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Abstract

Automatic searching for the optimum set of hyperparameters is crucial in practical ap-
plication of deep learning algorithms. In this work we optimize the hyperparameters us-
ing mixed integer SNOWPAC (Stochastic Nonlinear Optimization With Path-Augmented
Constraints), a method for stochastic nonlinear constrained derivative free optimization
using a trust region approach.

We present new addition to SNOWPAC to solve mixed integer optimization problems.
We compare its performance against various existing optimizers using different bench-
mark problems. Then, we link the it with neural network training to optimize the hy-
perparameters. We create eight different neural network hyperparameter optimization
problems with number of unknown parameters ranging from six to nineteen. We opti-
mize hyperparameter for the problems using SNOWPAC and other existing methods like
HORD, HORD-ISP, Spearmint, TPE and SMAC. Then we compare these tools over the
different criterions. We show that, statistically SNOWPAC not only finds the set of hyper-
parameters with lower validation error but also take small non-evaluation time.
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1. Introduction

It has been a long desire of mankind to generate machines that can think and make deci-
sions like humans. This leads to the birth of Artificial Intelligence (AI), which is described
by Pamela McCorduck as ”an ancient wish to forge the gods” [78]. With the advent of
computers, people began to hard-code logic that will mimic human thinking. But, it was
difficult to find decent logics. This led the research work to move in direction of develop-
ing AI systems that has the ability to acquire knowledge by extracting patterns from raw
data. This capability is known as machine learning [54]. By using machine learning and
deep learning, computers started to tackle real-world problems and find patterns from the
big set of data. In modern days, neural networks have touched almost every plethora of
our lives.

Training a neural network involves various challenges. One of them is to set some pa-
rameters manually. They are commonly known as hyperparameters. Setting them is a crucial
step in training a neural network because final accuracy depends upon it. We introduce a
new tool to find the optimum hyperparameters. In this chapter we first present literature
review of the neural network, optimization and its application in optimal hyperparameter
search in Section 1.1. Then, we provide the intended aim of this work in Section 1.2.

1.1. Literature Review

Brain cells have been a source of inspiration in the field of AI. First attempt to model a brain
with electric circuits was done in 1950s, when a neurophysiologist and a mathematician
co-wrote a paper on working of neurons [4, 97]. The first neural network applied to a
real-world problem was Stanford’s MADALINE that used an adaptive filter to remove
echoes over phone lines. It is still in use today[97]. Later in 1999, neural network was used
in diagnosis of cancer when computer detected cancer more accurately than radiologists
[63]. Nowadays, artificial neural network has been successfully used in many fields.

In various literatures we can find numerous approaches of searching the good set of
hyperparameters. Earlier, grid search and manual search were the most commonly used
strategies. Later it was shown by Bergstra et al. [10], that random search is a more effi-
cient method. Another way to find optimal hyperparameters is to look at it as a mixed
integer optimization problem, where one needs to maximize the validation accuracy. The
biggest problem in this approach is the unknown functional dependency of the validation
accuracy with respect to the hyperparameters. Therefore we do not have any information
about the derivative. Moreover, a single training with a given set of hyperparameters (i.e.
one black-box evaluation) is computationally expensive. So, we need to find an efficient
black-box derivative free optimization method. Bergstra et. al. [13] and Hutter et. al. [60]
used bayesian optimization to search optimal hyperparameters. Ilievski et. al. [61] used
deterministic trust-region based optimization method.

3



1. Introduction

Optimization problems also have a huge history by itself. Mitri Kitti [68] lists break-
throughs in optimization over last 2300 years. The first written record of an optimization
problem appears in Euclid’s work Elements [46]. Then, we see mention of a maximization
problem of packing of balls in a unit cube by Kepler [42]. This problem has also been dealt
by Carl Friedrich Gauss [50]. Other notable scientists who contributed to the field opti-
mization were Galilei, who studied the shape of a hanging chain [55]; Newton, who dealt
in minimum resistance against body [102]; Lagrange, who examined the minimal surface
problem [101] and Legendre, who came up with the famous least-square problem [79].

To optimize the hyperparameters, we need a derivative free optimization method. There
are many real life applications where we need optimization of the design parameters when
the functional dependency between the output and the input is unknown. Such func-
tions are knows as black-box functions. Many derivative free methods have been developed
to tackle such problems. The simplest derivative free methods were the directional grid
search method where we sample the objective function at finite points for every optimiza-
tion iteration. Based on the function values, we decide the next step of optimization. These
methods and its variations are discussed in Fermi and Metropolis [6], Davidson [41] and
Box et al. [25]. Another approach is the multi-directional search method like the Nelder
and Mead simplex method [82].

In this work, we will use a trust-region derivative free method. The basic idea behind
these families of methods is firstly to build a surrogate model within a trust-region, then
optimize the surrogate model, followed by moving the trust-region to the new optimal
point and updating the model. This cycle is iteratively repeated. This concept was used in
bits and pieces by Winfield [109] and Glad et al. [52]. The trust-region derivative free algo-
rithm with least square optimization was presented by Powell [87]. There were extensions
for non-smooth optimization , see Fletcher [47], and for constrained optimization, see Celis
[28], Powell and Yuan [90], Byrd et al. [26], Toint [107] and many others. In this thesis, we
extend the optimization method SNOWPAC [8] to solve mixed integer problems. SNOW-
PAC (Stochastic Non-linear Optimizer With Path Augmented Constraints) is a tool that
solves both stochastic and deterministic non-linear constrained optimization problems.

In training of a neural network there are many integer hyperparameters. For example,
the number of neurons in a given layer cannot be a decimal number. This adds to another
key requirement for the optimizers. It should be able to solve mixed-integer optimization
problems. There are various algorithms discussed in the past to tackle mixed integer opti-
mization problems, refer Floudas [48], Grossmann and Kravanja [56]. Trust-region based
optimization to solve mixed-integer optimization was done by Exler and Schittkowski [45]
and Newby [85].

This far we have discussed methods that deal only with deterministic functions. In real-
life applications, we encounter many stochastic functions. For training of neural network,
we obtain different validation accuracy for different random seeds of weight initialization.
This makes our function to be stochastic and puts forward the requirement of our solver
to optimize stochastic functions. Robin and Monroe [95] pioneered Stochastic Approxima-
tion (SA) in 1951. We refer to [15, 67, 103] for the detailed introduction and analysis of SA.
In spite of the rich literature, stochastic optimization still remains a challenging problem
[103].
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1.2. Motivation

1.2. Motivation

As mentioned before, there are various approaches to optimize hyperparameters. In this
thesis, we introduce a new method to optimize hyperparameters. However, all the meth-
ods uses deterministic optimization method. In this work we also want to optimize the
hyperparameters using SNOWPAC which is a stochastic non-linear optimizer. We can
divide our work into two parts.

Firstly, we need to develop a mixed-integer stochastic non-linear optimization tool. The
existing version of SNOWPAC can handle only continuous parameters. Therefore, we
adapt it to solve mixed-integer problems. We also need to benchmark the developed tool
against existing mixed-integer optimization tools.

Secondly, we use the newly made mixed-integer SNOWPAC to optimize hyperparam-
eters of the neural network. This compares the performance of mixed-integer SNOW-
PAC against existing neural network hyperparameter optimization methods. For that, we
should create multiple neural networks, optimize its hyperparameters using all methods
and compare performance on various scales.
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2. NOWPAC

NOWPAC [7] (Nonlinear Optimization With Path Augmented Constraints) is an algorithm
to optimize nonlinear functions subject to non-linear inequality constraints. This algorithm
belongs to the family of trust-region derivative free algorithms. We will be looking into the
optimization algorithms that is of following form:

min f(x)

s.t. ci(x) ≤ 0, i = 1...r
(2.1)

where f : Rn → R is the objective function representing black-box and ci : Rn → R, i =
1...r are the model constraints, we impose on the design parameters x ∈ Rn

To explain the underlying algorithm of NOWPAC, we divide this chapter in small sec-
tions. Firstly, we explain a simple trust-region based method for unconstrained problems
in Section 2.1 and for the constrained optimization in Section 2.2. In Section 2.3, we take a
cursory look over surrogate model. Finally, we describe how points are chosen within the
trust-region and procedure to improve the distribution of points in Section 2.4. Detailed
proof of convergence is not described in this thesis. Interested readers can refer to [7]. All
steps of NOWPAC is summarized in Algorithm 1.

2.1. Trust-region derivative free unconstrained optimization

Firstly, let us consider an unconstrained optimization problems to understand the funda-
mentals of the trust-region methods. We start with an initial point(x0) inside the given
domain. The main idea behind this method is to model the objective function in a neigh-
borhood of a given point using any surrogate model(mf

k) of our choice. The neighborhood
considered is called the trust-region, thereby giving the method its name. In NOWPAC [7],
the trust-region is in shape of a ball represented as B(xk, ρk) = {x ∈ Rn : ‖x− xk‖ ≤ ρk},
where xk is the center and ρk is the trust-region radius. Then, we can easily optimize the
surrogate model using various existing methods because we have detailed information
about surrogate. NOWPAC [7] uses Lagrange polynomials to build the surrogate. We
calculate the next trial point(x̄k) as following:

x̄k = arg min
x∈B(xk,ρk)

mf
k(x) (2.2)

Then, we calculate the acceptance ratio(rk) as following:

rk =
f(xk)− f(x̄k)

mf
k(xk)−mf

k(x̄k)
(2.3)

9



2. NOWPAC

Algorithm 1: Nonlinear Optimization With Path-Augmented Constraints algorithm.

1 Set k = 0 and build initial fully linear surrogate model mf
0(x),mc

0(x);
2 while ρ ≥ ρmin do

/* STEP 1: Criticality Step */
3 if αk(ρk) ≤ εc then
4 if mf

k and mf
c are not fully linear in B(xk, ρk) or ρk > µαk(ρk)

1
2 then

5 Set ρk = ωρk ;
6 Build fully-linear surrogate model mf

k and mc
k ; Goto line 4;

7 end
8 end

/* STEP 2: Trial point calculation */

9 x̄k = arg min
x∈B(x,ρ)

mf
k(x) ;

/* STEP 3: Check feasibility of trial point */
10 if ci(x̄k) > 0 then
11 Set ρk = γρk, build fully-linear surrogate model mf

k and mc
k and Goto line 4;

12 end
/* STEP 4: Check acceptance of trial point */

13 Calculate acceptance ratio rk = f(xk)−f(x̄k)

mf
k

(xk)−mf
k

(x̄k)
;

14 if rk ≥ η0 then
15 Set xk+1 = x̄k and include x̄k into set of sample points;
16 Update fully-linear surrogate model mf

k+1 and mc
k+1 ;

17 end
18 else
19 Set xk+1 = xk, mf

k+1 = mf
k , mc

k+1 = mc
k ;

20 end
/* STEP 5: Trust-region Update */

21

ρk =


γincρk if rk ≥ η1

ρk if η0 ≤ rk ≤ η1

γshrinkρk if 0 < rk < η0

γρk if rk ≤ 0

/* STEP 6: Model Improvement */
22 if rk < η0 then
23 Improve quality of model mf

k+1 and mc
k+1

24 end
25 k = k + 1 ;
26 end
27 Optimal result is x∗ = xk

Acceptance ratio is a measure of how much the objective function has improved with re-
spect to the surrogate model. We decide the status of the new point based on the value of

10



2.2. Constrained Optimization

acceptance ratio. We choose four parameters namely η0, η1, γ and γinc satisfying γ ∈ (0, 1),
γshrink ∈ (0, 1) and 0 ≤ η0 ≤ η1 < 1 < γinc (with η1 6= 0). Decision is done as per following
rules:

1. Step Accepted : If rk ≥ η0, then the center of the trust-region is shifted to x̄ and it
becomes the new best point. Under this condition, trust region radius is updated as:

• if rk ≥ η1 we increase the trust-region radius by factor of γinc.

• if rk ≤ η1 we do not modify the radius of trust-region

• if 0 < rk < η0, then step is acceptable but with shrink of trust region radius by
factor γshrink

2. Step Rejected : If rk ≤ 0 then we reject trial point and decrease radius of trust region
by factor of γ.

Then, we update the model(mf
k and mci

k ) and continue with the steps as mentioned before
until the trust-region radius is below a certain limit.

2.2. Constrained Optimization

NOWPAC introduces a new way of handling non-linear black-box constraints using inner
boundary path. It is an offset function to constraints which locally convexify the feasible
domain. We need the domain to be convex because in order to find a unique solution of
surrogate model, function and constraints must be convex. The inner boundary path also
guides the next trial step to become feasible.

We introduce an offset to the constraint function(inner boundary path) as following:

hx(x+ d) :

Rn → R
x+ d 7→ εb ‖d‖

2
1+p

(2.4)

with order reduction p ∈ (0, 1) and define the inner-boundary-path-augmented local feasible
domain at x ∈ X as

Xibp
x := {x+ d : c(x+ d) + hx(x+ d) ≤ 0} ∩B(x, 1). (2.5)

Figure 2.2 shows how inner boundary path make a concave function into convex inside
the trust-region. However, this also makes a part of the domain which should be feasible
into infeasible. But when trust-region radius decreases then the percentage of the domain
that is turned infeasible also decreases.

There is only one modification done in overall algorithm to handle constraints. We check
feasibility of trial point after calculating trial point. If the trial point is not feasible then
trust-region radius is decreased by a factor of γ.

11



2. NOWPAC

Figure 2.1.: Local convexification(black dotted lines) of feasible domain X (solid line)
around two center points xk1 and xk2 with ε = 10 and p = 0.2. Gray dotted
line shows inner boundary path with ε = 2.5. Trust-region radius is 1 [7]

.

2.3. Surrogate Model

The purpose of the surrogate model is to locally mimic the behavior of the objective func-
tion inside the trust-region. The choice of the model and its effects on the convergence
is studied in detail in [34, 32, 33]. There are two main factors which the surrogate model
should qualify, namely:

1. It should be able to accurately model the feature like slope, curvature etc of the ob-
jective function within the trust-region.

2. It should be easy to optimize within the trust-region.

Higher the order of the polynomial better will be its capability to capture the detailed
features. However, higher order polynomials come with their own difficulties. Firstly,
difficulty to find the local minimum of a polynomial with in the trust-region increases
with the increasing order. Secondly, we need more black-box evaluations to make best use
of the higher order. But each evaluation can be computationally expensive. These are two
contradicting factors. In NOWPAC we build the model which is at least fully linear [7].
This ensures global convergence to a first-order critical point[33]. Model should be able
to approach quadratic order, to allow global convergence of second order [33]. Surrogates
must be twice continuously differentiable and satisfy the following error bound condition
[34]: ∥∥∥f(xk + s)−mf

k(xk + s)
∥∥∥ ≤ κf (νf +

∥∥∥Hf
k

∥∥∥)ρ2
k (2.6a)∥∥∥∇f(xk + s)−∇mf

k(xk + s)
∥∥∥ ≤ κf1(νf +

∥∥∥Hf
k

∥∥∥)ρk (2.6b)∥∥ci(xk + s)−mci
k (xk + s)

∥∥ ≤ κci(νci +
∥∥Hci

k

∥∥)ρ2
k (2.6c)∥∥∇ci(xk + s)−∇mci

k (xk + s)
∥∥ ≤ κci1 (νci +

∥∥Hci
k

∥∥)ρk (2.6d)

12



2.4. Poisedness

Therefore, NOWPAC[7] uses polynomial of the quadratic form :

mk(xk + s) = mk(xk) + sT gk +
1

2
sTHks (2.7)

where, gk and Hk represents the gradient and the hessian respectively. So, optimizing the
problem is simplified as solving the linear system Hks = gk. NOWPAC uses NLopt [64] to
solve the surrogate problems.

