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Abstract: Rain properties vary spatially and temporally for several reasons. In particular, rain types
(convective and stratiform) affect the rain drop size distribution (DSD). It has also been established
that local weather conditions are influenced by large-scale circulations. However, the effect of these
circulations on rain microstructures has not been sufficiently addressed. Based on DSD measurements
from 16 disdrometers located in Lausanne, Switzerland, we present evidence that rain DSD differs among
general weather patterns (GWLs). GWLs were successfully linked to significant variations in the rain
microstructure characterized by the most important rain properties: rain intensity (R), mass weighted rain
drop diameter (Dm), and rain drop concentration (N), as well as Z = ARb parameters. Our results highlight
the potential to improve radar-based estimations of rain intensity, which is crucial for several hydrological
and environmental applications.

Keywords: synoptic weather types; drop size distribution (DSD); microstructure of rain; disdrometer;
radar reflectivity–rain rate relationship

1. Introduction

Ground measurements of the rain drop size distribution (DSD) have attracted scientists’ attention
for a variety of reasons. (1) Variations in the rain DSD influence the relationship between the radar
reflectivity factor (Z) and the rainfall intensity (R) [1]. An accurate estimation of R is essential for
important applications in hydrology, water management, and flood protection; (2) Rain kinetic energy
depends on rain DSD and influences soil erosion in different scales [2,3]; (3) Rain drops have the
potential to wash particulate pollutants off impermeable surfaces, affecting the ecology of urban
waterways [4]; (4) Rainfall distorts telecommunication signals and radio propagation, especially
at high frequencies [5], all of which are influenced by rain DSD [6]; (5) Specific methods used to
separate rain type (convective and stratiform) are based on rain DSD [7,8]. Consequently, different
tools and methods have been developed to detect rain DSD and to improve our understanding of its
underlying processes.

Automated disdrometers measure rain DSD on the ground with high temporal resolution.
These measurements are used to detect variations in the rain DSD on different temporal and local
scales. Rain DSD parameters may vary at a scale of a few meters, and the small sampling areas of
disdrometers contribute to this variation [9]. The rain DSD also varies within the area of one weather
radar pixel (1 km2) [10]. The detected spatial variation increases with the increasing distance between
disdrometers [11]. It exists even when decreasing the temporal resolution [12]. DSD parameter
variation has also been confirmed on regional [13] and global [14] scales. Seasonality, rain type, climate
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regime, and their combinations also result in different rain DSD [15–17]. The rain DSD even differs
from event to event [18].

Rain DSD variation is linked to the microphysical processes of rain formation such as coalescence [19],
fragmentation [19,20], evaporation [19,21,22], and size sorting of rain drops by wind drafts [23]. Also conditions
such as the height of freezing levels, the boundary layer relative humidity [24], and aerosols’ abundance and
properties [25,26] influence rain DSD.

Rain DSD evolves under the complex micro- and mesoscale conditions. For example, topography
influences the interaction between rain forming processes in orographic rain [27–29]. In addition, rain DSD
varies within the stages of squall lines [16,30]. It also varies in convective versus stratiform rain, continental
versus maritime rain, and warm versus cold rain [24,31,32]. Munchak et al. [24] explained that convective
rain is associated with strong updrafts where cloud tops are above the freezing level, and both warm and
cold rain forming processes occur. In contrast, updraft in stratiform rain is limited, and cold processes
prevail. Rain DSD observations confirm the distinct microstructure between both rain types, with larger
drops and higher intensities in convective rain [8,13,33,34]. Since they are based on prevailing flow
directions and source regions of air masses govern several of the aforementioned influencing factors at
the local scale, we hypothesize that large scale weather conditions may help to improve our knowledge
about and thus modeling of parameters related to rain DSD.

Weather type classification has proven to be useful in understanding climatic processes and
the link between the variability of local weather conditions and atmospheric circulations [35,36].
Weather types represent the atmospheric conditions that prevail over a large area and remain relatively
stable for several days (a minimum of three days) [37]. These atmospheric conditions include the
location of sea-level, semi-permanent pressure centers, the position and paths of frontal zones and the
existence of cyclonic or anticyclonic circulation types [38]. Methods have been developed and used
to classify weather types into patterns and groups [35]. In this paper, the classification of weather
types by Hess and Brezowsky [39] is used. Their classes are called general weather patterns and are
abbreviated as GWL, which is derived from the German word “Großwetterlage.” In this classification,
each day is assigned to one of 29 GWL classes or a transitional type, and each GWL lasts three days or
more [40]. The relationship between large-scale weather types and local weather phenomena has been
verified previously, e.g., some weather types have a major influence on the generation of extremely
hot days [41]. Moreover, GWLs influence stream flows [42], floods [43,44], forest fires [45], and even
debris-flow events [46]. More directly, GWLs have a substantial influence on precipitation totals,
particularly on their extreme values [47–49] and even seasonal extremes [50]. Consequently, because
changes in weather type frequencies relate to changes in precipitation amounts and extremes [51],
a better understanding of the impact of large-scale circulations on intense (sub-)daily precipitation
is required [52].

