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Abstract—Network Function Virtualization (NFV) aims to
virtualize compute resources for packet processing in order
to gain flexibility and reduce costs. In order to increase the
resource utilization, multiple VNFs are co-located on one single
server. Current virtualization techniques do not fully isolate all
resources, thus co-location of VNFs causes interference effects.
It has been shown that these interference effects can degrade
the performance of Virtualized Network Functions (VNFs) in
terms of throughput and delay severely. In this work we aim
to gather the potential that lies in reduction of the interference
due to the shared Last Level Cache (LLC). CPU caches are
used to improve the access times to memory that is needed
regularly for the execution of a program. Intel Cache Allocation
Technology (CAT) provides the means to allocate the cache and
isolate VNFs from each other. The results show that the scheduler
can decrease the CPU utilization by up to 20%. We can show
which factors influence the gain of LLC scheduling in NFV
deployments. In order to show this we propose a scheduler which
optimally allocates the LLC in order to reduce the maximum
CPU utilization of all cores.

Index Terms—Network Function Virtualization; Processing-
Resource Sharing; Memory Cache

I. INTRODUCTION

With the move towards Network Function Virtualization
(NFV), network providers move away from dedicated hard-
ware appliances towards software running on commodity
hardware. The commodity hardware is consolidated in a re-
source pool following the example of common compute cloud
systems. Virtual Network Functions (VNFs) are deployed on
this resource pool as needed by the network conditions. This
abstract resource pool consists of physical compute servers,
network switches and storage servers. On the one hand, this
design pattern enables an improved usage of the available
resources, leveraging the multiplexing gain. On the other
hand, this pattern causes interference between the consolidated
VNFs at different places in the shared system. [1] shows that
VNFs are competing for network IO bandwidth, CPU, cache
and memory. As a result, co-location can half the throughput
of one VNF compared to the case the when VNF is running
alone due to interference.

In this work, we concentrate on one specific interference
effect caused by the co-location of VNFs on one single CPU
chip: the Last-Level-Cache interference. In modern multi-core
processors, some of the on-chip resources such as the Last-
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Figure 1. Scenario: Co-located VNFs share the LLC of one chip. This causes
interference. As the performance gain of VNFs using a certain amount of LLC
differs, the LLC allocation can be optimized using a scheduler.

Level-Cache (LLC) are shared between all cores, which causes
interference. To resolve this issue some chip manufacturers
like Intel [2] or Qualcomm [3] are providing means to explic-
itly allocate shares of the LLC to specific cores and processes.

Figure 1 shows the overall scenario. Multiple VNFs are
running on the same CPU sharing the LLC. The caches of the
CPU are fast on-chip memories and are employed to provide
data that is used by programs regularly. The advantage is that
the time necessary for accessing data in the caches is much
lower than in the main memory. As a result the arithmetic
units of the CPU have to wait less for data and thus the
utility of the CPU is increased. If we consider VNFs that
are not fully loaded this increase in utility reduces the CPU
utilization. As VNFs can realize diverse functionalities (e.g.
IDS, NAT, Firewall, VPN Gateway, billing) the influence of
the size of the LLC is also diverse. VNF 0 in Figure 1 profits
a lot from LLC while VNF 1 does not profit much. The LLC
Scheduler tries to optimize the LLC allocation in order to
decrease the CPU utilization. Our scheduler does not aim to
decrease the utilization of single cores but instead optimizes
the CPU utilization of the complete server.

In order to study the problem in depth, we model memory
access patterns of VNFs and develop an emulator that enables
us to study the problem without disturbance by other inter-
ference effects. In this work, we focus on static VNFs with
memory access patterns that do not change over time.

One important question is how much gain can be expected



in NFV deployments from LLC scheduling. We show that the
maximum CPU utilization of all cores can be reduced by up
to 20%, especially if the co-located VNFs are diverse in terms
of load. Furthermore the working set size of the VNFs must
be large enough to achieve gains.

Existing approaches such as ResQ [4] rely on detailed pre-
built VNF profiles to schedule the LLC. Besides the increase
in complexity, profiling of the VNFs can be difficult due to the
dynamic nature of the network traffic that has a large impact
on the VNF performance. To the best of our knowledge, there
exists no other algorithm that is scheduling the LLC without
any prior information of the VNFs in the literature so far.
Thus, the main contributions of this work are as follows:

I) Modeling of the memory access patterns of VNFs and
design of an emulation

II) Design of an optimal LLC scheduler for static VNFs
III) Evaluation of system parameters that influence the gain

of LLC scheduling in NFV deployments
The paper is structured as follows: We first show related

work in Section II. In Section III we describe the system
architecture of the investigated server hardware in detail and
describe the role of LLC-scheduling in NFV orchestration.
Then we model the access behavior of VNFs to memory and it
is explained how we emulate this access behavior (Section IV).
In Section V we describe the scheduler algorithm and discuss
its optimality. We show the inert behavior of the LLC and
identify important metrics that influence the achievable gain by
LLC scheduling in Section VI. Finally we conclude in Section
VII.

