


Abstract

Building Information Modeling (BIM) is on the verge of being incorporated into the con-

struction industry. Even though the advantages of using BIM are apparent, the industry is

still mainly based on two dimensional (2D) construction drawings. BIM application have

therefore been adapted to derive those drawings from the three dimensional (3D) model.

Due to the high amount of parties involved in the building process, there was the need for

a vendor-neutral format to accomplish this task. The disadvantage of such a format is the

fact that the model and the drawings become disjointed once extraction is completed and,

therefore, changes applied to one will not be adjusted automatically on the other. The dis-

crepancies that arise during this process are the source of various possible errors which could

be eliminated if the drawings were aligned to each other regularly to ensure their conformity.

The automation of this process, also called the registration problem, has faced challenges in

the past and an adequate solution for construction drawings is yet to be found.

This thesis focuses on the second step of the registration problem, the similarity measure-

ment and matching, using the concept of 2D shape histograms as proposed by (Pu & Ramani,

2006) in their paper ”On visual similarity based 2D drawing retrieval”. The method delivered

promising results when the drawings had similar contours with different interior features, yet

as it does not support partial matching, it proves to be impractical for the purpose of this

thesis.

However, two methods that could potentially solve this issue are proposed as possible future

solutions. One being the combination of this method with 2.5D spherical harmonics. The

other consists in trying to overlap two cross-sections of the same drawing at different heights

to bypass the missing capability of partial matching observed on this tested descriptor.



Zusammenfassung

Building Information Modeling (BIM) steht kurz davor, in die Bauindustrie integriert zu wer-

den. Die Vorteile des Einsatzes von BIM sind offensichtlich, dennoch greift die Industrie im-

mer noch hauptsächlich auf zwei dimensionalen (2D) Konstruktionszeichnungen zurück. BIM-

Anwendungen wurden aufgrund dessen angepasst, um diese Zeichnungen aus dem dreidimen-

sionalen (3D) Modell abzuleiten. Aufgrund der hohen Anzahl von am Bauprozess beteiligten

Parteien bestand die Notwendigkeit eines herstellerneutralen Formats zur Erfüllung dieser

Aufgabe. Der Nachteil eines solchen Formats besteht darin, dass die Verbindung zwischen

dem Modell und der Zeichnungen nach Abschluss der Extraktion fehlt und daher Änderungen,

die auf eine dieser Formate angewendet werden, nicht automatisch auf die andere angepasst

werden. Die dabei auftretenden Diskrepanzen sind die Ursache für verschiedene mögliche

Fehler. Diese könnten beseitigt werden wenn die Zeichnungen regelmäßig überlagert werden

würden, um ihre Übereinstimmung zu gewährleisten. Die Automatisierung dieses Prozesses,

auch Registrierungsproblem genannt, stand in der Vergangenheit vor Herausforderungen

und auch zum derzeitigen Stand ist eine adäquate Lösung für Konstruktionszeichnungen

noch nicht gefunden. Dieses Thesis konzentriert sich daher auf den zweiten Schritt des

Registrierungsproblems, die Ähnlichkeitsmessung und -anpassung, unter Verwendung des

Konzepts der 2D-Form-Histogramme, wie von (Pu & Ramani, 2006) in ihrem Beitrag ”On

visual similarity based 2D drawing retrieval”. Die Methode lieferte vielversprechende Ergeb-

nisse, wenn die Zeichnungen ähnliche Konturen mit unterschiedlichen Innenausstattungen

hatten. Sie unterstützt allerdings keinen Teilabgleich und erweist sich deswegen für die Zwecke

dieser wissenschaftlichen Arbeit als unpraktisch.

Es werden jedoch im folgendem zwei Methoden vorgeschlagen, die dieses Problem möglicher-

weise zukünftig lösen könnten. Eine ist die Kombination dieses Verfahrens mit ”2.5D spher-

ical harmonics”, welches besser mit unterschiedlichen Konturen umgehen kann. Die andere

versucht zwei Querschnitte derselben Zeichnung in unterschiedlichen Höhen zu überlappen,

um die fehlende Fähigkeit der partiellen Anpassung zu umgehen, die bei diesem getesteten

Deskriptor beobachtet wurde.
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Chapter 1

Introduction

With the rise of digitisation, the construction industry is facing challenges to incorporate

the technological possibilities.

The apparent solution seems to be BIM, which uses digital models throughout the entire

lifecycle of a built facility based on three dimensional models with great information depth.

This transformation of the building process from separate two dimensional construction

drawings to a central, intelligent, three dimensional model results in an improved quality of

planning, minimization of errors, and therefore increased product quality as well as lower

production costs. (Borrmann et al., 2018)

Even though the advantages of such an evolution in the building process are blatant, the

construction industry is still mainly based on 2D construction drawings. Reasons for this

are the alleged lack of efficiency in using BIM, especially for smaller projects and that 2D

construction drawings still represent the legally binding document. (Trzeciak, 2018)

For BIM to replace traditional construction drawings, the path needs to be paved by incorpo-

rating it as a mandatory part of public projects, as is the case in some countries (Borrmann

et al., 2018), as well as establishing the legal basis. As long as this is not achieved, traditional

construction drawings and BIM models will have to coexist.

As it is possible to derive two dimensional drawings from a BIM model, and changes made

to either of them will be applied to the other, the problem seems negligible.