Synoptic weather types provide a combination of meteorological factors that influence the rain DSD.
Fernandez-Raga et al. [53] provided convincing evidence that weather patterns with northern components
are associated with smaller rain drops in Leon, Spain. On the other hand, western and southwestern
components carry humidity from the Atlantic and have larger drops. Hachani et al. [29] verified the
different rain DSD characteristics and Z–R relationship between different factors including weather patterns,
seasons, location, and rain fall type in the Cévennes–Vivarais region, France. They also investigated the
combined effects of weather patterns and locations. However, the combined effect of rain type and weather
patterns on the rain DSD has not yet been addressed.

Based on these outlined knowledge gaps, we address two general questions here.

(I) Does the rain microstructure differ between general weather patterns in both convective and
stratiform rain types?

(II) How much does this influence the radar reflectivity and rain rate, i.e., the Z–R relation?
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2. Materials and Methods

2.1. Data Sources

We based our analyses on a published dataset collected by 16 “OTT PARSIVEL” disdrometers
spanning the period from December 2008 through September 2010 in Lausanne, Switzerland (the EPFL-LTE
campaign) [54]. The disdrometers were deployed over an area of less than 1 km2. The aim of the original
campaign was to assess the spatial variability within the area covered by one pixel of weather radar. The dataset
has temporal resolutions of 20 s and 30 s. A detailed map of the disdrometers locations, a description of the
campaign, data structure, and the measured parameters is given in Jaffrain et al. [10,11]. For the purpose of
this paper, when comparing properties between GWLs, all the intervals were aggregated to a one-minute
temporal resolution. Each minute interval measured by a device was considered to be a realization of the rain
properties of the associated GWL, which means that up to 16 simultaneous realizations of rain properties were
available for each minute of rain. It is important to note that the 16 disdrometers were not deployed at the
same time, and not all of them measured for the entire 22-month period. This resulted in variations in the
total rain duration and amount measured across the devices. The accumulated rain amount and duration
measured by each device along with the start and end dates of the measurements are provided in Table S1.

There was also a difference between the total mean amount of rain recorded over the network
that is reported in the published dataset (1275 mm) [54] and the total mean reported in our analysis
(1027 mm). This is a result of the filtering procedures, which are explained in Section 2.5.

The German Meteorological Service (DWD) performs a daily classification of the general weather
patterns. This classification is based on Hess and Brezowsky [39] and includes 29 GWL classes and
1 transitional class. The daily records of this classification are published online [55–57]. The 29 GWLs
can be aggregated according to the patterns of the air parcel movements (zonal, meridional, or mixed),
the rotation direction (cyclonic or anti-cyclonic), and the flow direction. Table 1 lists all the GWLs and
the corresponding five major classes of flow directions [50]. Each GWL is associated to one of these five
classes, which indicates the origin of the moving air parcels, as derived from the wind flow direction
at upper levels (500 hPa). These five classes are referred to as the flow directions throughout the text.

2.2. Measurement Device

The “OTT PARSIVEL” disdrometer is an optical, laser-based device that measures the size and velocity
of hydrometeors. It counts the number of hydrometeors that fall in 32 diameter ranges and 32 velocity
ranges. The first two diameter ranges are not used by the disdrometer and are always empty leaving an
actual detection range of 0.31–24.5 mm. The 32 velocity ranges extend from 0.05 m·s−1 to 20.8 m·s−1. A list
of the diameter ranges is available in [58]. The disdrometer uses a horizontal laser sheet with a detection
area of 54 cm2 (180 mm× 30 mm). Whenever a hydrometeor passes through this sheet, the laser signal is
reduced and the diameter is calculated according to this reduction. The velocity is derived from the size
of the hydrometeor and the time it takes to pass the laser detection sheet. In addition, OTT PARSIVEL
disdrometers provide an automated separation for the precipitation type based on the combination of the
size and velocity values in each interval. A more detailed description of the OTT PARSIVEL device is
provided by Löffler-Mang and Joss [59].

The disdrometer raw output was used in this study to obtain the values of the rain intensity
R [mm·h−1], reflectivity Z [mm6·m−3 and dBZ], total drop concentration N [m−3], and mass weighted
diameter Dm [mm]. Equations (A1)–(A5) [16,60,61] were used to obtain these values (Appendix A).
The parameters, R, Dm, and N, best illustrate the distinct physical rain properties for both rain types.

2.3. Separation of Convective and Stratiform Rain Intervals

Several methods to separate convective and stratiform rain are available in the literature. These methods
are based on instrumental data, e.g., from radar and wind profilers. Some methods have also suggested
the use of rain DSD parameters [7,8]. Here the separation of convective and stratiform rain intervals
follows the simple procedure proposed by Bringi et al. [15], which has already been adopted in several



Remote Sens. 2018, 10, 811 4 of 23

studies [18,62]. Rain is regarded as convective if R is larger than 10 mm·h−1 or if the standard deviation of
the rain intensities over five consecutive two-minute intervals is larger than 1.5 mm·h−1; otherwise, the rain
interval is considered to be stratiform.

Table 1. General weather patterns (GWLs) according to Hess and Brezowsky [39] and their classification
based on the flow direction [50]. This table also includes the accumulated rain duration over all devices
for each GWL in both rain types. Gray cells indicate GWLs with small sample sizes, which are not
further considered in the analyses.

