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The chicken represents a valuable model for research in the area of immunology,

infectious diseases as well as developmental biology. Although it was the first livestock

species to have its genome sequenced, there was no reverse genetic technology

available to help understanding specific gene functions. Recently, homologous

recombination was used to knockout the chicken immunoglobulin genes. Subsequent

studies using immunoglobulin knockout birds helped to understand different aspects

related to B cell development and antibody production. Furthermore, the latest advances

in the field of genome editing including the CRISPR/Cas9 system allowed the introduction

of site specific gene modifications in various animal species. Thus, it may provide a

powerful tool for the generation of genetically modified chickens carrying resistance for

certain pathogens. This was previously demonstrated by targeting the Trp38 region which

was shown to be effective in the control of avian leukosis virus in chicken DF-1 cells.

Herein we review the current and future prospects of gene editing and how it possibly

contributes to the development of resistant chickens against infectious diseases.

Keywords: chicken, CRISPR/Cas9, transgenic, knockout, Diseases, Immunoglobulins

INTRODUCTION

The chicken represents an important source of protein worldwide and a valuable model for
the study of developmental biology in vertebrates (Yasugi and Nakamura, 2000; Speedy, 2003).
Chickens are constantly exposed to a plethora of pathogens threatening animal welfare as well as
human health (Perdue and Swayne, 2005; Humphrey, 2006). Viral pathogens such as influenza
A viruses can be transmitted to humans leading to death (Gao et al., 2013). Furthermore, bacterial
agents such asCampylobacter jejuni and Salmonella enteritidis cause food borne illnesses in humans
associated with digestive symptoms (Bryan and Doyle, 1995). More recently, using genetically
modified chickens as a model for various research areas like developmental biology, immunology,
physiology and neurology is gaining importance in the avian research community (Mozdziak
and Petitte, 2004; Stern, 2004, 2005). In addition, there is an increasing interest to generate
genetically modified chickens resistant to specific pathogens, benefiting from the availability of gene
manipulation techniques. This review focuses on the advancesmade in gene editing in chickens and
the future perspectives including the generation of specific-pathogen-resistant birds.
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STATE OF THE ART

Genetically modified animals have significantly contributed to
our understanding of different aspects related to immunity,
infectious diseases, neurology, behavior, and developmental
biology (Yeh et al., 2002; Lyall et al., 2011; Lalonde et al., 2012;
Pinkert, 2014; Park et al., 2017b). While mice were the first
animals to be genetically modified (Costantini and Lacy, 1981;
Gordon and Ruddle, 1981), pronuclear DNA microinjections
allowed the introduction of foreign DNA leading to genetic
modifications in livestock including rabbits, sheep and pigs
(Hammer et al., 1985). Although this method was used for
a long time, it did not allow the induction of targeted gene
modifications and had the disadvantage of generating random
integrations (Perleberg et al., 2018). The generation of knockout
(KO) animals was achieved for the first time by gene targeting
in embryonic stem cells (ES) (Evans and Kaufman, 1981;
Thomas and Capecchi, 1987). Though the induction of the
KO was successful, it had the disadvantage of low efficiency
(Thomas and Capecchi, 1987). Due to the absence of true ES
lines from farm animals and no solid evidence of germline
transmission (Talbot and Blomberg, 2008; Soto and Ross, 2016),
stable transfection of sheep somatic cells with human factor
IX and neomycin resistance followed by nuclear transfer was
the alternative to express foreign DNA in livestock (Schnieke
et al., 1997) and afterwards for gene targeting (McCreath et al.,
2000). At this time, the generation of KO livestock animals was
possible by combining somatic cell nuclear transfer (SNTC) and
homologous recombination (Lai et al., 2002; Nottle et al., 2007).
The laborious procedure of these methods and the low efficiency
for generating targeted KO was improved by homologous
recombination (Houdebine, 2002) along with different nucleases
(Carlson et al., 2012). The transcription activator-like effector
nucleases (TALENs) are composed of series of repeats fused to
non-specific FokI-cleavage domains that induce double- stranded
DNA breaks upon dimerization (Gaj et al., 2013). More recently
the Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)/Cas9 system made the process of specific DNA-
targeting easier by using single guide RNAs (sgRNAs) (Jinek
et al., 2012; Ran et al., 2013; Hsu et al., 2014). CRISPR/Cas9
is an adaptive immune system found in bacteria and archaeal
species and uses small-non coding RNAs to guide the Cas9
nuclease to target sites resulting in DNA double-break (Jinek
et al., 2012).

In comparison tomammals, difficulties were always associated
with the generation of genetically modified chickens due to
the complex structure of the chicken zygote (Mozdziak and
Petitte, 2004) and the different organization of the chick embryo
compared to mammals (Stern, 1990). Over the past 30 years,
different research groups paved the way for the generation of
genetically modified chickens. Efforts were focused on the stable
genomic integration of transgenes and obtaining the highest
efficiency of germline transmission. While Pettite and colleagues
described the transfer of stage X embryo cells that led to germline
transmission, it was not possible to genetically modify these
cells and to re-introduce them as germline competent cells into
the chicken embryo (Petitte et al., 1990). Although ES were
shown to provide a valuable tool for the generation of transgenic

mice (Kanatsu-Shinohara et al., 2003), no evidence of germline
transmission using chicken ES was reported. Transferred chicken
ES cells only contributed to somatic tissue but not to the
germline.