However, these features are only applicable to the native formats of each vendor. As exchanges

between parties are necessary, the use of a vendor-neutral format becomes unavoidable. The

model and the drawing become therefore disjointed, which leads to discrepancies between the

construction drawings and the BIM model while editing on third party applications. These

changes cannot yet be detected automatically. (Trzeciak, 2018)

Part of this automation problem is called the registration problem, which describes a three

step aligning process of two drawings in a shared coordinate system.
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The purpose of this thesis is to test a method which could help with the second step of the

process, similarity measurement and matching, in the context of matching a construction

drawing and a BIM model to each other.
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Chapter 2

State of the art

2.1 Building Information Modeling

As digitalization is getting omnipresent in the last years, the construction industry needs to

adapt to it. This could lead to a significant quality improve in the industry with the help of

BIM.

BIM is an idea that reaches back to the 1980s, yet the techniques required were only developed

in recent years and is now finally seeing use in the construction industry. The main concept

is the use of digital information over the entire lifecycle of a facility as shown in figure 2.1.

This includes design, construction, maintenance of the facility in use, and when necessary

renovation or recycling. (Borrmann et al., 2018)

Figure 2.1: Lifecycle of a built facility as shown by (Borrmann et al., 2018)
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This process differs immensely from the current way, where the state of the art is the

hand over technical, 2D construction drawings between stakeholders, which are a digital

imitation of the antiquated drawing board method. Only graphical entities, such as lines,

arcs and circles (Azhar et al., 2008), are transmitted with this method, which computers

fail to understand and process. A method solely based on this process inevitably misses to

harness the potential which comes with the information technologies, such as calculations

and simulations, or any other kind of analysis of the built facility. Furthermore, to

extract the information required by any stakeholder or the building owner after the end

of the construction process, and then transmit it to any application, the effort required is

considerable. (Borrmann et al., 2018)

This is where BIM presents a solution, the Building Information models, an object-oriented

digital 3D model, as it incorporates, next to the basic outlines of a construction drawing,

every information, properties (such as material,...) and purpose within the structure (such

as a horizontal member on level X, spanning between column Y and girder Z), about each

element included in the drawing, needed for later processing. (Schinler & Nelson, 2008)

With such a depth of information transmitted, the whole process of data re-entry at every

stage of a built facility lifecycle, and the loss of information linked to it, is reduced to a

minimum. As a result of reducing the time invested in this error-prone work, a significant

melioration in the project delivery processes and work flow management, and therefore

improved productivity and quality produced by the industry, is expected. (Borrmann et al.,

2018) (Hardin & McCool, 2015)

Figure 2.2: Comparison of traditional and BIM workflow structure as shown by (Schinler & Nelson,
2008)

The three dimensional geometry allows to derive, with the help of semantics, consistent

sections which can be used as construction drawings compliant to norms and regulations or

as only one model is used by all parties, it is possible to perform a general clash detection

over the whole model. In the event of two elements from different categories, like a structural
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and an architectural one, are located in the exact same spot of the facility, the model will

recognise and warn the user while displaying the error as in figure 2.3a. This process had to

be done manually beforehand and, as this step is required after every change applied to any

involved construction drawing, was very time consuming and an error-prone process that is

one of the major causes of poor documentation (Azhar et al., 2008).

(a) Clash detected and visually
marked. Image courtesy (Lenihan,
2015)

(b) Photorealistic render created by (Autodesk, 2019)

Figure 2.3: Clash detection and visualization obtained from a BIM model

Another advantage of the 3D model is the simplicity with which a realistic visualization can

be obtained. In contrast to previous effort needed to obtain a presentable image, the models

can now easily be rendered as shown in figure 2.3b. 3D-rendering is a method used to create

a realistic picture based on a model, including shadows and photorealistic details in the case

of cloud rendering where enough computational power is provided to do so.

This visualization process is mainly used by architects to present a project as it is more

palpable and easily understood when compared to 2D construction drawings.

Furthermore, the semantics, which are inherent to each element, allows to perform any kind

of analysis, including cost estimation, quantity take-off, structural, analysis or building per-

formance simulations (Borrmann et al., 2018).

Some kind of analysis have not been possible before BIM, like automatized construction

scheduling which has been attempted before yet the problem of data extraction remained

an issue (Kim et al., 2013). Based on the data depth contained in BIM, it is now possible

to generate activities and their duration. These can then be sequenced into a preliminary

schedule which can be refined later on (Kim et al., 2013).

Although the actual content of BIM depends on the usage, typically it includes visualization,

design coordination, drawing generation, quantity take-off, progress monitoring and facility

management (Borrmann et al., 2018).

All these steps help to reduce costs and risks altogether in comparison to the ordinary ap-

proach to construction(Borrmann et al., 2018).
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2.1.1 BIM adoption

For BIM to be broadly adopted, the need of a vendor-neutral data format became apparent,

because an exchange between different products will always be necessary in the context of

BIM. Therefore Industry Foundation Class (IFC) has been created by an international non-

profit organization, and in 2013 adopted to ISO standards. (Borrmann et al., 2018)

In some regions of the world, like Singapore, Finland, Korea, the USA, UK and Australia,

the adoption of BIM into the market is quite advanced, as most of them are integrating BIM

as a part of their public projects (Borrmann et al., 2018). Germany is trying to pave the

path for this objective, with the help of the working group ”BIM4INFRA2020”, until 2020

(BIM4INFRA2020, 2017).

For this goal, in Germany as well as anywhere else, there is the need for BIM to replace

construction drawings as the legally binding document (Trzeciak, 2018).

