for CD8F T cells. As we assume an equal rate of activation for all T
cells in our model, we combine these densities to Ty = 2 x 1073 g/cm?
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6.3 Numerical Simulation and Parameter Fitting

Expression of PD-L1 on T cells pr,, Expression of PD-1 on T cells ppp, Expression
of PD-L1 on tumor cells (relative to pr) €

All the relevant constants for calculation of pr, ppp can be found in . There
are, on average, 3000 PD-1 proteins on a T cell. The mass for such a protein is known
to be approximately masspp = 8.3 x 10720 g and the mass of a T cell is approximately
massy = 107"g . Therefore, we can calculate:

masspp

ppp = 3000 - =249 x 107",

massr
Similarly, we know 9000 PD-L1 proteins are generally found on a T cell and the weight
of this protein is known to be approximately massy, = 5.8 x 10729 g and therefore:

Massy,

pr = 9000 - =5.22x107".

massr

Finally, for €, it becomes a little trickier, as this can vary from tumor to tumor and
certainly from patient to patient. This is reflected in and , who deal with exactly
this expression rate factor and offer ranges 0 — 0.01 and 1 — 100 respectively. As we
have seen previously in Section [3:2] expression of PD-L1 on tumor cells in the case of
melanoma is controversial as an indicator for response to anti-PD-1 treatment and several
publications state, that response and even remission can often be seen in patients with
little to no expression displayed. We therefore choose a small value for € in hope that our
model captures this dynamicﬂ We opt for e = 0.01.

Death rate of T cells dp
The rates of decay for CD4% (0.197day~!) as well CD8 T cells (0.18day~!) are
given in J40]. We once again assume our “healthy” ratio of 2:1 for CD4" to CD8" and
average accordingly to obtain d7 = 0.191 day .

Decay of anti-PD-1 d 4

The half-life of Pembrolizumab is given by the FDA as 26 days and confirmed
to be so in . Therefore, we can calculate the rate of decay directly as dq = 22

26 day !
2.7 x 1072 day L.

Tt should be noted here that indeed it does and even if the tumor expresses no PD-L1 at all (¢ = 0),
the effects of treatment can be observed. This goes for all our modeling approaches in Chapters [f] and [7]
and will not be repeated each time.
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

Rate of depletion of PD-1 by anti-PD-1 pupa

For the calculation of ups4 we try to estimate what percentage of the administered
anti-PD-1 actually binds to receptors and how much decays naturally. As seen in Chapter
our prescribed dose is (2mg/kg), which is also the recommended dose at current
standards of treatment ([88]). Patnaik et al. in [91] relate dose administered to Pem-
brolizumab serum concentration observed and ultimately to PD-1 receptor modulation
as an indicator for treatment effect. They observe, that exceeding the recommended
dose has no additional benefits and indeed even going as low as 0.05 mg/kg — 0.06 mg/kg
still leads to comparable PD-1 receptor modulation (albeit there is a benefit to upping
the dose to recommended levels). Going beyond this threshold effects PD-1 receptor
modulation negatively in a more significant manner. Thus, we can reasonably assume,
that 0.06 mg/kg still leads to high saturation of PD-1 receptors on T cells and therefore
only a small percentage of our dose is actually bound to PD-1 receptors. This is supported
by Ogungbenro et al. in [88], who observe fairly similar receptor occupancy levels for
doses of 10mg/kg and 0.3 mg/kg (87% vs 77%) and Fessas et. al [37], who make similar
observations regarding receptor occupancy.

Assuming that administering 0.06 mg/kg leads to almost full utilization (as this seems to
0.06 mg/kg
2mg/kg
bind to receptors whereas the rest decays. Now assuming steady state for equation ,
we can calculate pp4. For this we assume a constant source of anti-PD1 to get a nontrivial
steady state solution for A. This is no problem, as it doesn’t affect the parameter, but
we need a constant value for D to execute the calculations. As a value for D, we examine
the control (disease-free) case and obtain a range of 0.9 x 1079 g/cm?® — 7 x 1079 g/cm?
for parameters Aj,, between 1 and 100. For simulation we choose 4 x 1079 g/cm3. As we
have an estimate for how much anti-PD-1 simply decays, we can conclude ’”Bf‘og 4 — %

at steady state. Therefore, finally

be the threshold for effectiveness), we estimate that about = 3% of our dose will

0.03-da  0.03-2.7 x 102 day ™!

= =21x10°cm®/(g-d
0.97-D  0.97-4x 109 g/cm? x 10°em®/(g - day)

HpA =

1o, Is, KTQ, Ky,,, Kj, are all extracted from , where I, I» are constants as
explained above.

To showcase the general parameter fit we conduct mock-up simulations with varying
parameters for the unknown rate of activation Ar,. The results of these simulations are
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6.3 Numerical Simulation and Parameter Fitting

visualized in Figure along with the control caselﬂ Through these simulations we
can prove that the modeling approach with our parameter set in Table can produce
distinct behaviors, importantly it can produce stable disease behavior and response up
to remission.

Tumor Burden over Time Example: Control Case Tumor Burden over Time Example: Stable Disease
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Figure 6.3: Exemplary simulations that display the control case (treatment-free) in (a), initial
response with stable disease in (b) and response up to remission in (c) for varying
parameter values for A7,,. Each figure tracks the concentration of cancer cells (under
treatment regime and initial conditions at ¢ = 0 of P1) and therefore tumor burden.
Source: Own work in conjunction with data provided by FE. Dippel.

ONote that we used the data of P1 as an orientation and set up the treatments to emulate the
treatment regime of P1. As explained in the motivation of A, cancer of P1 displays extremely progressive
behavior thus explaining the fast growth to capacity in the control case.
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

6.3.2 Results of Parameter Fitting Simulation

We proceed to conduct a parameter fitting for A7, to our model - using the
parameters outlined in Table We use the exact immunotherapy treatment regime
undergone by P1 as can be found in Table 53] The timeline is also as outlined in
Chapter [5| and initial values for cancer cell concentration stem from the measurements
at t = 0. Initial values for T cell (Tp) and PD-1 (Dy) concentration were taken from
the steady state of the control case (treatment-free) and are taken to be approximately
Tp =6 x 10~*g/cm?3 and Dy = ppp - Tp. Results can be seen in Figure this gives the
parameter value \j,, = 17.6day .

Tumor Burden over Time (P1) T Cell Concentration over Time (P1)
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Figure 6.4: Behavior of simulated tumor burden of P1 (left), compared to actual measurements
taken, and T cell concentration (right) over time. Treatment times are indicated
through vertical lines. Source: Own work in conjunction with data provided by FE.
Dippel.

Looking back at Table we can compare the behavior of single metastases. The
volume over time for M1 - M5 is visualized in Figure [6.5] We can see that initial response
agrees with the overall model from Figure but at the last imaging date t = 333 we
see fairly aggressive progression in size of M1 - M4, whereas our model predicts stable
disease. As overall tumor burden increases only slightly it agrees with the observations,
that smaller metastases do indeed not progress, but the treatment has still beneficial
effects on them. This further emphasizes the need to consider the behavior of metastases
more closely and focus on the exact dynamics in the tumor microenvironment. We will
attempt to do so in Chapter [/} Nonetheless, our model of Ordinary Differential Equations
- seems to capture the underlying response dynamics quite well.

In the treatment-free model with equal parameters we see the tumor rise almost to

capacity (controlled only marginally by the immune system) and stagnate at this level,
which is congruent with our analysis from Section We can see the treatment having
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Tracking 5 Exemplary Metastases over Time (P1)
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Figure 6.5: Volume of M1 - M5 from P1 as measured directly from data over the observed time.
Source: Data provided by E. Dippel.

immense effect in comparison even when the tumor cells express little to no PD-L1. As
we intentionally chose low PD-L1 expression on tumors in an attempt to understand the
treatment effect under such conditions, we may offer some thoughts on the question of
why patients respond to anti-PD-1 treatment with practically no expression of PD-L1
on tumor cells, which is still subject to discussion (as outlined in Section . We can,
from our model and results, explain the effect as a sort of boost for the immune system,
inhibiting its self-regulation through PD-1-PD-L1 complexes. If the tumor expresses
PD-L1, this of course improves response even further (under the condition of all other
factors remaining unchanged).

While the dynamics clearly reflect the data points, the parameter fit did not manage
to match the curve perfectly. It appears, that the initial response is overestimated by the
model, whereas, when stable disease sets in, the tumor burden is overestimated. One
factor, we have so far not considered, is the radiation therapy conducted on the entire
brain at t = 68. As discussed in Chapter 3| adjuvant therapy can play a crucial role in
immunotherapy (see for a comprehensive overview) and while not fully understood,
there is evidence, that combined treatment offers improved response . We try to
include the radiotherapy and a synergy effect into our system to examine the resulting
dynamics. While A, is motivated as the activation rate of naive T cells, functionally it
controls how many activated T cells enter the tumor environment. As seen in Chapter
penetration of the tumor by T cells (and ultimately the amount of T cells present)
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Chapter 6 A Spatially Homogeneous Ordinary Differential Equation Approach

is a strong indicator for response. Indeed, also from Chapters [2] and [3] we note that
immunotherapy can be less effective, because of non-sufficient penetration of T cells. We
therefore assume, we can reasonably introduce the effect of combination therapy through
modification of parameter A, El

An example of this modified response can be seen in Figure and it is evident that
the fit is improved. For this simulation we used the same set-up as before, but introduced
a parameter Arj,pre = 10 day~! for the T cell activation pre-radiation therapy, allowing
less T cells in the tumor environment and a parameter Az, ,post = 21 day~?! for the T cell
activation post-radiation therapy, allowing for an improved immune response.
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Figure 6.6: Behavior of simulated tumor burden of P1 (left) compared to actual measurements
taken and T cell concentration (right) over time. Simulations include additional
effects for radiation. Treatment times are indicated through vertical dotted lines,
where green is anti-PD-1 treatment and light blue is radiation therapy. Source:
Own work in conjunction with data provided by E. Dippel.

It should be noted, that the primary effect of radiation therapy was included in the
model as an eradication of a percentage of tumor cells in the area receiving radiation
treatment. The precise effect of radiation therapy on the types of cells involved is complex
(as can be seen in [10]); in our case the exact percentage of tumor cells eradicated had no
significant effect on the qualitative outcome (largely due to the aggressive nature of the
cancer). For the simulation we used a percentage of 50%. After obtaining these improved
results, we move onto the micro level and look at separate metastases: Looking back at
Figure [6.5] and the progression of our “older, bigger” metastases M1-M4 towards the end
of the observed period; this could be either interpreted as the wearing off of the effect
of the radiation on immune response or a general development of resistance toward the

" Through the modeling approach we assume that everything is well mixed, but in reality, of course,
the T cells move to the tumor sites
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immunotherapy through new mutations. Resistance is developed in a significant number
of patients that show initial response as outlined in and . This may be further
indication that a resistance mechanism could be included in an Ordinary Differential
Equation model to improve model accuracy.

Moving on to other patient data, we first take a look at P3, as P3 also presents with
multiple metastases in the same tissue. Here, we have a total of five metastases in lung
tissue, which is however significantly lower than the number of brain metastases observed
in P1. We start in a similar manner to our process with P1 data and compare the
simulation behavior to the overall tumor burden in lung tissue. For this we need to
adjust several parameters. Firstly, in terms of increase of anti-PD-1 concentration: From
[67], we obtain a range for pulmonary blood volume from about 390 ml to 481 ml in their
control group with one outlier at 666 ml. We therefore assume an average pulmonary
blood volume of 450 ml, which once again allows us to calculate the amount of anti-PD-1
medication dispensed to the pulmonary environment from total dose and the average
blood volume of 4.71 in the body . The total volume of both male lungs was derived in
to be about 5858 cm®. As above we calculate the increase of anti-PD-1 concentrations,
which in this case is 2.5 x 1075 g/cm?3.

Similarly, we need to convert our measurements into concentrations and will again
proceed as for P1 brain metastases. From Figure [6.2] we can reasonably assume, that
the lung can support a higher tumor burden than we assumed for the brain (10%).
There is certainly a limit as outlined in the patient history of P3, as eventually re-
sections became necessary to retain organ functionality. We assume that 50% of the
lung volume can be occupied by tumor mass and adjust our concentrations accordingly.
As this might appear arbitrary at this point, we want to again emphasize the nature
of these restrictions. They should always be thought of in the context of a spatially
homogenous Ordinary Differential Equation model. The local (parameter Cjp; in our
model) and this global restriction do not impact the behavior of the system qualita-
tively (only in specific cases, see Section; it can essentially be thought of as a rescaling.

Further, we adjust the proliferation rate Ag of cancerous cells. In the case of P1 we
observed an extremely aggressive progress of the cancer and thus opted for a rather
aggressive growth behavior. Here we choose a value close to the one used by Lai et al. in
in A\c = 0.6day~!. Lastly, we want to remind of the special standing the data-set P1
had, as we could reasonably exclude all effects from previous treatments. With P3, the
treatment with Ipilimumab and additional chemotherapy, makes this much trickier. This
might still have an impact on system parameters, such as Ao among other. We further
don’t allow the tumor a treatment-free period before initiation of Pembrolizumab therapy,
as this showed unnaturally high growth in the first days of simulation. Compared to the
timeline for P3 in Appendices C and D. we start simulations at t = 6, the first cycle of
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treatment, and assume the measurements from ¢ = 0 at that date.

A rough fitting leads to the results seen in Figure and leads to a value Ar, =
17 day~!, similar to the case of P1. It becomes evident, that the model is not suited
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Figure 6.7: Behavior of simulated pulmonary tumor burden of P3 (left), compared to actual
measurements taken, and T cell concentration (right) over time. Treatment times
are indicated through vertical lines as before. Source: Own work in conjunction
with data provided by E. Dippel.

to emulate the dynamic of slowed progress. Where response and stable disease can
be described quite well through our model, stable disease into slow progression is not
possible. This again emphasizes the need to include a resistance mechanism or something
similar, when moving forward with his Ordinary Differential Equation approach. We
do not want to dive too deeply into this topic, as the medicinal background is complex
and the evolution of resistance in a cancer to specific treatment not fully understood.
Qualitatively, we could introduce a respective dynamic at various points in our system.
This should, of course, be rigorously motivated from a biological as well as mathematical
point of view. Just as a brief outlook, if we take our core dynamic triggered by the
presence of anti-PD-1 in the system, we could manipulate the system as follows:

dC C

— =XcC(1 - —)—-nCT 6.17
o cC( CM) n (6.17)
drT Io I

— A AN, T——) - F —drT 6.18
dt ( 112 OKllz 112 + I2 KIQ + 1'2) (Q) T ( )
dA

= —pupaDA - e ¢ —d A (6.19)
dD 19 I _

— = A, Ip—r— + A\, T——) - F —dprD — DA -e ¢ (6.20
o = PPD (Arys o + AL, Kn + 12) (Q) —drD — ppa e " (6.20)
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6.3 Numerical Simulation and Parameter Fitting

Specifically, we manipulated the primary effect of anti-PD-1 and complemented the
term representative for depletion of free PD-1 with an exponential decay term. This
means, as we move forward in time, the effect of PD-1 blocking by anti-PD-1 has less
impact. With values A\, = 17 day~! and ¢ = 0.007 we get the results in Figure
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Figure 6.8: Behavior of simulated pulmonary tumor burden of P3 (left), compared to actual
measurements taken, and T cell concentration (right). The simulation includes
resistance dynamics. Treatment times are indicated through vertical lines. Source:
Own work in conjunction with data provided by E. Dippel.

We can see, that this first adjustment already allows a much-improved fit. We will
stop further examinations of resistance dynamics and this brief outlook should not be
understood as rigorous from either the biological side (motivation and derivation of
system and parameter values) or the mathematical side (parameter fitting). It is only
intended to give an idea, what further behavior is enabled by the extension of our basic
model and encourage further explorations of anti-PD-1 resistance through mathematical
modeling. Looking at Figure[6.9] we once again examine the behavior of single metastases.

Figure [6.9] shows all five lung metastases as well as two additional tumors located
close to the arteria mammaria interna and in the mediastinum respectively. We see
that in this case the overall tumor burden might be deceptive, as a large number of
metastases show full remission and only three progress in size. Looking to Appendix
C for reference, we can see that Lungl and Lung3 from Figure [6.9) are extremely large.
As can be gleaned from Appendix C, P2 has two metastases of middling size and they
both follow a standard stable disease behavioral pattern. As our model was proven to
be well equipped to handle stable disease, we might suspect that the model was able
to simulate behavior of P2 metastases. Simulations proved this to be true (not shown
here due to space considerations) for the same approach and a similar parameter set as
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. Tracking the Metastases (Relative Volume to t = 0) of P3 over Time
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Figure 6.9: Metastases from P3 as measured directly from data over the observed time. To
account for two extremely large metastases, the measurements were scaled in this
graphic to represent size relative to measurements at t = 0. Source: Data provided
by E. Dippel

utilized above.

Overall, the results from P3 (and P2) confirm our previously articulated need to
examine metastases separately. It is interesting to see such heterogeneous behavior in
different types of tissue and for metastases significantly bigger in size as compared to
P1. Lastly, we want to once again state, that the data for P3 is not as “pure” for the
reasons outlined above. Several resections of unknown date and volume (see Chapter [5))
pose an additional challenge. The same goes for P2 because of adjuvant radiation. When
it comes to quantitative evaluation, it appears to be important to consider adjuvant
therapy strongly. Especially so when comparing between different patients as treatment
histories vary greatly. We are primarily interested in further understanding the dynamics
of immune response and anti-PD-1 treatment, but effects of adjuvant therapy should
always be kept in mind, when dealing with data. Once the mechanics and interactions of
immunotherapy and the adjuvant therapy options are better understood, it may be a
promising avenue of research to pursue from a mathematical viewpoint and strive for
a holistic approach. As was touched upon for the evaluation of P3 data, a resistance
dynamic could possibly included in such an approach.
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6.4 The P-Q-N Model

We previously alluded to the need to examine the tumor microenvironment (i.e. single
metastases) and the cells present more closely, to be able to understand the vastly differ-
ent behaviors of distinct metastases. We are looking examine additional characteristics
of cancer cells and thus allow for some manner of heterogeneity while staying true to
an Ordinary Differential Equation modeling approach and applying pure mass-action
kinetics. One option is the utilization of several populations of cancer cells with different
properties . Thus, we divide the entirety of cancer cells into three populations:
Proliferating cells, Quiescent cells and Necrotic cells, therefore P-Q-N model. The three
types of cells have distinct characteristics, such as growth rates or rates of decay (if
any). The compartment, to which a tumor cell belongs, depends on several factors. The
key factor is the availability of oxygen and nutrients. Should a proliferating cell lack in
supply of either of these, it will become quiescent; a quiescent cell may be reactivated and
become once again proliferating, if conditions permit it . In case the supply levels of
nutrients and oxygen drop further, a quiescent cell may die completely and thus become

necrotic .