Flow Direction GWL
Accumulated Duration [min]
Convective Stratiform

W:
Westerly

WA Anticyclonic Westerly 2 441
WZ Cyclonic Westerly 12,101 79,492
WS South-Shifted Westerly 1288 35,715
WW Maritime Westerly 3454 30,797

S:
Southerly

SWA Anticyclonic Southwesterly 623 4404
SA Anticyclonic Southerly 0 0

SEA Anticyclonic Southeasterly 9 4954
SWZ Cyclonic Southwesterly 15,129 83,369
SZ Cyclonic Southerly 5 296
TB Low over the British Isles 1001 7703

TRW Trough over Western Europe 8979 137,716
SEZ Cyclonic Southeasterly 37 11,670

NW–N:
Northwesterly, Northerly

NWA Anticyclonic Northwesterly 0 121
NA Anticyclonic Northerly 0 0

HNA Icelandic High, Ridge C.E. * 0 0
HB High over the British Isles 1 883

NWZ Cyclonic Northwesterly 1714 20,052
NZ Cyclonic Northerly 1507 4573

HNZ Icelandic High, Trough C.E. 1076 13,672
TRM Trough over C.E. 5967 32,031

CE:
Main high/low pressure area over

Central Europe (no specific
prevailing direction)

HM High over C.E. 2673 6464

TM Low (Cut-Off) over C.E. 2157 13,966
BM Ridge across C.E. 3358 18,977

NE–E:
Northeasterly, Easterly

NEA Anticyclonic Northeasterly 0 977
HFA Scandinavian High, Ridge C.E. 696 7734

HNFA High Scandinavia-Iceland, Ridge C.E. 0 0
NEZ Cyclonic Northeasterly 129 3711
HFZ Scandinavian High, Trough C.E. 0 6756

HNFZ High Scandinavia-Iceland, Trough C.E. 924 9361
- U Transitional 0 0

* Central Europe (C.E.).

2.4. Data Filtering

Error sources and shortcomings of disdrometers in general and OTT PARSIVEL disdrometers
in particular include: wind effects, unstable laser source, splashing effect, drops falling through
the edges of the detection area (margin fallers), non-rain particles such as insects and flying seeds,
drops falling simultaneously through the device detection area (masking effect), and the small sampling
area [9,63,64]. To minimize these errors, we adopted the procedure suggested and explained in detail
by Friedrich et al. [64], composed of the following steps in the presented order.

1. Intervals characterized by high wind speed were completely removed from the dataset. These intervals
were indicated by the existence of large drops D > 5 mm with a low falling speed V < 1 m·s−1.

2. All particles larger than 8 mm in diameter were not considered to be rain and filtered out.
3. Particles with velocities higher than 160% of the associated terminal velocity for the diameter

class center as given by Atlas et al. [65] were filtered out (margin fallers).
4. Small particles (D < 2 mm) with low velocity (<40% of the terminal velocity) were filtered out (splashing).
5. Large particles (D > 5 mm) with low velocity (<40% of the terminal velocity) were filtered out (hail).
6. For particles with a diameter between 2 mm and 5 mm, a fall velocity threshold was established

based on the average terminal velocity of rain and graupel for each diameter bin. Then, all particles
with a fall velocity below this threshold were filtered out.
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In addition, we excluded:

1. Intervals associated with a damaged laser signal as reported in the raw output of the disdrometers;
2. Intervals associated with snow, hail, frozen rain, or mixed precipitation as reported by the disdrometer;
3. Intervals with rain intensities lower than 0.1 mm·h−1;
4. Intervals where three or less diameter bins recorded rain drops to ensure the existence of a drop

size distribution; and
5. Intervals of rain that occurred in the transitional GWL U.

In total, the dataset was composed of rain DSD records in 25 GWLs, after excluding the transitional
GWL U, and four other GWLs for which no rain was recorded (Table 1). These 25 GWLs form the base
of the results in Section 3.1. However, when discriminating the rain type into convective and stratiform,
the inhomogeneous frequency of GWLs, as well as the variation in the rain duration and rain amount
per GWL, resulted in a varying number of rain intervals detected for each GWL–rain type combination.
Some GWLs had only a small number of rain intervals per rain type. Therefore, to compare the rain
microstructure (Section 3.2) and the Z–R parameters (Section 3.3), GWLs that had less than 500 min of
accumulated convective duration or 1000 min of accumulated stratiform rain over all 16 devices (shaded
cells in Table 1) were excluded from the analysis in these sections. This reduced the number of GWLs to
20 for stratiform rain and 16 for convective rain. The lower threshold in the case of convective rain was
based on the generally lower duration of detected convective rain per GWL.

2.5. Assessing the Performance of the Z–R Relation

Rain intensity R [mm·h−1] retrieval from weather radars is generally based on the Z relation:

Z = A× Rb, (1)

where Z [mm6·m−3] is usually measured directly by the weather radar, while A and b are determined
for each rain type separately. Then, Equation (1) is used to determine R. Here, conversely, the values of
R and Z were calculated for each interval from the raw output of the disdrometers, as explained in
Appendix A. Then, a linear regression of log(Z) and R was used to determine the values of A and b
using two models. The general Z–R model takes only rain type into account, resulting in one value of
A and one value of b for each rain type, convective and stratiform. In the GWL Z–R model, A and b
are specifically determined for each combination of GWL and rain type.