A template, called the BIM protocol, which defines the applied terminology as well as global

responsibilities (Borrmann et al., 2018), has been proposed by the British Construction

Industry Council to ease this path.(Borrmann et al., 2018)

Construction drawings are still often extracted from the models and then directly modified or

additional information is added outside of the BIM model. This results in discrepancies be-

tween the drawings, which currently cannot be detected automatically and must be adjusted

by hand, and, therefore, in errors during all steps of the facility built. (Trzeciak, 2018)

This leads directly into the next section as the shape registration can be used to find theses

differences between the model and the drawing.

2.2 Registration problem

The idea of shape registration is to align two shapes in an identical coordinate system (Trze-

ciak, 2018).

The problem has mostly been approached as a model-to-image registration which, in most

cases, showed promising results in a controlled environment but while trying to generalize

the process all encountered severe difficulties (Jung et al., 2016).

(Trzeciak, 2018) proposed to approach the problem as a drawing-to-model registration, in

which the problem is translated from a 2D to 3D matching problem into a 2D to 2D one as

shown in figure 2.4.



2.2. Registration problem 7

Figure 2.4: Proposed system for the drawing-to-model registration as shown by (Trzeciak, 2018)

Both approaches have a general three step process in common. They consist of feature

extraction, similarity measure and matching, and transformation. (Trzeciak, 2018) (Jung

et al., 2016) (Avbelj et al., 2014).

Feature extraction

The first step of the registration problem is the feature extraction. This step consists of

detecting the main features of a drawing, such as closed outlines of an object, corner, edges,

or even intersection points. These features are then saved in two distinct datasets, one for

each image. (Jung et al., 2016)

The main problem during this step is to find out which features need to be extracted, as

they need to give the right information about the drawing for the similarity measures and

the matching process to work properly (Trzeciak, 2018).

Similarity measure and matching

This is the main problem addressed in this thesis, as the shape histogram method is trying

to match the datasets extracted in the previous step.

To find out if two drawings are identical, or partially identical, it is necessary to perform

a similarity test on the two sets of data obtained from the feature extraction step with a

dissimilarity measure (Tangelder & Veltkamp, 2004). To be able to perform the measure, the

data extracted needs to be transformed into comparable descriptors. These can be feature

based, shape based (as shown in figure 2.5), and more (Tangelder & Veltkamp, 2004), meaning

that the original shapes are translated into feature vectors (Trzeciak, 2018).

The distance obtained during this measuring process gives an idea about the match of the two

drawings. The smaller the distance the closer the two drawings are to each other. (Tangelder

& Veltkamp, 2004). Though not being mandatory, the distance between two drawings is
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Figure 2.5: Example of descriptors as shape histograms as shown by (Pu & Ramani, 2006) and
explained as: A biased sampling example: (a) and (c) are two 2D drawings; (b) and (d) are the
shape histograms of the drawings in (a) and (c), respectively; (e)–(h) are the shape histograms with a
supersampling of the rectangle and the largest circle, the rate ranging from 200 to 500%, respectively.
(Pu & Ramani, 2006)

generally measured using the Minkowski distance Lp with p = 2 defined as follows 2.1. It is

then basically equivalent to the Euclidean distance. (Trzeciak, 2018)

Lp(x, y) =

[
N∑
i=0

|xi − yi|p
]1/p

(2.1)

Another often required feature of the matching process is partial matching. This is applied

when only a part of a could be matching another (Tangelder & Veltkamp, 2004). For instance,

when a part of a finger- or palmprint is used to find out to which person it belongs 2.6.

Figure 2.6: Part of a palm matched to a complete palm as shown by (Jain & Feng, 2009)
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Figure 2.7: Construction drawing aligned to a BIM model as shown by (Trzeciak, 2018)

Transformation

The transformation step is the last step of the registration problem. It consists in actually

aligning the two drawings, in a shared coordinate system, to each other as soon as the

connection between them is positively established in the matching process (Trzeciak, 2018).

Transforming means to translate, rotate or scale the drawings in a shared 3D-coordinate

system, in order to have the 2D drawing and the 3D model overlap and positioned in the

exact same spot to obtain a visual fit (Trzeciak, 2018) as show in figure 2.7.

2.3 Engineering drawing retrieval

The difficulty about comparing two construction drawings is that these drawings are never

compared directly. They are transformed in such a manner that a matching process can be

applied, also called shape descriptors (Trzeciak, 2018). The loss of information can be huge

and the comparison therefore trivial. According to (Pu & Ramani, 2006), many methods for

2D shape recognition have been proposed but these concentrate on the contour of the object

as 2.3.1 shows.

2.3.1 2D contour matching

A simple way of matching to objects is to only match the contour of it. This is widely used,

with the use of different approaches (two of them roughly explained as per statement below),
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as it is regarded to be one of the most important features in Content Based Image Retrieval

(Zhang & Lu, 2002).

- Fourier descriptor, which is mainly used for shape analysis but has also seen usage in

shape retrieval, is the application of the Fourrier transformation to a shape signature

(Zhang & Lu, 2002).

- Curvature scale space is a process where the boundary of an image is transformed to

a graph where every concavity or convexity of the original boundary is represented as

one contour with one maxima. For every image a set of locations of the maximas is

created, and these are compared to each other (Mokhtarian et al., 1997).

These descriptors work for 2D drawing only, but there are also methods to match the contour

of a 3D drawing to a 2D one. As (Funkhouser et al., 2003) developed a method where they

use spherical harmonics to compare the contours.

2.3.2 2D drawing retrieval

The drawing retrieval problem will be explained in he following. One specific drawing A needs

to be matched to a library of drawings. For this purpose, the similarity distance (for example:

the Euclidean distance) of the drawing A to every drawing of the library is computed and,

within a certain tolerance, the closest drawing from the library is chosen, as figure 2.8 shows.