NOWPAC starts with building linear model, and gradually improves if the trial point is
not acceptable. This forms an under-determined system. From equations 2.6, we conclude
that error depends upon the norm of the hessian. The best model will have the smallest
norm of Hessian. Therefore, NOWPAC uses the least frobenius norm method [34, 7, 88] to
form the surrogates. Let, m(x) represent the model, αL represent coefficient of linear and
constant terms in the surrogate model and αQ represent coefficient of the quadratic terms
in the surrogate model

m(x) = αTLφ̄L(x) + αTQφ̄Q(x)

Let, Y = {y0, y1, ..., yp} be set of points inside the trust-region. Only quadratic term con-
tributes to the hessian. So the least frobenius norm model is defined as:

min
1

2
‖αQ‖2

s.t. m(y) = f(y) ∀y ∈ Y
(2.8)

2.4. Poisedness

The distribution of points inside the trust-region is crucial to capture the behavior of the
objective function. Points should be able to explore the domain to capture the features of
the function. Here poisedness is a measure to quantify how well points are distributed.

Definition 2.1 ([34]) Let Λ > 0 and a set B ∈ RD be given. Let φ = {φ0(x), φ1(x), ..., φp(x)}
be a basis in Pdn. A poised set Y = {y0, y1, ..., yp} is said to be Λ-poised in B (in interpolation
sense) if and only if

1. for the basis of Lagrange polynomials associated with Y

Λ ≥ max
0≤i≤p

max
x∈B
|li(x)|

or, equivalently,

2. replacing any point in Y by any x ∈ B can increase the volume of the set {φ(y0), φ(y1), ..., φ(yp)}
at most by a factor Λ

Value max
0≤i≤p

max
x∈B
|li(x)| is called Poisedness for the given set of points. Smaller value of

poisedness represents better distribution of points.
NOWPAC uses Lagrange polynomials to calculate and improve poisedness of the set of

points. Algorithm 2 is used for improving poisedness.
We can see from Figure 2.2 that points gets properly spread in just four steps of Al-

gorithm 2. We start with points clustered at corners with Λ = 5324 and end up with
well-distribute points with Λ = 1.11.
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Algorithm 2: Improve Poisedness
Data: Given set of points Y , corresponding Lagrange Polynomials li, lower limit of

poisedness(Λmin)
Result: set of well poised points

1 Calculate Λ = max
0≤i≤p

max
x∈B
|li(x)|;

2 while Λ ≥ Λmin do
3 Calculate ji = arg max

0≤i≤p
arg max
x∈B

|li(x)|;

4 Replace yi by yji in the set Y ;
5 Calculate Λ = max

0≤i≤p
max
x∈B
|li(x)|;

6 end

(a) Λ = 5324 (b) Λ = 36.88

(c) Λ = 15.66 (d) Λ = 1.11

Figure 2.2.: Four steps of Algorithm 2 starting with edge clustered points [34]
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2.5. Parameter Default Values

2.5. Parameter Default Values

In this chapter, we have introduced various parameters required by NOWPAC. Table 2.1
shows the default values of these parameters.

Parameter Default Value
γ 0.8
γinc 1.4
ω 0.6
θ 0.5
η0 0.1
η1 0.7
µ 1.0
εc 10−6

εb 10.0

Table 2.1.: List of default value for SNOWPAC
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3. SNOWPAC

SNOWPAC (Stochastic Nonlinear Optimization With Path Augmented Constraints)[8] is
an algorithm to optimize stochastic non-linear function subject to stochastic/non-stochastic
non-linear constraints. This algorithm is an extension of NOWPAC [7]. The basic prototype
of the problem statement is as following:

min f(x, θ)

s.t. ci(x, θ) ≤ 0, i = 1...r
(3.1)

where x ∈ Rn is a set of deterministic parameters and θ ∈ Rm is a set of uncertain param-
eters. In other words our target is to find the value of deterministic parameters for which
stochastic function generates minimum value. However, we have to take care of the vari-
ability of uncertain parameters θ into optimization. To solve this, we reformulate problem
statement 3.1 by introducing robustness measure. The robustness measure does not contain
the uncertain parameter but it is an approximation of the stochastic nature of the function.
The new problem statement is:

min Rf (x)

s.t. Rci(x) ≤ 0, i = 1...r
(3.2)

This chapter gives a concise explanation of SNOWPAC [8]. Firstly, we explain robustness
measure which is the actual target function optimized in Section 3.1. One of the approaches
to find value of robustness measure is to use large samples to obtain statistical moments.
When each black-box evaluation takes a lot of time then this approach is infeasible. We
can use small sample size to approximate the value. However, this leads to introduction of
noise. SNOWPAC [8] uses Gaussian Process [93] to cancel effect of external noise. There-
fore in Section 3.2, we explain Gaussian process and its application in SNOWPAC [8].

3.1. Robustness Measure Formulation

The robustness measure is the actual parameter optimized by SNOWPAC [8]. It gives a
measure of the physical quantity by taking required statistical moment. To simplify the no-
tation, we refer the objective function f and constraints c as black-box b and corresponding
robustness measure as Rb. Further, let us assume that b is square integrable with respect
to θ, i.e. b has finite variance and for every design point x ∈ Rn, cumulative distribution
function is continuous and invertible.

All the robustness measures discussed in this thesis are coherent risk measures [5]. The
risk measure can be thought of as a map from spaces of probability distributions to the real
numbers [1]. In following discussions, we use the notation θ := (θ1, ..., θm) : (Ω,F ,P) →
(Θ,B(Θ), µ) for uncertain parameters mapping from probability space (Ω,F ,P) to (Θ,B(Θ), µ),
Θ ⊆ Rm [8].
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3. SNOWPAC

3.1.1. Robustness Measure

There are a variety of options available for the robustness measure in literature [1, 5, 71,
98, 99, 100, 108]. Table 3.1.1, gives the a comprehensive list of commonly used robustness
measures.

Robustness measure Integrand B(x)
Rb0 b(x, θ)
Rb1 (b(x, θ)−R0(x))2

Rb2 γc0b(x, θ) + (1− γ)c1(b(x, θ)−R0(x))2

Rb,β4 [91] 1(b(x, θ) ≥ 0)− (1− β)

Rb,β1 [1, 99] γ + 1
1−β [b(x, θ)− γ]+

Table 3.1.: List of Robustness Measure and corresponding integrands

In the Table 3.1.1, b(x, θ) represents the stochastic black-box.

3.1.2. Statistical Estimation

All the robustness measures mentioned in Section 3.1.1 can be written in term of expecta-
tion

Rb(x) := Eθ[B(x, θ)] (3.3)

where function is defined in Table 3.1.1
To approximate Equation 3.3, we can use sample average EN based on N samples that

follows our required distribution of uncertain parameter. Approximation can be mathe-
matically represented as:

Eθ[B(x, θ)] = EN [B(x, θ)] + εx =
1

N

N∑
i=1

B(x, θi) + εx. (3.4)

where, εx represents the error because of sample approximation. According to Central
Limit Theorem, the means of a random sample of size N , from a population with mean µ
and variance σ2, distribute normally with mean µ and variance σ2

√
N

[72]. In other words,

error term εx in Equation 3.4 is inversely proportional to
√
N and approaches zero when

N →∞. We want Eθ[B(x, θ)] to fall within a confidence level approximated byEN [B(x, θ)]
with high probability. To achieve confidence interval of [EN [B(x, θ)]− ε̄x, EN [B(x, θ)]+ ε̄x]
with probability greater than ν ∈ (0, 1), we can compute sample standard deviation sN (x)
as:

sN (x)2 =
1

N − 1

N∑
i=1

(B(x, θi)− EN [B(x, θ)])2, (3.5)

with

ε̄x =
tN−1,νsN (x)»

(N)
, (3.6)

where tN−1,ν is the ν-quantile of Student-t distribution. In this thesis, we select tN−1,ν = 2
which gives confidence interval exceeding 0.975 for sample size N ≥ 60.
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3.2. Gaussian Process Supported Trust Region Management

SNOWPAC [8] uses robustness measure to optimize problem mentioned in Equation 3.1.
Therefore, accurate approximation of robustness measure is crucial to the performance.
As mentioned in Section 3.1.1, we can use sample approximation to estimate robustness
measure. When sample size is large then approximation is accurate. But this approach
increases the computational requirement. In this section we discuss the method to use
Gaussian Process to improve robustness approximation and reduce noise in black-box
evaluation. Firstly, we introduce Gaussian process and regression. Then, brief explana-
tion of hyperparameters of gaussian process and method to tune it. Finally, we discuss its
application to SNOWPAC. Main sources referred are [8, 93].

3.2.1. Introduction to Gaussian Process

Gaussian process is a statistical model that predicts the value of function for the given
continuous domain. It can be interpreted as multidimensional gaussian distribution with
every point representing each dimension. In other words every, function value at every
point of design space is normally distributed with some mean and standard deviation.
Thus, we can say Gaussian process is infinite dimensional multivariate gaussian distribu-
tion.

As mentioned before Gaussian process can be described by its mean m(x) and covari-
ance k :

m(x) = E[f(x)]

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(3.7)

We can write a random function f following gaussian process using notation:

f(x) ∼ G(m(x), k(x, x′)) (3.8)

Covariance between two points is represented using kernel function. Kernel function
is heart of any gaussian process. There are a variety of kernels mentioned in literature
[36, 37, 51].

Only symmetric kernel functions can be used to express a covariance function. A co-
variance function is symmetric by definition. Also, kernel matrix formed by calculating
covariances between individual points in the domain must be positive semidefinite. Such
kernels are called Mercers Kernels. A kernel is positive semidefinite if∫

k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, (3.9)

Kernel matrix formed is referred as Gram Matrix [93, 21, 96]. For sake of simplicity in
notation let us represent Gram Matrix as K.

Gaussian process is extensively used for regression. To find regression-based prediction
for a test point x∗, conditional distribution is computed on the test output given the train-
ing data and the test input. This is Gaussian distribution p(y∗|X,Y, x∗) = N (µ∗,Σ∗) with
predictive mean and covariance given by

µ∗ = k∗T (K + σ2I)−1y,

Σ∗ = k(x∗, x∗)− k∗T (K + σ2I)−1k∗ + σ2I
(3.10)
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3. SNOWPAC

where k∗ = [k(x∗, x1), k(x∗, x2), ..., k(x∗, xn)].
GP regression as mentioned in Equation 3.10, is used only for small datasets. The time

complexity is O(n3) because there is inversion of Gram matrix. Various other approximate
methods have been developed [17, 18, 27, 29, 49, 92, 73].

Hyperparameter learning is done by maximizing marginal log-likelihood:

p(y|X, θ) = −1

2
log |K + σ2I| − 1

2
yT (K + σ2I)−1y − n

2
log 2π (3.11)

where I is the identity matrix of same dimension as K and σ is the standard deviation of
additive gaussian noise.

3.2.2. Gaussian Process Surrogates

As mentioned in Section 3.2 , Gaussian process not only provides a way to smoothen out
noisy evaluations but also gives an estimation of robustness measure credibility. There-
fore, SNOWPAC [8] uses GP surrogates as measure to balance out the error introduced to
small sample size N . We build surrogates in same way as mention in Chapter 2. But now
instead of just using the value of black-box evaluation, we use weighted mean of black-box
evaluation and GP surrogate as following:

R̂bk,i = γisGkb (x
(i)
k ) + (1− γis)Rbi

ε̂bk,i = γistN−1,βσb(x
(i)
k ) + (1− γis)εbi

(3.12)

where σb(x
(i)
k ) denotes the standard deviation of Gkb (x

(i)
k ) at point x(i)

k . The weight factor is
calculated as following:

γis := exp(−σb(x
(i)
k )) (3.13)

There is decrease in the value of σb when more observation points are added in GP. We
have fewer data points during the initial steps. Our GP surrogate is inaccurate. There-
fore, GP surrogate should have low weight in the beginning. But, as we move forward in
optimization new points are observed and our GP surrogate improves. So, weight of GP
surrogate must increase. Equation 3.13 follows this trend.

3.2.3. Noise Adapted Trust Region

Similar to deterministic case where we have fully linear model satisfying error bound
given by Equation 2.6, SNOWPAC also builds fully linear surrogate model using noise
corrupted black-box evaluations satisfying:∥∥∥Rb(xk + s)−mRb

k (xk + s)
∥∥∥ ≤ κ1ρ

2
k∥∥∥∇Rb(xk + s)−∇mRb

k (xk + s)
∥∥∥ ≤ κ2ρ

2
k

(3.14)

with high probability α for constants [65]

κi = κi(ε̄
k
maxρ

−2
k ), i ∈ {1, 2}. (3.15)
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3.2. Gaussian Process Supported Trust Region Management

The constants κ1 and κ2 depends on the poisedness constant Λ > 1 as well as on the
estimates of the statistical upper bounds for the noise term ε̄kmax = max

i=1,..,n
ε̄i, where ε is from

Equation 3.4. Due to presence of positive noise, the term ε̄kmaxρ
−2
k increases with decrease

in the radius of trust region. Thus κ1 and κ2 has unbounded growth when trust-region
radius shrinks, thereby violation linearity conditions. To ensure full linearity condition of
the surrogate model, we have to put an upper bound on the error term ε̄kmaxρ

−2
k . This is

equivalent to putting lower bound on trust-region radius ρk as following:

ε̄kmaxρ
−2
k ≤ λ

−2
t , resp. ρk ≥ λt

»
ε̄kmax, (3.16)

where, λt ∈ (0,∞).
This restriction will prevent the radius from converging to zero. However, from Equa-

tion 3.12 we can see that as weight of GP surrogate increases, noise term decreases. In this
way, GP helps in convergence of trust-region radius to zero.
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4. Mixed Integers

In various design problems, there are parameters which are constrained to be integers. The
category of problems in which some parameters are integers whereas others are real num-
bers are called the mixed integer problems. Till now, we have only discussed optimization
problem where all the parameters are real numbers. The mixed-integer problem statement
can be mathematically represented as:

min
x

f(x),

s.t. ci(x) ≤ 0 i = 1, 2, ..., r,

l ≤ x ≤ u,
x = [xTc , x

T
d ]T ∈ Rnc × Znd .

(4.1)

Various heuristic approaches exists where one can round off the real numbers to the
nearest integer [2, 14]. This thesis uses the trust-region based derivative free algorithm
for the mixed-integer optimization problem. The techniques discussed in this chapter are
developed and mentioned in various literatures [85, 45, 76, 77].

We discuss the algorithm that converges to a local minima. This chapter starts with
the definition of local minima of a mixed-integer problems in Section 4.1. In this thesis,
we modify SNOWPAC [8] to handle mixed integer problem. The first step to implement
mixed-integer part of SNOWPAC was to handle box constrained optimization problems.
There are no constraints ci(x)s except the upper and lower bounds of design variables.
Such problems are stated as:

min
x

f(x),

s.t. l ≤ x ≤ u,
x = [xTc , x

T
d ]T ∈ Rnc × Znd .