The first genetically modified chicken was generated by the
insertion of retroviral foreign DNA delivered by avian leukosis
virus that was successfully integrated to the germline (Salter
et al., 1987). The retroviral vector was injected into the yolk
sac near to the developing blastoderm. Since then, various
viral vectors have been used to generate genetically modified
chickens (Hughes et al., 1986; Bosselman et al., 1989; Salter and
Crittenden, 1989; Harvey and Ivarie, 2003; Mozdziak et al., 2003).
Drawbacks of viral vectors, such as the replication of deficient
viral particles and risks of recombination with wild type viruses,
were avoided by plasmid-DNA microinjection into the chicken
zygote (Love et al., 1994). The microinjection was done in the
germinal disk and led to the generation of transgenic chickens
expressing neomycin resistance and a reporter gene lacZ (Love
et al., 1994). A total of 5.5% of the generated chicks survived to
sexual maturity and later on, one rooster gave 3.4% transmission
to his offspring (Love et al., 1994). The germline transmission
of integrated transgenes was improved with lentiviral vectors
(McGrew et al., 2004). McGrew and colleagues showed the
possibility of transduction with lentiviral vectors in G0 birds.
Founder cockerels were injected with different plasmids carrying
different reporter genes including LacZ and eGFP (McGrew
et al., 2004). Lentiviral vectors were injected into the subgerminal
cavity of newly laid eggs. Ten of the founder males transmitted
4-45% of the foreign DNA to their offspring (McGrew et al.,
2004). Lentiviral vectors offered for the first time the possibility
to generate genetically modified chickens with a decent germline
transmission efficiency. Nevertheless, the size of the transgene
was still limited and precise edits were not possible.

Furthermore, the in ovo injection of the avian retroviral vector
RCAS (replication-competent avian sarcoma-leukosis virus with
a splice acceptor) carrying enhanced fluorescent protein (eGFP)
into unincubated (stage X) blastoderms resulted in stable and
widespread expression of eGFP in the embroys. Even though
the gonads showed eGFP expression PGCs were eGFP negative
indicating viral silencing (Smith et al., 2009).

Like in mammals, chicken primordial germ cells (PGCs) are
precursors of gametes and a key element for sperm and oocystes
development. At the early hours of embryonic development,
PGCs are found in the germinal crescent and migrate afterwards
(50–55 h) to the gonads (Kim et al., 2010; Kang et al., 2015)
in order to produce sperm and oocystes upon sexual maturity
(Fujimoto et al., 1976). The migration of PGCs was found to be
greatly influenced by the chemokine stromal cell-derived factor-
1 (SDF-1/CXCL12) and its receptor C-X-C chemokine receptor
type 4 (CXCR4) (Stebler et al., 2004; Lee et al., 2017c).

The ability to culture PGCs was a milestone in the process
of generating transgenic chickens. Genetic modification of
PGCs and their subsequent reintroduction into the embryonic
vasculature resolved many issues and problems observed with
previously established methods. Van de Lavoir and colleagues
used BRL or STO feeder cells to cultivate PGCs for up to 217
days. PGCs were shown to retain the germline characteristics by
analyzing various germline markers including the chicken vasa
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homolog (CVH) and were cryoconserved using conventional
techniques (Van De Lavoir et al., 2006). PGC-culture was
optimized afterwards by Whyte and colleagues that developed
feeder and serum free culture conditions that took into
consideration the signaling pathways necessary for avian germ
cell self-renewal (Whyte et al., 2015). The work of van de
Lavoir and colleagues revealed that foreign DNA can be inserted
in the genome of PGCs and cells were still restricted to the
germline (Van De Lavoir et al., 2006; Leighton et al., 2008).
Male PGCs were cultured for a duration between 35 and 110
days during which they were transfected with a construct coding
for eGFP and subsequently injected into the vasculature of
White Leghorn embryos [stage 13–15 Hamburger and Hamilton
(H&H)](Van De Lavoir et al., 2006). Interestingly, the long
term culture of PGCs did not influence their ability to colonize
the gonads after insertion of foreign DNA, which allowed
afterwards the generation of several transgenic chicken lines
(Van De Lavoir et al., 2006, 2012; Macdonald et al., 2012).
Leighton and colleagues gave new insights about increasing the
efficiency of foreign DNA insertion in PGCs mediated by phiC31
integrase that catalyzes site-specific recombination between attB
and pseudo attP sites in the chicken genome and increases
transgene integration (Leighton et al., 2008).