Figure 2.8: 2D Drawing retrieval process as shown by (Pu & Ramani, 2006).

The contour of a building can be a sufficient indicator if two construction drawings are match-

ing, yet when the internal structures are ignored, important information of a construction

will be missing (Pu & Ramani, 2006) as 2.9 shows.

(Love & Barton, 2001) have presented a coding system which provides automatic, or

semi-automatic, coding of geometric data extracted from a Drawing Interchange File
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Figure 2.9: The difference between a drawing (a) and its contour (b) as shown by (Pu & Ramani,
2006).

Format (DXF). Although the results seemed promising, they came to the conclusion that

better results could be achieved if additional geometric properties would have been taken

into account (Love & Barton, 2001).

(Pu & Ramani, 2006) have presented two methods to address the retrieval problem.

One is based on the 2.5D spherical harmonics representation where the key idea is to

represent a shape as a spherical function in terms of the amount of energy it contains at

different frequencies (Pu & Ramani, 2006).

The other is based on 2D shape histograms, a method where all geometric information of

each drawing are translated into a distance histogram.

This paper is based on the second method; it will therefore be specified later on.
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Chapter 3

Approach

3.1 Methodology

This thesis is based on the methodology of Jiantao Pu and Karthik Ramani described in

their paper ”On visual similarity based 2D drawing retrieval” (Pu & Ramani, 2006) and

will, therefore, not be explicitly cited at every step of this chapter. While they did present

several other options to address the drawing retrieval problem, this thesis focuses on the 2D

shape histogram method which will therefore be explained thoroughly.

The method has been tested on ordinary, meaning not construction related, 2D drawings.

The compatibility with construction drawings and BIM models is to be determined within

this thesis. The objective is to match drawings from two different datatypes, for cross-

sections derived from IFC-based BIM models and for DXF. The process elaborated below is

the same for both types.

Before being able to apply the methodology, there are a preliminary step required, as

the method is only able to compare two 2D drawings. BIM models being 3D, has to be

represented by several distinct 2D drawings. To obtain this representation, the 3D model

is being cut at different levels, each level being the actual cutting height of a construction

drawing on each floor.

The level which achieves the highest overlap between its histogram and the one from the

DXF-file, as explained in 3.1.4, is most likely representing the identical floor. This allows

not only to determine the likelihood of the buildings matching but also from which floor, or

level, the DXF-file has been previously extracted.
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3.1.1 Importing a drawing and creating a stroke

For simplification, the process of drawing importation is based on line segments. These are

extracted from the DXF file and from the IFC cross-section. This accumulation of segments,

represented by their start- and endpoint coordinates, is stored in an array which will be called

a stroke from this point on and can be represented as 3.1:

stroke = [((x0, y0), (x1, y1)), ((xi, yi), (xi+1, yi+1)), ...] (3.1)

with i ≤ n− 1 and n the total number of segments included in the stroke.

3.1.2 Random sampling

For the 2D shape histogram to be created, the segments need to be replaced by a series of

points. This process which is called random sampling with uniformly distributed points is a

seven step table-based algorithm.

1. The summed length of all line segments included in the drawing is computed by adding

each segment length to the summed length one at a time. This value is saved in an array

with size n, where n-1 is the total number of line segments. The length table is an array

with each entry i represented as follows 3.2:

length table(i) =

i∑
j=0

L((xj , yj), (xj+1, yj+1)) (3.2)

with 0 ≤ i ≤ n − 1 and L being the length of a segment calculated by the Euclidean

distance between the start- and the endpoint of each segment.

2. Create a random number r between 0 and the total length of the stroke, which is the

last entry of the length table.



3.1. Methodology 14

3. Find out on which segment the random number r is located by finding its two nearest

neighbours in the length table. This segment will be called segment m, described by its

coordinates: ((xm, ym), (xm+1, ym+1)).

4. Create a random number l, called random l in the code, between 0 and 1, which will

be used to find a random position on the segment m.

5. Find the coordinates of the randomly chosen sample point with the help of the following

equation 3.3:

xk = xm + random l
(
xm+1 − xm

)
yk = ym + random l

(
ym+1 − ym

) (3.3)

6. Save the coordinates (xk, yk) in an array A.

7. Repeat the process until the desired number of sampling points is reached.

3.1.3 Creating a histogram

The histogram needed is a distance histogram which represents the dispersion of the sample

points in relation to their distance to a common, and for all compared histograms identical,

source point, as shown in figure 3.1. The reasoning behind the chosen source point will be

explained in the case study.

Building the histogram can be described in 3 steps.

1. The distance of the sample points from a source point will be measured in regular

intervals which can be represented as shells. A shell being a circular area within a fixed

distance to the previous one, as shown in figure 3.1.

Set this distance.
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Figure 3.1: Distance histogram build from a shell based query with the source point being the center
of the shells as shown from (Ankerst et al., 1999).

2. Gather the number of sample points on each interval, one shell at a time and save this

number as the value of a dictionary, and the distance of the outer border of the shell as the key.

3. Plot the dictionary by using the keys as x-coordinates and the values as y-coordinates.

3.1.4 Histogram comparison

To compare two histograms built with this method, comparing the values of the dictionaries

which the histograms are built on is sufficient. The keys, and therefore the x-coordinates,

are identical, as both histograms are created with the same interval distance set in the step

1. of the histogram creation, and, therefore, do not need to be included in the comparison

step.

