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”To achieve great things, two things are needed; a plan, and not quite enough time.”

-Leonard Bernstein
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Abstract

Despite the utilization of High Performance Computing (HPC) to solve high-dimensional
partial differential equations (PDEs), the extent to which these problems are solvable in a
considerable amount of time, is still restricted by the so called curse of dimensionality. One
promising method that strives to mitigate this issue is the sparse grid combination technique.
A sparse grid is a suitable approximation of the regular grid, capable of being decomposed
further into different coarse and anisotropic computational grids of lower resolutions, called
component grids. This enables dual levels of parallelism, as the component grids can be com-
puted in parallel, completely independent from each other. Subsequently the computation
on each component grid can also be subject to parallelism. However, certain time-dependent
problems, in order to fulfill their stability and convergence criteria, necessitate the combination
of component grid solution into sparse grid at regular intervals. This in turn, reintroduces the
need for global synchronization and communication. Limiting the extent of scalability of this
technique.

In this work, we introduce non-blocking/asynchronous combination techniques, where the
combination step is also carried out in parallel with other computational steps, thus striving to
eliminate the time lost, during global communication and synchronization. The credibility of
this technique has been tested out on the Advection-Diffusion problem and GENE, a gyroki-
netic simulation of plasma microturbulence in fusion devise. The ensuing speedup was found
to be 5 times of those achieved using normal combination technique.
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1. Introduction

Solving high dimensional partial differential equations (PDEs) has been one of the grand chal-
lenges of high-performance computing (HPC) [17

.

]. The challenges arise from two major at-
tribute of the problem being solved, firstly its computational complexity, and the communica-
tion complexity. Both the attributes are strongly intertwined with the nature of the problem
and the system that is used for problem solving

The computational complexity, rears it head majorly with the intervention by the curse
of dimensionality i.e exponential growth of the number of unknowns with the number of
dimensions, which instills restrictions on how fine the simulation domain of the required
problem could get. Furthermore it is required that the numerical algorithms that are used
to solve the problems are capable of efficiently exploiting the massively parallel nature of
HPCs. The problem is then made two fold by the communication complexity, raising from the
communication/synchronization requirement between individual processes. This communi-
cation/synchronization bottleneck are already known to limit the scalability of the parallel
scientific applications on today’s petascale systems [4

.

] [5

.

] [6

.

].
One promising approach to solve the high-dimensional PDEs is the sparse grid combination

technique. This is a numerical scheme where a problem are projected on different coarse and
anisotropic grids called component grids, which combine to form a sparse grid of much higher
target resolution, while closely following the solution on a regular grid. As a result, the curse
of dimensionality can be mitigated as high accuracy can be reached with significantly less
computing resources.

The combination technique, offers two levels of parallelism, as the computation on each
component grid can be carried out asynchronously and independently of each other, while the
computation on component grid can also be subject to parallelism. Although there are PDEs
problems, which require the combination to only be carried out once at the end. Certain prob-
lems impose the restriction of carrying out the combination step at regular intervals in order
to satisfy the stability and convergence criteria. This leads to the reintroduction of commu-
nication/synchronization bottleneck. Since, the computational steps on all component grids
come to a standstill, waiting for all the processes to have finished communicating their respec-
tive component grid values, combined them and updated the component grids with the new
combined value.

Implementing an Asynchronous combination technique, where the combination step occurs
in tandem with the computational step forms the main crux of this master thesis. Furthermore,
the accuracy and limitations of this method compared to a normal combination technique,
based on the results obtained from carrying out tests on Advection-Diffusion and GENE, a
gyrokinetic simulation of plasma microturbulence in fusion devise, are also discussed.

The outline of this work is as follows. Chapter 2

.

, provides an introduction to the sparse grid
combination technique, MPI: a communication protocol used by HPCs; and also into SG++
framework: An implementation of parallel combination technique, to solve time-dependent
and high-dimensional PDEs on a full supercomputer. Chapter 3

.

forms the main core of the
thesis, where the different algorithms for asynchronous combination technique is discussed,
along with the mathematical basis that justifies the approaches used. It also covers the method-
ology used to test the aforementioned algorithm. In chapter 4

.

the results of the tests carried
out on Advection-Diffusion problem and GENE are covered. It also covers the advantages
and also the limitations of asynchronous techniques that were uncovered during the testing
process.
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2. Theoretical Background

This chapter provides an comprehensive overview of relevant topics necessary for understand-
ing the algorithm. It begins with the explanation of combination technique for sparse grid - the
mathematical base for the entire project. This is followed by an overview of MPI, a communi-
cation protocol for programming parallel computers. Finally, an overview of SG++ framework
is provided, which incorporates the aforementioned topics with emphasis on its combination
step.

2.1. Combination Technique

Consider an anisotropic grid Ω~l
on bounded regular domain Ω, with mesh size h~l := (hl1 , . . . , hld) =

2−
~l in each coordinate direction t, t = 1, . . . , d. where~l = (l1, . . . , ld) ∈ Nd denotes a multi-index

level, i.e the discretization resolution. The gridpoints are then represented by,

x~l,~j := (xl1,j1 , . . . , xld,jd) (2.1)

where, xlt,jt := jt ·hlt and jt = 0, . . . , 2lt , representing the spatial position of the gridpoint. The
associated space V~l of d-linear functions for such a grid is given by

V~l := span{φ~l,~j | ≤ j ≥ 2
~l} (2.2)

spanned by the usual basis of d-dimensional piecewise d-linear hat functions.

φ~l,~j(~x) :=
d∏

t=1

φlt,jt(xt) (2.3)

where the nodal basis function is defined by

φl,j(x) =

{
1− | xhl

− j| , x ∈ [(j − 1)hl, (j + 1)hl] ∩ [0, 1]

0 , otherwise
(2.4)

2.1.1. Hierarchical subspace-splitting

Using an index set B~l
defined by,

B~l
:=

{
~j ∈ Nd

∣∣∣∣∣Jt = 1, . . . , 2lt − 1, jtodd, t = 1, . . . , d,if lt > 0

Jt = 0, 1 t = 1, . . . , d,if lt = 0

}
(2.5)

It is possible to construct hierarchical difference subspaces, W~l
such that,

W~l
= span{φ~l,~j |~j ∈ B~l

} (2.6)

which allows for definition of multilevel sub-space decomposition. Further we can write Vn as
direct sum of subspaces.

Vn :=
⊕
|~l|∞≤n

W~l
(2.7)

3



2. Theoretical Background

The basis function φ~l,~j which span W~l
are disjunct for ~l > 0 while the family of such functions

are just hierarchical basis of Vn [7

.

] [24

.

] [10

.

]. An example of construction of grid space Vn using
W~l

can be found in the following figure 2.1

.

.
We can finally, define each function f ∈ Vn as follows,

f(x) =
∑
|~l|∞≤n

∑
~j∈B~l

α~l,~j · φ~l,~j(x) =
∑
|~l|∞≤n

f~l(~x) with f~l ∈W~l
(2.8)

where α~l,~j ∈ R are the coefficients of the representation of hierarchical tensor product basis
and f~l denotes the hierarchical component functions. It is to be noticed that direct use of such
a complete grid is periled with the curse of dimensionality, as the number of basis functions
which describe a f ∈ Vn in nodal hierarchical basis is (2n + 1)d [9

.

].

Figure 2.1.: The basis functions of the hierarchical subspaces Wl of the space V3. The sparse
grid space V s

3 contains the upper triangle of spaces shown in black

2.1.2. Sparse Grids

To overcome the aforementioned shortcomings of a complete grid, the concept of sparse grid is
introduced [25

.

] [13

.

]. Here, hierarchical basis functions with a small support, and correspond-
ingly small contributions are truncated off.

Formally, the sparse grid function space V s
n ⊂ Vn is defined as

V s
n :=

⊕
|~l|≤n+d−1

W~l
(2.9)

4



2.1. Combination Technique

Which is graphically visualized in the figure 2.1

.

, where the conserved subspaces W~l
are dis-

played in black in comparison to the gray ones which are omitted.
The function representation gets modified accordingly as follows

f(x) =
∑

|~l|1≤n+d−1

∑
~j∈B~l

α~l,~j · φ~l,~j(x) =
∑

|~l|1≤n+d−1

f~l(~x) with f~l ∈W~l
(2.10)

The advantage of such a representation is evident from the comparison of degree of freedom,
which for a sparse grid is of the orderO(2nnd−1) to theO(2nd) of the full grid space; and the ap-
proximation accuracy, which is of the orderO(h2

n ·nd−1) toO(h2
n) of its full grid counterpart [3

.

].
Clearly, the decrease in degree of freedom has only a slight deterioration the accuracy, which
serves as a crucial advantage for sparse grid, helping it overcome the curse of dimensionality.

It is to be noted, the sparse grids that were constricted were from priori selection of grid-
points which is only optimal if a certain smoothness conditions are met, i.e, if the function
has a bounded second mixed derivatives [11

.

]. In case, such conditions are not met, adaptive
refinement strategies should be employed [8

.

] [22

.

] [21

.

]. Further, the sparse grid functions also
does not possess some of the properties that a full grid functions have, for instance a sparse
grid function need not be monotone[22

.

] [18

.

].

Figure 2.2.: Two-dimensional sparse grid (left) and three-dimensional sparse grid (right) of
level n = 5

2.1.3. Sparse grid combination technique

Apart, from the drawbacks mentioned in the previous section, representation of sparse grid in
directly in terms of hierarchical basis has some numerical disadvantages, for example in cases
where the stiffness matrix is not sparse making the efficient computation of matrix-vector-
product challenging in implementation. This is overcome by the so called combination tech-
nique [14

.

], which is based on multi-variate extrapolation [1

.

]. Here, the function is discretized
on a certain sequence of grids using a nodal discretization. A linear combination of these
partial functions then gives the sparse grid representation.