II. RELATED WORK

LLC interference in NFV environments was not widely
studied yet, nevertheless there are some works which study
LLC interference and aim to reduce LLC interference [1], [5],
[6], [7]. NFV also emerged from cloud compute concepts, but
LLC interference scheduling is studied more in depth with
respect to compute cloud environments.

A. LLC Interference in Compute Cloud Environments

A number of works considers LLC contention effects in
compute cloud environments [8], [9], [10], [11], [12], [13], i.e.
not considering NFV. One main difference is the performance
metric employed: this is commonly the completion time of
a program. VNFs are different in nature as they are event
based, an incoming packet is an event that has to be processed.
Consequently a VNF program never completes its task and no
completion time metric exists. Though some works can also
give indications to the problem we are addressing here and
were helpful during our work.

[9] studies performance degradation due to LLC interfer-
ence. It is shown that programs that have many LLC references
degrade stronger while other programs that are more compute
intensive are less affected. We cover this diversity as we em-
ulate VNFs with a larger and a smaller working set and show
that the same findings are also true in NFV environments.

Heracles [12] reduces contention between batch tasks and
event based tasks in order to improve the utilization of shared
server resources. Heracles considers different resources such
as network bandwidth, memory bandwidth CPU cores and
also the LLC. The approach uses Intel CAT in order to
isolate between the two types of tasks but does not consider
interference between tasks of the same type. In contrast to that
we study contention between multiple latency sensitive tasks,
in our case VNFs.

Another work [8] aims to build a fair LLC scheduler.
Fairness is defined such that the performance degradation due
to LLC interference is equal for all programs. Authors show
that the degradation is higher for some programs than for
others and that the developed scheduler can avoid this effect.
Compared to our work there are two main differences: On the
one hand a different optimization objective is chosen and, on
the other hand, authors focus on compute workloads rather
than VNFs.

PACMan [13] places VMs on different servers such that the
interference between the programs is reduced. The approach
first profiles the VMs and then consolidates the VMs on
different servers. The approach doesn’t consider a controllable
LLC like we do and does not optimize online, but uses the
VM’s profile to optimize the VM placement. As the profile of
VNFs strongly depends on the traffic profiling is more difficult
in an NFV environment. Nevertheless VNF profiling an place-
ment/LLC optimization would be an interesting extension to
our work, which we also consider to study more in deep in
the future.

B. LLC Interference in NFV Environments

Recently authors of [1] studied the interference effects
of co-located VNFs in depth. They consider contention of
network I/O bandwidth, CPU, memory and cache. With there
measurements they can show that different types of VNFs
cause different effects. A VNF that only read packets but does
not modify them, like a gateway, has a different pattern than
a VNF that modifies the packet, e.g. a load balancer. This is
in line with our results that show that the cache interference
effects depend on the memory access patterns.

A different possibility than CAT that prevents cache inter-
ference is page coloring. Authors of [5] study cache coloring
to avoid cache interference in an NFV environment. Page
coloring enables the separation of the cache in different cache
regions as pages with different colors do not contend for
the same cache ways. The authors cluster different memory
buffer pages to different colors. Different clustering methods
are applied: Element-based clustering, groups functions of the
same type together, while flow based buffering uses the same
page colors for groups of flows. We are studying a different
approach that does not cluster but schedules individual VNFs
independently and without any knowledge about the VNF
implementation.

Veitch et. al [6] showed that Intel CAT can improve the
performance of VNFs when a noisy neighbor is present.
A noisy neighbor is a VNF or program that evicts cache
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Figure 2. LLC scheduling in the bigger picture of NFV Management and
Orchestration (MANO). Horizontal scaling of VNF instances for a specific
service, e.g., a firewall, is performed by the VNF manager through the VIM.
Through the routing/load-balancing functionality of the network, the VNFM
dictates which fraction of the traffic is assigned to a specific VNF. Network
elements then forward and distribute traffic to the running VNFs. The VNFs
have to share the available LLC and only part of the working set S of each
VNF can be kept in the LLC.

lines regularly and therefore causes high interference and
performance degradation to other VNFs co-located on the
CPU. The authors study different static CAT configurations
and show that the latency of VNFs can be decreased with
CAT. In contrast to our work they aim to show the benefits that
CAT can give in an NFV environment rather than aiming for
an optimal allocation. Nevertheless this work was an important
starting point for our work.

