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Abstract

Key words. numerical time integration, direct sparse linear methods, multifrontal methods,
MUMPS, BLAS, parallel performance, distributed-memory computations, multi-threading,
MPI, OpenMP, non-blocking communication

An application of linearly implicit methods for time integration of stiff systems of
ODEs results in solving sparse systems of linear equations. An optimal selection and
configuration of a parallel linear solver can considerably accelerate the time integration
process. A comparison of iterative and direct sparse linear solvers has shown that
direct ones are the most suitable for this purpose because of their natural robustness to
ill-conditioned linear systems that can occur during numerical time integration. Testing
of different direct sparse solvers applied to systems generated by ATHLET software
has revealed that MUMPS, an implementation of the multifrontal method, performs
better than the others in terms of the overall parallel execution time.

In this study, we have mainly focused on configuring MUMPS with the aim of im-
proving parallel performance of the solver for thermo-hydraulic computations within
a single node of GRS compute-cluster. However, the overall approach, proposed in
the study, may be considered as a general framework for a selection and adaptation
of a linear sparse solver for solving problem-specific systems of linear equations on
distributed-memory machines.

Additionally, we have shown that an intelligent application of non-blocking MPI
communication in some parts of the existing thermo-hydraulic simulation code, ATH-
LET, can additionally solve issues of inefficient data transfer preserving the current
software design and implementation without drastic changes of the source code.

iii



Acronyms

ATHLET Analysis of THermal-hydraulics of LEaks and Transients.

BLAS Basic Linear Algebra Subprograms.

GEMM GEneral Matrix-matrix Multiplication (BLAS subroutine).

GETRF GEneral TRiangular Factorization (LAPACK subroutine).

GMRES General Minimum RESidual method.

GRS Gesellschaft für anlagen- und ReaktorSicherheit gGmbH.

LAPACK Linear Algebra PACKage.

LRZ Leibniz-RechenZentrum (Leibniz Supercomputing Centre of the Bavarian Academy
of Sciences and Humanities).

MPI Message Passing Interface.

MUMPS MUltifrontal Massively Parallel sparse direct Solver.

NUMA Non-Uniform Memory Access.

NUT NUmerical Toolkit.

ODE Ordinary Differential Equation.

OpenMP Open Multi-Processing library.

PDE Partial Differential Equation.

PETSc Portable, Extensible Toolkit for Scientific Computation.

ScaLAPACK Scalable Linear Algebra PACKage.

TRSM TRiangular Solver with Multiple right-hand sides (LAPACK subroutine).

iv



Glossary

HW1 Hardware installed on GRS cluster.
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1. Introduction

Nowadays, nuclear energy is one of the main sources of electricity. It comes from
splitting atoms in a reactor which, as a result, heats water up to the point where it
is converted into pressurized steam. In its turn, the steam rotates turbines which,
finally, produce electricity. According to the recent estimations, thermal efficiency
of modern nuclear power plants lies in the range of 35-45% which is comparable to
conventional fossil fueled power plants [28]. In spite of considerable initial investments,
nuclear power plants have low operating costs and long service life which make them
particularly cost effective.

In recent years, nuclear power plants have become an attractive means of power
generation because of relatively low emission of carbon dioxide. As a result, a level
of green house gase emissions to the atmosphere and thus the contribution of nuclear
power plants to the global warming are relatively small [45].

Today, nuclear power plants generate almost 30% of the electricity produced in
the European Union (EU). There are almost 130 nuclear reactors in operation in 14
EU countries, namely: Belgium, Bulgaria, Czech Republic, Finland, France, Germany,
Hungary, Netherlands, Romania, Slovakia, Slovenia, Spain, Sweden, and the United
Kingdom [17].

The main problem assosiated with nuclear power is radioactive waste which is
extremely dangerous for people and the environment and has to be carefully looked
after for several thousand years after utilization. Any accident in a plant can lead to
grave consequences at a scale similar to the Chernobyl disaster. For this reason, nuclear
safety is one of the most important topics in this area. It demands a huge amount of
testing and analysis to be performed before and during an operation of a nuclear power
plant in order to predict any possiblity of unwanted outcomes and devise preventive
measures against such accidents. The topic has become even more prominent since 2011
Fukushima accident. In response to the disaster, numerous stress tests were conducted
to measure the ability of the EU nuclear industry to withstand any kind of natural
disaster [17].
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1. Introduction

Since 1977, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) has been the main
German scientific research institute in the field of nuclear safety and radioactive waste
management [23]. Today, the organization carries out advanced research and analysis
in the field of reactor safety, radioactive waste management as well as radiation and
environmental protection [23]. Due to the inability to create various nuclear accident
test scenarios, which by their very nature could be catastrophic, GRS develops and
provides numerous simulation software products to cope with this problem. A short
description of the main software packages developed by GRS is provided in Table 1.1.

Name Description

ATHLET
Thermohydraulic safety analyses for the primary
circuit of LWRs

ATHLET-CD
Analyses of accidents with core meltdown
and fission product release for LWRs

ATLAS
Analysis simulator for interactive handling
and visualisation of several computer codes

COCOSYS
Analyses of severe incidents in the
containment of LWRs

DORT/TORT
Solution of time-dependant neutron transport
equations for 2D/3D transients analyses

QUABOX/CUBBOX 3-D neutron kinetics core model
SUSA Uncertainty and sensitivity analyses

TESPA-ROD Core rod code for design basis accidents
NUT Container of various numerical tools and algorithms

Table 1.1.: A list of software developed by GRS, [22], where LWR stands for a Light
Water Reactor

The main focus of this thesis is dedicated to ATHLET and NUT software packages.
The goal of the study is to identify the most compute-intensive parts of the ATHLET-
NUT code and possibly accelerate its execution time.

The next chapter continues the introduction and gives a general overview of ATH-
LET-NUT purpose, design, architecture and coupling. The introduction ends with a
clear exposition of the problem statement presented in Chapter 3 where the order of
the remaining thesis is described in detail.

2



2. Overview of ATHLET and NUT software

2.1. ATHLET

Analysis of THermal-hydraulics of LEaks and Transients (ATHLET) software is devel-
oped by GRS for an analysis of the whole spectrum of operational conditions, incidental
transients, design-basis accidents and beyond design-basis accidents without core dam-
age anticipated for nuclear energy facilities [21]. The code provides specific models
and methods to simulate many types of nuclear power plants, comprising current
light water reactors (PWR1, BWR2, WWER3, HPCR4), advanced Generation III+ and IV
reactors as well as SMRs5 [21].

Physical processes inside of hydraulic circuits of light water reactors can be naturally
described by a two-phase thermo-fluiddynamic model based on equations of conserva-
tion of mass, momentum and energy for liquid and vapor phases i.e. Equations 2.1 -
2.7, [7].

1. Liquid mass
∂((1− α)ρl)

∂t
+∇((1− α)ρl ~wl) = −ψ (2.1)

2. Vapor mass
∂(αρv)

∂t
+∇(αρv ~wv) = ψ (2.2)

3. Liquid momentum

∂((1− α)ρl ~wl)

∂t
+∇((1− α)ρl ~wl ~wl) +∇((1− α)p) = ~Fl (2.3)

4. Vapor momentum

∂(αρv ~wv)

∂t
+∇(αρv ~wv ~wv) +∇(αp) = ~Fv (2.4)

1Pressurized Water Reactor
2Boiling Water Reactor
3Water-Water Energetic Reactor
4High Power Channel-type Reactor
5Small Modular Reactor

3



2. Overview of ATHLET and NUT software

5. Liquid energy

∂
[
(1− α)ρl(hl +

1
2 ~wl ~wl − p

ρl
)
]

∂t
+∇

[
(1− α)ρl ~wl(hl +

1
2
~wl ~wl)

]
= −p

∂(1− α)

∂t
+ El

(2.5)
6. Vapor energy

∂
[
αρv(hv +

1
2 ~wv ~wv − p

ρv
)
]

∂t
+∇

[
αρv ~wv(hv +

1
2
~wv ~wv)

]
= −p

∂α

∂t
+ Ev (2.6)

7. Volume vapor fraction

α =
Vv

V
(2.7)

The notation is as follows: p - pressure of a liquid-vapor mixture, ψ - a mass source
term, ~F - an external composite force acting on a CV6, E - an external composite energy
source term within a CV, subscripts l and v denote liquid and vapor phases, respectively.

Spacial integration of the conservation equations, System 2.1 - 2.7, is performed on
basis of the finite volume method using one-dimensional problem formulation, Figure
2.1. Then, the system is transformed to an initial value problem of a system of non-
autonomous Ordinary Differential Equations (ODEs) by means of certain additional
mathematical transformations, see [7].

dy
dt

= f (t, y), t0 ≤ t ≤ tF y(t0) = y0 (2.8)

where y ∈ Rn is a composite vector of variables, f is a non-linear function such that
f : R×Rn ⊃ Ω→ Rn .

According to ATHLET Mod 3.1A – Models and Methods [7], System 2.8 is stiff and thus
must to be solved with an implicit solver. To avoid a high computational cost of a fully
implicit method, ATHLET makes use of an extrapolation ansatz based on the linearly
implicit Euler method. This may be interpreted as a six stage W-method where the
exact Jacobian information is not required. However, fresh information of the Jacobian
matrix during a numerical simulation greatly improves stability and robustness of the
method. Therefore, several mechanisms have been implemented in ATHLET to closely
monitor and, if it is required, to update a Jacobian matrix approximation using the
finite difference method.

6CV - Control Volume

4



2. Overview of ATHLET and NUT software

Figure 2.1.: One-dimensional finite volume formulation of a thermo-hydraulic problem
in ATHLET, [44], where Tl - a temperature of liquid inside of a CV; Tv - a
temperature of vapor inside a CV; Xm - mass quality; G - mass flow of a
liquid-vapor mixture; W - a velocity component of a liquid-vapor mixture
perpendicular to a CV boundary; Al - an area occupied by the liquid
fraction on a CV boundary, Al - an area occupied by the vapor fraction on
a CV boundary; Q - an external heat transfer

In the general case, a step of the W-method method, implemented in ATHLET,
can be viewed as a sequence of six stages in the following way. Each stage uses the
implicit Euler method and exactly one Newton’s iteration to evaluate values of vector
y at the next integration step h with different accuracy. Then, the obtained values are
extrapolated, in the order shown in Figure 2.2, to achieve the third order of numerical

Figure 2.2.: A general view on the 6-stage W-method implemented in ATHLET (based
on [44]), where T1,1 = y0 + y1,0; T2,1 = y0 + y2,0 + y2,1; T3,1 = y0 + y3,0 +

y3,1 + y3,2

5



2. Overview of ATHLET and NUT software

integration. By and large, the algorithm can be expressed in a compact form of Equation
2.9.

(I − hi J)δyij = hi f (t0 + j · hi, y0 +
j−1

∑
l=0

δyil) + h2 ∂ f0

∂t
(2.9)

where J ≈ ∂ f
∂y - an approximation of Jacobian matrix; i = 1, 2, 3; j = 0, . . . , i − 1;

hi = h/i.

2.2. NUT

NUmerical Toolkit (NUT) can be viewed as a container of various dense and sparse
linear algebra subroutines which can run in parallel on distributed-memory machines.
NUT design follows a paradigm of the Adapter/Wrapper pattern which provides a
uniform common interface for its services to any application that follows a certain com-
munication protocol. Currently, only ATHLET can communicate with NUT. However,
more GRS applications are going to adopt the protocol in the future and will be able
to operate with NUT as well. The approach, implemented in NUT, helps to achieve
re-usability, flexibility and extensibility properties of the code.

Currently, NUT is based heavily on Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc). It is one of the most widely used parallel numerical software libraries
[47]. It includes a large suite of parallel linear and nonlinear equation solvers as well
as a software-infrastructure to handle computations on distributed-memory machines
by means of Message Passing Interface (MPI) and specific data structures. Fortunately,
through a careful selection of the design pattern, NUT can be easily extended to provide
an extra service or an external library access which has not been implemented in PETSc
yet.

2.3. ATHLET-NUT coupling

Coupling of NUT with GRS tools is based on the client-server architecture where NUT
acts as a server and the tools can be viewed as clients. Communication between two
parts is done via MPI.

To provide a clear and concise external interface, NUT contains a client module called
"NUT Plug-in". It can be considered as a socket, from the client side by analogy with
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2. Overview of ATHLET and NUT software

the Transmission Control Protocol (TCP). The plug-in hides all MPI calls to the sever
which considerably improves readability of the code.

In principle, NUT allows multiple clients to work concurrently with the server. To
handle communication traffic, NUT splits the default MPI communicator at start-up
time of the application into appropriate process groups, as it is shown in Figure 2.3.

Figure 2.3.: An example of NUT process groups

The design of NUT allows sharing of some NUT-MPI processes among different
process groups due to performance reasons i.e. a finite number of processing units on
hardware. To resolve possible deadlocks, each process group has its own representative,
called the head. Each client has two views on its respective group which is achieved
by means of distinct MPI communicators. The first communicator is responsible for
client-head communication whereas the second one allows the client to talk to any
NUT process within the group.

A general view of client-server communication looks like a 3-way handshake in the
following way: a client sends a request to the head which is a signal to reserve all
compute-units of the group for an upcoming task. Having possessed the resources and
prepared them for a specific service, the head notifies the client about a resource acqui-
sition and the entire process group waits for data. Afterwards, the client sends data
either to a specific NUT-process or to the entire group using the second communicator
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2. Overview of ATHLET and NUT software

and waits for a result of the service. According to the current implementation of NUT,
the communication between a client and server is synchronous i.e. a client gets blocked
while waiting for a result from the server.

A general view on ATHLET-NUT software coupling is given in Figure 2.4 where
ATHLET is responsible for marching the numerical time-integration process whereas
NUT computes solutions of linear systems derived from Equation 2.9.

Figure 2.4.: ATHLET-NUT software coupling

Partial and full Jacobian matrix updates derived from finite differences are computed
on the client side since only a client has access to the function f of Equation 2.8. Due to
transformations of the underlying system of Partial Differential Equations (PDEs) and
specifics of finite volume discretization, the Jacobian matrix is sparse and, therefore,
ATHLET uses a matrix compression algorithm described in Section 6.1 to reduce an
amount of Jacobian column evaluations. Having computed a matrix column, ATHLET
immediately broadcasts it to its entire NUT process group by means of the 3-way
handshake mechanism described above. It is worth mentioning that this approach
allows to circumvent potential memory limits on the client side and thus store the
entire sparse Jacobian matrix in a distributed fashion on the server. In other words,
ATHLET never holds the entire Jacobian matrix in its memory; conversely, the matrix
is distributed across multiple NUT processes according to the block-row distribution
scheme induced by PETSc. In turn, NUT is waiting for the entire Jacobian matrix
information from ATHLET and starts solving Systems 2.9 right after receiving the
corresponding request from the client.
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3. Problem Statement

Integration of a system of ODEs by means of W-methods involves solving several
systems of linear equations. Equations 2.9 can be rewritten in a form 3.1, after grouping
both the right- and left-hand sides in a single matrix and vector, respectively.

Aiδyij = bij (3.1)

where Ai = (I − hi J) is a n× n nonsingular sparse matrix; δyij and bij are Rn vectors.

According to the integration scheme, Figure 2.2, and definition of the method, each
step of numerical integration requires to solve 6 linear systems with 3 distinct matrices,
resulting from the Jacobian matrix by the corresponding shifts of the main diagonal.
Therefore, the computational burden of the W-method mainly lies in both solving
sparse linear systems and evaluations of non-linear function f , Equation 2.8. However,
because of the time limit of the thesis, the main focus of this study is on solving Systems
3.1 efficiently on GRS computational cluster.

There exist two families of linear sparse solvers, namely: iterative and direct sparse
methods. In the general case, execution time of any method, regardless of a solver fam-
ily, is bounded by O(n2) complexity due to matrix sparsity, where n is the number of
equations in a system. However, constants in front of the factor n2 can vary significantly
between the methods which explains differences in execution time. Additionally, it is
important to mention that the families follow different approaches for solving sparse
linear systems and are greatly different in details. Therefore, they possess different
numerical properties. Among all properties, there are some which are particularly
important for efficient execution of W-methods, namely:

• robustness of a method to treat, in particular, ill-conditioned systems

• parallel efficiency

These, above mentioned properties, can be treated as non-functional requirements to
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a sparse linear solver for efficient numerical time integration.

Finding solutions of sparse linear systems is a well-known and commonly occurring
problem in the field of scientific computing and, therefore, numerous implementations
of different kinds of linear solvers exist. However, the NUT project imposes some extra
constrains due to the design philosophy adopted by GRS:

• open-source license

• direct interface to PETSc

• technical support and maintainability of a solver/package

In this study, we are primarily concerned with a selection and configuration of a
sparse linear solver which can cover all above listed requirements.

This report is organized as follows. Chapter 4 provides information about methodol-
ogy, data, software and hardware used in this study. Subsections 5.1.1 and 5.1.2 give an
overview of the theory and parallelization aspects of iterative and sparse direct methods
as well as discussions of some issues related to numerical solution accuracy. Then, in
Subsection 5.1.3, we make a conclusion about which type of sparse linear solvers is well
suited for numerical time integration governed by W-methods. In Section 5.2, a concrete
implementation of a specific method is selected by means of testing. From Section 5.4
onwards, we perform configuration and adaptation of a solver for distributed-memory
computations. At the end, Section 5.6 summarizes obtained results and makes a general
conclusion with respect to data and compute environment provided by GRS.