To evaluate the performance of the two models, the mean absolute error (MAE) of the rain
intensity (R) estimations of each model was used as recommended by Willmott and Matsuura [66].
The R values based on Equation (A1) were considered to be the accurate observed values, while the
model outputs of R were considered to be the prediction. MAE is given by

MAE = n−1 ∑n
1 |ei|, (2)

where n is the number of observations, ei is the model prediction error: ei = Vmi − Voi, Vmi is the
model prediction value, Voi is the observed value, and i is the observation index.

The relative error was also used to assess the overestimation (or underestimation) of the total rain
amount by both models for the entire dataset, as well as for each GWL-rain type combination:

RE = ∑ ei/ ∑ Voi. (3)

To obtain a robust evaluation of both models, we separated the dataset into a training subset (2/3 of the
rain intervals in each GWL/rain type combination chosen randomly) and a testing subset (the remaining
1/3 of the dataset). Both models were built based on the training subset, then evaluated by calculating
MAE and RE from the testing subset. The whole process was repeated 100 times and the reported values in
Section 3.3 represent the mean of these repetitions.
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The 16 disdrometers were deployed within 1 km2, which allows comparisons of the spatial
variation of A and b at this scale versus their GWL-specific variations. Therefore, the A and b values
were determined for each device-rain type combination and then were compared with the A and b
values of the GWL Z–R model.

2.6. Statistical Tests

For the parameters R, Dm, and N, a normality check was performed by means of visual inspections
(QQ plots and histograms) and a Shapiro–Wilk normality test. Because all parameters were non-normally
distributed (p-value of Shapiro–Wilk test < 0.05), non-parametric tests were chosen. To compare more
than two groups, the Kruskal–Wallis test was performed to detect the existence of significantly different
parameters (p-value < 0.05) between GWLs and a pairwise Wilcoxon test was performed to check the
significance of the differences between each pair of GWLs. These steps were performed for each rain type
separately. A similar procedure was followed when comparing these parameters between flow directions
(cf. Table 1).

To compare the spatial variability of the Z–R parameters (A and b) against their GWL variability,
the A and b values were calculated for each device and then for each GWL. A normality check was
performed for the A and b values. An F-test was used for the normally distributed parameters (only A in
the case of stratiform rain), and Levene’s test was used for the non-normally distributed parameters.
The normality check and the variance comparisons were performed separately for each rain type.

Data filtering, analyses, and plots were performed using the statistical computing environment R [67],
the integrated development environment RStudio [68], and the data visualization package ggplot2 [69].

3. Results

3.1. Variation in Rain Duration, Amount and Rates with Rain Type and GWL

This section provides an overview of the rain records in general and within each rain type and GWL.
We aim at demonstrating the variation in convective rain proportions between GWLs, which emphasizes
the importance of separation by rain type for comparing rain microstructure among GWLs (see Section 4.2).

After filtering, a total of 598,665 one-minute DSD samples (42% of the total dataset) were included
in the analyses. The total detected rain amount was 16,439 mm accumulated over the 16 disdrometers,
with a median rain intensity of 0.79 mm·h−1 (standard deviation (sd): 3.37 mm·h−1). Convective rain
covered on average only 11% of the detected rain duration (Figure 1a). However, the amount of rain in
the convective intervals represented approximately 40% of the total detected rain (Figure 1b). This is
due to the large difference in the rain intensities between the stratiform and convective rain (medians
of 0.69 mm·h−1 (sd: 1.1 mm·h−1) and 4.49 mm·h−1 (sd: 8.5 mm·h−1), respectively) (Figure 1c).

In general, the proportions of the convective rain duration and the rain amount for convective
and stratiform rain were similar for the 16 disdrometers, despite the differences in the accumulated
rain durations and amounts detected by the 16 devices (as explained in Section 2.1).

However, the convective rain was not distributed evenly across GWLs; variations in the proportion
of convective rain were detected both in the rain duration and the rain amount (Figure 2b,c). While some
GWLs recorded higher than the average (11%) proportion of convective rain duration (e.g., HM, NZ, TRM,
and TM), less than the average convective rain duration was measured in others (e.g., WS, NEZ, SEZ,
and TRW) (Figure 2b). The variation between GWLs was higher regarding the rain amount (Figure 2c),
with convective rain representing more than 65% of the rain amount for HM and NZ but 17% of WS and
less than 2% for SEZ and HFZ.
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Figure 1. (a) A bar plot of accumulated rain duration in hours; (b) a bar plot of accumulated rain amount
in mm; and (c) a boxplot of rain intensities in mm·h−1 for each rain type at Lausanne, Switzerland
(December 2008–September 2010). Error bars in panels (a) and (b) are based on the standard error across
devices. In panel (c) outliers are not shown, medians (means) are represented by the horizontal thick
lines (black points), and the lower and upper hinges represent the first and third quartiles, while the
upper (lower) whisker extends from the upper (lower) hinge to the largest (smallest) value no further
than 1.5 times the interquartile range from the hinge [69].

Visual inspection of the convective rain proportions did not reveal differences between cyclonic
and anticyclonic GWLs in duration or rain amount. Conversely, the flow direction revealed small
convective rain duration proportions in the NE–E (6%) compared to higher percentages in the other
flow directions, especially CE (17%) (Figure 3a). NE–E circulations were also associated with the
smallest proportion of convective rain amount (31%) compared to the four other flow directions
(37–51%) (Figure 3b). This was confirmed by comparing individual GWLs; the highest proportion of
convective rain duration and amount occurred in HM, which belongs to GWLs with no specific flow
direction CE, while no convective rain was recorded in some NE–E circulations such as HFZ and NEA
(Figure 2b,c).