Lu and colleagues indicated that the piggyBac transposon can
be efficiently integrated into the genome of chicken embryo
during development via electroporation (Lu et al., 2009). The
transfection of PGCs with piggyBac transposon greatly enhanced
the integration frequency of foreign DNA into the chicken
genome and resulted in the generation of genetically modified
chickens (Park and Han, 2012; Glover et al., 2013). In contrast,
the injection of piggyBac transposon into the subgerminal cavity
of a newly laid egg and subsequent electroporation, resulted in
chickens expressing the transgene but no germline transmission
was detectable (Liu et al., 2013). At the same time, Tyack
and colleagues successfully developed a method for the direct
transfection of circulating PGCs using Lipofectamine 2000 in
combination with Tol2 transposon and transposase plasmids
(Tyack et al., 2013). The plasmid contained the pCAGGS
promoter driving the expression of eGFP. Tyack and colleagues
found that 5/11 roosters expressed the miniTol DNA in their
semen and two of them gave about 1.5% germline transmission
(Tyack et al., 2013). This method substantially reduced the time
needed for the in vitro isolation and gene manipulation of PGCs;
however, it did not increase the germline transmission in G0
(Tyack et al., 2013). In addition, it does not allow clonal selection
of PGCs and may result in birds with random integrations of the
same transgene. Nevertheless, it is an effective method to produce
genetically modified chickens as shown by various publications
(Tyack et al., 2013; Lambeth et al., 2016a,b).

The possibility to culture and genetically modify chicken
PGCs without losing germline competence made it possible to
perform precise gene deletions and integrations in the chicken
genome. Specific gene locus KO chickens were generated by
Schusser and colleagues via gene targeting by homologous
recombination in chicken PGCs (Schusser et al., 2013a, 2016).
In the case of targeted immunoglobulin heavy chain J segment,
a total of 7 from 27 PGC clones (28%) had a correctly targeted

event which reflected a high efficiency comparable to mouse
ES cells (Schusser et al., 2013a). Similar efficiency was obtained
after targeting the immunoglobulin light chain locus in chicken
PGCs. After successful targeting of the immunoglobulin heavy
or light chain in chicken PGCs, resulting clones were injected
into H&H stage 13–15 embryos in order to generate germline
chimeras. Germline transmission rates varied between 0.1 and
48% depending on the used PGC clone (Schusser et al., 2013a,
2016). Resulting homozygous immunoglobulin heavy chain J
segment knockout birds showed a depletion of peripheral B cells
and antibodies and were the first non-mammalian vertebrates
harboring a knockout produced by homologs recombination. In
order to perform gene knockouts by homologs recombination
in PGCs, isogenic DNA is needed since mismatches in the
homology regions are not tolerated (Schusser et al., 2016).

Since PGCs are precursors of sperm, researchers suggested
that roosters could be used as recipient for exogenous transfer
of genetically-modified PGCs which may improve the germline
transmission rate (Trefil et al., 2017). Chicken embryos and
adult roosters were chemically or physically sterilized to create a
surrogate for external PGC donors (Trefil et al., 2006; Nakamura
et al., 2008, 2010; Ghadimi et al., 2017). Nakamura and colleagues
partially sterilized chicken embryos by injecting Busulfan into
the yolk of fertile eggs before incubation; this led to a significant
reduction of endogenous PGCs. Authors demonstrated that
the sterilized embryos can be used for exogenous transfer of
PGCs resulting in high efficiencies of germline transmission
(Nakamura et al., 2008, 2010). Early experiments performed
by Trefil and colleagues provided an alternative for chemical
sterilization and concluded that repeated gamma irradiation
leads to sterilization of roosters (Trefil et al., 2006). Performing
injection of donor spermatogonial cells led to reestablishment
of male function in 50% of the roosters only 5 weeks after
injection (Trefil et al., 2006). Spermatogenesis was restored 4
weeks later in the case of PGC-transplantation compared to
spermatogonial cells; however, PGCs exhibited higher efficiency
in repopulating the seminiferous epithelium (Trefil et al., 2006,
2017). This was very beneficial in the case of transplantation of
genetically modified PGCs into mature roosters after complete
irradiation (Trefil et al., 2017). Male fertility was reestablished
after the transplantation of GFP- or mCherry-expressing PGCs
and resulted in almost 100% germline transmission (Trefil et al.,
2017). The prominent advantage of this method is the certainty
of the germline transmission and the low number of animals used
in the experiment; hence reducing time and costs for testing high
number of chimeric roosters. Although using gamma irradiation
to sterilize roosters was as efficient as in mice, recent findings
in pigs suggested that the knockout of NANOS2, like in mice,
results in specific germline ablation with preserved testicular
development (Park et al., 2017a); therefore it was suggested that
NANOS2 KO pigs may serve as a surrogate for transplantation
of donor spermatogonial cells (Park et al., 2017a). Even though
the importance of NANOS2 in the transformation of ES into
germ cells is well determined, little is known about its function
in chickens. The most important steps made in the process
of generating genetically modified chickens are summarized
in Table 1.
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GENE EDITING IN AVIAN CELL LINES