An additional topic, considered in this study, is an improvement of ATHLET-NUT
communication during Jacobian matrix transfers. As it was described in Section 2.3,
ATHLET, the client, transfers a Jacobian matrix in a column-wise fashion. NUT, the
server, treats each column transfer as a service and, therefore, each transfer passes
through the 3-way handshake described in Section 2.3. Moreover, it is important to
mention one more time, due to the current implementation of ATHLET-NUT coupling,
client-server communication is blocking. In other words, ATHLET gets blocked till
completion of a column transfer.

The main goal of Jacobian matrix compression, described in Section 6.1, is to mini-
mize the number of perturbations of non-linear function f of Equation 2.8. Additionally
it allows to reduce an amount of column transfers as well. Therefore, it improves the
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overall application performance from both computational and communication points
of view. However, there are still some aspects to be considered.

Due to specifics of a matrix compression algorithm, described in Section 6.1, column
lengths are decreasing between the first and last columns of a compressed Jacobian
matrix form which, as a result, leads to unequal MPI message sizes.

In the last part of the study, we introduce a concept called accumulator which allows
to transfer a compressed Jacobian matrix in equal chunks. This approach potentially
solves three important problems at once. First of all, accumulator can help to get rid
of small MPI messages which improves utilization of network bandwidth. Secondly,
it helps to reduce an amount of synchronizations between a client and the server
and, therefore, improves operation of NUT as the server. Lastly, it allows to apply
non-blocking MPI communication on the client side and thus overlap Jacobian matrix
transfers with computations.

In Section 6.1, we briefly describe the Jacobian matrix compression algorithm and
the resulting ATHLET-NUT communication problem. In Section 6.2, we present and
describe an algorithm which is supposed to resolve the problem. Section 6.3 provides a
description of developed benchmarks and test data. Then, we discuss obtained results
in Section 6.4. Finally, in Section 6.5, we provide a general conclusion of the performed
part of the study and summarize the results.
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ATHLET is a CFD1 tool designed for computer-based simulations of transient thermo-
hydraulic problems where topology of hydraulic circuits can be changed during a
numerical simulation. As a direct consequence, the Jacobian matrix can frequently
change with respect to both numerical values and the matrix sparsity structure between
time integration steps. Since ATHLET usually generates hundreds of matrices during a
simulation, configuration of a linear solver in run-time becomes a time consuming and
compute-expensive problem. Moreover, results of such dynamic solver configuration
may be difficult to analyze and interpret.

In this study, a static solver configuration approach is used, instead. In other words,
a solver is configured with only a small set of matrices, i.e. GRS matrix set, randomly
saved during simulations of the most common GRS test scenarios. In the general case, it
may lead to inaccurate conclusions, however, it is only one technically feasible approach.

Besides GRS matrix set, a second set was used for verification of testing results. The
set, called SuiteSparse matrix set, was generated by donwloading a dozen of matrices
from SuiteSparse Matrix Collection [11], [12] where we tried to pick out different
matrices with respect to both the number of equations n and matrix density i.e. ratio
between the number of non-zero elements nnz and the number of equations in a system.

The main matrix properties as well as matrix sparsity patterns are shown in Tables
4.1, 4.2 and appendix A.

Approximations of condition numbers, shown in Tables 4.1 and 4.2, were computed
using the Rayleigh–Ritz procedure. The reader can become familiar with the procedure
in [30]. GMRES solver, configured with 1000 iteration steps before the restart, was
applied to un-preconditioned systems to generate a Krylov subspace for each matrix.
Then, the resulting Hessenberg matrices were used for approximating eigenspaces and
the corresponding eigenvalues. The approximations should be treated as lower bounds
since the algorithm overestimates the smallest eigenvalues.

1Computational Fluid Dynamics
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Name n nnz nnz / n
Approximate

Condition
Number

Structure

pwr-3d 6009 32537 5.4147 1.019e+07 SYMM-PTRN
cube-5 9325 117897 12.6431 1.592e+09 SYMM-PTRN

cube-64 100657 1388993 13.7993 7.406e+08 SYMM-PTRN
cube-645 1000045 13906057 13.9054 6.474e+08 SYMM-PTRN

k3-2 130101 787997 6.0568 1.965e+15 SYMM-PTRN
k3-18 1155955 7204723 6.2327 1.947e+12 SYMM-PTRN

Table 4.1.: GRS matrix set, where SYMM - symmetric; NON-SYMM - non-symmetric;
SYMM-PTRN- non-symmetric but with symmetric sparsity pattern

Name n nnz nnz / n
Approximate

Condition
Number

Structure Problem

cant 62451 4007383 64.1684 5.082e+05 SYMM -
consph 83334 6010480 72.1251 2.438e+05 SYMM -

CurlCurl_3 1219574 13544618 11.1060 2.105e+05 SYMM
Model

Reduction
Geo_1438 1437960 63156690 43.9210 4.677e+05 SYMM -

memchip 2707524 13343948 4.9285 1.305e+07 NON_SYMM
Circuit

Simulation
PFlow_742 742793 37138461 49.9984 5.553e+06 SYMM -
pkustk10 80676 4308984 53.4110 5.589e+02 SYMM Structural

torso3 259156 4429042 7.0903 2.456e+03 NON_SYMM -
x104 108384 8713602 80.3956 3.124e+05 SYMM Structural

Table 4.2.: SuiteSparse matrix set, where SYMM - symmetric; NON-SYMM - non-
symmetric; SYMM-PTRN- non-symmetric but with symmetric sparsity pat-
tern

Two different hardware were available for this study. The first machine was a
compute-cluster installed in GRS (HW1) which was the main target. Additionally, LRZ
CoolMUC-2 Linux cluster (HW2) was used every time when some ambiguous results
were obtained in order to check whether a problem was hardware, software or algorith-
mic specific. Table 4.3 shows compute-node specifications of both compute-clusters.

For this study, OpenMPI implementation of the MPI standard was used because
of its open-source license and comprehensive documentation. The library has many
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HW1 (GRS) HW2 (LRZ Linux)
Architecture x86_64 x86_64
CPU(s) 20 28
On-line CPU(s) list 0-19 0-27
Thread(s) per core 1 1
Core(s) per socket 10 14
Socket(s) 2 2
NUMA node(s) 2 4
Model 62 63
Model name E5-2680 v2 E5-2697 v3
Stepping 4 2
CPU MHz 1200.0 2036.707
Virtualization VT-x VT-x
L1d cache 32K 32K
L1i cache 32K 32K
L2 cache 256K 256K
L3 cache 25600K 17920K
NUMA node0 CPU(s) 0-9 0-6
NUMA node1 CPU(s) 10-19 7-13
NUMA node2 CPU(s) - 14-20
NUMA node3 CPU(s) - 21-27
RAM per node, GB 128 64

Table 4.3.: Hardware specifications

options for processes pinning which was intensively used during the study.

To make process pinning explicit and deterministic, a Python script was developed
to automatically generate rank-files based on the number of MPI processes, OpenMP
threads per MPI process, the maximum number of processing elements and the number
of NUMA domains. The scrip always leaves appropriate gaps between MPI processes to
allow each process to fork the corresponding number of threads within a parallel region.

A rank-file specifies explicit mapping between MPI processes, ranks, and actual
processing elements, cores, of a compute-cluster. The script has two modes, namely:
spread and close. Given a certain number of ranks, spread mode tries to distribute
them as spread as possible across multiple available NUMA domains in a round-robin
fashion. In contrast to spread strategy, close one groups ranks as close as possible to
keep the maximum number of ranks within a single NUMA domain. Figure 4.1 shows
an example of mapping 5 MPI ranks and 2 OpenMP threads per rank onto a compute
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(a) Spread mode (b) Close mode

Figure 4.1.: An example of pinning 5 MPI processes with 2 OpenMP threads per process
in case of HW1 hardware

node equipped with 20 cores and 2 NUMA domains (HW1).

In this study, PETSc 3.10 and OpenMPI 3.1.1 libraries were chosen and compiled
with Intel 18.2 compiler.

15



5. Configuration of a sparse linear solver

5.1. Overview of Sparse Linear Solver Types

Next two subsections on iterative and direct sparse methods, respectively, are organized
as follows. The first part of each subsection contains a concise theory overview of
a linear solver type. The second parts provide discussions of the main sources and
means of parallelization of both iterative and direct sparse methods. The last part of
each subsection focuses on issues related to numerical solution accuracy of a particular
method type.

Then, the section continuous with a discussion and conclusion of which type of linear
solvers is well suited for solving systems derived from ATHLET thermo-hydraulic
simulations.

5.1.1. Iterative Methods

5.1.1.1. Theory Overview

Given an initial guess, an iterative method generates a sequence of approximate solu-
tions by means of a specific rule. Depending on the method and the given problem,
there may exist certain conditions such that the aforementioned sequence eventually
converges to the exact solution. Iterative methods are preferred for their relatively
low computational cost per iteration and storage requirements O(nnz). In essence,
the methods make use of simple linear algebra kernels at each iteration and thus can
handle matrix sparsity efficiently.

The family of iterative methods consists of two distinct classes, namely: stationary
and Krylov methods. Nowadays, Krylov methods dominate in the field of scientific
computing because of their rather fast convergence in case of solving well conditioned
systems or/and a "good" initial guess.

The most well-known methods among the Krylov family are Conjugate Gradient
(CG) for symmetric positive definite matrices, MINimal RESidual method (MINRES)
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for symmetric indefinite systems and General Minimum RESidual method (GMRES)
for non-symmetric systems of linear equations. There also exist different variants of
CG such as BiConjugate Gradient Method (BiCG), BiConjugate Gradient STABilized
Method (BiCGSTAB), etc.

The key idea is a construction of an approximate solution of a system of linear
equations as a linear combination of vectors b, Ab, A2b, A3b, . . . An−1b where, without
of lost of generality, the initial guess x0 is equal to zero. The combination defines
a subspace, also known as Krylov subspace Kn. At each iteration, the subspace is
expanded by adding and evaluating the next vector in the sequence. The methods
usually define and expand another subspace Ln of the same size as Kn such that
rn = b− Axn ⊥ Ln which is known as the Petrov-Galerkin condition. A construction
of subspace Ln is defined by the methods and based on matrix properties.

Some Krylov methods also have interpretations as minimization problems. For
example, GMRES aims to minimize the Euclidean norm of the residual rm of a so-
lution vector xm in the mth Krylov subspace Km. However, the basis vectors (b,
Ab, A2b, A3b, . . . Am−1b) of the mth Krylov subspace are usually close to linearly de-
pendent and, therefore, a solution vector xm is constructed in an orthonormal basis Um

which forms the same subspace Km.

rm = min
xm∈Km

||Axm − b||2 = min
ym∈Rm

||AUmym − b||2 (5.1)

where a vector xm can be written in the basis Um as:

xm = Umy (5.2)

The orthogonalization of the basis can be performed in different ways. Saad and
Schultz, in [42], proposed to use the Arnoldi algorithm, see [5] for details, for construct-
ing an l2-orthogonal basis. As a result, Equation 5.1 can be written as follows:

rm = min
ym∈Rm

||Um+1Hm+1,mym − ||b||u1||2 = min
ym∈Rm

||Hm+1,mym − ||b||e1||2 (5.3)

where Hm+1,m is a (m + 1)×m Hessenberg matrix with non-zero entries defined by
the Arnoldi algorithm.
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An application of the Givens rotation algorithm results in computing the correspond-
ing QR decomposition of matrix Hm+1,m. After substitution of the matrix with the
corresponding QR decomposition and some mathematical transformations, Equation
5.3 can be written as follows:

rm = min
ym∈Rm

||QTRym − ||b||e1||2 = min
ym∈Rm

||
( Rm

0

)
ym −

( b̃m
˜bn−m

)
||2 (5.4)

Now, the minimization problem 5.4 can be solved as:

Rmym = b̃m (5.5)

Given the decomposition of a vector in the orthonormal basis Um, Equation 5.2, a
solution vector xm can be written as:

xm = Umym (5.6)

A solution significantly improves with growth of subspace Km. This, as a direct
consequence, leads to a considerable increase of a computational cost and storage space.
Therefore, the algorithm usually runs till 20 - 50 column vector evaluations of the
corresponding Krylov subspace and restarts using a computed approximate solution as
an initial guess for the next iteration.

5.1.1.2. Parallelization Aspects

In the general case, iterative methods usually make use of dot and matrix-vector prod-
ucts for solving systems of linear equations. Applications of these linear algebra kernels
allow to efficiently handle sparsity of linear systems and thus reduce computational
complexity of the methods. Additionally, it allows to distribute vectors and matrices
across multiple compute-units and solve systems of equations in parallel, efficiently
exploiting data-based parallelism. Hence, the main drop of parallel performance mainly
comes from process-communication overheads.

However, some methods can have sequential parts that may affect on parallel perfor-
mance as well. For instance, a triangular solve operation, Equation 5.5, of the GMRES
method is usually computed in a single processor because of its small size which
depends on the number of iterations before the restart. Hence, if the underlying system
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of equations is relatively small then such sequential operations can become a bottleneck
in solving the corresponding system.

5.1.1.3. Preconditioners

The most important criterion of Krylov methods is convergence. In case of a "bad"
initial guess x0, the convergence of iterative methods strongly depends on an involved
matrix and, in particular, on its condition number. For instance, Equation 5.7 shows
dependence of an error reduction in the solution on the corresponding matrix condition
number in case of the CG method. It can be clearly observed that a big condition num-
ber may results in a very slow error reduction and, therefore, in a slow convergence rate.

||ei||A ≤ 2(

√
k− 1√
k + 1

)i||e0||A (5.7)

where k = λmax
λmin

- a matrix condition number

In practice, a linear transformation, known as preconditioning, is applied to the
original system of equations in order to reduce its condition number. As a result, the
solution process of the modified system can be accelerated. The transformation can be
applied in different ways. For instance, Equations 5.8 and 5.9 show applications of a
preconditioning matrix P from left and right sides, respectively.

PAx = Pb (5.8)

AP(P−1x) = b (5.9)

In the general case, a good preconditioning algorithm should result in a low com-
putational cost, low storage space and a low condition number of the transformed system.
Additionally, computations of large linear systems require an algorithm to be adapted
for parallel executions as well.

There exist numerous techniques to compute a preconditioner P for given a matrix
A e.g. (point) Jacobi, Block-Jacobi, incomplete LU decomposition (ILU), multilevel
ILU (ILU(p)), threshold ILU (ILUT), incomplete Cholesky factorization (IC), sparse
approximate inverse (SPAI), multigrid as a preconditioner, etc. Experience has shown
that some techniques can work particularly well for matrices derived from a certain
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Package
name

Origin Method
Tuning

parameters
Comments

block Jacobi PETSc block Jacobi
-pc_bjacobi_blocks

-sub_pc_type
-

additive
Schwarz

PETSc
additive
Schwarz

-pc_asm_blocks
-pc_asm_overlap

-pc_asm_type
-pc_asm_local_type

-sub_pc_type

-

euclid hypre ILU(k)
-nlevel
-thresh
-filter

deprecated
form

PETSc

pilut hypre ILU(t)
-pc_hypre_pilut_tol

-pc_hypre_pilut_maxiter
-pc_hypre_pilut_factorrowsize

-

parasail hypre SPAI
-pc_hypre_parasails_nlevels
-pc_hypre_parasails_thresh
-pc_hypre_parasails_filter

-

SPAI
Grote,

Barnard
SPAI

-pc_spai_epsilon
-pc_spai_nbstep

-pc_spai_max
-pc_spai_max_new
-pc_spai_block_size
-pc_spai_cache_size

-

BoomerAMG hypre
algebraic
multigrid

-pc_hypre_boomeramg_cycle_type
-pc_hypre_boomeramg_max_levels
-pc_hypre_boomeramg_max_iter

-pc_hypre_boomeramg_tol
etc.

39 tuning
parameters

in total

Table 5.1.: A list of parallel preconditioning algorithms available in PETSc

PDE or a system of PDEs e.g. Poisson, NavierStokes, etc., and discretized in a certain
way. However, sometimes it can take a quite considerable amount of time to tune a particular
preconditioning algorithm in order fulfill all above listed requirements.

As it can be clearly observed from Table 4.1, all matrices contained in GRS matrix
set are very ill-conditioned and, as a result, require suitable linear transformations.
PETSc provides various preconditioning methods as well as access to some external
preconditioning libraries. Table 5.1 contains a list of some widely-used preconditioning
algorithms available in PETSc, capable to run in parallel on distributed-memory ma-
chines, as well as their short descriptions and tuning parameters.
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Detailed descriptions of all tuning parameters listed in Table 5.1 can be found in
either PETSc or Hypre users’ manuals, [9] and [18], respectively.

It is worth mentioning that both block Jacobi and additive Schwarz algorithms split
the original system into smaller blocks where each block is usually computed on a
single processor. Therefore, these algorithms require an explicit specification of another
preconditioning algorithm or a linear solver, called as sub-preconditioner, for local
block computations. As an example, code Listing 5.1 shows an example of usage of the
sequential PETSc built-in LU matrix decomposition subroutine as a sub-preconditioner
for the block Jacobi algorithm. As a result, the number of tuning parameters for these
two algorithms can grow significantly.