The work of Dobrescu et. al [7] studies interference effects
of software packet processing systems (i.e. VNFs). The authors
show that there exist different types of VNFs that use the
cache in different manners. Some VNF types have only a low
amount of LLC accesses while others have a high number of
accesses. It is shown that these types impact the performance
degradation when they are co-located on one CPU. This
strongly supports our findings from Section IV. On the other
hand the authors do not study LLC scheduling, but suggest an
orchestration that places the VNF on different servers CPUs
such that the interference is reduced.

ResQ [4] is the work that is closest to our work. It proposes
to use CAT in order to enforce performance SLOs. The authors
show that CAT can be successfully used to enforce throughput
and latency guarantees. In contrast to our approach authors use
an 2-step offline approach with pre-profiled network functions
while we take an online approach without any a priori knowl-
edge. First the network functions have to be profiled using a
variety of traffic profiles. In the second step the profiles can be
used to improve the placement of the NFs and the allocation
of the LLC.

III. SYSTEM ARCHITECTURE

The section at hand first describes the role of LLC schedul-
ing in the bigger picture of NFV. Afterwards, the cache
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Figure 3. Simplified depiction of the Intel Xeon processor’s cache hierarchy.
Each core is equipped with an exclusive L1 cache (64 KB) and L2 cache
(256 KB). A Last Level Cache (LLC) with a capacity of 30 MByte is shared.
Access times are cumulative and range from roughly 2 ns if the memory access
can be satisfied from the L1 cache to 100 ns if the data has to be fetched from
the main memory.

hierarchy of the investigated NFV platform is introduced. The
section is concluded with a brief description of the Intel Cache
Allocation Technology and the cache monitoring mechanisms
provided by Intel.

A. NFV MANO

Figure 2 depicts the LLC scheduler in the bigger picture of
NFV Management and Orchestration (MANO). The architec-
ture has been proposed by the ETSI NFV working group [14].
The architecture describes the components required in all
stages of the life-cycle of a VNF, from the definition in terms
of deployment and operational requirements, to the allocation
and the release of the required resources. The proposed LLC
scheduler can be implemented as part of the Virtualized
Infrastructure Manager (VIM), the MANO component which
manages the available resources of the physical infrastructure.
With the presented scheduler, the VIM can optimize the
distribution of the LLC to the active VNFs on the physical
server. The amount of memory that is required from the VNF
to fulfill its functionality is called working set. The working
set consists of the binary and as well the state of the VNF
such as tables, rules etc.

Commonly, a CPU core is assigned exclusively to a VNF to
benefit most from processor register, L1 and L2 caching [15].
A load balancer on the data-plane, either in the network or
in software on the host, distributes the network packets to the
available instances. The goal of such packet load balancers
is to keep the utilization homogeneous between the instances.
Down and up-scaling of VNFs is done by the VNF Manager
(VNFM) by stopping or starting additional VNF instances [16]
in order to improve resource utilization. For example the
VNFM may add a new instance at an average utilization of
90 % for all instances and remove an instance if the average
utilization of all cores drops below 60 %.

B. CPU/Cache Hierarchy

The experimental set-up consists of a Dell PowerEdge R530
server with 2 Intel Xeon E5-2650 v4 2.2GHz CPUs with 12



physical CPU cores each and the Intel C610 chipset. We refer
to CPU as one chip consisting of the cores and the LLC.
Figure 3 illustrates the cache hierarchy of the Intel Xeon
processor and the connection to the RAM. Each physical core
is equipped with two exclusive cache levels, an L1 cache of
64 KByte and an L2 cache of 256 KByte. A Last-Level-Cache
(LLC) of 30 MByte is shared among the 12 physical cores
of the CPU. We disabled hyper threading on our server to
eliminate this source of interference. The LLC is connected to
the main memory, which consists of DDR4 RAM with a size
of 32 GB.