The unavailability of fully transgenic chickens for a long time
encouraged the development of alternative methods based
on in vitro cell culture systems. In vitro studies helped to
provide valuable data regarding host susceptibility to specific
pathogens and the role of specific genes during host-pathogen
interactions. DT-40 cells, an avian leukosis virus induced bursal
B- cell lymphoma line, was extensively used to investigate B
cell immunology, cell cycle regulation, gene conversion and
apoptosis (Uckun et al., 1996; Arakawa et al., 2001; Harris et al.,
2002; Arakawa and Buerstedde, 2004). A large number of DT-
40 mutants were generated to understand B cell biology and
were reviewed elsewhere (Arakawa and Buerstedde, 2004). For
instance, studies based on DT-40 cells proved that the activation-
induced cytidine deaminase (AID) triggers immunoglobulin
gene diversification by gene conversion (Buerstedde et al.,
1990; Kim et al., 1990). Furthermore, Szüts and colleagues
used mutant DT-40 cells to demonstrate the role of RAD18
in DNA repair and the completion of gene conversion (Szüts
et al., 2006). Interestingly, Schusser and colleagues replaced the
immunoglobulin light and heavy chain loci in DT-40 cells with
human immunoglobulin light and heavy chain loci; this led to
the expression of chimeric IgM with human variable regions and
chicken constant regions (Schusser et al., 2013b). The later cell
line provides a model to study the diversification of the human
variable region by gene conversion and somatic hypermutations
in chickens. Antigen receptor analysis were performed by deep
sequencing confirming that the host machinery in DT-40 cells
diversified the integrated human V genes (Leighton et al., 2015).

A different established model for examining gene function
in chickens is the Douglas Foster (DF-1) cells, an immortalized
chicken fibroblast cell line (Foster, 1998). Recent studies used
DF-1 cells to investigate host-pathogen interactions of several
avian pathogens with the avian host; this included influenza
A viruses, Newcastle disease virus, infectious bursal disease
virus and retroviruses (Huang et al., 2003; Lee et al., 2008;
Cheng et al., 2015; Hui and Leung, 2015). The overexpression
of different avian genes in DF-1 cells helped to examine their
role in the innate immunity against viral pathogens (Shao et al.,
2014; Cheng et al., 2015; Xu et al., 2015). A well-known tool
for the overexpression of various genes is the retroviral vectors
derived from the SR-A strain of Rous sarcoma virus (RCAS). The
RCAS system is known for its stable transduction in developing
chicken embryo and cell culture (Fekete and Cepko, 1993; Bell
and Brickell, 1997). Reuter and colleagues used DF-1 cells for
the overexpression of the chicken IFN-α and IFN-λ (Reuter
et al., 2014). The overexpression of IFN-λ in DF-1 cells did
not cause substantial viral resistance against influenza A viruses
H1N1, H7N1, and vesicular stomatitis virus (VSV) (Reuter
et al., 2014) which suggested that DF-1 cells have weak antiviral
activity of IFN-λ (Karpala et al., 2008). This was not the case
for IFN-α where the overexpression led to protection against
previously mentioned viruses (Reuter et al., 2014). In addition,
DF-1 cells were useful to study the function of foreign genes in
chicken including intracellular pattern recognition receptor such
as the retinoic inducible resistant gene (RIG-I). RIG-I from duck
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and goose was overexpressed in DF-1 cells and its protective
effect against influenza A viruses and infectious bursitis virus
(IBDV) was investigated (Barber et al., 2010; Sun et al., 2013;
Shao et al., 2014). The overexpression of duck RIG-I in DF-
1 cells reduced viral replication and upregulated virus-induced
apoptosis following IBVD- and H9N2 influenza virus infections
(Shao et al., 2014). Interestingly, the knockdown of the chicken
ANP32A, a nuclear protein implicated in mRNA transport and
cell death (Reilly et al., 2014), reduced the activity of different
avian influenza polymerases in DF-1 cells. This indicated that
avian influenza virus polymerases are more adapted to avian
ANP32A and proposed this gene as target for antiviral drugs
(Long et al., 2016). Furthermore, the overexpression of the
chicken GADD45β, a protein associated with cell growth control,
apoptotic cell death, and the cellular response to DNA damage
(Zazzeroni et al., 2003), helped to limit viral infection which
could be used in the future as potential treatment for avian
leukosis virus (ALV)-J infections (Zhang et al., 2016).