The function f is discretized on a certain sequence of anisotropic grids Ω~l
= Ωl1,...,1d with

uniform mesh sizes ht = 2−lt in the t-th coordinate direction. The following grids Ω~l
are

5



2. Theoretical Background

considered.
|~l|1 := l1 + . . .+ ld = n+ (d− 1)− q, q = 0, . . . d− 1, lt > 0 (2.11)

Incorporating a finite element approach with piecewise d-linear functions φ~l,~j(~x) on each
grid Ω~l

gives us the representation in the nodal basis as follows.

f~l(~x) =
2l1∑
j1=0

. . .
2ld∑
jd=0

α~l,~jφ~l,~j(~x) (2.12)

linearly combining the discrete partial functions f~l(~x) from the different grids Ω~l
according

to the previous combination formula.

f cn(~x) :=

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|~l|1=n+d−1−q

f~l(~x) (2.13)

A general combination scheme can be written as,

f cI(~x) :=
∑
~l∈I

c~lf~l(~x) (2.14)

where I is the index set that specifies the set of level vectors corresponding to the component
grids used in the scheme The solution obtained with the combination technique f cn for the
numerical treatment of partial differentiation equation is in general not the sparse grid solution
fsn [14

.

]. However, the approximation property is of the same order, provided a certain series
expansion of the error exists, as shown for model-problems in [2

.

]. Also, since there are grid
points which occur multiple times in different component grids, the total number of grid points
being computed is higher for the combination technique than on the corresponding sparse
grid. There are O(d log(h−1)d−1) component grids with O(2n)grid points each [17

.

]. However,
asymptotically the number of grid points still is significantly lower than on the corresponding
full grid.

Figure 2.3.: The classical combination technique in two dimensions with n = 4. Seven compo-
nent grids are combined to obtain a sparse grid approximation (on the grid Ωs

(4,4))
to the full grid solution on the grid Ω(4,4) .

2.1.4. Time integrated combination technique

The temporal discretization for time-dependent problems requires an application of problem
specific operator F which evolves the sparse grid by a certain time step.

fs~n,t+∆t(~x) = F
{
fs~n,t(~x)

}
(2.15)

6



2.2. MPI

For the combination technique, individual operator F~l is applied on each individual compo-
nent grid to evolve them by time step ∆t and only then combination is performed

f c~n,t+∆t(~x) =
∑
~l∈I

c~lF~l
{
P~l{f

c
~n,t(~x)}

}
(2.16)

where the operator P~l is the projection of the combined solution at the time t into the approx-
imation space V~l of the corresponding component grid.

Figure 2.4.: Combination Technique

Then the combined solution is evaluated in the sparse grid approximation space. This com-
bined solution is projected back onto the individual component grids and set as the initial
values for the computation of the next time interval. Depending on the problem, only one
combination maybe required at the end, for others, it may be required to carry out combina-
tions at regular interval in order to ensure convergence and stability of the obtained solution
[17

.

].
Problems of later case unfortunately are riddled with issue of not being sufficiently paral-

lel anymore, as the component grids cannot be computed independently, creating a need for
global synchronization at various computational points. Thus, for the large-scale simulations
where the simulation data of each component grid is distributed over thousands of processes
of an HPC system, an efficient and scalable implementation of the combination step is most
crucial for the overall performance [17

.

].

2.2. MPI

Communications in such systems are carried out using Message Passing Interface or MPI. It is
a communication protocol for programming parallel computers [16

.

]. Though not sanctioned
by any major body, it is considered to be a de-facto standard for communication among pro-
cesses that model a parallel program that run on distributed memory system. MPI’s high
performance, scalable and portable nature, makes it a dominant model in high performance
computing [23

.

]. Simply put, MPI defines the syntax and semantics of the core library routines

7



2. Theoretical Background

Communication Needs Matching Receive Communication
Mode To Start To Complete Type

Standard No Maybe Non-Local
Buffered No No Local

Synchronous No Yes Non-Local
Ready Yes Yes Non-Local

Table 2.1.: MPI Communication Modes

useful for writing message parsing program in C, C++ and Fortran.

MPI predominantly is available in two “flavours“: MPICH and Open MPI. The primary dif-
ference between both being that MPICH is the high-quality reference implementation of the
latest MPI standard [15

.

], while, Open-MPI targets the common case, both in terms of usage
and network conduits [12

.

]. Since, MPICH was used in this particular implementation, any
reference to MPI’s working or syntax may have a bias towards that particular implementa-
tion. Further, since it is not possible to incorporate all the features of MPI, only the concepts
necessary would be delved here.

2.2.1. Point-to-point communication

Sending and receiving of messages by processes is the basic MPI communication mechanism.
All communication in an MPI occurs within a communicator (MPI Comm) or a group of pro-
cesses, where each process has a unique identifier. All the processes are contained in the prede-
fined communicator MPI COMM WORLD. Each process can determine its rank and the size of
the group it belongs to. Before any communication can occur it is required that MPI is initial-
ized using MPI Init(). Point-to-point communications are the simplest communications that
involve just two processes. Any form of communication in MPI follows the primary rule that
the messages are non-overtaking, i.e if a sender sends two messages in succession to the same
destination and both match the receive then the operation receive the second message if the
first one is still pending. This requirement ensures that the message passing is deterministic.

The communications methods act predominantly in two modes, blocking and non-blocking
an overview of both can be seen in the following figure, along with a brief explanations of the
same.

Blocking Operations

An operation is said to be blocking, if the return from the procedure indicates that the user
is allowed to re-use resources specified in the call. In case of MPI Send(), it simply means
that operation is terminated only when the buffer passed to it can be reused, either because
the buffer was saved somewhere by MPI or it has been received by the destination. Similarly,
for MPI Receive() the termination is when the receive buffer has been filled with valid data.
MPI also offers four distinct communication modes that allows one more finer choice on com-
munication protocol. The four modes being Standard (MPI Send()), Buffered (MPI BSend())
Synchronous (MPI SSend()) and Ready (MPI RSend()).

Non-blocking Operations

Non-blocking operations are used to improve performance by overlapping communication
and computation. Unlike blocking, a nonblocking send start call initiates the send operation,
but does not complete it. The send start call returns before the message was copied out of

8



2.2. MPI

Figure 2.5.: MPI collective operations

the send buffer. The, a separate send complete call is needed to complete the communication,
i.e., to verify that the data has been copied out of the send buffer. With suitable hardware,
the transfer of data out of the sender memory may proceed concurrently with computations
done at the sender after the send was initiated and before it completed. An similar process
occurs for non blocking receive. A nonblocking receive may also avoid system buffering and
memory-to-memory copying, as information is provided early on the location of the receive
buffer. Further, the four mentioned in blocking: standard, buffered, synchronous and ready
are also available in the non-blocking format. Improper use of non-blocking operations may
lead to issues like deadlock and race conditions and the onus is completely on the programmer
to take the necessary precautions to avoid such instances.

2.2.2. Collective Communication

Unlike Point-to-Point a collective communication involves a group of processes. It is executed
by having all processes in the group call the communication routine, with matching argu-
ments. One of the key arguments is a communicator that defines the group of participating
processes and provides a context for the operation. Various MPI collective operations and
their corresponding fucntions are displayed in the following figure

Like point-to-point, collective operations also have blocking and non-blocking counterparts.
Also, it is important to know that collective routine calls can (but are not required to) return as
soon as their participation in the collective communication is complete. The completion of a
call indicates that the caller is now free to access locations in the communication buffer. It does
not indicate that other processes in the group have completed or even started the operation
(unless otherwise indicated in the description of the operation). Thus, a collective communi-
cation call may, or may not, have the effect of synchronizing all calling processes.

9



2. Theoretical Background

2.3. SG++ Framework

SG++ is a universal toolbox for spatially adaptive sparse grid methods and the combination
technique [20

.

]. It is a first of its kind implementation of parallel combination technique with
scalability for time-dependent and high-dimensional PDEs on a full supercomputer. It works
on a Manager-Worker pattern, with MPI messages being used for communication between
both.

The manager process coordinates individual steps of the parallel combination algorithm. It
is also assigned with the task of assigning component grids to worker process group in order
to achieve a good load balance. The manger however, doesn’t participate in any computation
or simulation data storage steps. This is solely carried out by the process groups.

This abstraction of manager process group from component grids is achieved with the ab-
straction called Tasks. The tasks apart from consisting of the component grids also provide
an interface to the applications. The manager is tasked with assigning these tasks to different
process groups. So that the component grids are computed completely independent and asyn-
chronously of each other in their respective process group. The manager uses different control
signals to coordinate the different process groups.

Based on the signal received from the manager a process group changes it state accordingly.
The finite state machine of the process group is provided in the figure 2.6

.

, along with the
explanation of the different states.

Figure 2.6.: Finite state machine modeling the different modes of operation of a process group.

• wait: The process group remains idle till it receives another signal from the manager.

• run first: Along with the RUN FIRST signal process groups also receive their individ-
ual task t. Dedicated initialization happens here, after which data structures to store
distributed grids are created and simulation data is transferred from the application to
component grid.

• run next: The process group here, computes all its tasks, one after the other. Simulation
data is transferred from component grid to application’s data structure before starting a
computation of a task; and on completion data is transferred back into the component
grid

10



2.3. SG++ Framework

• combine: Combination of the component grid in the sparse grid happens in this state.
This happens in three stages. First, all the locally available component grids are com-
bined inside the process group. Then, the combined solution is reduced globally across
all process groups. In a last step, the combined solution is transferred back onto the com-
ponent grid of each task. A more in-depth explanation of this state is given in the next
section.

• eval: Evaluation of the combined solution by the process group takes places here.

• ready: After completion of any of the above state, process groups change to this state,
notifying the manger that it is ready to receive new signals.

2.3.1. Parallel combination technique

The implementation of combination technique in SG++ happens as follows. distributed sparse
grid is created for each group in parallel, this is followed by hierarchization of indvidual func-
tions. This is followed by sparse grid reduction , which involves creating a temporary buffer, to
which all the herarchical subspaces are appended. An MPI all reduce operation is performed,
and the indivdual heirarchical subsapces are then refilled with the new combined solution. Af-
ter which, the control is returned back to the combination procedure which then dehierarchizes
all the grids in parallel before returning [20

.