The model generally assumes perfectly spheroidal shape of the tumor to justify the
assumptions needed in deriving the compartment model of Ordinary Differential Equations
and to apply mass-action kinetics (if needed). The tumor is assumed to be layered, where
the necrotic cells occupy the center and the proliferating cells the outer layer with the
quiescent cells in between (as seen schematically in Figure . These assumptions
are fairly simplifying, as is supported by Figure [6.10] While showing imaging of a tumor
displaying the characteristic “necrotic core”, it also gives an idea of the complex structures
involved. Nonetheless a good understanding of the dynamics can be obtained from the
P-Q-N Model.

The following is an example of such an Ordinary Differential Equation model consisting
of the three mentioned compartments:

dP

i G(P) —bpqP +bopQ — pP, (6.21)

dQ

T —bpoP ~ borQ — bonQ — b, (6.22)

dN

- =bon@ — Ox N, (6.23)
P(0) =Py, Q(0)=0Qo, N(0)= No, (6.24)

where P(t) is the concentration of proliferating (tumor) cells, Q(t) the concentration
of quiescent (tumor) cells, N(t) the concentration of necrotic (tumor) cells and G(P)
is a growth function (such as for example from Table [6.2]). Proliferating cells become
hypoxic (i.e. quiescent) with rate bpg and reoxygenate at rate bgop. Quiescent cells
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Figure 6.10: Axial image with contrast dis- Figure 6.11: Schematic visualization of
playing a tumor with necrotic proliferating (P), quiescent
core at right basal ganglia. (Q) and necrotic (N) cells in
Source: [116]. a tumor. Source: [[109].

become chronically hypoxic (i.e. necrotic) at rate bgy. Further, proliferating cells leave
the microenvironment due to reasons other than hypoxia at rate dp. Similarly, quiescent
and necrotic cells are removed from the microenvironment at rates dg, dn respectively.

As proposed in this approach allows the inclusion of terms F(P,Q,N) and

H(P,Q,N) into equations (6.21]) and (6.22)) to account for further dynamics as e.g. the
effect of necrosis on proliferation among others. The effect of necrosis in particular has
been proposed often , though the exact mechanisms are still not fully understood
. It of course depends on the chosen model as well as which key interactions it
aims to evaluate and therefore some do not explicitly include the dynamic (see for
example).
It becomes evident that the supply of nutrients and oxygen plays a vital role in the core
dynamics of this model and thus we decide to introduce another cell population into the
system - that of vascular cells. To allow the dynamics to play out spatially, we move
away from the spatially homogeneous Ordinary Differential Equation approach.

62



Chapter 7

A Spatially Heterogeneous Partial
Differential Equation Approach

We employ a spatially heterogeneous approach to emulate the spatial dynamics of the
various cells involved. The key dynamics here are between the three types of cancerous
cells as discussed before in Section [6.4} proliferating, quiescent and necrotic. While we
keep dividing the tumor cells in these three compartments despite the existence of in-
between states, we acknowledge the fact that the compartments are not strictly separate.
The layers assumed in the P-Q-N Model - in Section had the implicit
effect that compartments were unable to mix. To account for a more realistic model
we explore a system of Partial Differential Equations that depicts the concentrations of
our three compartments in a given point in space in addition to the change over time.
This allows mingling between tumor cell types and thus creates a more realistic, less
"black-and-white" model of the tumor.

Additionally we introduce a new type of cell into the system in the form of vascular
cells. The role of vascular cells in tumor growth is critical, as can be seen in Section [2:2}
with the tumor initiating angiogenesis early on in order to survive and support its growth.
Further, as evident from Section the vascular system also plays a pivotal role in the
body’s immune response. We employ a similar modeling approach as Gallaher et al. in
and try to combine the dynamics of spatial tumor growth with the key dynamics of
immune response and anti-PD-1 immunotherapy as previously evaluated in Chapter [f]
This is of course a simplification as tumor vasculature differs from “normal” vasculature
and is quite chaotic (see Figure .

While a tumor is certainly a three-dimensional (3D) object, we examine the dynamics
in only one dimension. For simplicity we assume spherically symmetric behavior of
the tumor and involved components; this allows for a quasi three-dimensional approach
without complicating the system as we can move to spherical coordinates. Here, all
functions solely depend on the radius, i.e. the distance from the center of the tumor. With
this simplifying assumption we basically obtain a one-dimensional (1D) system - the only
additional effect is on the Laplacians involved . The Laplacian for a three-dimensional
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Normal tissue Tumor

Figure 7.1: Side-by-side comparison between an example of “normal” blood vessels and more
chaotic tumor vasculature. Source: .

domain in Cartesian coordinates (z,y, z) and a one-dimensional domain reads as:

Pf  0*f 0
Af=V2f= f+8f+az£

>f
0z2

(3D), Af = (1D).

For spherical coordinates (r, 8, ¢) the Laplacian is:

9 1a< 8f> 1 ( 8f> 1 ﬁ
Af=Vf= 29 or +r2sin089 s1n980 +7"2sir1298gz$2’ (7.1)

where, for the three dimensional case, cartesian and spherical coordinates relate in the
following way:

x = rsin 6 cos ¢, y = rsinfsin ¢, z =rcosf.

It is evident from ([7.1)), that if we apply our assumption of spherical symmetry, i.e. the

function f only depends on 7, the Laplacian reduces to A = gr ( 29f > The gradient
in spherical coordinates writes as:
0 f 10f A 1 0Of »
s 1974 aj
VIi=5 " 2000 T rsmo o0

Under the assumption of spherical symmetry, this simplifies to Vf = af 7, which is

a multiple of the vector unit vector 7 for all values and is therefore equlvalent to the

gradient in a one dimensional Partial Differential Equation, V f = % T

7.1 The Model

This assumption of spherical symmetry allows us to formulate a model of one-dimensional
Partial Differential Equations to describe the interactions of the immune response to
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7.1 The Model

State Variable Meaning

Concentration of proliferating cancerous cells in g/cm?
Concentration of quiescent cancerous cells in g/cm3
Concentration of necrotic cancerous cells in g/em?

Concentration of vascular cells in percentage of volume occupied
Concentration of anti-PD-1 in g/cm?
Concentration of activated T cells in g/cm?
Concentration of free PD-1 expressed on T cells in g/cm?
Concentration of PD-L1 expressed on T and cancer cells in g/cm3
Concentration of PD-1-PD-L1 complexes in g/cm?

QTN E<Z0O%

Table 7.1: List of variables involved in the system of Partial Differential Equations (7.2)) - (7.8).

metastasized melanoma in the tumor microenvironment on a fixed region (sphere in
three dimensions). We introduce the populations proliferating cancer cells (P), quiescent
cancer cells (Q), necrotic cancer cells (V) as introduced in the P-Q-N model, vascular
cells (V') and as before T cells (T), free PD-1 (D) and anti-PD-1 medication (A). A full
overview over populations involved can be gleaned from Table We formulate the
system of Partial Differential Equations:

88]; = DpAP + )\pPV[l — G] + OéQPQV - aPQP(l — V) —opP — inT (7.2)
0

20 — DaAQ ~ agrQV +argP(1 - V)~ agn@ ~ 5gQ — 1gQT (7.3)
ON

%‘Z — DyAV 44V (VVQ) FNVQ[L =G =6V (7.5)
%;1 — DAAA— upaDA —daA (7.6)
oT

o = DpAT + [9[12‘/ + QIQT] - F(Q) — drT (7.7)
oD

E = DTAD+[)PD {9[12V+9[2T} F(Q) *dTD*,U,DADA (78)

— I12 _ Io
where 9[12 = )\T112T0m’ 0[2 = )\TIQW as before and

G=G(t) =

O~

[P(t)+Q(t) + N(t)] + V(¢).
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All populations are given again as concentrations in g/cm?® with the exception of
vascular cells. Vascular cells are given in percentage of volume occupied. Along with
these equations we employ zero-flux boundary conditions (see Section . As initial
conditions we will set an appropriate percentage of vascular cells (depending on location
and tissue) throughout the tissue, an appropriate T cell and PD-1 concentration and
start with a solid sphere of proliferating cancer cells in the center of our 3-dimensional
region. That is to say we begin simulations (unless otherwise noted; this is necessary
in e.g. P3 due to data availability) at the theoretical onset of angiogenesis. As seen in
Section this happens roughly above 1 mm in diameter for malignant tumors. So, we
will start with initial conditions of about 0.5 mm radius, where all volume is occupied by
solely proliferating tumor cells, as there are no vascular structures inside the tumor yet
and therefore no significant amount of T cells should be contained within.

We set the percentage of volume occupied for this tumor initial condition to 95% to
account for some room for stroma and irregularities. The rest of our simulated region
has the appropriate percentage of vasculature and concentrations of T cells and PD-1.
As we are interested in the size of the tumor, we need to define the tumor border (which
moves over time). Through the properties of mathematical diffusion, in our simulation,
extremely small concentrations will occur on the entire region. We define the tumor
border as the point farthest away from the center (r = 0) which still has a concentration
of 0.02 g/cm? of proliferating cancer cells. One needs to be careful with increasing tumor
size, as the center tends to be made up almost solely of necrotic cells. This is somewhat
arbitrary (however proposed as a reasonable choice in ), but the border is well behaved
as tumor concentration drops quickly when moving over a certain point on [0, L], the
interval on which we conduct our simulation (see below). Other values for the cut-off
point (border) in a similar region (0.005g/cm? — 0.05g/cm?) work as well in simulations
(not shown here). We now give some motivation and explanations for equations -

(7-8).

Proliferating (Normowic) Cells (P)

As in the P-Q-N Model, proliferating cells are the only tumorous cells that prolifer-
ate and they do so at rate Ap while under the regime of a logistic growth function [60].
Different from Ordinary Differential Equation approaches, they do so only in presence of
sufficient vascular cells V. Proliferating cells become hypoxic at rate apg in the absence
of vasculature (modeled through the term (1 — V')). Quiescent cells can reoxygenate
and become proliferating cells once more at rate agp, when vascular cells are present.
As compared to the Ordinary Differential approach we can regulate proliferation more
elegantly. Through the introduction of quiescent and necrotic cells, we can exclude the
factors nutrients and oxygen from the growth function. This is now regulated through
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7.1 The Model

the exchange between these three compartments (P, @, N). It allows us to adjust the
capacity to only represent volume restrictions. Thus, the limiting factor in our logistic
growth term is equal to [1 — G(t)], where G(t) is the percentage of volume occupied by
tumor cells (all kinds) and vascular cells and therefore the expression from above:

G(t) = S [P() + Q) + N(D)] + V(1)

as 1.25 g of tumor mass equate to 1 cm? of tumor volume @] and vascular cells are given
in percentage of volume occupied. The other populations are neglected, as concentrations
are extremely low in comparison or are not relevant to volume restrictions (e.g. PD-1 is
part of the T cells). Also, in comparison to the Ordinary Differential Equation approach,
we need not worry with overall space available, since our model only examines one
metastasis at a time and we can evaluate each case separately when comparing to data.
np represents the killing rate of proliferating cells by T cells. Similar to the P-Q-N model,
proliferating cells can leave the system through other causes and they are expunged from
the microenvironment at rate §p. Proliferating cells undergo random diffusion at rate
Dp. Therefore

oP
E = DPAP—I—)\pPV[l — G] —i—OéQPQV— ()szP(l — V) — 5PP—’I7PPT,

and specifically in spherically symmetric polar coordinates:

opP o*’pP 20P
o b, [w + Tar] + ApPV[L — G] + agrQV — apgP(1 V) — §pP — npPT.

Quiescent (Hypoxic) Cells (Q))

Quiescent cells become chronically hypoxic and thus necrotic at rate agn. They undergo
random diffusion at rate Dg and are killed by T cells at rate ng. Much like proliferating
cells they can leave the system for other causes and do so at rate dg. Therefore

0

and specifically in spherically symmetric polar coordinates:

0Q 0*Q  20Q
o = Do [ 2 + r@r] —aQpQV +apgP(1 =V) —agnQ — 00Q — 1nQT.
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Necrotic Cells (N)

Necrotic cells will not reoxygenate and become quiescent or even proliferating again.
They are expunged from the system at rate dy and do not undergo random migratory
dispersal. Therefore (same equation for spherically symmetric polar coordinates):

ON

Vascular Cells (V')

Vascular cells primarily occur when the tumor initiates angiogenesis. Vascular cells
will therefore proliferate at rate Ay through logistic growth only in dependence of (). The
same spatial restriction as on proliferating cancer cells is imposed through the inclusion
of the term [1 — G(t)]. It should be noted, that there are three types of vasculature
involved in the tumor microenvironment . These can be classified as mother vessels,
glomeruloid bodies, and vascular malformations . This leads to a vastly heterogenous
structure of the local vasculature, which further depends on the type of surrounding
tissue. The key dynamic is the expression of VEGF-A, which can be found in the vast
majority of malignant tumors. In a hypoxic environment the expression of VEGF-A
increases and therefore facilitates the proliferation of vascular cells. We include this
dynamic implicitly through the dependence of @) in the proliferation term. The VEGF-A
cytokine is multifunctional (it also plays a key role in lymphangiogenic activity, [31]) and
has another relevant feature for our model. In addition to inducing proliferation it also
has a chemotactic effect on vascular cells , which we include in the basic Keller-Segel
form (see for further explanation) with chemotactic constant x [47]. As a stand in
for VEGF-A, we again use the quiescent cells that cause its expression, as attractant in
this chemotactic approach. Lastly, vascular cells do undergo random migratory dispersal
at rate Dy and leave the system at rate dy,. Therefore

%‘t/ = DyAV +xV (vvg) + M VQ[L -G =6V,

and specifically in spherically symmetric polar coordinates:

ov

92V 20V AV 9Q 92Q 200
£ Varzhar} X{TJFV(WJFM%

)} MWVQ[L -G - sV
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Anti-PD-1 Immunotherapy Medication (A)

Anti-PD-1 medication is depleted through binding to PD-1 at rate upa and decays
in the microenvironment at rate d4. In terms of adding medication to the system, we - in
simulations - add the appropriate amount instantaneously. While the administration of
the medication may take up to one hour (source:, obtained data), including an addi-
tional regime to alternate between the system under treatment and not under treatment
proved to introduce unnecessary instability and no improved results. While doing so may
be interesting in other forms of cancer treatments, such as chemo-, radio- or targeted
therapy, the dynamics at play in our model act more slowly as medicine empowers the
body’s own immune system and doesn’t attack tumor cells directly. The addition of
anti-PD-1 is dependent on the concentration of vascular cells, V', as we assume anti-PD-1
to travel quickly through the vascular system. In the local tumor environment, it then
undergoes random diffusion at rate D 4. Therefore

A
% = DAAA — upaDA — duA,

and specifically in spherically symmetric polar coordinates:

0?4 204
or?2  r Or

0A
ot~ Pa

] — upaDA —dpA.

Active, relevant T Cells (T')

The T cells in our model undergo the same dynamics as previously discussed in the Ordi-
nary Differential Equations - . This includes the activation of naive T cells and
the local proliferation of T cells induced by IL-12 and IL-2 respectively. The activation of
T cells happens proportionally to the local vasculature, as T cells are transported to the
tumor site via blood vessels. In comparison to the Ordinary Differential Equation system,
we can here model the arrival of T cells in the system more accurate. The heterogeneity
of the tumor plays a critical role in the initial arrival and subsequent distribution of
T cells. Both processes, activation and proliferation, are inhibited by the presence of
PD-1-PD-L1 complexes, which is included in the model through the term F(Q).

1 1
- 14+Q/Krq 1+ (DL)/Krg

FQ)

as before. However, L = pr,(T + ¢(P + Q)), where we include PD-L1 expressed on (the
still active) proliferating (P) and quiescent (@) cancer cells. In the previous system of
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Ordinary Differential Equation - we incorporated the concentration of cancer
cells C for PD-L1 expression, as we had only included one type of cancer cell in our
model. T cells further undergo natural death at rate dr and random diffusion at rate
Dy. Therefore

oT
5y = DraT + [ehgv + 912T} - F(Q) — drT,

and specifically in spherically symmetric polar coordinates:

oT [82T 20T
p— T PR

Free PD-1 (not bound by anti-PD-1) (D)

Finally, as before, PD-1 is introduced into the system through the addition of fur-
ther T cells and thus underlies the same dynamics and inhibition mechanism. Because of
the assumption that every cell in one population behaves alike, the natural death rate
of PD-1 is equal to that of T cells, i.e. dp. Because PD-1 is expressed on T cells, it
undergoes the same random diffusion at rate Dp. Lastly, PD-1 depletes through binding
to anti-PD-1 at rate upa . Therefore

oD
E = D7rAD + ppp [9[12V + HIQT] . F(Q) —drD — upaDA,

and specifically in spherically symmetric polar coordinates:

oD [821) 20D
= T

E = 87“2+7“87"} + pPD |:9112V+(9[2T:| F(Q) _dTD_MDADA-

Additionally, to these motivations of each equation, a brief explanation of the origins
of separate killing rates np,ng shall be given. We previously discussed the complex
behavior and patterns of movement for T cells in Section 2.4 When it comes to the
behavior of T cells in our system - , it is clear, that the movement is fairly
simplified. In it was shown, that T cells, after activation, move very different if the
local concentration of active (proliferating) cancer cells is high as compared to lower
concentrations. As outlined in [49] it appears that T cells are possibly attracted to high
numbers (i.e. higher concentrations) of active cancer cells in the local environment. This
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is supported by their trajectories and might be part of the explanation why many tumors
are not penetrated as often the core is far more necrotic compared to the outer layers.
Indeed, in preliminary simulations it was observed, that in absence of sophisticated T
cell dynamics the tumor border will grow outwards regardless of immune response (while
the local concentrations are reduced).

Initially this was addressed by introducing chemotaxis into the T cell (and subsequently
the PD-1) equation, so that T cell movement is regulated by concentration of proliferating
cancer cells P. While hinting at the desired effect and the possibility of stable disease
(resting tumor border) in this modeling approach it proved to be somewhat unstable, as
the model now contained three terms of chemotaxis, terms that can be a complication
even in implicit and Crank-Nicolson methods of simulation (see Section and [5]). In
system - we try to emulate this behavior by assigning a higher killing rate np
in the case of proliferating cells as compared to quiescent cells (n¢g). This gives T cells
more potency overall when (at same tumor cell density) the share of proliferating cells
increases. In simulations this turned out to be close to the tumor border, which agrees
with the general behavior of tumors as outlined in Chapters 2] and [6}

We leave np as in the previous Ordinary Differential Equation system and set ng =
5day~!. As seen in following simulations these values fit the overall dynamic, though
some thought may be given to choosing higher values, as T cells no longer (as before in the
Ordinary Differential Equation system) attack all cancer cells, but merely proliferating
and quiescent cells. With this dynamic of two separate killing rates, the model is now
equipped to produce a temporarily stagnant tumor border.