(4.2)

We discuss the modifications done in the existing code in Section 4.2. There were two
major changes, namely the shape of trust regions and the algorithm for local optimization
of the surrogate model. Firstly, we discuss the motivation behind changing the shape of the
trust-region from closed ball to closed box. Then, we give a description of the Branch and
Bound algorithm is used for optimizing the surrogate model. We provide an overview of
other minor modifications. Lastly, we discuss the method in which all the aforementioned
techniques are integrated with SNOWPAC in Section 4.2.

4.1. Local minima of mixed integer optimization problems

There are several definitions of local minima of a mixed integer problem. In this section
we will just discuss one of them, followed by an example. Before proceeding to the formal
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definitions we will mention the notation that is followed. Let Ωm denote the feasible region
of problem 4.1. For special cases of nd = 0 and nc = 0, feasible domains are represented by
Ωc and Ωd respectively. For any point xc and ε > 0, let Bε(xc) is notation of an open ball
defined as {yc ∈ Rnc : ‖yc − xc‖ < ε}. Let Nd(xd) and Nm denote the user defined neigh-
borhood for discrete dimensions and problem statement respectively. Let Nr represent a
neighborhood of x as:

Nr(x) = {y ∈ Rn : yc = xc, yd ∈ Nd(xd)}.

Nr ⊆ Nm and for unconstrained box-problems 4.2, both of them are same. For some
feasible value of the discrete points xd, the remaining degree of freedoms in continuous
dimension forms a manifold referred as feasible continuous manifold represented as fM(y)
and formally defined as:

fM(y) = {f([yT , xTd ]T ) : [yT , xTd ]T ∈ Ωm}

feasible continuous manifold depends on the value of xd. In the box constrained problems,
there are finite number of values that xd can hold. This leads to finite feasible continuous
domain.

Before going further let us formally define continuous local minimum(nd = 0), discrete
local minimum (nd = 0) and global minimum.

Definition 4.1 (Continuous local minimum [86]) A point x∗ ∈ Ωc is a local minimum if for some
ε > 0,

f(x∗) ≤ f(x), ∀x ∈ Ωm ∩Bε(x∗).

Definition 4.2 (Discrete local minimum [83]) A point x∗ ∈ Ωd is a local minimum if,

f(x∗) ≤ f(x), ∀x ∈ Nd(x∗).

Definition 4.3 (Global minimum [86]) A point x∗ ∈ Ωm is a local minimum if,

f(x∗) ≤ f(x), ∀x ∈ Ωm.

Mixed-integer optimization problem is a NP-hard [85], so definition for mixed integer
problem should allow some control over the size of neighborhood. For a convex prob-
lem, a local minimum is a global minimum. Also, the definition should be valid under
special cases, for example when all the variables are continuous etc. This puts additional
constraints on the definition of mixed integer local minimum:

1. The definition should be valid even when nd = 0

2. The definition should be valid even when nc = 0

3. If Nm contains at least one point on each feasible continuous manifold and objective
function and constraints are convex, then a point is a local minimum of mixed integer
problem if and only if it is a global minimum.

The definition of separate local minimum given by [76] does not satisfy the third condition.
So, in this thesis we follow the combined local minimum [85]
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Definition 4.4 (Separate local minimum) A point x∗ ∈ Ωm is a separate local minimum of prob-
lem 4.1 if for some ε > 0,

f(x∗) ≤ f(x), ∀x ∈ {x : xc ∈ Bε(x∗c), xd = x∗d} ∩ Ωm

f(x∗) ≤ f(x), ∀x ∈ Nr(x∗) ∩ Ωm

where Ncomb(x∗) is the set of the smallest local minima on each feasible continuous manifold on
which Nr(x∗) has a point.

Definition 4.5 (Combined local minimum) A point x∗ ∈ Ωm is a combined local minimum of
problem 4.1 if for some ε > 0,

f(x∗) ≤ f(x), ∀x ∈ {x : xc ∈ Bε(x∗c), xd = x∗d} ∩ Ωm

f(x∗) ≤ f(x), ∀x ∈ Ncomb(x∗) ∪Nr(x∗)

where Ncomb(x∗) is the set of the smallest local minima on each feasible continuous manifold on
which Nr(x∗) has a point.

We will now formally define Ncomb(x∗). For that let us define A(x̄) as:

A(x̄) = {x̄ : x̄d = x̃d, f(x̄) ≤ f(x) ∀x ∈ {x : xc ∈ Bε(x̄c), xd = x̃d} ∩ Ωm}

Ncomb(x∗) is then given by

Ncomb(x∗) =

®
arg min

y
[f(y) s.t. y ∈ A(x̃)] : x̃ ∈ Nr(x∗) \ {x∗}

´
(4.3)

We will explain Definition 4.5 using an example. Let us consider following mixed integer
optimization problem [85]:

min
[y,x]

5

2
(x+ y)2 +

1√
2

(y − x)

s.t. − 2 ≤ x, y ≤ 2,

y ∈ R, x ∈ Z

(4.4)

It is a simple box-constraint problem, which is convex. The objective function is also con-
vex because it is a sum of two convex terms. Figure 4.1(a) and Figure 4.1(b) shows contours
and feasible continuous manifold of objective function respectively. Red dots in Figure
4.1(b) shows minimum value of each manifold. Each red dot is a separate local minimum.
By Definition 4.5, Ncomb contains these five dot points. The combined local-minimum of the
mixed integer problem is the smallest value amongst these points. As seen from figure 4.1,
the combined local minimum of problem 4.4 is x = 2 and y = −2.

4.2. Modifications for Mixed Integers

4.2.1. Trust Region Shape

In NOWPAC [7] and SNOWPAC [8], the trust-region is in shape of a ball represented as
B(xk, ρk) = {x ∈ Rn : ‖x = xk‖ ≤ ρk}, where xk is the center and ρk is trust-region ra-
dius. For the mixed integer problems we have two types of design parameters, namely
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(a) Contour plot of problem 4.4

(b) Value of function for every discrete dimension x for over continous dimension y

Figure 4.1.: Figure illustrating features of problem 4.4. Red dots in Figure (b) represent
minimum point for every value of discrete dimension
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integer parameters and continuous parameters. Smallest change in the direction of integer
parameter is one. Suppose, the radius of trust region(ρk) falls below 1. In such scenarios,
the value of integer parameters cannot change. Thereafter, optimizer stops exploring other
integer values and gets stuck at one integer parameter. In such scenarios, optimizer con-
verges to a separate minimum. If we want to converge to a local minimum, then we cannot
use the trust region as used in NOWPAC and SNOWPAC.

One of the solutions to the aforementioned problem is restricting the radius of trust-
region radius to one. If we do this, behavior of the surrogate model may not improve
properly along continuous parameter. So, we will not be able to obtain the accurate opti-
mized point specially for continuous part.

The solution that we have adopted in this work is to modify the shape of trust-region
from ball to box. The trust-region B(xk, ρk) is now defined as:

B(xk, ρk) = {x ∈ Rn : |x− xk| ≤ ρk} (4.5)

where ρk ∈ Rn, is a n-dimensional vector with each dimension representing the size of box
in each parameter dimension. Lower bound of the integer dimension is one.

The upper and the lower bound of the design parameters also put restriction on the size
of the box. The box-size in any given dimension must not exceed the difference between
the upper, and the lower bound(or the spread of a dimension). If size of trust-region ex-
ceeds the spread in any dimension, then we restrict the box-size in that dimension to the
spread in that dimension. In other words, spread of the variable in any given dimension
is the upper bound to the trust region size.

We summarize all the aforementioned restriction and formally define ρk as:

ρk = [ρZ
T
, ρR

T
]T ∈ Rnd × Rnc

where ρZi ∈ [1, ui − li)∀i = 1, ..., nd

and ρRj ∈ (0, uj − lj)∀j = 1, ..., nc

(4.6)

Here n is total number of design parameters, nd is number of integer design parameters
and nc is number of continuous design parameters.

4.2.2. Surrogate Model Optimization

As stated earlier in Chapter 2, the basic approach of trust-region derivative free method is
to build a surrogate model in a local trust region and optimize the surrogate instead of op-
timizing the actual function. For solving the optimization problems as stated in Equation
4.1, the surrogate optimization subproblem is stated as following:

x̄k = arg min
x∈B(xk,ρk)

mf
k(x)

s.t. mci
k (x) ≤ 0 i = 1, 2, ..., r,

l ≤ x ≤ u,
x = [xTc , x

T
d ]T ∈ Rnc × Znd .

(4.7)

27



4. Mixed Integers

Similarly, the surrogate optimization subproblem for the family of problems represented
by Equation 4.2 is as:

x̄k = arg min
x∈B(xk,ρk)

mf
k(x)

s.t l ≤ x ≤ u,
x = [xTc , x

T
d ]T ∈ Rnc × Znd .

(4.8)

As mentioned in Chapter 2, the highest order of the surrogate model of both the objective
function(mf

k) and the constraints(mci
k ) is quadratic. So, the optimization problems of form

4.8 and 4.7 belongs to the family of Mixed Integer Quadratic Problems (MIQP) and Mixed
Integer Quadratic Constrained Problems (MIQCP) respectively.

There are various approaches to solve such family of problems. Detailed study of these
problems is done in [16, 19, 9, 20]. The method to be applied depends upon the Hessian of
the surrogate model. If the hessian is positive definite, we can use the commercial software
solver CPLEX [23]. If the hessian is indefinite and the ncth principle leading sub-matrix is
positive semidefinite then we can solve using the convex reformulation scheme described
in [20]. If none of the aforementioned conditions are satisfied, then we can use general
Branch and Bound algorithm to solve the problem as mentioned in [84].

In this work, we have only used branch and bound the algorithm to optimize the sur-
rogate model. We describe the branch and bound the algorithm for box-constrained prob-
lems. Thereafter, we elaborate the new scheme to update trust-region.

4.2.3. Branch and Bound

The branch and bound is one of the most commonly used approaches applied to solveNP-
hard combinatorial problems. It can be applied to solve various categories of problems like
the Traveling Salesman problem, the Graph Partitioning problem, the Quadratic Assign-
ment problem etc [31]. For the first time, it was used to solve Mixed Integer Linear Pro-
gramming problems in [40]. Later, it was extended to non-linear problems in [57, 24, 106].

We describe the steps to use the branch and bound algorithm for mixed integer problems
in Algorithm 3. We start by describing the method with box-constrained problem 4.8. The
basic idea behind the branch and bound algorithms is to use the continuous relaxation of
the problem 4.8. Thereby, we obtain the valid lower and upper bounds and explore the
space of integer variables using tree search.

The branch and bound algorithm is implemented in recursive manner by continuously
building a tree. We recursively divide the domain into smaller sub-domains. Each sub-
domain represents a different sub-problem. We represent each sub-problem using one
node of the tree.

Each node of the tree is formed by relaxing the integer constraint of the problem 4.8 or
4.7. Now, each sub-problem is a simple optimization problem. We can obtain a unique
solution if the new sub-problem is convex. As stated in Chapter 2, path augmented con-
straints convexify the constraints. Sub-problem optimization is done using COBYLA [87,
89] method as provided by open source software NLOPT [64].

Let us consider a schematic diagram 4.2. We initialize the value of function minimum
(f∗) with a very large number. We start our algorithm with the original lower and up-
per bounds. It is shown in 4.2(a) and represent it by S. We relax the integer constraints
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and solve the sub-problem as mentioned earlier. We get minimum (f̄ ) with parameters
x̄. Suppose, we do not obtain integral solutions for the required set of variables, then, we
divide the domain into two sub-parts thereby creating two new sub-problems as repre-
sented in 4.2(b) as S1 and S2. To find the criterion of division, we find the integer variable
in x̄j j = 1, ..., nd which has the largest absolute decimal value as following:

l = arg max
0≤j≤nd

(|x̄j | − floor(|x̄j |))

S1 will have same upper and lower bound as S with one modification. The lth component
of upper bound will be the nearest and smallest integer of x̄l. Similarly, S2 will have
same upper and lower bound as S with one modification. The lth component of lower
bound will be the nearest and biggest integer of x̄l. We relax the integer criterion and
solve the subproblem again. In this way, the binary tree is built recursively as shown in
4.2(c), 4.2(d) and so on. At every branch, we check if the minimum of the sub-problem(f̄ )
is lower than previous minimums (f∗) and if all the integer variables are integers i.e. x̄j ∈
Z ∀ j = 1, ..., nd. If this criterion is satisfied, then we update the value of (f∗) and
optimal parameters as x∗ = x̄. By the end of this algorithm, values f∗ and x∗ will be
the mixed integer minimum value and the corresponding parameter respectively of the
optimization problem.

We can prune the tree and make the algorithm more efficient by including the concept
of Fathomed Branch. Suppose, we keep building a tree and reach a branch say S112, whose
minimum(f̄ ) is greater than already existing function minimum f∗. So the given branch
cannot provide a value better than the existing minimum. We call such a branch as fath-
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omed. We stop building the tree any further.

Algorithm 3: Branch and Bound for mixed integer problems

Data: initial upper and lower bound(ub, lb), function(mf
k), constraints(mci

k ), list of
discrete and continuous variable

Result: Optimum Point(x∗), Function minimum value(f∗)
1 Set f∗ =∞;
2 Function BranchAndBound(lb, ub) : is
3 Create a sub-problem(branch) similar to 4.8 or 4.7 but with bounds lb and ub ;
4 Relax integer criterion;
5 Solve x̄ = min

m
ci
k
≤0
mf
k(x);

6 Set local minimum of the branch(f̄ ) as f̄ = f(x̄) ;
7 if f̄ > f∗ then
8 Branch is Fathomed ;
9 return;

10 end
11 else if x̄j ∈ Z ∀ j = 1, ..., nd then
12 Set f∗ = f̄ ;
13 Set x∗ = x̄ ;
14 return ;
15 end
16 Select l = arg max

0≤j≤nd

(|x̄j | − floor(|x̄j |));

17 Set l̃b = lb and ũb = ub;
18 Set l̃bl = ciel(x̄l) ;
19 Call BranchAndBound(l̃bl, ũb) ;
20 Set ũbl = floor(x̄l) ;
21 Call BranchAndBound(l̃b, ũbl) ;
22 return;
23 end

4.2.4. Trust Region Update

The trust-region update procedure is similar to that of NOWPAC [7] as described in Section
2.1. We just make one modification. In NOWPAC [7], if the step is rejected, we shrink the
trust-region by a factor of γ where γ ∈ (0, 1). When we shrink the trust-region, none of
the outliers are used to build the surrogate model. If the number of points are not enough
to build a fully linear model (i.e. number of active points is less than n + 1, where n is
the dimension of design space), then we sample a few points inside the trust-region to
ensure that there are enough active points to build a fully linear model. We are not able
to build a higher order model because every time we shrink the trust-region, few points
may become outliers. This is a bigger issue when each black-box evaluation is expensive.
In other words, this was very inefficient because we spent a lot of computational effort
to evaluate the value of the black-box function at a point and it goes quickly out of the
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(a)

(b)

(c)

(d)

Figure 4.2.: Illustrative tree
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trust-region.
We could solve this problem by increasing the value of γ. However, this slows down the

convergence. So, we needed to find a way to ensure that we are able to use more points
inside the trust-region to make it closer to a quadratic model and also the convergence
speed is not adversely affected.