For purpose of comparison, there are different possible approaches. Having tested some

of these, including the two Minkowski distances L1 and L2, it seems that the Hellinger

distance gives the most distinct and, therefore, most accurate results for this specific use

and impementation. The tests will be specified in the chapter Evaluation and case study.

For two discrete probability distributions the Hellinger distance is defined (J. Oosterhoff,

2011) as the following equation 3.4 shows:

DistHel =
1√
2

√√√√ n∑
i=0

(√
H1

(
i
)
−
√

H2

(
i
))2

(3.4)
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with n being the size of the array, H1 being the y- coordinates of the first histogram and H2

the ones of the second.

The smaller the value of the Hellinger distance of two histograms the more analogous

they are.
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Chapter 4

Implementation

4.1 The code

The code is based on as well as linked to the deep linkage (Trzeciak, 2019) project my

academic advisor had built prior to this thesis. Packages used from his code will be explained

by looking at their purpose and not their specific functioning.

Furthermore, the drawings and models 4.1 used for the comparison process are also taken

from the deep linkage project (Trzeciak, 2019).

This section will go through the code step by step, closely examining the methods created

and used.

Step 1: number of sampling points

Before going through the process of the DXF-file and later the IFC-file, the number of

sampling points is set. The sampling points are randomly chosen points along the drawings’

lines. Thereby, the drawings will no longer be represented by segments with respective start-

and endpoints but by a cloud of points.

Listing 4.1: Setting number of sampling points

# Define number o f sampling p o i n t s

number of sampl ing p = 10 ∗∗ 4

The higher this number, the more accurately the drawing will be represented by the list of

points in 2D.
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(a) IFC model (b) DXF drawing

Figure 4.1: Model and drawing used in this thesis, provided by (Trzeciak, 2018)

4.1.1 DXF-file

Step 2: DXF drawing retrieval

The variable dxf extractor is associated to a method which has been retrieved from

deep linkage. Its purpose is to extract all corners from the DXF-file and the segments

associated to it.

Listing 4.2: Drawing retrieval

# DXF− f i l e

# query drawings

d x f e x t r a c t o r = DXFCornerExtractor ( ” . . / DXF f i l es / drawing −13. dxf ” )

Step 3: create a stroke for the DXF-file

A stroke is the accumulation of all segments embodied in the original drawing represented

in one array, similar to the mark left by a pen on a piece of paper, hence the name. The

name stroke dxf also refers to the association of this stroke to the DXF-file.

Listing 4.3: Create stroke

# numpy array wi th l i s t o f a l l segments in DXF f i l e s normed to [m]

s t r o k e d x f = RandSamplTools . norm drawing (np . array (

d x f e x t r a c t o r . g e t s egment w i s e ba s e s ( ) ) )
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This line of code has a couple of methods encapsulated into each other which will be

explained from the inside out.

1. dxf extractor.get segment wise bases() creates an array with segment wise start-

and endpoints listed as tuples one after the other as explained in chapter 3.1.1.

2. np.array() changes the format of this array to a numpy array for later processing.

Numpy arrays can have different shapes, which causes problems with the next steps in this

code. To address this issue, the norm drawing method also includes a reshaping step in

case the shape happens to differ.

3. norm drawing() is a method, which is part of the class RandSamplTools, has been

created for this thesis and contains all the methods necessary for the random sampling

process.

The drawing issued from the DXF- and the IFC-file are either scaled in millimeters or in

meters. This method is used to adapt them to the same scale.

Listing 4.4: norm drawing method

class RandSamplTools :

def norm drawing ( array ) :

# b r i n g i n g drawing from [m] to [mm] i f necessary and reshap ing i f necessary

i f np . shape ( array ) [ 1 ] and np . shape ( array ) [ 2 ] != 2 :

a = int (np . s i z e ( array ) / 4)

s t r oke = np . reshape ( array , ( a , 2 , 2 ) )

else :

s t r oke = array

max val = np . amax( s t r oke [ : ] [ : ] [ 0 ] )

i f max val < 1000 :

s t r oke = [ ( x ∗ 1000 , y ∗ 1000) for (x , y ) in s t r oke ]

return s t r oke

Once the numpy array is transferred to this method, to ensure the flawless performance

of the rest of the code, the shape of the array is checked and if necessary changed to the

required format, using the numpy reshape method.
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To find out if the drawing is in meters or in millimeters, the highest value for the x- or

y-coordinate is searched for and associated to the max val variable. The next step is based

on the assumption that this value, if smaller than 1000, must be in meters. This is based on

the reflection that any drawing in millimeters will have a much larger number and a drawing

in meters will unlikely exceed this limit, simply because of the size of an average building.

If the drawing turns out to be in meters, the next step multiplies every single coordinate

elementwise per 1000 to scale it down to millimeters.

Step 4: Random Sampling for DXF

The name array A is inherited from the paper ’On visual similarity based 2D drawing

retrieval’ (Pu & Ramani, 2006) which this thesis is based on.

This array is a collection of points which together represent the drawing as a list of points in

2D. After this step the drawing is no longer a series of segment, or ’stroke’, which is essential

for the next steps.

Listing 4.5: Random sampling for DXF

# array wi th a l l sample p o i n t s a long the d x f f i l e

array A dxf = RandSamplTools . sample po int s ( l e n g t h t a b l e=

RandSamplTools . l e n g t h t a b l e ( s t r o k e d x f ) ,

s t r oke=st roke dx f ,

number of sampl ing p=number of sampl ing p )

This line of code calls on two methods encapsulated into each other. They will be explained

from the inside out.