Having formulated the system, we can now simulate it numerically to investigate the
behavior over time.

7.2 Numerical Simulation Methods

The system (7.2 - (7.8) was simulated utilizing a Finite Differences approach in the form
of an adjusted Crank—Nicolson method. Finite Differences are commonly used in three
variations . Given the Partial Differential Equation

ou
E = F(u,x,t,ux,um),

we discretize the system. We have one-dimension for space and time in our case -
resulting in evenly spaced gridpoints as visualized in Figure [7.2] The distance between
two adjacent gridpoints at the same time point is set to be Ax and vice versa At in such
a manner that %, ﬁ are integers, where we examine solutions on the domain [0, L] for

the time interval [0, 7']. From now on let the indices 7, n indicate the position on the grid,
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so that u = u(i - Az,n - At). The gridpoint (0,0) would here equate to the point » =0
at time ¢t = 0. We now use the grid in one of three ways to approximate time derivatives
on the left-hand side of each Partial Differential Equation (7.2)) - (7.8):

Ezxplicit Method (Forward Euler):

uttt —yn

ZTtZ = an (ua T, t, Uy, uzz)
Implicit Method (Backward Euler):

un+1 .

U +1
ZTtl :Fln (u7$7t7u$7uxm)

Crank-Nicolson Method:

n+l _  n
%

U Uy 1
T’ =3 [an (u, T, 1, Uy, um) + Fi’q”+1 (u, ,t, Uy, um)} (7.9)

The derivation of these finite difference methods shall not be given here, but for
extensive literature on derivation through Taylor series expansion and discussion on
accuracy of different methods, the reader may be referred to . A visual representation
of how the methods operate can be found in Figure

Space
fiv1,t fitt,041 fix1t fit1,t+1
fit fit+1 fit fit+1 fit fit+1
fic1t Ji—14+1 fi1¢ fic1441
Explicit Implicit (Crank-Nicolson
Time

Figure 7.2: Visual representation of the manner in which Explicit, Implicit and Crank-Nicolson
Methods utilize the discretization of the domain to approximate solutions in each
step. Source: Own work.
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While the Explicit Method - through direct calculation in each time step - is easiest to
implement and offers simplicity computationally, it needs to meet certain requirements
for stability . Specific stability criteria can be formulated for a Partial Differential
Equation under given conditions (e.g. the classic Heat Equation in one dimension) [79].
The Explicit Method turned out to not offer the necessary stability for system -
, even for critically small time steps. Both the Implicit Method and the Crank-
Nicolson Method proved to be stable; we therefore opt to employ Crank-Nicolson for the
improved accuracy. Both Implicit and Crank-Nicolson method are often thought of as
unconditionally stable, but chemotaxis terms need to be handled with care nonetheless
(see ) It has to be noted, that the computational complexity is significantly higher, as
a system of equations needs to be solved for each time step. This gets especially tedious
with a high number of non-linear terms (see below).

In conjunction with ([7.9]), we utilize a central difference approach for the space
derivatives, i.e. we approximate those derivatives as follows:

n+1 n+1 n n
Ou __uyy —uiy T Uiy —uly
Oz 4Ax ’
2 n+1 n+1 n+1 n n n
0w uily —2u; T u Ty g — 2 gy

Q

02 2(Az)?

As system - is highly non-linear, we opt for a simplified Crank-Nicolson
approach as indicated above. The coupled Differential Equations lead to the necessity of
solving a system of non-linear equations when advancing in time. We mitigate this by
reducing the complexity similar to the concept demonstrated in . Specifically, we elect
to use an explicit approach when it comes to the reaction terms (not involving derivatives)
of - . For this we only utilize the previously known values for the reaction
terms when moving forward in time, whereas Crank-Nicolson in pure form would require
both the previously known values as well as unknown values (of the current time step).
The system of equations needed to be solved in each step reduces to a tridiagonal matrix,
which can be solved by the Thomas Algorithm and thus avoids high computational
complexity.

To illustrate the numerical process we followed to implement our adjusted Crank-
Nicolson method, we look at P, the proliferating cells, in time step n — n + 1: Assuming
we know all values at time n - At, we obtain the following discretization of equation ([7.1)):
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1 1 1
PinJrl _ Pzn P?H- _ 2F)z‘n+ 4 Pzn_-&i

_p, | it Pl — QPZ'”"‘Pf—l]
N 2(Az)2 2(Az)?
Lp, 2 [P PP - Pf_l}
Pz’Aaz 4Azx AAzx

+Ap PV [1 = G| + agpQi V" —apqP*(1 = V") = 0pP" —npP'T}".

Rearranging the terms gives:

(-7 — )P+ (P 4 (—r + ) PP =
(T + )Py + (P + (1 — )Py + ApPMV" [1 — GT]
+agpQi V" —apgP'(1 = V") = 6pP" — npP/'T}",

with

Dp

(Aa)?

1 Dp

Dp 1 6_7—7
At (Ax)?

Dp _ _ 1
V=R At

T= )
2(Ax)?
The boundary conditions, in conjunction with our discretization, help us obtain similar

equations for the first and last gridpoints at a given timestep n. As outlined in , we
assume it holds for all n > 0 (though it would hold for our initial conditions as well):

Py =P, Plrjazy+1 = Pir/as)—1
With this we can formulate a linear system of equations in the manner of A-z =5
where
C—74+¢ —T—9¢ 0 0 ] [ PP [ b ]
Ty T Pyt bo
—THe ¢ -T—y
n-+1

0 0 -2r ¢ Pl A ber/am).

with

by =(7 + )Py + (PP + (1 — )Py + Ap PV L — GT] + agpQPVy"

—apeP'(1=V") = 6pP" —npP"T}"
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known. This system of equations can now be solved to obtain the values for PZ-"H, 1€
[0, (L/Ax)]. We employ the same process for all other populations and then proceed to
the next time step. This works exactly the same way for all other indicator variables and
shall not be demonstrated here to avoid repetition. The only difference is the vasculature
V as it encompasses the chemotaxis term and thus not only first and second order
derivatives of V', but also first order derivatives of (): We can solve this problem by
simply ensuring that () is handled first for each time step, so the values Q?jll, Q’f“, Q?_ﬂl
are known and can be included in the right-hand side of the linear system solved for V.
From the calculations shown, we can better understand, why we can employ the Thomas
Algorithm: as mentioned above, A - as defined above - is clearly a tridiagonal matrix.
This cuts our computation time down; we get O(n) instead of O(n?), which would be

the case for a full matrix [5].

7.3 Parameter Fitting and Results

7.3.1 Parameter Values

Unless otherwise noted below, we carry over all parameters from the Ordinary Differential
Equation model. For the remaining parameters we chose the values given in Table [7.2}
Some additional explanations are given below.

Diffusion coefficients Dp,Dg,D a,Dr

For Dp we use the value given in . The relation of Dp and Dg is also given
in . For anti-PD-1, we set our diffusion coefficient D4 to be comparatively low to
other diffusion as anti-PD-1 medication are monoclonal antibodies and therefore not
prone to self-induced migration. Looking at for reference we can see a diffusion
coefficient of higher magnitude, but this becomes necessary as the presented system does
not include vasculature. Anti-PD-1 does get spread quite rapidly through the blood
stream, which is addressed in our model through instantaneous distribution of anti-PD-1
upon administration proportional to the vasculature present. The medication does get
distributed very well in this manner. Once introduced into the local environment, the
diffusion dynamic takes over the motility of anti-PD-1. For Dr we choose a relatively
high diffusion coefficient as compared to e.g. [60]. This has several reasons. For one
this gives the immune system flexibility and allows T cells to migrate quickly as they
have been shown to do albeit not all the time . The high diffusion coefficient also
emulates the flexibility of the immune system as it reacts to the other cell populations’
behavior. In this is included through the high motility of IL-12 and IL-2. As we have
not included these cell populations in our model, we set the diffusion coefficient to the
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Parameter Meaning Value Sources (if appl.)
Dp E;(;ﬁl?:;f;l?gegﬁ:rt ((:)eflls 6.3 x 10~ cm?/day |41}

Do gl el 1708 I
by Dol op
Dy Eig?;ig?lczfiicéfis of 7.9 x 10~"cm?/day Estimate
Dy ODfiﬁ'Tuiciils coefficient 8.6 x 1072cm?/day Estimate
o I et e
apg iifa;io?iff;}g‘z?r}:giacells 3.0 x 1072 day ! Estimate
agp iiieygzr?;i;fent cell 0.5 apq Estimate
s Tedmones e
o Sl g

T ris el T
v B e @
s (1
T s TR
Al Activation rate of To be determined Estimate

naive T cells (adjusted)

Table 7.2: Parameters used for the simulation of the system of Partial Differential Equations
- unless otherwise noted. Further parameters are carried over from the
Ordinary Differential Equation model in Chapter [f] This set of parameters is utilized
for the main simulations for tumor growth and behavior (P1). Deviations from this
parameter set for other simulations are indicated appropriately. Sources: Own work
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same magnitude as the diffusion coefficients for IL-12 and IL-2 from to allow our
immune response the same reactive nature and spatial flexibility.

Proliferation rate Ap

Compared to the Ordinary Differential case the proliferation rate is increased here
to account for two factors: The proliferating cancer cells account for the sole source of
new cancer cells, whereas before we included all cancer cells as one species. Furthermore,
proliferation only happens proportionally to vasculature, i.e. if sufficient nutrients and
oxygen is available.

Rate of hypozia apg and rate of reoxygenation agp
In a range of 0.0014 day ! — 0.096 day ! is given for different environments ranging
from high to low vascular content. We choose a value in the middle of this range. It is also
commented in that rate of reoxygenation is significantly lower than rate of hypoxia,
though a precise value was not derived. We account for this by setting agp = 0.5 apq.

Rates of expunging dp,0q,0n,0v
Extracted from and similar magnitudes found in other literature, these param-
eters do not have a big influence on overall dynamics, but allow the system to behave
naturally, as in reality sometimes cells are lost to the local environment through displace-
ments or other reasons leading to expunging.

Rate of necrosis agn
Direct necrosis is not possible in our model, as cells would first become quiescent
before undergoing necrosis. This dynamic is similarly represented in [41], where we
obtained the rate of necrosis.

Chemotaxis coefficient x

The same is true for the characterization of chemotactic dynamics between quiescent
cells and vascular cells - we adapt the value derived in [41].
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Proliferation rate Ay

A range for vascular cell proliferation is given in for different environments (much
like before for apg, agp. The range is 0.28 day~! — 0.83day~! and to complement our
choice for rate hypoxia we again choose a value from the middle of this range.

In addition, different from our Ordinary Differential Equation approach, we insert
medication proportionally to vasculature. We keep the same method of instantaneous
injection at the given treatment times and subsequent simulation with adjusted anti-PD-1
levels. Where before we simply upped the concentration by the appropriate amount
calculated from treatment data, we now consider the manner of arrival in the tumor
microenvironment (i.e. through the vascular system). Therefore, we need to adjust the
dose added in each treatment cycle, so the same amount still arrives in the local system.
In the previous system we increased the concentration by 1.5 x 1075 g/cm? to represent

treatment for P1. As in the tumorless case we know the percentage of vasculature in the
brain to be 3.1% from [51], we add:

1.5 x 107° g/cm? x ~5x 107 g/cm?

0.031
proportionally to the concentration of vascular cells in each treatment cycle. As the
tumor undergoes angiogenesis and accumulates additional vasculature, more anti-PD-1
will reach the tumor microenvironment, which is covered in our model dynamics.

7.3.2 Numerical Results

For initial simulation we again employ our set of data from P1, as we can exclude
preexisting treatment effects with reasonable certainty. We simulate the system in the
manner outlined above and choose the following initial conditions: As discussed above
we will have P(i,0) = 2 x 0.95g/cm® with i € [0,0.5 mm]ﬂ so that we have solid
tumor sphere with diameter 1 mm. In the rest of the tissue, not occupied by tumor
cells, we will set appropriate concentrations for vascular cells, T cells and PD-1, so that
V(5,0) =V, T(4,0) =Ty, D(4,0) = ppp-Tp with j € (0.5mm, L], where L is the
radius of our spherical region.

We have previously calculated the percentage of vascular tissue in the brain in Chapter
[6] to be about 3.1%. It should be noted, that while we will assume the same initial
conditions for all metastases, depending on location some may have better access to
the heterogeneous structures of blood vessels in the brain. Through first simulations it

12This will be about 0.5 mm depending on the actual numerical grid used in our simulation
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became evident that this percentage is not able to sustain the aggressive initial growth
observed in data P1 from t = 0 to t = 63. We therefore opted for an initial vascular
percentage of 5% throughout the tissue. This might be an indicator that vascular volume
can be limited as an indicator for tumor behavior and possibly an alternative could be
considered in blood volume circulated. Initial T cell concentration (and therefore PD-1
concentration as well) is set to the same as before in the Ordinary Differential Equation
system.

Exemplary Treatment-Free Case

We start by simulating a treatment-free system for the duration of 365 days to get an
idea of the dynamics at play. For this we use the same approach as outlined above,
but simulate an environment with lower vascular activity. We decrease the associated
parameters from Table : We set the proliferation rate of vascular cells, Ay equal
to 0.3day ! and increase the rate of hypoxia agp to 0.04 day~!, which in turn increases
the rate of reoxygenation agp. To complement this, we increase the rate of necrosis
agn to 0.05 day~!. These changes do not qualitatively change the simulation results,
but avoid an overly aggressive tumor, allowing an easier display of the dynamics at play.
The results can be seen in Figure [7.3]

We can observe the tumor growing over time through Figures [7:34] - which display
the constitution of the tumor at three distinct time points. In Figures we can
start to see the typical structure of a tumor, with an outer layer of largely proliferating
cells, followed (moving inward) by an increased concentration of quiescent cells. Finally,
closer to the center the concentration of necrotic cells increases and in Figure [7.3d we can
clearly see the characteristic necrotic core being formed, whereas the concentrations of
proliferating and quiescent cells become very low. Figure displays the average con-
centration of vascular cells - through fraction of volume occupied - within the tumor over
time. This is defined to be the area between the center and our self-defined and moving
boundary, where the concentration of proliferating tumor cells falls below 0.02 g/cm?.
The onset of angiogenesis is clearly observable and with growing size, the tumor develops
a more extensive system of vasculature to support itself.

To understand the effect of anti-PD-1 on this system, we now introduce an exemplary
treatment regime (such as imposed on P1), with treatment beginning at ¢t = 44. We
use the dosage calculated above and administer treatment in regular cycles of 21 days.
Results can be seen in Figure [7.4]

The effect of anti-PD-1 treatment is immediately visible between Figures [7.3] [7-4] The
concentrations of tumor cells are fairly low and the spatial spread is very contained.
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Figure 7.3: Constitution of tumor at different times in a treatment-free simulation with reduced
vascular proliferation. Concentrations of proliferating (P), quiescent (Q) and necrotic
(N) cancer cells from the center to the edge of the simulated region are given at
three different time points: 100 days (a), 175 days (b) and 350 days(c). In (d) the
development of the average concentration of vascular cells inside the tumor over
time is shown. Source: Own work.

In the simulation including treatment, from ¢ = 100 (Figure [7.4a]) to ¢t = 175 (Figure
the tumor size and tumor cell concentration are almost stagnant. Towards the end
of the simulation the tumor starts to spread despite continued treatment (one cycle of
anti-PD-1 is even included at ¢t = 349). This is insofar interesting, because in reality -
even after a patient reaches stable disease, an acquired resistance to anti-PD-1 treatment
can be observed. In the simulation, after treatment initiation the tumor shrinks down,
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Figure 7.4: Constitution of tumor at different times in a treatment simulation in similar en-
vironment and parameter set-up to Figure Concentrations of proliferating
(P), quiescent (Q) and necrotic (N) cancer cells from the center to the edge of the
simulated region are given at three different time points: 100 days (a), 175 days (b)
and 350 days(c). In (d) the development of the average concentration of vascular
cells inside the tumor over time is shown. Source: Own work.

but stabilizes after continued treatment and presents with de facto stable disease as
concentrations and tumor volume stay constant over several weeks. It turns out that
the vascular cells, which are only affected implicitly (decreased @ cell concentration)
through anti-PD-1, continue proliferating - albeit slowly - inside the tumor as can be seen
in Figure [7.4d] This in turn induces proliferation of cancer cells P, as more nutrients
and oxygen become available. As the tumor builds up, it furthers vascular growth and
entering the involved cells in a cycle which then leads to abnormal tumor growth once
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again. It seems that in the system the tumor adjusts to increased T cell activity, by
shrinking and then changing its structure to a point where growth can once again be
supported.

Through the adjustment of Ar,,, which regulates how many active T cells arrive in the
tumor microenvironment, the system behavior can move from response to stable disease
(with delayed progress) to progress. We will visualize this in the following adaptation
and comparison to data P1.

Comparison of Numerical Results to Data

We move back to our initial set-up in a higher vasculature environment and examine
the system behavior compared to data set P1. We use the parameters from Table
and attempt to find a suitable value for Ar,. As discovered in Section the inclusion
of the effect of radiation therapy allowed for a better fit in the Ordinary Differential
Equation system. Here, it was not too important how many cells were killed off directly
by radiation therapy, but more so that T cell activity was increased after radiation.
We therefore include this dynamic as well and divide our simulation in two parts -
pre-radiation and post-radiation with two distinct parameters Ay, (pre) for the time before
radiation and Az, (post) for the time after radiation. This in turn allows for increased T
cell activity post-radiation, which makes anti-PD-1 treatment more effective and thus
allows for a synergistic effect as discussed in Section In comparison to the Ordinary
Differential Equation system values for A7, (pre) and Agy, (post) should here be higher than
their respective counterparts in Section as activation of naive T cells (i.e. arrival at
the tumor site) happens proportionally to vascular cell concentration, which is initially
set to be 5%.