1 −pc_b jacob i_b locks 4
2 −sub_pc_type lu
3 −pc_factor_mat_ordering_type rcm
4 −p c _ f a c t o r _ p i v o t _ i n _ b l o c k s t rue

Listing 5.1: An example of usage of the PETSc built-in sparse direct linear solver as a
sub-preconditioner for the Block Jacobi preconditioning algorithm

5.1.2. Direct Sparse Methods

5.1.2.1. Theory Overview

Direct sparse methods combine the main advantages of direct and iterative methods. In
other words, numerical accuracy of the methods is comparable with the standard Gaus-
sian Elimination process while their computational complexity is typically bounded by
O(n2) [48] due to efficient treatment of non-zero matrix elements. As it is in case of
direct dense methods, a solution of a system of equations is computed by means of for-
ward and backward substitutions using LU decomposition of the corresponding matrix.

The multifrontal method is probably the most representative example of direct sparse
solvers, inroduced by Duff and Reid in [16]. The method is, in fact, an improved version
of the frontal method [27] and can compute independent fronts in parallel. A front,
also called a frontal matrix, can be considered as a small dense matrix resulting from
a column elimination of the original system. There also exist left- and right-looking
vatiants of the multifrontal method explained in detail in [41].
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In this subsection, the theory of multifrontal method is explained, which helps to
understand parallel aspects and strong scaling behavior of direct sparse solvers in case
of parallel execution. To keep the overview rather simple, we assume that matrix A
is symmetric positive definite and sparse. Therefore, matrix decomposition can be
conveniently written as follows:

A = LDLT with (D)ii > 0 (5.10)

The algorithm starts with symbolic factorization of System 5.10 with the aim of
predicting a sparsity pattern of factor L. Once it is done the corresponding elimination
tree can be constructed.

Figure 5.1 shows an illustrative example of a sparse matrix A and its Cholesky factor
L, taking from [36]. The solid circles represent the original non-zero elements whereas
hollow ones define fill-in elements of L.

Figure 5.1.: An example of a sparse matrix and its Cholesky factor, [36]

An elimination tree is a crucial part of the method. It can be considered as a structure
of n nodes where node p is the parent of j if and only if it satisfies Equation 5.11. It is
worth pointing out that Definition 5.11 is not only one possible and one can define a
strucutre of an elimination tree in a different way as well, [36].

p = min(i > j|lij 6= 0) (5.11)

In fact, node p represents elimination of the corresponding column p of matrix A
as well as all dependencies of column p factorization on results of eliminations of its
descendants.
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Given Definition 5.11 and a sparsity pattern of factor L, the corresponding elimination
tree can be constructed, as it is shown in Figure 5.2.

Figure 5.2.: An elimination tree of matrix A of the example depicted in Figure 5.1, [36]

The fundamental idea of the multifrontal method spins around frontal and update
matrices. Frontal matrix Fj is used to perform Gaussian Elimination for a specific
column j and it is equal to a sum of frame Frj and update Ûj matrices, as it can be
observed from Equation 5.12
.

Fj = Frj + Ûj =


aj,j aj,i1 aj,i2 . . . aj,ir
ai1,j
ai2,j

... 0
air ,j

+ Ûj (5.12)

where i0, i1, i2, . . . , ir are row subscripts of non-zeros in L∗j where i0 = j; r is the
number of off-diagonal non-zero elements.

Frame matrix Frj is filled with zeros except the first row and column which contain
non-zero elements of the jth row and column of the original matrix A. Because of
symmetry of matrix A, the frame matrix is square and symmetric.

In order to describe parts of an elimination tree, notation T[j] is introduced to repre-
sent all descendants of node j in the tree and node j itself. In this case, update matrix
Ûj can be defined as follows:
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Ûj = − ∑
k∈T[j]−j


lj,k
li1,k

...
lir ,k

 [lj,k li1,k . . . lir ,k
]

(5.13)

Update matrix Ûj is, in fact, can be considered as the second term of the Schur
complement i.e. update contributions from already factorized columns of A.

The subscript k represents descendant columns of node j. Hence, only those elements
of descendant columns are included and considered which correspond to a non-zero
pattern of the jth column.

Let’s consider partial factorization of a 2-by-2 block dense matrix, Equation 5.15, to
better understand the essence of update matrix Ûj. Let’s assume that matrix B has
already been factorized and can be expressed as follows:

B = LBLT
B (5.14)

A =

[
B VT

V C

]
=

[
LB 0

VL−T
B I

] [
I 0
0 C−VB−1VT

] [
LT

B L−1
B VT

0 I

]
(5.15)

The Schur complement, from Equation 5.15, can be viewed as a sum of the original
sub-matrix C and update −VB−1VT. The update can be written as a sum of outer
products as follows:

−VB−1VT = −(VL−T
B )(L−1

B VT) = −
j−1

∑
k=1

 lj,k
...

ln,k

 [lj,k . . . ln,k
]

(5.16)

Firstly, it can be clearly observed that Equations 5.16 and 5.13 are similar. However,
Equation 5.13 exploits sparsity of the corresponding rows and columns of factor L
and, therefore, masks unnecessary information. Secondly, frame matrix Frj corre-
sponds to block matrix C and brings information from the original matrix A, whereas
update matrix Ûj adds information about the columns that have already been factorized.

As soon as frontal matrix Fj is assembled, i.e. the complete update of column j has
been computed, elimination of the first column of matrix Fj can be started which will
result in computing of non-zero entries of factor column L∗j. The process is denoted as
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partial factorization of matrix Fj.

Let’s denote F̂j as a result of the first column elimination of frontal matrix Fj. Then,
the elimination process of column j can be expressed as follows:

F̂j =

 lj,j . . . 0
... I

lir ,j


1 . . . 0

... Uj
0


lj,j . . . lir ,j

... I
0

 (5.17)

where sub-matrix Uj represents the full update from all descendants of node j and
node j itself. Equation 5.18 expresses sub-matrix Uj as a sum of outer products:

Uj = − ∑
k∈T[j]

li1,k
...

li1,k

 [li1,k . . . li1,k
]

(5.18)

Update column matrix Uj, also called as a contribution matrix, together with the
frontal Fj and update Ûj matrices, forms the key concepts of the multifrontal method.
Let’s consider an example, depicted in Figure 5.3, to demonstrate the importance of
contribution matrices.

Figure 5.3.: Information flow of the multifrontal method

Let’s assume that columns A and B have already been factorized and the corre-
sponding contribution matrices UA and UB have already been computed. According
to Equation 5.18, it is known that both UA and UB matrices contain the full updates
of all their descendants including updates of columns A and B as well. Therefore,
update column matrices UA and UB have already contained all necessary information
to construct update matrix ÛC. A detailed proof and careful explanation can be found
in [36].
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It can happen that only a subset of rows and columns of matrices UA and UB is
needed due to sparsity of column C. Hence, only relevant elements of the correspond-
ing matrices have to be retrieved to form matrix ÛC. For that reason, an additional
matrix operation, called extend-add, has been introduced in the theory of direct sparse
methods.

As an example, taking from [36], let’s consider the extend-add operation applied
to 2-by-2 matrices R and S which correspond to indices 5, 8 and 5, 9 of a matrix B,
respectively.

R =

[
p q
u v

]
, S =

[
w x
y z

]
(5.19)

The result of such operation is a 3-by-3 matrix K which can be written as follows:

K = R 4 S =

p q 0
u v 0
0 0 0

+

w 0 x
0 0 0
y 0 z

 =

p + w q x
u v 0
y 0 z

 (5.20)

Hence, the formation of frontal matrix Fj can be expressed using the extend-add
operation and all direct children of node j as follows:

Fj =


aj,j aj,i1 aj,i2 . . . aj,ir
ai1,j
ai1,j

... 0
air ,j

 4Uc1 4 . . . 4Ucs (5.21)

where c1, c2, . . . cn are indices of the direct children of node j.

At this point, it is worth mentioning that the resulting frontal matrix Fj forms a small
dense block which has to be factorized along the first column. Partial factorization
of the block can be efficiently performed by means of the corresponding dense linear
algebra kernels.

After partial factorization of matrix Fj, assembly of contribution matrix Uj must be
completed by adding those elements of Uc1 , , Uc2 , . . . , Ucs to Uj that have not been used
in factorization of Fj due to sparsity of column j. Then, the process continues moving
up along the tree. Therefore, complete update matrices are growing in size while the
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global elimination process is moving towards the root of the tree.

Manipulations with frontal and contribution matrices play a significant role in per-
formance of the multifrontal method. Sometimes contribution matrices, generated in
previous steps, must be stored into a temporary buffer and efficiently retrieved from it
later during the global factorization process. This can require to change a column elimi-
nation order which can be achieved by some matrix reordering techniques. For instance,
post-ordering, mentioned by Liu in [36], can be considered as an example of such reorder-
ing, in case of symmetric matrices, and can eventually make efficient use of stack data
structure. Post-ordering is based on topological ordering and thus it is equivalent to the
original matrix order. Hence, such reordering results in the same fill-in of the factor [36].

A post-ordered tree implies that each node is ordered before its parent and nodes
in each subtree are numbered consecutively. Figure 5.4 shows an example of post-
ordering applied to the elimination tree of the matrix shown in Figure 5.1. As a result,
consecutive push and pop operations can be efficiently used during matrix factorization
and thus can result in significant simplification of a computer program, see Figure 5.5.

Figure 5.4.: An example of matrix postordering, [36]

In practice, an improved version of the multifrontal method, called the supernodal
method, is used. The method tends to shrink an elimination tree by grouping some
certain nodes/columns in a single node. As a result, more floating point operations
can be performed per memory access by eliminating few columns at once within the
same frontal matrix.

A super-node is formed by a set of contiguous columns which have the same off-
diagonal sparsity structure. Hence, a super-node has two important properties. Firstly,
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Figure 5.5.: An example of an efficient data treatment during matrix factorization using
stacking, [36]

it can be expressed as a set of consecutive column indices, namely: {j, j + 1, . . . , j + t}
where node j + k is a parent of j + k− 1 in the corresponding elimination tree. Secondly,
the size of super-nodal frontal matrix Fj is equal to the size of frontal matrix Fj resulted
from the original post-ordered tree. As an example, Figure 5.6 shows a post-ordered
matrix A, its Cholesky factor L and the resulting super-nodal elimination tree.

Figure 5.6.: An example of a supernodal elimination tree, [36]

Equation 5.23 shows an assembly process of super-nodal frontal matrix Fj. In contrast
to Equation 5.21, frame matrix F rj contains more dense rows and columns. As before,
the extend-add operation is used to construct the full update block from contribution
matrices of the children, namely: Uc1 , Uc2 , . . . , Ucs .

Fj = F rj 4Uc1 4 . . . 4Ucs (5.22)
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Fj =



aj,j aj,j+1 . . . aj,j+t aj,i1 . . . aj,ir
aj+1,j aj+1,j+1 . . . aj+1,j+t aj+1,i1 . . . aj+1,ir

...
... . . .

...
aj+t,j aj+t,j+1 . . . aj+t,j+t aj+t,i1 . . . aj+t,ir
ai1,j ai1,j+1 . . . ai1,j+t

...
... . . .

... 0
air ,j air ,j+1 . . . air ,j+t


4Uc1 4 . . . 4Ucs (5.23)

It is worth mentioning there exist other definitions of super-nodes which allow to
amalgamate even more nodes from the original post-ordered tree. For example, Liu
pointed out, in [36], that a super-node could be defined without the column contiguity
constrain which can result in denser frame matrix F rj.

It can be clearly observed that the method consist of three distinct phases, namely:
analysis, numerical factorization and solution phases. The analysis phase includes fill
reducing matrix reordering, symbolic factorization, post-ordering, amalgamation of
nodes, elimination tree construction, etc. During the numerical factorization phase,
L and D, or U, factors of the original matrix A are computed based on sequence
of partial factorizations of frontal matrices. Given a matrix decomposition, the solu-
tion step computes a solution vector x by means of backward and forward substitutions.

5.1.2.2. Parallelization Aspects

In contrast to iterative methods, parallelization of direct sparse methods mainly comes
from task-based parallelism where an elimination tree can be considered as a collec-
tion of tasks. In fact, the tree represents data dependencies during column partial
factorizations and, therefore, reveals dependent and independent tasks. For example,
leaves usually locate in separate branches of an elimination tree and thus represent
concurrent tasks that can be executed in parallel. On the other hand, parent nodes
represent data dependences from their children and cannot be factorized beforehand.
Therefore, sparse direct methods have only limited parallelism which swiftly decreases
while computations are moving towards the top of an elimination tree.

Let’s consider two simple models, that have been developed for this part of the study,
in order to demonstrate potential parallel performance of tree-task parallelism. The
models, in fact, are perfectly balanced binary trees with different costs per level. Within
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a level, the cost is distributed equally among the nodes. The first model, Figure 5.7a,
implies quadratic decrease of a computational cost between nodes of adjacent levels
whereas the second one, Figure 5.7b, simulates cubic decay of compute-intensity. The
models intend to reflect growth of complete update matrices in size, while moving from
bottom to top along an elimination tree, and thus increase of floating point operations.

(a) Model 1: equal cost per level (b) Model 2: quadratically decreasing cost per level

Figure 5.7.: Examples of tree-task parallelism

The models imply parallel computations within a level but sequential execution be-
tween them. In other words, to start computations at the next top level, factorizations of
all nodes at the current one have to be fully performed. It also means that computations
at the next level cannot be started even if there are some available free processors but
factorization of the last node at the current level has not been completed yet. Thereby,
minimal execution time of both models can be exactly evaluated based on the model
descriptions. Essentially, it is equal to a sum of time spent on a single node of each
level i.e a sum along the deepest branch. Therefore, it determines asymptotes in the
corresponding speed-up graphs.

Figures 5.8a and 5.8b represent strong scaling behavior of both models filled with
65535 nodes i.e. 16 levels. As it can be observed, the models demonstrate a rapid drop
of parallel performance, especially in case of the quadratic one, Figure 5.8b . Table
5.2 compares speed-up of two models obtained with 32768 and 20 abstract processors.
Number 32768 is equal to the number of leaves at the bottom level and thus implicitly
determines the maximum speed-up. It is worth mentioning that two models almost
exhaust tree-task parallelism even with 20 processing elements. Further increase of the
number of processor can only barely improve the overall parallel performance.

These, rather simple, models reveal the most important fact about tree-task paral-
lelism of sparse direct methods. The performance depends heavily on an elimination
tree structure and, in particular, on a distribution of compute-intensity among nodes.
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(a) Model 1 (b) Model 2

Figure 5.8.: Theoretical speed-up of models 1 and 2

20 PEs 32768 PEs
Model 1 6.3492 8.0000
Model 2 1.4972 1.5000

Table 5.2.: Theoretical speed-up of models 1 and 2

As it was mentioned above, the intensity is usually centered on the top part of the tree
where task-based parallelism is limited due to data dependencies. As an example, Liu
observed that factorizations of the last 6 nodes took slightly more than 25% of the total
number of floating point operations in case of an application of the multifrontal method
to a k− by− k regular model problem using a nine-point difference operator, [36].

Node-data parallelism is often combined with tree-task one which usually results in
an improvement of parallel performance of direct sparse methods. In the general case,
frontal matrix Fj can be distributed across multiple processors and partially factorized
in parallel. However, performance of node-data parallelism depends on both a matrix
size and the number of processors assigned to perform factorization. Over-subscription
of processing elements to a node can result in slow-down induced by communication
overheads. Therefore, data parallelism is only applied to top and middle parts of
elimination trees because of fine granularity of bottom levels.

By and large, combined tree-task and node-data parallelism improves performance
and strong scaling of sparse direct solvers, however, it cannot change the performance
trend induced by tree-task parallelism. Therefore, one can still expect stagnation of
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speed-up even with a relatively small number of processors.

A parallel implementation of sparse direct solvers demands to expand the analysis
phase by adding two more pre-processing steps, namely: process mapping and load
balancing. Both mapping and balancing are usually performed statically during the
analysis of an elimination tree.

5.1.2.3. Threshold Pivoting and Solution Refinement

Because of an accumulative effect of inexact computer arithmetics due to a floating point
representation of real numbers and, as a result, truncations and rounding errors, small
numerical values along the main matrix diagonal during the Gaussian Elimination pro-
cess can result in significant numerical inaccuracy of the process. Therefore, pivoting is
a crucial step of Gaussian Elimination. It implies interchanging rows and columns of a
matrix in such a way to place distinct and distant values form zero to the main diagonal.

In case of direct dense methods, pivoting is a straightforward operation and can be
expressed as multiplication of the original matrix A by a permutation matrix P, where
each row and column contain a single 1, at the corresponding place, and 0s everywhere.
However, treatment of pivoting in direct sparse methods is an issue.

On the one hand, absence of numerical information during the analysis phase makes
it impossible to perform pivoting at this step. On the other hand, an application of pivot-
ing during the numerical factorization phase usually distorts all matrix reorderings and,
therefore, the elimination tree structure. As a consequence, pivoting can lead to signifi-
cant fill-in, load unbalance and, as a result, slow-down of numerical factorization. For
that reason, threshold pivoting is commonly used, in practice, for direct sparse methods.

Threshold pivoting means that a pivot |ai,i| is accepted if it satisfies Equation 5.24.

|ai,i| ≥ α×maxk=i...n|ak,i| (5.24)

where α ∈ [0, 1] and k = i . . . n represents row indices of column i within the fully
summed block of a frontal matrix.

Factorization of a column is suspended i.e. delayed, if Equation 5.24 cannot be
satisfied within the fully-summed block of a frontal matrix. In this case, the column
and the corresponding row are moved to the parent’s frontal matrix as a part of its
contribution block where the process repeats again. The process is also known as
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delayed pivoting and helps to improve numerical accuracy. Higher values of α lead
to more accurate solutions but often generate extra fill-in and lead to load unbalance
which, as a result, affect parallel performance. On the other hand, smaller values
usually preserve the original elimination tree and, therefore, preserve the load balance
computed during the analysis phase by appropriate mapping processors across nodes
of the tree. However, in this case, numerical accuracy usually degrades. In practice,
values of α lay in the range between 0.01 and 0.1 [37].