Data from the main memory is accessed in chunks, denoted
as cache lines, of 64 Bytes. When a CPU core accesses a
particular memory location, the caches are checked incremen-
tally starting from L1, through the shared LLC and up to the
main memory. The caches of our CPU are inclusive, i.e., every
line that is cached in L1 is also cached in L2 and LLC. The
shared LLC is 20-way associative, hence data of every memory
location can be cached at 20 locations in the LLC cache and
each cache way has a capacity of 1536 KBytes.

C. Cache Allocation Technology

The Intel Cache Allocation Technology (CAT) [2] enables
the allocation of the LLC to specific CPU cores. The allocation
can be done shared, i.e., multiple cores share specific parts of
the cache, or exclusively, i.e., parts of the cache are allocated to
specific cores. In detail, CAT introduces 16 Classes of Service
(CoS) for CPU cores. Each core has to be assigned exactly
to one class, but multiple cores can be assigned to the same
class. A bitmask per class configures which of the available
20 cache ways can be used by which CoS. In a nutshell, CAT
enables the allocation of 20 LLC chunks, with each chunk
having a size of 1536 KByte, to specific CPU cores. Due to
limitations of the technology CAT only restricts write accesses
to the LLC. This means that a core that had access to a larger
share of the cache before a reallocation can still access cached
data stored in ways that are allocated to a different CoS. This
restriction causes an transient behavior of the cache after CAT
changes. A detailed evaluation of the transient phase of the
LLC is done in Section VI-B.

D. Monitoring

Intel processors provide low-level cache statistics via per-
formance counters. These low-level counters can be read and
interpreted using the Processor Counter Monitor (PCM) tool
[17]. The developed algorithm uses the following metrics pro-
vided per core: current CPU utilization and LLC occupation.

IV. MEMORY ACCESS MODEL

The sensitivity of VNFs to LLC contention, and also the
interference caused by a VNF, depends on a number of factors,
such as the size of the accessed memory range and also how
often each memory location is accessed. In this section, we
introduce a memory model that serves us for the derivation of
the scheduler algorithm and which led us in the design of the
memory access emulator.
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Figure 4. Possible memory access patterns.

A VNF, or any program, accesses different data with dif-
ferent frequencies, e.g., parts of the binary are accessed often
while some other data might only be accessed for startup.
Theoretically, we split the complete allocated memory of a
VNF in chunks, e.g., each chunk is 64 Bytes large as in the
cache lines. With this abstraction we can assign every chunk
of memory a distinct access frequency and we can sort the
chunks in decreasing order by the access frequency. In this
work, we denote this as access pattern.

Figure 4 abstractly visualizes three different possible access
patterns (P1, P2, P3). The horizontal axis represents the differ-
ent memory chunks and the vertical axis of the plot represent
the corresponding access frequency. Pattern P1 represents a
program that accesses all its memory chunks with the same
frequency. This is not realistic, but resembles the behavior
of a memory stressing benchmark. Pattern P2 is more fitting
to VNFs: some chunks are accessed frequently while others
are only accessed seldomly. It is known that network traffic
commonly has elephant flows and mice flows. If we imagine
a router with a routing table in memory, the entries that are
matched by elephant flows are accessed more often than mice
flow packets. This could cause an access pattern like P2.
We do not want to restrict ourselves to specific patterns, as
there might also be patterns like P3 that do not have smooth
transitions, but rather a step at some point.

In the figure we also sketched how this relates to the caches.
As the caches mainly work in a least recently used manner
(LRU), this pattern translates to hit rates of the caches. The
hit rate of a cache measures what ratio of the accesses to the
cache were served from the cache. Thus the hit rate of the
LLC is proportional to the following formula:

LLC Hitrate ∼ Area within Cache

Area not within Cache

In the figure we marked the area within cache as A1 and
the area not within cache as A2 for pattern P1. The proposed
scheduler influences how much LLC each VNF can use. In
the depicted case the cache is more useful to the VNFs with
P2 and P3 than the VNF with P1 as they have a higher access



frequency in this region. The set of data that is used by the
VNF is often referred as working set. The working set can
be equal to the allocated memory, but it can also be smaller,
e.g. if some data is only used for the initialization of the
VNF. Further, the access pattern depends also on the network
condition, e.g., an IDS serving highly diverse traffic has a
different access pattern than an IDS that only filters a single
connection [1].

The CPU utilization is the share of the CPU cycles where
the CPU is active, i.e., not in a sleep state. Besides actual
processing cycles the CPU is also active while waiting for
data. Consequently, the CPU utilization increases for the
same number of executed instructions if the LLC Hitrate
decreases.