]. The Algorithms of both, Parallel combination and
sparse grid reduction procedure are given below:

Algorithm 1 Parallel Combination Technique

Input:
I : set of component grids
cu : combination coefficient corresponding to component grid u
groups : set of process groups
grids(g) : set of component grids assigned to group g

1: for all g ∈ groups do in parallel
2: dsgg ← dsg(~n) . create distributed sparse grid
3: for u ∈ grids(g) do
4: u← hierarchize(u) . hierarchize component grid
5: dsgg ← dsgg + cu · u . add hierarchical coefficients to sparse grid
6: end for
7: end for
8: dsgg ←

∑
g∈groups

dsgg . global reduction of sparse grid

9: for all g ∈ groups do in parallel
10: for u ∈ grids(g) do
11: u← dsgg . extract hierarchical coefficients from sparse grid
12: u← dehierarchize(u) . dehierarchize component grid
13: end for
14: end for

Reduced Combination

SG++ also allows for a special combination technique called Reduced Combination. Unlike the
conventional combination technique, where the complete sparse grid is constructed, here the
user can set limits on the maximum and minimum levels of subspaces to used for creating
the distributed sparse grid. Reducing the sparse grid size, leads to faster execution, due to
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2. Theoretical Background

Algorithm 2 Sparse Grid Reduce

1: create buffer B
2: for each W~l

∈ V s
n−1 do

3: if W~l
∈ V s

n−1 then
4: append W~l

to B
5: else
6: append zeros to B
7: end if
8: end for
9: AllReduce(B.I)

10: for each W~l
∈ V~l do

11: extract W~l
from B

12: end for

obvious reduction in the amount of data required to be communicated during the reduction
operation. More importantly, this also forms the basis for optimization, as the values in the
highest subspaces are not shared with any other levels and hence it is redundant to include
them in the communication process. Though this method provides for decrease in communi-
cation volume, it also causes considerable drop in accuracy.
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3. Implementation

In a normal combination technique the component grid evaluation is paused during the com-
munication phase. The evaluation resumes only after the combination is carried out in its
entirety and the corresponding combined values are reprojected on the respective grids. The
main objective of this thesis was to incorporate the non-blocking statements of MPI, while car-
rying out combination; which would render a near continuous computation phase, with the
communication being carried out in parallel to it.

The following section, dwells into the two non-blocking or asynchronous combination tech-
niques that were implemented over the course of the thesis; their respective modifications to
integrate them into the reduced combination scheme; and their eventual assimilation into the
problems: Advection-diffusion and GENE.

3.1. Asynchronous Combination Technique

The initial asynchronous algorithm was constructed by splitting the normal parallel combi-
nation technique and its embedded sparse grid reduction into two halves. The first half en-
compassed of initialization steps that prepare the component grid values for global reduction.
The other block covered the re-projection of the values onto the component grid after global
reduce. The two blocks were distributed over two separate but subsequent time steps, in con-
trast to a normal combination technique where both the parts transpired over the same time
step. The comprehensive set of actions that are performed in the either blocks are as follows:

3.1.1. Initialization Phase

When the process groups are signaled by the manager to enter into asynchronous combination
mode, they begin by creating their respective distributed sparse grids in parallel. The compo-
nent grid values are then stored in-order to be utilized during the value correction step of the
extraction phase. This is followed by hierarchization of the component grid values. The hier-
archized values are then added to the previously created distributed sparse grids and then the
initialization phase of sparse grid reduction is initiated. Here, every process group creates its
own local buffer mimicking the complete sparse grid and transfers its contained subspace val-
ues into the corresponding location in the local buffer. An MPI IAllReduce is then performed to
combine the values spread over the local buffers of the process groups. Since MPI IAllReduce is
a non-blocking statement, the control returns to the respective process groups before the global
reduction is completed. Each process group then de-hierarchizes the previously hierarchized
values and proceeds to the next computation phase.

3.1.2. Extraction Phase

The extraction phase is invoked when process groups enter into combination mode, and the
previously initiated MPI IAllReduce has commenced. The extraction part of sparse grid reduce
is carried out first. Where the buffers which now contain globally reduced values are trans-
ferred to the respective subspaces of the process groups. This completes the sparse grid extrac-
tion process and starts the extraction phase of overall asynchronous technique. The subspace
values are then de-heirarchized. Unlike normal combination technique, the de-heirarchized

13



3. Implementation

Algorithm 3 Parallel Combination Technique Asynchronous-Initialization phase

Input:
I : set of component grids
cu : combination coefficient corresponding to component grid u
groups : set of process groups
grids(g) : set of component grids assigned to group g

1: procedure ASYNCCOMBINEINIT

2: for all g ∈ groups do in parallel
3: dsgg ← dsg(~n) . create distributed sparse grid
4: for u ∈ grids(g) do
5: uold ← u . store the current component grid values
6: u← hierarchize(u) . hierarchize component grid
7: dsgg ← dsgg + cu · u . add hierarchical coefficients to sparse grid
8: end for
9: end for

10: for u ∈ grids(g) do
11: S parseGridReduceInit() . global reduction of sparse grid initialization
12: end for
13: for all g ∈ groups do in parallel
14: for u ∈ grids(g) do
15: u← dehierarchize(u) . dehierarchize component grid
16: end for
17: end for
18: end procedure

Algorithm 4 Sparse Grid Reduce Asynchronous - Initialization Phase

Input:
B : local buffer for storing combined values

1: procedure SPARSEGRIDREDUCEINIT . Initialization of Sparse Grid Reduce
2: for each W~l

∈ V s
n−1 do

3: if W~l
∈ V s

n−1 then
4: append W~l

to B
5: else
6: append zeros to B
7: end if
8: end for
9: IAllReduce()

10: end procedure

subspace values are not directly transferred to their respective locations in the component
grid. As this would render void the updated values in the component grid resulting from the
computation steps carried out before the extraction phase initiation. Hence, to compensate
for this, globally reduced values transferred into component grids are appended with a delta
correction: which is given by the difference between values currently held by the component
grids and the values that were stored during the previous initialization phase. The proof that
this is an adequate compensation can be established as follows:

from the equation 2.1.4

.

, the value of f~l on each component grid Ω~l
after a combination at

t+ ∆t is given by
f~l,t+∆t

= P~l · f
c
~n,t+∆t (3.1)
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3.1. Asynchronous Combination Technique

Where f c~n is the combined value at the sparse-grid and P~l · f
c
~n,t+∆t the projected value on the

corresponding grid.
We would like to write the following equation in terms of previous values contained in the
sparse grid, as the asynchronous combination is initiated ∆t time step before the current time
with using the values at that point. Applying Taylor expansion and truncating at the first term
we could re-write the previous equation 3.1

.

f~l,t+∆t
≈ P~lf

c
~n,t + JP~l

fc
~n,t

∆t (3.2)

Where, JP~l
fc
~n,t

is the Jacobian matrix defined over the function P~lf
c
~n,t.

Since JP~l
fc
~n,t

= P~lJfc
~n,t

and assuming, that Jfc
~n,t

is only influenced by the time aspect, and
independent of other parameters like neighboring values, the term Jfc

~n,t
can be replaced with

its one dimensional counter part f ′c~n,t
rewriting the equation

f~l,t+∆t
≈ P~lf

c
~n,t + P~lf

′c
~n,t∆t

≈ P~lf
c
~n,t + P~l(f

c
~n,t+∆t − f

c
~n,t)

(3.3)

As f ′∆t = ft+∆t − ft
Further it can be seen that the last two terms are just the values of f~l at t and t+∆t respectively,
hence

f~l,t+∆t
= P~lf

c
~n,t + f~l,t+∆t

− f~l,t
= P~lf

c
~n,t + F~l(f~l,t)− f~l,t

= P~lf
c
~n,t + delta

(3.4)

Hence, the value on the component grid after combination can be seen as the current value
appended with a delta, which is equal to the difference of combination of previous terms and
value on the component grid before executing that combination.

Alternative proof

It is also possible to arrive at the previous solution by considering that combination is a update
of the component grid values f~l,t by an correction vector c~l,t. i.e

f∗~l,t = f~l,t + c~l,t (3.5)

The solver F would then act on this value as F~l(f
∗
~l,t

). But due to asynchronous combination,
the value f∗~l,t wouldn’t be available. Hence we rewrite F~l(f

∗
~l,t

) in terms of f~l,t using Taylor
expansion as follows:

F~l(f
∗
~l,t

) = F~l(f~l,t + c~l,t)

= F~l(f~l,t) + JF~l(f~l,t)c~l,t +O(‖δf~l,t‖
2)

(3.6)

Since the Jacobi matrix of a black box PDE solver cannot be known in advance, we assume
that the values in the next time step are independent of the surrounding points and depend
only on itself. This assumption leads to JF~l(f~l,t) = I , where I is the identity matrix. Hence we
finally get:

F~l(f
∗
~l,t

) = F~l(f~l,t) + c~l,t

= F~l(f~l,t) + f∗~l,t − f~l,t
= f∗~l,t + F~l(f~l,t)− f~l,t

(3.7)
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3. Implementation

Where again, the first term on the right hand side is the combined terms using previous com-
ponent grid values, and the last two terms is the delta value that was previously arrived at.

Algorithm 5 Parallel Combination Technique Asynchronous -Extraction Phase

1: procedure ASYNCCOMBINEEXTRACT

2: for u ∈ grids(g) do
3: dsgg ←SparseGridReduceExtract() . extract values from global reduction of sparse

grid
4: end for
5: for all g ∈ groups do in parallel
6: for u ∈ grids(g) do
7: unew ← u
8: ∆← unew − uold
9: u← dsgg . extract hierarchical coefficients from sparse grid

10: u← dehierarchize(u) . dehierarchize component grid
11: u← u+ ∆
12: end for
13: end for
14: end procedure

Algorithm 6 Sparse Grid Reduce Asynchronous - Extraction Phase

Input:
B : local buffer for storing combined values

1: procedure SPARSEGRIDREDUCEEXTRACT . Extract new Sparse Grid Values from buffer
2: for each W~l

∈ V~l do
3: extract W~l

from B
4: end for
5: end procedure

3.1.3. Execution Cycle

It was preferred that for every new asynchronous combination cycle, that the extraction phase
of the previously initiated global reduce be carried out first before starting the next initializa-
tion phase. Hence, a snapshot of single asynchronous combination would consist of an ex-
traction phase, followed by the next initialization block. (A reversal of sequence carried out in
a normal combination). This ensures that every new asynchronous combination is initialized
with values updated from the previous sparse grid reduction. The first and the last asyn-
chronous combination step however, only consists of the initialization and extraction phase
respectively. Since a asynchronous combination step is spread out over two time steps, the
number of global reduce carried out would always be one less than required. To compensate
for this, the last combination step carries out a normal combination cycle, after the last extrac-
tion block. For experiments that require just one combination, it was decided to just carry out
a normal combination technique, as asynchronous method require minimum of two cycles to
complete.