We did that by putting extra constraints on the step rejection criterion. If the step is
rejected, then we decrease the trust-region radius by a factor of γ only if the number of
points inside the trust-region is greater that 2n+ 1, where n is the dimension of the design
space. The new trust-region update scheme is summarized as:

ρk =


γincρk if rk ≥ η1

ρk if η0 ≤ rk ≤ η1

γshrinkρk if 0 < rk < η0

γρk if rk ≤ 0 and nactive > (2n+ 1)

(4.9)

where nactive is the number of points that are inside the trust-region.

4.3. Adapting SNOWPAC for Mixed Integer problems

To use the SNOWPAC package, we have to create a constructor. We modified the construc-
tor to include the mixed integer features. The new constructor has the following structure:

NOWPAC ( int n, int numint, std::vector<double> scaling);

Here, n represents the dimension of the optimization problem, numint represents the
number of integer variables and scaling a user-defined n-dimensional vector that stores
scaling along all parameters. If numint is greater than zero, then the problem becomes
a mixed integer optimization problem. Otherwise, it is treated as a general optimization
problem. SNOWPAC provides an interface for users to input their black-box function. The
interface is as following:

virtual void evaluate (std::vector<double> const &x,
std::vector<double> &vals,
void *<user parameter>);

The user must ensure that the first numint variables are supposed to be integer variables,
rest are continuous variables.

We added a new class to the existing code BranchAndBound. We also modified the
existing code to accommodate the algorithm changes mentioned in this chapter.
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This chapter introduces the basics of artificial neural networks. We start by discussing the
mathematical model of a feed forward neural network in Section 5.1. This section discusses
the structure and building blocks of a simple Multi-Layer Perceptron (MLP). In Section 5.2
we discuss the data driven supervised training methods. Thereafter, we take an overview
of a Convolutional Neural Network (CNN) in Section 5.3. Then, in Section 5.4 we discuss the
regularization techniques that are used to prevent overfitting. Here, we discuss about the
loss function and the stochastic gradient method.

5.1. Feed forward Neural Network

As the name suggests artificial neurons are inspired by brain cells. Brain cells have multiple
input signals and produce a single output. Output is the weighted sum of inputs over
which an activation function act. Similar structure is followed in artificial neurons.

We mathematically state the structure of a single artificial neuron. In the further discus-
sions, we follow the mathematical notation and formulas used in [54]. A single artificial
neuron can be represented as a non-linear function g : RK → R, with K input values and
parameters are a weight vector w, a bias b and a non-linear activation function σ:

g(x) = σ
Ä K∑
k=0

wkxk + b
ä

= σ(wTx+ b) (5.1)

Figure 5.1(b) illustrates an artificial neuron.
We consider a set of neurons arranged in form of layers, where a layer l feeds its output

only into the next layer l + 1. This is called the feed forward property and this network
of multiple layers is called feed forward neural network. We can also visualize the neural
network as a collection of neurons that are connected in an acyclic graph. Such networks
are also referred as ”Artificial Neural Network (ANN)”.

A layer l with K(l) neurons which operate on an input vector x(l−1), represents a non-
linear function f (l) : RK(l−1) → RK(l)

, that produces an output vector x(l):

x(l) = f (l)(x(l−1)) (5.2)

A layer function at layer l is defined as:

f (l)(x) = σ(l)(W(l)x+ b(l)) (5.3)

where the weight matrix W(l) and the bias vector b(l) are constructed by weight vectors and
biases of individual neurons.

Let us consider a network with L consecutive layers and overall network parameters θ.
Overall network parameter θ is a collection of all individual layer parameters. When we
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(a) Single brain cell [66]

(b) Artificial neuron as stated in Equation 5.1

Figure 5.1.: Analogy between brain cells and artificial neurons.

explicitly specify the overall network parameter θ, the network is thereby represented as
a function y = f(x;θ). The given function is written as decomposition of the individual
layer functions f (l) as f : RK(0) → RK(L)

as following:

f(x;θ) = (f (L) ∗ f (L−1) ∗ ... ∗ f (1))(x) (5.4)

The number of neurons in each layer determines the width of a given layer. First layer
and last layers are input and output layers respectively. Other layers sandwiched between
the input layer and the output layer are known as hidden layers. The number of hidden lay-
ers determines the depth of MLP. If there are N hidden layers, then the network is called
N -layer neural network [66]. When every neuron of a given layer is connected to every
other neuron of next layer, then the network is called a fully connected layer. Figure 5.1
shows a fully connected neural network with two hidden layers. A ”Multi-Layer Percep-
tron(MLP)” is a class of ANN which consists of, at least, three layers of nodes: an input
layer, a hidden layer and an output layer.

The next important aspect is the activation function σ. An activation function is a non-
linear function that takes single input and performs a specific mathematical operation on it.
They introduce non-linear properties to our network. There are various types of activation
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Figure 5.2.: A fully connected neural network with two hidden layers.

(a) ReLU activation function (b) Leaky ReLU activation function

Figure 5.3.: ReLU and Leaky ReLU activation functions.

functions discussed in [54, 70, 58]. In this thesis, we have used the following activation
functions:

• ReLU : The Rectified Linear Unit computes the function f(x) = max(0, x). It per-
forms better than sigmoid/tanh activation functions [70] because it does not satu-
rates at high input values. However, when input is negative then the neuron dies.

• Leaky ReLU : The problem of dying neurons is solved by leaky rectified linear unit
by providing a small slope to the line in negative region. The function of leaky ReLU
is

f(x) = 1(x < 0)(αx) + 1(x ≥ 0)(x)

where ”α” is a small positive constant. Advantages of Leaky ReLU and its overall
effects are studied in [58].

In basic structure of ANN, features like slope of leaky ReLU(α), width of a neural net-
work etc are hyperparameters. In other words, before training of the neural network, we
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need to take a wise guess about its values. A wrong guess can lead to improper training
and bad accuracy.

5.2. Supervised Training

In the previous section we have discussed various building blocks of a neural network.
Our assumption till now was that we knew the overall network parameters θ. In this section
we take a cursory look of the methods used to obtain θ. This procedure is called the
training of a neural network. When a labeled dataset is used to train a network then the
process is known as supervised learning. In this section we discuss the supervised training
to obtain the network parameters θ.

The goal of supervised learning is to learn a function y∗ = f∗(x) by approximating it
with a neural network y = f(x) [54]. The challenge here is the unknown true function f∗.
We use the provided dataset which contains the labeled output y∗ for some finite input x
to approximate f∗.

Let us represent set of labeled data as Z . It is divided into three sets namely training
(Ztrain), validation (Zval) and testing (Ztest) set. The first step is to initialize the weights
and biases of the network with random numbers. The weight initialization of a network is
an important step, and it has been studied in various literatures. Some of the commonly
used techniques are Kaiming Initialization [58], Xavier Initialization [53] etc. In this thesis,
we have done initialization with normally distributed random number. The mean and
standard deviation of the normal distribution serves as hyperparameters. During training,
the network predicts y for input x from training set. These predictions are then compared
with corresponding labels y∗ to generate a loss function J(x,θ;Ztrain) under current set of
parameters θ. Our aim is to find the parameters θ for which loss function is minimum for
the training dataset. Formally it can be stated as:

θ = arg min
θ

J(x, θ;Ztrain) (5.5)

In this way we are trying to find a function f which is a good approximation of actual
function f∗.

When we are training our network, we also need to ensure that performance for unseen
data is good. For that reason, we calculate the loss and accuracy with respect to the vali-
dation data set(Zval). One of the scenarios to explain the importance of validation dataset
is to check if our network overfits the training dataset or not. If the training loss is low but
validation loss is high then we can conclude that there is overfitting. We must regularize
the parameters to avoid this. We discuss the details of regularization in Section 5.4.

There are various options for loss functions like cross-entropy loss, hinge loss etc [66].
In this thesis we use softmax loss function. The cross-entropy loss function is defined as:

Li(y) =
eyi∑N
k=1 e

yk
(5.6)

There are many approaches to solve the minimization problem mentioned in Equation
5.5. One of the methods is gradient descent with momentum. It can be mathematically
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Figure 5.4.: One step of the gradient descent with momentum [66].

represented as:
vn = βvn−1 + (1− β)∇θn−1L(y)

θn = θn−1 − αvn
(5.7)

where, α is the learning rate, β is the momentum factor and vn is the momentum at nth

iteration.
In almost all the real-world scenarios, the dataset is very large and there are many net-

work parameters. So, evaluation of the gradient for the complete dataset is restricted due
to hardware limitation or loss in computational performance when the whole dataset is
used. So, we use small batches of data and train out network. This approach when com-
bined with gradient descent is called stochastic gradient descent method. This method is
used in this thesis.

5.3. Convolutional Neural Networks

In Section 5.1 we discussed MLP for which the input was one-dimensional i.e. x ∈ Rn.
However, images are generally two-dimensional (gray-scale) x ∈ Rnx×Rny , three-dimensional
(RGB) x ∈ Rnx×Rny×Rnz or higher dimensional. To directly use MLP, we need to convert
input into a one-dimensional vector by straightening the higher-dimensional inputs. This
will lead to a loss of the spatial informations. For handling such cases we use Convolutional
Neural Networks (CNN). In this section, we will discuss the structure and components of a
Convolutional Neural Network.

5.3.1. Convolutional Layer

Let us consider an input of dimension wi × hi × di. A convolutional layer with filter size
wf×hf×di, wherewf ≤ wi, hf ≤ hi, when applied on each spatial position of a input layer
yields a output of shape wo×ho×1. This procedure can be visualized as a window sliding
over input and doing some mathematical operations in the intersected zone. The amount
by which the filter moves in respective dimension is called the stride and is represented
by sx and sy for x-direction and y-direction respectively. The number of strides and the
dimension of the filter determines the output size.
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The application of convolution layer causes a shrink in the size of the output layer. This
will add a restriction on the depth of the neural network. We can increase the size of
the output layer to our requirement by adding some padding(px, py) in input. There are
various options of padding like zero padding, replicate, etc. The spatial dimensions of
output is given as following:

wo =
wi − hf + 2px

sx
+ 1

ho =
hi − hf + 2py

sy
+ 1

(5.8)

In most of the cases, there are more than one filter in a convolutional layer. If there are n
filters, then output will be of form wo×ho×n. After the convolution operation, we operate
activation function to introduce non-linearity. It is the same as discussed in Section 5.1.

5.3.2. Pooling

The function of pooling is to progressively reduce the spatial size of the representation
thereby reducing the number of parameters and computation in the network [66]. The
pooling layer operates independently on every depth slice of the input and re-sizes it spa-
tially [66]. The commonly used pooling layer is average pooling and max pooling. In this
thesis we have used max pooling.

5.3.3. Fully connected layer

After desired number of convolutions and pooling layers, the output is straightened and
provided to a fully connected layer. The size of the output layer is the required number of
output classes.

5.4. Regularization

As discussed in Section 5.2, model might overfit the training dataset. In this section, we
discuss regularization methods to prevent overfitting. This ensures that our model also
predicts unseen data accurately.

5.4.1. Weight Decay

Weight Decay which is commonly known as L2 regularization is one of the most commonly
used regularization techniques in machine leaning. It is implemented by adding a penalty
term to the loss function. These penalization term limits the capacity of the model. The
new loss function is as follows [66]:

Jdecay(θ) = J(θ) +
1

2
λ‖θ‖22 (5.9)

where, λ > 0 is a hyperparameter that controls the regularization strength. The factor of
1
2 before the penalization term is to ease the differentiation of loss function with respect to
the network parameters.
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(a) Standard fully connected neural
network without dropout

(b) With dropout

Figure 5.5.: Dropout Neural Network model, Left: A standard two-layered fully connected
neural network, Right: An example of neural network after applying dropout
[104].

5.4.2. Dropout

Dropout [104] is a regularization technique where we randomly disable a neuron and its
connections during the time of training. Applying dropout to a neural network is equiva-
lent to sampling a thinned network as seen in Figure 5.5(b). Disabling neurons will prevent
the network to over-rely on certain inputs too much, thereby leading to a better general-
ization by utilizing more of the inputs. Each neuron is disabled with an independent
probability p ∈ [0, 1).

Second advantage of the dropout is that it combines many different neural network
architectures efficiently [104]. Combining models generally improves performance of ma-
chine learning methods. However, it will be inefficient to train many models indepen-
dently. By including the dropout, we are effectively training and combining many models
at the same time. Moreover, this method is also computationally more efficient [104].

5.4.3. Batch Normalization

When we update the network parameters θ as per equation 5.7, we assume that network
parameters θ in other layer are constant. However, we update all of them at the same time.
Batch Normalization is a regularization technique which reduces the amount by which the
weights of hidden layers shift around (covariance shift). [54].

For a batch of m outputs of a layer, each value hi is normalized to y′i as [54] :

y′i =
hi − µ
σ

(5.10)

We compute mean(µ) and standard deviation(σ) during training. The element-wise cal-
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culation for each value of hi across the batch is done as [54] :

µ =
1

m

m−1∑
i=0

hi

σ =

Ã
δ +

1

m

m−1∑
i=0

(hi − µ)2

(5.11)

where δ > 0 is a small constant to prevent division by zero in equation 5.10. Final bath-
normalization value for each entry is computed as [54]:

yi = γy′i + β (5.12)

where γ and β are parameters learned during training.

5.5. Hyperparameter Optimization

We have mentioned throughout this chapter that there are many hyperparameters in a
neural network. The designer of the network has to carefully initialize the hyperparameter
values. But this is a very difficult task and it is almost impossible to get the best accuracy
simply by human guess. As a result of which, automatic optimization of hyperparameters
for deep learning algorithms has been attracting a lot of attention. In this section, we
formally state the hyperparameter optimization problem.

5.5.1. Problem Statement

Let λ = [λTd , λ
T
c ] such that λd ∈ Znd and λc ∈ Rnc denote required set of hyperparameters,

f denote a negative validation accuracy. Hyperparameter Optimization is a global mini-
mization of a black-box function f when the supervised training of the neural network is
done using training dataset. The problem statement is mathematically stated as:

min
λ

f(x, λ,θ;Zval)

s.t. θ = arg min
θ

J(x, λ,θ;Ztrain)
(5.13)

The problem mentioned in Equation 5.13, is a very challenging problem because of the
complexity of the function f .

5.5.2. Existing Methods

We can find a rich literature of various hyperparameter optimization methods. The most
naive solution to the aforementioned problem is to do Grid search. In this method, we cre-
ate a grid of points in hyperparameter space, Then, we train our network for each point
and choose the hyperparameter set with least validation accuracy. Instead of creating a
uniform grid, we can also form a random grid and follow the method mentioned before.
This is called Random search and it performs better than grid search [10]. Figure 5.6 shows
and illustrative example of the grid and random search methods. Both these methods are
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(a) Grid search (b) Random search

Figure 5.6.: Illustrative example of grid search and random search [66].

relatively easy to implement. However, they suffer from the curse of dimensionality. As
the number of hyperparameters increases, it becomes infeasible to implement these meth-
ods. Moreover, these methods also are not able to find the best possible combination of
hyperparameters. We will need a very fine grid to obtain better set. But fine grid requires
more training, thereby making it computationally more expensive.