3.2. Rain Microstructure

3.2.1. Drop Size Distribution (DSD)

GWL-specific rain DSDs differed from each other and from the overall mean rain DSD. This is
illustrated for both rain types by comparing the mean rain concentrations for each 1 mm of the diameter
range (Figure 4). To aid in the interpretation, the plot in Figure 4 contains a selection of GWLs that
demonstrated a distinct DSD shape.

In the case of stratiform rain (Figure 4a), most GWL-averaged concentrations followed the overall
average concentration shape and fell within ±400 drops around the average rain concentration per
diameter range. The variance was larger near the peak concentration, which corresponds to a drop
size of 0.69 mm, and became smaller as the rain drop diameter diverged from the peak. The highest
peaks of the stratiform rain concentration were associated with the GWLs SWA, NZ, and TM. SEZ had
the lowest peak. The concentration curve had a broader peak shifted to the left side (a high number of
small drops) for HNFZ, while HFA was slightly shifted to the right and recorded the highest number
of drops larger than 1.5 mm in diameter. These differences led to significant differences between GWLs
when assessing the rain microstructure parameters (see Section 3.2.2).
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Figure 2. (a) Bar plots of the accumulated rain duration in hours; (b) proportion of the convective rain
duration averaged over the 16 devices for each GWL (see Table 1); and (c) proportion of the convective
rain amount averaged over the 16 devices for each GWL. Error bars are based on the standard error
across devices. GWLs are grouped by flow direction and within each flow direction ordered by
accumulated rain duration over all disdrometers. Dashed lines represent the overall proportion of the
convective rain duration in panel (b) and the convective rain amount in panel (c).
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Figure 3. Proportion of convective rain (a) duration and (b) amount averaged over the 16 devices
within each flow direction (cf. Table 1). Error bars are based on the standard error. Dashed lines
represent the overall proportion of the convective rain duration and amount.

In contrast to the pronounced peak in stratiform rain DSD, convective rain showed a wider
range of high concentrations (0.69–0.94 mm) (Figure 4b). The curves for convective rain were shifted
toward larger diameters with much higher rain drop concentrations. The variation in the concentration
averages between GWLs was much larger in all diameter ranges reaching up to ±1000 drops near the
peak. The highest peaks were associated with the GWLs WS, SWA, TM, and NZ, with TM having the
highest concentration of drops smaller than 1.5 mm in diameter. GWLs with the lowest concentration
peaks were HFA, BM, TB, and WW. WW, HM, and HFA had the highest number of drops larger than
1.5 mm in diameter.

Testud et al. [70] proposed the concept of normalized distribution to compare rain DSDs without
presumptions about their shapes. The results of applying the method of normalized DSD are provided
in Figures S1 and S2.

3.2.2. Rain Parameters R, Dm and N

While the differences between GWLs regarding the rain DSD appear to be small, the high number
of drops per interval and the large number of intervals led to significant differences in the three
main rain parameters. The following comparisons were made without discrimination between the
different devices.

When analyzing the stratiform rain intervals, the average values of R, N, and Dm of the
three most frequent GWLs (TRW, SWZ, and WZ) were very close to the overall averages of these
parameters (Figure 5a). These three GWLs are typical Atlantic frontal systems associated with moderate
temperatures and therefore average rain intensities. GWLs with high average R (HFA, BM, WW, TB,
and HM) recorded the highest Dm values, while GWLs with the highest N averages were associated
with close to average R values. Conversely, GWLs with the smallest R averages (SEZ, NEZ, and HFZ)
had low values of both average Dm and N. GWLs that belong to the same flow direction (identical
colors in Figure 5a) are clustered in the space of N and Dm, with the exception of some outliers (HFA,
SEZ, and SWA).

The R, Dm, and N values of stratiform rain vary significantly between the five classes of flow
direction (cf. Table 1) despite their considerable variance within each flow direction. NE–E GWLs
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had the smallest average value of R associated with the lowest average Dm (Figure 6). CE had the
highest value of R with the highest value of N and a very high value of Dm. Both S and W had very
high values of R and Dm.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 23 
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Figure 4. Mean concentrations (number of drops per 1 m3 of air volume and per 1 mm of the diameter
range (A4)) in (a) stratiform rain and (b) convective rain. To aid the interpretation, the plot is limited to
a selection of GWLs that demonstrated distinct DSDs. The dashed black line indicates the mean DSD
in both rain types regardless of GWL.

