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Preface

Since the early days of Quantum Mechanics, scattering theory has been a central tool for comparison
of theory with experiment. Mathematical foundations of scattering theory were laid by giants of
Mathematical Physics such as L.D. Faddeev or T. Kato, as discussed, e.g., in [Si18, De18]. The
problem of asymptotic completeness, i.e., the question of particle interpretation of all states in the
physical Hilbert space of the theory, emerged as one of the main problems of the mathematical scat-
tering theory. Its solution in N -body Quantum Mechanics for particles with quadratic dispersion
relations, interacting with possibly long-range forces, is an impressive chapter of the 20th century
Mathematical Physics whose milestones are [En78, SiSo87, Gr90, De93]. However, if the assumption
of quadratic dispersion relations is dropped, even in Quantum Mechanics the problem of complete
particle interpretation is largely open beyond the two-body scattering. It is therefore not a surprise
that in quantum field theory (QFT) or for quantum spin systems, where basic excitations typically
have non-quadratic dispersion relations, asymptotic completeness is rather poorly understood. An
additional problem for quantum systems with infinitely many degrees of freedom is a possible break-
down of the Stone-von Neumann uniqueness theorem and the resulting multitude of ‘charged sectors’.
This aspect undermines the conventional property of asymptotic completeness, inherited from Quan-
tum Mechanics, and calls for more suitable concepts. It is particularly severe in the presence of
electric charges and massless particles (photons) which is a one aspect of the infrared problem.

This work is a summary of nine papers, listed below, which form the author’s habilitation project.
This project focuses on scattering in relativistic and non-relativistic quantum field theories (QFT)
and in quantum spin systems. The central questions include:

1. Rigorous construction of scattering states.

2. Consistent treatment of electrically charged particles (the infrared problem).

3. The problem of complete particle interpretation of arbitrary physical states
(asymptotic completeness).

To make progress on these questions, methods from the theory of operator algebras, partial differen-
tial equations and spectral theory of operators on Hilbert and Banach spaces are used and further
developed.

The following three core publications form the cumulative habilitation thesis. They are within
the scope of objectives 1, 2, 3 above, respectively.

[BDN16] S. Bachmann, W. Dybalski and P. Naaijkens Lieb-Robinson bounds, Arveson spectrum and
Haag-Ruelle scattering theory for gapped quantum spin systems. Ann. Henri Poincaré 17,
(2016) 1737–1791. (AHP Prize 2016).

[AD17] S. Alazzawi and W. Dybalski. Compton scattering in the Buchholz-Roberts framework of rela-
tivistic QED. Lett. Math. Phys. 107, (2017) 81–106.

[DM15] W. Dybalski and J.S. Møller. The translation invariant massive Nelson model III. Asymptotic
completeness below the two-boson threshold. Ann. Henri Poincaré 16, (2015) 2603–2693.

Other publications within this habilitation project are listed below:

[Dy18] W. Dybalski. Asymptotic observables in gapped quantum spin systems.
Commun. Math. Phys. 357, (2018) 231–248.

[DG14] W. Dybalski and C. Gérard. Towards asymptotic completeness of two-particle scattering in
local relativistic QFT. Commun. Math. Phys. 326, (2014) 81–109.
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[DG14.1] W. Dybalski and C. Gérard. A criterion for asymptotic completeness in local relativistic QFT.
Commun. Math. Phys. 332, (2014) 1167–1202.

[DT13] W. Dybalski and Y. Tanimoto. Asymptotic completeness for infraparticles in two-dimensional
conformal field theory. Lett. Math. Phys. 103, (2013) 1223–1241.

[DT12] W. Dybalski and Y. Tanimoto. Infraparticles with superselected direction of motion in two-
dimensional conformal field theory. Commun. Math. Phys. 311, (2012) 457–490.

[DT11] W. Dybalski and Y. Tanimoto. Asymptotic completeness in a class of massless relativistic
quantum field theories. Commun. Math. Phys. 305, (2011) 427–440.

In Section 1 of this summary we introduce the main concepts and methods of scattering theory
in the case of quantum-mechanical potential scattering. In Sections 2-5 we summarize the content
of the papers listed above, as indicated in the following table of contents.
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1 Scattering in quantum mechanics

The main goal of this section is to summarize the basics of quantum mechanical scattering, presented
in standard textbooks [RS3, DG]. In the last paragraph we will also explain in this simple setting
an argument from [Dy18], which will be later used in Subsection 3.3.

We consider one quantum mechanical particle in an external potential. Its space of states is the
Hilbert space H = L2(R3) of square-integrable functions and its time evolution is governed by the
Schrödinger equation

i∂tΨt = HΨt, H = −1

2
∆ + V (x), (1.1)
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Figure 1.1. Collision of a plane wave with an obstacle.

where ∆ := ∂2
x1 + ∂2

x1 + ∂2
x3 is the Laplacian on R3, the real valued function V is the interaction

potential and H is called the Hamiltonian. For a given initial condition Ψ0, the solution to (1.1) has
the form

Ψt = e−iHtΨ0. (1.2)

Figure 1.1 schematically illustrates a possible time evolution. Here the initial condition is an incident
plane wave1 and the potential is depicted as an obstacle. For large times after the collision we expect
in addition an approximately spherical scattered wave. Thus long after the collision the solution
looks like a superposition of a plane wave and a spherical wave, which are both solutions of the
Schrödinger equation with the free Hamiltonian H0 = −∆. The message of Figure 1.1 is therefore
that there exist states Ψout of the particle in potential V which for large times evolve like states Ψ
of the free theory. In other words

lim
t→∞
‖e−itHΨout − e−itH0Ψ‖ = 0 ⇔ lim

t→∞
‖Ψout − eitHe−itH0Ψ‖ = 0. (1.3)

The states Ψout are called the scattering states and they form the range of the wave operator
which is defined as

W out := lim
t→∞

eitHe−itH0 , (1.4)

where the strong limit is understood. Even if the limit exist, it is not automatically a unitary
operator, it may be merely an isometry. The existence of the limits above is usually proven using
the Cook’s method: Let Ψt := eitHe−itH0Ψ be the approximating sequence of a scattering state.
Suppose we can show that

‖∂tΨt‖ = ‖eitHV e−itH0Ψ‖ (1.5)

is integrable in t. Then the limit exists as it can be expressed as a convergent integral

lim
t→∞

Ψt =

∫ ∞

t0

(∂τΨτ )dτ + Ψt0 , (1.6)

for any t0 ≥ 0. It is plausible from the r.h.s. of (1.5), that integrability of ‖∂tΨt‖ depends on decay
properties of the potential. For short-range potentials, which decay faster than |x|−1 for large |x|, the
above argument gives the existence of the wave operator (1.4). However, in the physically important
case of the Coulomb potential, with |x|−1 decay, the strong limit in (1.4) does not exist. This is
a simple example of an infrared problem, whose solution is well known: The construction of the

1Strictly speaking a plane wave is not in L2(R3). But this point can be left aside in this introductory discussion.
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wave operator must be refined, e.g., with the help of the Dollard prescription [Do64]. Instead of
comparing the interacting time-evolution with the free evolution as in (1.4), we introduce a more
refined comparison dynamics: It is governed by the asymptotic Hamiltonian

Has(t) := H0 + V (−i∇xt), (1.7)

where we evaluated the potential at the ballistic trajectory of the particle, which we anticipate for
large t. As this Hamiltonian is time-dependent, the solution of the Schrödinger equation (1.1) is
more complicated than in (1.2), namely

Ψt = e−i
∫ t
0 Has(τ)dτΨ0. (1.8)

The existence of the Dollard wave operator, which has the form

W out
D := lim

t→∞
eitHe−i

∫ t
0 Has(τ)dτ , (1.9)

can then be shown using the Cook method.
Given the existence of the wave operators, the next problem is asymptotic completeness. We

say that a quantum mechanical theory given by H = −1
2∆ + V (x) is asymptotically complete if

scattering states and bound states2 of H span the entire Hilbert space. As a bound state situation
corresponds to the particle confined by the potential, the problem of proving asymptotic complete-
ness consists in excluding ‘fuzzy’ configurations in which the particle in neither confined by the
potential nor scattered. In other words, no matter how far it may travel, there is always a substan-
tial probability that it will come back [En78]. Heuristically, such configurations correspond to the
singular-continuous spectrum of H.