Since non-blocking reduce was used, the extraction phase could only be initiated if the pre-
vious sparse grid reduction was completed. This gave rise to two variants of asynchronous
method, depending on whether it was decided to skip the combination cycle if the global re-
duce had not commenced; or if it was decided to carry the next step by explicitly waiting
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3.1. Asynchronous Combination Technique

for the commencement of communication. The two approaches are discussed in detail in the
section 3.3

.

.
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Figure 3.1.: Asynchronous Combination Flowchart
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3.2. Asynchronous Odd-Even Combination Technique

Preliminary tests comparing the normal and asynchronous combination technique, revealed
that the normal combination technique had faster execution time in comparison to the later in
certain scenarios. This was due to the presence of two de-hierarchization stages per one combi-
nation step of the asynchronous technique. As, de-hierarchization is a time intensive method,
any time advantage gained by asynchronous combination was rendered ineffective. To over-
come this, a modified combination technique was developed that ensured that the number
of de-hierarchization stage per combination step remained at one. The new algorithm was
conceived by rewriting the existing equation 3.4

.

into two distinct parts as follows:
Since, right after the combination step, the asynchronous combination technique prepares

its data for combination. The values obtained at the end of next combination at t+ 2∆t would
be

f~l,t+2∆t
= P~lf

c
~n,t+2∆t + f~l,t+2∆t

− f~l,t (3.8)

Rewriting f c~n,t+2∆t as the output of combination

f~l,t+2∆t
= P~l

∑
~l∈I

c~lf~l,t+∆t
+ f~l,t+∆t

− f~l,t (3.9)

since the value of f~l,t+∆t
is already known from 3.4

.

, we get

f~l,t+2∆t
= P~l

∑
~l∈I

c~l

{
P~lf

c
~n,t + f~l,t − f~l,t−∆t

}
+ f~l,t+∆t

− f~l,t (3.10)

from P~l
∑

~l∈I c~l

{
P~lf

c
~n,t + f~l,t − f~l,t−∆t

}
the last two terms can be pulled out of the projection

operator as they are dependent only on the subspace, and
∑

~l∈I c~lP~lf
c
~n,t is just f c~n,t, this gives

us the final resulting equation

f~l,t+2∆t
= P~lf

c
~n,t + f~l,t+∆t

− f~l,t−∆t (3.11)

This shows that the asynchronous combination can be constructed even from combination
of values two time steps before the current one. So for odd and even time step (t+ (2n+ 1)∆t
and t+ (2n+ 1)∆t)the equation can be rewritten as

f~l,t+(2n)∆t
= P~lf

c
~n,t+(2n−2)∆t + f~l,t+(2n−1)∆t

− f~l,t−(2n−3)∆t

f~l,t+(2n+1)∆t
= P~lf

c
~n,t+(2n−1)∆t + f~l,t+(2n)∆t

− f~l,t−(2n−2)∆t

(3.12)

Hence, for every hierarchization and combination initiated at an odd time step, its append-
ing of delta followed by de-hierarchization can be performed at the next even time step. Per-
forming them in tandem, renders only one hierarchization and de-hierarchization per each
time step. As a consequence of its behavior, this new technique is termed as Odd-Even Asyn-
chronous Combination Technique.

A slight drawback with this scheme however is that, the values should be stored for two time
steps now, compared to only one as in the previous asynchronous combination scheme. Figure
3.2

.

shows the complete work flow for this scheme. As seen, the check for completion of sparse
grid reduce, would be need to be done before the next odd-even asynchronous combination
step is initiated.
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Figure 3.2.: Asynchronous Odd Even Combination Flowchart
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3.3. Reduced Asynchronous Combination

Though the implementation of reduced combination was already present in the SG++ frame-
work, initial tests showed that the values were not in agreement with the expected ones. This
was because the previous implementation rendered every non communicated data to zero.
Though this was fixed in later iterations, the results obtained form the old implementation are
also included in the performance analysis tests.

For a normal combination step employing a reduced combination, the component grids
which were updated after sparse grid reduction and those which were isolated from the global
reduction both remain in hierarchized state. In asynchronous combination however, as the
component grids are not hierarchized during the beginning of the extraction phase, reduced
combination would cause the component grids involved in sparse grid reduction to be hierar-
chized while the grids that were not involved in the reduction would remain de-hierarchized.
Additionally, after a full asynchronous sparse grid reduction all the component grids would
have values reduced from previous time cycle. Whereas in a reduced sparse grid reduction,
non-participating component grids would still contain current iteration of values.

One solution to these problems, would be to transfer the stored component grid values of the
previous time step into the current component grids, and then hierarchize all the component
grids at the beginning of each extraction phase. but as hierarchization is a time intensive step
this solution was rejected.

Instead, it was preferred to store the hierarchized values during the hierarchization step of
the initialization block, and transfer those hierarchized values into the component grids at the
start of the extraction step. This would mean that the process groups would now have to store
two sets of previous component grid values, one hierarchized and one not. Swapping the
execution order of de-heirarchization and append step in the extraction phase mitigates this
problem. As de-hierarchization and appension are both linear operators, the oder in which
they are performed has no impact on the overall execution. But this ensures that the process
group be required to store only one set of component grid values from previous time step (i.e
the hierarchized values).

3.4. Dynamic Asynchronous Combination

Since the execution of the extraction phase of asynchronous combination technique, requires
the global reduction process to be completed, at the arrival of the control flow. Based on how
this could be handled, two variants of the asynchronous combination technique were imple-
mented. The static method utilized MPI WaitAll and explicitly waited for the reduction pro-
cess to complete and carried out the next asynchronous block in the initiated time step. The
Dynamic method on the other hand used MPI TestAll to poll is the sparse grid reduce had
commenced. If it hadn’t it would skip the current combination cycle, and would continue
skipping the combination step, till the sparse grid reduction finally terminated. Only then
would the next sequence of asynchronous combination step be carried out. Figures 3.3

.

and 3.4

.

demonstrate both the aforementioned variants.
The dynamic method, would in principle have faster execution time than the static method

(provided that the simulations have communication cycle that takes at-least twice the time
required for the calculation phase). As the dynamic variant would just continue on with the
next calculation phase in case of unfinished sparse grid reduction. In contrast, the static im-
plementation would lose time by explicitly waiting for the commencement of communication,
before carrying out the next calculation phase. This also makes the dynamic method volatile,
as it cannot be accurately determined when the combination steps will be skipped and when
they will be carried out. The accuracy would also be slightly reduced, as lesser combination
steps will be executed. Nonetheless, as no tests could be carried with communication steps

20



3.5. Integration Into SG++

overtaking the calculation steps over the course of this thesis. The characteristics of dynamic
combination technique is mere conjecture.

Figure 3.3.: Static asynchronous combination technique

Figure 3.4.: Dynamic asynchronous combination technique

3.5. Integration Into SG++

SG++ framework’s philosophy of having the solver independent of the problem was followed
while integrating the algorithm. New signals CombineAsync and CombiAsyncOddEven were
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3. Implementation

added alongside the other existing states that the worker processes could take. The TASK
class was also suitably modified in order to accommodate storing of component grid val-
ues from two time steps. Furthermore, the TASK class instances were also equipped with
MPI REQUESTS variables to retrieve status of the sparse grid reduction. The local buffers
were also made part of the TASK class so that are accessible during both initialization and
extraction phase. The Appendix sectionA.3

.

contains all the implemented code.

3.6. Benchmarks

Performance of the asynchronous combination techniques were evaluated using two time de-
pendent test problems: Advection-Diffusion and GENE. Both the problems had important
characteristics that made them ideal for analysis. These problems require combination tech-
nique to be carried out at regular interval in order to guarantee stability. Another important
feature of these problems was that they had readily available full grid solutions: either in the
form of data from the previous work carried out on these problems, or in case of Advection-
Diffusion a standard analytical solution which could be easily calculated in definite amount of
time. The ability of these problems to scale easily in terms of grid-points and dimensions also
serve as important criteria for their selection. The following section further elaborates on the
two test problems, their integration into the combination scheme followed by the methodology
used to evaluate the results obtained in either.

3.6.1. Advection-Diffusion

A standard Advection-Diffusion model deals with time evolution of particles in a flowing
medium [19

.

]. Its one-dimensional general representation for a concentration u(x, t) is given
by:

ut + (au)x︸ ︷︷ ︸
advection

= (dux)x︸ ︷︷ ︸
diffusion

+f(u)
(3.13)

Where f denotes the local change in u(x, t) due to sources, sinks or reactions. And a and d are
the advection and diffusion coefficients.

For analysis, the equation was developed for d spatial dimensions and the advection and dif-
fusion coefficients were considered to independent of u. Local changes f was set to a constant
and explicit Euler scheme was used for time integration.

Following denotes the final equation with its appropriate initial conditions:

∂tu−∆u+ ~a · ∇u = f in Ω× [0, T )

u(·, t) = 0 in ∂Ω
(3.14)

with Ω = [0, 1]d,~a = (1, 1, . . . , 1)T and u(·, 0) = exp−100
∑d

i=1(xi−0.5)2 . Where ∆ and ∇ denote

the Laplace (
d∑

i=1

∂2

∂x2
i
) and Gradient (

d∑
i=1

∂
∂x2

i
) operator respectively.

3.6.2. GENE

GENE(Gyrokinetic Electromagnetic Numerical Experiment) is a software package dedicated
to solving of the Gyrokinetic Vlasov equation in a flux tube domain. The equation represented
by

∂Fs

∂t
+
d ~X

dt
· ∇Fs +

dυ‖

dt

∂Fs

∂υ‖
+
dµ

dt

∂Fs

∂µ
= 0 (3.15)

describes the propagation of a species s in time through a 5 dimensional distribution function
Fs(x, y, z, υ‖, µ). Where x, y, z are the co-ordinates of the species, and υ‖ and µ are the velocity
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and magnetic moment respectively. (It is to be noted that GENE represents x and y in its
spectral space. Hence, kx and ky are the exact parameters that were subject to modification
during simulations). Each species represents a different type of simulated particles (usually
ions and electrons). GENE Employs δf -splitting the distribution function cab be split into
a Maxwellian background distribution F0,s and a fluctuating part gs. Thus, the governing
equation solved by GENE can be symbolically represented as

∂~g

∂t
= L~g +N~g (3.16)

where ~g is a vector of different gs and the mathematical operators L andN represent the linear
and non-liner part of the equation.