A case when parameter α is equal to 0 is known as static pivoting which means that
no pivoting is being performed during the numerical factorization phase. This allows to
better optimize data layout, load balancing, and communication scheduling, [35], before
numerical factorization which is supposed to result in better parallel performance.

By and large, solutions computed by direct sparse methods can be numerically
inaccurate, in some degree, and may demand to perform solution refinements. As an
example, solution accuracy can be improved using the iterative refinement method.
Code Listing 5.3 shows a pseducode of the method where parameter ω represents an
estimation of the backward error, Equation 5.25, [6]. In practice, the method usually
takes 2 or 4 iterations to achieve sufficient numerical accuracy.

1 # perform a n a l y s i s and numerical f a c t o r i z a t i o n phases
2 LU = SparseDirec tSo lver ( matrix=A)
3

4 # compute i n i t i a l s o l u t i o n
5 x = Solve ( f a c t o r i z a t i o n =LU, rhs=b )
6

7 # compute i n i t i a l r e s i d u a l
8 r = A ∗ x − b
9

10 while r > ω

11 # f ind c o r r e c t i o n
12 d = Solve ( f a c t o r i z a t i o n =LU, rhs=r )
13

14 # update s o l u t i o n
15 x = x − d
16

17 # update r e s i d u a l
18 r = A ∗ x − b

Listing 5.2: Pseudocode of the iterative refinement method

|b− Ax̂|i
(|b|+ |A||x̂|)i

(5.25)
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where x̂ is a computed solution; | · | is the element-wise module operation.

As an alternative to the iterative refinement method, one can use the resulting LU
decomposition of matrix A as a preconditioner for an iterative solver, for instance
GMRES. Based on experience of ATHLET-NUT users, this approach usually takes 1 up
to 3 iterations to achieve desired numerical accuracy even with extreme small values of
α.

Finally, it is worth mentioning that both refinement techniques, mentioned above, ex-
ploit only data-based parallelism and, therefore, are scaled well on distributed-memory
machines.

5.1.3. Results and Conclusion

Nowadays, iterative methods is a common choice for solving sparse systems of linear
equations because of their possible fast convergence and high parallel efficiency. How-
ever, applications of such methods always demand preconditioning for ill-conditioned
systems to make methods converge to numerical accurate solutions. It can be clearly
observed from Table 4.1 that numerical integration of thermo-hydraulic simulations in
ATHLET entails solving ill-conditioned systems based on estimated condition numbers
of matrices form GRS matrix set.

As the first step of the study, we tested various preconditioning algorithms together
with their tuning parameters, mentioned in Table 5.1, applied to GRS matrix set. GM-
RES was chosen as an iterative solver with values of relative and absolute convergence
tolerances in the residual norm to be equal to 1E− 8 and 1E− 4, respectively. A coarse
grid search was used with maximum 3 values for each tuning parameter starting from
the default towards more accurate values in order to refine parameter settings of each
preconditioning algorithm. Testing results showed that none of them could lead to
convergence for the entire set of matrices.

One can assume that a finer grid search can result in finding a suitable precondition-
ing algorithm with parameter settings that can lead to convergence of GMRES solver
for the entire set. However, it is important to point out that the matrices were generated
by running the most common GRS thermo-hydraulic test-scenarios and saving them
somewhere during the time integration process. Hence, there is no guarantee that the
parameters found in such a way can always lead to convergence of GMRES solver in
all time steps of any thermo-hydraulic simulation. Therefore, iterative methods may
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not satisfy robustness criterion stated in Chapter 3 as a non-functional requirement to a
sparse linear solver.

Taking into account the above reasoning, we have come to the conclusion that sparse
direct methods is the best choice for our problem, in spite of the limited tree-task paral-
lelism described in Subsection 5.1.2.2, because the methods stably result in numerical
accurate solutions even in case of ill-conditioned linear systems. Hence, the next objec-
tive of the study is to find a suitable sparse direct method and its implementation, and
adapt it for HW1 compute-cluster environment in terms of efficient parallel execution.

5.2. Selection of a Sparse Direct Linear Solver

Fair to say, there is no single algorithm or
software that is the best for all types of
linear systems

— Xiaoye Li, [49]

Nowadays, there exist many different and avaliable sparse direct solvers. Some of
them are tunned for specific linear systems whereas others are targeted for the most
general cases [49]. Some of them handle tree-task and node-data parallelism in different
ways even within the same library depending on sizes of frontal matrices and other
criteria [25], [37], [35]. Hence, parallel performance of a direct sparse method depends
heavily on its specific implementation. Table 5.3 represents a short summary of almost
all available libraries capable to run on distributed-memory machines, at the time of
writing, based on works [49] and [8].

It can be clearly observed, from Table 5.3, that only MUMPS, PaStiX and Su-
perLU_DIST cover requirements induced by GRS, see Chapter 3, in particular: open-
source license and a direct interface to PETSc. Additionally, each development group of
these solvers provides technical support for its software package. Therefore, it indirectly
means that the solvers are maintainable. It is interesting to notice that all libraries,
mentioned above, are implementations of different sparse direct methods, namely: mul-
tifrontal (MUMPS), left-looking (PaStiX) and right-locking (SuperLU_DIST). Moreover,
PaStiX and SuperLU_DIST use only static pivoting [39], [35] whereas MUMPS provides
a full implementation of the threshold pivoting strategy [37], described in Subsection
5.1.2.3.
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Package Method Matrix Types
PETSc

Interface
License

Clique Multifrontal Symmetric
Not

Officially
Open

MF2 Multifrontal
Symmetric

pattern
No -

DSCPACK Multifrontal SPD No Open
MUMPS Multifrontal General Yes Open
PaStiX Left looking General Yes Open

PSPASES Multifrontal SPD No Open

SPOOLES Left-looking
Symmetric

pattern
No Open

SuperLU_DIST Right-looking General Yes Open
symPACK Left-Right looking SPD No Open

S+ Right-lookin General No -
PARDISO Multifrontal General No Commercial

WSMP Multifrontal General No Commercial

Table 5.3.: A list of direct sparse linear solvers adapted for distributed-memory compu-
tations, [49], [8], where SPD - Symmetric Positive Definite

To compare the libraries, a couple of flat-MPI tests were performed using GRS matrix
set and HW1 compute-cluster. From now onwards, we refer to a flat-MPI test as parallel
factorizations of a matrix performed with varying values of the MPI process count from
1 to 20 and conducted on a single compute-cluster node.

PETSc library was compiled and configured with MUMPS (version 5.1.2), PasTiX
(version 6.0.0) and SuperLU_DIST (version 5.4) packages using their default parameter
settings. An internal built-in PETSc profiler was used to measure execution time. A
time limit of 15 minutes was set up for each test-case to prevent blocking of a cluster
compute-node from an unexpected long program execution. Results are summarized
in Tables 5.4, 5.5, 5.6 and in appendix B where numerical values are given in seconds.

Some problems were detected during SuperLU_DIST library testing. First of all,
executions of cube-64 and k3-2 test-cases exceeded the set time limit. Secondly, it was
noticed the library was crashing during processing of k3-18, cube-645 and (partially)
pwr-3d test-cases. Debugging revealed that a segmentation fault occurred in function
pdgstrf during the numerical factorization phase. Nonetheless, it is still unclear whether
the problem was software or hardware specific. A solution or a reason of such program
behavior has not been found at the moment of writing.
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MPI MUMPS PaStiX SuperLU MPI MUMPS PaStiX SuperLU
1 7.02E-02 8.72E-02 3.17E+00 11 7.55E-02 8.89E-02 5.82E-01
2 6.73E-02 7.10E-02 1.43E+00 12 7.61E-02 1.06E-01 4.37E-01
3 6.36E-02 7.01E-02 1.07E+00 13 7.84E-02 9.72E-02 5.43E-01
4 6.28E-02 7.11E-02 8.17E-01 14 8.06E-02 1.02E-01 4.22E-01
5 6.50E-02 7.15E-02 7.51E-01 15 8.20E-02 1.19E-01 3.91E-01
6 6.72E-02 7.62E-02 6.15E-01 16 8.07E-02 1.19E-01 4.44E-01
7 6.91E-02 7.69E-02 6.48E-01 17 8.38E-02 1.22E-01 5.19E-01
8 6.89E-02 8.17E-02 5.41E-01 18 8.40E-02 1.26E-01 3.77E-01
9 7.50E-02 8.28E-02 5.02E-01 19 8.58E-02 1.33E-01 5.47E-01
10 7.22E-02 8.52E-02 4.64E-01 20 8.64E-02 1.49E-01 3.39E-01

Table 5.4.: Comparisons of parallel performance of cube-5 matrix factorizations using
MUMPS, PasTiX and SuperLU_DIST solvers with their default parameter
settings

MPI MUMPS PaStiX SuperLU MPI MUMPS PaStiX SuperLU
1 1.36E+00 1.39E+00 time-out 11 7.75E-01 8.15E-01 time-out
2 1.00E+00 9.82E-01 time-out 12 7.81E-01 8.10E-01 time-out
3 8.83E-01 1.06E+00 time-out 13 7.85E-01 8.35E-01 time-out
4 8.17E-01 8.74E-01 time-out 14 7.85E-01 8.18E-01 time-out
5 7.85E-01 8.50E-01 time-out 15 7.88E-01 8.46E-01 time-out
6 8.06E-01 8.52E-01 time-out 16 7.81E-01 8.23E-01 time-out
7 7.71E-01 8.33E-01 time-out 17 6.83E-01 8.49E-01 time-out
8 7.66E-01 8.33E-01 time-out 18 7.96E-01 8.44E-01 time-out
9 7.93E-01 8.35E-01 time-out 19 8.04E-01 8.65E-01 time-out
10 8.07E-01 8.15E-01 time-out 20 6.85E-01 8.87E-01 time-out

Table 5.5.: Comparisons of parallel performance of cube-64 matrix factorizations using
MUMPS, PasTiX and SuperLU_DIST solvers with their default parameter
settings

To complete comparison and evaluate parallel performance SuperLU_DIST library,
an additional test was conducted using a 2D formulation of the Poisson problem with
100000 unknown. According to the results, SuperLU_DIST managed to complete matrix
factorizations within the set time limit without crashing, however, it showed abnormal
jagged strong scaling behavior. Moreover, it turned out it was the slowest in comparison
to the other solvers. The results are shown in Figure 5.9.
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MPI MUMPS PaStiX SuperLU MPI MUMPS PaStiX SuperLU
1 1.55E+02 6.44E+01 crashed 11 1.77E+01 3.81E+01 crashed
2 6.28E+01 4.84E+01 crashed 12 1.60E+01 3.75E+01 crashed
3 5.06E+01 5.02E+01 crashed 13 1.42E+01 3.58E+01 crashed
4 4.17E+01 4.50E+01 crashed 14 1.45E+01 3.59E+01 crashed
5 2.52E+01 3.98E+01 crashed 15 1.47E+01 3.57E+01 crashed
6 2.58E+01 4.29E+01 crashed 16 1.41E+01 3.52E+01 crashed
7 2.65E+01 4.30E+01 crashed 17 1.54E+01 3.45E+01 crashed
8 2.59E+01 3.73E+01 crashed 18 1.52E+01 3.31E+01 crashed
9 1.95E+01 4.08E+01 crashed 19 1.52E+01 3.31E+01 crashed

10 1.91E+01 3.81E+01 crashed 20 1.38E+01 3.16E+01 crashed

Table 5.6.: Comparisons of parallel performance of k3-18 matrix factorizations using
MUMPS, PasTiX and SuperLU_DIST solvers with their default parameter
settings

Figure 5.9.: Comparisons of parallel performance of MUMPS, PasTiX and Su-
perLU_DIST libraries during 5 point-stencil Poisson matrix (1000000 equa-
tions) factorizations
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According to the initial and additional tests, MUMPS library showed the best parallel
performance and scaling in contrast to the other solvers. No abnormal behavior during
its operation was detected. In some cases, it only required to increase a multiplicative
factor of estimated working space which was used to hold frontal matrices and factors
L and U in memory. PaStiX was the second fastest solver according to the results of
testing. However, it was often considerably slower than MUMPS. At the same time,
SuperLU_DIST showed the worst results. Additionally, as it was mentioned above, we
experienced some technical problems during operation of this library.

A literature review showed quite contradictory results and conclusions. For example,
Gupta, Koric, and George, in [25], came to nearly the same inference with respect
to MUMPS, as we did, comparing parallel performance of WSMP, MUMPS and Su-
perLU_DIST libraries using their matrix set. However, Kwack, Bauer, and Koric showed,
in [31], that SuperLU_DIST spent the least amount of time on solving systems of linear
equations in contrast to the other solvers used in their work. It is needless to say that
both research groups used different matrix sets and hardware. Nevertheless, it reveals
a quite important fact that a selection of a particular method and its implementation
can depend heavily on a specific matrix set.

In this section, we have compared different sparse direct methods and their concrete
implementations using their default parameter settings with regard to GRS matrix set.
Based on the obtained results and literature review, MUMPS library is chosen for the
rest of the study. In Section 5.3, we make an overview of the library and its specific traits.

5.3. Overview of MUMPS Library

Originally, MUltifrontal Massively Parallel sparse direct Solver (MUMPS) was a part of
the PARASOL Project. The project was an ESPRIT IV long term research with the main
goal to build and test a portable library for solving large sparse systems of equations on
distributed memory systems [1]. An important aspect of the research was a strong link
between the developers of the sparse solvers and industrial end users, who provided a
range of test problems and evaluated the solvers [3]. Since 2000, MUMPS had continued
as an ongoing project and the library have contained almost 5 main releases, at the
moment of writing.

As it was mentioned in Section 5.2, MUMPS is an implementation of the multifrontal
method. Therefore, MUMPS performs all three phases in sequence, namely: analysis,
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numerical factorization and solution. The numerical factorization and solution phases
were fully described in detail in Subsection 5.1.2.1. In this section, the analysis phase of
MUMPS is examined since implementations of this phase often vary between libraries
due to different performance considerations.

According to the library documentation, the analysis phases of MUMPS consists of
several pre-processing steps:

1. Fill reducing reordering

2. Symbolic factorization

3. Scaling

4. Amalgamantion

5. Mapping

1) To handle both symmetric and unsymmetric cases, MUMPS performs fill reducing
reordering based on A + AT sparsity pattern. The library provides numerous sequan-
tial algorithms for the reordering such as Approximate Minimum Degree (AMD) [2],
Approximate Minimum Fill (AMF), Approximate Minimum Degree with automatic
quasi-dense row detection (QAMD) [4], Bottom-up and Top-down Sparse Reordering
(PORD) [43], Nested Dissection coupled with AMD (Scotch) [40], Multilevel Nested Dis-
section coupled with Multiple Minimum Degree (METIS) [29]. Additionally, MUMPS
can work together with ParMETIS and PT-Scotch which are extensions of METIS and
Scotch libraries for parallel execution, respectively. MUMPS also provides users with
an option to select a fill-in reducing algorithm in run-time based on a matrix type, size
and the number of processors [37].

2) Sparsity structures of factors L and U are computed during the symbolic factoriza-
tion pre-processing step, based on permuted matrix A after fill-in reducing reordering.
It gives the input information for the elimination tree building process. All computa-
tions are performed using an undirected graph G(A) associated with a matrix A at this
step.

3) Rows and/or columns of matrix A can be scaled during either the analysis or
factorization phase in order to improve numerical solution accuracy. As an additional
consequence, this pre-processing step can result in more reliable estimations of required
memory space and load balancing, performed during the analysis phase, due to a re-
duced amount of pivoting during numerical factorization. Different scaling approaches
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are adopted in MUMPS, namely: diagonal, column or column-row scalings during the
numerical factorization phase, see [37] for details; scalings based on works [14], [13]
and [15] for the analysis phase.

4) During the amalgamation step, described in Subsection 5.1.2.1, sets of columns
with the same off-diagonal sparsity pattern are group together to create denser nodes,
also known as super-nodes. The process leads to restructuring the original elimination
tree to an amalgamated one of super-nodes which is also know as the assembly tree. The
main purpose of this step is to improve efficiency of dense matrix operations.

5) A host process, chosen by MUMPS, creates a pool of tasks where each task refers
to partial factorization of a node i.e. a frontal matrix. Each node belongs to one of three
different types according to a size of the frontal matrix that a node refers to. Type 1
and 2 nodes represent small- and medium-sized frontal matrices, respectively. Whereas
a type 3 node represents the root node of an assembly tree i.e the largest frontal matrix.
MUMPS uses different parallel computational strategies, that are explained below, in
order to process nodes of different types with the aim of achieving better parallel
performance. The host process distributes tasks among all available processes in such a
way to achieve good memory and compute balances. Figure 5.10 shows an example of
a process distribution in MUMPS.

Type 1 nodes are grouped in subtrees, according to the Geist-Ng algorithm [20], and
each subtree is processed by a single process to avoid the finest task granularity, which
can cause high communication overheads.