In the absence of bound states, asymptotic completeness amounts to unitarity of the wave oper-
ator (1.4) (resp. (1.9)), which may get lost in the limit t → ∞. Roughly, the idea of the proof is
to construct an inverse of W out with the help of suitable asymptotic observables. The simplest
and most natural asymptotic observable is the asymptotic velocity, which is given by the following
strong limit

fout := lim
t→∞

eitHf(x/t)e−itH . (1.10)

Let us try to prove the existence of this limit using the Cook’s method. We set ft := eitHf(x/t)e−itH

and compute the time derivative. This gives

∂tft = eitHDf(x/t)e−itH , where Df(x/t) := ∂tf(x/t) + i[H, f(x/t)] (1.11)

is the Heisenberg derivative of t 7→ f(x/t). By a straightforward computation one obtains

Df(x/t) = −1

t
(∇f)(x/t)

(
(x/t)− (−i∇x)

)
+O(t−2), (1.12)

where the error term O(t−2) decays in norm as t−2 thus is integrable. However, the leading term
on the r.h.s. (1.12) exhibits only t−1 decay, thus we cannot apply the Cook’s method directly. On
the other hand, alluding to the expected ballistic motion of the particle, we expect that the average
velocity x/t tends to the instantaneous velocity −i∇x along the time evolution. This additional
ingredient, called a propagation estimate, has the following form

∫ ∞

1

dt

t
‖(∇f)(x/t)

(
(x/t)− (−i∇x)

)
e−itHΨ‖2 <∞, (1.13)

2Bound states are eigenvectors of H.
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for Ψ ∈ H of bounded energy, and allows to conclude the proof of existence of the asymptotic
velocity (1.10).

Instead of discussing the particular estimate (1.13), let us recall the general idea of the method
of propagation estimates [SiSo87]. Suppose we want to prove

∫ ∞

1
dt〈Ψ, eitHa(t)e−itHΨ〉 <∞ (1.14)

for some propagation observable t 7→ a(t) s.t. a(t) ≥ 0. The idea is to find a new propagation
observable t 7→ b(t) s.t. supt∈R ‖b(t)‖ <∞ and

a(t) ≤ Db(t), (1.15)

possibly up to norm-integrable rest terms. By integrating both sides of this inequality along the time
evolution, we easily obtain

∫ ∞

1
dt〈Ψ, eitHa(t)e−itHΨ〉 ≤ 2 sup

t∈R
‖b(t)‖+ C (1.16)

and thus the desired bound (1.14) holds.
An obvious difficulty with the method of propagation estimates consists in guessing a propagation

observable b such that the inequality (1.15) holds. In some cases the required lower bound on the
Heisenberg derivative (1.11) is provided by a Mourre estimate [Mo81]. In the present context it
has the form

1J (H)i[H,A]1J (H) ≥ c1J (H), (1.17)

where c > 0, A := 1
2

{
x · (−i∇x) + h.c.

}
is the dilation operator and 1J is the characteristic function

of a suitable set J which does not contain the point spectrum of H. Another consequence of the
Mourre estimate is the absence of the singular continuous spectrum.

To conclude this section we would like to point out that the method of propagation estimates is
not the only available strategy for proving the existence of asymptotic observables. In [Dy18] the
present author found an alternative argument, which will be used in Subsection 3.3. We restrict
attention to short-range potentials and want to control the strong convergence of an asymptotic
observable of the form

ht := eitH χ̃h(x/t)χ̃ e−itH . (1.18)

Here χ, h ∈ C∞0 (R3), χ̃ := χ(−i∇x), 0 /∈ supph and for technical reasons we also require that
suppχ ⊂ supph and supph is a convex set. We start from the simple observation that for Ψ ∈
RanW out the limit limt→∞ htψ is readily computed. Thus it suffices to consider Ψ ∈ (RanW out)⊥

and for such vectors we can write

htΨ = eitHe−itH0 χ̃h(x/t+ (−i∇x))χ̃ eitH0e−itHΨ

= eitHe−itH0 χ̃h(x/t+ (−i∇x))χ̃ (W ∗t − (W out)∗)Ψ

= eitHe−itH0 χ̃h(x/t+ (−i∇x))χ̃

∫ ∞

t
ds (−∂sW ∗s )Ψ

= eitHe−itH0 χ̃h(x/t+ (−i∇x))χ̃

∫ ∞

t
ds ieisH0V (x)e−isHΨ, (1.19)

where in the first step we used h(x/t) = e−itH0h(x/t+ (−i∇x))eitH0 . In the second step we applied
Ψ ∈ (RanW out)⊥ which gives (W out)∗Ψ = 0, and denoted by Wt the approximating sequence of the
wave operator. The final expression tends to zero due to the decay of V and support properties of
h, χ. Thus we obtain convergence of (1.18).
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2 Asymptotic completeness in non-relativistic QFT [DM15]

Models of non-relativistic QFT (NRQFT) considered here describe massive quantum-mechanical par-
ticles (‘electrons’) coupled to second-quantized Bose fields, whose excitations will be called ‘bosons’.
Depending on the physical context, the bosons have the interpretation of photons or phonons. The
models of NRQFT can generally be divided into confined and translation invariant3. In the former
case the electrons are held in an external potential, while in the latter case only interparticle interac-
tions are present. Since the present summary is situated at the interface between the relativistic and
non-relativistic QFT, we will focus on translation invariant models in the discussion below. However,
at times we will refer to confined models, whose spectral and scattering theory is better understood
[DG99, BFS98.2, FGS02, Sp97, DGK13, FS12, FS12.1].

2.1 Nelson and polaron model and their energy-momentum spectrum

The Hilbert space of models of NRQFT discussed here has the structure H = H⊗ Γ(h), where H =
L2(R3) is the single-electron space, h = L2(R3) is the single-boson space and Γ(h) is the corresponding
symmetric Fock space. A prominent class of examples of NRQFT is given by Hamiltonians of the
form [Ne64, Fr73, Fr74]:

H = Ω̂(−i∇x)⊗ 1 + 1⊗ dΓ(ω) + λ

∫

R3

dk G(k)
(
e−ikx ⊗ a∗(k) + eikx ⊗ a(k)

)
, (2.1)

where Ω̂, ω are the dispersion relations of the (bare) electron and boson, a∗(k), a(k) denote the
creation and annihilation operators of bosons, and G is the form-factor which controls the interaction
between the electrons and bosons. Moreover, the Hamiltonian of non-interacting bosons is given by
the second quantisation operator dΓ(ω) =

∫
R3 dk ω(k)a∗(k)a(k). As for ω and G, there are two

important choices: First, let ω(k) =
√
k2 +m2

f , Ω̂(p) = p2/(2me), me > 0, G(k) = g(k)/
√

2ω(k). In
this case Hnr is the Nelson model, which is a toy-model of quantum electrodynamics. We say that the
Nelson model is massive (resp. massless) if mf > 0 (resp. mf = 0). The function g above implements
the ultraviolet cut-off, which is usually kept fixed in NRQFT (see, however, [Ne64, BDP12, Mi12]).
Second, let ω(k) = const, Ω̂(p) = p2/(2me), G(k) = g(k)/|k|, g ∈ S(R3). In this case H is the
Fröhlich polaron model which is a physically relevant effective theory of electrons interacting with
optical phonons in a dielectric crystal.

By translational invariance, the Hamiltonian (2.1) commutes with the total momentum operators
P := (−i∇x)⊗1+1⊗dΓ(k), where dΓ(ki) :=

∫
R3 dk k

ia∗(k)a(k), i = 1, 2, 3, are the boson momentum
operators. The joint spectral measure of the energy-momentum operators (H,P ) is denoted by E( · ).
Furthermore, the Hamiltonian H has a decomposition into fiber Hamiltonians {H(ξ)}ξ∈R3 at fixed
momentum ξ, which are concrete operators on Γ(h), i.e.,

H = I∗
∫ ⊕

R3

dξ H(ξ)I, (2.2)

where I : H → L2(R3; Γ(h)) is a suitable unitary map.
Let us now move on to spectral theory of the model, whose analysis was initiated in [Fr73, Fr74].

In the case of massive bosons, on which we focus here, the lower part of the spectrum of H(ξ) is
well understood for arbitrary values of the coupling constant λ [Mo05] (see Figure 2.1). The lower
boundary of the spectrum is denoted Σ(0)(ξ) and gives the (renormalized) dispersion relation of the
physical electron in its ground state. The one- and two-boson thresholds are defined by

Σ(1)(ξ) := inf
k
{Σ(0)(ξ − k) + ω(k) }, Σ(2)(ξ) := inf

k1,k2
{Σ(0)(ξ − k1 − k2) + ω(k1) + ω(k2) } (2.3)

3The intermediate case of models admitting ionization will not be treated here.