For analysis, GENE was operated in linear mode and only one species was considered. Ren-
dering the final equation that was solved as

∂g

∂t
= Lg (3.17)

3.6.3. Test Execution

The following sequence of steps were executed for every test run. First, the ctparam file contain-
ing the configuration settings for the current test is read. Then the MPI processes are divided
according to the provided process groups and their corresponding communicators initialized.
Following which, the load model is created. An assertion is then made to check if the number
of processes are in agreement with the provided parallelization vector. A combination scheme is
then created in adherence to the provided dimension and, the maximum and minimum level
vectors. New Tasks are created in accordance to the combination scheme. Next, the process man-
ager is the initialized along with the combination parameters, which are then sent to all the
process groups under the manager. Finally the tasks are distributed in accordance with the load
model and the computation is initiated, with the specified combination scheme occurring at
intervals specified in the initial configuration. In case of GENE, fault detection was performed
after every computation and combination step. And a suitable fault correction steps are exe-
cuted, which includes but is not limited to: recovery of communicators, re-computation of all
tasks and even reinitialization of process groups. The flow commences with the error evalu-
ation of the initiated test, along with the timing file, which stores the time taken by various
activities in a json format.

3.6.4. Error Evaluation

The sparse grid to full grid error for Advection-Diffusion was defined by the parameters E2

and E∞, with

E2 =
‖uc~n − uref‖2
‖uref‖2

E∞ =
‖uc~n − uref‖∞
‖uref‖∞

(3.18)

where uref and uc~n refer to full grid solution and the solution using combination technique at
the target level ~n respectively.

While, for GENE The error computation was considered to be ecI := |λcI − λref| with λ being
the eigenvalue of Lwith the largest (positive) real part.
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This section deals with the results that were obtained from various tests runs using the Advection-
Diffusion and GENE for different values of ~lmin and ~lmax, dimensions (d) and number of com-
bination per steps. Every asynchronous combination scenario, was compared to its normal
combination counterpart, and a reference part, which consisted of equal number of calculation
steps, but only only one combination step. Only, basic tests were carried out on Advection-
Diffusion problem to test the stability of the implemented asynchronous solution, while more
extensive tests were performed with GENE.

4.1. Advection-Diffusion

figures 4.1

.

and 4.2

.

show the errors E2 and E∞ obtained for different ~lmax and dimensions.
All tests were carried out with 1000 total time step, one combination for every 100 calculation
steps, or a hundred total combination steps. ~lmin was kept to be 1 for all dimensions. The Euler
time step ∆T was also fixed at 10−4. Further the task was divided between 6 workers with 1
process each. The dimension d was varied from 2 to 4. The reference full grid target level ~n
was set equal to the ~lmin and they both were varied.

It can be seen that errors for asynchronous combination technique were found to between
a normal combination technique, and the one involving just one combination step at the end.
For all dimensions, error values decreases with increase in ~lmin.

Figure 4.1.: E2 for Advection

Figure 4.2.: E∞ for Advection

It was also observed that if the time steps between two subsequent combinations were sig-
nificantly large, then the result obtained from asynchronous combination techniques were of
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no use, this was probably due to the fact that values that values had significant changes be-
tween those time steps, and adding back the previous combination values just led to further
degradation instead of improvement of the current results. This was clearly seen by the expo-
nential rise in errors for the asynchronous combination technique. Further, the relative errors
got worse with increase in total combination steps. This degradation was seen to be significant
at lower grid-points as the dimensions of the problem increased. The table 4.1

.

lists the follow-
ing degradation of a 10000 time step asynchronous combination technique, and the first grid
point where this occurs for a particular dimension and the total number of combinations used
in that trial.

Dimension Number of combination Grid Point of first degradation E∞ E2

2
20 9 3.035933 6.180694
50 9 465.603428 900.002642
100 9 720.815 1448.52

3
203 8 0.934907 4.203893
50 8 0.897940 2.011485
100 8 719.450955 107.687332

Table 4.1.: Asynchronous combination technique degradation

4.2. GENE

To establish that the proposed asynchronous techniques work, it was necessary that it satisfied
two conditions. One: The accuracy obtained by asynchronous method is considerably similar
to the normal combination technique. Second: the execution time ought to be noticeably faster
than the latter. Hence more comprehensive tests were carried out with GENE, in-order to
argue the same. Multiple test were carried out using various combination of dimensions, com-
bination steps and reduced dimension combination. The error rate and the timing obtained as
a result of this are discussed in the following section.

4.2.1. Error Analysis

Like stated before the error to the full grid solution was ecI := |λcI − λref|. Full grid evaluation
was already present for ~n = [3 1 7 7 7 1] and [3 1 8 8 8 1] as consequence of other experiments
that are carried out using GENE. Hence different tests concerning errors were carried out with
~lmax = [3 1 7 7 7 1] and [3 1 8 8 8 1]. Also, as both the asynchronous combination schemes
are supposed to have same behavior, most graphs in this section will only contain one plot
representing both the techniques.

Dimension Variation

Figure 4.3

.

shows the error variation with ~lmax set to [3 1 7 7 7 1] and [3 1 8 8 8 1] for a total of
6000 calculation steps, with one combination step after every step. The ~lmax was set to [3 1 5
5 5 1] for both. 4 process groups were used, with 128 processes in each. The simulations were
executed against normal combination, the asynchronous combination and also a case of just
one combination at the end(which serves as the baseline for worst performance).

As seen, the asynchronous combination closely follows the error of a normal combination.
The errors are significantly better than those obtained by carrying a single combination at the
end. The errors also decreased with increase in ~lmax.

26



4.2. GENE

3
1

6
6

6
1

3
1

7
7

7
1

3
1

8
8

8
1

3
1

9
9

9
1

5 · 10−2

0.1

0.15

0.2

~lmax

Er
ro

r

NormalCombi
AsyncCombi
OneCombi

Figure 4.3.: Error Variation with ~lmax

Varying Combination Steps

Figure 4.4

.

shows the error variation with number of combination steps. All computations were
performed with total of 6000 calculation steps and ~lmin = [3 1 5 5 5 1] as before, for both ~lmax [3
1 7 7 7 1] and [3 1 8 8 8 1], but with different combination steps i.e., 2, 10, 60 ,100 ,600, 3000 and
6000 for ~lmax = [3 1 7 7 7 1] and 2, 600, 3000, 6000 for ~lmax = [3 1 8 8 8 1]

It can be seen that for arbitrary combination step values, the error of asynchronous tech-
nique, degrades below the level of a single normal combination step. The error values in
asynchronous schemes didn’t seem to follow any obvious pattern, though the normal combi-
nation displayed a decrease in error rate with increasing combination steps. This trend was
not of much concern, as even normal combination techniques have demonstrated the same be-
haviour during previous instances, though for different set of ~lmax and ~lmin [17

.

]. No concrete
explanation can be provided at the moment for this behavior. But it is believed that effect of
number of combination steps on the convergence of the simulation is a property of the prob-
lem being solved. Therefore, while carrying out time intensive simulations, it is important to
verify at regular intervals if the provided configuration leads to convergence or not.

However the issue of blow up previously observed with Advection-Diffusion wasn’t ob-
served with GENE. There were no random degradation of error values for different combina-
tion steps. The error values always fell under the hard limit of 1.4142, never going beyond this
point.

Reduced Combination

To check if the asynchronous methods can be used in tandem with other communication accel-
erating methods, tests with Reduce Combination methods were necessary. Hence, simulations
were carried again for 6000 combination steps with ~lmax set to [3 1 7 7 7 1] and ~lmin set to [3
1 5 5 5 1]. But the sparse grid constructed during sparse grid reduce, was not a complete one
rather a reduced one which used reduced minimum and maximum level vectors~lRmin and~lRmax

respectively.
The figure 4.6

.

shows the different levels of error that were obtained over three different iter-
ations of reduced combination algorithm, with only ~lRmax set to [0 0 1 1 1 0].(This configuration
was used because in a correctly implemented situation the error values obtained would be
equal to the non-reduced combination). Test were carried out for both asynchronous combi-
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Figure 4.4.: Error Variation with combisteps

nation technique, the normal combination technique and with the case of single combination
step at the end. Furthermore, the trials were carried out for three different modes of reduced
combination: the existing reduced combination mode, where values of component grids not
part of the reduced sparse grid were set to zero on communication; a fixed reduced combina-
tion mode, where the values of non participating grids were left untouched, but asynchronous
combinations were not adapted using the implementation mentioned in section 3.4

.

; finally a
fixed asynchronous mode, with asynchronous combinations adapted for reduced combination.

It can be seen that if the values of non-participating component grids were set to zero on ev-
ery combination, then the error value obtained is worse than carrying out a single combination.
However, for asynchronous combination technique this would still give a better result than
carrying out proper reduced combination, but without properly adapting the asynchronous
combination steps. It can also be seen, that since the two asynchronous method utilize values
of different time steps, letting the non-participatory component grids retain the current value
would lead to different error levels. The proper implementation of reduced combination for
the aforementioned~lRmax however shows same error results as a full combination, thus provid-
ing the expected optimization.
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Figure 4.5.: Different iterations of reduced combination

For further tests with reduced combination it was required to change the test parameters
a bit as having ~lmax as [3 1 7 7 7 1] and ~lmin as [3 1 5 5 5 1] allowed for only two levels of
reduction. Hence further tests were carried out by setting ~lmax to [3 1 7 7 7 1] and ~lmin to [3 1 4
4 4 1]. This change also required that there be 8 process group managers with 64 processes each
and the p parameter was appropriately set to [1 1 1 8 8 1]. Figure ?? shows the error obtained
over various combinations of ~lRmax i.e., [0 0 1 1 1 0], [0 0 2 2 2 0] and [0 0 2 2 2 0] and ~lRmin fixed
at [0 0 0 0 0 0]. Test were carried for both asynchronous and normal combination technique. A
single complete sparse combination at the end was used as reference.