In case of type 2 nodes, the host process assigns each node to one process, called
the master, which holds fully summed rows and columns of a node as well as per-
forms threshold pivoting and partial factorization. During the numerical factorization
phase, in run-time, a master process first receives symbolic information, describing
contribution block structures, from its children. Then, the master collects information
concerning the load balances of all other processes and decides, dynamically, which of
them, slaves, are going to participate in the node factorization. After that, the master
informs the chosen slaves that a new task has been allocated for them; maps them
according to a 1D block column distribution and sends them the corresponding parts
of the frontal matrix. Then, the slaves communicate with the children of the master
process and collect the corresponding numerical values. The slaves are in charge of
assembly and computations of the partly summed rows. The computational process is
illustrated in Figure 5.18, Subsection 5.4.3.
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The root node belongs to the 3rd type. The host statically assigns a master for the
root, as it is in case of type 2 nodes, to hold all the indices describing the structure
of its frontal matrix. Before factorization, the structure of the root frontal matrix is
statically mapped onto a 2D grid of processes using a block cyclic distribution. This
allows to determine, during the analysis phase, which process an entry of the root is
assigned to. Hence, the original matrix entries and parts of the contribution blocks can
be assembled as soon as they are available. Because of threshold pivoting, the master
process collects indices for all delayed variables of its sons; builds the final structure of
the root frontal matrix and broadcasts the corresponding symbolic information to all
slaves. The slaves, in turn, adjust their local data structure and, right after this, perform
numerical factorization in parallel.

It is important to mention that if the root node size is less than a certain computer
depended parameter value, defined internally by MUMPS, the root node will be treated
as a type 2 one, [37].

An example of static/dynamic scheduling i.e. process mapping, is depicted in Figure
5.10.

Figure 5.10.: An example of static and dynamic scheduling in MUMPS, [32]
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5.4. Configuration of MUMPS Library

This section is organized as follows. Each subsection describes configuration of MUMPS
with particular techniques, methods or libraries stated in the title of a subsection,
e.g. Subsection 5.4.3, i.e. "Optimized BLAS Implementations", stands for "Configuration of
MUMPS Library with Optimized BLAS Implementations".

5.4.1. Fill Reducing Reorderings

Fill reducing reordering is one of the first and the most important steps of sparse matrix
factorization. As the name suggests, the step aims to reduce fill-in of L and U factors.
However, it may have a strong and indirect impact on an elimination/assembly tree
structure. As we discussed in Subsection 5.1.2.2, the structure defines tree-task paral-
lelism as well as sizes of frontal matrices and, therefore, performance of the method.

MUMPS provides various algorithms for fill reducing reordering, as it was men-
tioned above. A detailed study and comparison of different methods were done by
Guermouche, L’Excellent, and Utard, in [24], for sequential execution of the analysis
phase. Guermouche, L’Excellent, and Utard noticed that trees generated by METIS
and SCOTCH were rather wide (because of the global partitioning performed at the
top), while the trees generated by AMD, AMF and PORD tend to be deeper. In ad-
dition, they observed two important things. Firstly, they noticed that both SCOTCH
and METIS generated much better balanced trees in contrast to other methods. Sec-
ondly, according to their results, SCOTCH and METIS produced trees with bigger
frontal matrices in contrast to those trees generated by other reordering techniques, [24].

In this subsection, we are going to investigate an influence of two different parallel
fill reducing reordering algorithms provided by PT-Scotch and ParMETIS libraries on
parallel performance of MUMPS. The algorithmic difference between the corresponding
PT-Scotch and ParMETIS subroutines was mentioned in Section 5.3.

To perform testing, PETSc, MUMPS, PT-Scotch and ParMETIS libraries were down-
loaded, compiled, configured and linked together, using their default parameter settings.
Tests were carried out using only flat-MPI mode on HW1 compute-cluster without any
explicit process pinning. The results are shown in Figures 5.11 and 5.12 as well as in
appendix C.

According to the results of testing, parallel performance of MUMPS can vary signifi-
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(a) pwr-3d (b) cube-5

(c) k3-2 (d) cube-64

Figure 5.11.: An influence of different fill reducing algorithms on parallel factorizations
of pwr-3d, cube-5, k3-2 and cube-64 matrices
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(a) k3-18 (b) cube-645

Figure 5.12.: An influence of different fill reducing algorithms on parallel factorizations
of k3-18 and cube-645 matrices

cantly and very sensitive to applied fill-in reducing reordering algorithms. On average,
difference in execution time between the algorithms achieves almost 15%. However, in
some particular cases, cube-5 and pwr-3d, the difference varies around 40-55%.

It is important to mention that both algorithms, PT-Scotch and ParMetis, are based
on different heuristic approaches. It is relevant to assume that efficiency of a particular
heuristic can be very sensitive to a matrix structure and size. This fact makes it difficult
to predict in advance which algorithm is better to use for a specific case.

Considering results obtained using GRS matrix set, we can observe that PT-Scotch is
the best choice for small- and medium-sized matrices, namely: pwr-3d, cube-5, k3-2 and
cube-64 cases. Whereas, PerMetis tends to work better for relatively big systems, such as
k3-18 and cube-645, However, we keep in mind that the number of GRS test-cases may be not
enough to make such conclusion and, therefore, the matrix set must be extended considerably
for a future study.
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During the testing, we noticed that applications of ParMetis to small systems of
equations showed a strong negative effect on parallel performance of MUMPS. The
results showed that factorization time of pwr-3d and cube-5 matrices grew with the
increase of the number of processing units.

A simple profiling showed two important things. Firstly, numerical factorization
time and time spent on the analysis phase had approximately the same order in case of
sequential execution i.e. 1 MPI process. Secondly, while numerical factorization time
were barely decreasing with increase of the number of processing elements, time spent
on the analysis phase significantly grew. Therefore, the slow-down of MUMPS in case
of these two test-cases mainly came from overheads of the analysis phase.

A careful investigation revealed that the analysis phase contained several peaks at
points where the MPI processor count was equal to a power of two. We assumed
the cause could result from either fill reducing reordering or process mapping steps.
However, a detailed profiling and tracing of the analysis phase, which are out of the
scope of this study, are required in order to give the exact answer. The results of
profiling are shown in Figure 5.13.

(a) pwr-3d (b) cube-5

Figure 5.13.: Profiling of MUMPS-ParMetis configuration applied to parallel factoriza-
tions of relatively small matrices

In this subsection, we have presented an influence of two different fill-in reducing
algorithms on parallel performance of MUMPS. We have observed that a correct choice
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of an algorithm can lead to a significant improvement in terms of the overall parallel
execution time. We have shown there is no a single algorithm that performs the best for
all test-cases. At the moment of writing, we have come to the conclusion that there is no
an indirect metric to predict the best algorithm in advance for a specific system of equa-
tions. Sometimes PT-Scotch and ParMetis can result in nearly the same performance as
it was, for example, in case of CurlCurl_3 and cant matrices, see appendix C. Therefore,
from time to time, it can be quite difficult to decide which package to use even with
available flat-MPI test results. At the end, we have assigned each test-case to a specific
fill reducing reordering method based on results of the conducted experiments and our
subjective opinion. The results are summarized it in Tables 5.7 and 5.8.

Matrix Name Ordering n nnz nnz / n
cube-5 PT-Scotch 9325 117897 12.6431
cube-64 PT-Scotch 100657 1388993 13.7993

cube-645 ParMetis 1000045 13906057 13.9054
k3-2 PT-Scotch 130101 787997 6.0568
k3-18 ParMetis 1155955 7204723 6.2327

pwr-3d PT-Scotch 6009 32537 5.4147

Table 5.7.: Assignment of GRS matrices to specific fill-in reducing algorithms

Matrix Name Ordering n nnz nnz / n
cant ParMetis 62451 4007383 64.1684

consph PT-Scotch 83334 6010480 72.1252
memchip PT-Scotch 2707524 13343948 4.9285

PFlow_742 PT-Scotch 742793 37138461 49.9984
pkustk10 PT-Scotch 80676 4308984 53.4110

torso3 ParMetis 259156 4429042 17.0903
x104 PT-Scotch 108384 8713602 80.3956

CurlCurl_3 PT-Scotch 1219574 13544618 11.1060
Geo_1438 ParMetis 1437960 63156690 43.9210

Table 5.8.: Assignment of SuiteSparse matrices to specific fill-in reducing algorithms

From now onwards, assignments mentioned in Tables 5.7, 5.8 are going to be used
without explicitly referring to it.
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5.4.2. MPI Process Pinning

Due to intensive and complex manipulations with frontal and contribution matrices,
one can assume that MUMPS belongs to a group of memory bound applications. In this
case, memory access becomes a bottleneck. A common strategy to improve performance
of a memory bound computer program running on distributed-memory machines is to
distribute MPI processes equally across all available NUMA domains within a compute
node. Given the fact that each NUMA domain possesses its own system bus, this
strategy allows to reduce conjunction of memory traffic by balancing data requests
equally among the memory channels.

However, due to the fact that MUMPS uses both task and data parallelism as well as
a complex task scheduling, it becomes difficult to state which process pinning strategy
is better to use i.e. close or spread, described in Chapter 4.

Therefore, a couple of flat-MPI tests were carried out using both GRS and SuiteS-
parse matrix sets in order to investigate an influence of different pinning strategies
on MUMPS parallel performance. For this group of tests, MUMPS was ran with the
default parameter settings but with a specific fill-in reducing algorithm assigned to each
test-case according to Tables 5.7 and 5.8. The tests were performed on both HW1 and
HW2 machines. A comparison between different hardware also allows to investigate an
influence of different numbers of independent system buses within a compute-node on
parallel performance of MUMPS since HW1 and HW2 machines have 2 and 4 NUMA
domains, respectively. Results are shown in Figures 5.14, 5.15, 5.16 and in appendix D.
Each graph depicts the total execution time of MUMPS spent on a test-case i.e. time
spent on the analysis, factorization and solution phases.

The tests revealed that, in the general case, the spread-pinning strategy performed
better for both machines. On average, the strategy allows to reduce run-time by ap-
proximately 5.5% and 13.8% for HW1 and HW2 machines, respectively. The main
performance gain can be observed in the middle range of the MPI process count i.e. the
range between 2 and 12 MPI processes, where performance curves of spread and close
strategies noticeably deviate. On the other hand, the difference becomes less and less
prominent while the process count is reaching either its maximum or minimal values.
In these cases, the difference between process distributions of both strategies becomes
less noticeable as well. As an extreme example, the points where the process count is
equal to 1 and 20 show the same performance, in case of HW1 machine which possesses
only 20 cores in a compute-node, because the points basically represent exactly the
same process distributions.
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(a) HW1 - pwr-3d (b) HW2 - pwr-3d

(c) HW1 - cube-64 (d) HW2 - cube-64

Figure 5.14.: Comparisons of close and spread pinning strategies applied to parallel
factorizations of pwr-3d and cube-64 matrices
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(a) HW1 - cube-645 (b) HW2 - cube-645

(c) HW1 - k3-18 (d) HW2 - k3-18

Figure 5.15.: Comparisons of close and spread pinning strategies applied to parallel
factorizations of cube-645 and k3-18 matrices
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(a) HW1 - PFlow_742 (b) HW2 - PFlow_742

(c) HW1 - CurlCurl_3 (d) HW2 - CurlCurl_3

Figure 5.16.: Comparisons of close and spread pinning strategies applied to parallel
factorizations of PFlow_742 and CurlCurl_3 matrices
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It is also important to investigate performance gain around saturation points i.e.
points after which further increase of the MPI process count results in either stagnation
or drop of computer program speed-up. It is worth pointing out that, in our case, it
becomes difficult to decide where saturation points locate because of jagged behavior
of speed-up curves. For this reason, a careful analysis of each performance graph
was performed based on values of speed-up, efficiency and our subjective opinion.
The results are summarized in Tables 5.9 and 5.10 where each table is organized as
follows. Each row of a table contains five fields and provides information about parallel
performance of MUMPS at the saturation point of a test-case relatively to the spread
pinning strategy. The first one is the name of a test-case. The second, fourth and fifth
ones show values of the MPI process count, speed-up and parallel efficiency at the
saturation point, respectively. The third field shows a gain in parallel factorization time
of the spread pinning strategy over the close one at this point, in percent.

HW1 HW2

Matrix
Name

MPI

Gain
w.r.t

"close",
%

Speed
up

Effi-
ciency

MPI

Gain
w.r.t

"close",
%

Speed
up

Effi-
ciency

pwr-3d 4 11.594 1.386 0.347 4 6.616 1.626 0.406
cube-5 4 8.261 1.139 0.285 4 10.640 1.156 0.289

cube-64 8 5.645 1.812 0.226 8 7.521 1.729 0.216
cube-645 6 9.985 2.152 0.359 8 9.078 2.521 0.315

k3-2 7 7.788 2.899 0.414 8 9.947 3.298 0.412
k3-18 8 6.716 3.472 0.434 8 9.567 3.896 0.487

Table 5.9.: Comparisons of MUMPS parallel performance at the saturation points in
case of factorization of GRS matrix set

A study of Tables 5.9 and 5.10 reveals that HW2 machine performs slightly better in
contrast to HW1 one with respect to parallel performance around the saturation points.
This results are different from the overall performance gain mentioned above, however,
they reflect the same trend. Additionally, it can be clearly observed that increase of
NUMA domains always results in improving efficiency and speed-up of MUMPS.

In this subsection, we have shown an influence of different MPI process distribu-
tions and the number of NUMA domains on MUMPS parallel performance. We have
observed that application of the spread process distribution is always advantageous
together with increase of the number of NUMA domains.
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HW1 HW2

Matrix
Name

MPI

Gain
w.r.t

"close",
%

Speed
up

Effi-
ciency

MPI

Gain
w.r.t

"close",
%

Speed
up

Effi-
ciency

cant 8 7.914 3.297 0.412 8 12.437 3.407 0.426
consph 15 0.110 6.147 0.410 15 2.409 6.667 0.444

CurlCurl_3 19 8.051 8.249 0.434 20 17.908 11.039 0.552
Geo_1438 13 21.609 4.548 0.350 ROM ROM ROM ROM
memchip 9 11.290 4.299 0.477 9 11.102 4.213 0.468

PFlow_742 19 17.921 8.106 0.427 20 20.469 9.798 0.490
pkustk10 17 -0.664 3.872 0.228 17 -1.108 4.036 0.237

torso3 18 5.607 8.149 0.453 19 6.028 9.493 0.499
x104 6 9.537 1.789 0.298 6 7.829 1.763 0.294

Table 5.10.: Comparisons of MUMPS parallel performance at the saturation points in
case of factorization of SuiteSparse matrix set, where ROM stands for Run
Out of Memory

The result of this study can be relevant for energy-efficient parallel computing where
strong requirements to program efficiency are applied. This fact usually forces the
user to reduce the process count and go away from the saturation point in order to
keep values of efficiency around 0.7-0.8. In this case, performance of MUMPS can be
improved by 15-20% in contrast to a straightforward process pinning i.e. close strategy.

Taken into account results of testing, spread-pinning has been chosen for the rest of
the study. This process distribution can be easily achieved by means of some advanced
OpenMPI command line options, for example –rank-by and –bind-to, as following:.

1 mpiexec −−rank−by numa −−bind−to core −n $num_proc $executable_name
$parameters

Listing 5.3: An example of setting spread process pinning using advanced OpenMPI
command line options

5.4.3. Optimized BLAS Implementations

To perform column eliminations of fully summed blocks of type 2 nodes, MUMPS
intensively calls GEMM, TRSM and GETRF subroutines [33] which are parts of BLAS
and LAPACK libraries, see Figures 5.17 and 5.18 as an example. Additionally, MUMPS
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Figure 5.17.: One dimensional block column distribution of a type 2 node in MUMPS

uses ScaLAPACK library subroutines to perform parallel factorization of the root [37],
according to the procedure described in Section 5.3.

Figure 5.18.: An example of type 2 node factorization implemented in MUMPS
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BLAS, LAPACK and ScaLAPACK libraries originate from the Netlib project which
is a repository of numerous scientific computing software maintained by AT&T Bell
Laboratories, the University of Tennessee, Oak Ridge National Laboratory and other
scintific communities, [38].

The goal of BLAS library is provision of high efficient implementations of common
dense linear algebra kernels achieved by high rates of floating point operations per
memory access, low cache and Translation Lookaside Buffer (TLB) miss rates.

Both LAPACK and ScaLAPACK are designed in such a way so that as much as
possible computations are performed by calling BLAS subroutines. Figure 5.19 repre-
sents software dependencies between the libraries. Hence, this software architecture
allows to achieve high computational performance for operations such as LU, QR, SVD
decompositions, triangular solve, etc., on modern computers and distributed-memory
machines by an efficient implementation of BLAS library. However, the Netlib BLAS
implementation is written for an abstract general-purpose central processing unit where
hardware parameters are based on market statistics. Therefore, it is not possible to
achieve the maximum possible performance on specific hardware.

Figure 5.19.: Software dependencies between Netlib libraries, [26]

There exist special-purpose, hardware-specific implementations of BLAS developed
by hardware vendors i.e. IBM, Cray, Intel, AMD, etc., as well as open-source tuned
implementations such as ATLAS, OpenBLAS, etc. To achieve full compatibility, the
developers consider the Netlib implementation as a standard, or a reference, and thus
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overwrite all its subroutines with additional tuning and optimization. This approach
makes it easy to replace one BLAS implementation by another one by substituting the
corresponding object files during the linking stage. As a result, the source code of an
application which calls BLAS, LAPACK or ScaLAPACK subroutines remains the same
without a need to perform any source code modifications.

Table 5.11 shows commercial and open-source tunned BLAS implementations avail-
able on the market today.