6



(

ξ

R

Σ

Σ

(1)

(2)

Σ
(0)

σ (H ξ ))

Figure 2.1. Schematic shape of the spectrum of the Nelson model.

and they define the lowest energies at which one electron and one (resp. two) bosons can coexist.
Σ(1)(ξ) is the lower boundary of the essential spectrum of H(ξ) and both below and above of the
one-boson thresholds there may be additional branches of eigenvalues (mass-shells) corresponding to
excited states of the physical electron. Together with the ground state mass-shell they constitute the
pure point part of the spectrum Σpp. Furthermore, in the region R below the two-boson threshold a
Mourre estimate is available [MR12]. Namely, for any (ξ0, E0) ∈ R in the essential spectrum (outside
of some sets of measure zero) there exist a neighbourhood N0 of ξ0, a neighbourhood J0 of E0, and
a constant cm > 0 s.t. for any ξ ∈ N0

1J0(H(ξ))i[H(ξ), dΓ(aξ0)]1J0(H(ξ)) ≥ cm1J0(H(ξ)). (2.4)

Here 1J0 denotes the characteristic function of J0, the operator aξ0 := vξ0 · i∇k + i∇k · vξ0 is defined
with the help of a suitable vector field vξ0 and dΓ(aξ0) is its second quantisation acting on Γ(h).
If there is only one mass-shell of the electron in the energy-momentum spectrum, vξ0 is the unit
vector in the direction of the relative velocity ∇Σ(0)(ξ0 − k) − ∇ω(k); in general it is given by
a more complicated expression. A standard consequence of a Mourre estimate is the absence of
singular continuous spectrum in R and a natural next question is asymptotic completeness in the
same region. The latter is the main result of [DM15], which we discuss below.

2.2 Asymptotic completeness

We recall that in the energy-momentum region in question only collisions of one electron and one
boson are energetically possible (in addition to single-electron states). We recall from Section 1, that
proving asymptotic completeness amounts to excluding ‘fuzzy’ configurations in which the boson
‘cannot decide’ if it should stay close to the bare electron and thus contribute to the physical electron,
or rather scatter to infinity. The mathematical formalism for analyzing this problem is that of
extended objects. The extended Hilbert space, Hamiltonian and momentum operators are given by
[HS95, DG99]

Hex = H⊗ Γ(h), Hex = H ⊗ 1 + 1⊗ dΓ(ω), P ex = P ⊗ 1 + 1⊗ dΓ(k) (2.5)

and the joint spectral measure of (P ex, Hex) will be denoted by Eex( · ). The idea of the proof of
asymptotic completeness, which dates back to V. Enss [En78], is to cut every physical state into two
pieces: The first piece, where the bare electron and boson stay close together, is put on the first
factor of the extended Hilbert space. The second piece, where the two particles travel far apart, is

7



placed on the second factor. As the far separated particles should be essentially independent, Hex

and P ex in (2.5) act as the free energy-momentum operators on the second factor.
To perform this cutting of states, we will use pairs of (possibly time-dependent) bounded operators

jt0, j
t
∞ on H⊗ h which give rise to operators jt : H⊗ h→ H⊗ (h⊕ h) defined by

jt(Ψ⊗ h) :=
(
jt0(Ψ⊗ h), jt∞(Ψ⊗ h)

)
. (2.6)

With a suitable choice of jt0, jt∞, to be specified below, a state Ψ⊗h, describing one bare electron and
one boson, is divided into two pieces whose physical interpretation was discussed above. In order to
second-quantize this operation, we denote by U : Γ(h⊕ h)→ Γ(h)⊗Γ(h) the canonical identification
of the two Fock spaces. It is defined by4

UΩ = Ω⊗ Ω, Ua∗(h1, h2) = (a∗(h1)⊗ 1 + 1⊗ a∗(h2))U, (2.7)

where Ω is the vacuum vector in Γ(h). After tacitly extending U from Γ(h⊕ h) to H⊗ Γ(h⊕ h), the
arguments h1, h2 in (2.7) correspond to the two pieces in question which are distributed by U on the
two tensor factors. Now the actual cutting of states at the second-quantized level is performed by
the operator

Γ̌(jt) : H → Hex, Γ̌(jt) := UΓ(jt), (2.8)

where Γ(jt)|H⊗(⊗ns h) := jt ⊗ · · · ⊗ jt︸ ︷︷ ︸
n

.

After these preparations we are ready to state and discuss the main result of [DM15].

Theorem 1 [DM15] There exists the wave operator W out
R : Eex(R)H+ → E(R)H given by

W out
R := lim

t→∞
eitH Γ̌(1, 1)∗e−itHex

, (2.9)

where H+ := E(Σpp)H⊗ Γ(h) and Σpp is the pure-point part of the spectrum of (H,P ) consisting of
the mass-shells of the physical electron.

Furthermore, W out
R is a unitary, i.e.,

W out∗
R W out

R = Eex(R)|H+ , (2.10)
W out
R W out∗

R = E(R). (2.11)

The wave operator in (2.9) is more complicated than its quantum mechanical counterpart (1.4).
This can be traced back to the complicated composite structure of the physical electron in NRQFT
discussed above. In the Nelson model the problems of the existence of the limit in (2.9) is a standard
application of the Cook’s method [DG99, FGS01, FGS04, GZ09]. In the case of the polaron model,
however, the existence of this limit was non-trivial and was first established in [DM15]. Due to
the constant dispersion relation of bosons (hence vanishing group velocity) it was not even clear
if the picture of a propagating particle is correct. It turned out that the decisive quantity here
is the dispersion relation of the relative motion of the two particles ωeff(k) = Σ(0)(ξ − k) + ω(k)
which is never constant. Another interesting message of the polaron model is that a singular form-
factor G(k) ∼ |k|−1 is harmless if the bosons are massive. This should be compared with the case
of massless bosons, where a milder singularity G(k) ∼ |k|−1/2 causes severe infrared problems in
scattering theory, which have to be handled by Dollard-type modifications [Pi05, Dy17].

The most important part of Theorem 1 is the asymptotic completeness relation (2.11). Similarly
as in quantum mechanics, it says that every vector in the range of E(R) is also in the range of

4If h is a function, a∗(h) :=
∫
R3 a

∗(k)h(k)dk.
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the wave operator. Thus it is either a scattering state of one physical electron and one boson, or a
physical single-electron state5. Compared to earlier works on asymptotic completeness for translation
invariant models of NRQFT [FGS04, FGS07], the advantage of Theorem 1 is that it holds for arbitrary
values of the coupling constant λ and that the spectral region of validity R is defined by the natural
thresholds (2.3). An obvious limitation of Theorem 1 is the restriction to two-body scattering, which
was not needed in [FGS04, FGS07].

Let us now comment on the proof of Theorem 1, assuming for simplicity that there is only one
mass-shell Σ(0) of the electron in the spectrum. As mentioned in Section 1, to prove asymptotic
completeness one constructs the inverse of the wave operator using various asymptotic observables.
We will discuss here the problem of existence of one particular asymptotic observable, which can
be seen as a variant of the asymptotic velocity (1.10). To define it, we choose a function q ∈
C∞0 (R3), which is equal to one near zero, and set qt := q(aξ0/t), where aξ0 appeared in the Mourre
estimate (2.4). We set

Q+ := lim
t→∞

eitH(ξ)χ̃Γ(qt)χ̃e−itH(ξ), (2.12)

for ξ sufficiently close to ξ0 and χ̃ := χ(H(ξ)) for χ ∈ C∞0 (R3) supported below the two-boson
threshold. To show the convergence in (2.12) by the Cook’s method, we introduce the approximating
sequence Φ(t) := χ̃Γ(qt)χ̃ and compute its Heisenberg derivative

DΦ(t) = ∂tΦ(t) + i[H(ξ),Φ(t)]. (2.13)

A seemingly natural next step, taken in earlier work on asymptotic completeness (e.g. [DG99,
FGS04]), is to evaluate the above expression to the leading order in t−1, making use of the explicit
expression for the Hamiltonian. Actually, this is what we did in the quantum-mechanical discussion in
(1.12). However, this introduces into the computation the bare dispersion relation Ω̂ of the electron,
rather than the physical relation Σ(0) coming from the spectrum. As a consequence the required
propagation estimate (a counterpart of (1.13)) does not hold.