For convective rain, the three parameters R, Dm, and N had larger values and variations among
GWLs than those for stratiform rain (Figure 5b). The average R values ranged from 3.67 mm·h−1 for
NWZ to 8.56 mm·h−1 for HFA. High average R values were associated with large drops (Dm) and
vice versa, with the exception of two cases: (1) TM had the second highest average R despite having
a very low Dm, while N was comparably large and (2) WW had a less than average R value despite
having the highest average Dm due to a small average N. The most frequent GWLs in convective rain
(SWZ, WZ, and TRW) had higher than average R values but close to average Dm values.
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The R, Dm and N values also varied for different flow directions in convective rain (Figure 6b).
NW–N GWLs had the smallest rain intensity despite having the largest average N values. The other
four flow directions recorded higher values of both Dm and R. This pattern differs from the one
demonstrated in stratiform rain, which might be an indication of a larger influence of local conditions
in convective rain.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 23 
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Figure 5. Scatter plot of the rain parameters per GWL with the mean mass weighted diameter (Dm) on
the horizontal axis and the mean concentration (N) on the vertical axis. The size of each dot corresponds
to the rain intensity (R) associated with a particular GWL. The colors indicate the five considered flow
directions (cf. Table 1) in (a) stratiform rain and (b) convective rain. The horizontal lines represent the
standard error of Dm. The vertical lines represent the standard error of N.
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Figure 6. Scatter plot of rain parameters for each flow direction with the mean mass weighted diameter
(Dm) for each flow direction on the horizontal axis and the mean concentration (N) for each flow
direction on the vertical axis. The size of each dot represents the rain intensity associated with the
corresponding flow direction. The colors indicate the five flow directions (see Table 1) in (a) stratiform
rain and (b) convective rain. The horizontal lines represent the standard error of Dm. The vertical lines
represent the standard error of N. Note the difference in absolute values for the two panels.

3.3. The Z–R Relation

Based on the global Z–R model for the entire dataset, A was estimated to be 295 for stratiform rain
and 278 for convective rain. The values for b were 1.49 for stratiform rain and 1.54 for convective rain.
For the GWL Z–R model, the A and b values differed between the individual GWLs in both rain types
(Figure 7). Most A values for stratiform rain were clustered in the range of 215–350, while b values
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clustered in the range of 1.35–1.65, with the exception of SEZ, which had higher values for both A and
b. Convective rain had a larger range for both A (189–371) and b (1.36–1.84) compared to stratiform
rain (excluding the SEZ results).

The spatial variation of the A and b values from a selection of events in this dataset has been
discussed in detail by Jaffrain and Berne [71]. In our case, comparable results were achieved by using
the entire dataset to estimate the A and b values associated with each of the 16 devices. The variability
of the A and b values was significantly larger for the GWL Z–R model compared to the spatial
variability in both rain types (Figure 7).
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The mean average error (MAE) in the rain rates indicated a better performance of the GWL model
in comparison to the global model (Table 2).

Table 2. Mean average error (MAE) in the rain rate R [mm·h−1] calculated by the GWL Z–R model and
the general Z–R relation. The values are given for the entire dataset and for each rain type separately.

Whole Dataset Stratiform Rain Convective Rain

Global model 0.584 0.357 2.52
GWL model 0.55 0.345 2.3

Using the global model resulted in a 10.4% overestimation of the total detected rain amount,
while using the GWL model resulted in an overestimation of 9.4%. The improvement resulting from using
the GWL Z–R model was particularly high within some GWLs. For stratiform rain, the improvement
reached 55%, 21%, and 11% for SEZ, WW, and HM, respectively. For convective rain, the improvement
reached 92%, 47%, and 15% for WW, HM, and BM, respectively (Figure 8). These GWLs showed distinct
averages of Dm and N, as illustrated in Figure 5.
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4. Discussion

4.1. Weather Type Classification

The Hess–Brezowsky classification was chosen due to its availability even for a longer period,
its proven suitability for Central Europe, and its basis on the surface and 500 hPa height pressure patterns
with the latter being especially important for the formation of precipitation [47]. The Hess–Brezowsky
circulation type records experienced a shift in frequencies in the mid-1980s and therefore should not be
used for climatological analyses [72]. However, this is not a problem in our case because the dataset and
the analyses were limited to a period shorter than two years, which does not fall within the mid-1980s.

Another concern is the influence of orographic rain on the proportion of convective rain per
GWL and per flow direction. The chosen method is not able to distinguish orographic rain. However,
we assume that the proportion of orographic rain within a specific GWL or flow direction would be
stable for a given location. Seasonality also might influence the proportion of convective rain per GWL.
Unfortunately, the dataset used does not allow for a proper analysis of likely seasonal variation.

4.2. Rain Type Classification

Separation of convective and stratiform rain by the described simple method of [15] is prone to
misclassification. This method does not recognize intervals where both convective and stratiform rain
occur [73,74]. In addition, the transition between convective and stratiform rain cannot be properly
distinguished by using the five successive 2-min rain intensity records [74]. However, it was chosen
because data necessary for other separation methods were not available (e.g., wind profilers or 2D
video disdrometers [75,76]).

The proportion of the convective rain amount in this dataset (40%) falls within the range reported
for Central Europe by Rulfová and Kyselý [76] (30–50%). A higher percentage of convective rain is
reported for tropical areas: on average 52% and 45% for continental and oceanic convective rain,
respectively [77]. Even higher levels (52–69%) are reached for different locations in India [13].

Stratiform rain was more frequent than convective rain in all GWLs. However, convective rain
represented more than half the total rain amount in some GWL classes, while this percentage dropped
to less than 2% for other classes. GWLs with no specific prevailing flow direction (CE) provided
a higher probability of convective rain due to their low-pressure gradients. Most GWLs associated
with clear flow directions had a smaller proportion of convective rain because frontal structures
may prevail. Despite the limited measurement duration of some of the addressed weather patterns,
our results indicate that some GWLs provide conditions that favor one rain type more than the other.