In order to emulate different possible behaviors of VNFs,
we propose to use simplified memory access patterns. From
the definition of the access patterns it can be derived that
the access frequency is monotonically decreasing with the
sorted locations (horizontal axis). On the other hand due to the
diversity of possible VNFs it is hard to find a more specific
pattern. Therefor we propose a simple and generic model that
is fully described with the allocated memory M , the maximum
access frequency R and a distribution parameter α. The access
pattern can be described with the function r(m), which is the
access rate at memory location m:

r(m) = R · (α+ 1) · (1−m/M)α with m ∈ [0,M ] (1)

The parameter R models the packet rate, as the memory
access rate of VNFs is proportional to the packet rate. M is
the working set of the VNF. Finally parameter α describes a
probability distribution that allows us to emulate a range of
different access patterns. By setting R = 1 and M = 1 in
r(m), we get the underlying probability distribution, with the
PDF f(x) and the CDF F (x):

f(x) = (α+ 1) · (1− x)α (2)

F (x) = 1− (1− x)α+1 (3)

If we chose for example α = 0, the distribution becomes
uniform and we get an uniform access pattern with constant
rate R for all memory positions m ∈ [0,M ]. This kind of
access pattern is also sketched in Figure 4 as P1 (solid line).
For other values of the parameters R,M and α, we obtain
different access patterns.

In this work, we only consider a quasi-static set of VNFs
such that the access pattern r(m) is not time dependent. This
means that the VNFs and the traffic pattern of the VNFs does
not change over time. This enables us to study the potential
gains of LLC scheduling in deep.

V. OPTIMAL SCHEDULER DESIGN

In this section we first describe the developed algorithm
which determines the optimal allocation for static access
patterns.

output: Allocation∗

1 initialize: all cores share the LLC;
2 Wc = 0 ∀c;
3 Z = 1;
4 Allocation∗ ← current allocation;
5 while

∑
cW < LLCtot − 2 do

6 c∗ = argmaxc(Uc);
7 if Wc∗ ! = 0 then
8 Wc∗ ←Wc∗ + 1;
9 end

10 else
11 Wc∗ ← bLLCc∗/1.5MBytec
12 end
13 if max(Uc) < Z then
14 Z = max(Uc);
15 Allocation∗ ← current allocation;
16 end
17 end

Algorithm 1: Min-max scheduler determining the LLC
allocation that minimizes the maximum CPU utilization

A. Optimization objective

There are different optimization objective possible. We
imagine to use the scheduler in an NFV environment enabling
scaling as described in Section III-A. In this environment the
NFV orchestration would scale up, i.e., launch new instances,
if some threshold is exceeded. As a result it makes sense
to reduce the CPU utilization and thus making the scaling
unnecessary, consequently saving resources. Hence, we choose
to minimize the maximum CPU utilization of all cores. But the
objective could also be, e.g., to minimize the sum of utiliza-
tions of all cores, or the reduction of memory access delays for
selected VNFs. Furthermore, with a CPU utilization of 100%,
packet loss is caused that should be avoided. Summarizing,
a reduction of the maximum CPU utilization of all cores is
desirable.

B. Algorithm

Algorithm 1 defines the algorithm that finds the LLC
allocation which minimizes the maximum CPU utilization of
all cores. The system is initialized with the default allocation,
i.e. all cores compete for the LLC. Wc denotes the number
of exclusively assigned cache ways of core c. No core has
exclusive cache ways in the beginning (line 2). Before starting
the algorithm loop, the upper bound for the minimal maximum
CPU utilization of all cores Z is 1, as this is the maximum
value of utilization. The algorithm also remembers the cur-
rent allocation to cover cases where the initial allocation is
already the optimal allocation (line 4). The following steps
are repeated until all possible cache ways are distributed.
First the core that has currently the highest CPU utilization
is determined, this core is called c∗. If this core was already
scheduled before, i.e., there are already cache ways exclusively
assigned, the number of exclusive cache ways is increased by
1. Otherwise it is measured how much LLC the core currently
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Figure 5. CPU utilization and LLC occupation of an exemplary scheduler run with 5 cores. The duration of each step is 12 seconds.

uses and this value is used to determine an initial number of
ways. Each cache way corresponds to 1.5 MB of LLC, as
the number of ways has to be integer the algorithm applies
the floor operation. In most cases the LLC for the initialized
core is increased in a subsequent step. The floor operation is
a conservative choice in this case, as it guarantees that not too
many cache ways are allocated.

After each schedule update, the algorithm checks if the step
resulted in a new upper bound Z. In this case, the new bound
and the new allocation are saved (lines 14 & 15).