In terms of data comparison, we first need to extract the desired measurements from
our data. As outlined in Chapter [f] we measured volume of metastases. Since our model
assumes a spherically symmetric tumor shape, volume depends solely on tumor radius.
We assume perfect spherical shape for our measured volumes as well and calculate the
corresponding radii from Table to compare to the spatial growth in our simulation.
To get a first idea of model fit we average the radii from M1-M5 at every observed point
in time (average of all that are visible at a given time). We choose fitting values for
ALa(pre) = 25 day~! and Al (post)y = 143 day~!. The results can be seen in Figure
The first slowing of expansion (plateau around ¢ = 10 in Figure marks the first big
impact of lack of oxygen and nutrients. The tumor started out with aggressive growth
and expansion (as he had adapted before angiogenesis). This dynamic dominates the
beginning of our simulation. Then the vascular dynamics set in and the tumor needs to
build up sufficient vasculature to sustain further growth, which results in a momentary
slowing of tumor growth.
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Figure 7.5: Tumor radius over time from simulation of model - with appropriate
parameters as outlined including treatment regime of P1. In comparison the
measurements from P1 are shown as average of M1-M5 through red circles (left)
and M1-M5 separately in different colors (right). Treatment cycles are indicated as
before through vertical, dotted lines. Source: Own work in conjunction with data
provided by E. Dippel.

The dynamic (and even the slight progress after stable disease) is well represented by
the model. Through the adjustment of Aj,(post) the model is able to represent several
characteristic types of cancer progressions. In Figure[7.6] we can see exemplary simulations
for three different values for Ay, post) leading to progress, stable disease and response
respectively. In our model the adjusted A7 ,(post) could mean that the radiation wasn’t
able to hit a certain metastasis as well as another. Or that the tumor has developed
additional mutations that disallow T cells entry to the tumor microenvironment for some
reason.

It should be noted, that we primarily focus on the T cell activation and if T cells
can enter the tumor at a high rate, because, as discussed in Section the degree of
penetration of the tumor by T cells is thought to be a good indicator for response to
treatment. However, the model dynamics are also influenced to a degree by different
types of vasculature environment (thus respecting the different locations of metastasis).
This can be included in the model through different initial percentages of vascular cells
and the associated parameters describing vascular proliferation, hypoxia of proliferating
cancer cells and reoxygenation of quiescent cancer cells. For example, let’s assume -
compared to the average, M1 from P1 was initially more susceptible to penetration by T
cells, but got a weak dose of radiation, thus having a decreased activation rate compared
to the average post-radiation. We set Ar,pre) = 27 day~! and Al (post) = 123 day~! to
represent this in our model and obtain the tumor simulation as seen in Figure [7.7]

We see that the fit to data points is much better. Similarly, we can fit the activation
rate of T cells and the local properties of vasculature in order for the simulation to
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Figure 7.6: Exemplary progress (a), stable disease (b) and response (c¢) behavior under P1
treatment regime for different values of Az, (post) (83 day—1,136.25day',147 day !
respectively). Graphs show tumor border over time compared to averages of observed
measurements M1-M5 (red circles) for reference. Source: Own work in conjunction

with data provided by E. Dippel.

represent a single metastasis better. This makes even more evident the need to consider
metastases individually to really understand the dynamics at play from a medicinal point

of view.

We have already demonstrated through simulations (Figures — that the model
is able to emulate all relevant tumor behaviors. We want to cement this by examining
our data sets P2,P3. Moving on to other patients, we want to - one last time - emphasize
the special status of data set P1. We were reasonably able to start simulations from the
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Figure 7.7: Tumor radius over time from simulation of model - with appropriate
parameters as outlined (including treatment regime of P1). The activation of T
cells was fitted to better represent the growth behavior of M1 in P1. Measurements
for M1 are given for comparison as red circles. Source: Own work in conjunction
with data provided by E. Dippel.

initiation of angiogenesis as metastases occur just before the first treatment cycle. Due
to this timing and the aggressive nature of the cancer we were able to confidently exclude
effects from previous treatments.

In the case of P2,P3 the circumstances are different. The metastases we track during
Pembrolizumab treatment had existed previously and underwent a variety of treatments
(not all of which were well documented). In the case of P2,P3 we run a control case simu-
lation until the tumor reaches the radius (size) observed at ¢ = 0 and then use these values
as initial conditions. This poses the problem that we have a naturally grown structure of
the tumor at ¢ = 0, where in reality the structure might be adapted or distorted due to
treatment effects. In a model that emphasizes the tumor structure and dynamics between
cell populations spatially, this might pose a problem and we should keep that in mind
discussing results. Nonetheless, this is our best approach and we employ it for simulations.

As in Chapter [6 we start with P3. We will not demonstrate the fit of each metastasis
here, but showcase process of simulation and fit for one exemplary lung metastasis Lung]l.
As in Chapter [6] we have to adjust some parameters. From above we know the average
pulmonary blood volume and the average volume of a lung, so we can calculate the
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approximate percentage of vascular cells, vpery,; in the lung as about:

450
~ —— ~ 0.077
PPl 558
As for P1 this enables us to deduce the increase of anti-PD-1 concentration in each
treatment cycle from the value we used for our Ordinary Differential Equation approach:

2.5 x 107 % g/cm? x ~3.2x 107 g/cm?

0.077

As lung tissue is a high vasculature environment , we leave the parameters Ay, apg,
agn and the initial vascular cell density unchanged. As in the Ordinary Differential
Equation case we reduce the rate of proliferation for proliferating cancer cells. We reduce
it by the same fraction and set A\p = 2.1day~!. The results can be seen in Figure
for A7, = 57day 1. We can see that the fit is quite good for Lungl of P3 as well, since
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Figure 7.8: Tumor radius over time from simulation of model - with appropriate
parameters and initial conditions as outlined (including treatment regime of P3).
Measurements for Lungl of P3 are given for comparison as red circles. Source: Own
work in conjunction with data provided by E. Dippel.

the model captures the slowing progress with continuous anti-PD-1 treatment. While
it doesn’t hit the data points perfectly, it comes pretty close and most importantly
the growth of tumor radius (and thus size) slows with progressing time. An improved
screening/fitting process might produce better adjusted parameters for the vascular
environment to maybe produce a better fit. However, as noted above, the data is to be
handled with care and above else it is important for us to see, that the model is able to
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reproduce the core dynamics seen in tumor behavior of our data set. It is also interest-
ing to evaluate a metastasis of this size as compared to the smaller brain metastases of P1.

Average T Cell Conc. Inside Tumor Border (Lung1l of P3) T Cell Density at t = 300 (Lungl of P3)
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Figure 7.9: T cell concentration over time throughout entire simulation of Figure (a) and
spatial distribution of T cells at exemplary timepoint ¢ = 300. The simulation was
conducted with appropriate parameters as outlined in this Chapter and with the
specific Pembrolizumab treatment regime of P3. Source: Own work in conjunction
with data provided by E. Dippel.

Another thing we can highlight is the distribution of T cells. As broadly discussed
in this Chapter and Chapter [2] T cell movement and distribution appears to be quite
complex. In Figure we can see the average T cell concentration for Lungl of P3 over
time inside the defined tumor border. The behavior of this average T cell concentration is
very reminiscent of the Ordinary Differential Equation model (see Section and even
displays similar levels. However, looking at Figure [7.9D] we can see that the distribution
of T cells is very heterogeneous on our domain. Figure is an exemplary snapshot at
t = 300, but the distribution is similar at other timeﬂ Also, we have further introduced
a T cell dynamic not explicitly seen in these Figures: T cells attack proliferating cancer
cells much more aggressively than quiescent cancer cells and they do not attack necrotic
cancer cells at all. That means we have increased T cell activity near the border, where
the density of proliferating cancer cells is highest. This mimics the attraction of T cells
toward active cancer cells. The accumulation of T cells toward the center of the tumor
stems from high densities of vascular cells, which the tumor builds up to sustain growth.

13This behavior is not exclusive to the special case of Lungl of P3, but can be observed in other
simulations as well. The exact behavior depends on choice of parameter set among others, but the
qualitative behavior seen in Figure @ is similar in other simulations
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Moving on to P2, we can see in Appendix C, that only two metastases were observed
during Pembrolizumab treatment, one of which is a brain metastasis displaying typical
stable disease behavior. We know that our model is able to emulate stable disease in a
brain environment. Therefore, we turn to the other metastasis of P2, which is a lymph
node and something very different. We have seen in Chapters [2] and [3 that lymph
nodes take a special place when it comes to melanoma (and indeed all cancers). The
metastatic lymph node is not from the first onset of metastasis in the patient history
of P2, as it appears several months after first diagnosis of metastatic melanoma (with
distant metastasis). However, this does not really matter for our model as we are merely
interested in the behavior under an anti-PD-1 treatment regime. Lymph nodes introduce
another complication in our model and data handling, as the lymph node is a preexisting
structure and gets bigger with cancerous cells developing.

Another factor may be the role of lymph nodes in the cascade of immune response to
cancer. Lymph nodes can be seen as gateways used by T cells when undergoing activation
as they move from lymph system into blood vessels . This might lead to a more
focused supply of T cells for the tumor microenvironment. A lymph node also displays a
very heterogeneous structure and thus, this environment merits some evaluation. In terms
of angiogenesis we can turn to the research of Li et al. in [68], who produce evidence
that a lymph node metastasis behaves similar to metastases in other tissue and induces
angiogenesis. In fact, they propose density of vascular cells (blood vessels) in the lymph
node as a better diagnostic indicator as opposed to size of the lymph node. This further
emphasizes the complexity in evaluating tumor growth in a lymph node, as evidently,
cancerous cells develop and cause angiogenesis, before increased size of the lymph node
can be observed. As angiogenesis only happens in (“normal”) metastases over about
1mm diameter, this indicates that significant growth may have happened before it can
be detected in measurements of the lymph node.

The findings in further underline the special role of blood vessels in the lymph
node environment when it comes to cancer. Several indicators for survival are derived
concerning the blood vessel structure in the lymph node in [65]. From the results in
we can assume a “healthy” vascular cell density of approximately 6.5%. So, we are
again dealing with a high vasculature environment as compared to the initial conditions
proposed in . It is reasonable to once again employ the same parameter values Ay,
apg, agn and the same initial vascular cell density. It should be noted that while
initial vascular cell density played a role in supporting the aggressive cancer of P1, other
initial values (e.g. 2% or 7%) do not change our results in the simulations of P2,P3 in a
significant manner. This might be, because we let our initial conditions develop naturally
in a previous simulation. Therefore, the growth speed in our first simulation is neglected.
For our second, main simulation, the tumor has already built up a supporting vascular
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structure, so initial vascular cell density does not play a big role. To keep things simple,
we stay with initial vascular percentage of 5% and conduct our two-stage simulation.
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Figure 7.10: Simulation for lymph node metastasis of P2 displaying stable disease for A;,, =
57day~! (a) and remission for A\;,, = 157day~! (b). Measurements for said
metastasis are given for reference (red circles). Source: Own work in conjunction
with data provided by E. Dippel.

The model had some problems capturing the exact behavior displayed by this lymph
node metastasis. It was able to reproduce stable disease, but on a higher level (higher tu-
mor radius) than suggested by data. This can be seen in Figure for A\j,, = 57day 1.
It was also able to produce response up to full remission for e.g. A, = 157day ! as
seen in Figure [T.10b] The behavior of the tumor in this simulation is qualitatively quite

similar to previous simulations.

With initiation of therapy the concentration of active cancer cells decreases everywhere
as T cells attack the tumor more vigorously. At the same time the tumor adjusts and
develops a new constitution which leads to a new surge of growth. If T cells do too much
damage the tumor will collapse fully, before it gets new fuel, so to speak. This leads
to remission. If treatment initiation merely slows growth we will see further progress -
possibly leading to stable disease when the tumor reaches a certain size.

Lastly, if the initial response is not too strong, the tumor may display stable disease
(and possibly further growth later on). While this is a simplification of all dynamics
involved it roughly captures what is happening in terms of tumor behavior. In the specific
case of the lymph node metastasis M1 of P2, the model cannot produce stable disease on
a level corresponding to data points. This could have several reasons. For one it could be
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attributed to data shortcomings or the special environment, that is a lymph node. The
last measurements do not actually deviate from normal lymph node size, so we could
in fact be witnessing remission. This emphasizes the problem with measuring lymph
node size and using it in quantitative context such as our system of Partial Differential
Equations - . It might also indicate some shortcomings of the model not being
able to handle a big response into stable disease.

Finally, it is possible that through a more sophisticated screening and fitting process
we could find fitting vascular parameters to better represent the behavior.

Despite the problem with the single metastasis M1 of P3, the model gives a very
good first step in being able to encompass several key dynamics in a spatial simulation
and displaying a good fit as well as the possibility to describe the vastly different re-
sponses to anti-PD-1 therapy (ranging from no response to full response). We were able
to reproduce the behavior of brain and lung metastases of varying size and emulate a
variety of different behaviors, while maintaining the characteristic constitution of a tumor.

To conclude, it should be mentioned that the expression rate of PD-L1 ¢ also differs
between tumors. While this expression may not be a reliable indicator for response
and/or survival, the effect of increased expression should not be discarded in its entirety.
PD-L1 expression may not be a necessary requisite to allow response or facilitate it, but
it is another factor contributing to heterogeneity of tumors. Finally, the precise moment
of formation of a tumor and the exact onset of angiogenesis cannot be determined beyond
all doubt. We may obtain a starting point for our simulations by calculating backwards
from our images with a simple logistic growth approach to get an idea. Especially the two
stage simulations adopted for P2,P3 are not necessarily representative as the observed
metastases had previously existed and different treatments had been applied. The fit
to data can further be improved by simulating from different starting points and then
adjusting parameters; this does neither add to nor take away from our results, but should
be mentioned for completion’s sake as another small factor of uncertainty linked to
incomplete data.
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Chapter 8
Conclusion and Outlook

Both the Ordinary Differential Equation model and the Partial Differential Equation
model were able to display the qualitative behavior of tumor burden and single metastasis
well. Whereas the former is more suited to represent the overall tumor burden in a
larger volume, the latter was able to - through the utilization of spatial dynamics -
recreate the growth of single metastases. The assumption of homogeneous constitution
and “well-mixedness” of an Ordinary Differential Equation approach comes with some
drawbacks, and it became evident, that to really understand the tumor dynamics of one
single tumor it is not sufficient. The Ordinary Differential Equation model gave strong
indication, that the effect of adjuvant therapy plays an important role and should not be
discarded from further examinations. This complicates things somewhat, as a number of
adjuvant therapy options are still used and their interplay with anti-PD-1 medication is
not fully understood.

The Partial Differential Equation model was able to, through the inclusion of vascular
cells, simulate the restrictions on oxygen and nutrients in a more detailed way. The
way the tumor undergoes angiogenesis depends on several factors and the model showed
modified responses to T cell activity with the tumor adapting and developing a different
vascular structure. Especially interesting was the fact that the simulation was able to
show initial stable disease for several weeks and even months with the tumor slowly
adapting its constitution to adjust to increased T cell activity (e.g. post anti-PD-1
treatment initiation). This might indicate that the tumor in reality is able to adapt,
which manifests as acquired resistance to treatment. This can happen through additional
mutations or simply due to the fact that the dynamics between vascular and cancer cells
change with increased T cell activity (as in our model). This may offer some interesting
paths of further research - overall the dynamics with vasculature proved to be crucial
in tumor growth and development (with the model responding drastically to changes in
vasculature properties) indicating the key role the location of metastasis plays.

Both models were set up to examine dynamics with zero to low PD-L1 expressions and

both models were able to display good response to anti-PD-1 treatment. The models
explain this response with an inhibition of the self-regulation of the immune system, with
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cells such as T cells or cytokines also expressing PD-L1. Ultimately not only the evasion
mechanism of the tumor (PD-L1 expression) is affected, but the immune system appears
to be put in overdrive and is thus better able to combat the cancer in relevant locations.
This may explain, why patients or single tumors with no PD-L1 expression show response
to anti-PD-1 medication. As for limitations, it should be noted that our models are fully
deterministic, which is justifiable with high cell populations, but somehow violates the
key component of cancer. It is after all caused by a single random mutation. Especially
in the early stages, random behavior may still play a large role and affect growth. Further
(apparent) randomness is introduced through the behavior of T cells which varies greatly
(see below). In addition, the measurements for smaller size metastases are unreliable.
For our heterogeneous modeling approach, we assumed perfect spheres in terms of tumor
shape, which is far from reality, as was already seen and broadly discussed in Chapter
Complex shapes can have an impact on growth behavior and the evolution of blood
vessels in the tumor.

In terms of moving forward it may be of interest to evaluate the role of blood cir-
culation as an indicator over local percentage of volume occupied by vascular cells. If
a lower volume blood vessel has increased blood flow, more T cells (and medication)
may nonetheless be able to arrive at such locations. This is supported by the fact
that simulations in the brain showed improved fit with a higher vasculature percentage
than was calculated. Another factor is tumor density. Our model only reacts implic-
itly to tumor density. If T cell activity is increased the tumor cell concentration is
attacked at each point of the tumor. Through this change, growth is no longer sup-
ported and the tumor shrinks. It may be worthwhile to explore explicit effects and
examine if some tumors show a more solid constitution through higher cell density and if
this is related to improved response to treatment as T cells may be able to move less freely.

Lastly, it became evident, that T cell movement is very complex and pushes the limits
of a “simple” Partial Differential Equation model. While we were able to account for the
complexity of T cell activity through our spatial dynamics and increased killing rate for
proliferating cells, this is still a strong simplification. This is a call to both mathematics
and medicine to better understand the behavior of T cells and to explore further ways of
modeling said behavior.