To bring to light the physical dispersion relation Σ(0), which may be very different from Ω̂ for
large coupling constants, we come back to the idea of cutting the state with the help of the map
Γ̌(jt) defined in (2.8). Let j0, j∞ ∈ C∞(R3), where j0 is supported in the region where q0 = 1, and
j2
0 + j2

∞ = 1. Due to the last relation we have Γ̌(jt)∗Γ̌(jt) = 1, where jt0,∞ := j0,∞(aξ0/t). Using this,
and setting χ̃ex := χ(Hex(ξ)), we obtain from (2.13)

DΦ(t) = Γ̌(jt)∗χ̃exP ∗1 (Γ(qt)⊗ dqt)P1χ̃
exΓ̌(jt) +O(t−2), (2.14)

where dqt = ∂tq
t + i[ωeff , q

t] is the Heisenberg derivative involving the correct effective dispersion
relation of the electron-boson system ωeff(k) := Σ(0)(ξ − k) + ω(k) and P1 : Γex(h) → Γ(h) ⊗ h
is a projection. With formula (2.14) at hand we are able to show convergence in (2.12) using the
method of propagation estimates outlined in Section 1. To verify the key lower bound (1.15) on the
Heisenberg derivative we use the Mourre estimate (2.4). Again the crucial point is that both aξ0 and
the r.h.s. of (2.14) involve the physical dispersion relation Σ(0). This concludes our discussion of the
proof of Theorem 1.

To elucidate the somewhat ad hoc definition of the wave operator (1) and prepare the grounds for
the next section, we recall the standard concept of the asymptotic creation and annihilation operators
of bosons with some wave-functions h ∈ h. They are defined as strong limits

a
(∗)
out(h) = lim

t→∞
eitHa(∗)(e−itωh)e−itH , (2.15)

5Single-electron states correspond to bound states from the quantum-mechanical discussion of Section 1. Differently
than in quantum mechanics, here the single-electron states belong to the ranges of the wave-operators
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on a certain domain inH and they are closely related to the wave operators. In fact, let Ψ ∈ E(Σpp)H
be a physical single-electron state and h a single-boson state s.t. Ψ⊗ a∗(h)Ω ∈ Hex is in the region
R of the extended energy-momentum spectrum. Then it is easy to check that

W out
R (Ψ⊗ a∗(h)Ω) = a∗out(h)Ψ. (2.16)

Thus the action of the wave operator corresponds to ‘adding’ an asymptotic boson to the physical
electron. This latter point of view, which originates from the LSZ [LSZ55] and Haag-Ruelle [Ha58,
Ru62] approach to scattering theory, is very convenient in relativistic QFT.

3 Asymptotic completeness in relativistic QFT and in quantum spin
systems [DG14, DG14.1, BDN16, Dy18]

3.1 Framework

In this section6 we outline some recent progress on scattering theory and the problem of asymptotic
completeness for massive relativistic QFT (RQFT) and gapped quantum spin systems, made in
[DG14, DG14.1, BDN16, Dy18]. In order to treat RQFT and quantum spin systems in parallel in this
review, we introduce the following general setting which collects the assumptions of direct relevance
to scattering theory. From the outset, we restrict attention to RQFT in the vacuum representations
and quantum spin systems in representations of translation invariant ground states.

1. We denote by Γ be the abelian group of space translations and by Γ̂ its Pontryagin dual, i.e.,
the momentum space. In RQFT we have Γ = Rd and Γ̂ = Rd, whereas for quantum spin
systems Γ = Zd and Γ̂ = Sd1 , where the latter denotes the d-dimensional torus.

2. We consider a C∗-dynamical system (A, α), where A is a C∗-algebra of observables and R×Γ 3
(t, x) 7→ α(t,x) is a group of automorphisms which describes translations of observables in space
and time.

3. We assume that there is a norm-dense subalgebra B⊂A of almost-local operators. We refrain
from giving the formal definition here, merely state that for v ∈ Rd with sufficiently large norm,
we have

‖[B1, α(s,vs)(B2)]‖ = O(|s|−∞), B1, B2 ∈ B, (3.1)

that is the commutator decays faster than any inverse power of s. In RQFT this bound follows
from locality and |v| should be larger than the velocity of light, whereas in quantum spin
systems it is a consequence of the Lieb-Robinson bounds [LR72] and |v| should be larger than
the Lieb-Robinson velocity.

4. We suppose that A acts irreducibly on a Hilbert space H and that α is unitarily implemented
on H. That is, there is a unitary representation R× Γ 3 (t, x) 7→ U(t, x) s.t.

α(t,x)(A) = U(t, x)AU(t, x)∗, A ∈ A. (3.2)

The spectrum of U , denoted SpU , is the support of its inverse Fourier transform7. It is a subset
of R × Γ̂ which consists of all the possible values of the total energy and momentum of the
system. The spectrum should contain a simple eigenvalue at {0}, corresponding to the vacuum

6This section overlaps with the author’s planned contribution to the IAMP News Bulletin.
7We follow here the conventions from [BDN16].
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Figure 3.1. Schematic shapes of the energy-momentum spectra (a) in massive RQFT and (b) in a gapped quantum
spin system. Neighbourhoods ∆1,∆2 of some points on the isolated mass-shell p 7→ Σ(p) and the region ∆ of the
multiparticle spectrum illustrate the geometric situation from assumption (a) of Theorem 3. The operators B∗1 , B∗2
create from the vacuum single-particle states living in the regions ∆1,∆2.

vector Ω and a smooth mass-shell Γ̂ 3 p 7→ Σ(p) carrying single-particle states. Instead of
stating all the assumptions on the spectrum here, we refer to Figure 3.1 for schematic shapes
and remark that Σ should not be a constant function and should be isolated from the rest of
the spectrum.

This is a rather abstract setting, so let us give some examples: On the relativistic side we mention
the φ4 models of constructive QFT in two and three spacetime dimensions for small values of the
coupling constant [GJS73, SZ76, Bur77]. On the side of spin systems, the Ising model in strong
transverse magnetic fields in any space dimensions satisfies all the above assumptions [BDN16, Ya04,
Ya05, Po93]. We stress that the single-particle states introduced above are complicated collective
excitations in these models.

3.2 Scattering states

The problem of construction of scattering states is the following8: Given a collection of single-
particle states Ψ1, . . . ,ΨN ∈ H, living on the mass-shell p 7→ Σ(p) in SpU , we would like to define
a state Ψout ∈ H which describes the corresponding configuration of N particles. Anticipating that
asymptotically these particles should be non-interacting bosons, the state Ψout should have all the
properties of the symmetrized tensor product of the constituent single-particle states Ψi, i = 1, . . . , N .
Nevertheless, it should be an element of H and not of ⊗Ns H. The first step towards the solution
of this problem is suggested by the theory of Fock spaces: we pick almost-local operators B∗i ∈ B
which create these single-particle states from the vacuum, i.e., B∗i Ω = Ψi. In order to select such
generalized creation operators, we compute the Arveson spectrum SpB∗i α, which is the support of
the inverse Fourier transform of (t, x) 7→ α(t,x)(B

∗
i ). The key property of the Arveson spectrum is

the energy-momentum transfer relation, which says that for any Borel subset ∆ ⊂ SpU

B∗i E(∆)H ⊂ E(∆ + SpB∗i α)H, (3.3)

where E( · ) denotes the spectral measure of U . In particular, if SpB∗i α is contained in a small
neighbourhood ∆i of a point of the mass-shell (cf. Figure 3.1) then by choosing ∆ = {0} in (3.3)
we obtain that B∗i Ω is a single-particle state. As operators with Arveson spectrum in prescribed
subsets are in abundance, it is easy to obtain such generalized creation operators for a dense family
of single-particle vectors.

8We discuss the outgoing scattering states here. The incoming case is analogous.
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The next step is to define the Haag-Ruelle creation operators by smearing the above generalized
creation operators with wave-packets of the particles involved:

B∗i,t(gi,t) :=

∫

Γ
dµ(x)α(t,x)(B

∗
i )gi,t(x), gi,t(x) :=

∫

Γ̂
dp e−iΣ(p)t+ip·xĝi(p), (3.4)

where dµ, resp. dp, is the Haar measure on Γ, resp. Γ̂, the function p 7→ Σ(p) is the mass-shell
appearing in the spectrum (cf. Figure 3.1) and t is the time parameter. The role of the Haag-Ruelle
creation operators is to compare the interacting evolution appearing in (t, x) 7→ α(t,x) and the free
evolution of the wave-packet at asymptotic times. This is the content of the Haag-Ruelle theorem
whose relativistic variant dates back to [Ha58, Ru62]. It was adapted to quantum spin systems by
S. Bachmann, P. Naaijkens and the present author in [BDN16] following the strategy of the proof
from [Ar]. While a similar enterprise had been accomplished in Euclidean lattice field theory [BF91]
earlier works on scattering in quantum spin systems relied more heavily on properties of particular
models [Ya04.1, GS97, Ma83].