ALV is one of the most commonly occurring retroviruses in
chickens. It induces a variety of neoplastic lesions causing losses
in the productivity of affected chicken flocks (Fadly, 2000). Maas
and colleagues confirmed that DF-1 cells are much more suitable
than primary chicken fibroblasts (CEFs) to study host-pathogen
interactions of leukosis viruses with avian cells (Maas et al., 2006).
ALV was detected earlier in DF-1 cells and the infection was
associated with apparent cytopathogenic effect (CPE) compared
to infected-CEFs that had no apparent CPE (Maas et al., 2006).
Mutations responsible for the inhibition of ALV subgroup A
cell-entry were identified (Klucking et al., 2002) and consisted
of four base pairs insertion and one base pair substitution in
tumor virus locus A (tva) (Klucking et al., 2002). On the other
side, only one base pair substitution in the cysteine-rich domain
(CRD) of tvb receptor led to reduced susceptibility of DF-1
cells to infection with ALV subgroup B (Klucking et al., 2002;
Reinisová et al., 2008). Interestingly, subgroup J ALV (ALV-
J) uses the multimembrane-spanning cell surface protein, the
chicken Na+/H+ exchanger type 1 (NHE1), as a receptor. The
attachment of the virus to the receptor is crucial to initiate the
infection (Barnard et al., 2006). Kučerová and colleagues used
mutagenesis to introduce changes in the subgenic fragment of
NHE1 (Kučerová et al., 2013); authors described the functional
importance of tryptophan reside at position 38 (Trp38) for virus
entry (Kučerová et al., 2013).

The rapid development of gene editing tools such as
CRISPR/Cas9 rendered cell culture systems much more useful
by easily targeting different genes. Precise gene editing of the
chicken NHE1 gene using CRISPR/Cas9 system led to resistance
of DF-1 cells against ALV-J infection (Lee et al., 2017a). The
precise genome editing of NHE1 was performed via homologs
directed repair (HDR) that combined CRISPR/Cas9 vectors
with single-stranded oligodeoxynucleotide (ssODNs). Authors
confirmed previous observations mentioning that mutation
in the Trp38 are detrimental for ALV-J infection (Kučerová
et al., 2013). On the other side, non-homologous end joining
repair (NHEJ) was also established in DF-1 cells. Targeting
the tumor virus locus B gene, which serves as entry receptor
for ALV subgroup B, resulted in frameshift mutations leading

to a KO of the tvb-receptor in DF-1 cells, which conferred
resistance against ALV-B (Lee et al., 2017b). Abu-Bonsrah and
colleagues targeted a wide range of genes in DF-1 cells such as
DROSHA, DICER, MBD3, KIAA1279, CDKN1B, EZH2, HIRA,
TYRP1, STMN2, RET, and DGCR, that play a role in embryonic
development and pathogenesis of embryonic diseases (Abu-
Bonsrah et al., 2016). Efficiency of inducing mutations was
analyzed by T7E1 assay. The efficiency ranged between 20 and
65% in DF-1 cells (Abu-Bonsrah et al., 2016). Similar results
were obtained after knocking out KIAA1279- and CDKN1B-
genes in DT-40 cell-line via electroporation (Abu-Bonsrah
et al., 2016). Likewise, Bai and colleagues gave more insights
about the efficiency of CRISPR/Cas9 in DF-1 cells by studying
gene editing in the presence and the absence of puromycin
antibiotic selection (Bai et al., 2016). Three genes including
peroxisome proliferator-activated receptor-γ (PPAR-γ ), ATP
synthase epsilon subunit (ATP5E), and ovalbumin (OVA) were
targeted with CRISRP/Cas9 vectors. T7E assay indicated that
puromycin selection increased mutation rate in the previously
mentioned genes from 0.75, 0.5, and 3.0%, to 60.7, 61.3, and
47.3%, respectively (Bai et al., 2016).

GENE EDITING IN THE CHICKEN EMBRYO

The chicken embryo is a well-established model to study
developmental processes, gene functions and host-pathogen
interactions (Darnell and Schoenwolf, 2000; Chesnutt and
Niswander, 2004; Schecterson et al., 2012). Over the last decades,
different methods were established to genetically manipulate
chicken embryos including electroporation of foreign DNA
constructs, transduction with retroviruses and recently the
combination of previous known methods with CRISPR/Cas9
system (Gandhi et al., 2017).

For example, Luo and colleagues established a protocol based
on ex ovo electroporation of 3.5 days old chicken embryos for
the overexpression of Cad7 and eGFP (Luo et al., 2012). This
method provided accessibility of different embryonic parts for
the electroporation, which are not easily reachable when the
embryo is still inside the egg (Luo et al., 2012). Similarly, in
ovo electroporation of the embryonic auditory brainstem was
previously established (Lu et al., 2017). Plasmids of interest
were successfully integrated into the nucleus magnocellularis
and nucleus laminaris. Authors indicated the possibility of drug
inducible gene expression which was confirmed in the presence
of doxycycline (Lu et al., 2017).