Name Description License

Accelerate Apple’s implementation for macOS and iOS
proprietary

license

ACML BLAS implementation for AMD processors
proprietary

license

C++ AMP Microsoft’s AMP language extension for Visual C++
open

source

ATLAS Automatically tuned BLAS implementation
open

source

Eigen BLAS
BLAS implemented on top of

the MPL-licensed Eigen library
open source

ESSL optimized BLAS implementation for IBM’s machines
proprietary

license

GotoBLAS Kazushige Goto’s implementation of BLAS
proprietary

license

HP MLIB
BLAS implementation supporting IA-64, PA-RISC, x86

and Opteron architecture
proprietary

license

Intel MKL
Intel’s implementation of BLAS optimized for

Intel Pentium, Core, Xeon and Xeon Phi
proprietary

license

Netlib BLAS The official reference implementation on Netlib
open

source

OpenBLAS Optimized BLAS library based on GotoBLAS
open

source

PDLIB/SX BLAS library targeted to the NEC SX-4 system
proprietary

license

SCSL BLAS implementations for SGI’s Irix workstations
proprietary

license
Sun

Performance
Library

Optimized BLAS and LAPACK for SPARC, Core
and AMD64 architectures under

Solaris 8, 9, and 10 as well as Linux

proprietary
license

Table 5.11.: Commercial and open source BLAS libraries [46]
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Among all libraries listed in Table 5.11 there were only four available in HW1 ma-
chine environment, namely: Netlib BLAS, Intel MKL, OpenBLAS and ATLAS. However,
installation of ATLAS requires to switch off dynamic frequency scaling, also called CPU
throttling, to allow ATLAS configuration routines to find the best loop transformation
parameters for specific hardware. In order to turn off CPU throttling, one has to reboot
the entire machine and make appropriate changes in Basic Input/Output System (BIOS).
This fact made ATLAS library not suitable for the study and we excluded it from our
primary list of candidates. Moreover, during installation, one has to explicitly specify
the number of OpenMP threads that are going to be forked once a BLAS subroutine is
called. This means there is no way to change the number of threads per MPI process in
run-time without re-installation of the library. Thus, only 3 versions of MUMPS-PETSc
(linked with Netlib BLAS, Intel MKL and OpenBLAS) library were compiled, installed
and tested using both GRS and SuiteSparse matrix sets and 1 thread per MPI process i.e.
flat-MPI mode. Results of testing were obtained on HW1 machine and are represented
in Figures 5.20, 5.21 and appendix E.

The tests show that OpenBLAS outperforms both Netlib and Intel MKL libraries in
case of GRS matrix set. On average, OpenBLAS is about 13% faster than the default
Netlib implementation and approximately 21% faster than Intel MKL library. It is
interesting to notice that Intel MKL library turns out to be slower than the default
Netlib BLAS implementation for small- and medium-sized GRS matrices in almost
52% and 2%, respectively. At the same time, both tuned libraries, OpenBLAS and Intel
MKL, show significant performance gain in comparison to the standard Netlib BLAS
implementation in case of SuiteSparse matrix set. The libraries reduce the execution
time by almost 50% on an average. In opposite to GRS matrix set, it turns out that
Intel MKL is often faster than OpenBLAS for almost all test-cases from SuiteSparse
matrix set. However, the difference between them is negligibly small. The result of the
comparison are summarized in Tables 5.12 and 5.13.

It can be clearly observed from the tables that test-cases derived from GRS matrix
set demonstrate insignificant improvements in execution time in contrast to the tests
generated with SuiteSparse matrix set. This may be explained by relatively small
numbers of type 2 nodes in assembly trees resulted from GRS test-cases. In this case,
the trees are mainly formed with the root and type 1 nodes. As it was mentioned in
Section 5.3, type 1 nodes are grouped in subtrees and each subtree is processed by a
single MPI process. According to the documentation, it is not clear whether MUMPS
calls BLAS subroutines while processing a type 1 node. Even if it is a case performance
of BLAS can be limited because of small sizes of frontal matrices of such nodes.
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(a) k3-18 (b) cube-645

(c) k3-2 (d) cube-64

Figure 5.20.: Comparisons of parallel factorization of GRS matrix set performed on HW1
machine using MUMPS solver linked to different BLAS implementations
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(a) cube-5 (b) pwr-3d

(c) PFlow_742 (d) torso3

Figure 5.21.: Comparisons of parallel factorizations of GRS and SuiteSparse matrix sets
performed on HW1 machine using MUMPS solver linked to different
BLAS implementations
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Matrix
Name

Average
performance

gain of
OpenBLAS
relatively to

Netlib %

Average
performance

gain of
IntelMKL

relatively to
Netlib %

Average
performance

gain of
OpenBLAS
relatively to
Intel MKL %

pwr-3d 14.607 -56.249 44.695
cube-5 13.569 -47.797 39.931
cube-64 4.385 -5.483 9.323

cube-645 1.897 -7.474 8.702
k3-2 13.906 0.833 13.057
k3-18 29.914 21.03 11.29

Table 5.12.: Comparisons of different MUMPS-BLAS configurations applied to GRS
matrix set

Matrix
Name

Average
performance

gain of
OpenBLAS
relatively to

Netlib %

Average
performance

gain of
IntelMKL

relatively to
Netlib %

Average
performance

gain of
OpenBLAS
relatively to
Intel MKL %

cant 26.981 25.964 1.233
consph 67.617 68.252 -2.327

CurlCurl_3 78.804 79.37 -3.371
Geo_1438 83.106 83.565 -2.857
memchip 6.066 -6.909 11.883

PFlow_742 75.574 74.943 1.416
pkustk10 35.089 34.536 0.502

torso3 66.185 66.988 -2.837
x104 41.82 41.936 -0.445

Table 5.13.: Comparisons of different MUMPS-BLAS configurations applied to SuiteS-
parse matrix set

We assume that, in the general case, lack of type 2 nodes in an assembly tree can
be due to an inefficient amalgamation process of the corresponding elimination tree
resulted from the matrix sparsity pattern.
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Based on the obtained results, comparisons between different matrix sets and our
reasoning, we presume that ATHLET generates linear systems resulting in such trees
where type 1 nodes predominate over the others. We can assume it is due to specifics
of numerical spacial and time integration explained in Section 2.1.

In this subsection, we have discussed where and how MUMPS utilizes BLAS, LA-
PACK and ScaLAPACK libraries. We have compared two tuned BLAS implementations
with the baseline, Netlib BLAS, using two different matrix sets. We have shown the over-
all statistics of the obtained results and come to the conclusion that MUMPS-OpenBLAS
configuration is the best one for GRS matrix set. Additionally, we have given reason-
ing for a noticeable difference between results obtained from different matrix sets as
well as we have talked about probable specifics of linear systems generated by ATHLET.

5.4.4. Hybrid MPI/OpenMP Computing

As it was mentioned in Section 5.3, the development of MUMPS began in 1996 when
message-passing programming paradigm dominated in parallel computing. Therefore,
the library originally was designed only for distributed-memory machines.

In 2010, Chowdhury and L’Excellent published their first experiments and some is-
sues, in [10], of exploiting shared memory parallelism in MUMPS. The authors showed
that it was possible to achieve some improvements in multicore systems using multi-
threading, given a purely MPI application. However, later L’Excellent and Sid-Lakhdar
mentioned, in [33], that adaptation of the existing code for NUMA architecture was
still a challenge because of memory allocation, memory affinity, thread pinning and
other related issues.

In spite of an advantage of natural data locality of message-passing applications,
a general motivation for switching to a hybrid mode, a mixed MPI/OpenMP pro-
cess/thread distribution, is to reduce communication overheads between MPI processes.
According to the profiling results obtained by Chowdhury and L’Excellent, MUMPS
contained four main regions of shared-memory parallelization, namely:

1. BLAS Level 1, 2, 3 operations during both factorization and solution phases

2. Assembly operations, where contribution blocks of children nodes are assembled
at the parent level
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3. Copying contribution blocks during stacking operations

4. Pivot search operations

Almost all customized BLAS libraries, for example Intel MKL and OpenBLAS, are
multi-threaded and can efficiently work in shared-memory environment. Hence, par-
allelization of region 1 can be achieved by linking a suitable BLAS library whereas
regions 2, 3 and 4 can be multi-threaded by inserting appropriate OpenMP directives
above the corresponding loop statements.

A detailed review of works [33] and [10] reveals that, in general, a pure OpenMP or
mixed MPI/OpenMP strategy can reduce run-time of MUMPS. On average, factoriza-
tion time is reduced by 14.3% and in some special cases improvements reach about
50.4%, according to analysis performed on data provided in the papers. However, at
the same time, the results also show that sometimes a flat-MPI mode can significantly
outperform other hybrid mixed strategies.

By and large, the results show two important aspects. Firstly, performance of a
specific strategy depends heavily on a resulting assembly tree and thus on a matrix
sparsity pattern and applied fill reducing reordering. Secondly, it is not possible to
guess in advance which strategy gives the best parallel performance without detailed
information about the tree structure and computational cost per node. L’Excellent and
Sid-Lakhdar showed that performance of a particular mode dependeds on a ratio of
large and small fronts. For example, they noticed that more threads per MPI process
resulted in better parallel performance in case of high ratios. On the other hand, they
observed the absolutely opposite result with relatively small ratios. Unfortunately,
L’Excellent and Sid-Lakhdar did not provide any quantitative measure for the notion
of small and large ratios in [33].

It is also interesting to notice that parallelization of region 1 using a multi-threaded
BLAS library gives the most of the parallel performance improvement for mixed or pure
OpenMP strategies, according to analysis of results from [33]. Whereas, multi-threading
of regions 2, 3, 4 has only a small positive effect i.e it reduces numerical factorization
run-time by only 0.66% on an average.

This outcome is expected because BLAS subroutines, especially level 3, re-use data
stored in caches as much as possible and thus achieve high ratios of floating point
operations per memory access which is essential for efficient multi-threading. Mean-
while, regions 2, 3, 4 mainly perform initialization of variables, data movements and
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executions of if-statements which always result in low computational intensity.

We have to admit that both works, [10] and [33], are relatively old and the analysis
above may be not complete and full. Because MUMPS is a dynamic developing project,
we can expect that adaptation of shared-memory parallelization in MUMPS has been
significantly advanced since that time. Since the 4th release of MUMPS library, the
developers have persistently recommended to use only hybrid strategies e.g. one MPI
process per socket and as many threads as the number of cores, [37].

As an initial test, we compared an influence of both Intel MKL and OpenBLAS
libraries on parallel performance of MUMPS using GRS matrix set only. In order to pin
OpenMP threads in a correct way, without any conflicts between them, the following
OpenMP environment variables were set as follows:

• OMP_PLACES=cores

• OMP_PROC_BIND=spread

During the testing, we found that sometimes execution time of MUMPS-OpenBLAS
configuration abnormality increased. For instance, in case of parallel factorization of
matrix cube-645, the increase reached almost 450% in contrast to the pure sequential
execution.

Multiple conflicts between application and system threads were observed using htop
software as an interactive process viewer. Figure 5.23 shows a snapshot taken during
factorization of matrix k3-18 running with 1 MPI process and 20 threads.

It is difficult to state what exactly caused such behavior. However, Chowdhury
and L’Excellent also reported about the same problem using GotoBLAS (OpenBLAS).
They assumed that GotoBLAS created and kept some threads active even after the
main threads returned to the calling application which could lead to interference with
threads created in other OpenMP regions [10]. For this reason, we decided to use only
Intel MKL library for the rest of the study because there were no such thread-conflicts
detected during operation of MUMPS-Intel MKL configuration.

Only common mixed MPI/OpenMP strategies were tested in order to check an
influence of shared-memory parallelism on parallel performance of MUMPS as well
as to limit an amount of testing. The following strategies were chosen: 20 MPI - 1
thread (flat-MPI), 10 MPI - 2 threads, 4 MPI - 5 threads, 2 MPI - 10 threads, 1 MPI - 20
threads (flat-OpenMP). The tests were conducted on both HW1 and HW2 machines
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(a) k3-18 (b) cube-645

Figure 5.22.: Anomalies of parallel executions of MUMPS-OpenBLAS configuration
during factorizations of large-sized GRS matrices running with 2 OpenMP
threads per MPI process

Figure 5.23.: Thread conflicts of MUMPS-OpenBLAS configuration detected during
parallel factorization of matrix k3-18, where green - application threads,
red - system threads

with the aim of checking whether results would be consistent between different hard-
ware running under different operating and environment settings. Results of testing
are represented in Tables 5.14 5.15, 5.16 and 5.17 where numerical values are given in
seconds.

64



5. Configuration of a sparse linear solver

Matrix
Name

20 MPI
1 thread

10 MPI
2 threads

4 MPI
5 threads

2 MPI
10 threads

1 MPI
20 threads

Gain
w.r.t.

flat-MPI
k3-18 12.520 12.630 14.010 18.020 19.170 -
k3-2 1.341 1.250 1.470 1.671 2.052 1.073

cube-645 6.585 6.859 8.552 12.010 14.080 -
cube-64 0.756 0.749 0.874 1.178 1.354 1.010
cube-5 0.181 0.132 0.104 0.126 0.117 1.744
pwr-3d 0.130 0.114 0.0972 0.077 0.109 1.691

Table 5.14.: Compassions of different hybrid MPI/OpenMP modes used for parallel
factorization of GRS matrix set on HW1

Matrix
Name

20 MPI
1 thread

10 MPI
2 threads

4 MPI
5 threads

2 MPI
10 threads

1 MPI
20 threads

Gain
w.r.t.

flat-MPI
k3-18 8.558 7.819 8.165 11.330 14.320 1.095
k3-2 1.168 0.788 0.956 1.131 1.651 1.482

cube-645 5.735 4.859 6.069 9.360 11.040 1.180
cube-64 0.805 0.541 0.664 0.947 0.918 1.490
cube-5 0.241 0.121 0.093 0.129 0.126 2.582
pwr-3d 0.234 0.095 0.098 0.070 0.094 3.341

Table 5.15.: Compassions of different hybrid MPI/OpenMP modes used for parallel
factorization of GRS matrix set on HW2

According to analysis of obtained results and flat-MPI performance graphs from
Subsection 5.4.3, we have noticed that an optimal hybrid MPI/OpenMP mode locates
near the saturation point of the corresponding flat-MPI test. Generally speaking, a
location of the saturation point is specific for each matrix and, therefore, there is no
way to predict a mode in advance. However, having known the point, an amount of
testing can be considerably reduced by searching around and applying different mixed
MPI/OpenMP strategies.

The results show that average performance gain is around 2.1% in case of GRS
matrix set for HW1 hardware, excluding small test-cases such as cube-5 and pwr-3d
from statistics. We consider these two scenarios, cube-5 and pwr-3d, as specific ones
because their execution time with 20 MPI processes using flat-MPI mode is originally
slower in contrast to the sequential execution and, therefore, it is relevant to assume
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Matrix
Name

20 MPI
1 thread

10 MPI
2 threads

4 MPI
5 threads

2 MPI
10 threads

1 MPI
20 threads

Gain
w.r.t.

flat-MPI
cant 1.400 0.990 1.050 1.605 2.019 1.414

consph 3.495 2.652 3.015 3.706 3.714 1.318
memchip 7.470 9.080 13.301 20.198 45.800 -

PFlow_742 26.802 24.204 21.897 30.389 54.501 1.224
pkustk10 0.748 0.879 0.972 1.459 1.280 -

torso3 3.922 4.285 4.642 5.603 8.144 -
x104 1.597 1.644 2.024 3.208 2.167 -

CurlCurl_3 49.250 44.120 39.909 43.311 63.001 1.234
Geo_1438 478.101 234.697 151.603 157.697 158.102 3.154

Table 5.16.: Compassions of different hybrid MPI/OpenMP modes used for parallel
factorization of SuiteSparse matrix set on HW1

Matrix
Name

20 MPI
1 thread

10 MPI
2 threads

4 MPI
5 threads

2 MPI
10 threads

1 MPI
20 threads

Gain
w.r.t

flat-MPI
cant 2.128 0.955 1.011 1.577 2.058 2.229

consph 3.840 2.852 3.111 3.695 3.897 1.346
memchip 7.811 7.816 9.811 15.160 31.969 -

PFlow_742 24.190 29.241 19.686 27.530 55.431 1.230
pkustk10 1.373 0.904 1.022 1.421 1.403 1.520

torso3 4.733 4.080 4.483 5.648 8.217 1.160
x104 2.676 1.597 2.025 3.204 2.133 1.676

CurlCurl_3 39.890 34.579 38.620 41.171 67.760 1.154
Geo_1438 ROM ROM ROM ROM ROM ROM

Table 5.17.: Compassions of different hybrid MPI/OpenMP modes used for parallel
factorization of SuiteSparse matrix set on HW2, where ROM stands for Run
Out of Memory

that the improvement came only from reducing of the MPI process count. At the same
time, much optimistic results were obtained from experiments conducted on HW2
machine where performance gain reached almost 31% for the same test-cases.

Results obtained with SuiteSparse matrix set demonstrate much better performance
improvements from hybrid parallel computing obtained on both hardware. On average,
execution time improves by more than 15% running tests on HW1 and approximately
by 41% on HW2, excluding Geo_1438 from the statistics. The best result was obtained
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exactly in case of Geo_1438 test-case on both machines where execution time dropped
about 3 times for all hybrid modes in contrast to the corresponding flat-MPI one. We
assume it may occur because of a high ratio of large and small fronts of this particular
test-case.