Theorem 2 The following limits exist and are called the outgoing scattering states

Ψout := lim
t→∞

B∗1,t(g1,t) . . . B
∗
N,t(gN,t)Ω. (3.5)

The velocity supports V (gi) := {∇Σ(p) | p ∈ supp ĝi } of the wave-packets gi are assumed to be
disjoint. The incoming scattering states Ψin are constructed analogously by taking the limit t→ −∞.

Let us recall the main steps of the proof in order to indicate how the above general assumptions
ensure the existence of multi-particle scattering states. The argument relies on the Cook’s method,
that is we try to make sense of the formula

Ψout =

∫ ∞

t0

(∂τΨτ )dτ + Ψt0 , (3.6)

where t 7→ Ψt is the approximating sequence of Ψout and t0 ≥ 0 is arbitrary. For this purpose we
check that t 7→ ‖∂tΨt‖ is an integrable function. This is easy to see for N = 1 in which case there is
an exact cancellation of the interacting and the free dynamics for an arbitrary t:

∂t(B
∗
1,t(g1,t)) = 0. (3.7)

The assumption that the mass-shell is isolated from the rest of the spectrum enters crucially here.
Now the case N = 2 is treated using the Leibniz rule and (3.7)

∂tΨt = ∂t(B
∗
1,t(g1,t))B

∗
2,t(g2,t)Ω +B∗1,t(g1,t) ∂t(B

∗
2,t(g2,t))Ω︸ ︷︷ ︸

=0

= [∂t(B
∗
1,t(g1,t)), B

∗
2,t(g2,t)]Ω = O(t−∞), (3.8)

where in the last step we used the assumption (3.1) about the decay of commutators at large spacelike
separation and the disjointness of velocity supports of the two wave-packets. This argument easily
generalizes to arbitrary n, which completes this outline of the proof.

Given the scattering states, one can construct the wave operators in a standard manner. Let
H1 be the single-particle subspace, i.e., the spectral subspace of the mass-shell p 7→ Σ(p), and let
Γ(H1) be the corresponding symmetric Fock space. The outgoing wave operator W out : Γ(H1)→ H
is defined by the relation

W out(a∗(Ψ1) . . . a∗(ΨN )Ω) = lim
t→∞

B∗1,t(g1,t) . . . B
∗
N,t(gN,t)Ω, (3.9)
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where Ψi := B∗i,t(gi,t)Ω and a(∗) are the creation/annihilation operators on Γ(H1). By computing
the scalar products of the scattering states it is easy to check that W out is an isometry. The same is
true for the analogously defined incoming wave operator W in which enters into the definition of the
scattering matrix

S := (W in)∗W out. (3.10)

If S is different from the identity, we say that the theory is interacting. To our knowledge, the
interaction has been proven only in some two-dimensional relativistic systems [OS76, Le08, Ta14]. It
is one of the central problems of RQFT to exhibit an interacting model in four-dimensional spacetime.
In the context of quantum spin systems there are candidates for interacting theories in an arbitrary
dimension, for example the Ising model mentioned above, but we are not aware of a proof.

3.3 Generalized asymptotic completeness

The conventional property of asymptotic completeness requires that the subspace Hout = RanW out,
spanned by the scattering states (3.5), is in fact the full Hilbert space. That is

Hout = H, (3.11)

so that every vector Ψ ∈ H has an interpretation in terms of particles (cf. Figure 3.2 (a)). In
the setting from Subsection 3.1 the only known examples which are interacting and asymptotically
complete are certain two-dimensional relativistic models [Le08, Ta14]9. One reason for this scarcity
of examples may be the following special feature of quantum systems with infinitely many degrees of
freedom: The algebra of observables A may have many inequivalent representations labelled by some
quantum number which we call ‘charge’. The vacuum representation, we are interested in, has the
charge equal to zero. Let us now consider the particle content of the region ∆ of the multiparticle
spectrum in Figure 3.1. Apart from the pairs of the charge-zero particles living on the mass-shell in
the spectrum of U there may also be, e.g., pairs of oppositely charged particles whose single-particle
constituents live in different representations. States describing such oppositely charged pairs live in
the vacuum representation (as their total charge is zero), but are orthogonal to all the scattering
states (3.5) of the charge-zero particles. In this case the asymptotic completeness property (3.11)
fails.

As we typically do not have access to all the charged representations, it is reasonable to generalize
the concept of asymptotic completeness so that it is compatible with the presence of charged pairs.
The idea is illustrated on Figure 3.2 (b): Any state Ψ ∈ H should give rise to a configuration
of charge-zero particles after filtering it through a particle detector which is sensitive only to such
particles. Moreover, every configuration of charge-zero particles should be obtainable in this way.
Arguably, such a concept should suffice to interpret physical experiments, since in the experimental
reality there is always some intervening apparatus. It turns out that such generalized asymptotic
completeness can be formulated and proven under the general assumptions stated in Subsection 3.1.

The first question is how to identify particle detectors in such a general mathematical formalism.
This question was first asked by Araki and Haag in the setting of RQFT [AH67]. They came up with
the time-dependent families of observables of the form

Ct :=

∫

Γ
dµ(x)α(t,x)(B

∗B)h
(x
t

)
, (3.12)

9We also mention partial results on (φ4)2 [SZ76, CD82] and in certain lattice systems which do not quite fit into
our framework [AB01, GS97]. There is also progress on asymptotic completeness in wedge-local QFT [DT11, Du18].
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(b) Generalized asymptotic completeness.

Figure 3.2. (a) Conventional asymptotic completeness requires that every vector Ψ ∈ H is a configuration of charge-
zero particles from Hout. (b) Generalized asymptotic completeness requires that from every vector Ψ gives rise to
a configuration of charge-zero particles after filtering it through a suitable measurement apparatus. Moreover, every
configuration of charge-zero particles can be obtained by this procedure.

where B∗ ∈ B is a generalised creation operator as above and h ∈ C∞0 (Rd). Their limits as t → ∞
can be computed on scattering states Ψout

1 ,Ψout
2 ∈ Hout of bounded energy and, schematically, have

the following form [AH67, Bu90]

lim
t→∞
〈Ψout

1 , CtΨ
out
2 〉 =

∫

Γ̂
dp 〈p|B∗B|p〉h(∇Σ(p))︸ ︷︷ ︸

sensitivity of the detector

〈Ψout
1 , a∗out(p)aout(p)Ψ

out
2 〉︸ ︷︷ ︸

particle density

. (3.13)

Here a∗out(p)aout(p) := W outa∗(p)a(p)(W out)∗ is the asymptotic particle density in momentum space
and the remaining part of the integrand above can be interpreted as the sensitivity of the detector.
It should be stressed, however, that the above results do not say anything about the convergence of
{Ct}t∈R on states which are not in Hout. This question, which is essential for asymptotic complete-
ness, has been a long-standing open problem in RQFT (see [Ha, Section VI.2.3]). First results of
this sort were obtained by C. Gérard and the present author in [DG14, DG14.1] in the relativistic
setting and then generalized to gapped quantum spin systems in [Dy18]. These results rely only on
the general assumptions outlined in Subsection 3.1 and can be summarized as follows:

Theorem 3 Fix a small subset ∆ of the multiparticle spectrum as in Figure 3.1. Then the following
strong limits exist

Aout := lim
t→∞

C1,t . . . CN,tE(∆), where Ci,t :=

∫

Γ
dµ(x)α(t,x)(B

∗
iBi)hi

(x
t

)
, (3.14)

provided that:

(a) B∗i are generalized creation operators of single-particle states living in subsets ∆i of SpU s.t.
∆1 + · · ·+ ∆N ⊂ ∆ (cf. Figure 3.1).

(b) hi have mutually disjoint supports10.

Denote by [AoutH] the subspace of H spanned by the ranges of all the operators Aout constructed as
above for different choices of ∆. Then

Hout = [AoutH]⊕ CΩ, (3.15)

that is, generalised asymptotic completeness holds (cf. Figure 3.2 (b)).