A well-established tool for foreign DNA integration is the
RCAS-system. Using RCAS in the chicken embryo model
indicated that vector proteins and inserted transgenes were
mainly detectable in the skin, blood vessels and heart (Sato et al.,
2002; Kothlow et al., 2010). Several studies deduced the efficacy
of RCAS-system in the case of foreign DNA integration and gene
overexpression in chicken embryos (Bell and Brickell, 1997; Sato
et al., 2002; Kothlow et al., 2010; Schusser et al., 2011; Reuter et al.,
2014). This system is very useful to study the specific function of
relevant genes for the innate immunity, particularly during the
interaction with influenza A viruses. RCAS vectors expressing
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various Mx gene isoforms were used for transduction of CEFs.
Four days post-transfection, CEFs expressing the retrovirally
transduced Mx proteins were injected in the yolk sac of 3 days-
old fertilized eggs (Schusser et al., 2011). The overexpression
of different Mx isoforms in embryonated eggs did not protect
against influenza A virus infection, which was in agreement with
the results obtained from chicken fibroblasts (Schusser et al.,
2011). In addition, the role of IFN-λ was previously investigated
by the generation of mosaic chicken embryos overexpressing
chicken IFN-λ (Reuter et al., 2014). Generated embryos exhibited
lower viral titers upon challenge with influenza A viruses, NDV
Herts-33, or IBV M-41 via the allantoic cavity by at least four
log10 units compared to inoculated eggs with empty RCAS vector
(Reuter et al., 2014). This clearly demonstrated the protective
effect of chicken IFN-λ against different viruses (Reuter et al.,
2014). Although the IFN-λ overexpression had detrimental
effects at early hours post hatch (Reuter et al., 2014), RCAS system
was shown to be successful for maintaining transgene expression
after hatch (Kothlow et al., 2010).

A similar system based on gene transfer mediated by
lentiviral vectors was described in embryonated eggs (Hen
et al., 2012). Usefulness of lentiviral vectors in developmental
biology was previously reviewed elsewhere (Stern, 2004).
Lentiviral vectors of feline immunodeficiency virus origin were
injected into chorioallantoic membrane (CAM) of 11 days old
chicken embryos. The injected lentiviral vectors carried yellow
fluorescent protein (YFP) or recombinant alpha-melanocyte-
stimulating hormone (α-MSH) genes and they were expressed
under the cytomegalovirus (CMV) promoter (Hen et al., 2012).
High efficiency of transduction was observed in the liver, which
implied that this model could be useful for the study of hormones
and enzymes.

The application of gene editing technologies via in ovo
electroporation of chicken embryos seems to be efficient (Wilson
and Stoeckli, 2012). Wilson and Stoeckli used miRNA-based
plasmids for knocking down gene expression in the chicken
neural tube (Wilson and Stoeckli, 2012). Additionally, Ghandi
and colleagues used ex ovo electroporation to knockout Pax7 and
Sox10, a key transcription factors in the neural crest, leading
to loss of their proteins and transcripts (Gandhi et al., 2017).
Overall, collected data indicated that in ovo gene manipulation
of the chicken embryo could be used as a model for the study of
different embryonic developmental stages (Gandhi et al., 2017;
Lu et al., 2017). High targeting efficiency and the simplicity of
CRISPR/Cas9 make it now possible to knockout genes in specific
tissues/organs of the developing chicken embryo. This allows the
study the gene function during development without generating
fully gene edited chicken lines.

GENERATION OF GENETICALLY
MODIFIED CHICKENS

The generation of genetically modified chickens has wide
applications in agricultural and biomedical research (Sang, 1994;
Ivarie, 2003; Mozdziak and Petitte, 2004). Benefiting from gene
editing technologies and germline transmission of PGCs, new

knowledge was brought to light about specific gene functions
(Schusser et al., 2013a, 2016), resistant for infectious diseases
(Lyall et al., 2011) and the possible preservation of endangered
species including the Houbara Bastard (Kang et al., 2008;
Wernery et al., 2010; Van De Lavoir et al., 2012). Different
methods used for gene editing in chickens and the generated
chicken lines were stated earlier in this review. In addition, the
worldwide availability of genetically modified chicken lines is
summarized in Table 2.

Specific gene editing in PGCs was improved using TALEN
and CRISPR/Cas9 via HDR (Dimitrov et al., 2016; Oishi et al.,
2016; Taylor et al., 2017). Using CRISPR/Cas9, the efficiency
of gene targeting was increased remarkably in PGCs (Dimitrov
et al., 2016). In order to introduce a loxP site into the
immunoglobulin heavy chain locus, Dimitrov and colleagues
combined a targeting vector having a total of 2 kb homology
arms with CRISPR/Cas9 system targeting the upstream region
of the single immunoglobulin heavy chain variable region (VH)
in PGCs (Dimitrov et al., 2016). Interestingly, all selected drug
resistant PGC clones contained the correct targeting event and
the germline transmission rate varied between 0 and 100%
depending on the used PGC line (Dimitrov et al., 2016).

Targeting the DDX4 locus, located on the Z chromosome,
showed possible role of this gene in the formation of the germ
cell lineage (Taylor et al., 2017). TargetedDDX4 KOwas achieved
with TALEN in combination with a targeting vector. Authors
reported a germline transmission rate of 6% from the founder
birds (Taylor et al., 2017). G1 female chicks were hemizygous
mutant for DDX4, they did not lay eggs and had no yellow or
white follicles in the ovaries. Surprisingly this was not the case in
DDX4 knockout female mice (Tanaka et al., 2000).