According to the outcomes of testing, we have observed a negligible improvement in
MUMPS parallel performance from the application of the multi-threaded Intel MKL
BLAS library to GRS matrix set. Such unimpressive results can be explained with the
same reasoning given in Subsection 5.4.3 i.e. lack of type 2 nodes. Moreover, in case
of GRS matrix set, parallel efficiency drops significantly probably due to inefficient
utilization of additional processing elements i.e cores. However, at the same time,
results obtained using SuiteSparse matrix set have shown an advantage of hybrid
parallel computing, especially in case of Geo_1438 matrix factorization.

These contradictory results obtained from two different matrix sets second our
reasoning about specifics of linear systems generated by ATHLET software. Again,
we presume that assembly trees resulted from GRS matrices are mostly formed with
subtrees filled with type 1 nodes where each subtree is processed by a single MPI
process. Hence, parallel factorization of GRS matrices mainly gets benefit from MPI
parallelization that can be clearly observed from the results.

In this subsection, we have discussed how MUMPS adopts hybrid parallel computing.
As it is in case of fill reducing reordering algorithm selection, Subsection 5.4.1, it is
not possible to find an optimal mixed MPI/OpenMP strategy in advance without
performance testing. We have come to the conclusion that flat-MPI mode is the best
one for GRS matrix set and provided our reasoning for that. Generally speaking, there
are 3 reasons to use this mode in our case. Firstly, the mode always resulted in more
efficient hardware utilization. Secondly, MUMPS-Intel MKL configuration running with
optimal hybrid MPI/OpenMP strategies can deteriorate performance gain obtained
with MUMPS-OpenBLAS flat-MPI configuration, shown in Subsection 5.4.3. Finally,
efficient utilization of flat-MPI strategy only demands to find an optimal MPI process
count i.e the saturation point on a performance graph. Hence, it leads to a significant
reduction of testing due to a reduced number of parameters which are needed to be
taken into account.
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5.5. Results

Figures 5.24 and 5.25 show comparisons of MUMPS parallel performance before and
after applications of the optimal MUMPS-MPI parameter settings, found in Subsections
5.4.1, 5.4.2, 5.4.3, and 5.4.4, to GRS matrix set. Results labeled as default were obtained
using the fill reducing reordering algorithm provided by ParMetis library because it
had been used by ATHLET users before the current study.

On average, factorization time is reduced by 51.4% for small-sized linear systems,
cube-5 and pwr-3d. As it was expected, the most significant performance gain mainly
comes from a correct choice of a fill reducing reordering algorithm. Moreover, the
application of PT-Scotch to these systems of equations results in a drastic change of
strong scaling behavior, see Figures 5.24a and 5.24b, which allows to reduce execution
time by approximately 17% in contrast to the sequential execution of MUMPS running
with the default parameters.

Execution time spent on factorizations of medium-sized systems, such as cube-64 and
k3-2, drops in 1.4 times on an average. We have noticed that strong scaling of cube-64
matrix factorization considerably improves. Additionally, the application of PT-Scotch
to cube-64 test-case results in shifting of the optimal MPI process count, the saturation
point, from 5 to 10 and, as a result, it reduces execution time of parallel factorization.
The application of all optimal settings results in reduction of execution time around the
corresponding saturation points by almost 31% on average for this type of GRS matrices.

Improvements in parallel factorization of large-sized GRS systems comes only from
optimal processes pinning and configuration of MUMPS with OpenBLAS library be-
cause of usage of the same fill reducing reordering algorithm, namely: ParMetis,
according to the assignment Table 5.7. On average, performance increased by almost
20% in case of k3-18 test-case and only by 1.3% for cube-645 one. This difference in
results can be explained by the fact that the assembly tree of cube-645 test-case may
lack type 2 nodes. However, the saturation points of both test-cases are shifted towards
lower values of the MPI process count which result in a considerably improvement of
hardware utilization. For example, a detailed study of k3-18 performance graph, Figure
5.25b, shows the optimal value of the MPI process count decreases from 17 to 8 and, at
the same time, execution time drops by almost 19%. These two effects result in almost
13% jump of parallel efficiency. The same trend can be observed for cube-645 test-case
as well.
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(a) small system: cube-5 (b) small system: pwr-3d

(c) medium system: cube-64 (d) medium system: k3-2

Figure 5.24.: Comparisons of parallel factorizations of small- and middle-sized GRS
matrices between applications of the default and optimal MUMPS config-
urations
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(a) large system: cube-645 (b) large system: k3-18

Figure 5.25.: Comparisons of parallel factorizations of large-sized GRS matrices between
applications of the default and optimal MUMPS configurations

By and large, in this subsection we have shown that applications of the optimal
parameter settings to MUMPS lead to total accumulative improvements in both
factorization time and hardware utilization.

5.6. Conclusion

In this chapter, we have examined different types of sparse linear solvers applied to
linear systems generated by ATHLET software resulting from numerical integration
of thermo-hydraulic computations. We have come to the conclusion that, in spite of
better scalability and parallel efficiency of iterative methods due to efficient data-based
parallelism, direct sparse linear solvers are well suitable for this purpose because of
their robustness, see Subsection 5.1.3.

In Section 5.2, we tested different direct sparse solvers, namely: MUMPS, Su-
perLU_DIST and PasTiX. MUMPS showed better parallel performance among the
others according to the results of testing and, therefore, was chosen for the following
study where we mainly focused on performance tuning of the library.
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We have shown in subsequent subsections there have been four main sources of
library parameter tuning, namely:

1. correct selection of a fill reducing reordering algorithm

2. destribution of MPI processes among multiple NUMA domain within a compute
node

3. configuration of MUMPS with an optimal, tuned BLAS library implementaion

4. execution of MUMPS with optimal hybrid MPI/OpenMP process/thread distri-
butions

Testing was performed using two different matrix set, GRS and SuiteSparse, on two
different computer-clusters, HW1 and HW2, see Chapter 4, in order to check consis-
tency of obtained results. In this section, we give most general conclusions relevant to
only GRS matrix set and HW1 cluster as targets of the study. The reader can become
familiar with detailed conclusions relative to both matrix sets and hardware given at
the end of each subsection that we are going to reference to.

1. In Subsection 5.4.1, it has been shown that parallel performance of MUMPS is
quite sensitive to applied fill-in reducing reordering algorithms. A correct choice of
the algorithm can lead to a significant improvement in execution time and strong
scaling behavior. We have noticed that MUMPS performs factorizations of small- and
medium-sized matrices faster using PT-Scotch library whereas large-sized problems
tend to get benefit from the algorithm provided by ParMetis. We assume that the
obtained conclusion may be inaccurate due to a small size of GRS matrix set. At the
moment of writing, we have not found any indirect metric to predict a correct choice
of an algorithm beforehand. Hence, we encourage ATHLET users to perform similar
testing described in the subsection before running thermo-hydraulic simulations on
distributed-memory machines to achieve better performance of parallel computations.

2. In Subsection 5.4.2, an influence of different process pinning strategies on MUMPS
parallel performance has been investigated. The tests have shown that an equal distri-
bution of MPI process among all available NUMA domains always results in additional
performance gain.

3. In Subsection 5.4.3, we tested MUMPS configured with 3 different implementations
of BLAS library, namely: Netlib, OpenBLAS and Intel MKL. The results have shown
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the application of OpenBLAS library always results in better parallel performance.

4. In Subsection 5.4.4, we have investigated an impact of various MPI/OpenMP pro-
cess/thread distributions on parallel factorizations of GRS matrices within a compute-
node. We have observed that multi-threading of OpenBLAS library in MUMPS leads
to multiple thread conflicts which sometimes result in significant slow-down of the
solver. Results obtained with MUMPS-Intel MKL configuration have demonstrated
a negligible improvement in solver execution time resulting in a significant parallel
efficiency drop, probably due to inefficient usage of additional processing elements
utilized by forked Intel MKL threads. At the end, we have concluded that flat-MPI
mode is the best one for matrices generated by ATHLET software.

In Section 5.5, we have studied the overall impact of introduced configuration changes
found in Subsections 5.4.1, 5.4.2, 5.4.3 and 5.4.4. Testing shows the changes result in a
positive accumulative effect leading to considerable improvements of both factorization
time and hardware utilization.

During the study, we have noticed that optimal values of the MPI process count lay
within the range between 1 and 4 in case of small-sized GRS matrices and 4 and 8 for
middle- and large-sized problems. An exact value is impossible to predict beforehand
and, therefore, it always demands individual, problem-specific testing.
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Communication

6.1. Jacobian Matrix Compression

The main goal of Jacobian matrix compression is minimization of a number of non-
linear function evaluations which are usually quite expensive computational operations.
The minimization is performed by means of efficient treatment of non-zero entries of a
sparse matrix. The problem is also known as matrix partitioning.

In the general case, a finite difference method can be used to compute a Jacobian
matrix approximation in the following way:

1
ε
(F(y + εek)− F(y)) ≈ J(y)ek, 1 ≤ k ≤ N (6.1)

where F : RN → RN is a non-linear function; ek ∈ RN is the kth coordinate unit
vector, ε is a small step size.

Equation 6.1 does not exploit Jacobian matrix sparsity and thus such estimation of
the Jacobian matrix requires N function evaluations.

Figure 6.1.: An example of matrix coloring and compression, [19]

A compression algorithm is based on a notion of structurally orthogonal columns i.e.
columns which do not share any non-zero entry in a common row. Figure 6.1 shows
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an example of matrix compression where each color denotes independent structurally
orthogonal columns.

Having obtained a compressed form of the Jacobian, another set of vectors d ∈ RN ,
also known as seed vectors, can be used to perform function perturbations instead of
unit vectors ek. A seed vector d has 1’s in components corresponding to the indices of
columns in a structurally orthogonal group of columns, and zeros in all other compo-
nents [19]. By differencing the function F along the vector d, one can simultaneously
determine the nonzero elements in all of these columns through one additional function
evaluation at F(y + d) [19].

It is obvious the algorithm requires to partition a matrix into the fewest amount
of groups, colors, in order to achieve the most of efficiency. It means it is a NP-hard
problem and, therefore, a huristical approach is required. Gebremedhin, Manne, and
Pothen, in [19], conducted one of the most recent studies in this field and summarized
different matrix partitioning algorithms proposed over the last 20 years. Currently, a
Jacobian matrix compression algorithm has been successfully implemented in NUT
by means of the corresponding built-in PETSc subroutines. The algorithm is used by
ATHLET via the corresponding NUT interface.

Figure 6.2 shows an illustrative example of an efficient matrix partitioning where an
initial 100 by 100 Jacobian matrix is transformed into its 100 by 28 compressed form
using 28 distinct colors. It can be clearly observed from the figure that column vector
lengths of the compressed Jacobian form are gradually decreasing. Figure 6.3 provides
a detailed and clear view in the problem, using data from Figure 6.2 as an example,
where bars represent the corresponding column lengths.

According to the ATHLET-NUT coupling design, each column is transfered to NUT
by means of the synchronous 3-way handshake procedure, described in Section 2.3,
immediately after its evaluation. Thus, Figure 6.3 determines the communication
pattern during the Jacobian matrix transfer for the example shown in Figure 6.2.

Code Listings 6.1 and 6.2 represent the default implementation of a compressed
Jacobian matrix transfer between ATHLET and NUT. This code is used as a baseline
for the remaining part of the study.

All code listings, presented in this part of the study, are written in pseudocode and
intended for convenience of reading. The aim is to show and display the main ideas
skipping non-relevant parts of the actual source code. The pseudocode is a mixture of
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Figure 6.2.: An example of an efficient Jacobian matrix partitioning, [19]

several programming languages, namely: Python, C/C++, Fortran, (MPI).

Figure 6.3.: A column-length distribution of the example depicted in Figure 6.2
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1 # GIVEN PARAMETERS:
2 # acomm − the a t h l e t communicator
3 # acomm_id − a t h l e t i d e n t i f i c a t i o n number
4 # y − known vector
5 # N − problem s i z e
6 # COO − compressed matrix coordinate format
7

8 eps = 1e−4
9 c e n t e r = f ( y )

10 column = zeros (N)
11

12 # compute Jacobian and send i t to NUT column−by−column
13 f o r seed_vector in seed_vectors :
14

15 # compute the next column
16 vector = e v a l u a t e _ j a c o b i a n ( f , seed_vector , center , eps )
17

18 length = perturbed_vector . length
19 s i g n a l = [ encode ( " add_to_ jacobian " ) , acomm_id ]
20

21 # perform 3−way handshake
22 MPI_Send ( s ignal , 2 , in t , acomm . head , acomm)
23

24 # broadcast j a c o b i a n column length
25 MPI_Bcast ( length , 1 , in t , acomm . head , acomm)
26

27 # broadcast j a c o b i a n column
28 MPI_Bcast ( vec tor . data , length , COO, acomm . a l l , acomm)

Listing 6.1: Pseudocode of the original ATHLET-NUT coupling: ATHLET part
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1 # N − problem s i z e
2 # J − a l l o c a t e d d i s t r i b u t e d j a c o b i a n matrix
3 # COO − compressed matrix coordinate format
4 nut_running = True
5

6 while nut_running :
7 i f rank in heads :
8

9 # r e c e i v e request
10 MPI_Recv ( s ignal , 2 , in t , NUT_WORLD. any_c l ient , NUT_WORLD)
11

12 comm = my_comm_list [ s i g n a l [ 1 ] ]
13 i f (comm not None ) :
14 # posses resources
15 MPI_Bcast ( s ignal , 2 , in t , comm. a l l , comm)
16 e l s e :
17 continue
18

19 e l s e :
20 MPI_Recv ( s ignal , 2 , in t , NUT_WORLD. any_head , NUT_WORLD)
21

22 # decode request
23 comm = my_comm_list [ s i g n a l [ 1 ] ]
24 i f (comm not None ) :
25 request = decode ( s i g n a l [ 0 ] )
26

27 case ( request ) :
28 . . .
29 i f ( request == " e x i t " ) :
30 # beak while loop
31 nut_running = Fa lse
32

33 i f ( request == " add_to_ jacobian " ) :
34 # r e c e i v e j a c o b i a n column length
35 MPI_Recv ( length , 1 , in t , comm. c l i e n t , comm)
36

37 # r e c e i v e row j a c o b i a n column
38 MPI_Recv ( elements , length , COO, comm. c l i e n t , comm)
39

40

41 f o r i in range ( 0 , length ) :
42 i f ( local_min < elements [ i ] . row < local_max ) :
43 J . i n s e r t ( elements [ i ] )
44 . . .

Listing 6.2: Pseudocode of the original ATHLET-NUT coupling: NUT part
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6.2. Accumulator Concept

A simple concept, named accumulator, has been proposed to improve MPI communica-
tion during Jacobian matrix transfers preserving the current ATHLET-NUT architecture
and coupling.

The concept represents two arrays of length 2L where the first one, called accumu-
lator, is used for accumulation of Jacobian matrix elements, stored in the compressed
coordinate sparse matrix format, till the critical array length equaled to L = F · N;
where N is the size of the underlying Jacobian matrix and F is a so-called capacity
factor. Once the current array length of accumulator exceeds its critical length, the
accumulated data are moved to send buffer by means of a simple swap of pointers,
ACC_PTR and SEND_BUFF_PTR, see Figure 6.4. Having swapped the pointers and
reset control variables, the accumulation process can be immediately resumed together
with an immediate instantiation of the corresponding non-blocking broadcast operation
with respect to send buffer content.

Figure 6.4.: Accumulator concept

The second array part of accumulator, also called the critical part, is used for safe
placement of data surplus without any extra program checks and manipulations. Ad-
ditionally, this event triggers a signal for a regular pointer swap and, therefore, the
subsequent non-blocking data transfer.

78



6. Improvement of ATHLET-NUT Communication

The factor F, depicted in Figure 6.4, can be used by the user for two purposes. Mainly,
it allows the user to adjust send buffer length L till the point of saturation of physical
interconnection bandwidth, see Figure 6.5 as an example, and thus achieve efficient
resource utilization. Additionally, it reduces an amount of handshakes, i.e. an amount
of resource acquisition requests, between NUT and a client. The default value of the
factor is equal to 1, however, we insistently recommend to increase the value via the
corresponding environment variable for small-sized problems and operation of NUT in
a multi-client mode.

Figure 6.5.: Technical characteristics of HW1 hardware interconnection

Figure 6.6 depicts an application of the accumulator algorithm to the example repre-
sented in Figure 6.3 with the following parameters: N = 100 and F = 1. It can be clearly
observed the algorithm reduces the number of transfers from 28 to 12. Additionally,
the average column length, excluding the last one, jumps from 56 to 131. By and
large, the algorithm allows to transform an original distribution shape to a more or
less rectangular one which, in turn, allows to transfer a matrix in approximately equal
chunks.

Before ATHLET can send a request to NUT to start solving Systems 3.1 it has to
be certain that the entire Jacobian matrix has been transfered to the NUT side. For
this reason, the last column transfer is done by means of the corresponding blocking
MPI operation. It means ATHLET gets blocked only during the last column transfer
and MPI gives the execution control back only when the last piece of data has been
successfully distributed among NUT processes.
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(a) Before (b) After

Figure 6.6.: An application of the accumulator concept to the example depicted in Figure
6.3, with N = 100 and F = 1

6.3. Benchmark and Test Data

ATHLET is a dedicated industrial CFD package meant for simulation of thermal-
hydraulic circuits in various nuclear power plant facilities. Besides the main part, i.e.
the solver, it includes some pre-processing steps that allow the user to conveniently set
up different simulation parameters, computational mesh, output data, etc.