We remark that assumption (a) of this theorem ensures that the detectors Aout annihilate config-
urations involving charged particles (if any) as seen a posteriori from relation (3.15). They also
annihilate possible ‘bound states’, corresponding to embedded mass-shells passing through ∆, which

10We skip here some more technical restrictions on these functions.
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we did not exclude by assumption. The technically most challenging part of the proof of Theorem 3 is
the existence of the limit in (3.14) on arbitrary vectors of bounded energy fromH. For more contrived
choices of the detectors Ci,t this had been shown in [DG14.1] by adapting the quantum-mechanical
method of propagation estimates [SiSo87]. In [Dy18] a different technique was found which applies to
the usual Araki-Haag detectors, as stated above. We explained this strategy in (1.19) in the context
of quantum mechanics. We outline the argument from [Dy18] in the remaining part of this section.

The strategy is to approximate Aout by linear combinations of rank-one operators |Ψout〉〈Ψ̃out|
at the level of the respective approximating sequences. In addition to the convergence, which then
follows from Theorem 2, this also gives relation (3.15). For the purpose of this approximation
argument, we define the mapping aB1,...,BN : Hc → H⊗ L2(ΓN) given by [DG14, DG14.1]

(aB1,...,BNΨ)(x1, . . . , xN ) = αx1(B1) . . . αxN (BN )Ψ. (3.16)

Here B1, . . . BN ∈ B are as in Theorem 3, Hc ⊂ H is the dense domain of vectors of bounded energy
and the fact that the H-valued function on the r.h.s. of (3.16) is square-integrable follows from
[Bu90]. In terms of these maps, we can write for scattering states living in ∆

|Ψout〉〈Ψ̃out| = lim
t→∞

a∗αt(B)

(
|Ω〉〈Ω| ⊗ e−itΣ(Dx)|g〉〈g̃|eitΣ(Dx)

)
aαt(B̃)E(∆), (3.17)

where we introduced the short-hand notation:

αt(B) := (αt(B1), . . . αt(BN )), (3.18)
Σ(Dx) := Σ(−i∇x1) + · · ·+ Σ(−i∇xN ), (3.19)

g := (g1, . . . , gN ) (3.20)

and gi := gi,t=0 denotes the initial data of the wave-packets in (3.4). Now the approximating sequence
of Aout can be expressed as follows

C1,t . . . Cn,tE(∆) = a∗αt(B)

(
1lH ⊗ h(x/t)

)
aαt(B)E(∆) +O(t−∞), (3.21)

where h(x/t) := h1(x1/t) . . . hn(xn/t) and the disjointness of the supports of hi, together with (3.1),
ensure the rapid decay of the error term above. Let us now compare the r.h.s. of (3.21) and (3.17).
First, exploiting the presence of the projection E(∆), assumption (a) and the energy-momentum
transfer relation (3.3) we can replace 1lH with |Ω〉〈Ω| in (3.21). Next, since E(∆) restricts the total
momentum of the system to a compact set, we can replace h(x/t) with h(x/t)χ(Dx), where χ is an
approximate characteristic function of a sufficiently large ball. Using the trivial identity

h(x/t)χ(Dx) = e−itΣ(Dx)h(x/t+∇Σ(Dx))χ(Dx)eitΣ(Dx), (3.22)

we incorporate the free time evolution. Finally, by approximating the compact operator h(x/t +
∇Σ(Dx))χ(Dx) with finite-rank projections, we can indeed approximate the detector (3.21) by finite
linear combinations of terms of the form (3.17). A careful reader may notice that the latter limit has
to be exchanged with the limit t→∞. It turns out that this is not trivial and relies on assumption (b)
about the disjointness of supports of hi. This concludes the outline of the proof of Theorem 3.

4 Infrared problems in relativistic QFT [AD17]

We consider here a relativistic QFT as defined in Subsection 3.1 above, except that SpU is not
assumed to contain mass-gaps. Furthermore, we require that the C∗-algebra of observables A is
generated by a net of local observables O 7→ A(O) labelled by open bounded regions O ⊂ R4. The
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elements of two such algebras commute if the respective regions are spacelike separated. By looking
at sequences of observables localized in regions shrinking to a point one can recover pointlike localized
quantum fields of the theory [Bos05]. In quantum electrodynamics (QED), in which we are interested
in this section, these fields should include the Faraday tensor Fµν and the electric current jµ. The
electric charge is formally given by

Q :=

∫

R3

dx j0(0, x), (4.1)

and we start the analysis of the theory with states of zero charge. One such state is the vacuum Ω
describing the empty space. The subspace H0 := AΩ is called the vacuum sector, and we will treat
it as the defining representation of QED in the following. It contains states of electrically neutral
excitations as for example photons and atoms11. Their masses are eigenstates of the relativistic
mass operator M :=

√
H2 − P 2, i.e., they are particles in the sense of Wigner. Scattering theory

for photons in the setting of algebraic QFT was developed by Buchholz in [Bu77], exploiting the
Huyghens principle. Scattering theory of atoms in the presence of photons was developed by the
present author in [Dy05]; more recently the subject was revisited by Herdegen and Duch in [He14,
DH15] and by Duell [Du17]. In all these works the formula for scattering states is dictated be the
Haag-Ruelle theory (cf. Theorem 2), but the proof of convergence is technically more difficult than
for isolated mass-shells.

Let us now proceed to representations of the algebra of observables of QED with non-zero electric
charge. A conserved quantity, which can be used to classify them, is the spacelike asymptotic flux of
the electric field [Bu82, KK90]

φ(n) := lim
r→∞

r2n · E(0, rn), (4.2)

where E := (F 0,1, F 0,2, F 0,3) and n is a unit vector in R3. Due to the Gauss Law, the integral of this
quantity over a unit sphere gives the electric charge of the representation, but apart from this restric-
tion φ is an arbitrary function on the unit sphere. A given representation is called an infraparticle
representation if the limit in (4.2) exists (in a certain sense) and an infravacuum representation if
the limit does not exist. Interestingly, the picture of the electron is quite different in these two cases
[Kr82]: In the infraparticle approach the electron is a composite object consisting of an ‘undressed
electron12’ and a cloud of physical soft photons correlated with its velocity. On the other hand, in
the infravacuum approach the electron is expected to be an elementary object moving in a strongly
fluctuating background radiation not correlated with its velocity. We remark that the relevance of
asymptotic constants of motion (like (4.2)) to infrared problems has recently also been appreciated
in the high-energy physics community [St17].

4.1 Infraparticle picture

At the quantum level, the requirement that the flux (4.2) exists is a selection criterion which specifies
a class of representations of the algebra of observables A of QED. This class contains in particular
the infrared minimal representations, in the terminology of [Bu82]. They are characterized by the
absence of any background radiation field whose decay with distance is slower than the quadratic
decay of the Coulomb field. Such representations were widely used in structural analysis of infrared
problems in QED [Bu82, FMS79, FMS79.1], although they suffer from several drawbacks: Firstly,

11As we treat here atoms from the point of view of QED, we disregard the baryon number.
12We stress that the ‘undressed electron’ is not ‘bare’ in the terminology from Section 2. It is a bound state of the

bare electron and virtual photons responsible for the mass renormalisation. The ‘dressing’ discussed here is effected
by physical photons.
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Figure 4.1 (a) An infravacuum representation of Buchholz and Roberts: highly fluctuating background radiation
emitted in distant past blurs the flux φ. (b) Localization of the approximating sequences B∗t of the outgoing photon
creation operator and B∗−t of the incoming photon creation operator.

Lorentz transformations are not unitarily implemented in any representation from this class [Bu86,
FMS79.1]. Secondly, charged particles do not have sharp masses in such representations, i.e. they are
infraparticles [Bu86]. This invalidates the standard Haag-Ruelle construction of scattering states, as
in Theorem 2 above. An alternative approach to scattering theory of infraparticles was proposed by
Buchholz, Porrmann and Stein in [BPS91]. It was used to clarify the particle content of a class of
two dimensional Conformal Field Theories by the present author and Yoh Tanimoto in [DT12, DT13]
as we discuss in the next section. This approach does not give, however, the wave operators or the
S-matrix, aiming directly at (inclusive) collision cross-sections. In models of non-relativistic QED
scattering theory for infraparticles was developed in [Pi05, CFP07]. At a heuristic level it can be
linked to the Dollard formalism and the Faddeev-Kulish approach [FK70] as shown in [Dy17].