As seen the reduced combination works only for~lmax = [0 0 1 1 1 0] for all combination tech-
nique. Going beyond this level cause the error values, to drop below the level of even single
combination step. Thus, reduced combination can provide only one level of performance opti-
mization (at least in case of GENE) and may not be an worthy option, when looking for timing
improvements as it would be better to carry out just one full combination step at the end, and
arrive at a better result.
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4.2.2. Timing Analysis

The timing tests are crucial in validating the overall performance of the asynchronous tech-
niques. To adequately check the behavior of these schemes, it was deemed essential to con-
struct a larger problem, which as a consequence would have significant communication time.
However, the amount of cores and time that could be allotted set restraints on how big the
problem could get. Hence, considering both the aforementioned reasons the tests were carried
for ~lmax = [3 1 11 11 11 1], [3 1 12 12 12 1] and [3 1 13 13 13 1], with ~lmin fixed at [3 1 4 4 4 1].
The process groups and their processes were set to t 4 and 64 respectively. With parallelization
vector p appropriately set to [1 1 1 8 8 1]. The total execution steps was taken as 200 for all the
cases.

Figure 4.7

.

shows the variation of execution time with number of combination steps for ~lmax

= [3 1 13 13 13 1]. It can be seen that the execution time for all three techniques are around the
same time range. The Asynchronous Odd-Even technique was always faster than the other
Asynchronous method, owing to one less de-hierarchizing step.

As previous tests that were carried out with GENE explicitly state that as number of process
groups and processes increase the hierarchization and de-hierarchization process undergo sig-
nificant reduction in execution time, but the combination time remains more or less unchanged
[17

.

]. It is important that the combination time and more importantly the time taken for sparse
grid reduction be subject to comparison.

Figure 4.8

.

shows one instance of deconstructed time sequences of the different combina-
tion technique for 20 combination steps. For all three methods it can be observed that though
combination consumes a significant part of the total execution time, the majority of its time

30



4.2. GENE

2 10 100 200

103

104

combisteps

Ti
m

e
(S

ec
s)

lmax = [3 1 13 13 13 1]

NormalCombi
AsyncCombi

AsyncCombiOddEven

Figure 4.7.: Total Execution Time vs combisteps

however is spent on the hierarchization and de-hierarchization steps. The global reduce how-
ever forms only a tiny part of the same. Despite that, the glaring timing difference between
normal combination against the asynchronous technique for this block can be clearly observed.
Normal combination spends nearly 5 times more time than the asynchronous technique in this
block.

This factor of ≈ 5 was consistently observed for values of ~lmax. The figure 4.9

.

reinforces the
same. Leading to the conclusion that that it is possible to simulate significantly large problems,
at 5 times faster pace using the asynchronous techniques. Provided that the hierarchization
and de-hierarchization steps times are suitably reduced using appropriate number of processes
and process groups.
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5. Conclusion

In this work, asynchronous/non-blocking combination techniques capable of solving time-
dependent high dimensional PDEs on a large scale HPC systems were presented. Experiments
with the software GENE demonstrate that here presented asynchronous techniques are capable
of significantly improving the execution speed of conventional combination technique, while
still maintaining the accuracy.

This work, provides the mathematical basis for the changes required in non-blocking com-
bination technique so that its accuracy closely follows those of a blocking combination. It was
shown that apart from carrying out non-blocking communication, it is necessary to append
the component grid values with a suitable correction factor. This factor was derived to be the
difference between the current and the previous component grid values.

The major contribution of this work is the design and successful implementation of two dif-
ferent combination techniques. The two techniques were demonstrated to have equal levels
of accuracy. The techniques differed in two major aspect, memory and execution time. It was
shown that it is possible to create a non-blocking communication technique by storing com-
ponent grid values of only one time step, but this requires an additional de-hierarchization
step for successful implementation. Whereas it is also possible to implement an asynchronous
algorithm with same number of hierarchization and de-hierarchization steps as a normal com-
bination technique, but this would require that component grid values of two time steps be
stored.

This work, also proposes two different variants of asynchronous combinations based on
how the execution flow is handled when sparse grid reduce hasn’t commenced even after on
full calculation step. One proposal was to explicitly wait and carry out the required number
of combination, while the other was to keep skipping the combination steps till the previous
sparse grid reduce commences. However, since the problems used to test weren’t suitably
large, the dynamic variant of skipping combinations couldn’t be tested out.

An alternative time reducing combination technique called Reduced Combination was also
evaluated in this work. The necessary modification to asynchronous combination technique
to integrate this method was also covered. It was also found that Reduced Combination tech-
nique are capable of only one level of optimization. Going beyond the first level was found
to render the accuracy obtained from Reduced Combination to be below those obtained by
carrying out a single complete combination.

Limitations of Asynchronous combination techniques were also demonstrated and discussed
in this work. This includes the degradation in accuracy when solving certain problems like
Advection-Diffusion, in case of carrying out fewer asynchronous combinations steps in com-
parison to calculation steps. It was also found that for certain problems like GENE inaccurate
combination steps may not cause complete degradation of accuracy, but would still lead to
starkly different accuracy levels when compared to normal combination.

As we move to exa-scale computing, the problems being solved will get bigger and though
the calculations will get faster, the communication will still serve as a bottleneck. The asyn-
chronous combination techniques implemented in this work can aid in mitigating this prob-
lem. As they are shown to have the same accuracy levels of normal combination technique,
but have communication time 5 times lower.
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6. Future Work

Many different tests and experiments have left for the future, as they couldn’t be tested out
due to lack of time (i.e large experiments would need days to finish a single run) and resources
(for instance the time and cores made available on linux cluster where the tests were carried
out, was not enough to run bigger experiments)

Tests can be performed on problems where the communication step consumes more time
than the calculation ones. This would help to establish the time improvement achieved via
asynchronous combination technique. This would also be useful to see the behavior of the
proposed dynamic asynchronous combination technique.

The correction factor that was appended to component grid values after an asynchronous
combination was taken considering only the first order of Taylor expansion. It would be inter-
esting to see if higher orders provide any improvement in accuracy.

The degradation in accuracy seen in Advection-Diffusion example also needs further inves-
tigation. A numerical basis for the occurrence would help to decide if asynchronous combina-
tion technique can be utilized for the particular problem or not.
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A. Implemented Code

A.1. ProcessGroupWorker

1 void ProcessGroupWorker::combineUniformAsync() {
2 /*In case there is only one combine do normal combine*/
3 if(combiParameters_.getNumberOfCombinations() == 1){
4 combineUniform();
5 }
6 else{
7 if(Task::isFirstCombiSequence){
8 combineUniformAsyncInitHierarchizeReduce();
9 Task::isFirstCombiSequence = false;

10 }
11 else if(isDistributedGlobalReduceAsyncCompleted()){
12 combineUniformAsyncHierarchizeUpdate();
13 if(currentCombi_ + 1!=

combiParameters_.getNumberOfCombinations()){↪→

14 combineUniformAsyncInitHierarchizeReduce();
15 }
16 }
17 }
18 }
19

20 bool ProcessGroupWorker::isDistributedGlobalReduceAsyncCompleted(){
21 int numGrids = combiParameters_.getNumGrids();
22 int finishedReduce = 0;
23 int flag = 0;
24

25 //comment the next line for dynamica
26 MPI_Waitall(numGrids,Task::requestAsync,MPI_STATUSES_IGNORE);
27 MPI_Testall(numGrids, Task::requestAsync, &flag,

MPI_STATUSES_IGNORE);↪→

28

29 return flag;
30 }
31

32

33 void ProcessGroupWorker::combineUniformAsyncInitHierarchizeReduce(){
34 #ifdef DEBUG_OUTPUT
35 MASTER_EXCLUSIVE_SECTION{
36 std::cout << "start combining \n";
37 }
38 #endif
39
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40 Stats::startEvent("combine init");
41

42 // each pgrouproot must call reduce function
43 //assert(tasks_.size() > 0);
44 if(tasks_.size() == 0){
45 std::cout << "Possible error: task size is 0! \n";
46 }
47 assert( combiParametersSet_ );
48

49 //we assume here that every task has the same number of grids
50 int numGrids = combiParameters_.getNumGrids();
51 DimType dim = combiParameters_.getDim();
52 LevelVector lmin = combiParameters_.getLMin();
53 LevelVector lmax = combiParameters_.getLMax();
54 const std::vector<bool>& boundary =

combiParameters_.getBoundary();↪→

55

56 // the dsg can be smaller than lmax because the highest subspaces
do not have↪→

57 // to be exchanged
58 // todo: use a flag to switch on/off optimized combination
59

60 reduceSparseGridCoefficients(lmax,lmin,
61

combiParameters_.getNumberOfCombinations(),currentCombi_,↪→

62 combiParameters_.getLMinReductionVector(),
63 combiParameters_.getLMaxReductionVector());
64 /*for (size_t i = 0; i < lmax.size(); ++i)
65 if (lmin[i] > 1)
66 lmin[i] -= 01;
67 for (size_t i = 0; i < lmax.size(); ++i)
68 lmax[i] = std::max(lmin[i],lmax[i] - 2);
69 */
70 #ifdef DEBUG_OUTPUT
71 MASTER_EXCLUSIVE_SECTION{
72 std::cout << "lmin: "<< lmin << std::endl;
73 std::cout << "lmax: "<< lmax << std::endl;
74 }
75 #endif
76

77 //delete old dsgs
78 for(int g=0; g<combinedUniDSGVector_.size(); g++){
79

80 if (combinedUniDSGVector_[g] != NULL)
81 delete combinedUniDSGVector_[g];
82 }
83 combinedUniDSGVector_.clear();
84 // erzeug dsgs
85 combinedUniDSGVector_.resize(numGrids);
86 for(int g=0; g<numGrids; g++){
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87 combinedUniDSGVector_[g] = new
DistributedSparseGridUniform<CombiDataType>↪→

88 (dim, lmax, lmin, boundary,
theMPISystem()->getLocalComm());↪→

89 }
90 // todo: move to init function to avoid reregistering
91 // register dsgs in all dfgs
92 for (Task* t : tasks_) {
93 for(int g=0; g<numGrids; g++){
94