The algorithm assigns at least one cache way in each step
until all cache ways are assigned. In our set-up the LLC is
20-way associative, at minimum 2 ways must be left for cores
without exclusive ways. This results in a maximum of 18 steps
for the algorithm to find the optimal allocation. In general the
algorithm is of linear complexity with the number of cache
ways.

C. Example Run

Figure 5 shows one example run of the scheduler as
presented in Algorithm 1. The upper graph shows the CPU
utilization of the used cores, the lower one shows the LLC
occupation of each core. The LLC Occupation metric measures
how much LLC each core is currently using.

At time t = 0 s the system is initialized with the LLC shared
by all cores.Before doing anything the scheduler determines
the CPU utilization of all cores using PCM as described in
section III-D.

In the first LLC allocation update at t = 13s, the highest
core, in this case Core 3, is assigned exclusive ways. The
number of ways for this first allocation is computed as in line
11 of Algorithm 1. As Core 3 can use less LLC than before,
the CPU utilization of Core 3 is increased after this step. After
this update, the scheduler waits until the CPU utilization has
stabilized and measures again the CPU utilization of the Cores.

The next schedule update is done at t = 26 and increases the
LLC of Core 3 by one way. After further updates at t = 38 and

t = 59, the CPU utilization of Core 3 is below the utilization
of Core 5, thus Core 5 is now scheduled in the updates at
t = 62, t = 74 and t = 86.

This scheme continues until the optimum allocation is
reached at t = 147 after 12 steps of the algorithm. It can be
seen that we reached an absolute gain of 10.5% with respect
to the maximum CPU utilization of all cores in this run.

D. Optimality Discussion

The scheduler minimizes the maximum CPU utilization of
all cores for the static case. The CPU utilization of a core
depends only on the allocated LLC if the memory access
pattern is static. Thus the CPU utilization of core c is given
with the function Uc(LLCc) where LLCc denotes the share
of the LLC usable by core c. The maximum CPU utilization
of all cores is then:

f(LLC) = max
c

(Uc(LLCc)) (4)

LLC is a vector with length C that denotes the current
allocation of the LLC to the cores. Therefore, our optimization
problem is:

min f(LLC)

s.t.
∑
c

LLCc ≤ LLCtot ,∀c

LLCc ≥ 0 ,∀c
(5)

The constraints are due to the limitation of the total LLC of
the chip LLCtot and that the LLC allocated to one core must
be non-negative.

The CPU utilization Uc(LLCc) is monotonically decreasing
with LLCc. More cache can only decrease the CPU utilization,
as the CPU has to wait less for data. This means that the
minimum f∗ must be on the edge of the feasibility space, as
we could otherwise increase LLCc for any c and at least reach
the same or a lower value of f .

The gradient of f , ∇f is a vector with ∇fc = df
dLLCc

.
f in some point LLC◦ is the maximum of the functions



Table I
NOTATION

Symbol Description

c ∈ {0, ...C − 1} core number
C number of cores of the CPU
LLCc LLC allocation to core c

LLC =


LLC0

...
LLCC−1

 LLC allocation of the CPU as a
vector

Uc(LLCc) ∈ [0, 1] CPU utilization of core c
f(LLC) = max

c
(Uc(LLCc) Maximum CPU utilization of all

cores
LLCtot Total Last Level Cache available

U(LLCc) in this point. It only depends on one dimension
c◦ = argmax

c
(U(LLCc)).

Consequently it holds:

∇fc =

g, if c = argmax
c

(Uc(LLCc))

0, otherwise
(6)

As all functions Uc are monotonically decreasing, we can
state that g ≤ 0. Note that we do not consider edge cases
where the utilization of two cores is exactly equal, as they are
obviously very rare in reality.

In each step the scheduler increases LLCc for the core with
the highest value and decreases it for the not scheduled cores.
This means that the scheduler is moving along a line on the
edge of the feasible space in every step. It always increases the
LLC in dimension c = argmaxc(Uc(LLCc)) and reduces it
for the not scheduled dimensions c− ∈ NS ⊂ {0, ...C−1} and
thus the scheduler is doing a gradient descent on the surface
of the feasible space.

The step size is set to the size of one LLC way, which means
we could overshoot in the case the step before was closer to
the minimum. The scheduler takes this into account by saving
the last valid Z (Z can never increase due to the conditions).
Additionally, we argue that due to the characteristics of f and
∇f , in every point the final Z is close (within one step) to the
global minimum f∗. We can not guarantee to reach f∗ as the
scheduler uses integer number of ways for scheduled cores.