1. length table() is a method, also part of the RandSampTools class, which creates a

linear array, here called length table, with size n, and n-1 being the total number of line

segments contained in the drawing.

Each entry is the length of the stroke up to and including the segment n-1 as explained in

chapter 3.1.2 .

Listing 4.6: length table method

def l e n g t h t a b l e ( s t r oke ) :

# summed l e n g t h

l e n g t h t a b l e = [ ]

for i in range (0 , len ( s t r oke ) ) :

i f i == 0 :
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l e n g t h t a b l e . append (np . l i n a l g . norm( s t r oke [ i ] [ 0 ] − s t r oke [ i ] [ 1 ] ) )

i f i != 0 :

l e n g t h t a b l e . append ( l e n g t h t a b l e [ i − 1 ] + np . l i n a l g . norm( s t r oke [ i ] [ 0 ]

− s t r oke [ i ] [ 1 ] ) )

return l e n g t h t a b l e

The method is given the array stroke, created one step beforehand. It then creates an

empty array, length table.

For each entry i of the array stroke, the length of the segment is calculated using the numpy

linalg.norm method.

The length table array is then appended by the sum of the previous entry and the length

calculated in this step.

When every segment is calculated the whole array is returned.

2. sample points() is a method, contained in the RandSamplTools class. The purpose

is to randomly select points on the segments and replace the lines by an accumulation of

points. It needs the input of the array length table calculated in the step beforehand as

well as the array stroke and the number of sampling points, number of sampling p,

defined in the first step.

Listing 4.7: sample points method

def sample po int s ( l e n g t h t a b l e , s t roke , number of sampl ing p ) :

# f i n d a l l sampl ing p o i n t s

n = 0 # counter f o r sampling p o i n t s

array A = [ ] # array f o r s a m p l i n g p o i n t s

while n < number of sampl ing p :

# c r e a t e random number and f i n d segment on which i t i s on

r = random . rand int (0 ,

round( l e n g t h t a b l e [ len ( s t r oke ) − 1 ] ) )

# p r i n t ( r )

m = b i s e c t . b i s e c t l e f t ( l e n g t h t a b l e , r , 0 , len ( l e n g t h t a b l e ) )

# c r e a t e random number to f i n d random p o s i t i o n on segment

random l = round( random . uniform (0 , 1 ) , 10)

x coords , y coords = zip (∗ s t r oke [m] )

x k = x coords [ 0 ] + random l ∗ ( x coords [ 1 ] − x coords [ 0 ] )
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y k = y coords [ 0 ] + random l ∗ ( y coords [ 1 ] − y coords [ 0 ] )

array A . append ( ( x k , y k ) )

n += 1

return array A

In a first step, an empty array, array A, for the storage of the sampling points coordinates,

and a variable n, as a sampling point counter, are set.

While the counter n did not reach the number of sampling points set in the beginning, a

new point will be created.

A random real number r, between 0 and the rounded total length of the stroke (last entry

of the array length table), is created.

m is the segment of the stroke on which r is located. This is found with the help of a python

inbuilt function: bisect.

Another random number is created, random l, which is located between 0 and 1.

This random number, random l, represents a position on said segment.

With the help of the equation 3.3, described in chapter 3.1.2, the coordinates of this point

can be found.

The array, array A, is then appended by these, and the counter n is increased by 1.

This process is repeated until n is equal to number of sampling p, and the array, array A

is returned.

Step 5: Point distance query for DXF-file

The next step towards the distance histogram is to create a dictionary, here called

length prop dict dxf, with the keys being the distance to a source point and the values

being the numbers of points found from one distance to the next.

Listing 4.8: Point distance dictionary

# d i c t i o n a r y wi th the p o i n t d i s t a n c e d i s t r i b u t i o n

l e n g t h p r o p d i c t d x f = H i s t U t i l i t i e s . po int query ( array A dxf ,

number of sampl ing p )

This line of code calls the methods point query() from the HistUtilities class, which has

been created for this thesis. It contains all the methods required to create and compare

histograms.
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Listing 4.9: point query method

def po int query ( array A , number of sampl ing p ) :

np array A = np . array ( array A ) # c r e a t e numpy array

l e n g t h p r o p d i c t = SortedDict ( )

n2 = 0 # counter f o r sampling p o i n t s

n3 = 1000 # counter f o r d i s t a n c e from outer boundary s h e l l to

source po int

p o i n t s i n o t h e r s h e l l = [ ]

p o i n t t r e e = s p a t i a l . cKDTree ( np array A )

while n2 < number of sampl ing p :

p o i n t s i n t o t a l s h e l l = p o i n t t r e e . q u e r y b a l l p o i n t ( [ 0 , 0 ] , n3 )

p o i n t s i n s h e l l = [ x for x in p o i n t s i n t o t a l s h e l l

i f x not in p o i n t s i n o t h e r s h e l l ]

p o i n t s i n o t h e r s h e l l = p o i n t s i n t o t a l s h e l l

l e n g t h p r o p d i c t [ n3 ] = len ( p o i n t s i n s h e l l )

n2 += len ( p o i n t s i n s h e l l )

n3 += 1000

return l e n g t h p r o p d i c t

point query() is a method which needs the input of array A and the num-

ber of sampling p which have been defined beforehand.

The first steps are preliminary measures to ensure the proper functioning of this method.

The array A is transformed into a numpy array. An empty sorted dictionary,

length prop dict, is created with the help of the python inbuilt method Sorted-

Dict().

As well as 2 counters, n2 and n3, which are set to 0. n2 being the counter for the sampling

points and n3 being the counter for the distance from the source point in millimeters.

points in other shell is an empty array which will be filled with the points already counted.