Overall, a significant progress was made in the last decade in
producing and using genetically modified chickens to understand
developmental biology, immunology, host-pathogen interaction,
reproductive biology and physiology. However, efforts to
generate resistant chickens for specific pathogens are still at
the beginning, probably due to the lack of specific gene targets
responsible for acquiring resistance against specific pathogens.
This was not the case in other livestock including pigs which were
genetically edited to gain resistance against porcine reproductive
and respiratory syndrome virus (PRRSV) (Whitworth et al., 2015;
Burkard et al., 2017). Using NHEJ, Whitworth and colleagues
generated KO pigs with premature stop codon in exon 3 of the
viral receptor CD163 (Whitworth et al., 2015). CD163-KO pigs
challenged with PRRSV did not exhibit any clinical symptoms,
lung pathology, viremia, or antibody response. In addition,
Burckard and colleagues generated an exon 7 deletion in CD163
using two sgRNAs to induce the excision of the exon (Burkard
et al., 2017). Pigs carrying the mutation were healthy and kept
the main biological functions of the protein while macrophages
isolated from the CD163 KO animals indicated an inhibition of
the viral infection (Burkard et al., 2017).

So far, only few reports are available about the resistance of
gene-edited chickens for specific pathogens. Lyall and colleagues
generated transgenic chickens expressing short-hairpin RNA
intended to function as a decoy that interacts and blocks
influenza A virus polymerase (Lyall et al., 2011). Although birds
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TABLE 2 | Worldwide availability of genetically modified chickens.

Transgenic chicken Affiliation of the research group Country References

Transgenic chickens carrying a benign

defective subgroup A leukosis virus

Avian Disease and Oncology Laboratory, USDA

Agriculture Research Service

USA Salter and Crittenden, 1989;

Cao et al., 2015

Transgenic chickens expressing

active β-lactamase in the egg white

AviGenics, Inc., Georgia BioBusiness Center, Athens USA Harvey et al., 2002

eGFP expressing chickens The Roslin Institute and Royal Dick School of Veterinary

Studies, University of Edinburgh

UK McGrew et al., 2004

Department of Physiology, Catholic University of Daegu

School of Medicine

South Korea Kwon et al., 2004

University of Utah School of Medicine, Department of

Neurobiology, and Anatomy

USA Chapman et al., 2005

Crystal Bioscience/ Ligand Pharmaceuticals Inc USA Van De Lavoir et al., 2006

Technical University Munich, School of Life Sciences

Weihenstephan; Department of Animal Sciences,

Reproductive Biotechnology

Germany Trefil et al., 2017

Hens specifically expressing

therapeutic proteins in the oviduct

The Roslin Institute and Royal Dick School of Veterinary

Studies, University of Edinburgh

UK Lillico et al., 2007

Production of transgenic chickens

expressing a tetracycline-inducible

eGFP gene

Department of Physiology, Catholic University of Daegu

School of Medicine, Daegu

South Korea Kwon et al., 2011

Short-hairpin RNA against Influenza

expressing chickens

Department of Veterinary Medicine, University of

Cambridge, Madingley Road, Cambridge

UK Lyall et al., 2011

Transgenic chickens expressing

human extracellular superoxide

dismutase

Laboratory of Dermatology-immunology, The Catholic

University of Korea

South Korea Byun et al., 2013

Immunoglobulin heavy chain (JH) KO

chickens

Crystal Bioscience/ Ligand Pharmaceuticals Inc USA Schusser et al., 2013a

Transgenic chickens expressing the

human urokinase type-plasminogen

activator

Department of Animal Biotechnology, Bio-Organ

Research Center, Konkuk University

South Korea Lee et al., 2013

CSF1R-receptor reporter chickens The Roslin Institute and Royal Dick School of Veterinary

Studies, University of Edinburgh

UK Balic et al., 2014

Immunoglobulin light chain (IgL) KO

chickens

Crystal Bioscience/Ligand Pharmaceuticals Inc USA Schusser et al., 2016

Cre-recombinase expressing

chickens

Crystal Bioscience/Ligand Pharmaceuticals Inc USA Leighton et al., 2016

Ovalbumin and Ovomucoid KO

chickens

Biomedical Research Institute, National Institute of

Advanced Industrial Science and Technology and Animal

Breeding and Reproduction Research Division

Japan Oishi et al., 2016

Aromatase overexpressing chickens Department of Anatomy and Developmental Biology,