Convective rain is expected to be more frequent with larger rain amounts in the future, especially
because it is more sensitive than stratiform rain to the increase in temperature [78]. For example, convective
rain has shown a positive trend in all seasons in the Czech Republic [79] and is expected to increase under
climate change scenarios [80]. For Switzerland, there is an increase in the annual occurrence of convective
weather types [81] and summer convective rain at high elevations [82]. The proportion of convective rain
at elevated altitudes is expected to be higher in the future [83]. The reported trends in the proportion of
convective rain, along with our results regarding the strong variation in the proportion of convective rain
with GWL, highlight the importance of inspecting rain properties for both rain types separately. In other
words, a comparison between general weather types without separating convective and stratiform rain
may overestimate or underestimate the differences in the addressed rain properties. This error would be
influenced by the different proportions of convective rain among these weather types.

4.3. Rain Microstructure

Differences in the rain microstructure were detected between GWL classes for both rain types.
These differences were demonstrated by comparing the mean rain DSD and the parameters R, Dm, and N.
While the reasons behind these variations for individual GWLs remain largely unclear, the flow directions
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provide a partial explanation via the associated temperatures and the availability of condensation nuclei
and water content.

Particularly in stratiform rain, western and southern circulations bring high water content from
the Atlantic and the Mediterranean, which produces high rain intensity. The moisture flux in this
area, and generally in the northern hemisphere above 30◦ N, is westerly and south westerly [84].
Aerosols influence cloud properties by acting as cloud condensation nuclei (CCN) [85]. The aerosol
availability appears to be limited for the western, southern, and northwestern circulations in comparison
to the northeastern circulations [86]. This is due to anthropogenic activities; a higher concentration of
aerosols is reported when the sources are in Russia, Central Europe, and Eastern Europe [87]. Heavily
industrialized areas in Germany, the Czech Republic, and Poland are also sources of high particle number
concentrations [88]. Consequently, for the study area, the high water content and low CCN in western and
southern circulation forces water particles to condensate on a smaller number of nuclei and makes rain
drops comparatively large. Conversely, the northern flow direction is associated with low temperatures
and forces air parcels to travel a longer distance over terrestrial areas; this lowers the average water
content in comparison to other flow directions. Therefore, lower average values of R and Dm were
observed. Only in the case of CE, where no flow direction is dominant, did R, Dm, and N exhibit high
values, which might indicate a high availability of both CCN and water content. May et al. [89] reported
a large number of small drops for high aerosol regimes, but an inverse relation between rain concentration
and aerosol concentration in convective clouds. According to Cecchini et al. [90], an increase in CCN leads
to higher rain drop concentrations in stratiform rain, and larger rain droplets in convective rain. This falls
in line with our conclusions regarding NE–E GWLs, which have higher than average rain concentration
in stratiform rain and larger than average rain drop size in convective rain.

Unfortunately, this does not explain the variations between individual GWLs that share the same
flow direction. Grouping GWLs by flow direction is not a very precise procedure; the wind direction at
higher levels might fluctuate to some extent even within individual GWLs when inspecting a specific
location. This means that the source regions and back trajectories might be different within the same
GWL [91]. In addition, as the GWL classes change, the site may be influenced by the previous or the
upcoming GWL because the classification is done over a large scale. Furthermore, seasonal influences
might play a role and there might be an effect of the main alpine ridge, especially for the south and
east flow directions, as well as of the mountainous borders between Switzerland and France for the
north and west flow directions [92–94].

Variations in the rain microstructure between GWLs and flow directions were also detected for
convective rain. However, the patterns of these differences were different than the ones for stratiform rain.
It might be that, during convective rain, the water content is already sufficiently high. R, N and Dm might
be influenced largely by rain formation microscale processes, the height of freezing levels or the boundary
layer relative humidity [24], and the local aspects such as topography [92]. All of these might act in
combination with the influence of the general weather conditions and produce the observed variation.
In other words, GWLs seem to provide conditions that stimulate specific regional and local processes,
which enhance or suppress specific rain-forming processes, which in turn influence the observed rain
DSD for both rain types.

In a study carried out in Leon, Spain, Fernandez-Raga et al. [53] found that rain drops associated
with the northern flow direction had a smaller size compared to other flow directions. This is because
most of the moisture transported from the north would precipitate before reaching the measurement site.
Conversely, the high Atlantic moisture causes large rain drop size to be associated with western flows.
Our results also reveal that GWLs associated with northern flow directions (NE–E and NW–N) had smaller
rain drops compared to other flow directions, with the exception of NE–E for convective rain. Our results
are in agreement despite using different classifications of the large-scale weather circulations and different
locations within Europe. On the other hand, it appears in the reported results of Hachani et al. [29] that
northeast circulations are characterized by low concentrations and large drops for the Cévennes–Vivarais
region in France. The results also discuss the weak influence of the distance from the Mediterranean Sea,



Remote Sens. 2018, 10, 811 17 of 23

the seasonal influence, the rain type influence, and a combination of these effects. However, the combined
effect of rain type and synoptic weather patterns was not addressed, which might be the main reason for
the different observation regarding northeast flow direction.