To conclude this thesis, we revisit a statement from Chapter 3} It is an often stated
hope in the oncology community, that given time, treatment methods such as surgery or
chemotherapy, used widely today, will become increasingly irrelevant as research gives
rise to better treatment options. Targeted therapy and immunotherapy are precision
tools exploiting the understanding of cancer obtained in decades of research, whereas
chemotherapy, radiation therapy and surgery appear blunter. To further hone these
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precision tools, a better and more detailed understanding of cancer and the dynamics at
play is of vital importance and we can only keep research standards high and hope that
a day is not too far off, where we can treat cancer by applying targeted treatment that
roots it out completely. It is my sincere hope, that through this thesis a stepping stone
(however small it may be) was created to further move in this direction.
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Appendix A: Overview over Staging
Classification of Malignant Melanoma

Staging classification of malignant melanoma; Figure on the next page. Source: [3]
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Appendix A: Overview over Staging Classification of Malignant Melanoma

Melanoma of the Skin Staging g 4"

Definitions

Primary Tumor (T)

TX Primary tumor cannot be assessed (for example, curettaged
or severely regressed melanoma)

70 No evidence of primary tumor
Tis Melanoma in situ
71 Melanomas 1.0 mm or less in thickness

12 Melanomas 1.01-2.0 mm Distant Metastatis (M)
72 Melanomas 2.01-4.0 mm M0 No detectable evidence of
T4 Melanomas more than 4.0 mm distant metastases
NOTE: aand b subcategories of T are assigned based on ulceration 1112 Metastases to skin, subcutaneous,
and number of mitoses per mm? as shown below: or distant lymph nodes
1 THICKNESS M1b  Metastases to lung
CLASSIFICATION _ (mm) ULCERATION STATUS/MITOSES

M1c  Metastases to all other visceral sites or distant metastases
to any site combined with an elevated serum LDH

NOTE: Serum LDH is incorporated into the M category as shown below:

T <10 a: /o ulceration and mitosis <1/mm?
b: with ulceration or mitoses =1/mm’

T2 1.01-20  a: w/oulceration

b: with ulceration Lassircarion_sire SERUM LDH
. Mia Distant skin, subcutaneous, ornodal mets ~ Normal
3 201-40  a w/o ulceration
b: with ulceration M1b Lung metastases Normal
. M1c All other visceral metastases Normal
T4 >4.0 a: w/o ulceration X i
b: with ulceration Any distant metastasis Elevated
Regional Lymph Nodes (N) Clinical Staging’ Pathologic Staging*
M) Patients in whom the regional nodes cannot be assessed Stage 0 No Mo
(for example, previously removed for another reason) Stage 1A No Mo
¢ Stage 1B No MO
N0 Noregional metastases detected i i
N1-3 Regional metastases based upon the number of metastatic Stage 1A N MO
nodes and presence or absence of intralymphatic W0 Wio
metastases (in transit or satellite metastases) Stage iB o Wi
NOTE: N1-3 and a—c subcategories assigned as shown below: NO Mo
N NO. OF Stage IIC NO MO
CLASSIFICATION _ METASTATIC NODES _NODAL METASTATIC MASS Sagell Y | mo
N1 1node a: micrometastasis' N2a Mo
b: macrometastasis? B Nla Mo
N2 2-3 nodes a micrometastasis' :2; mg
b: macrometastasis N12b i
c:in transit met(s)/satellite(s) i
without metastatic nodes i IRl i
N3 4 or more metastatic nodes, or matted nodes, Nab T Mo
or in transit met(s)/satellite(s) with metastatic node(s) N Mo
) N N3 | Mo
u c c Stage IV AnyN M1 v AnyN [ M1
Notes
" Micrometastases are diagnosed after sentinel lymph node biopsy and completion lymphadenectomy (if performed).
s 2 defined asdini i fomy or is exhibi extension.

Cancer 3 (hri, . . . N i . . "
Qé Society® Clinical staging includes microstaging of the primary melanoma and dlinical/radiologic evaluation for metastases. By convention, it should
z

be used after complete excision of the primary melanoma with clinical assessment for regional and distant metastases.

Finandal support for AJCC “ Pathologic staging includes microstaging of the primary melanoma and pathologic information about the regional lymph nodes after partial or complete
7th Edition ;Zgi“ g Posters lymphadenectomy. Pathologic Stage 0 or Stage IA patients are the exception; they do not require pathologic evaluation of their lymph nodes.
provided by the American Cancer Society
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Appendix B: Approved Drugs For
Melanoma Treatment

Overview over FDA approved drugs for melanoma treatment. For more information on
each drug (including survival rates in Stage III trials) see . Source: [96]

Drug, Mechanism of action FDA Common adverse effects
Brand name, approval

Marketed by year

Dacarbazine, It causes DNA damage by 1975 Anorexia, nausea, vomit-
DTIC-Dome, methylating the DNA gua- ing and in some cases di-
Bayer nines and induces apoptosis arrhea

IFN-u2b, It acts by mimicking the ac- 1995 Fatigue, flu-like symptoms
Intron-A, tion of human IFN-a2b and depression

Merck

Aldesleukin, It is a highly purified hu- 1998 Hypotension, reduced re-
Proleukin man recombinant IL-2 ana- nal function and supraven-
Prometheus log that resembles the func- tricular tachycardia
Laboratories  tions of human IL-2

Inc

p-IFN-a2b, Pegylated-IFN-a2b has en- March, Side effect profile is similar
Sylatron, hanced bioavailability com- 2011 to IFN-a2b

Merck pared to IFN-a2b

Vemurafenib, It is a selective inhibitor of August, Skin disorders and cuta-
Zelboraf, mutated forms (V600E) of 2011 neous SCC

Roche BRAF kinase

Ipilimumab, It binds to the negative reg- March, Immune-mediated entero-
Yervoy, ulatory CTLA-4 receptors 2011 colitis, hepatotoxicity and
Bristol-Myers on T-cells and blocks their endocrine disorders
Squibb activity

Dabrafenib, It is a selective inhibitor of May, 2013 Similar to vemurafenib
Tafinlar mutated forms (V600E) of

Novartis BRAF kinase
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Pembrolizumab It acts by binding to the September, Renal failure, dyspnea,

Keytruda, PD-1 receptors on T-cells 2014 pneumonitis and cellulitis

Merck and blocks their activity

Nivolumab, It acts by binding to the December, Fatigue, diarrhea, nausea,

Opdivo, PD-1 receptors on T-cells 2014 pneumonitis, liver and kid-

Bristol-Myers and blocks their activity ney toxicity

Squibb

Trametinib, It is a reversible inhibitor of September, Rash, diarrhea, lym-

Mekinist, MAPK, MEK1 and MEK2 2015 phedema, hypertension

Novartis and altered liver function

T-VEC, T-VEC is a live, attenuated, October,  Cellulitis, fatigue, chills,

Imlygic, HSV-1 genetically modified 2015 pyrexia, nausea, influenza-

BioVex/Amgen to express human GM-CSF like illness and injection
in tumor cells site pain

Cobimetinib, It is a reversible inhibitor of November, Similar to trametinib

Cotellic, MAPK, MEK1 and MEK2 2015

Roche
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Appendix C: Tumor Measurements for
Patients P2,P3

Here we present the measurements obtained from P2,P3. It should be noted that
measurements are less reliable as compared to P1 due to incomplete information on
adjuvant therapy. In case of Lung4 of P3, we can assume excision as the tumor is no
longer visible on images and a resection took place around the same time it disappears.
Other resections are less clear and this creates the need for caution when handling the
data of P3. For P2 we are in the same boat, as adjuvant radiation therapy may distort
data (see Chapter [5|and Appendix D).

Time of Measurement M1 M2

t=0 15551 mm?3 2945 mm?
t=114 1681 mm3 302 mm?
t =202 385 mm? 170 mm?
t = 308 165 mm? 157 mm?
t =392 197 mm? 161 mm?
t = 489 160 mm? 158 mm?
t =602 170 mm?3 183 mm?
t =737 206 mm? 177 mm?

Measurement data of metastases M1-M2 of P2, including time of measurement and size of
metastases. Source: Own work in conjunction with data provided by E. Dippel.
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Time of Measurement Lungl Lung?2 Lung3 Lung4
t=0 45616 mm?®  20580mm?® 65928 mm® 65928 mm?>
t =292 98543 mm?®  4241mm?®  90612mm? 3780 mm?
t =181 119866 mm3  1357mm?® 152966 mm® 2949 mm?
t =279 155094 mm?3  1077mm?® 182160mm?® 2053 mm?
t =370 218590 mm?®  838mm?®  164217mm3 9651 mm?
t =454 261307mm?  785mm? 271434 mm3 0 mm?
t =538 237394mm?®  679mm?® 326356 mm? 0 mm?3
t = 622 306 928 mm? 594 mm?3 329 702 mm? 0 mm?

Measurement data of metastases of P3 (Lungl - Lungb), including time of measurement and size
of metastases. Source: Own work in conjunction with data provided by FE. Dippel.

Time of Measurement Lungb Mediastinum Mammaria

t=0 10973 mm? 467 mm?3 10 145 mm?3
t =92 551 mm? 416 mm? 4241 mm?3

t =181 105 mm? 369 mm?3 468 mm?

t =279 0 mm?3 785 mm? 92 mm?

t =370 0 mm?3 1357 mm? 59 mm?3

t =454 0 mm? 1140 mm? 28 mm?

t =538 0 mm?3 1638 mm? 21 mm?

t =622 0 mm? 1770 mm? 19 mm?

Measurement data of metastases of P3 (Lungb, Mediastinum, Mammaria), including time of
measurement and size of metastases. Source: Own work in conjunction with data provided by FE.
Dippel.
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Appendix D: Treatment Regime Data for
Patients P2,P3

We present the available data on treatment during the relevant time interval. For previous
treatments see Chapter [f] In terms of therapy measures, only treatments, that could at
least be roughly attributed to a date, were included in the following tables. As touched
upon in Chapter B further adjuvant therapies occurred, but the available information is
incomplete. Specifically, this includes several resection procedures for P3 in addition to
the ones included in the Table below. In the case of P2 it includes radiation therapy of
unknown location and time.
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Time of Administration Cycle, Medication and Amount

t =22 1.) Cycle Pembrolizumab (2 mg/kg)
t =43 2.) Cycle Pembrolizumab (2mg/kg)
t =64 3.) Cycle Pembrolizumab (2 mg/kg)
t=285 4.) Cycle Pembrolizumab (2 mg/kg)
t =106 5.) Cycle Pembrolizumab (2 mg/kg)
t =128 6.) Cycle Pembrolizumab (2 mg/kg)
t =147 7.) Cycle Pembrolizumab (2 mg/kg)
t =169 8.) Cycle Pembrolizumab (2 mg/kg)
t =190 9.) Cycle Pembrolizumab (2 mg/kg)

=211 10.) Cycle Pembrolizumab (2 mg/kg)
t =232 11.) Cycle Pembrolizumab (2 mg/kg)
t =253 2 ) Cycle Pembrolizumab (2 mg/kg)
t =274 13.) Cycle Pembrolizumab (2 mg/kg)
t =295 14.) Cycle Pembrolizumab (2 mg/kg)
t =316 15.) Cycle Pembrolizumab (2 mg/kg)
t =337 16.) Cycle Pembrolizumab (2 mg/kg)
t = 358 17.) Cycle Pembrolizumab (2 mg/kg)
t =379 18.) Cycle Pembrolizumab (2 mg/kg)
t =400 19.) Cycle Pembrolizumab (2 mg/kg)
t =421 20 ) Cycle Pembrolizumab (2mg/kg)
t = 442 21.) Cycle Pembrolizumab (2 mg/kg)
t =462 22.) Cycle Pembrolizumab (2mg/kg)
t =484 23.) Cycle Pembrolizumab (2 mg/kg)
t = 506 24.) Cycle Pembrolizumab (2 mg/kg)
t =526 25.) Cycle Pembrolizumab (2mg/kg)
t =547 26.) Cycle Pembrolizumab (2 mg/kg)
t = 568 27 ) Cycle Pembrolizumab (2 mg/kg)
t = 588 28.) Cycle Pembrolizumab (2 mg/kg)
t =610 29.) Cycle Pembrolizumab (2 mg/kg)
t =638 30.) Cycle Pembrolizumab (2mg/kg)
t =659 31 ) Cycle Pembrolizumab (2mg/kg)

= 680 32.) Cycle Pembrolizumab (2 mg/kg)
t =701 33 ) Cycle Pembrolizumab (2mg/kg)
t="722 34.) Cycle Pembrolizumab (2mg/kg)
t =743 35.) Cycle Pembrolizumab (2mg/kg)
t =764 36.) Cycle Pembrolizumab (2mg/kg)
t =185 37.) Cycle Pembrolizumab (2mg/kg)
t = 806 38.) Cycle Pembrolizumab (2 mg/kg)

Treatment data of P2, including time of treatment, medication administered and amount of
medication for each treatment cycle, if applicable. Source: Data provided by FE. Dippel.
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Time of Administration Cycle, Medication and Amount

t=6 1.) Cycle Pembrolizumab (2 mg/kg)
t=27 2.) Cycle Pembrolizumab (2mg/kg)
t =48 3.) Cycle Pembrolizumab (2 mg/kg)
t =69 4.) Cycle Pembrolizumab (2 mg/kg)
t =90 5.) Cycle Pembrolizumab (2 mg/kg)
t=111 6.) Cycle Pembrolizumab (2 mg/kg)
t =133 7.) Cycle Pembrolizumab (2 mg/kg)
t =153 8.) Cycle Pembrolizumab (2 mg/kg)
t=174 9.) Cycle Pembrolizumab (2 mg/kg)
t =195 10.) Cycle Pembrolizumab (2 mg/kg)
t =216 11.) Cycle Pembrolizumab (2 mg/kg)
t =237 2 ) Cycle Pembrolizumab (2 mg/kg)
t =258 13.) Cycle Pembrolizumab (2 mg/kg)
t =279 14.) Cycle Pembrolizumab (2 mg/kg)
t =300 15.) Cycle Pembrolizumab (2 mg/kg)
t =321 16.) Cycle Pembrolizumab (2 mg/kg)
t = 342 17.) Cycle Pembrolizumab (2 mg/kg)
t =363 18.) Cycle Pembrolizumab (2 mg/kg)
t = 384 19.) Cycle Pembrolizumab (2 mg/kg)
t = 406 20.) Cycle Pembrolizumab (2mg/kg)
unknown 2 separate resections (volume unknown)

t =426 21.) Cycle Pembrolizumab (2 mg/kg)
t =447 22.) Cycle Pembrolizumab (2 mg/kg)
t =468 23.) Cycle Pembrolizumab (2 mg/kg)
unknown Further resections (volume unknown)
t =489 24.) Cycle Pembrolizumab (2 mg/kg)
t =510 ) Cycle Pembrolizumab (2 mg/kg)
t =531 ) Cycle Pembrolizumab (2 mg/kg)
t = 552 ) Cycle Pembrolizumab (2mg/kg)
t =573 ) Cycle Pembrolizumab (2mg/kg)
t =594 29.) Cycle Pembrolizumab (2mg/kg)
t =615 ) Cycle Pembrolizumab (2mg/kg)
t =636 ) Cycle Pembrolizumab (2mg/kg)
t =657 ) Cycle Pembrolizumab (2 mg/kg)

Treatment data of P3, including time of treatment, medication administered and amount of
medication for each treatment cycle, if applicable. Source: Data provided by FE. Dippel.
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Appendix E: MATLAB Codes Used in This
Thesis

Listing 1

This function runs an optimization for activation rate of T cells A;,, and then plots the
results. For this it utilizes a function simulating the system of Ordinary Differential
Equations - dependent on Ar,,. In this case all of this is tailored to timeline,
measurements and treatment regime of P1. It can easily be adjusted to work for other
data.

10

20

25

function fit_para = fit_P1l_lamIl2()
%$runs optimization for parameter fitting through fminsearch. Fits to data
$set P1

%$initial value for optimization
k_0 = 10;

%$run optimization
k_fit = fminsearch(@simulation_Pl_dep_lamIl2,k_0);
fit_para = k_fit;

$simulate system with fitted parameter lambda_T12
sol_for_sim = only_sim Pl _dep_lamIl2 (k_fit);

$timepoints for treatment cycles

timepoints_med = [14 35 55 88 109 129 151 172 193 213 234 255 276 297
— 3191;

$timepoints for measurements

timepoints_pic = [0 63 124 223 285 333];

%$concentration of cancer cells obtained from data increased by factor
— of 10

measurements_pic = [3.54E-03 2.11E-01 1.20E-01 8.39E-02 1.03E-01
— 1.22E-011];

$plot results

figure

subplot (1,2,1)

plot (sol_for_sim(:,1),sol_for_sim(:,2))
hold on

scatter (timepoints_pic,measurements_pic)

105




Appendix E: MATLAB Codes Used in This Thesis

for i = l:length(timepoints_med)
line([timepoints_med (i) timepoints_med(i)], [0 0.4],
< 'LineWidth',2,'Color', [223/255 255/255
— 0/255], 'LineStyle', ":")
30 end
hold off
title('Cancer Cells'")

subplot (1,2, 2)
35 plot(sol_for_sim(:,1),sol_for_sim(:,3))

hold on
for 1 = 1l:length(timepoints_med)
line([timepoints_med (i) timepoints_med(i)], [0 0.035],
<~ 'LineWidth',2,'Color', [223/255 255/255
< 0/255], 'LineStyle', ":")
end

40 hold off
title('T Cells')

end
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Listing 2

This function simulates the system of Ordinary Differential Equations - for a
given set of parameters. In this case all of this is tailored to timeline, measurements and
treatment regime of P1. It can easily be adjusted to work for other data. The function
demonstrated here performs a two-stage simulation separated by radiation therapy, as
P1 receives adjuvant radiation therapy. This concept can be simplified into a one stage
simulation or further extended.

10

15

20

25

30

function [ output ] = only_sim Pl _dep_lamIl2_inclrad()
%$runs simulation of ODE system for Pl treatment regime including
— effect of
%adjuvant radiation. This is included through eradication of cancer cells
%and increased parameter lambda_Il2 post radiation.