Other, approach is to use Bayesian optimization [80]. It is a method to find global mini-
mum of a black-box function. This requires building a gaussian process surrogate of the
required function by evaluating at some points. Then, we find the location point that has
highest probability of the optimum point. We evaluate value of black-box at that point
and use its value to improve the gaussian process which again is used to find next ex-
pected minimum. This process is repeated till required number of black-box evaluations
are done. One of the commonly used tool that is uses this method is Spearmint [62, 35].

We need to solve a linear system of equation to obtain next best point in bayesian opti-
mization. The size of linear system increases as more black-box evaluations are completed
or adding more hyperparameters. This makes bayesian optimization very time consum-
ing. To circumvent this problem, we can add tree based search method. This approach is
done in SMAC [60, 59] and TPE [11, 12]. But this leads to loss in the quality of final results.
In other words, optimizer is faster, but it is not able to find the lowest value.

Another recent development in hyperparameter optimization field is HORD (Hyperpa-
rameter Optimization using RBF and Dynamic co-ordinate search) [61]. This method is
similar to the trust-region optimization method as discussed earlier. HORD uses radial
basis functions and distorts design space co-ordinates with some probability. For more
details of the algorithm refer [94].
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6. Mixed Integer SNOWPAC Performance

This chapter discusses the behavior and performance of Mixed Integer SNOWPAC. We
start by providing an illustrative example in Section 6.1. We use SNOWPAC to solve a
two dimensional optimization problem and analyze the salient steps of the algorithm. In
Section 6.2, we take an overview of the benchmark used to compare various optimiza-
tion tools. Thereafter, we benchmark the performance of SNOWPAC against some exist-
ing tools for mixed-integer box-constrained problems and stochastic mixed-integer box-
constrained problems in Sub-sections 6.2.1 and 6.2.2 respectively.

6.1. Illustrative Two Dimensional Example

We will first illustrate the behavior of the different aspects of mixed integer trust-region op-
timization method discussed in Chapter 4. Let us consider the mixed-integer Bohachevsky
Problem-1 [3, 22] stated as:

min
x

f(x) = x2
1 + 2x2

2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7,

s.t. − 7 ≤ xi ≤ 7, i = 1, 2

x1 ∈ Z,
x2 ∈ R.

(6.1)

Figure 6.1(a) shows the contour lines of the Bohachevsky Problem-1. It is a multi-modal func-
tion with many local minimums. The global minimum is at x∗ = (0, 0) with f(x∗) = 0. As
mentioned in Chapter 4, let ρi represent half of the trust-region box size in ith dimension.
Let N represent the number of function evaluations.

We start with the initial point x0 = (3, 3) and half box-size as ρ1 = 3 and ρ1 = 3. Figure
6.1(b) shows the starting configuration of the optimizer. We use the points (3, 3), (6, 3)
and (3, 6) for the initial evaluation of the fully liner model. We get the minimum of model
within the trust-region at (2, 0.17). We update the trust-region region radius according to
the acceptance ratio value. The updated trust-region is shown in Figure 6.1(c). Point (3, 6)
falls out of the trust region. So, we remove it from the list of active points and do not use
it to build the next surrogate model. We follow similar steps as mentioned before. The
configuration after N = 5, 18, 40 is shown in Figure 6.1(d), 6.1(e) and 6.1(f) respectively.
We can see from Figure 6.1(f) that the trust-region box size was becoming less than one.
As mentioned in Chapter 4, the half box-dimension along the integer-dimension (ρ1 in the
given example) cannot be less than one. Hence, we restrict ρ1 to one.
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(a) Contour lines for the optimiza-
tion problem 6.1

(b) N = 3, ρ1 = 3, ρ2 = 3

(c) N = 4, ρ1 = 4.68, ρ2 = 4.68 (d) N = 5, ρ1 = 4, ρ2 = 4

(e) N = 18, ρ1 = 2.2, ρ2 = 2.2 (f) N = 40, ρ1 = 1, ρ2 = 0.45

Figure 6.1.: Steps of solving Bohachevsky Problem 1 using Mixed Integer SNOWPAC. Ma-
genta box represents the boundary of the trust-region. Red diamonds repre-
sents the active nodes that are used to construct the surrogate model at any
given iteration. Dark green line represents the path of the optimum point dur-
ing the given iteration number.
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6.2. Performance Profiling Benchmarks

There are various methods to compare different optimization solvers. Some of the bench-
marking efforts involve tables displaying the performance of each solver on various prob-
lems for a set of metrics such as CPU time, number of function evaluations, or iteration
counts for algorithms where an iteration implies a comparable amount of work [44]. In
this thesis, we use performance profiling as described by Moore et al [81] and box-plot
depicting distribution of evaluation points to compare various methods.

We generate benchmark results by running a given solver on a set of problems P and
recording the information of interest such as the number of function evaluations, distance
from the optimum point, etc. Let, tp,S denote the minimum number of function evaluations
taken by a solver S to solve problem p ∈ P with the accuracy requirement given as:

f(x)− f(x∗) ≤ εf

where f(x) represent the function value at a given step, f(x∗) is the known minimum of
the function and εf is the required level of accuracy. Let np denote the number of design
parameters of the optimization problem p ∈ P . Then, the data profile is calculated as:

ds(α) =
1

|P|

∣∣∣∣∣
®
p ∈ P :

tp,S
np + 1

≤ α
´∣∣∣∣∣ (6.2)

where |P| represents the total number of benchmark runs. For example, there are 10 bench-
marks and we run each benchmark 10 times, then the value of |P| is 100. Higher the value
of ds(α), better is the optimizer.

6.2.1. Mixed Integer Box-Constrained Problem

In this section, we compare the performance of various optimization tools to solve the
mixed-integer box constrained problems. The solvers compared are Mixed Integer SNOW-
PAC (developed as part of this thesis), pySOT [39], TPE (Tree-Structured Parzen’s Estima-
tor) [11, 12], SMAC (Sequential Model-based Algorithm) [60, 59] and NOMAD [74, 38].

Sr.No. Category Problem Name n nd nc

1

Category 1 Sphere Problem [110]

2 1 1
2 4 2 2
3 6 3 3
4 8 4 4
5 10 5 5
6

Category 2

Ackley’s Function [3, 105, 110] 8 3 5
7 De Jong’s Problem [110] 5 3 2
8 Bohachevsky Function 1 [3, 22] 2 1 1
9 Bohachevsky Function 2 [3, 22] 2 1 1
10 Griewank Function [110] 10 5 5

Table 6.1.: List of benchmark problems used for comparison of optimization tools.
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The list of benchmark problems is mentioned in Table 6.2.1. We present the complete
problem statement in Appendix A.1. We divide the benchmarks into two categories. The
first category belongs to set of simple Sphere problems. The functions are convex with one
unique minimum. There are five problems with increasing number of design parameters.
We use this category to study the effect of increasing the dimension on behavior of various
optimization tools.

We put some difficult optimization problem in the second category. Some problems in
this category are multi-modal (i.e. many local minimums) whereas in other problems axis
of some design parameters are elongated. By this category of optimization problems, we
can judge the capability of tools to solve certain typical problems.

We draw the performance profiling graph using two levels of accuracy requirements as
εf = 0.1 and εf = 0.01. Each benchmark problem is solved 10 times. In this section, we
only show some the graphs to explain the salient performance observations. For all other
plots, please refer to Appendix A.1.

In addition to the provided information, SMAC and SNOWPAC also needs a starting
point. For every set of experiment, we choose a random integer starting point within the
trust region. SNOWPAC also needs initial box-dimension which we set as three for all the
problems.

Figure 6.2 shows the overall performance profile for the first category of benchmark
problems. SNOWPAC (blue line) shows the best performance among all the optimizer,
very closely followed by pySOT (red line), NOMAD (purple line), TPE (orange line) and
SMAC (green line). The performance of SNOWPAC and pySOT is way superior as com-
pared to the other tools. This is because both of them are based on trust-region derivative
free optimization method. Both of them swiftly move towards a local minimum. SNOW-
PAC beats pySOT for small α because SNOWPAC starts optimization with fully linear
model which requires at least n + 1 evaluation points, where n is the number of design
parameters. However, pySOT need 2n + 1 points. So, SNOWPAC starts searching for
trial points before pySOT, which explains better behavior of SNOWPAC for low α. NO-
MAD is directional search method, and it shows inferior performance as compared to
trust-region methods. This behavior is also shown in [85]. SMAC and TPE are meth-
ods based on bayesian optimization and tree structure is added to speed-up calculation of
trial nodes [11, 60]. It has been shown in [8] that Bayesian Optimization performs worse
than trust-region methods for continuous constrained problems. Similar behavior is ob-
served in the Figure 6.2. There is deterioration in performance when the value of accuracy
requirement(εf ) is decreased because the optimizer will need more function evaluation to
reach more accurate points.

Figure 6.3 shows the statistical distribution of the function evaluation points by opti-
mization tool in the design parameter space. The dotted blue line represents the actual
minimum of the benchmark function. We observe from the figure that SNOWPAC, pySOT
and NOMAD have more function evaluation near the required minimum. This means
that these three optimization tool do more exploration of the design space near the opti-
mum parameters. This accounts for their better performance as compared to SMAC and
TPE. As mentioned before, TPE and SMAC are based on bayesian optimization. Bayesian
optimization is used to find the global minimum, by gradually improving the surrogate
gaussian process model over the whole domain. So, both needs to explore whole domain
thereby causing a wide statistical distribution.
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(a) εf = 0.1 (b) εf = 0.01

Figure 6.2.: Overall performance profiling result for the first category of benchmark
problems.

We can also observe from Figure 6.3 that distribution more wide spread when dimension
of design space increases. All the optimization tools suffer from increasing dimension. As
we increase the dimension of the optimization problem, we will need more points to build
the surrogate thereby causing more spread of the evaluation points in the design space.
This also explains deterioration in performance profiling graphs when the dimension is
increased (refer to Appendix A.1).

(a) Two-dimensional sphere function nc = 1,
nd = 1

(b) Six-dimensional sphere function nc = 3,
nd = 3

Figure 6.3.: Box plot distribution of evaluation points for first category of benchmarks.

Figure 6.4 shows the performance profile of benchmarked optimization tools over the
second category of benchmark problems. These optimization problems are more diffi-
cult to solve as compared to the first category. As expected, the performance declines
as compared to the first category. SNOWPAC’s plot is highest as compared to others.
We also observe that performance profile of TPE and SMAC is lowest. This is because
both of them are based on bayesian optimization. Bayesian optimization performs poorly
in optimizing multi-modal functions because it generates surrogate for the complete de-
sign space. Multi-modal functions being highly oscillatory needs many points to generate
global surrogate. Since the surrogate is inaccurate, we observe an under-par performance
by TPE and SMAC. The detailed comparison between various bayesian optimization tools
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(a) εf = 0.1 (b) εf = 0.01

Figure 6.4.: Overall performance profiling result for the second category of benchmark
problems.

for multi-modal function is done by Dewancker et. al. [43]. For individual profile graph
and box-plots refer to Appendix B.

(a) εf = 0.1 (b) εf = 0.01

Figure 6.5.: Overall Profiling Result for box-constrained problems.

In contrast to the bayesian optimization method, the trust-region based method builds
only local surrogate. Just few points can be used to build an accurate local surrogate model.
Therefore, the trust-region based optimization methods converges quickly towards the lo-
cal minimum. However, for multi-modal functions there are many local minimums. Nev-
ertheless, we cannot guarantee convergence to global minimum. If the global minimum is
dominant (difference between function values from local minima is large) then chances to
find global minimum increases.

Figure 6.5 shows the combined performance profiles for all the benchmark problems
mentioned in Table 6.2.1. SNOWPAC shows the best performance for solving mixed in-
teger box-constrained optimization problems as compared to the other optimization tools
for the given benchmark setup.

6.2.2. Mixed Integer Stochastic Box-Constrained Problem

In this section, we discuss the performance comparison between the optimization tools
as mentioned in subsection 6.2.1 but for stochastic functions. We consider only the first
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category of benchmark problems (Sphere Problem [110]). We add small uniform noise to
the function. We consider the expected value as the robustness measure to be optimized
which is calculated using a sample size of 100.

Figure 6.6 shows the performance profile graph for stochastic sphere functions. For all
graphs refer Appendix B. The behavior is similar to Figure 6.2. The low performance of
TPE and SMAC is because Bayesian optimization under-performs for high-dimensional
problems. SNOWPAC and pySOT performs equally well. This can also be explained by
the fact that both of them are based on the trust-region method.

Figure 6.7(a) and Figure 6.7(b) shows the statistical distribution of evaluation points in
form of box-plot for 2-dimensional and 4-dimensional stochastic sphere function respec-
tively. As expected the variance of evaluation points increases with increasing dimension
of design parameters. However, SNOWPAC shows the smallest variance as compared to
other optimization tools. This points out a slight advantage of SNOWPAC over pySOT.
There is higher variance for pySOT because it starts by building quadratic model over en-
tire design space and then it centers towards the optimum point. However, SNOWPAC
starts by building a fully linear surrogate model over the given trust-region which is not
necessarily the whole domain.

(a) εf = 0.1 (b) εf = 0.01

Figure 6.6.: Overall Profiling Result for stochastic sphere functions.
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(a) 2-dimensional sphere function nd = 1, nc = 1 (b) 8-dimensional sphere function nd = 4, nc = 4

Figure 6.7.: Box plot distribution of evaluation points for mixed-integer stochastic opti-
mization done on stochastic sphere function.
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7. Neural Network Hyperparameter
Optimization

In this chapter, we compare the performance of various optimization tools to optimize
the hyperparameters of neural network. We benchmark the performance of SNOWPAC
against various optimizers that are commonly used for hyperparameter optimization. In
Section 7.1, we describe the experimental setup and the categories. Thereafter, we present
results from the experiment, comparison and discussion of outcomes in Section 7.2.

7.1. Experimental Setup

We devise eight different setups for comparing various optimizers. We can divide the
experimental setups into two categories of four each. Both these categories have a similar
problem set containing same neural network architecture, dataset and hyperparameters
to be optimized. The only difference lies in the scale of individual hyperparameters. In
the first category we do not scale the hyperparameters whereas in the second category we
scale the hyperparameters so that all are of comparable magnitude. For example, learning
rate is in the natural scale in the first category whereas in the second category it is in the
logarithmic (log10) scale. We provide the details of scaling in Table C.2, C.4, C.6 and C.8.
We will now describe the basic structure of the four problems.

As mentioned earlier, each category has four hyperparameter optimization problems.
The problem design is taken from Ilievski et. al. [61]. In the first problems we optimize six
hyperparameters of the MLP network. Out of the six hyperparameters to be optimized,
two are integer parameters and four are continuous parameters. The complete list of the
hyperparameters optimized are mentioned in Table C.1 and Table C.2 for the first and the
second category respectively. We refer this problem as 6-MLP in subsequent discussions.
The MLP network consists of two hidden layers with ReLU activation between them and
SoftMax loss term. We use Stochastic Gradient Descent (SGD) for training the weights of
the neural network. The network is trained to classify grayscale images of handwritten
digits from the popular benchmark dataset MNIST [75]. MNIST is a database of handwrit-
ten digits in form of gray-scale images. Each image is labeled from 0 to 9 depending upon
the image. There are 60000 samples for training and 10000 samples for testing/validation.
The digits are size-normalized and centered in a fixed-size image. Each image has 28× 28
pixels. Figure 7.1 shows few sample images from MNIST dataset.