The variable point tree is associated with the class scipy.spatial.cKDTree, which gets the

array A as input argument. This class provides an index into a set of k-dimensional points

which can be used to rapidly look up the nearest neighbours of any point (SciPy-Community,

2019).
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The next few steps will be repeated until the n2 counter is equal to the number of sampling

points.

The query ball point() method from the scipy.spatial.cKDTree class is used to gather

all the points which are within the distance n3 of the source point, here defined as [0, 0].

The result is saved under the variable points in total shell.

To find out how many points are present in this shell, the points already found in the

previous steps, points in other shells, are subtracted from the newly found total points,

points in total shell, and saved to the variable points in shell.

After this step, the variable points in other shells is updated to include all the points

found up to now.

A new pair of key:value is added to the dictionary, the key being the outer boundary of

this shell (= the value of n3) and the value being the number of points on this shell(= the

value of points in shell).

Finally, the counters n2 and n3 are increased. n2 by the number of points found in this

shell. n3 is increased by 1000 millimeters, which after testing various other increment sizes

has shown to provide the best results.

Step 6: Plots for DXF-file

In this step, the drawing, represented as a list of points in 2D, and the histogram, based on

the dictionary, are plotted. They are represented in two different figures.

Listing 4.10: Plots

# p l o t s f o r d x f f i l e

f i g 1 = p l t . f i g u r e ( )

ax1 = f i g 1 . add subplot (111)

ax1 . s c a t t e r (∗ zip (∗ array A dxf ) )

f i g 2 = p l t . f i g u r e ( )

ax2 = f i g 2 . add subplot (111)

ax2 . p l o t ( l i s t ( l e n g t h p r o p d i c t d x f . keys ( ) ) ,

l e n g t h p r o p d i c t d x f . va lue s ( ) ,

c o l o r=’ g ’ )

p l t . show ( )
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The first figure, fig1, shows the construction drawing as a list of points in 2D. The

coordinates of the points are given to the scatter method (from the matplotlib librabry)

to plot these. The input needed are two separate lists of x- and y-coordinates. These are

extracted from the array A dxf, using *zip a python standard library tool, which separates

the coordinate tuples in two distinct lists.

The second figure, fig2, shows the corresponding distance histogram. It is built by using the

plot method from the matplotlib library. The x-coordinates are given by the keys of the

dictionary, list(length prop dict dxf.keys()). The y-coordinates are given by the values,

length prop dict dxf.values().

4.1.2 IFC-file

Step 7: IFC cross-section retrieval

The variable ifc file is associated to the file of the 3D-model, for later processing.

Listing 4.11: IFC file

# query drawing

i f c f i l e = ” . . / IFC models/BIMmodel . i f c ”

The 3D-model will be cut at four different levels, these, and two counters that will be

explained later on, are set before entering the for-loop.

Listing 4.12: Setting cutting levels and counters

l e v e l s = [−1.3 , 1 . 2 , 3 , 4 ]

b i g g e s t o v e r l a p = −1

c l o s e s t l e v e l = 0

Step 8: Start for-loop over each level

A for-loop over every level, on which the 3D-model will be cut, is started. The steps 9 to 13

will be repeated until they have been completed for every step of the loop.

Listing 4.13: For-loop

for l e v e l in l e v e l s :



4.1. The code 26

Step 9: Create a stroke for IFC-file

Just as for the DXF-file, the goal is to create an array containing all the seg-

ments in the drawing. The first try to accomplish this task was with the

ifc extractor small.get element wise bases() from the deep linkage prototype,

which did not produce the required results as some segments where missing, or could not be

processed by the code. This approach is still integrated to the code but has been commented

out, signalled by the pound symbol.

A solution working for the code has been provided to me by a research assistant working for

the same chair as this thesis is supervised from. It has been integrated in the code as the

IFCExtracting class and will not further be discussed as it is not my work.

Listing 4.14: Stroke for IFC-file

# numpy array wi th l i s t o f a l l segments in i f c f i l e s normed to [mm]

# s t r o k e i f c = RandSamplTools . norm drawing ( np . array (

i f c e x t r a c t o r s m a l l . g e t e l e m e n t w i s e b a s e s ( ) ) )

s t r o k e i f c = RandSamplTools . norm drawing (np . array (

IFCExtracting . c r e a t e l i n e s ( IFCExtracting ,

i f c f i l e , l e v e l ) ) )

This last line of code, which creates the stroke for the IFC cross-section, has a couple of

methods encapsulated into each other. They will be explained from the inside out.

1. IFCExtracting.create lines() creates an array with segment-wise start and end

points listed one after the other. The input needed next to itself, is the ifc file and the

current level we are operating on.

2. np.array() changed the format of this array to a numpy array for later processing.

Numpy array can have different shapes, which causes problems with the next steps in this

code. This is why the norm drawing method also includes a reshaping step if the shape

differs.

3. norm drawing() is a method which is part of the class RandSamplTools, which

contains all the methods necessary for the random sampling process and has been created for

this thesis.
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The drawing issued from the DXF- and the IFC-file are either scaled in millimeters or in

meters. This method is used to bring them to the same scale.

Step 10: random sampling for IFC-file

This line of code functions analogous to step 4. Therefore, the explanation can be looked

up there.