%$initial conditions

ini_T = 0.0006;

roh_P = 2.49%9e-7;

ini_PD = roh_P * ini_T;

ini = [3.54E-03, ini_T, 0, ini_PD];

%$increase in anti-PD-1 concentration in each treatment cycle
medicine = 0.000015;

$percentage of cancer cells killed by radiation

radio_perc = 0.5;

$timepoints for measurements

timepoints_pic = [0 63 124 223 285 333];

%$concentration of cancer cells obtained from data increased by factor
— of 10

measurements_pic = [3.54E-03 2.11E-01 1.20E-01 8.39E-02 1.03E-01
— 1.22E-011];

$timepoints for treatment cycles

timepoints_med = [14 35 55 88 109 129 151 172 193 213 234 255 276 297
— 319 333];

$timepoints for treatment cycles including timepoint for radiation

timepoints_med_incl_radio = [14 35 55 68 88 109 129 151 172 193 213
— 234 255 276 297 319 333];

$timevector for first simulation iteration
t_ode = [0 timepoints_med(1l)];

%$simulation for each interval between treatments

for 1 = 0:length(timepoints_med_incl_radio)-1
%under 4 —-> pre radiation, 4 and over —> post radiation
if 1 < 4

[sol_ti, sol_yi] = ode45 (@Melanoma_ODE, t_ode, ini);
else
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35 [sol_ti, sol_yi] = oded45(@Melanoma_ODE_postrad, t_ode,
end
if 1 ==
sol_t = sol_ti;
sol_y = sol_yi;
40 else
sol_ti = sol_ti + timepoints_med_incl_radio(i);

sol_y = sol_y(l:end-1,:);
sol_t = sol_t(l:end-1);

45 %add solution of current interval to overall solution
sol_t = vertcat(sol_t,sol_ti);
sol_y = vertcat(sol_y,sol_yi);
end
50 $create timevector for next simulation iteration
if i < length(timepoints_med_incl_radio)-1
new_endpoint = timepoints_med_incl_radio (i+2) -
— timepoints_med_incl_radio (i+1);
t_ode =[0 new_endpoint];
end

55

%killing of cancer cells due to radiation and new initial conditions

if 1 ==
transferl = sol_yi(:,1);
ini (1) = transferl (end) * (l-radio_perc);
60
transfer2 = sol_yi(:,2);
ini(2) = transfer2(end);

transfer3 = sol_yi(:,3);
65 ini(3) = transfer3(end);

transferd4 = sol_yi(:,4);
ini(4) = transferd (end);
else
70 transferl = sol_yi(:,1);
ini (1) = transferl (end);

transfer2 = sol_yi(:,2);
ini(2) = transfer2(end);
75
transfer3 = sol_yi(:,3);
ini(3) = transfer3(end) + medicine;

transfer4 = sol_yi(:,4);
80 ini(4) = transferd (end);
end
end
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output = [sol_t sol_y(:,1) sol_vy(:,2)]1;
85
%plot results
figure
subplot (1,2,1)
hold on
90 for i = l:length(timepoints_med)-1
line([timepoints_med (i) timepoints_med(i)], [0 0.4],
— 'LineWidth',2, 'Color', [223/255 255/255 0/255], 'LineStyle',"':")
end
line([68 68], [0 0.4], 'LineWidth',2,'Color', [175/255 238/255
— 238/255], 'LineStyle',"':")
plot(sol_t,sol_y(:,1),'b")
95 scatter (timepoints_pic,measurements_pic, 'red', 'x")
hold off

subplot (1,2, 2)
hold on
100 for i = l:length(timepoints_med)-1
line([timepoints_med (i) timepoints_med(i)], [0 0.035],
— 'LineWidth',2, 'Color', [223/255 255/255 0/255], 'LineStyle',"':")
end
line([68 68], [0 0.035], 'LineWidth',2,'Color',[175/255 238/255
— 238/255], 'LineStyle',"':")
plot(sol_t,sol_y(:,2),'b")
105 title ('With Radiation: T Cell Concentration over Time (P1)"')
xlabel ('Time in Days')
ylabel ('Concentration in g/cm”3")

110 function dydt = Melanoma_ODE (t,y)
lambda_c = 0.9; %proliferation rate cancer cells

eta = 23; %killing rate T cells
C_M = 0.4766; %carrying capacity for cancer cells

115 roh_P = 2.49%9e-7; %expression rate PD-1 of T cells
lambda_T_TI12 = 10; %activation of T cells
T 0 = 2e-3; %concentration of naive T cells

I_12 = 1.5e-10; %concentration IL-12
K_I12 = 1.5e-10; %half saturation IL-12
120 lambda_T_I2 = 0.25; %proliferation T cells
I_2 = 2.37e-11; %concentration IL-2
K_I2 = 2.37e-11; %half saturation IL-12
K_TQhat = 1.365e-18; %$inhibition of T cells
roh_L = 5.22e-7; %expression of PD-L1 on T cells
125 eps = 0.01; %expression PD-L1 on tumor cells (realtive to T cells)
dt = 0.191; %death rate T cells
mu_PA 2.1e5; %depletion of anti-PD-1 through PD-1
d_ A = 0.027; %decay of anti-PD-1
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130 %ODE system
dydt = zeros(4,1);

dydt (1) = lambda_c * y (1) * (1 - y(1)/C_M) — eta * y(1) * y(2);

dydt (2) = (lambda_T_TI12 % T_0 * (I_12/(K_I12 + I_12)) + lambda_T_I2 x
< oy (2) % (I_2/(K_I2 + I.2))) = 1/(1 + (y(4) = (roh_L = (y(2) +
< eps * y(1))))/K_TQhat) - d_t x y(2);

dydt (3) = — mu_PA % y(3) * y(4) - d_A % y(3);

135 dydt (4) = roh_P * (lambda_T_TI12 % T_0 * (I_12/(K_Il12 + I_12)) +

— lambda_T_I2 * y(2) * (I_2/(K_I2 + I_2))) * 1/(1 + (y(4) = .
— (roh_L * (y(2) + eps * y(1))))/K_TQhat) - d_t * y(4) - mu_PA =
— y(3) x y(4);

end

function dydt = Melanoma_ODE_postrad(t,y)
lambda_c = 0.9; S%proliferation rate cancer cells
140 eta = 23; %killing rate T cells
C_M 0.4766; %carrying capacity for cancer cells
roh_P = 2.4%e-7; %expression rate PD-1 of T cells
lambda_T_I12 = 21; %activation of T cells
T 0 = 2e-3; %concentration of naive T cells
145 I_12 = 1.5e-10; %concentration IL-12
K_I12 = 1.5e-10; %half saturation IL-12
lambda_T_I2 = 0.25; %proliferation T cells
I_2 = 2.37e-11; %concentration IL-2
K_I2 = 2.37e-11; %half saturation IL-12
150 K_TQhat = 1.365e-18; %$inhibition of T cells
roh_L = 5.22e-7; %expression of PD-L1 on T cells
eps = 0.01; %expression PD-L1 on tumor cells (realtive to T cells)
dt = 0.191; %death rate T cells
mu_PA 2.1e5; %depletion of anti-PD-1 through PD-1
155 d_A = 0.027; %decay of anti-PD-1

(@]

$ODE system
dydt = zeros(4,1);
dydt (1) = lambda_c * y (1) * (1 - y(1)/C_M) - eta * y(1) * y(2);
160 dydt (2) (lambda_T_TI12 * T_0 = (I_12/(K_I12 + I_12)) + lambda_T_I2 =«
— y(2) * (I_2/(K_I2 + I_2))) = 1/(1 + (y(4) * (roh_ L * (y(2) +
— eps * y(1))))/K_TQhat) - d_t x y(2);

dydt (3) = - mu_PA * yv(3) x y(4) - d_A x y(3);

dydt (4) = roh_P % (lambda_T_TI12 % T_0 * (I_12/(K_Il2 + I_12)) +
< lambda_T_I2 * y(2) * (I_2/(K_I2 + I_2))) = 1/(1 + (y(4) =
— (roh_L * (y(2) + eps * y(1))))/K_TQhat) - d_t * y(4) - mu_PA *
< y(3) * y(4);

end

165
end
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Listing 3

Simple script to plot data.

10

15

20

$Measurement Data in mm”3

M1 = [14 1569 474 498 1248 1759];
M2 = [14 1553 1053 418 284 587];
M3 = [0 1618 614 510 260 879];

M4 = [0 1527 658 408 290 13631]1;
M5 = [0 940 1198 772 1084 1149];

%Timepoints at which measurements were taken
timepoints_pic = [0 63 124 223 285 333];

%$Plotting

plot (timepoints_pic,M1, 'Linewidth', 2)
hold on

plot (timepoints_pic,M2, "'Linewidth', 2)
plot (timepoints_pic,M3, 'Linewidth', 2)
plot (timepoints_pic,M4, 'Linewidth', 2)
plot (timepoints_pic,M5, 'Linewidth', 2)
hold off

h = legend('M1','M2','M3"','M4",'M5");
title('Tracking 5 Exemplary Metastases over Time
xlabel ('Time in Days')

ylabel ('Volume in mm”3"')

(P1) ")
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Listing 4

Implementation of Thomas Algorithm to solve a system of linear equations, when the
system can be represented as a tridiagonal matrix.

function y = thomas( al, a2, a3, b )

%$implementation of the thomas algorithm. al is main diagonal, a2 is
— first diagonal below, a3 is first diagonal above. a2 needs an
<~ additional 0 in the beginning. a3 needs and additional 0 at the
— end. b is the right hand side of the linear system of equations.

= length(b);
= zeros(n,1);
= v;
al(l);
(1) = b(1)/w;
or i=2:n
10 v(i-1) = a3(i-1)/w;
w = al(i) - a2(i)*v(i-1);
y(i) = ( b(i) - a2(i)*y(i-1) )/w;
end
for j=n-1:-1:1
15 y(3) = y(3) — v(J)»y(J+1);
end
end

Hhi< =K <3
I
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Listing 5

Implementation of Crank-Nicolson method to simulate the system of Partial Differential
Equations - with a certain set of parameters. Once again, in this case all of
this is tailored to timeline, measurements and treatment regime of P1. It can easily be
adjusted to work for other data. This type of function is used throughout the thesis in
several variations, but the underlying method remains as outlined here. It can also be
extended to a multiple stage simulation (as was utilized to obtain proper initial conditions
for simulations in Chapter [7)). We can further combine it with an appropriate function
to create a similar mechanism as created through Listing 1 and Listing 2 and conduct
parameter fitting.

10

15

20

25

30

35

function [ output ] = Pl_compare_to_data ()

%$simulates PDE model and compares tumor border over time to Pl data.
%$Can beused for simple fitting by including calculation of square
%error and set it as output, which can then be optimized.

$clc;
%$clear all;

$I. Modular

$Death term without wvasculature (eta P T) -> checkl = 0, d
%eath term with wvasculature (eta P T V) —-> checkl =1
checkl = 0;

$II. Modular

$Exclude medicine (treatment free environment) -> check2 = 0,
%include medicine (treatment regime of P1l) —-> check2 =1
check2 = 1;

%$III. Modular

%Insert medicine everywhere equally —-> check3 = 0, insert
$medicine over vasculature (increase concentration proportionally
$to vasculature) —-> check3 =1

check3 = 1;

%$IV. Modular
%Use only p/(g) in death term for T cells (eta P T)
%$—> check4 = 0, Use f(p)/(f(g)) (eta f£(P) T) —-> checkd =1

o)

$f(p) = p + omegaxp”2, exclude first p term check5 -> 0,
$include first p term check5 -> 1
check4 = 0;
check5 0;

omega 10;

3VI. Modular
$Activated T Cells enter only via the blood stream
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%—> check6 = 1, T cells enter everywhere equally —-> check6 = 0
check6 = 1; %T cells
check?7 = 1; %PD1 (same dynamic)

VII. Modular

Different post radiation rate lambda_I12 -> check8 = 1, same rate
lambda_TI12 all the time -> check8 = 0

check8 = 1;

40

o° o o

45 S%$Number of years simulated
years = 1;

$time to t=0 (first measurement)
first_meas = 30;

50 medicine = 0.0005;

% Parameters

D_p = 6.3e—4; $Diffusion P cells
D_g = 1.7+«D_p; %Diffusion Q cells
55 D_v = 0.8%D_p; S$Diffusion vascular cells
D_a = 7.85e-7; %Diffusion anti PD-1
D_t = 8.64e-2; %Diffusion T-cells

lambda_p = 3.15; S%Proliferation rate P cells
60 C_k = 1; %Carrying capacity (volume)
alpha_pg = 0.03;%Rate of hypoxia P cells
alpha_gp = 0.5xalpha_pqg; %Rate of reoxygenation Q cells
alpha_gn = 0.0017; %$Rate of necrosis
delt_P = 2.4e-4; %Rate of expunging P cells
65 delt_Q = 2.4e-4; %Rate of expunging Q cells
delt_N = 2.4e-4; %Rate of expunging N cells

eta = 23; % Killing rate of P cells by T cells
eta2 = 5; % Killing rate of Q cells by T cells
70 chi = 0.0013; %Chemotaxis of Vascular cells

$from ODE model

lambda_v = 0.6; %Proliferation rate vascular cells
delt_v = 2.4e-4; %Rate of expunging vascular cells
75 lambda_T_TIl12 = 25; %$Activation T cells pre radiation

lambda_T_TI12_post = 133; %Activation T cells post radiation (obsolete
<~ if check8 = 0)
lambda_T_I2 = 0.25; %Proliferation T cells
K_I12 = 1.5e-10; S%concentration IL-12
I_12 = 1.5e-10; %half saturation IL-12
80 K _I2 = 2.37e-11; %concentration IL-2
I_2 = 2.37e-11; %half saturation IL-2

T_0 = 6e-4; %concentration of naive T cells
roh_L = 5.22e-7; %expression of PD-L1 on T cells
eps = 0.01; %expression PD-L1 on tumor cells (realtive to T cells)
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85

90

95

100

105

110

115

120

125

130

K_TQhat = 1.365e-18; %inhibition of T cells

dt = 0.191; %death rate T cells
mu_PA = 2.1le5; %depletion of anti-PD-
d A = 0.027; %decay of anti-PD-1
roh_P = 2.49e-7; %expression rate PD-

$timepoints for treatment cycles

timepoints_med = [14 35 55 88 109 129 151 172 193 213 234 255 276 297

— 319];

%create spatial mesh (r)

L = 2;

N = 150;

r_vec = linspace(0,L,N);
dx = r_vec(2) - r_vec(l);

$create time mesh (t)
dt = 1/200; %1/50

T = yearsx365;

t_vec = 0:dt:T;

%create empty matrics for populations

1 through PD-1

1 of T cells

P_mat = zeros(length(r_vec), length(t_vec));
Q_mat = zeros(length(r_vec),length(t_vec));
N_mat = zeros(length(r_vec),length(t_vec));
V_mat = zeros (length(r_vec),length(t_vec));
A_mat = zeros(length(r_vec),length(t_vec));
T_mat = zeros(length(r_vec),length(t_vec));
PD_mat = zeros(length(r_vec), length(t_vec));

%$initial conditions

$find border at onset of angiogenesis
ini_P = round((0.05/L)~*length(r_vec))

%$set initial conditions

for 1 = 1:ini_P

P_mat(i,1) = 0.95*C_k=x*(5/4);

end

for 1 = (ini_P +1) :length(r_vec)
V_mat (i,1) = 0.05%C_k;

end

for i = (ini_P +1) :length(r_vec)
T_mat (i,1) = 0.0006;

end

for i = (ini_P +1) :length(r_vec)
PD_mat (i,1) = roh_P*T_mat (i,1);

(radius about 0.5mm)

’
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end
135
for

140

145

155

160

116

tdx = 1l:length(t_vec)-1
$switch to post radiation activation rate (careful with t mesh)
if tdx*dt == (68+first_meas)
lambda_T_TI12 = check8xlambda_T_T12_post + (1 -
— check8) xlambda_T_TI12;
end

%$set up and solve system of linear equation for proliferating cells
$set up A,b for system of linear equations

P_GLS = zeros (length(r_vec)-1,length(r_vec)-1);

P_b = zeros(length(r_vec)-1,1);

P_eps = (D_p)/ (2xdx"2);
P_delt = 1/dt + D_p/(dx"2);
P_roh = (D_p)/ (4*dx);

$fill matrix first row
P_GLS(1,1) = P_delt - P_eps + (2xP_roh)/ (1*dx);

P_GLS(1,2) = -P_eps - (2+P_roh)/ (1+dx);

P_b(l) = P_mat(2,tdx)/dt + P_eps*P_mat (2+1,tdx) -
— 2xP_eps*P_mat (2,tdx) + P_eps+P_mat (2-1,tdx) +
< (2/(1lxdx))* (P_roh*xP_mat (1+1+1,tdx) - P_rohxP_mat (1+1-1,tdx))
— + lambda_p+*P_mat (2, tdx) *V_mat (2, tdx) « (1 —
— ((4/5)* (P_mat (2,tdx) + Q_mat(2,tdx) + N_mat (2,tdx)) +
— V_mat (2,tdx))) + alpha_gp*Q_mat (2,tdx)*V_mat (2, tdx) -
— alpha_pg*P_mat (2, tdx) (1 - V_mat (2,tdx)) -
— delt_PxP_mat (2,tdx) - etax((l-checkd)*P_mat (2, tdx) +
— checkdx (check5*P_mat (2, tdx) +
— omegax*P_mat (2,tdx)"2))*T_mat (2,tdx) * ((l-checkl) +
— (checkl*V_mat (2,tdx)));

$fill matrix middle rows
for idx = 2:length(r_vec)-2
P_GLS (idx, idx-1) = -P_eps + (2xP_roh)/ (idx*dx) ;
P_GLS (idx, idx) = P_delt;
P_GLS (idx, idx+1l) = —-P_eps — (2xP_roh)/ (idx*dx) ;
P b x) = P_mat (idx+1,tdx)/dt + P_eps*P_mat (idx+1+1,tdx) -
2xP_eps*P_mat (idx+1l,tdx) + P_eps*P_mat (idx+1-1,tdx)+
(2/ (1dx*dx) ) * (P_roh*P_mat (idx+1+1, tdx) -
P_roh*P_mat (idx+1-1,tdx)) +
lambda_p+*P_mat (idx+1, tdx) *V_mat (idx+1, tdx) (1 -
((4/5) * (P_mat (idx+1, tdx) + Q_mat (idx+1,tdx) +
N_mat (idx+1,tdx)) + V_mat (idx+1,tdx))) +
alpha_gp*Q_mat (idx+1, tdx) *V_mat (idx+1, tdx) -
alpha_pg*P_mat (idx+1,tdx)* (1 - V_mat (idx+1,tdx)) -
delt_P*P_mat (idx+1,tdx) -
etax ((1-checkd) *P_mat (idx+1, tdx) +

R




165

170

175

180

185

190

< check4d* (check5xP_mat (idx+1, tdx) +
— omegaxP_mat (idx+1,tdx)"2))«T_mat (idx+1, tdx) x ( (1-checkl)
— + (checkl*V_mat (idx+1,tdx)));

end

%$fill matrix last row
P_GLS (length(r_vec)-1,length(r_vec)-2) = -2«P_eps +

<~ (2+P_roh)/ ((length(r_vec)-1)*xdx) -

— (2xP_roh) / ((length(r_vec)-1) xdx) ;
P_GLS (length(r_vec)-1,length(r_vec)-1) = P_delt;
P_b(length(r_vec)-1) = P_mat (length (r_vec), tdx)/dt +
P_eps*P_mat (length(r_vec)-1,tdx) -
2xP_eps*P_mat (length (r_vec), tdx) +
P_eps*P_mat (length(r_vec)-1,tdx) +
(2/ ((length (r_vec)-1) *dx) ) * (P_roh*P_mat (length (r_vec) -1, tdx)
— P_rohxP_mat (length(r_vec)-1,tdx)) +
lambda_p+*P_mat (length (r_vec), tdx) *V_mat (length (r_vec), tdx) = (1
- ((4/5) % (P_mat (length (r_vec),tdx) +
Q_mat (length (r_vec),tdx) + N_mat (length(r_vec),tdx)) +
V_mat (length (r_vec),tdx))) +
alpha_gp*Q_mat (length (r_vec), tdx) *V_mat (length (r_vec),tdx) -
alpha_pg*P_mat (length(r_vec), tdx) » (1 -
V_mat (length (r_vec),tdx)) - delt_PxP_mat (length (r_vec),tdx)
- etax ((l-check4) xP_mat (length (r_vec), tdx) +
check4* (check5«P_mat (length (r_vec),tdx) + omega =*
P_mat (length (r_vec),tdx)"2)) * T_mat (length(r_vec),tdx) =
((l-checkl) + (checklxV_mat (length(r_vec),tdx)));

PELLLLLLLLLL LT

%$set up vectors for thomas algorithm

P_al = zeros(length(r_vec)-1,1);
P_a2 = zeros(length(r_vec)-1,1);
P_a3 = zeros(length(r_vec)-1,1);