4.4. The Z–R Relation

Jaffrain and Berne [71] demonstrated the spatial variation of the A and b values for a selection
of 36 events in the same dataset. In this study, we obtained similar values using the entire dataset.
In addition, we demonstrated that the GWL-specific variation exceeds the 1-km2 spatial variation of
the A and b values for both rain types. This led to an improved estimation of the rain amount when
accounting for the GWL variation over the entire measurement duration. This improvement was
particularly high for some individual GWLs, especially those with distinct values of Dm and N, such as
SEZ and WW in stratiform rain and WW and HM in convective rain. Interestingly, these GWLs were
frequently encountered (Table 1), which rules out the concern of small sample size effect. The rain
amount overestimation within 1 km2, which can reach up to +15% as reported by Jaffrain and Berne [71],
appears to be propagated to the rain amount estimation within individual GWLs.

The different synoptic features of GWLs at different locations (e.g., one station gets southerly
maritime wind for one GWL whereas another gets eastward continental winds for the same GWL) may
result in differing rain microstructures at these locations. Due to this local effect of GWLs, GWL models
have to be calibrated for each station specifically.

Unfortunately, the number of intervals for each device within each GWL is not large enough to
draw decisive conclusions about the spatial variation of the rain estimation within each GWL. A longer
measurement period covering a larger number of rain events within each GWL may lead to more
concrete conclusions, especially if associated with more precise wind directions at high elevations.
Ground measurements over a wider area might help our understanding of the complexity of the
interaction between the flow directions at different elevations and the topography and their influence
on the rain microstructure.

5. Conclusions

Ground measurements of the rain drop size distribution (DSD) recorded by 16 disdrometers in
the period of December 2008–September 2010 during the EPFL-LTE campaign were separated into
convective and stratiform intervals and then combined with records of general weather patterns (GWL)
to investigate the variations in the rain microstructure between the GWLs.

Convective rain proportions varied among GWLs in both duration and rain amount. These variations
along with the previously established influence of rain type on rain DSD suggest that it is important to
take the rain type into account when comparing GWLs.

The highest rain amounts and longest rain durations were recorded for the GWLs TRW, SWZ,
and WZ. Consequently, these GWLs controlled the total averaged rain parameters. Nevertheless,
other GWLs had different rain DSDs. The variation was stronger near the peak of the rain DSD.
Significant differences were detected in the values of the rain intensity R, the mass weighted mean
diameter Dm, and the rain concentration N. GWLs associated with high averaged R also recorded large
rain drops and vice versa.

The values of R, Dm, and N were significantly different between flow directions. In the case of
stratiform rain, northern flow (NE–E and NW–N) recorded the smallest average drop size and lowest
average R values. S, W, and CE circulations had large drops and high R values. High numbers of drops
were recorded in GWLs associated with CE and NE–E. Variations also exist in the case of convective
rain; however, the pattern is different and might be affected by local conditions.

The parameters of the Z–R relation varied significantly between GWLs, and estimating R based
on the GWL-specific Z–R relations improved the total rain amount estimation for the entire dataset
and for both rain types. The improvement is highest for individual GWLs, which revealed distinct
rain microstructures such as SEZ and WW in stratiform rain and WW and HM in convective rain.
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To our knowledge, this is the first study in Central Europe linking rain DSD to synoptic
weather types and general flow directions for each individual rain type. The effect of the described
variations with GWL and the flow direction, e.g., on the Z–R parameters, might improve the current
radar estimation of R. In future studies, the microstructure of extreme and heavy rain within
each GWL, the role of the wind direction at high levels, and improved separation methods of
convective and stratiform rain should be addressed to reveal more about the properties of rain within
large-scale circulations. However, addressing the inherent spatial and temporal variability of the rain
microstructure within each GWL calls for a larger dataset to provide sufficient rain measurements
within each GWL and to support these results.
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Appendix A

The following equations were used to calculate the key rain properties for each time step based
on the disdrometer raw output.

1. Rain intensity (R) (mm·h−1) [16]

R = 60× 60× π/(6× 1, 000, 000 ∆T)∑i=32
i=1 ∑j=32

j=1

(
xi,j Di

3/Ai

)
(A1)

xi,j: Detected number of drops that fall in diameter range i and velocity range j.

∆T (s): Temporal resolution = 60 s in this case.

Ai (m2): Corrected detection area [60]: Ai = 180× (30− Di/2)/1, 000, 000.

Di (mm): Mean diameter of drops that fall in diameter range i.
2. Reflectivity (Z) (mm6·m−3) [16]

Z = ∑i=32
i=1 ∑j=32

j=1

(
xi,j Di

6/(Ai Vj∆T)
)

(A2)

Vj
(
m·s−1): Mean velocity of drops in velocity range j.

The reflectivity is usually expressed in another unit [dBZ]:

Z[dBZ] = 10× log10

(
Z[mm6· m−3]

)
. (A3)

http://www.mdpi.com/2072-4292/10/6/811/s1
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3. Total drop concentration (N) (m−3), i.e., the total number of drops per m3 [16]:

N =
i=32

∑
i=1

j=32

∑
j=1

xi,j/
(
Vj ∆T Wi Ai

)
(A4)

Wi (mm): Width of a diameter range i.
4. Mass weighted diameter (Dm) (mm) [61]:

Dm =
∑i=32

i=1 ∑
j=32
j=1

(
xi,j Di

4)
∑i=32

i=1 ∑
j=32
j=1 (xi,j Di

3)
. (A5)
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