Testing of new concepts and ideas directly in ATHLET can be quite cumbersome,
computationally expensive and inconvenient. Therefore, a dedicated benchmark has
been developed to test the accumulator concept.

The benchmark fully replicates all basic ideas of the original ATHLET implemen-
tation and the new data transfer concept. It focuses only on compressed Jacobian
matrix transfers and, therefore, does not include any compute-expensive operations
such as non-linear function perturbations with seed vectors. The approach allowed
to sufficiently speed up time of development, comparison and testing which, in turn,
helped in designing the final concept described in Section 6.2.
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6. Improvement of ATHLET-NUT Communication

In order to mimic the real run-time ATHLET-NUT behavior during Jacobian matrix
updates, a few communication patterns were recorded in ATHLET and played in
the benchmark. The recordings helped to generate column vectors with the lengths
corresponding to that in the recordings, filled with random numbers. Figure 6.7 shows
an example of a part of cube-64 communication pattern used in the study, where COO
stands for compressed coordinate format. As it can be observed, the pattern includes
both full and partial Jacobian updates, described in Section 2.1.

Figure 6.7.: A part of cube-64 communication pattern

According to the accumulator concept, described in Section 6.2, the main changes
take place only on the client side and hence the server side remains unchanged which
follows the original idea of the least code modifications. Code Listing 6.3 represents an
additional auxiliary class used for data accumulation. Pseudocode of the benchmark
client side is in Listing 6.4.
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1 # problem_size − given Jacobian matrix s i z e
2 # COO − compressed matrix coordinate format
3 c l a s s Accumulator :
4 c o n s t r u c t o r ( problem_size , acomm, acomm_id ) :
5 p r i v a t e :
6 N = problem_size ; comm = acomm ; id = acomm_id
7 s i g n a l = [ encode ( " add_to_ jacobian " ) , id ]
8 i s _ a l l o c a t e d = f a l s e ; i s_non_blocking_op_cal led = f a l s e
9 send_buffer = [ ]

10 f a c t o r = i n t ( read_enviroment_variable ( "CNUT_ACC_SIZE" ) )
11 i f f a c t o r == None :
12 f a c t o r = 1
13 p e r m i s s i b l e _ s i z e = f a c t o r ∗ N
14 publ ic :
15 accumulator = [ ]
16

17 def a l loca te_accumula tor ( ) :
18 i f i s _ a l l o c a t e d == f a l s e :
19 accumulator = a l l o c a t e (2 ∗ p e r m i s s i b l e _ s i z e , type (COO) )
20 send_buffer = a l l o c a t e (2 ∗ p e r m i s s i b l e _ s i z e , type (COO) )
21 i s _ a l l o c a t e d = true
22

23 def deal locate_accumulator ( ) :
24 i f i s _ a l l o c a t e d == true :
25 d e a l l o c a t e ( accumulator ) ; d e a l l o c a t e ( send_buffer )
26 i s _ a l l o c a t e d = f a l s e
27

28 def commit ( ) :
29 i f accumulator . s i z e > p e r m i s s i b l e _ s i z e :
30 swap ( accumulator . pointer , send_buffer . po in ter )
31 i f i s_non_blocking_op_cal led == true :
32 MPI_Wait ( )
33 # perform 3−way handshake
34 MPI_Send ( s ignal , 2 , in t , comm. head , comm)
35 # send data
36 MPI_Ibcast ( send_buffer . s ize , 1 , in t , comm. head , comm)
37 MPI_Ibcast ( send_buffer . data , send_buffer . s ize , COO, comm. a l l , comm)
38 i s_non_blocking_op_cal led = true
39 accumulator . content . r e s e t ( " to_beginning " )
40

41 def f i n a l i z e ( ) :
42 i f i s_non_blocking_op_cal led == true :
43 MPI_Wait ( )
44 MPI_Send ( s ignal , 2 , in t , comm. head , comm)
45 MPI_Bcast ( accumulator . s ize , 1 , in t , comm. head , comm)
46 MPI_Bcast ( accumulator . data , accumulator . s ize , COO, comm. a l l , comm)
47 i s_non_blocking_op_cal led = f a l s e
48 accumulator . content . r e s e t ( " to_beginning " )

Listing 6.3: Pseudocode of an auxiliary Accumulator class
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1 # GIVEN PARAMETERS:
2 # acomm − the a t h l e t communicator
3 # acomm_id − a t h l e t i d e n t i f i c a t i o n number
4 # N − problem s i z e
5 # recording − data s t r u c t u r e t h a t holds a recorded communication pat te rn
6 # COO − compressed matrix coordinate format
7

8 i f g loba l_counter == 0 :
9 co nt a i ne r = Accumulator . c o n s t r u c t o r (N, acomm, acomm_id )

10 co nt a i ne r . a l loca te_accumula tor ( )
11 ++global_counter
12 f i l e = open ( " benchmark_results . t x t " , "w" )
13

14 f o r column in recording :
15

16 t i m e _ s t a r t = MPI_Wtime ( )
17

18 # charge accumulator
19 f o r i in range ( column . length ) :
20 element = generate_random_coo_element ( )
21 c on ta in er . accumulator . add ( element )
22

23 # i n s t a n t i a t e non−blocking data broadcast
24

25 c on ta in er . commit ( )
26 time_end = MPI_Wtime ( ) − t i m e _ s t a r t
27 f i l e . wri te ( column . length , time_end )
28

29 # t r a n s f e r the remainder and synchronize
30 t i m e _ s t a r t = MPI_Wtime ( )
31 co nt a i ne r . f i n a l i z e ( )
32 time_end = MPI_Wtime ( ) − t i m e _ s t a r t
33 f i l e . wri te ( column . length , time_end )

Listing 6.4: Pseudocode of a modified client side of the benchmark

6.4. Results

The benchmark was ran on HW1 compute-cluster where the client and server parts
were distributed in three different ways, namely: within a socket, in two separate
sockets of a node and in two separate nodes. Nodes of HW1 cluster are connected
via an infiniband interconnect with the characteristics shown in Figure 6.5. In order to
estimate an effect of pure data accumulation, the benchmark, Listing 6.3, was modified
to use only blocking MPI operations i.e. MPI_Bcast. We denote the main benchmark
as BM1 and the modified one as BM2 to distinguish and separately explain effects of
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non-blocking data transfers and pure data accumulation.

Figure 6.8 represents results of the benchmarks obtained using cube-64 communi-
cation pattern. The client and server parts of the code were distributed in different
sockets within the same node. Factor F was equal to 1.

Figure 6.8a shows that accumulator approach results in more than 6 times drop, from
344 to 51, of the total number of data transfers and resulting resource acquisitions,
within the range depicted on the graphs. According to BM2 benchmark, the accumula-
tion effect reduces the run-time by almost 9% by means of more efficient utilization of
intra-node interconnection. The obtained results also demonstrate that overall accumu-
lative effect of both accumulation and non-blocking data transfers reduces the run-time
of BM1 benchmark in more than 26%. Table 6.1 summarizes results obtained for all
three client-server distributions within the same range of the recorded communication
pattern displayed in Figure 6.7.

Benchmark
name

BM2, % BM1, %

within a socket 7.61 13.84
between sockets 9.04 26.26
between nodes -2.06 3.20

Table 6.1.: Time reduction of data transfers with respect to the original implementation
in case of execution of cube-64 communication pattern

It turns out that BM2 benchmark is slower than the original ATHLET approach in
approximately 2% in case of inter-node communication. However, non-blocking data
broadcasts, according to BM1 benchmark, help to alleviate the slow-down and achieve
almost 3% of improvement.

Unimpressive results of non-blocking inter-node communication can be explained by
specifics of the benchmark design. In particular, time spent on generation of random
matrix elements was not enough to overlap time spent on non-blocking data transfers
in case of cube-64 test-case, see Figure 6.9. Thus, the execution control was probably
suspended by MPI library at each subsequent call of MPI_Wait() function.

The slow-down resulting from pure data accumulation could be explained by auto-
matic MPI protocol switching, namely: Eager and Rendezvous [34]. The protocols are
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(a) A part of cube-64 communication pattern

(b) BM2: A comparison of the data accumulation concept using blocking communication with the original
approach

(c) BM1: A comparison of the data accumulation concept using non-blocking communication with the
original approach

Figure 6.8.: Comparisons of the benchmarks running a recorded part of cube-64 com-
munication pattern between two sockets of a node
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Figure 6.9.: A comparison of BM1 benchmark with the original ATHLET-NUT im-
plementation running a recorded part of cube-64 communication pattern
between two compute-nodes

dedicated to small and large message transfers, respectively, where a quantitative mea-
sure of the message size is defined by a concrete implementation of the MPI standard,
however, it can be controlled through dedicated environment variables.

Similar results were observed for cube-645 test case where the number of equations
was approximately 106 and the average compressed Jacobian column length reached
around 1.7 · 105 elements. In case of inter-node communication, BM1 benchmark again
showed performance degradation by 6.35% whereas non-blocking data broadcasts
improved run-time by 23.21%. Such performance jump, from -6.35% to 23.21%, can be
explained by the fact that time spent on generation of random elements was enough to
hide the corresponding data transfers and overheads.

Ideas, expressed in BM1 benchmark, Listings 6.3 and 6.4, were successfully im-
plemented in NUT, namely: in the client side of NUT located in ATHLET. Several
simulation scenarios were taken for the final verification and performance testing,
namely: cube-64, k3-2 and pwr-3d. Verification of the modified code did not detect
any deviations of numerical results from the original implementation. Additionally,
all tests showed considerable improvements in communication time. As an example,
time spent on communication between ATHLET and NUT during compressed Jacobian
transfers decreased by 66.17%, 76.03% and 42.55% for intra-socket, intra-node and
inter-node client-server process allocations, respectively, for pwr-3d scenario, taking
it as the most representative simulation test-scenario known in GRS. However, the
overall improvement of applied changes achieved only 0.14% on average, regardless
of a client-server allocation. Profiling showed the communication part of the original
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implementation took around 0.24% of the total time spent on matrix evaluations and
transfers. This fact explains this negligible overall performance gain, resulted from the
source code modification, that was observed in all conducted final tests.

6.5. Conclusion

In this part of the study, we have designed and implemented the accumulator concept for
efficient transfers of sparse compressed Jacobian matrices between ATHLET and NUT.
The concept is rather simple and did not require drastic changes of the existing software
design and architecture. In spite of simplicity, the concept allows to significantly reduce
communication time i.e. by almost 60%. The overall performance gain comes from
three different sources:

1. efficient utilization of interconnection

2. reduced number of handshakes and, as a result, a reduced amount of NUT
process synchronizations

3. overlaps of communications with computations

The study has shown that non-blocking data transfers are the main source of the
performance gain. Efficient bandwidth utilization can additionally give 7-9% of im-
provement when applications work within the same compute-node.

One can experience slight slow-down from pure data accumulation in case of inter-
node communication due to probable MPI protocol switching. However, as it has been
shown, it is always compensated by means of communication/computation overlaps.

The final tests have shown the concept does not give a considerable overall improve-
ment because the computation part takes almost 99.8% of the total execution time of
the corresponding part of the source code. However, results may be much better in
case of multi-client operation of NUT, especially when clients are sharing common
NUT processes; a reduced number of data transfers results in a reduced amount of
handshakes which are always accompanied by the resource acquisition mechanism,
described in Section 2.3. Unfortunately, it is difficult to design and prepare a set of
valid tests to verify this statement.

By and large, verification of the modified code has not detected any deviations in
numerical results. The new concept has always resulted in a slight overall performance
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gain. The study has also shown the main bottleneck is, indeed, the non-linear function
evaluation.

It is worth mentioning that only the sequential ATHLET code, capable to run only
in a single core, was available for this study. However, there exists a parallel version
of ATHLET multi-threaded with OpenMP. Therefore, the results can be even better
because of a reduced fraction of execution time spent on non-linear function evaluations.
This fact also shows that performance tuning of ATHLET is constantly in progress and
is being done in parallel among several departments of GRS, covering different areas of
the program source code.
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Sparsity patterns of the GRS matrix set are not available for any online publication. Please,
contact GRS representatives to get access to the data.
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(a) cant (b) consph (c) CurlCurl_3

(d) Geo_1438 (e) memchip (f) PFlow_742

(g) pkustk10 (h) torso3 (i) x104

Figure A.1.: Sparsity patterns of SuiteSparse matrix set
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MPI MUMPS PaStiX SuperLU MPI MUMPS PaStiX SuperLU
1 4.58E-02 5.60E-02 4.64E+00 11 5.93E-02 8.97E-02 crashed
2 4.31E-02 5.14E-02 1.89E+00 12 6.07E-02 9.20E-02 3.61E-01
3 4.51E-02 5.28E-02 1.22E+00 13 6.26E-02 8.25E-02 crashed
4 4.61E-02 5.64E-02 9.13E-01 14 6.28E-02 9.75E-02 crashed
5 4.92E-02 5.97E-02 7.70E-01 15 6.43E-02 1.03E-01 3.05E-01
6 5.37E-02 6.14E-02 6.04E-01 16 6.55E-02 1.05E-01 2.99E-01
7 5.42E-02 6.51E-02 crashed 17 6.61E-02 9.46E-02 crashed
8 5.41E-02 6.60E-02 4.81E-01 18 6.73E-02 1.24E-01 2.65E-01
9 5.69E-02 6.84E-02 4.35E-01 19 6.84E-02 1.14E-01 crashed
10 5.86E-02 7.22E-02 4.08E-01 20 7.02E-02 1.32E-01 2.60E-01

Table B.1.: Comparisons of parallel performance of pwr-3d matrix factorizations using
MUMPS, PasTiX and SuperLU_DIST libraries with their default parameter
settings

MPI MUMPS PaStiX SuperLU MPI MUMPS PaStiX SuperLU
1 1.55E+02 6.44E+01 time-out 11 1.77E+01 3.75E+01 time-out
2 6.28E+01 4.84E+01 time-out 12 1.60E+01 3.58E+01 time-out
3 5.06E+01 5.02E+01 time-out 13 1.42E+01 3.59E+01 time-out
4 4.17E+01 4.50E+01 time-out 14 1.45E+01 3.57E+01 time-out
5 2.52E+01 3.98E+01 time-out 15 1.47E+01 3.52E+01 time-out
6 2.58E+01 4.29E+01 time-out 16 1.41E+01 3.45E+01 time-out
7 2.65E+01 4.30E+01 time-out 17 1.54E+01 3.31E+01 time-out
8 2.59E+01 3.73E+01 time-out 18 1.52E+01 3.31E+01 time-out
9 1.95E+01 4.08E+01 time-out 19 1.52E+01 3.16E+01 time-out

10 1.91E+01 3.81E+01 time-out 20 1.38E+01 3.15E+01 time-out

Table B.2.: Comparisons of parallel performance of k3-2 matrix factorizations using
MUMPS, PasTiX and SuperLU_DIST libraries with their default parameter
settings
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MPI MUMPS PaStiX SuperLU MPI MUMPS PaStiX SuperLU
1 1.52E+01 1.61E+01 crashed 11 8.62E+00 9.09E+00 crashed
2 1.13E+01 1.13E+01 crashed 12 8.53E+00 8.92E+00 crashed
3 1.00E+01 1.03E+01 crashed 13 8.44E+00 9.13E+00 crashed
4 9.29E+00 1.05E+01 crashed 14 8.52E+00 9.00E+00 crashed
5 8.85E+00 9.84E+00 crashed 15 8.54E+00 9.19E+00 crashed
6 8.43E+00 8.99E+00 crashed 16 8.56E+00 9.05E+00 crashed
7 8.64E+00 9.69E+00 crashed 17 8.65E+00 9.12E+00 crashed
8 8.70E+00 9.12E+00 crashed 18 8.62E+00 8.96E+00 crashed
9 8.91E+00 8.94E+00 crashed 19 8.66E+00 9.30E+00 crashed

10 8.76E+00 9.26E+00 crashed 20 8.66E+00 9.16E+00 crashed

Table B.3.: Comparisons of parallel performance of cube-645 matrix factorizations using
MUMPS, PasTiX and SuperLU_DIST libraries with their default parameter
settings
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C. Fill Reducing Reorderings

(a) torso3 (b) consph

(c) CurlCurl_3 (d) x104

Figure C.1.: An influence of different fill reducing algorithms on parallel factorizations
of torso3, consph, CurlCurl_3 and x104 matrices
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(a) cant (b) memchip

Figure C.2.: An influence of different fill reducing algorithms on parallel factorizations
of cant and memchip matrices
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D. MPI Process Pinning

(a) HW1 - k3-2 (b) HW2 - k3-2

(c) HW1 - torso3 (d) HW2 - torso3

Figure D.1.: Comparisons of close and spread pinning strategies applied to parallel
factorizations of cube-64 and torso3 matrices
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(a) HW1 - consph (b) HW2 - consph

(c) HW1 - memchip_3 (d) HW2 - memchip

Figure D.2.: Comparisons of close and spread pinning strategies applied to parallel
factorizations of consph and memchip matrices
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E. Optimized BLAS Libraries

(a) cant (b) consph

(c) memchip (d) x104

Figure E.1.: Comparisons of parallel factorizations of cant, consph, memchip and x104
matrices performed on HW1 machine using MUMPS solver linked to
different BLAS implementations
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(a) pkustk10 (b) CurlCurl_3

(c) Geo_1438

Figure E.2.: Comparisons of parallel factorizations of pkustk10, CurlCurl_3 and Geo_1438
matrices performed on HW1 machine using MUMPS solver linked to
different BLAS implementations
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