$fill thomas algorithm vectors first entry

P_al(l) = P_GLS(1,1);
P_a2(1l) = 0;
P_a3(l) = P_GLS(1,1+1);

$fi1l1 thomas algorithm vectors middle entries
for i = 2:length(r_vec)-2

P_al(i) = P_GLS(i,1);

P_az2 (i) P_GLS(i,1i-1);

P_a3 (1) P_GLS(i,1i+1);

end

$fill thomas algorithm vectors last entry

P_al (length(r_vec)-1) P_GLS (length(r_vec) -1, length(r_vec)-1);
P_a2 (length(r_vec)-1) P_GLS (length(r_vec) -1, length (r_vec)-2);
P_a3 (length(r_vec)-1) 0;
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$solve system of linear equations with thomas algorithm
P_solve_tr = thomas(P_al,P_a2,P_a3,P_b);

195
%add value at r=0

P_solve = [P_solve_tr(l); P_solve_tr];
P_mat (:,tdx+1) = P_solve;
200 %¥set up and solve system of linear equation for quiescent cells
% (same procedure as for proliferating cells)
Q_GLS = zeros(length(r_vec)-1,length(r_vec)-1);
Q_b = zeros(length(r_vec)-1,1);
205 Q_eps = (D_q)/ (2«dx"2);

Q_delt = 1/dt + D_qg/ (dx"2);
Q_roh = (D_qg)/ (4xdx);

Q_GLS(1,1) = Q_delt - Q_eps + (2%xQ_roh)/ (1*dx);

210 Q_GLS(1,2) = - Q_eps — (2%xQ_roh)/ (1+dx);

Q_b(l) = Q_mat(2,tdx)/dt + Q_eps*Q_mat (2+1, tdx) -
— 2xQ_eps*Q_mat (2,tdx) + Q_eps*Q_mat (2-1,tdx) +
— (2/(1lxdx))*(Q_roh*xQ_mat (1+1+1,tdx) - Q_rohxQ_mat (1+1-1,tdx))
— - alpha_gp*Q_mat (2, tdx) *V_mat (2, tdx) +
— alpha_pg*P_mat (2,tdx) * (1 - V_mat (2,tdx)) -
— alpha_gn*Q_mat (2,tdx) - delt_Q+Q_mat (2,tdx) -
— eta2*Q_mat (2, tdx) *T_mat (2, tdx) * ((1-checkl) +
< (checkl*V_mat (2,tdx)));

for idx = 2:length(r_vec)-2

Q_GLS (idx, idx-1) = -Q_eps + (2*Q_roh)/ (idx=*dx);
215 Q_GLS (idx, idx) = Q_delt;
Q_GLS (idx, idx+1) = -Q_eps — (2*Q_roh)/ (idx=*dx);
Q_b(idx) = Q_mat (idx+1,tdx)/dt + Q_eps*Q_mat (idx+1+1,tdx) -

— 2xQ_eps*Q_mat (idx+1,tdx) + Q_eps*Q_mat (idx+1-1,tdx) +
— (2/ (1idx*dx))* (Q_roh*Q_mat (idx+1+1, tdx) -

— Q_roh*Q mat (idx+1-1,tdx)) -

— alpha_gp+*Q_mat (idx+1, tdx) *V_mat (idx+1, tdx) +

— alpha_pg*P_mat (idx+1,tdx)* (1 - V_mat (idx+1,tdx)) -

— alpha_gn*Q_mat (idx+1,tdx) - delt_Q+Q mat (idx+1,tdx) -
(SN
(_>

eta2+Q_mat (idx+1, tdx) *T_mat (idx+1,tdx) * ((l-checkl)
(checkl*V_mat (idx+1,tdx)));
end
220
Q_GLS(length(r_vec)-1,length(r_vec)-2) = -2%xQ_eps +

)

— (2xQ_roh)/ ((length(r_vec)-1)xdx) -
— (2xQ_roh)/ ((length (r_vec)-1) xdx) ;

Q_GLS (length(r_vec)-1,length(r_vec)-1) = Q_delt;

Q_b(length(r_vec)-1) = Q_mat (length (r_vec),tdx)/dt +
— Q_eps*Q_mat (length (r_vec)-1,tdx) -
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225

240

245

250

255

— 2*xQ_eps*Q_mat (length (r_vec),tdx) +
— Q_eps*Q_mat (length(r_vec)-1,tdx) +
— (2/ ((length(r_vec)-1)*dx)) * (Q_roh*Q_mat (length (r_vec) -1, tdx)
— — Q_rohxQ_mat (length(r_vec)-1,tdx)) -
— alpha_gp*Q_mat (length (r_vec), tdx) *V_mat (length (r_vec), tdx) +
— alpha_pg*P_mat (length (r_vec),tdx) * (1 -
— V_mat (length(r_vec),tdx)) -
— alpha_gn*Q_mat (length (r_vec),tdx) -
— delt_QxQ_mat (length(r_vec),tdx) -
— etaz2xQ_mat (length(r_vec),tdx) x T_mat (length(r_vec),tdx) x*
<~ ((l-checkl) + (checklxV_mat (length(r_vec),tdx)));
Q_al = zeros(length(r_vec)-1,1);
Q_a2 = zeros(length(r_vec)-1,1);
Q_a3 = zeros(length(r_vec)-1,1);
Q_al(l) = Q_GLS(1,1);
Q_a2(l) = 0;
Q_a3(l) = Q_GLS(1,1+1);

for 1 = 2:length(r_vec)-2
Q_al(i) O_GLS(i,1);
Q_a2(i) = Q_GLS(i,i-1);

Q _a3(i) = Q_GLS(i,1i+1);
end
Q_al(length(r_vec)-1) = Q_GLS(length(r_vec)-1,length(r_vec)-1);
Q_a2(length(r_vec)-1) = Q_GLS(length(r_vec)-1,length(r_vec)-2);
Q_a3(length(r_vec)-1) = 0;

Q_solve_tr = thomas(Q_al,Q _a2,Q_a3,Q b);
Q_solve = [Q_solve_tr(l); Q_solve_tr];
Q_mat (:,tdx+1) = Q_solve;

$set up and solve system of linear equation for vascular cells
% (same procedure as for proliferating cells)

V_GLS = zeros(length(r_vec)-1,length(r_vec)-1);

V_b = zeros(length(r_vec)-1,1);

V_eps = (D_v)/(2xdx"2);
V_delt = 1/dt + D_v/ (dx"2);
V_roh = (D_v)/ (4%dx);

V_GLS(1,1) = V_delt - V_eps + (2+V_roh)/ (1+dx) +

< (chi/ (4*dx))* ((Q_mat (1+1+1,tdx+1l) - Q_mat (1,tdx+1l) +
— Q mat (1+1+1,tdx) - Q _mat (l,tdx))/ (4*dx));

V_GLS(1,2) = -V_eps — (2+«V_roh)/ (1lxdx) -
< (chi/ (4*dx))* ((Q_mat (1+1+1,tdx+1l) — Q_mat (1,tdx+1l) +
— Q mat (1+1+1,tdx) - Q mat (l,tdx))/ (4*dx));

V_b(l) = V_mat(2,tdx)/dt + V_eps*V_mat (2+1, tdx) -
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2+xV_eps*V_mat (2,tdx) + V_eps+V_mat (2-1,tdx) +

(2/ (1xdx)) * (V_roh*V_mat (1+1+1,tdx) - V_roh*V_mat (1+1-1,
+ chi*V_mat (2,tdx)+ (((1/(2«dx"2))*Q_mat (2+1, tdx) -

2% (1/(2*dx"2))+xQ_mat (2, tdx) + (1/(2*dx"2))*Q_mat (2-1,td
((1/(2+xdx"2))*Q_mat (2+1, tdx+1) -

2% (1/ (2+xdx"2)) *Q_mat (2, tdx+1) +

(1/(2*dx"2))*Q_mat (2-1,tdx+1))) +
((2+xchi*V_mat (2,tdx))/ (1xdx)) * ((Q_mat (1+1+1,tdx+1) -
QO_mat (1+1-1,tdx+1) + Q_mat (1+1+1,tdx) -

Q_mat (1+1-1,tdx))/ (4xdx)) + chix (V_mat (2+1,tdx)/ (4*dx)
V_mat (2-1,tdx) / (4*dx)) * ( (Q_mat (2+1,tdx+1) - Q_mat (2-1,t
+ Q_mat (241, tdx) — Q_mat (2-1,tdx))/ (4xdx)) +
lambda_v*V_mat (2, tdx) *Q_mat (2,tdx)* (1 — ((4/5)* (P_mat (2
+ Q_mat (2,tdx) + N_mat (2,tdx)) + V_mat (2,tdx))) -
delt_v*V_mat (2, tdx) ;

R A R

260 for idx = 2:length(r_vec)-2

V_GLS (idx,1idx-1) = -V_eps + (2%V_roh)/ (idxxdx) +
— (chi/ (4*dx))* ((Q_mat (idx+1+1,tdx+1) -
— Q_mat (idx+1-1,tdx+1) + Q_mat (idx+1+1,tdx) -
< Q_mat (idx+1-1,tdx))/ (4*dx));

V_GLS (idx, 1dx) = V_delt;

V_GLS (idx,1idx+1) = -V_eps - (2%V_roh)/ (idxxdx) -
— (chi/ (4*dx))* ((Q_mat (idx+1+1, tdx+1l) -
— Q_mat (idx+1-1,tdx+1) + Q_mat (idx+1+1,tdx) -
— Q_mat (idx+1-1,tdx))/ (4*dx));

265

|<
o

R

= V_mat (idx+1,tdx)/dt + V_eps*V_mat (idx+1+1,tdx)
2+«V_eps*V_mat (idx+1,tdx) + V_eps*V_mat (idx+1-1,tdx)
(2/ (1dx*dx) ) * (V_roh*V_mat (idx+1+1, tdx) -
V_roh*V_mat (idx+1-1,tdx)) +

chi*V_mat (idx+1,tdx)* (((1/(2*xdx"2))*Q_mat (idx+1+1,t
- 2% (1/(2%xdx"2)) *Q_mat (idx+1, tdx+1) +
(1/(2*dx"2))+Q_mat (idx+1-1,tdx+1)) +
((1/(2*dx"2))*Q_mat (idx+1+1, tdx) -

2% (1/ (2*dx"2) ) *Q_mat (idx+1, tdx) +
(
(
(

X

1/ (2+dx"2))*xQ_mat (idx+1-1,tdx))) +

(2+xchi*V_mat (idx+1, tdx) )/ (idx*dx)) =*

(Q_mat (idx+1+1,tdx+1l) — Q_mat (idx+1-1,tdx+1) +
Q_mat (idx+1+1,tdx) - Q_mat (idx+1-1,tdx))/ (4»dx)) +
chi* (V_mat (idx+1+1,tdx)/ (4*dx) -

V_mat (idx+1-1,tdx)/ (4*dx))* ((Q_mat (idx+1+1, tdx+1) -
Q_mat (idx+1-1,tdx+1) + Q _mat (idx+1+1,tdx) -

Q_mat (idx+1-1,tdx))/ (4xdx)) +
lambda_v*V_mat (idx+1, tdx) *Q_mat (idx+1, tdx) (1 -
((4/5) % (P_mat (idx+1, tdx) + Q_mat (idx+1,tdx) +

N_mat (idx+1,tdx)) + V_mat (idx+1,tdx))) -
delt_v*V_mat (idx+1, tdx) ;

end
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tdx))
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+

dx+1)




V_GLS (length(r_vec) -1, length(r_vec)-2) = -V_eps +
— (2xV_roh)/ ((length(r_vec)-1)*dx) -
— (2xV_roh)/ ((length(r_vec)-1)*dx) -
— (chi/ (4%dx)) * ((Q_mat (length (r_vec)-1,tdx+1l) -
— Q_mat (length(r_vec)-1,tdx+1l) + Q_mat (length(r_vec)-1,tdx) -
< Q_mat (length (r_vec)-1,tdx))/ (4xdx)) +
— (chi/ (4%dx)) * ((Q_mat (length (r_vec)-1,tdx+1l) -
— Q_mat (length(r_vec)-1,tdx+1l) + Q_mat (length(r_vec)-1,tdx) -
— Q_mat (length (r_vec)-1,tdx) )/ (4xdx));

V_GLS (length(r_vec) -1, length(r_vec)-1) = V_delt;

V_b

=

ength (r_vec)-1) = V_mat (length(r_vec),tdx)/dt +

V_eps*V_mat (length(r_vec) -1, tdx) -
2xV_eps+*V_mat (length (r_vec), tdx) +

V_eps*V_mat (length(r_vec)-1,tdx) +

(2/ ((length (r_vec)-1) «dx)) =
(V_rohxV_mat (length (r_vec)-1,tdx) -

V_rohxV_mat (length(r_vec)-1,tdx)) +
chi*V_mat (length (r_vec), tdx) =*

(((1/(2+%dx"2))*Q_mat (length(r_vec) -1, tdx) -

2% (1/ (2*xdx"2) ) *Q_mat (length (r_vec), tdx) +
(1/(2xdx"2))*Q_mat (length (r_vec)-1,tdx)) +
((1/(2*dx"2))*Q _mat (length (r_vec)-1,tdx) -

2% (1/ (2xdx"2))*Q_mat (length (r_vec), tdx) +
(1/(2xdx"2))*xQ_mat (length (r_vec)-1,tdx))) +

((2*chi*V_mat (length (r_vec),tdx))/ ((length(r_vec)-1)*dx)) =*
((Q_mat (length (r_vec)-1,tdx+1l) -

QO_mat (length(r_vec)-1,tdx+1l) + Q_mat (length(r_vec)-1,tdx) -
Q_mat (length (r_vec)-1,tdx))/ (4xdx)) +

chix (V_mat (length (r_vec) -1, tdx) / (4+dx) -

V_mat (length (r_vec) -1, tdx) / (4+dx)) =*

((Q_mat (length (r_vec) -1, tdx+1) -

Q_mat (length(r_vec)-1,tdx+1l) + Q_mat (length(r_vec)-1,tdx) -
QO_mat (length(r_vec)-1,tdx))/ (4xdx)) +

lambda_vxV_mat (length (r_vec), tdx) *Q_mat (length (r_vec), tdx) x (1
- ((4/5) % (P_mat (length (r_vec), tdx) +

QO_mat (length(r_vec),tdx) + N_mat (length(r_vec),tdx)) +
V_mat (length(r_vec),tdx))) - delt_vxV_mat (length(r_vec),tdx);

R R R U

V_al zeros (length (r_vec)-1,1);
V_a2 zeros (length (r_vec)-1,1);
V_a3 = zeros(length(r_vec)-1,1);

14

V_al(l) V_GLS(1,1);
V_a2(l) = 0;
V_a3(l) = V_GLS(1,1+1);

for i = 2:length(r_vec)-2
V_al (i) V_GLS (i, 1);
V_a2 (i) = V_GLS(i,i-1);
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285

290

295

300

305

310

315

320

122

end

V_al (length(r_vec)-1)

V_a3 (i) = V_GLS(i,1i+1);

V_GLS (length(r_vec) -1, length(r_vec)-1);

V_a2 (length(r_vec)-1) = V_GLS(length(r_vec)-1,length(r_vec)-2);

V_a3 (length(r_vec)-1)

0;

V_solve_tr = thomas(V_al,V_a2,V_a3,V_Db);

V_solve = [V_solve_tr(l); V_solve_tr];
V_mat (:,tdx+1) = V_solve;

o
°
o
°

set up and solve system of linear equation for anti-PD-1
(same procedure as for proliferating cells)

if check2 ==

A_GLS = zeros(length(r_vec)-1,length(r_vec)-1);
A_b = zeros(length(r_vec)-1,1);

A_eps = (D_a)/ (2xdx"2);
A_delt = 1/dt + D_a/ (dx"2);
A_roh = (D_a)/ (4%dx);

A_GLS(1,1) = A_delt - A_eps + (2*A_roh)/ (1*xdx);
A_GLS(1,2) = - A_eps - (2*A_roh)/ (1xdx);
A b(1l) = A_mat(2,tdx)/dt + A_eps*A_mat (2+1,tdx) -
— 2xA_eps*A_mat (2,tdx) + A_epsxA_mat (2-1,tdx) +
— (2/(1*dx))*(A_roh*A_mat (1+1+1,tdx) -
— A_rohx*A_mat (1+1-1,tdx)) -
— mu_PAxPD_mat (2, tdx) *A_mat (2, tdx) - d_A*xA_mat (2, tdx);

for idx = 2:length(r_vec)-2
A_GLS (idx,1dx-1) = -A_eps + (2%A_roh)/ (idxxdx);
A_GLS (idx, 1dx) = A_delt;
A_GLS (idx,idx+1) = -A_eps - (2%A_roh)/ (idxxdx);
A_b(idx) = A_mat (idx+1,tdx)/dt + A_eps*A_mat (idx+1+1, tdx)
- 2%A_eps*A_mat (idx+1,tdx) +
A_eps*A_mat (1dx+1-1, tdx) +
(2/ (1dx*dx) ) * (A_roh*A_mat (idx+1+1, tdx) -
A_roh*A_mat (idx+1-1,tdx)) -
mu_PAxPD_mat (idx+1, tdx) *A_mat (idx+1, tdx) -
d_AxA_mat (idx+1, tdx) ;

[

R

end

A_GLS(length(r_vec)-1,length(r_vec)-2) = -2xA_eps +
< (2xA_roh)/ ((length(r_vec)-1)xdx) -
< (2xA_roh)/ ((length(r_vec)-1) xdx) ;
A_GLS(length(r_vec)-1,length(r_vec)-1) = A_delt;
A_b(length(r_vec)-1) = A_mat (length(r_vec),tdx)/dt +
— A_eps*A_mat (length (r_vec)-1,tdx) -




325

330

335

340

345

350

355

— 2*xA_eps*A_mat (length (r_vec),tdx) +
— A_eps*A_mat (length(r_vec)-1,tdx) +
<~ (2/ ((length(r_vec)-1)*dx)) =
<~ (A_rohxA_mat (length(r_vec)-1,tdx) -
<~ A_rohxA_mat (length(r_vec)-1,tdx)) -
— mu_PAxPD_mat (length (r_vec), tdx)*A_mat (length (r_vec), tdx)
— — d_AxA_mat (length(r_vec), tdx);

A_al = zeros(length(r_vec)-1,1);

A_a2 = zeros(length(r_vec)-1,1);

A_a3 = zeros(length(r_vec)-1,1);

A_al(l) = A_GLS(1,1);

A_a2(1l) = 0;

A_a3(l) = A_GLS(1,1+1);

for i = 2:length(r_vec)-2
A_al (i) A_GLS(i,1);
A_az2 (i) = A_GLS(i,i-1);
A_a3 (i) A_GLS(i,i+1);
end