The second problem is to optimize eight hyperparameters of a Convolutional Neural
Network (CNN) with four integer hyperparameters and four continuous hyperparame-
ters. The architecture of CNN includes two convolutional blocks, each containing one con-
volutional layer with batch normalization. It is followed by ReLU activation and a 3 × 3
max-pooling layer. Next to the convolutional block, we place two fully-connected layers
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Figure 7.1.: Some sample images from MNIST dataset [75].

with LeakyReLU activation. We use SoftMax loss term. We train the network to classify
images in digits and use MNIST dataset. We call this problem as 8-CNN in subsequent
discussions. For the details of hyperparameters optimized, refer to Table C.3 and Table C.4
for the first and the second category respectively.

The third problem uses the exact same setup as the second problem. We just increase the
number of target hyperparameters to be optimized to fifteen, with five integer parameters
and ten continuous parameters. We will call this problem as 15-CNN in further discus-
sions. For the details of hyperparameters optimized, refer to Table C.5 and Table C.6 for
the first and the second category respectively.

The fourth problem optimizes nineteen hyperparameters, which consists of five inte-
ger parameters and fourteen continuous parameters. We call this problem as 19-CNN in
subsequent discussions. The architecture is the same as that of 8-CNN and 15-CNN, ex-
cept that we include dropout layers after convolutional layers and fully-connected layers.
For the details of hyperparameters optimized, refer to Table C.7 and Table C.8 for first
and second category respectively. We design the network to classify colored images from
CIFAR-10 dataset. CIFAR-10 [69] dataset consists of 60000 color images each with each im-
age having 32× 32 pixels. There are 10 classes, with each class having 6000 images. There
are 50000 training images and 10000 test images. Figure 7.1 shows few sample images of
every class from CIFAR-10 dataset.

We compare Mixed Integer SNOWPAC (developed as part of this thesis) against HORD
[61], HORD-ISP [61] (both HORD and HORD-ISP uses pySOT [39]), Spearmint [35] (code
used is wrapper around original Spearmint code [62]), SMAC [60, 59] and TPE [11, 12]

Training a neural network is typically a computationally expensive process. So, it is de-
sirable to find the optimum hyperparameters values within limited number of full train-
ings. Therefore, we limit the number of optimization iterations to 200 black-box evalua-
tions. Here, one black-box evaluation corresponds to one full training of the neural net-
work. We run five trials of each setup. We do each trial with different random seed for
neural network weight initialization, where the random seed is constant for all optimiza-
tion tools. Some of the optimizers need a starting point. We summarize the initial points
in Appendix C. These initial points are like a priori information that is provided by the
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Figure 7.2.: Some sample images of every class from CIFAR10 dataset [69].

user to the optimizer. The optimization tools that need initial starting points are SNOW-
PAC, HORD-ISP and SMAC. We also need to provide the starting trust-region dimension
to SNOWPAC. We choose the value in such a way that the whole hyperparameter space is
covered within the initial trust-region. The starting trust-region box-dimension is in Table
C.9.

7.2. Results and Discussion

In this section, we present the results from the experiments explained in the previous sec-
tion. We asses the efficiency of various optimization tools with respect to the increase in
the dimension of hyperparameter space, how likely will it be to produce best validation
accuracy, how many number of function evaluations does it need to get best accuracy, the
statistical distribution of the evaluation points and the amount of non-evaluation time.
Firstly, we discuss the results obtained from the first category in subsection 7.2.1. Next, we
present the results from the second category of problems in subsection in 7.2.2. Then we
compare the non-evaluation of in subsection 7.2.3. Finally, we show the results obtained
from running the stochastic 8-CNN second category problem in subsection 7.2.4.

7.2.1. First Category (Unscaled Hyperparameter Space)

We first discuss the results with respect to the first category of problems (unscaled hy-
perparameter space). Table 7.1 shows the mean and the standard deviation of percentage
validation error over five experiments as described in Section 7.1 . We observe that, in two
out of four setups, SNOWPAC yields the lowest mean percentage validation error. For 15-
CNN, SNOWPAC comes very close to the lowest error. However, it is being outperformed
by Spearmint and HORD-ISP in 19-CNN setup.

As mentioned in Chapter 4, the trust region based optimization methods converges to a
local minimum. The loss-surface of a multilayer network is highly convex and has many
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MNIST MNIST MNIST CIFAR-10
6-MLP 8-CNN 15-CNN 19-CNN

SNOWPAC 1.72 (0.05) 0.75 (0.03) 0.76 (0.08) 20.65 (1.21)
HORD 1.88 (0.09) 0.77 (0.02) 0.83 (0.08) 23.68 (1.86)
HORD-ISP 1.88 (0.07) 0.76 (0.02) 0.75 (0.04) 19.6 (1.91)
Spearmint 1.82 (0.05) 0.77 (0.03) 0.81 (0.01) 19.18 (0.71)
TPE 2 (0.06) 0.82 (0.04) 1.04 (0.05) 24.77 (1.83)
SMAC 1.9 (0.05) 0.85 (0.04) 0.94 (0.04) 25.58 (1.54)

Table 7.1.: Mean and standard deviation (inside parenthesis) of percentage validation er-
ror over 5 sample of experiments for the first category of problems (unscaled
hyperparameter space). The optimization tool with minimum mean validation
error is shown in bold.

local minimums [30]. Similarly, there can be many local minimums for validation error
with respect to the hyperparameters too. SNOWPAC being a trust-region based optimiza-
tion method, gets stuck to one of the local minimums. However, Spearmint being based
on Bayesian optimization method is designed to find a global minimum. This can explain
the reason why Spearmint performs better for 19-CNN setup. But, the main disadvantage
of Spearmint is high non-evaluation time as compared to other methods. We will explain
this point later in the sub-section 7.2.3, using Table 7.4. TPE and SMAC are also based on
Bayesian optimization but the algorithm is modified by including a tree-structure to en-
sure fast evaluation of the trial points. This makes them faster (lower non-evaluation time)
as compared to Spearmint (see Table 7.4) and can be used specifically when dimension of
the design space is high. However, this comes with a cost of not yielding the most opti-
mum point. This behavior was also observed in previous Chapter 6 while discussing the
results of performance profile graphs.

Figure 7.3 plots the average validation accuracy against the number of function evalua-
tions. The plots of individual trials are in Appendix D. Since our target is to minimize the
validation error (same as minimizing the negative of validation accuracy), smaller values
represents better performance of the given optimization tool. We can observe that SNOW-
PAC performs better than TPE, SMAC and HORD in all the four tests. For the 6-MLP
problem and the 8-CNN problem it performs better than Spearmint and HORD-ISP (see
Figure 7.3(a), 7.3(b)). For the 15-CNN problem, performance is comparable to Spearmint
and HORD-ISP (see Figure 7.3(c)). But for 19-CNN, Spearmint performs best followed
by HORD-ISP and then SNOWPAC (see Figure 7.3(d)). As discussed earlier, SNOWPAC
might get stuck in local minimum which contributes to poor performance for the 19-CNN
problem. This aligns with the discussion done in the previous paragraph.

Figure 7.4 shows the statistical distribution of the evaluation points. A good optimizer
should evaluate more points near the optimum value. We observe that, the distribution
widens as number of hyperparameters to be optimized increases. This is because more
points will be needed to build the surrogate as dimension is increased and those initial
points should be more evenly distributed across the hyperparameter space. We can ob-
serve that Spearmint and SNOWPAC show a good distribution of the evaluation points.

Table 7.2 shows the final trust-region dimension in for SNOWPAC after 200 function
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(a) 6-MLP (b) 8-CNN

(c) 15-CNN (d) 19-CNN

Figure 7.3.: Average percentage validation error vs number of function evaluations for all
the setups in unscaled hyperparameter space(first category).

6-MLP 8-CNN 15-CNN 19-CNN
Category 1 7.3× 10−5 6.2× 10−4 7.8× 10−2 3.95
Category 2 1.2× 10−5 1.2× 10−4 4.2× 10−2 6.5× 10−2

Table 7.2.: Final half box-dimension for SNOWPAC after 200 function evaluations.
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(a) 6-MLP (b) 8-CNN

(c) 15-CNN (d) 19-CNN

Figure 7.4.: Box plot distribution of evaluation points for neural network hyperparameter
optimization on unscaled setup.

evaluations. As shown in Chapter 2, smaller the trust-region better will be the accuracy
of the surrogate model. After 200 function evaluations (complete optimization) the mag-
nitude of maximum trust-region dimension for the 19-CNN problem is 3.95 (see first row
and last column of Table 7.2). Let us consider hyperparameters like learning rate, weight
decay, dropout, etc. whose range is much smaller than the maximum trust-region dimen-
sion. This means that the box-dimension for such hyperparameters do not change during
the course of optimization. In other words, the trust-region covers the whole design space
along these hyperparameters. Therefore, we have accuracy of the model near the optimum
point as compared to other cases when the trust-region is much smaller (see Table 7.2). One
of the ways to address this problem is to decrease the trust-region shrinking factor(γ) to
a smaller value so that over 200 function evaluation the trust-region dimension goes to a
smaller value. Another way to handle this issue is to design the optimization problem in
a way that the range for all the hyperparameters are of comparable magnitude. We can do
that by scaling the hyperparameters as discussed in the next subsection.
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7.2.2. Second Category (Scaled Hyperparameter Space)

In this subsection, we discuss the results in the scaled hyperparameter space. In the first
category of problem, the range of certain hyperparameters were very large as compared
to others. For instance in 15-CNN unscaled problem, range of number of hidden nodes
in first fully connected layer is [100, 400]. Whereas the range of weight decay is [0.0, 0.01].
The range of weight decay is approximately 10000 times smaller than that of hidden nodes
number. As discussed in the last paragraph of the subsection 7.2.1, this leads to the in-
accurate model along certain hyperparameters. The second reason for scaling the hyper-
parameters is to ensure that percentage validation error does not change abruptly with
a small modification in the value of certain parameters. For example, let us consider the
learning rate where a small change from 0.1 to 0.01 can cause a big change in the validation
accuracy. On the other hand, changing the number of neurons by a small integer generally
does not have a significant effect on the output. In such scenarios, the surrogate will not
be accurate because we need more points to build a good surrogate model. Therefore, it
makes sense to keep the learning rate in the logarithmic scale (log10). Moreover, we keep
the number of neurons, depth of convolution layer and mini-batch size in power of two
to make best use of GPU resources. We summarize the scaling factors, range and starting
points for all the setups in Table C.2, C.4, C.6 and C.8.

Table 7.3 shows the mean and the standard deviation of percentage validation error over
five experiments as described in Section 7.1 for the second category. On comparison of the
results obtained from the first category (see Table 7.1), we observe that the validation error
obtained by all the optimizers is better in the first category (unscaled parameters) than
in the second category (scaled parameters) for all the setups except the 6-MLP problem.
In the second category the maximum number of training epoch is 50 whereas it is 20 in
the first category. This explains why the second category outperforms the first one for
the 6-MLP problem. To understand the reason behind the better performance of the first
category in all other setups, we need to look into the scaling of the integer parameters. All
these parameters are in the power of two. This causes a big jump in the actual values. For
example, the values of 2λ changes from 256 to 512 when λ increase from 8 to 9. This ignores
the possible integer values in the range (256, 512). The function minimum can lie in those
ignored values. This is the reason why the second category under-performs as compared
to the first one.

We can observe from Table 7.3 and Figure 7.5 that SNOWPAC find hyperparameters
with the leat validation error for all the setups except in 8-CNN. For the 8-CNN problem
too the difference is very small. Unlike the first category, SNOWPAC even outperforms
in the 19-CNN problem. When we scaled the integer hyperparameters, we decreased the
number of values that it can have. This removes a lot of local minimums. Moreover, the
dimension of trust-region after 200 function evaluations is 6.5× 10−2 (see second row and
fourth column of Table 7.2). This means that more accurate surrogate is built around the
optimum point. This explains the reason why SNOWPAC performs better than other tools
in the scaled hyperparameter space.
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MNIST MNIST MNIST CIFAR-10
6-MLP 8-CNN 15-CNN 19-CNN

SNOWPAC 1.38 (0.03) 0.87 (0.08) 0.92 (0.13) 22.83 (1.27)
HORD 1.45 (0.03) 0.89 (0.05) 1.1 (0.14) 23.41 (0.73)

HORD-ISP 1.45 (0.05) 1.01 (0.06) 1.35 (0.36) 24 (0.26)
Spearmint 1.44 (0.04) 0.85 (0.07) 1.03 (0.06) 23.85 (0.78)

TPE 1.58 (0.02) 1.11 (0.04) 1.58 (0.09) 26.4 (0.38)
SMAC 1.51 (0.05) 0.92 (0.02) 1.35 (0.12) 24.06 (0.92)

Table 7.3.: Mean and standard deviation (inside parenthesis) of percentage validation er-
ror over 5 sample of experiments for the second category of problems (scaled
hyperparameter space). The optimization tool with minimum mean validation
error is shown in bold.

(a) 6-MLP (b) 8-CNN

(c) 15-CNN (d) 19-CNN

Figure 7.5.: Average percentage validation error vs number of function evaluations for all
the setups in scaled hyperparameter space (second category).
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7.2.3. Non-evaluation Time

In this section, we compare the time taken by various optimizers. The total time taken by
black-box function evaluation (neural network training) depends upon the value of hyper-
parameters. For instance, more neurons in a layer increases the number of weights thereby
increasing the training time. So, including black-box function evaluation time might bias
the comparison. Therefore, we subtract the black-box function evaluation time from the
total time. Then we divide the left over time by total number of function evaluation to
obtain the mean time per step taken by optimization tool. For further discussions we refer
this quantity as the non-evaluation time.

Table 7.4 shows the mean of non-evaluation time (in seconds) per optimization step
taken by each optimizer. We observe that the non-evaluation time increases with increas-
ing number of hyperparameters to be optimized. SNOWPAC takes least time for 6-MLP
and 8-CNN problem. However, non-evaluation time taken increases by a big margin when
we optimize 15-CNN and 19-CNN problem. This can be accounted by the fact that, mixed
integer SNOWPAC uses branch and bound algorithm. As dimension of the problem in-
creases, the tree depth might increase and one needs to solve more local optimization prob-
lems. Therefore, more time will be taken. However, we cannot explain this behavior in the
term of algorithm complexity because branch and bound is aNP-hard optimization algo-
rithm.

MNIST MNIST MNIST CIFAR-10
6-MLP 8-CNN 15-CNN 19-CNN

SNOWPAC 0.016 (0.07) 0.062 (0.08) 0.454 (0.98) 0.57 (0.12)
HORD 0.328 (1.36) 0.363 (0.45) 0.410 (0.87) 0.433(0.08)

HORD-ISP 0.332 (1.45) 0.398 (0.49) 0.411 (1.03) 0.420 (0.11)
Spearmint 136.299 (86.88) 143.306 (62.71) 303.169 (85.94) 350.8 (28.77)

TPE 0.039 (0.15) 0.089 (0.12) 0.154 (0.39) 0.175 (0.04)
SMAC 1.47 (6.75) 2.044 (2.75) 3.216 (8.48) 4.848 (1.11)

Table 7.4.: Mean of non-evaluation time(in seconds) per optimization step taken by each
optimization tool for optimizing hyperparameters. Mean percentage of non-
evaluation time with respect to total optimization time is shown inside paren-
thesis. Entry with least non-evaluation time for a given optimization setup is
depicted in bold.