95 DistributedFullGrid<CombiDataType>& dfg =
t->getDistributedFullGrid(g);↪→

96

97 dfg.registerUniformSG(*(combinedUniDSGVector_[g]));
98 }
99 }

100 Stats::stopEvent("combine init");
101 Stats::startEvent("combine hierarchize");
102

103 real localMax(0.0);
104 //std::vector<CombiDataType> beforeCombi;
105 for (Task* t : tasks_) {
106 t->fullgridVectorBeforeCombi = new

std::vector<CombiDataType>[numGrids];↪→

107 for(int g=0; g<numGrids; g++){
108

109 DistributedFullGrid<CombiDataType>& dfg =
t->getDistributedFullGrid(g);↪→

110 std::vector<CombiDataType> datavector(dfg.getElementVector());
111 t->fullgridVectorBeforeCombi[g] = datavector;
112 //beforeCombi = datavector;
113 // compute max norm
114 /*
115 real max = dfg.getLpNorm(0);
116 if( max > localMax )
117 localMax = max;
118 */
119

120 // hierarchize dfg
121 DistributedHierarchization::hierarchize<CombiDataType>(
122 dfg, combiParameters_.getHierarchizationDims() );
123

124 // lokales reduce auf sg ->
125 dfg.addToUniformSG( *combinedUniDSGVector_[g],
126 combiParameters_.getCoeff( t->getID() ) );
127 #ifdef DEBUG_OUTPUT
128 std::cout << "Combination: added task " << t->getID() <<
129 " with coefficient " << combiParameters_.getCoeff( t->getID()

) <<"\n";↪→

130 #endif
131 }
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132 }
133 Stats::stopEvent("combine hierarchize");
134

135 Stats::startEvent("combine global reduce init");
136

137 Task::bufAsync = new std::vector<CombiDataType>[numGrids];
138 Task::requestAsync = new MPI_Request[numGrids];
139 Task::subspaceSizes = new std::vector<int>[numGrids];
140

141 for(int g=0; g<numGrids; g++){
142 CombiCom::distributedGlobalReduceAsyncInit(

*combinedUniDSGVector_[g],↪→

143 Task::subspaceSizes[g], Task::bufAsync[g],
Task::requestAsync[g]);↪→

144 }
145 Stats::stopEvent("combine global reduce init");
146

147 Stats::startEvent("combine dehierarchize");
148

149 for (Task* t : tasks_) {
150 for(int g=0; g<numGrids; g++){
151

152 // get handle to dfg
153 DistributedFullGrid<CombiDataType>& dfg =

t->getDistributedFullGrid(g);↪→

154

155

156 // dehierarchize dfg
157 DistributedHierarchization::dehierarchize<CombiDataType>(
158 dfg, combiParameters_.getHierarchizationDims() );
159 }
160 }
161 Stats::stopEvent("combine dehierarchize");
162 }
163

164 void ProcessGroupWorker::combineUniformAsyncHierarchizeUpdate(){
165 //std::vector<CombiDataType> afterCombi;
166 Stats::startEvent("combine global reduce extract");
167 int numGrids = combiParameters_.getNumGrids();
168

169 for(int g=0; g<numGrids; g++){
170 CombiCom::distributedGlobalReduceAsyncExtractSubspace(
171 *combinedUniDSGVector_[g], Task::subspaceSizes[g],

Task::bufAsync[g] );↪→

172 }
173 Stats::stopEvent("combine global reduce extract");
174

175 Stats::startEvent("combine dehierarchize");
176 for (Task* t : tasks_) {
177 for(int g=0; g<numGrids; g++){
178
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179 // get handle to dfg
180 DistributedFullGrid<CombiDataType>& dfg =

t->getDistributedFullGrid(g);↪→

181 //t->prevTimeStepDfg = t->getDistributedFullGrid(g);
182 std::vector<CombiDataType>

gridNextTimestep(dfg.getElementVector());↪→

183 // extract dfg vom dsg
184 dfg.extractFromUniformSG( *combinedUniDSGVector_[g] );
185

186 // dehierarchize dfg
187 DistributedHierarchization::dehierarchize<CombiDataType>(
188 dfg, combiParameters_.getHierarchizationDims() );
189

190 std::vector<CombiDataType>& gridAfterCombi =
dfg.getElementVector();↪→

191

192 for(int i=0; i< gridAfterCombi.size();i++){
193 gridAfterCombi[i] += (gridNextTimestep[i]
194 - t->fullgridVectorBeforeCombi[g][i]);
195 }
196 }
197 }
198

199 for(Task* t : tasks_){
200 delete [] t->fullgridVectorBeforeCombi;
201 }
202 delete [] Task::subspaceSizes;
203 delete [] Task::bufAsync;
204 delete [] Task::requestAsync;
205

206 Stats::stopEvent("combine dehierarchize");
207 }

A.2. CombiCom

1 template<typename FG_ELEMENT> void
CombiCom::distributedGlobalReduceAsyncInit(↪→

2 DistributedSparseGridUniform<FG_ELEMENT>& dsg,
3 std::vector<int>& subspaceSizes,
4 std::vector<FG_ELEMENT>& bufAsync, MPI_Request &requestAsync) {
5 // get global communicator for this operation
6 MPI_Comm mycomm = theMPISystem()->getGlobalReduceComm();
7

8 assert(mycomm != MPI_COMM_NULL);
9

10 /* get sizes of all partial subspaces in communicator
11 * we have to do this, because size information of uninitialized

subspaces↪→
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12 * is not available in dsg. at the moment this information is only
available↪→

13 * in dfg.
14 */
15 subspaceSizes.resize(dsg.getNumSubspaces());
16

17 for (size_t i = 0; i < subspaceSizes.size(); ++i) {
18 // MPI does not have a real size_t equivalent. int should work

in most cases↪→

19 // if not we can at least detect this with an assert
20 assert(dsg.getDataSize(i) <= INT_MAX);
21

22 subspaceSizes[i] = int(dsg.getDataSize(i));
23 }
24

25 MPI_Allreduce( MPI_IN_PLACE, subspaceSizes.data(),
int(subspaceSizes.size()),↪→

26 MPI_INT, MPI_MAX, mycomm);
27

28 // check for implementation errors, the reduced subspace size
should not be↪→

29 // different from the size of already initialized subspaces
30 int bsize = 0;
31

32 for (size_t i = 0; i < subspaceSizes.size(); ++i) {
33 bool check = (subspaceSizes[i] == 0 || dsg.getDataSize(i) == 0
34 || subspaceSizes[i] == int(dsg.getDataSize(i)));
35

36 if (!check) {
37 int rank;
38 MPI_Comm_rank( MPI_COMM_WORLD, &rank);
39 std::cout << "l = " << dsg.getLevelVector(i) << " " << "rank =

" << rank↪→

40 << " " << "ssize = " << subspaceSizes[i] << " " <<
"dsize = "↪→

41 << dsg.getDataSize(i) << std::endl;
42 assert(false);
43 }
44

45 bsize += subspaceSizes[i];
46 }
47

48 // put subspace data into buffer
49 bufAsync.clear();
50 bufAsync.resize(bsize,FG_ELEMENT(0));
51 {
52 typename std::vector<FG_ELEMENT>::iterator buf_it =

bufAsync.begin();↪→

53

54 for (size_t i = 0; i < dsg.getNumSubspaces(); ++i) {
55 std::vector<FG_ELEMENT>& subspaceData = dsg.getDataVector(i);
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56

57 // if subspace does not exist on this process this part of the
buffer is↪→

58 // left empty
59 if (subspaceData.size() == 0) {
60 buf_it += subspaceSizes[i];
61 continue;
62 }
63

64 for (size_t j = 0; j < subspaceData.size(); ++j) {
65 *buf_it = subspaceData[j];
66 ++buf_it;
67 }
68 }
69 }
70

71 MPI_Datatype dtype = abstraction::getMPIDatatype(
72

abstraction::getabstractionDataType<FG_ELEMENT>());↪→

73 MPI_Iallreduce( MPI_IN_PLACE, bufAsync.data(), bsize, dtype,
MPI_SUM, mycomm,↪→

74 &requestAsync);
75

76 }
77

78 template<typename FG_ELEMENT>
79 void CombiCom::distributedGlobalReduceAsyncExtractSubspace(
80 DistributedSparseGridUniform<FG_ELEMENT>& dsg,
81 std::vector<int>& subspaceSizes,
82 std::vector<FG_ELEMENT>& bufAsync) {
83 // extract subspace data
84

85 typename std::vector<FG_ELEMENT>::iterator buf_it =
bufAsync.begin();↪→

86

87 for (size_t i = 0; i < dsg.getNumSubspaces(); ++i) {
88 std::vector<FG_ELEMENT>& subspaceData = dsg.getDataVector(i);
89

90 // this is very unlikely but can happen if dsg is different
than↪→

91 // lmax and lmin of combination scheme
92 if(subspaceData.size() == 0 && subspaceSizes[i] == 0)
93 continue;
94

95 // this happens for subspaces that are only available in
component grids↪→

96 // on other process groups
97 if( subspaceData.size() == 0 && subspaceSizes[i] > 0 ){
98 subspaceData.resize( subspaceSizes[i] );
99 }

100
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101 // wenn subspaceData.size() > 0 und subspaceSizes > 0
102 for (size_t j = 0; j < subspaceData.size(); ++j) {
103 subspaceData[j] = *buf_it;
104 ++buf_it;
105 }
106 }
107 }
108 } /* namespace combigrid */

A.3. AdvectionExample

1 int main(int argc, char** argv) {
2 MPI_Init(&argc, &argv);
3

4 /* when using timers (TIMING is defined in Stats), the Stats class
must be↪→

5 * initialized at the beginning of the program. (and finalized in
the end)↪→

6 */
7 Stats::initialize();
8

9 // read in parameter file
10 boost::property_tree::ptree cfg;
11 boost::property_tree::ini_parser::read_ini("ctparam", cfg);
12

13 // number of process groups and number of processes per group
14 size_t ngroup = cfg.get<size_t>("manager.ngroup");
15 size_t nprocs = cfg.get<size_t>("manager.nprocs");
16

17 // divide the MPI processes into process group and initialize the
18 // corresponding communicators
19 theMPISystem()->init( ngroup, nprocs );
20