A_al(length(r_vec)-1) = A_GLS(length(r_vec)-1,length(r_vec)-1);
A_a2(length(r_vec)-1) A_GLS (length(r_vec) -1, length(r_vec)-2);
A_a3(length(r_vec)-1) 0;

A_solve_tr = thomas(A_al,A_a2,A_a3,A_b);
A_solve = [A_solve_tr(l); A_solve_tr];
A_mat (:,tdx+1l) = A_solve;

% add anti-PD-1 at treatment dates

if tdxxdt == 44 || tdxxdt == 65 || tdx*dt == 85 || tdxxdt ==
— 118 || tdxxdt == 139 || tdx*dt == 159 || tdx*xdt == 181
— || tdxxdt == 202 || tdx*dt == 223 || tdxxdt == 243 ||
< tdxxdt == 264 || tdxxdt == 285 || tdxxdt == 306 |
— tdxxdt == 327 || tdxxdt == 349
A_mat (:,tdx+1l) = A_mat(:,tdx+1l) + medicinex ((l-check3) +
— check3*V_mat (:,tdx+1));
end
else
A_mat (:,tdx+1) = 0;
end

%$set up and solve system of linear equation for T cells
% (same procedure as for proliferating cells)

_GLS = zeros(length(r_vec)-1,length(r_vec)-1);

b = zeros(length(r_vec)-1,1);

= =
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360 T_eps = (D_t)/ (2+xdx"2);
T_delt = 1/dt + D_t/(dx"2);
T_roh = (D_t)/ (4xdx);

T_GLS(1,1) = T_delt - T_eps + (2xT_roh)/ (1xdx);

365 T_GLS(1,2) = — T_eps — (2xT_roh)/ (1xdx);
T_b(l) = T_mat(2,tdx)/dt + T_eps*T_mat (2+1,tdx) -
— 2xT_eps*T_mat (2,tdx) + T_eps*T_mat (2-1,tdx) +
— (2/(1lxdx))* (T_roh*T_mat (1+1+1,tdx) - T_rohxT_mat (1+1-1,tdx))
— 4+ ((check6*V_mat (2,tdx) + (l-check6))*lambda_T I12 + T_0 «*
— (I_12/(K_I12 + I_12)) + lambda T I2 * T_mat (2,tdx) =*
— (I_2/(K_I2 + I_2))) = 1/(1 + (PD_mat (2,tdx) * (roh_L =*
— (T_mat (2,tdx) + eps % (P_mat(2,tdx) +
< Q mat (2,tdx)))))/K_TQhat) - d_t*T_mat (2, tdx);

for idx = 2:length(r_vec)-2
T_GLS (idx, idx-1) = -T_eps + (2*T_roh)/ (idx=*dx);
370 T_GLS (idx, idx) = T_delt;
T_GLS (idx, idx+1) -T_eps - (2+T_roh)/ (idx=*dx);

T_b

R

x) = T_mat (idx+1,tdx)/dt + T_eps*T_mat (idx+1+1,tdx) -
2xT_eps*T_mat (idx+1,tdx) + T_eps*T_mat (idx+1-1,tdx) +
(2/ (1dx*dx) )+ (T_roh*T_mat (idx+1+1, tdx) -

T_roh*T_mat (idx+1-1,tdx)) + ((check6*V_mat (idx+1,tdx) +
(1-check6) ) *xlambda_T_ I12 * T_0 x= (I_12/(K_I12 + I_12)) +
lambda_T_I2 * T_mat (idx+1,tdx) * (I_2/(K_I2 + I_2))) =
1/(1 + (PD_mat (idx+1,tdx) * (roh_L * (T_mat (idx+1,tdx) +
eps * (P_mat (idx+1,tdx) + Q_mat (idx+1,tdx)))))/K_TQhat)
- d_t+T_mat (idx+1, tdx);

end
375
T_GLS (length(r_vec)-1,length(r_vec)-2) = -2«T_eps +
— (2xT_roh)/ ((length(r_vec)-1)xdx) -
< (2+xT_roh)/ ((length(r_vec)-1) *xdx) ;

T_GLS (length(r_vec) -1, length(r_vec)-1) = T_delt;
T_b(length(r_vec)-1) = T_mat (length(r_vec)+1-1,tdx)/dt +
— T_eps*T_mat (length (r_vec)-1,tdx) -
— 2xT_eps*T_mat (length (r_vec),tdx) +
— T_epsx*T_mat (length(r_vec)-1,tdx) +
— (2/ ((length(r_vec)-1)*dx)) * (T_roh*T_mat (length (r_vec) -1, tdx)
«— — T_roh*T_mat (length(r_vec)-1,tdx)) +
— ((check6xV_mat (length(r_vec),tdx) + (l-check6))xlambda_T_T12
— % T_0 % (I_12/(K_I12 + I_12)) + lambda_T_I2 x
— T_mat (length (r_vec),tdx) * (I_2/(K_I2 + I_2))) * 1/(1 +
— (PD_mat (length(r_vec),tdx) * (roh_L =
— (T_mat (length(r_vec),tdx) + eps x (P_mat (length(r_vec),tdx)
— + Q_mat (length(r_vec),tdx)))))/K_TQhat) -
— d_t+*T_mat (length(r_vec), tdx);
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380

385

390

395

400

405

410

415

420

T_al = zeros(length(r_vec)-1,1);
T a2 zeros (length(r_vec)-1,1);
T_a3 = zeros(length(r_vec)-1,1);

’

T_al(l) = T_GLS(1,1);
T_a2(l) = 0;
T_a3 (1) T_GLS(1,1+1);

for i = 2:length(r_vec)-2
T al(i) = T_GLS(i,1i);

T a2 (i) = T_GLS(i,i-1);

T _a3(i) = T_GLS(i,i+1);
end
T_al(length(r_vec)-1) = T_GLS(length(r_vec)-1,length(r_vec)-1);
T_a2(length(r_vec)-1) = T_GLS(length(r_vec)-1,length(r_vec)-2);
T_a3 (length(r_vec)-1) = 0;

T_solve_tr = thomas(T_al,T_a2,T_a3,T_b);

T _solve = [T_solve_tr(l); T_solve_tr];
T _mat (:,tdx+1l) = T_solve;

set up and solve system of linear equation for PD-1
(same procedure as for proliferating cells)

PD_GLS = zeros (length(r_vec)-1,length(r_vec)-1);
PD_b = zeros(length(r_vec)-1,1);

o
°
o
°

PD_eps = (D_t)/(2+«dx"2);
PD_delt = 1/dt + D_t/ (dx"2);
PD_roh = (D_t)/ (4*dx);
PD_GLS(1,1) = PD_delt - PD_eps + (2+PD_roh)/ (1xdx);
PD_GLS(1,2) = — PD_eps - (2%PD_roh)/ (1+dx);
PD_b(l) = PD_mat (2,tdx)/dt + PD_eps*PD_mat (2+1,tdx) -
— 2xPD_eps*PD_mat (2,tdx) + PD_eps*PD_mat (2-1,tdx) +
— (2/(1lxdx))* (PD_roh*PD_mat (1+1+1, tdx) -
— PD_rohxPD_mat (1+1-1,tdx)) + roh_Px ((check7+V_mat (2,tdx) +
< (l-check7))+lambda_T I12 *« T_0 » (I_12/(K_I12 + I_12)) +
— lambda_T I2 * T_mat (2,tdx) x (I_2/(K_I2 + I_2))) * 1/(1 +
— (PD_mat (2,tdx) » (roh_L x (T_mat (2,tdx) + eps =
< (P_mat (2,tdx) + Q_mat (2,tdx)))))/K_TQhat) -
— mu_PA*PD_mat (2, tdx) *A_mat (2, tdx) —-d_t*PD_mat (2, tdx);
for idx = 2:length(r_vec)-2
PD_GLS (idx, idx-1) = -PD_eps + (2%PD_roh)/ (idx*dx) ;
PD_GLS (idx, idx) = PD_delt;
PD_GLS (idx, idx+1) = -PD_eps - (2%PD_roh)/ (idx*dx) ;
PD_b (idx) = PD_mat (idx+1,tdx)/dt + PD_eps+PD_mat (idx+1+1,tdx) -
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< 2xPD_eps*PD_mat (idx+1,tdx) + PD_eps*PD_mat (idx+1-1,tdx)
— 4+ (2/(idx*dx))* (PD_roh*«PD_mat (idx+1+1,tdx) -
— PD_rohxPD_mat (idx+1-1,tdx)) +
< roh_Px* ((check7+V_mat (idx+1, tdx) + .
— (l-check7))*lambda_T I12 * T_0 x (I_12/(K_I12 + I_12))
«— lambda_T_ I2 * T_mat (idx+1,tdx) » (I_2/(K_I2 + I_2))) =*
— 1/(1 + (PD_mat (idx+1,tdx) * (roh_L * (T_mat (idx+1,tdx)
— eps * (P_mat (idx+1,tdx) + Q mat (idx+1,tdx)))))/K_TQhat)
— — mu_PAxPD_mat (idx+1, tdx) *A_mat (idx+1, tdx)
— —d_t*PD_mat (idx+1, tdx);

end

PD_GLS (length(r_vec)-1,length(r_vec)-2) = -2%«PD_eps +

— (2+xPD_roh)/ ((length (r_vec)-1)«dx) -
< (2+xPD_roh)/ ((length (r_vec)-1) *dx) ;

425 PD_GLS (length(r_vec)-1,length(r_vec)-1) = PD_delt;
PD_b(length(r_vec)-1) = PD_mat (length(r_vec)-1+1,tdx)/dt +
— PD_eps*PD_mat (length (r_vec)-1,tdx) -
< 2xPD_eps*PD_mat (length(r_vec)-1+1,tdx) +
— PD_eps*PD_mat (length(r_vec)-1+1-1,tdx) +
< (2/((length(r_vec)-1)xdx)) =
<~ (PD_roh*PD_mat (length (r_vec)-1,tdx) -
< PD_roh*PD_mat (length (r_vec)-1,tdx)) +
— roh_Px ((check7«V_mat (length(r_vec),tdx) +
< (l-check7))+lambda_T_TI12 *« T_0 » (I_12/(K_I12 + I_12)) +
— lambda_T_I2 x T_mat (length(r_vec)-1+1,tdx) * (I_2/(K_I2 +
— I_2))) = 1/(1 + (PD_mat (length(r_vec)-1+1,tdx) * (roh_L =*
— (T_mat (length(r_vec)-1+1,tdx) + eps =
— (P_mat (length(r_vec)-1+1, tdx) +
< Q_mat (length(r_vec)-1+1,tdx)))))/K_TQhat) -
— mu_PAxPD_mat (length (r_vec)-1+1,tdx) =
— A_mat (length(r_vec)-1+1,tdx) -d_t«PD_mat (length(r_vec)-1+1,

PD_al = zeros(length(r_vec)-1,1);

PD_a2 = zeros(length(r_vec)-1,1);
430 PD_a3 = zeros(length(r_vec)-1,1);

PD_al(l) = PD_GLS(1,1);

PD_a2 (1) = 0;

PD_a3(1l) = PD_GLS(1,1+1);

for i = 2:length(r_vec)-2

PD_al (i) = PD_GLS(i,i);
PD_a2 (i) = PD_GLS(i,i-1);
PD_a3 (i) = PD_GLS(i,i+1);

440 end

PD_al (length(r_vec)-1)
PD_a2 (length(r_vec)-1)
PD_a3 (length(r_vec)-1)

PD_GLS (length(r_vec)-1,length(r_vec)-1);
PD_GLS (length (r_vec) -1, length (r_vec)-2);
0;

126

+

+

tdx) ;




445

450

455

460

465

470

475

480

485

490

PD_solve_tr = thomas (PD_al,PD_a2,PD_a3,PD_Db);

PD_solve = [PD_solve_tr(l); PD_solve_tr];
PD_mat (:,tdx+1) = PD_solve;

%update necrotic cells (pure reaction and therefore no system of linear

$equations needed)
for idx = l:length(r_vec)-1

N_mat (idx, tdx+1l) = N_mat (idx,tdx) + dt=*(alpha_gn*Q_mat (idx,tdx) -
— delt_NxN_mat (idx, tdx));

end

N_mat (length (r_vec),tdx+1l) = N_mat (length(r_vec)-1,tdx) +

— dtx (alpha_gn*Q_mat (length (r_vec), tdx)
— delt_NxN_mat (length(r_vec), tdx));
end

%$may be needed for plots, not used here
G_mat = P_mat+Q_mat+N_mat+V_mat;

Tumor_mat = P_mat+Q_mat+N_mat;

lotting begins here.

o° o oo
o° o° oP
o° o o°

timepoint_day = 100;
timepoint_mat = round(timepoint_day/dx) + 1;

subplot (2,3,1)

plot (r_vec,P_mat (:,timepoint_mat))

hold on

plot (r_vec,Q_mat (:,timepoint_mat), 'red")
hold on

plot (r_vec,N_mat (:, timepoint_mat), 'green')

P
A selection of useful plot examples is given, but
more interesting figures can be extracted from the results

title('P cells(blue), Q cells(red), N cells(green)"')

subplot (2, 3, 2)

plot (r_vec,V_mat (:,timepoint_mat))
title('Vasculature')

subplot (2, 3, 3)

plot (r_vec,T_mat (:,timepoint_mat))
title('T cells")

subplot (2, 3, 4)

plot (r_vec,PD_mat (:,timepoint_mat))
title('Free PD-1")

subplot (2, 3, 5)

plot (r_vec,A_mat (:,timepoint_mat), 'magenta’')
title ('Anti-PD-1")
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%$calculate average densities of populations
average_p = (1/N).*sum(P_mat

)
average_g = (1/N).*sum(Q_mat);
495 average_n = (1/N).*sum(N_mat);
average_v = (1/N).*sum(V_mat);
average_t = (1/N).*sum(T_mat);
average_a = (1/N).*sum(A_mat);

average_tumor = average_p + average_g + average_n;

%plot average densities
figure
subplot (3,2,1)
plot (t_vec,average_p)
5056 title('P Cells Average')
subplot (3,2, 2)
plot (t_vec,average_qg)
title('Q Cells Average')
subplot (3,2, 3)
510 plot (t_vec,average_n)
title('N Cells Average')
subplot (3,2, 4)
plot (t_vec, average_tumor)
title('All Tumor Cells Average')
515 subplot (3,2,5)
plot (t_vec,average_t)
title('Average T cells')
subplot (3,2, 6)
plot (t_vec,average_v)
520 title('Average vascular cells')
hold on
%plot treatments in same figure
for 1 = l:length(timepoints_med)
line([timepoints_med (i) +first_meas timepoints_med(i)+first_meas],
— [0 0.09], 'LineWidth',2, 'Color', [223/255 255/255
— 0/255], 'LineStyle', ':")
525 end
line([68+first_meas 68+first_meas], [0 0.09],
— 'LineWidth',2,'Color', [175/255 238/255 238/255], 'LineStyle', "':")
hold off

%$set up vector for border of tumor
530 border = zeros(l,length(t_vec));
t_cell_tumor_conc = zeros(l,length(t_vec));

$find border in each timepoint
for idt = l:length(t_vec)
535 local_poss_bor = find([P_mat(:,idt); 0] < 0.02);
border (idt) = (local_poss_bor (1l)-1) »dx;

%calculate average T cell concentration inside tumor border
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540

545

550

555

560

565

570

575

580

onlytumor_tcells = T_mat (l: (local_poss_bor(l)-1),idt);
t_cell tumor_conc (idt) =
— (1/length(onlytumor_tcells)) .*sum(onlytumor_tcells);
end

meas_times = [0 63 124 223 285 333] + first_meas;

%$radii of M1-M5 calculated from volume assuming perfect sphere

ML = [1.5 7.2 4.8 4.9 6.7 7.5];
M2 = [1.5 7.0 6.3 4. 5.21;
M3 = [0 7.3 5.3 5.0 4.0 5.91;
M4 = [0 7.1 5.4 4.6 4.1 6.9];
M5 = [0 6.1 6.6 5.7 6.4 6.5];

$calculate average of M1-M5
avg_M = (1/5) .% (M1+M2+M3+M4+M5) ;
avg_M(1l) = 1.5;

%plot tumor border and compare to single metastases M1-M5

%and average of M1-M5

figure

subplot (1,2,1)

plot (t_vec,border)

title('Tumor Radius over Time (Response)')

hold on

scatter (meas_times,avg_M/10, 'LineWidth', 2)

for 1 = l:length(timepoints_med)

line ([timepoints_med(i)+first_meas timepoints_med(i)+first_meas],
— 1.5], 'LineWidth',2,'Color', [223/255 255/255
— 0/255], 'LineStyle', ':")

end

line([68+first_meas 68+first_meas], [0 1.57,

— 'LineWidth',2,'Color', [175/255 238/255 238/255], 'LineStyle'

hold off

xlabel ('Time in Days')

ylabel ('Tumor Radius in cm')

axis ([0 365 0 1.5])

subplot (1,2, 2)

pl=plot (t_vec, border);

title ('Tumor Radius over Time')

hold on

p2=scatter (meas_times,M1/10, 'LineWidth',2);

p3=scatter (meas_times,M2/10, 'LineWidth',2);

pd=scatter (meas_times,M3/10, 'LineWidth',2);

p5S5=scatter (meas_times,M4/10, 'LineWidth',2);

p6=scatter (meas_times,M5/10, 'LineWidth',2);

for 1 = l:length(timepoints_med)

line ([timepoints_med(i)+first_meas timepoints_med(i)+first_meas],
— 0.9], 'LineWidth',2,'Color', [223/255 255/255
— 0/255], 'LineStyle', ':")

[0

[0

.l)

v
’ H
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end
line([68+first_meas 68+first_meas], [0 0.9],

<~ 'LineWidth',2, 'Color', [175/255 238/255 238/255], 'LineStyle', ':

585 hold off
xlabel ('Time in Days')
ylabel ('Tumor Radius in cm')
axis ([0 365 0 0.91])
h = legend([p2 p3 p4 p5 p6], 'M1','M2','M3','M4','M5");
590
%$plot average T cell concentration inside tummor border over time
figure
plot (t_vec,t_cell_tumor_conc)
title('T cell concetration inside tumor border')
595 hold on
for i = l:length(timepoints_med)
line ([timepoints_med(i)+first_meas timepoints_med(i)+first_meas], [0
— 0.02], 'LineWidth',2,'Color', [223/255 255/255
— 0/255], 'LineStyle', ':")
end
line([68+first_meas 68+first_meas], [0 0.02],

«— 'LineWidth',2,'Color', [175/255 238/255 238/255], 'LineStyle', ':

600 hold off

end

")

")
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