4.2 Infravacuum picture

A complementary class of representations, in which the flux (4.2) does not exist, will be called the in-
fravacuum representations. Here the no-go theorems from [Bu86] do not hold and one can expect both
covariance under Lorentz translations and sharp masses of charged particles. A class of such repre-
sentations was recently introduced by Buchholz and Roberts in [BR14]. Heuristically speaking, they
contain background radiation, emitted in distant past, which blurs the flux (4.2), cf. Figure 4.1 (a).
By the Huyghens principle, this radiation does not enter into the future lightcone V+ with apex at the
origin. Therefore, in certain subsets of V+, one can require that the representation is unitarily equiv-
alent to the vacuum representation. Using this information and the existence of asymptotic photon
fields in the vacuum representation [Bu77], Sabina Alazzawi and the present author constructed in
[AD17] the outgoing asymptotic photon creation operators B∗out in an infravacuum representation
from [BR14]. In the notation from the previous section, they are (essentially) limits as t→∞ of

B
∗
t :=

1

ln |t|

∫ t+ln |t|

t
dτ

∫

R3

dxα(τ,x)(B
∗)gτ (x), (4.3)

where g is now a solution of the wave equation and the averaging in time serves to improve con-
vergence. Assuming sharp mass of the electron, also the outgoing Compton scattering states were
constructed in [AD17]. Thus the main result of [AD17] can be summarized as follows:
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Theorem 4 In a Buchholz-Roberts representation of QED admitting a sharp mass of the electron
there exist Compton scattering states of the form

Ψout = B∗1,out . . . B
∗
N,outΨ

out
el , (4.4)

where the asymptotic creation operators of photons B∗i,out are given by (4.3) and Ψout
el are single-

electron states. Their scalar products can be computed by standard Fock space rules, with Ψout
el playing

the role of the vacuum13.

The superscript ‘out’ of the single-electron state Ψout
el indicates that it lives in a representation

localized in a future lightcone. It is crucial for the construction of B∗out that the approximating
sequence B∗t , given by formula (4.3), can be (essentially) localized in subsets of the future lightcone,
as indicated in Figure 4.1 (b), and thus it does not interfere with the highly fluctuating background
radiation. As also shown in Figure 4.1 (b), the incoming photon creation operators are not expected
to exist in this representation as their approximating sequences collide with the background radiation.
Thus to construct incoming Compton scattering states it is necessary to pass to a Buchholz-Roberts
representation localized in a backward lightcone. As both representations act naturally on the same
Hilbert space, S-matrix elements are well defined.

The key technical step of the proof of Theorem 4 consists in showing that any single-electron state
Ψout

el ∈ H is a vacuum of the asymptotic photon fields, so that the scalar products of two vectors
of the form (4.4) can indeed be computed by the standard Fock space rules. In order to show that
limt→∞BtΨ

out
el = 0, we rewrite this approximating sequence in terms of the maps aB of (3.16). This

gives

BtΨ
out
el = (1H ⊗ 〈g|)

1

ln |t|

∫ t+ln |t|

t
dτ ei(H+|−i∇x|−ωmel

(P−i∇x))τaBΨout
el , (4.5)

where ωmel
(k) :=

√
k2 +m2

el is the dispersion relation of the electron, and the expression (1H ⊗ 〈g|)
denotes a certain bounded map. Given formula (4.5), the existence of limt→∞BtΨ

out
el follows from

the Mean Ergodic Theorem. The resulting concrete formula allows also to show that the limit is
zero.

The assumption of a sharp mass of the electron, on which the above discussion relies, is presently
investigated in models of non-relativistic QED by Daniela Cadamuro and the present author [CD18,
CD19]. We used concrete infravacuum representations here, which were constructed by Kraus, Polley
and Reents [KPR77].

5 Scattering in two-dimensional massless relativistic QFT [DT11,
DT12, DT13]

5.1 Vacuum sector

We start our discussion in the setting of wedge-local QFT, which is broader than the local framework
of the last two sections. All the relevant information about a vacuum representation of a wedge-local
QFT is encoded in a Borchers triple (R, U,Ω) w.r.t. a spacelike wedge W (cf. Figure 5.1 (a)). It is
given by:

1. A von Neumann algebra R ⊂ B(H);
13This corresponds to the isometry of the wave operator.
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2. A unitary representation Rd+1 3 x→ U(x) s.t.

αx(R) = U(x)RU(x)−1 ⊂ R for x ∈ W, (5.1)
Sp U ⊂ V+; (5.2)

3. A vacuum vector Ω, invariant under U , which is cyclic w.r.t. R and its commutant R′. (We
assume that Ω is a unique invariant vector).

It was shown in [BLS10] that for a given Borchers triple (R, U,Ω) and the matrix

Qκ :=

(
0 κ
κ 0

)
, κ > 0, (5.3)

one can generate a new Borchers triple (RQκ , U,Ω), by a Rieffel-type deformation of the algebra of
observables. Namely, for F ∈ R which are smooth under translations the formal expressions

FQκ :=

∫
dE(q)αQκq(F ), (5.4)

give bounded operators which generate the algebra RQκ . Furthermore,

(R′)−Qκ ⊂ (RQκ)′, (5.5)

which we will use below. For massive theories it was shown that the deformation introduces inter-
action. Very differently than in quantum mechanics, this is effected by a modification of the algebra
of observables, while the Hamiltonian remains unchanged. The interaction of the deformed theory
was demonstrated as follows: Exploiting the geometric fact that two particles can be separated by
two opposite wedges, two-particle Haag-Ruelle scattering states were constructed for wedge-local
theories in [BBS01]. Then it was shown in [GL08] that the resulting two-particle scattering matrix
of (RQκ , U,Ω) is non-trivial. Construction of N -particle scattering states for massive wedge-local
theories, which allows to address the problem of asymptotic completeness, is a very recent result of
Duell [Du18].

However, in the case of massless theories in two-dimensional spacetime two-particle scattering
states suffice to demonstrate both interaction and asymptotic completeness as shown in [DT11].
Due to the dispersionless motion of solutions of the wave equation in two dimensions, the physical
distinction is only between the left-running and right-running particles. Scattering theory for such
‘waves’ was developed in [Bu75] for local theories and then generalized to wedge-local theories by
Tanimoto and the present author in [DT11]. It relies on the assumption that the wedge-local theory
contains massless Wigner particles, i.e., eigenvectors of the relativistic mass operator. First, for any
F ∈ R one defines asymptotic fields as the strong limits

Φout
+ (F ) := lim

t→∞
1

ln |t|

∫ t+ln |t|

t
dτ α(τ,τ)(F ), (5.6)

Φin
−(F ) := lim

t→−∞
1

ln |t|

∫ t+ln |t|

t
dτ α(τ,−τ)(F ) (5.7)

which exist and are elements of R. Operators Φout
− (F ′), Φin

+(F ′), where F ′ ∈ R′, are constructed
analogously (cf. Figure 5.1 (b)). Acting on the vacuum these fields generate single-particle states
Ψ+ := Φout

+ (F )Ω,Ψ− = Φout
− (F ′)Ω and the resulting scattering states have the form

Ψ+

out
× Ψ− := Φout

+ (F )Φout
− (F ′)Ω. (5.8)
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(a) Borchers triple. (b) Asymptotic fields.

Figure 5.1. (a) The algebra R = A(W) of observables localized in the right wedge W. (b) Asymptotic fields of a
massless wedge-local theory in two dimensions.

The incoming scattering state Ψ+

in
× Ψ− is defined analogously, using the incoming fields. We say

that the theory is asymptotically complete is the outgoing (and incoming) scattering states span the
entire Hilbert space. We define the scattering matrix S via

S(Ψ+

out
× Ψ−) = Ψ+

in
×Ψ− (5.9)

and say that a theory is interacting if S 6= I. The main result of [DT11] can be summarized as
follows:

Theorem 5 Let S be the scattering matrix of (R, U,Ω) and let Sκ be the scattering matrix of
(RQκ , U,Ω). Then

Sκ = eiκ(H2−P 2)S. (5.10)

In particular, a deformation of an asymptotically complete non-interacting theory is asymptotically
complete and interacting.