We observe that amongst all the algorithms, Spearmint takes the maximum amount of
non-evaluation time (see fourth row of Table 7.4). For the 6-MLP problem Spearmint is ap-
proximately 8500 times slower than SNOWPAC. The slow speed of Spearmint is its main
disadvantage. Spearmint is based on bayesian optimization, which involves solving a lin-
ear system of equations to evaluate the next node. This method builds a global gaussian
process surrogate. As the number of evaluation points increases, the matrix of the lin-
ear system to be solved also gets bigger. This is the reason why Spearmint has a large
non-evaluation time. SMAC and TPE are also based in bayesian optimization but they are
modified with addition of tree algorithm to increase the speed specially for the high di-
mensional problems. SNOWPAC, HORD and HORD-ISP are all based on the trust-region
optimization. In such methods, we only optimize for a small local region with limited
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Figure 7.6.: Percentage mean validation error (Rb0) vs number of function evaluations for
stochastic 8-CNN problem over sample size of N = 100. The mean robustness
measure (µ) is represented by blue solid line. The lower specification line (µ−
6σ) and the upper specification limit (µ + 6σ) is represented by red and green
dotted line respectively.

number of points. So, the linear system of equations does not get very big, causing a
smaller non-evaluation time as compared to Spearmint (see Table 7.4).

Table 7.4 also shows the mean percentage of the non-evaluation time with respect to
the total time (term inside the parenthesis). We want the percentage to be as small as
possible. Spearmint consumes the highest percentage of the non-evaluation time. One
must use Spearmint only when black-box evaluation time is very large. In that way, non-
evaluation time will cover only a small percentage of total time, and the disadvantage gets
hidden in the grand scheme. For example, black-box evaluation time for 15-CNN problem
set is small as compared to 19-CNN. Therefore Spearmint takes 85.94% of the total time.
However, it takes 28.77% of total time for 19-CNN. This makes Spearmint more useful for
19-CNN case than 15-CNN one. So, we conclude that for our given problem set it is not
suggested to use Spearmint because the good performance with regard to the accuracy is
undermined by high non-evaluation time.

7.2.4. Stochastic Optimization

In the discussion till now, we manually fixed the seed for the weight initialization of the
neural network. This ensures same validation accuracy every time we train the network.
With reference to the optimizer, this ensures that the black-box is deterministic. If we keep
the seed random, then the black-box becomes stochastic. In this sub-section, we present
and discuss the results of stochastic hyperparameter optimization.

In this section, we only consider the 8-CNN problem of the second category. We opti-
mize the expected value of the sample (Rb0). The robustness measure is calculated over a
sample size N = 100. We adapt the hyperparameters of the gaussian process after 10th

and 50th black-box evaluation (GP adaption step).
Figure 7.6 shows the evolution of the percentage mean validation error and the noise
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Figure 7.7.: Trust region dimension vs number of function evaluations for stochastic 8-
CNN problem over sample size of N = 100.

against the number of function evaluations for the stochastic 8-CNN problem. After 200
black-box evaluations, we obtain the set of hyperparameters that yield expected error of
1.48 %. From the table 7.3, we can observe that the mean validation error for the deter-
ministic case is 0.75. We obtain higher mean validation error from the stochastic optimiza-
tion when compared to the deterministic one. This is because in the stochastic cases we
are trying to optimize the mean of validation error over all the random seeds whereas in
deterministic cases we optimize for a particular seed. The given set of hyperparameters
might perform well for a particular random seed but may not be the optimum for another
seed.

We can also see from the Figure 7.6 that the noise of the robustness measure decreases
with increase in the number of function evaluations. This can explained using equation
3.13. As we evaluate more points around optimum point, the standard deviation of gaus-
sian process surrogate around the optimum point decreases. As the standard deviation
decreases, more weight is given to the gaussian process surrogate. This in turn decreases
the noise of the robustness measure (see equation 3.12).

We also observe that the mean validation error falls to 1.1% around 80th iteration and
then rises up. As mentioned in Section 3.2.2, the robustness measure is calculated as a
weighted linear combination of sample robustness measure and the value from the gaus-
sian process surrogate (see equation 3.12). As discussed in previous paragraph, the weight
of the gaussian process in robustness measure increases with the increase in the number of
function evaluations. We observe that the value of the gaussian process is lower than the
sample robustness measure. The value of gaussian process is causing the final robustness
measure to increase.

Figure 7.7, shows the trust region dimension with respect to the number of function
evaluations. We observe that the final trust-region dimension after 200 function evalu-
ations for the stochastic optimization is 0.122. From table 7.2, we observe that the final
radius for the deterministic 8-CNN problem (second category) is 1.2× 10−4. As discussed
in Section 3.2.3, lower bound of the trust region is governed by the noise. We have a finite
non-zero noise which limits the trust-region dimension from falling below a certain value
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governed by the equation 3.16. So, the final trust-region dimension from the stochastic
case is higher than that of the deterministic case.
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8. Conclusion and Future Works

In this chapter, we provide the concluding remarks to this thesis. Firstly, we discuss the
major outcomes of this thesis in Section 8.1. We also provide an overview about the perfor-
mance of mixed integer SNOWPAC benchmarked against some of the existing optimiza-
tion tools. In Section 8.2, we provide the possible future works that can be done over this
topic.

8.1. Outcomes

In this thesis, we gave a brief overview of SNOWPAC. We were able to modify SNOWPAC
to solve the mixed integer problems. Then we introduced the problem of neural network
hyperparameter optimization and provided an overview of some existing methods to op-
timize the hyperparameters. Then, we compared the performance of SNOWPAC against
some of the existing optimization tools. SNOWPAC showed the best performance profil-
ing graph amongst all for both deterministic and stochastic box-constrained mixed integer
problems.

Thereafter, we tested performance of SNOWPAC for deterministic neural network hy-
perparameter optimization against exiting methods. We conducted various sets of ex-
periments and compared the validation error and non-evaluation time. We found out
that, SNOWPAC found least mean validation error in four out of eight problems (50%
of cases) (refer Table 7.1 and 7.3). HORD and HORD-ISP found hyperparameters with
slightly higher validation error. All these three mentioned methods are based on the trust-
region derivative free optimization method. The algorithm is designed to converge to a
local minimum. However, there can be many local minimums for hyperparameter opti-
mization problem. This is why aforementioned methods did not find the most optimal set
of hyperparameters in some scenarios.

Bayesian optimization method has widely been used to find the optimal value of hyper-
parameters because it is designed to find the global minimum. So, we also included three
bayesian optimization tools, namely Spearmint, TPE and SMAC. Spearmint finds better
optimum point than SNOWPAC in just two out of eight setups (see Table 7.1 and 7.3).
Moreover, it has higher non-evaluation time too (see Table 7.4). When compared to SNOW-
PAC, non-evaluation time of Spearmint is approximately 8500 times greater. Therefore, it
must be used only when the black-box evaluation is computationally very expensive, so
that percentage of the non-evaluation time is smallest (see the values inside parenthesis of
Table 7.4). TPE and SMAC are bayesian optimization methods modified to make it faster.
However, SNOWPAC performs better than both TPE and SMAC in terms of obtaining
more optimal set of hyperparameters.

We also carried out stochastic hyperparameter optimization. We considered the ex-
pected value of the validation accuracy as the robustness measure to be optimized. But
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the best mean validation error was higher than that of deterministic case because a given
set of hyperparameter might yield low error for some random seed but higher for others.
We also observe less noise with increase in the number of function evaluations because
of the gradual improvement in the gaussian process. The trust-region dimension for the
stochastic case is higher than the deterministic case because of the lower bound caused
due to the noise (see equation 3.16).

We need to manually provide certain parameters to SNOWPAC like initial starting point,
beginning trust-region dimension, etc. The final performance depends upon these values
and must be chosen wisely. If wrongly chosen this can lead to a poor result. For example,
if the starting trust-region dimension is very small as compared to the domain and the
function is non-monotonic then SNOWPAC will not explore the whole domain and may
not converge to a good minimum. However, this can also be used to control the algorithm
by preventing it to explore regions where the user knows that there cannot be any optimum
points. Therefore, these parameters must be set carefully.

8.2. Future Works

As explained in last paragraph of subsection 7.2.1, the range of certain hyperparameters af-
fects the quality of the surrogate model. In future we can try and improve this by indepen-
dent initialization and modification of the box-dimension along every design parameter.
We have used the Branch and Bound algorithm for the surrogate optimization. There are
more efficient algorithms to solve the mixed integer quadratic optimization problem. We
can implement those algorithms in our code. This can further improve the non-evaluation
time. We can run more rigorous benchmarks on existing code to validate the performance
of the mixed integer SNOWPAC. Moreover, we did not check the behavior for mixed inte-
ger SNOWPAC for mixed integer constrained problems. In future work, we can do these
tests better validation of code.

All the experimental setups in Chapter 7 were box-constrained. In future, we can de-
sign a constrained hyperparameter optimization. For example, we can add all the three
dimensions of the convolution kernel and the kernel-stride in the list of hyperparameters
to be optimized. Then we can add a constraint on the stride that it cannot exceed the width
and the height of the kernel. This convert the setup into a constrained optimization prob-
lem. HORD and HORD-ISP are not designed to solve constrained optimization problems
giving SNOWPAC an edge over other methods.

Moreover, we can use the results obtained from the stochastic optimization as the start-
ing point for the deterministic cases. This will provide a good a priori information to the
deterministic solver and we expect to find better results.
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A. Benchmark Optimizations Problems

A.1. Box-Constrained Problems

1. Sphere Problem [110]: This is a simple convex problem. We use this problem with
various number of design parameters. It is turned mixed-integer by imposing integer
constraint on the first half number of design parameters. Mathematically, it is stated
as:

min
x

f(x) =
n∑
i=1

x2
i ,

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., n

xj ∈ Z, j = 1, ...,
n

2

xk ∈ R, k =
n

2
+ 1, ..., n.

(A.1)

This optimization problem has one global minimum at x∗ = (0, ..., 0) with f(x∗) = 0.

2. Ackley’s Function [3, 105, 110]: This is a multi-modal function. In this thesis, we have
used 8-dimensional Ackley’s Function with 3 integer design parameters and 5 real
design parameters. Mathematically, it is stated as:

min
x

f(x) = −20exp

−1

5

Ã
1

n

n∑
i=1

x2
i

− exp [ 1

n

n∑
i=1

cos(2πxi)

]
+ 20 + e

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., 8

xj ∈ Z, j = 1, 2, 3

xk ∈ R, k = 4, ..., n.

(A.2)

where n = 8. This optimization problem has many local minimums, with global
minimum at x∗ = (0, ..., 0) with f(x∗) = 0.

3. Weighted De Jong’s Function [110]: This is a uni-modal functions. It is also called
hyper-ellipsoid function. Weighting of axis, makes this optimization problem a little
difficult to solve. We use 5-dimensional De Jong’s function and turn it into mixed-
integer by imposing integer constraint on the first three design parameters. Mathe-
matically, it is stated as:

min
x

f(x) =
n∑
i=1

ix2
i ,

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., n

xj ∈ Z, j = 1, 2, 3

xk ∈ R, k = 4, , , , n.

(A.3)
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A. Benchmark Optimizations Problems

where n = 5. This optimization problem has one global minimum at x∗ = (0, ..., 0)
with f(x∗) = 0.

4. Bohachevsky Problem 1 (BF1) [3, 22]: This is a multi-modal function. In this thesis,
we have imposed integer constraint on first variable. Mathematically, it is stated as:

min
x

f(x) = x2
i + 2x2

2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7

s.t. − 7 ≤ xi ≤ 7, i = 1, 2

x1 ∈ Z x2 ∈ R.

(A.4)

This optimization problem has many local minimums, with global minimum at x∗ =
(0, 0) with f(x∗) = 0.

5. Bohachevsky Problem 2 (BF2) [3, 22]: This is a multi-modal function. In this thesis,
we have imposed integer constraint on first variable. Mathematically, it is stated as:

min
x

f(x) = x2
i + 2x2

2 − 0.3cos(3πx1)cos(4πx2) + 0.3

s.t. − 7 ≤ xi ≤ 7, i = 1, 2

x1 ∈ Z x2 ∈ R.

(A.5)

This optimization problem has many local minimums, with global minimum at x∗ =
(0, 0) with f(x∗) = 0.

6. Griewank’s Function [110]: This is a multi-modal function. In this thesis, we have
used 10-dimensional Griewank’s Function with 5 integer design parameters and 5
real design parameters. Mathematically, it is stated as:

min
x

f(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

Ç
xi√
i

å
+ 1

s.t. − 7 ≤ xi ≤ 7, i = 1, ..., 8

xj ∈ Z, j = 1, , .., 5

xk ∈ R, k = 4, ..., 8.

(A.6)

where n = 10. This optimization problem has many local minimums, with global
minimum at x∗ = (0, ..., 0) with f(x∗) = 0.
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B. Optimization Benchmark Comparison
Graphs

(a) εf = 0.1 (b) εf = 0.01

Figure B.1.: Profiling results from 2-dimensional sphere function [110] nc = 1, nd = 1 .

(a) εf = 0.1 (b) εf = 0.01

Figure B.2.: Profiling results from 4-dimensional sphere function [110] nc = 2, nd = 2 .
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B. Optimization Benchmark Comparison Graphs

(a) εf = 0.1 (b) εf = 0.01

Figure B.3.: Profiling results from 6-dimensional sphere function [110] nc = 3, nd = 3 .

(a) εf = 0.1 (b) εf = 0.01

Figure B.4.: Profiling results from 8-dimensional sphere function [110] nc = 4, nd = 4 .

(a) εf = 0.1 (b) εf = 0.01

Figure B.5.: Profiling results from 10-dimensional sphere function [110] nc = 5, nd = 5 .
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(a) εf = 0.1 (b) εf = 0.01

Figure B.6.: Overall profiling result from convex function.

(a) εf = 0.1 (b) εf = 0.01

Figure B.7.: Profiling results from Ackley’s Function.

(a) εf = 0.1 (b) εf = 0.01

Figure B.8.: Profiling results from Weighted De-jong Function [3].
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B. Optimization Benchmark Comparison Graphs

(a) εf = 0.1 (b) εf = 0.01

Figure B.9.: Profiling results from Bohachevsky Problem 1 (BF1) [3, 22].

(a) εf = 0.1 (b) εf = 0.01

Figure B.10.: Profiling results from Bohachevsky Problem 2 (BF2) [3, 22].

(a) εf = 0.1 (b) εf = 0.01

Figure B.11.: Profiling results from Griewank Function [3].
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(a) εf = 0.1 (b) εf = 0.01

Figure B.12.: Overall profiling result from Multi-modal function.

(a) εf = 0.1 (b) εf = 0.01

Figure B.13.: Overall profiling result for box-constrained problems.
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B. Optimization Benchmark Comparison Graphs

(a) Ackley’s Function (b) Weighted de-jong’s Function

(c) Bohachevsky Problem 1 (BF1) (d) Bohachevsky Problem 2 (BF2)

(e) Griewank Problem

Figure B.14.: Box plot distribution of evaluation points for multi -modal benchmarks.
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(a) 2-dimensional sphere function nc = 1, nd = 1 (b) 4-dimensional sphere function nc = 2, nd = 2

(c) 6-dimensional sphere function nc = 3, nd = 3 (d) 8-dimensional sphere function nc = 4, nd = 4

(e) 10-dimensional sphere function nc = 5, nd = 5

Figure B.15.: Box plot distribution of evaluation points for multi -modal benchmarks.
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B. Optimization Benchmark Comparison Graphs

(a) εf = 0.1 (b) εf = 0.01

Figure B.16.: Profiling results from 2-dimensional stochastic sphere function nc = 1, nd = 1
.