VI. EVALUATION

This section first discusses the experiment design used for
evaluation. First, we present the results that indicate a transient
phase of the LLC after an update. Secondly we show the
scheduler gain depending on different parameters of the co-
located VNFs.

A. Experiment Design

In order to evaluate the developed LLC scheduler, we
evaluate 4000 scheduler runs. Depending on how many steps
of the algorithm are needed each run has a duration of 150-
200 s with one measurement point per second yielding an
extensive data set.

Table II
EXPERIMENTAL PARAMETERS USED FOR EVALUATION.

Parameter Range Description

α {0.3, 1.01, 2.5, 5} Distribution parameter
M [1, 30] [MB] Working set size
R [2000, 7000] [s−1] Access rate
C 5 Number of VNFs
Uc 40% < Uc < 90% CPU utilization constraints

One example scheduler run is shown in Figure 5. In every
run, 5 VNFs are active and each one running pinned to one
core. As explained before we consider a static scenario, i.e.
within one run, the CPU utilization is constant, if the LLC
allocation is not changed. Obviously this assumption is not
realistic in real deployments, as e.g. the packet rate changes
continuously, but it enables us to analyze the scheduler gain
and the inertial behavior of the CPU utilization after an LLC
allocation update. We emulate VNFs using a C++ program
running inside a VM virtualized with KVM. The program is
allocating a table of size M and accessing the memory with
rate R using the distribution given in Equation 3. The code
for the emulation is published for reference 1.

In this work we want to research the achievable gain of LLC
scheduling. Thus have chosen a wide range of parameters,
shown in Table II in order to represent different kinds of VNFs
and their interference. Even though only 5 distinct values of α
where chosen, these values represent a wide range of access
patterns.2 E.g. α = 0.3 is an access pattern where the complete
working set is accessed almost uniformly, on the other hand
with α = 5 a large portion of the working set are accessed
only seldom. Therefore larger or smaller values of alpha do
not change the overall behavior much and real VNFs fall
somewhere in between.

Data that are accessed in VNFs are often state tables such as
connection tables in a NAT or a firewall. One connection entry
has to track the state of a connection and thus rather small. E.g.
in the case of Linux’ netfilter conntrack module [18] one entry
has 376 Byte on our test server, thus the maximum of M =
30MB corresponds to roughly 80000 concurrent connections.
We do not expect a real VNF to have a significantly larger
working set.

Further, the scenarios are generated such that they are in
accordance with the NFV MANO architecture that is described
in Section III-A. Hence, no VNF should be underutilized or
overloaded. As a result, all VNFs in one scenario have a CPU
utilization in the interval [40%, 90%]. The runs are generated
as follows. The settings of each emulated VNF namely R and
M are chosen randomly within the intervals shown in Table
II, α is chosen randomly from the set shown. Afterwards the 5
chosen VNFs are executed on our measurement server and the
CPU utilization is measured. If the CPU utilization of an VNF

1VNF emulation source code: https://github.com/tum-lkn/vnf-emu
2Note that α = 1.01 is used, as otherwise with α = 1 Equation 3 is much

less complex to compute and thus the emulated VNF behaves different.
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Figure 6. Transient phase after an LLC allocation update: Difference between
the CPU utilization at a certain time after the update with respect to the median
utilization of the CPU utilization in the interval [7,10].

is not within the defined interval R is increased or decreased.
Then the CPU utilization is measured again. This pattern is
repeated until the CPU utilization of all VNFs fall into the
defined interval.

B. Transient phase of the LLC

As we are dealing with a real system, the CPU utilization
is always not fully constant over time. Reasons for this can
be, e.g., periodic tasks the operating system or the hypervisor
is performing. More importantly, the CPU utilization shows
a transient behavior after an update of the LLC allocation:
Cache lines are only evicted if other data not cached yet, is
accessed by the CPU. Furthermore, the CPU gain from LLC
cache only shows if the cache line is accessed after that a
second time, as only then the accessing delay is reduced.

Figure 6 visualizes this transient phase. Results were gath-
ered from 500 scheduler runs with one measurement point
per second, each scheduler run needs multiple steps and thus
yielding multiple transient phases. We define the median of
the CPU utilization in the interval [7,10] s after a reallocation
of the LLC as baseline or true utilization after the update.
Next we compute the difference of each measurement value
with the baseline and show the distribution as a contour plot
showing the percentiles of the outcomes. It can be seen that
the CPU utilization can differ significantly from the baseline
for the first four seconds, after this the CPU utilization clearly
stabilizes.