The argument relies on (5.4), (5.5) and the following computation which relates scattering states
of the defomed and undeformed theory: Let F ∈ R, F ′ ∈ R′ be smooth under translations. Then
FQκ ∈ RQκ , F ′−Qκ ∈ R′Qκ and we can write

Ψ+

out
× κ Ψ− = Φout

+ (FQκ)Φout
− (F ′−Qκ)Ω

=

∫
dE(q) Φout

+ (αQκq(F ))Φout
− (F ′)Ω

=

∫
dE(q) (U(Qκq)Ψ+)

out
× Ψ−

=

∫
dE(q) e−i 1

2
κ(H+P )(q0−q1)(Ψ+

out
× Ψ−) (5.11)

= e−i 1
2
κ(H2−P 2)(Ψ+

out
× Ψ−), (5.12)

where in (5.11) we used that HΨ+ = PΨ+ and the explicit form of the matrix Qκ.
In the light of Theorem 5, to provide an example of an interacting and asymptotically complete

theory, it suffices to exhibit a non-interacting and asymptotically complete one. Fortunately, the
latter are in abundance. It turns out that all chiral Conformal Field Theories (CFT) have such
properties. To summarize their construction, we first recall that a local net of von Neumann algebras
on R, denoted by (A0, U0,Ω0), consists of
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Figure 5.2. Tensor product construction of chiral CFT.

• a map R ⊃ I → A0(I) ⊂ B(H) s.t.

A0(I) ⊂ A0(J) for I ⊂ J,
[A0(I),A0(J)] = 0 for I ∩ J = ∅;

• a unitary representation R 3 s→ U0(s) s.t.

Sp U0 ⊂ R+, (5.13)
U0(s)A0(I)U0(s)−1 = A0(I + s) for s ∈ R; (5.14)

• a unique vacuum vector Ω0, invariant under U0, which is cyclic for any A0(I).

Now we take two such nets and think of the two real lines as light-rays in R2. A chiral net of von
Neumann algebras on R2 is then given by the tensor product construction (see Figure 5.2):

A(I × J) := A0(I)⊗A0(J), (5.15)
U(t, x) := U0((

√
2)−1(t− x))⊗ U0((

√
2)−1(t+ x)), (5.16)

Ω := Ω0 ⊗ Ω0.

Setting R := A(W) we obtain a Borchers triple (R, U,Ω). By a simple application of the scattering
theory discussed above one can show that this theory is non-interacting and asymptotically com-
plete [DT11]. The latter property may be surprising, since chiral CFT are known to have ‘charged
sectors’ which, as we discussed in Section 3, should be in conflict with asymptotic completeness.
The solution of this apparent paradox is in the composite structure of the single-particle states in
two-dimensional massless theories which is a consequence of the dispersionless motion. Differently
than in the massive case or in higher dimensions, the single-particle subspace here always carries a
highly reducible representation of the Poincaré group.

5.2 Charged sectors

In this section we consider theories which are local and relativistic but do not contain a vacuum vector
or Wigner single-particle states. Standard examples are chiral CFT in charged representations. In this
case the scattering theory discussed in the previous subsection does not apply. An alternative is the
theory of particle weights from [BPS91], which relies on the concept of Araki-Haag detectors (3.12).
The key observation is that these asymptotic observables may be non-zero even in the absence of
Wigner particles and should carry information about more exotic excitations, e.g. infraparticles.
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Let us briefly summarize the theory of particle weights from [BPS91]. Let L0 ⊂ A be the sub-
space of almost-local and energy-decreasing operators, which contains, in particular, the generalised
annihilation operators B of Section 3. We denote by L := AL0 the resulting left ideal. For L1, L2 ∈ L
and Ψ ∈ H of bounded energy the sequences

ψ(t)(L1, L2) =
1

ln |t|

∫ t+ln |t|

t
dτ

∫

Rd
dx 〈Ψ, α(τ,x)(L

∗
1L2)Ψ〉, (5.17)

have limit points ψout as t→∞. These limit points are examples of particle weights and can be seen
as unbounded states (weights) on the algebra A. The GNS construction applies to particle weights
as follows: The representation space is given by

Hψout := (L/{L ∈ L |ψout(L,L) = 0})cpl (5.18)

and its generic elements are denoted by |L〉, L ∈ L. It is a Hilbert space w.r.t. the scalar product
〈L1|L2〉 := ψout(L1, L2). The GNS representation acts on this space in a natural manner

πψout(A)|L〉 := |AL〉, A ∈ A (5.19)

Typically this representation is highly reducible. By abstract decomposition theory we can express
it as a direct integral of irreducible representations. Correspondingly, ψout can be decomposed into
a statistical mixture of pure particle weights [Po04.1, Po04.2]

ψout =

∫

X
dµ(λ)ψλ, (5.20)

where X is a certain measure space. We dispense here with an abstract definition of (pure) particle
weights. We merely remark that in the context of massive theories decomposition (5.20) coincides
with the Araki-Haag formula (3.13). In this case the pure particle weights ψλ are given by the
plane wave configurations of the electron 〈qλ| · |qλ〉. Such interpretation also applies in the present
general setting and for any pure particle weight ψλ there is a canonically associated characteristic
four-momentum (q0

λ, qλ). Denoting by πψλ the GNS representation of a pure particle weight ψλ, we
say that a theory exhibits velocity superselection if

qλ
q0
λ

6= qλ′

q0
λ′
⇒ πψλ '/ πψλ′ , (5.21)

for all λ, λ′ ∈ X. (Cf. Figure 5.3 for a graphical illustration).
Of course velocity superselection does not occur in purely massive theories, as the GNS represen-

tations of particle weights 〈qλ| · |qλ〉 are just copies of the defining vacuum representation. However,
for the electron in QED velocity superselection is expected in the infraparticle approach. Here dif-
ferent velocities of the electron correspond to different values of the flux (4.2) which labels distinct
sectors. This effect should be responsible for the absence of the sharp mass of the electron, which
we discussed in Section 4: As plane wave configurations of the electron with different velocities ‘live’
in distinct sectors, they cannot be superposed into normalizable eigenvectors of the mass operator.
These facts are rigorously established in models of non-relativistic QED, where velocity superselection
has, however, a different mathematical formulation [CFP07].

First relativistic examples, for which velocity superselection holds, were found by Tanimoto and
the present author in [DT12]. These models are chiral CFT in charged representations, constructed as
follows: Let (A0, V0,Ω0) be a local net of von Neumann algebras on R with an internal Z2-symmetry
implemented by a unitary W . We note that the fixed-point subnet

A0,ev(I) := {A ∈ A0(I) |WAW ∗ = A } (5.22)
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(a) Velocity superselection for the electron in QED. (b) Velocity superselection for infraparticles in chiral CFT.

Figure 5.3. Graphical representation of velocity superselection. Colour indicates the superselection sector to which the
given plane wave configuration belongs.

has two invariant subspaces: Kev := [A0,evΩ0], Kodd := K⊥ev. We set

Â0(I) := A0,ev(I)|Kodd
and V̂0(s) := V0(s)|Kodd

. (5.23)

The chiral net (Â, Û) we are interested in results from two copies of (Â0, V̂0) via the tensor product
construction (5.15), (5.16). The main result of [DT12] can be summarized as follows:

Theorem 6 The chiral net (Â, Û), resulting from two copies of (Â, V̂ ), describes excitations with
superselected velocity (cf. Figure 5.3 (b)). More precisely, for any Ψ from a dense domain D there
exists a decomposition

ψout =

∫

X
dµ(λ)ψλ (5.24)

such that:

(a) qλ
q0λ

= 1 ⇒ πψλ(Â) = Aev|Kodd
⊗Aev|Kev ,

(b) qλ′
q0
λ′

= −1 ⇒ πψλ′ (Â) = Aev|Kev ⊗Aev|Kodd
.

The two representations above are not equivalent due to a different structure of the energy-momentum
spectrum.

To conclude this section, we remark that Araki-Haag detectors can also be used to establish a
weak variant of asymptotic completeness for infraparticles in charged sectors of chiral CFT. In [DT13]
Tanimoto and the present author could show that for such theories every vector in the Hilbert space
is in the range of a product of two detectors of the form

lim
t→∞

1

ln |t|

∫ t+ln |t|

t
dτ+

∫

R
dx+ α(τ+,x1)(B

∗
1B1)h+

(
x+

τ+

)

· 1

ln |t|

∫ t+ln |t|

t
dτ−

∫

R
dx− α(τ−,x−)(B

∗
2B2)h−

(
x−
τ−

)
, (5.25)

where h± are supported close to velocities ±1, respectively. Thus every state in such theories gives a
non-zero response in a coincidence arrangement of detectors sensitive to a pair of excitations moving
with ± velocity of light.
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