(a) εf = 0.1 (b) εf = 0.01

Figure B.17.: Profiling results from 4-dimensional stochastic sphere function nc = 2, nd = 2
.

(a) εf = 0.1 (b) εf = 0.01

Figure B.18.: Profiling results from 6-dimensional stochastic sphere function nc = 3, nd = 3
.
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(a) εf = 0.1 (b) εf = 0.01

Figure B.19.: Profiling results from 8-dimensional sphere stochastic function nc = 4, nd = 4
.

(a) εf = 0.1 (b) εf = 0.01

Figure B.20.: Profiling results from 10-dimensional stochastic sphere function nc = 5, nd =
5 .

(a) εf = 0.1 (b) εf = 0.01

Figure B.21.: Overall profiling result for stochastic sphere functions.
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B. Optimization Benchmark Comparison Graphs

(a) 2-dimensional sphere function nd = 1, nc = 1 (b) 4-dimensional sphere function nd = 2, nc = 2

(c) 6-dimensional sphere function nd = 3, nc = 3 (d) 8-dimensional sphere function nd = 4, nc = 4

(e) 10-dimensional sphere function nd = 5, nc = 5

Figure B.22.: Box plot distribution of evaluation points for mixed-integer stochastic opti-
mization done on stochastic sphere function.
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C. Hyperparameter List

Hyperparameter(λ) Type Range Initial Point
Number of training Epochs Integer [8 , 20] 10
Number of hidden nodes Integer [50 - 200] 50
Learning rate of SGD Continuous [0.005 , 0.30] 0.1
Momentum of SGD Continuous [0.6 , 0.999] 0.9
Mean of Gaussian initialization Continuous [0.00 , 0.01] 0.00
Mean of Gaussian initialization Continuous [0.00 , 0.50] 0.01

Table C.1.: List of hyperparameters for first category of 6-MLP problems with range and
initial point.

Hyperparameter(λ) Type Scaling Range Initial Point
Number of training Integer 5λ [1 , 10] 2
Epochs
Number of hidden Integer 2λ [4 , 10] 5
nodes
Learning rate of SGD Continuous 10λ [-3 , log100.2] -2
Momentum of SGD Continuous λ/10 [6 , 9] 8
Mean of Gaussian Continuous 10λ [-5 , -2] -4
initialization
Mean of Gaussian Continuous 10λ [-5 , -2] -4
initialization

Table C.2.: List of hyperparameters for second category of 6-MLP problems with range
and initial point.
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C. Hyperparameter List

Hyperparameter(λ) Type Range Initial Point
Depth of first Conv layer Integer [16 , 128] 32
Depth of second Conv layer Integer [16 , 128] 64
Number of hidden nodes Integer [100 , 400] 200
in first FC layer
Number of hidden nodes Integer [100 , 400] 256
in second FC layer
Learning rate of SGD Continuous [0.005 , 0.30] 0.1
Momentum of SGD Continuous [0.6 , 0.999] 0.9
Weight decay rate Continuous [0.00 , 0.01] 0.0005
Learning rate decay Continuous [0.001 , 1.00] 0.0002

Table C.3.: List of hyperparameters for first category of 8-CNN problems with range and
initial point.

Hyperparameter(λ) Type Scaling Range Initial Point
Depth of first Conv layer Integer 2λ [1 , 7] 2
Depth of second Conv layer Integer 2λ [1 , 7] 2
Number of hidden nodes Integer 2λ [1 , 10] 5
in first FC layer
Number of hidden nodes Integer 2λ [1 , 10] 5
in second FC layer
Learning rate of SGD Continuous 10λ [-3 , log100.3] -1
Momentum of SGD Continuous λ/10 [6 , 9] 8
Weight decay rate Continuous 10λ [-5 , -2] -4
Learning rate decay Continuous 10λ [-5 , -2] -4

Table C.4.: List of hyperparameters for second category of 8-CNN problems with range
and initial point.
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Hyperparameter(λ) Type Range Initial Point
Mini-batch size Integer [32 , 512] 128
Depth of first Conv layer Integer [16 , 128] 32
Depth of second Conv layer Integer [16 , 128] 64
Number of hidden nodes Integer [100 , 400] 200
in first FC layer
Number of hidden nodes Integer [100 , 400] 256
in second FC layer
Learning rate of SGD Continuous [0.005 , 0.30] 0.1
Momentum of SGD Continuous [0.6 , 0.999] 0.9
Weight decay rate Continuous [0.00 , 0.01] 0.0005
Learning rate decay Continuous [0.001 , 1.00] 0.0002
α leaky ReLU in first FC Layer Continuous [0.00 , 0.50] 0.01
α leaky ReLU in second FC Layer Continuous [0.00 , 0.50] 0.01
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for first FC layer
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for second FC layer
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for first Conv layer
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for second Conv layer

Table C.5.: List of hyperparameters for first category of 15-CNN problems with range and
initial point.
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C. Hyperparameter List

Hyperparameter(λ) Type Scaling Range Initial Point
Mini-batch size Integer 2λ [4 , 8] 5
Depth of first Conv layer Integer 2λ [1 , 7] 2
Depth of second Conv layer Integer 2λ [1 , 7] 2
Number of hidden nodes Integer 2λ [1 , 10] 5
in first FC layer
Number of hidden nodes Integer 2λ [1 , 10] 5
in second FC layer
Learning rate of SGD Continuous 10λ [-3 , log100.3] -1
Momentum of SGD Continuous λ/10 [6 , 9] 8
Weight decay rate Continuous 10λ [-5 , -2] -4
Learning rate decay Continuous 10λ [-5 , -2] -4
α leaky ReLU in first FC Layer Continuous λ/10 [0 , 5] 0.1
α leaky ReLU in second FC Layer Continuous λ/10 [0 , 5] 0.1
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first Conv layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second Conv layer

Table C.6.: List of hyperparameters for second category of 15-CNN problems with range
and initial point.
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Hyperparameter(λ) Type Range Initial Point
Mini-batch size Integer [32 , 512] 128
Depth of first Conv layer Integer [16 , 128] 32
Depth of second Conv layer Integer [16 , 128] 64
Number of hidden nodes Integer [100 , 400] 200
in first FC layer
Number of hidden nodes Integer [100 , 400] 256
in second FC layer
Learning rate of SGD Continuous [0.005 , 0.30] 0.1
Momentum of SGD Continuous [0.6 , 0.999] 0.9
Weight decay rate Continuous [0.00 , 0.01] 0.0005
Learning rate decay Continuous [0.001 , 1.00] 0.0002
α leaky ReLU in first FC Layer Continuous [0.00 , 0.50] 0.01
α leaky ReLU in second FC Layer Continuous [0.00 , 0.50] 0.01
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for first FC layer
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for second FC layer
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for first Conv layer
STD of Gaussian initialization Continuous [0.00 , 0.50] 0.01
for second Conv layer
Dropout rate for first FC layer Continuous [0.00 , 0.80] 0.5
Dropout rate for second FC layer Continuous [0.00 , 0.80] 0.5
Dropout rate for first Conv layer Continuous [0.00 , 0.80] 0.5
Dropout rate for second Conv layer Continuous [0.00 , 0.80] 0.5

Table C.7.: List of hyperparameters for first category of 19-CNN problems with range and
initial point.
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C. Hyperparameter List

Hyperparameter(λ) Type Scaling Range Initial Point
Mini-batch size Integer 2λ [4 , 8] 5
Depth of first Conv layer Integer 2λ [1 , 7] 2
Depth of second Conv layer Integer 2λ [1 , 7] 2
Number of hidden nodes Integer 2λ [1 , 10] 5
in first FC layer
Number of hidden nodes Integer 2λ [1 , 10] 5
in second FC layer
Learning rate of SGD Continuous 10λ [-3 , log100.3] -1
Momentum of SGD Continuous λ/10 [6 , 9] 8
Weight decay rate Continuous 10λ [-5 , -2] -4
Learning rate decay Continuous 10λ [-5 , -2] -4
α leaky ReLU in first FC Layer Continuous λ/10 [0 , 5] 0.1
α leaky ReLU in second FC Layer Continuous λ/10 [0 , 5] 0.1
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second FC layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for first Conv layer
STD of Gaussian initialization Continuous λ/10 [0 , 5] 0.1
for second Conv layer
Dropout rate for first FC layer Continuous λ [0.00 , 0.80] 0.5
Dropout rate for second FC layer Continuous λ [0.00 , 0.80] 0.5
Dropout rate for first Conv layer Continuous λ [0.00 , 0.80] 0.5
Dropout rate for second Conv layer Continuous λ [0.00 , 0.80] 0.5

Table C.8.: List of hyperparameters for second category of 19-CNN problems with range
and initial point.

6-MLP 8-CNN 15-CNN 19-CNN
Category 1 70 200 200 200
Category 2 5 5 5 5

Table C.9.: Starting half box-dimension for SNOWPAC for all the hyperparameter opti-
mization problems.
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D. Hyperparameter Optimization Results

(a) 6-MLP (b) 8-CNN

(c) 15-CNN (d) 19-CNN

Figure D.1.: Box plot distribution of evaluation points for neural network hyperparmater
optimization on unscaled setup.
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D. Hyperparameter Optimization Results

(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.2.: Percentage validation error vs number of function evaluations for 6 hyperpar-
mater optimization of multi-layered perceptron trained on MNIST (no scaling
of hyperparameters).
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(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.3.: Percentage validation error vs number of function evaluations for 8 hyperpar-
mater optimization of convolutional neural network trained on MNIST (no
scaling of hyperparameters).
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D. Hyperparameter Optimization Results

(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.4.: Percentage validation error vs number of function evaluations for 15 hyper-
parmater optimization of convolutional neural network trained on MNIST (no
scaling of hyperparameters).
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(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.5.: Percentage validation error vs number of function evaluations for 19 hyper-
parmater optimization of convolutional neural network trained on CIFAR-10
(no scaling of hyperparameters).
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D. Hyperparameter Optimization Results

(a) 6-MLP (b) 8-CNN

(c) 15-CNN (d) 19-CNN

Figure D.6.: Box plot distribution of evaluation points for neural network hyperparameter
optimization on scaled setup.
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(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.7.: Percentage validation error vs number of function evaluations for 6 hyperpar-
mater optimization of multi-layered perceptron trained on MNIST with scaled
hyperparameters.
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D. Hyperparameter Optimization Results

(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.8.: Percentage validation error vs number of function evaluations for 8 hyperpar-
mater optimization of convolutional neural network trained on MNIST with
scaled hyperparameters.
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(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.9.: Percentage validation error vs number of function evaluations for 15 hyper-
parmater optimization of convolutional neural network trained on MNIST
with scaled hyperparameters.
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D. Hyperparameter Optimization Results

(a) First setup (b) Second setup

(c) Third Setup (d) Fourth Setup

(e) Fifth Setup (f) Average Result

Figure D.10.: Percentage validation error vs number of function evaluations for 19 hyper-
parmater optimization of convolutional neural network trained on CIFAR-10
with scaled hyperparameters.
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[44] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with
performance profiles. Mathematical programming, 91(2):201–213, 2002.

[45] Oliver Exler and Klaus Schittkowski. A trust region sqp algorithm for mixed-integer
nonlinear programming. Optimization Letters, 1(3):269–280, 2007.

[46] Richard Fitzpatrick. Euclid’s elements of geometry. 2007.

[47] R Fletcher. Second order corrections for non-differentiable optimization. In Numeri-
cal analysis, pages 85–114. Springer, 1982.

[48] Christodoulos A Floudas. Nonlinear and mixed-integer optimization: fundamentals and
applications. Oxford University Press, 1995.

[49] Yarin Gal and Richard Turner. Improving the gaussian process sparse spectrum ap-
proximation by representing uncertainty in frequency inputs. In International Con-
ference on Machine Learning, pages 655–664, 2015.

[50] Carl Friedrich Gauss. Works volume ii. Society of the Sciences, G ”o ttingen, pages =
219-222, year = 1863.

[51] Marc G Genton. Classes of kernels for machine learning: a statistics perspective.
Journal of machine learning research, 2(Dec):299–312, 2001.

[52] Torkel Glad and Allen Goldstein. Optimization of functions whose values are subject
to small errors. BIT Numerical Mathematics, 17(2):160–169, 1977.

[53] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–256, 2010.

[54] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[55] Charles W Groetsch. Inverse problems: activities for undergraduates, volume 12. Cam-
bridge University Press, 1999.

[56] Ignacio E Grossmann and Zdravko Kravanja. Mixed-integer nonlinear program-
ming: A survey of algorithms and applications. In Large-scale optimization with appli-
cations, pages 73–100. Springer, 1997.

[57] Omprakash K Gupta and A Ravindran. Branch and bound experiments in convex
nonlinear integer programming. Management science, 31(12):1533–1546, 1985.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[59] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-
based optimization for general algorithm configuration. https://github.com/
automl/SMAC3. [Online; accessed 06-Jan-2019].

102

https://github.com/automl/SMAC3
https://github.com/automl/SMAC3


Bibliography

[60] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In International Conference on
Learning and Intelligent Optimization, pages 507–523. Springer, 2011.

[61] Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Annette Shoemaker. Effi-
cient hyperparameter optimization for deep learning algorithms using deterministic
rbf surrogates. In AAAI, pages 822–829, 2017.

[62] H. Larochelle J. Snoek and R.P. Adams. Bayesian Optimization. https://github.
com/HIPS/Spearmint, 2016. [Online; accessed 20-Sep-2018].

[63] Yulei Jiang, Robert M Nishikawa, Robert A Schmidt, Charles E Metz, Maryellen L
Giger, and Kunio Doi. Improving breast cancer diagnosis with computer-aided di-
agnosis. Academic radiology, 6(1):22–33, 1999.

[64] SG Johnson. The nlopt nonlinear-optimization package [software], 2014.

[65] Aswin Kannan and Stefan M Wild. Obtaining quadratic models of noisy functions.
Preprint ANL/MCS-P1975-1111, Argonne National Laboratory, 2012.

[66] Andrej Karpathy. Cs231n convolutional neural networks for visual recognition. Neu-
ral networks, 1, 2016.

[67] AI Kibzun and YS Kan. Stochastic programming problems with probability and
quantile functions. Journal of the Operational Research Society, 48(8):849–849, 1997.

[68] Mitri Kitti. History of optimization, 2014.

[69] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research).

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[71] Pavlo Krokhmal, Michael Zabarankin, and Stan Uryasev. Modeling and optimiza-
tion of risk. In HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION
MAKING: Part II, pages 555–600. World Scientific, 2013.

[72] Sang Gyu Kwak and Jong Hae Kim. Central limit theorem: the cornerstone of mod-
ern statistics. Korean journal of anesthesiology, 70(2):144–156, 2017.

[73] Miguel Lázaro-Gredilla, Joaquin Quinonero-Candela, and Anıbal Figueiras-Vidal.
Sparse spectral sampling gaussian processes. Technical report, Technical report, Mi-
crosoft Research, 2007.
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