21 // this code is only executed by the manager process
22 WORLD_MANAGER_EXCLUSIVE_SECTION {
23 /* create an abstraction of the process groups for the manager's

view↪→

24 * a pgroup is identified by the ID in gcomm
25 */
26 ProcessGroupManagerContainer pgroups;
27 for (size_t i = 0; i < ngroup; ++i) {
28 int pgroupRootID(i);
29 pgroups.emplace_back(
30 std::make_shared< ProcessGroupManager > ( pgroupRootID )
31 );
32 }
33

34 // create load model
35 LoadModel* loadmodel = new LinearLoadModel();
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36

37 /* read in parameters from ctparam */
38 DimType dim = cfg.get<DimType>("ct.dim");
39 LevelVector lmin(dim), lmax(dim), leval(dim);
40 IndexVector p(dim);
41 combigrid::real dt;
42 size_t nsteps, ncombi;
43 cfg.get<std::string>("ct.lmin") >> lmin;
44 cfg.get<std::string>("ct.lmax") >> lmax;
45 cfg.get<std::string>("ct.leval") >> leval;
46 cfg.get<std::string>("ct.p") >> p;
47 ncombi = cfg.get<size_t>("ct.ncombi");
48 dt = cfg.get<combigrid::real>("application.dt");
49 nsteps = cfg.get<size_t>("application.nsteps");
50

51 // todo: read in boundary vector from ctparam
52 std::vector<bool> boundary(dim, true);
53

54 // check whether parallelization vector p agrees with nprocs
55 IndexType checkProcs = 1;
56 for (auto k : p)
57 checkProcs *= k;
58 assert(checkProcs == IndexType(nprocs));
59

60 /* generate a list of levelvectors and coefficients
61 * CombiMinMaxScheme will create a classical combination scheme.
62 * however, you could also read in a list of levelvectors and

coefficients↪→

63 * from a file */
64 CombiMinMaxScheme combischeme(dim, lmin, lmax);
65 combischeme.createAdaptiveCombischeme();
66 std::vector<LevelVector> levels = combischeme.getCombiSpaces();
67 std::vector<combigrid::real> coeffs = combischeme.getCoeffs();
68

69 // output combination scheme
70 std::cout << "lmin = " << lmin << std::endl;
71 std::cout << "lmax = " << lmax << std::endl;
72 std::cout << "CombiScheme: " << std::endl;
73 std::cout << combischeme << std::endl;
74

75 // create Tasks
76 TaskContainer tasks;
77 std::vector<int> taskIDs;
78 for (size_t i = 0; i < levels.size(); i++) {
79 Task* t = new TaskExample(dim, levels[i], boundary, coeffs[i],
80 loadmodel, dt, nsteps, p);
81 tasks.push_back(t);
82 taskIDs.push_back( t->getID() );
83 }
84

85 // create combiparameters
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86 CombiParameters params(dim, lmin, lmax, boundary, levels,
coeffs, taskIDs,↪→

87 ncombi, 1 );
88 params.setParallelization(p);
89 // create abstraction for Manager
90 ProcessManager manager(pgroups, tasks, params);
91

92 // the combiparameters are sent to all process groups before the
93 // computations start
94 manager.updateCombiParameters();
95

96 std::cout << "set up component grids and run until first
combination point"↪→

97 << std::endl;
98

99 /* distribute task according to load model and start computation
for↪→

100 * the first time */
101 Stats::startEvent("manager run first");
102 manager.runfirst();
103 Stats::stopEvent("manager run first");
104

105 for (size_t i = 0; i < ncombi; ++i) {
106 Stats::startEvent("combineAsync");
107 manager.combineAsync();
108 Stats::stopEvent("combineAsync");
109

110 // evaluate solution and
111 // write solution to file
112 std::string filename("out/solution_" + std::to_string(ncombi)

+ ".dat" );↪→

113 Stats::startEvent("manager write solution");
114 manager.parallelEval( leval, filename, 0 );
115 Stats::stopEvent("manager write solution");
116

117 std::cout << "run until combination point " << i+1 <<
std::endl;↪→

118

119 // run tasks for next time interval
120 Stats::startEvent("manager run");
121 manager.runnext();
122 Stats::stopEvent("manager run");
123 }
124

125 // send exit signal to workers in order to enable a clean program
termination↪→

126 manager.exit();
127 }
128

129 // this code is only execute by the worker processes
130 else {
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131 // create abstraction of the process group from the worker's
view↪→

132 ProcessGroupWorker pgroup;
133

134 // wait for instructions from manager
135 SignalType signal = -1;
136

137 while (signal != EXIT)
138 signal = pgroup.wait();
139 }
140

141 Stats::finalize();
142

143 /* write stats to json file for postprocessing */
144 Stats::write( "timers.json" );
145

146 MPI_Finalize();
147

148 return 0;
149 }
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B.1. Advection-Diffusion

The ctparam file containing the input parameters consist of three sections namely: ct, appli-
cation and manager. All three sections contain values in agreement with their names. The
ct contains the combination technique parameters, namely dim which specifies the dimension
of the problem, ~lmin and ~lmax which specify the minimum and the maximum size of the level
vectors along each dimension. The parameter leval is used to specify the level at which the full
grid evaluation should take place. Finally, parameter p denotes the parallelization vector while
ncombi specifies the number of combinations that should occur in that test sequence. The ap-
plication section consists of dt. which is the euler time step ∆T to be used in calculation phase,
and nsteps which determines how many of such calculation steps should be run between each
combination steps. The manger section contain ngroup and nprocs which denotes the number
of groups and processes per each group respectively.

ctparam

1 [ct]
2 dim = 2
3 lmin = 3 3
4 lmax = 10 10
5 leval = 5 5
6 p = 1 2
7 ncombi = 10
8

9 [application]
10 dt = 1e-3
11 nsteps = 100
12

13 [manager]
14 ngroup = 2
15 nprocs = 2

Figure B.1.: Adevction-Diffusion example ctparam file

B.2. GENE

The ctparam file of GENE has two additional sections preproc and faults in addition to the pre-
vious three sections of ct, application and manager. The parameters enclosed in the ct section
include: readspaces, which denotes how the rest of the parameters in the file should be read.
dim which corresponds to the number of dimensions of the problem. lmin and lmax which
correspond to ~lmin and ~lmax respectively. While, leval and leval2 state the level vectors to be
used for two separate full grid evaluation after the sparse grid computation. The parameters
fg file path and fg file path2 specify where the respective evaluation should be stored. parame-
ter p denotes number of processes to be used per dimension, whereas boundary indicates which
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dimension has boundary points, and hierarchization dims is used to establish if the following
dimension would be hierarchized or not. ncombi specifies the total number of combination
steps. The are also parameters reduceCombinationDimsLmin and reduceCombinationDimsLmax
determine the maximum and the minimum extent of the dimension to be used to facilitate
reduced combination.

The section application contains parameters pertaining to GENE. dt. which is the euler time
step ∆T which is considered only if its a linear simulation where the adaptivity is switched
off. nsteps corresponds to the number of calculation steps that should take place between each
combination steps. Its also possible to set time between each combinations instead of fixed
steps using the parameter combitime. the parameters shat, kymin and lx correspond to ŝ, kymin

and lx respectively. numspecies denotes number of species to be used in the simulation. While,
GENE local and GENE nonlinear are used to flag if the simulation is local and
or non-linear.

The preproc sections contains the location of the necessary libraries and executables to be
used by GENE. basename specifies the name to be used as the root name for all the folders that
would be created as a result of simulation. executable provides the location the gene executable
file. mpi marks the kind of MPI module that should be used. sgpplib and tasklib are used to point
towards the libraries pertaining to sgpp and the local tasks respectively. Finally, startscript
points to the batch file that would initiate the entire simulation.

The manager section like before, states the number of process groups and processes to be
used in the simulation via ngroup and nprocs respectively.

The faults section like the name suggest contains parameters pertaining to the fault tolerance
segment. num faults fixes the number of faults that is acceptable. Finally, the parameters itera-
tion faults and global rank faults are used to denote the vector of time steps at which processes
fail and global rank of process that fails respectively.
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ctparam

1 [ct]
2 #last element has to be 1 -> specify species with special field
3 dim = 6
4 lmin = 3 1 4 4 4 1
5 lmax = 3 1 13 13 13 1
6 leval = 3 1 4 4 4 1
7 leval2 = 3 1 13 13 13 1
8 p = 1 1 1 8 8 1
9 ncombi = 200

10 readspaces = 1
11 fg_file_path = ../plot.dat
12 fg_file_path2 = ../plot2.dat
13 boundary = 1 0 1 1 1 0
14 hierarchization_dims = 0 0 1 1 1 0
15 reduceCombinationDimsLmin = 0 0 0 0 0 0
16 reduceCombinationDimsLmax = 0 0 1 1 1 0
17

18 [application]
19 dt = 0.005
20 nsteps = 1
21 combitime = 10000000
22 shat = 0.7960
23 kymin = 0.3000
24 lx = 4.18760
25 numspecies = 1
26 GENE_local = T
27 GENE_nonlinear = F
28

29 [preproc]
30 basename = ginstance
31 executable = ./gene_new_machine
32 mpi = mpiexec
33 sgpplib = $HOME/sgpp
34 tasklib = $HOME/lib
35 startscript = start.bat
36

37 [manager]
38 ngroup = 4
39 nprocs = 64
40

41 [faults]
42 num_faults = 0
43 iteration_faults = 2 4 7 8
44 global_rank_faults = 2 1 7 0

Figure B.2.: GENE example ctparam file
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C. Additional Plots

Figure C.1.: Timeline of all processes of normal combination technique

Figure C.2.: Timeline of all processes of asynchronous combination technique
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Figure C.3.: Timeline of all processes normal combination technique of only one combination
step

Figure C.4.: Timeline of one normal combination step



Figure C.5.: Time line of one asynchronous combination Step
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[2] Hans-Joachim Bungartz, M Griebel, D Röschke, and C Zenger. Pointwise convergence of the
combination technique for Laplace’s equation. Technische Universität München. Institut für
Informatik, 1993.

[3] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta numerica, 13:147–269,
2004.

[4] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir. To-
ward exascale resilience. The International Journal of High Performance Computing Applica-
tions, 23(4):374–388, 2009.

[5] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. To-
ward exascale resilience: 2014 update. Supercomputing frontiers and innovations, 1(1):5–28,
2014.

[6] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude
Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, et al. The
international exascale software project roadmap. International Journal of High Performance
Computing Applications, 25(1):3–60, 2011.
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