Monash University, Clayton

Australia Lambeth et al., 2016b

mCherry expressing chickens Technical University Munich, School of Life Sciences

Weihenstephan, Department of Animal Sciences,

Reproductive Biotechnology

Germany Trefil et al., 2017

BIOPHARM, Research Institute of Biopharmacy and

Veterinary Drugs and Institute of Molecular Genetics of

the Czech Academy of Sciences

Czech Republic

DDX4 KO chickens The Roslin Institute and Royal Dick School of Veterinary

Studies, University of Edinburgh

UK Taylor et al., 2017

3D8 single chain variable fragment

(scFv) expressing chickens

Animal Biotechnology Division, National Institute of

Animal Science and Department of Avian Disease

Laboratory, College of Veterinary Medicine

South Korea June Byun et al., 2017

Chickens with humanized

immunoglobulin genes

Crystal Bioscience/ Ligand Pharmaceuticals Inc USA Ching et al., 2018

Chickens overexpressing human

IFN-β

Biomedical Research Institute, National Institute of

Advanced Industrial Science and Technology

Japan Oishi et al., 2018

were not resistant to initial infection, viral transmission was
prevented (Lyall et al., 2011). A different study demonstrated
the possibility to suppress influenza A virus transmission

in transgenic birds expressing the 3D8 single chain variable
fragment (scFv), a gene that interacts with viral genome leading
to suppression of viral shedding (June Byun et al., 2017).
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FURTHER APPLICATIONS IN BIOMEDICAL
RESEARCH

The chicken became a very interesting model in biomedical
research. Different temporal patterns of bright light were used
to study the effect on myopia in chickens. Lan and colleagues
found that intermittent episodes of light suppress myopia in
chickens more than continuous bright light (Lan et al., 2014).
Although the obtained results may not be directly translated
into humans (Lan et al., 2014), future applications in optical
research seem to be promising. In addition, the chicken was used
as a model for xenotransplantation by injection of human stem
cells into small induced lesions in the chicken embryo neural
tube (Boulland et al., 2010). Authors stated that the reduced
immune response during early embryonic development helps
to study xenotransplantation without the risk of early immune
rejection (Boulland et al., 2010). The chicken was also used
as a human multiple myeloma xenograft model (Martowicz
et al., 2015); it was suggested that this model may offer novel
therapeutic compounds targeting survival and proliferation of
multiple myeloma cells. Using the chicken as a bioreactor
may greatly benefit human health by providing alternative
therapeutic approaches (Zhu et al., 2005). A promising approach
using chickens for the production of human antibodies is the
replacement of the chicken immunoglobulin variable regions by
human V regions and synthetic pseudogene arrays in order to
produce affinity matured human antibodies in chickens (Ching
et al., 2018).The OmniChicken by Ligand Pharmaceuticals Inc.
is a worldwide unique platform to produce human monoclonal
antibodies from chickens making use of the phylogenetic
difference between mammals and birds. The purification of
overexpressed human antibodies from the chicken egg seems
also to be a valid application which was reviewed elsewhere
(Flemming, 2005). A very recent study conducted by Oishi
and colleagues demonstrated the ability of integrating human
interferon beta (hIFN-β) into the chicken ovalbumin locus in
order to produce hIFN-β in egg white (Oishi et al., 2018). Authors
demonstrated the ability of producing foreign proteins in eggs
which would have industrial and therapeutic applications.

FUTURE PERSPECTIVES

The role of host genes in the susceptibility of chickens to different
pathogens was mostly investigated in vitro. Preliminary in vitro
investigations provide solid information about the role of these
genes prior to the generation of fully gene edited chickens. New

technologies including CRISPR/Cas9 make the process of gene
editing easy and highly efficient in contrast to the well-established
process of homologs recombination. Although gene editing in
mammals, particularly mice and pigs, is vastly advanced, gene
editing in chickens is entering the golden age. For instance the
generation of Cas9-expressing pigs will provide a powerful tool
for the study of biological processes (Wang et al., 2017); while this
was not done yet in chickens, it seems to be beneficial and may be
used in the future to dissect unknown gene functions faster and
more easily.

Therapeutic applications using humanmonoclonal antibodies
produced from humanized chickens may be beneficial over in
vitro approaches lacking affinity maturation (Ching et al., 2018).
In addition, production of antibodies in chicken eggs represents
an economic and stress-free method for the production of
specific antibodies (Amro et al., 2018). Using chicken eggs to
manufacture specific proteins in eggs seems interesting (Lillico
et al., 2005; Petitte and Mozdziak, 2007) especially since it
may allow improvement of digestibility of sugar complexes in
feedstuffs; however, this application may be thwarted by critics
that claim the inedibility of the product.

Several advantages are provided by newly invented gene
editing technologies including the simplicity of design and
application combined with high efficiency (Chira et al., 2017).
Understanding the host cell behavior during host-pathogen
interactions may help targeting pathogen specific receptors and
viral cellular transport (Heaton et al., 2016). The determination
of new target genes associated with disease susceptibility
should fill the research gap and open the door for new
therapeutical approaches. Although the debate about using
genetically modified animals in food production will continue
to be stimulated, we may obtain new breeds of chickens in the
future that are resistant for specific pathogens. We speculate that
spending more efforts connecting gene editing technologies with
the prevention of infectious diseases will change the way we use
to fight pathogens and will probably improve the animal welfare.
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