In line 6 of Algorithm 1, the scheduler measures the current
CPU utilization of all cores. As this measurement must not be
influenced by the last iteration of the scheduler, the algorithm
has to wait until the CPU utilization is in a steady state.
As we are aiming for the optimal allocation, we used a
conservative time of 12 seconds for each step. Though in real
systems one might trade off the step time for a faster scheduler
convergence.

C. Scheduler Gain

Next we evaluate how much gain can be expected from
such an approach in a real system. In order to analyze this
we evaluate 4000 different sets of 5 VNFs and determine
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Figure 7. Relation between gain and difference between the CPU utilization
of the highest core and the mean of the CPU utilization of all cores
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Figure 8. Relation between gain and the (mean) allocated memory of the
scheduled VNF(s)

the optimal allocation with our scheduler. From this sets we
compute the gain as:

Gain = max(Uc)
Shared −max(Uc)

Scheduled

where max(Uc)
Shared is the maximum CPU utilization with

no LLC allocation (LLC is shared) and max(Uc)
Scheduled is

the maximum CPU utilization in the optimized case.
Figure 7 shows the gain with respect to the difference be-

tween the maximum CPU utilization and the mean utilization
for the shared allocation. The linear fit line shows that for
every percent of difference between max and mean one can
expect 0.4 percent more gain. In the extreme case, where
the maximum is equal to the mean, the scheduler cannot
achieve anything as a reduction of the utilization of one core
increases the utilization of other cores. This means that a real
system needs a certain degree of variability between the VNFs
running on one server, otherwise no scheduling is possible.
Consequently setups that deploy only equal VNFs on one
server and additionally load-balance between the instances,
such that the utilization is as well equal for all VNFs, cannot
reduce CPU utilization with LLC scheduling.

On the other hand the outliers without gain show that this
metric can not solely explain the achievable gain, but also
depends on other metrics. One of these metrics is the allocated
memory of the VNFs. The scheduler increases the LLC share
for the core that has the maximum CPU utilization. If the



complete working set already fits into the share of the LLC,
a further increase of the allocated LLC does not yield any
further gain. As a consequence it can be expected that LLC
scheduling works worse for VNFs with a small working set.
Thus we analyze the influence of the mean allocated memory
of the scheduled set to the gain. We define the scheduled set
as the VNF(s) that have exclusive ways in the final state of
the scheduler. This means that each of the VNFs in the set is
pinned to a CPU core which had the highest utilization in at
least one scheduler interval.

Figure 8 shows how the allocated memory of the VNFs
influence the gain. It can be seen that some minimum memory
of around 5 MB is necessary to achieve gains. Between 5
and 12 MB the median gain quickly increases and flattens
out for higher amounts of memory. Consequently VNFs that
do not store much data, like for example a stateless firewall
that only needs to access its ACL regularly cannot reduce
their CPU utilization. On the other hand, due to the limited
size of the LLC (the LLC is 30 MB in total), the achievable
gain is also limited even for a large working set size. A VNF
requiring 30 MB of data can never cache everything in the
LLC as this would leave the other VNFs without cache, which
is technically impossible due to restrictions in the CPU chip
architecture.

VII. CONCLUSION

In this work, we show an optimal LLC scheduler for NFV
environments. We show that LLC scheduling can reduce the
maximum CPU utilization on one NFV server significantly.
How much gain can be achieved depends on the employed
VNFs and their traffic. As the CPU utilization of one VNF is
decreased by increasing the allocated LLC of this VNF, the
other VNFs that are co-located on the same server can use
less LLC. Consequently this increases the CPU utilization of
the co-located VNFs. Thus in order to enable the scheduler
to reduce the overall maximum CPU utilization the difference
between mean and maximum CPU utilization of all cores must
not be too small.

Furthermore we show that the working set size of the sched-
uled VNFs must be large enough. Otherwise LLC scheduling
cannot bring any gains.

The developed scheduler algorithm does only consider static
cases, i.e. traffic and VNFs must not change. This assumption
does not old in many real applications, as network traffic is
known to be dynamic over time. Thus, in the future we want to
extend the algorithm to also be able to work in more dynamic
environments that also consider changes in the network traffic.
Finally in this work, we consider only one NFV server, while
NFV was introduced to work with a large pool of servers.
Thus this work could also be extended to consider larger
deployments and an interplay with a VNF placement strategy.
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