Listing 4.15: random sampling for IFC

# array wi th a l l sample p o i n t s a long the i f c f i l e

a r r a y A i f c = RandSamplTools . sample po int s (

l e n g t h t a b l e=RandSamplTools . l e n g t h t a b l e ( s t r o k e i f c ) ,

s t r oke=s t r o k e i f c ,

number of sampl ing p=number of sampl ing p )

Step 11: Point distance query for IFC-file

This line of code functions in analogous to step 5. Therefore, the explanation can be looked

up there.

Listing 4.16: Point distance query for IFC

# d i c t i o n a r y wi th the p o i n t d i s t a n c e d i s t r i b u t i o n

l e n g t h p r o p d i c t i f c = H i s t U t i l i t i e s . po int query ( a r r ay A i f c ,

number of sampl ing p )

Step 12: Plots for IFC-file

These lines of code function in analogous to step 6. Therefore, the explanation can be

looked up there.

Listing 4.17: Plots for IFC

# p l o t s f o r i f c f i l e

# p l o t drawing

f i g 1 = p l t . f i g u r e ( )

ax1 = f i g 1 . add subplot (111)

ax1 . s c a t t e r (∗ zip (∗ a r r a y A i f c ) )

# p l o t his togram
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f i g 2 = p l t . f i g u r e ( )

ax2 = f i g 2 . add subplot (111)

ax2 . p l o t ( l i s t ( l e n g t h p r o p d i c t i f c . keys ( ) ) ,

l e n g t h p r o p d i c t i f c . va lue s ( ) ,

c o l o r=’ g ’ )

p l t . show ( )

Step 13: Histogram comparison

For the histogram comparison, four different methods have been tested, including the one

chosen in the paper this thesis is based on.

The method which seemed to bring the most accurate results, for the way this program is

implemented, is the Hellinger distance.

Hence the reduced explanation of the code to this methodology only.

To find out which level of the IFC-file is the closest to the DXF-file, the two step process is

repeated for each level.

Listing 4.18: Histogram matching

h e l d i s t = H i s t U t i l i t i e s . h i s t comp he l ( l e n g t h p r o p d i c t d x f ,

l e n g t h p r o p d i c t i f c , l e v e l )

c l o s e s t l e v e l , b i g g e s t o v e r l a p = H i s t U t i l i t i e s . max s im i l a r i t y ( h e l d i s t ,

b i g g e s t o v e r l a p , l e v e l , c l o s e s t l e v e l )

The histograms are compared by calling on two methods from the HistUtilities class.

These two lines will be explained in the the next two sub points.

1. The Hellinger distance, hel dist, for the level is determined by calling on the method

hist comp hel.

The following code is based on equation 3.4 as shown in section 3.1.4 and is the method

previously called on.

Listing 4.19: Hellinger distance

def h i s t comp he l ( h1 dxf , h 2 i f c , l e v e l ) :

h e l p r e l i m = 0
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ar ray 1 = l i s t ( h1 dxf . va lue s ( ) )

a r ray 2 = l i s t ( h 2 i f c . va lue s ( ) )

while len ( a r ray 1 ) < len ( a r ray 2 ) :

a r ray 1 . append (0 )

while len ( a r ray 2 ) < len ( a r ray 1 ) :

a r ray 2 . append (0 )

i f len ( a r ray 1 ) == len ( a r ray 2 ) :

for i in range (0 , len ( a r ray 1 ) ) :

h e l p r e l i m += ( ( ( a r ray 1 [ i ] ) ∗∗ 0 . 5 ) −
( ( a r ray 2 [ i ] ) ∗∗ 0 . 5 ) ) ∗∗ 2

h e l f i n a l = (1/(2 ∗∗ 0 . 5 ) ) ∗ ( ( h e l p r e l i m ) ∗∗ 0 . 5 )

return h e l f i n a l

The first step is to create an environment for the equation to work properly. From the two

compared histograms, two arrays with the number of points per shell are extracted. This

corresponds to the values of the point-distance dictionary mentioned in Step 5 and 11.

It is then tested if the two arrays are similar in size. If they are not, the smaller array is

appended by zeros until the size is the same.

The distance is then calculated in two steps.

1. First the sum of the equation is established and saved to a preliminary variable,

hel prelim. In a second step, the actual Hellinger distance is calculated by taking the

square root of the preliminary value and multiplying it by 1√
2
.

2. After the Hellinger distance is calculated, the accuracy of the histogram overlap needs

to be checked. The method max similarity is called on and gives back two variables, the

level on which, until now, the overlap is the greatest, called closest level, and by how much

they overlap, called, biggest overlap.

The distance is compared to the previous one. If the fit is more accurate, this level is

determined as the closest level. Elsewise, the previous one remains.

Listing 4.20: Finding the matching level
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def max s im i l a r i t y ( h i s t s i m i l a r i t y , b i g g e s t o v e r l a p , l e v e l ,

c l o s e s t l e v e l ) :

i f h i s t s i m i l a r i t y < b i g g e s t o v e r l a p or b i g g e s t o v e r l a p == −1:

c l o s e s t l e v e l = l e v e l

b i g g e s t o v e r l a p = h i s t s i m i l a r i t y

return c l o s e s t l e v e l , b i g g e s t o v e r l a p

To be able to compare the first level properly, two variables, closest level and

biggest overlap, have already been set in Step 7.

max similarity is a method which takes three input arguments. hist similarity is the

Hellinger distance from this level, biggest overlap is the Hellinger distance from the,

up to this point, best fitting level, and closest level is the level on which it is located.

In this method, the distance is compared to the previous one. If the fit is more accurate,

this level is determined as the closest level and the variable biggest overlap is updated.

Elsewise, the previous one remains.

Step 14: Result

After the steps 8 to 13 have been repeated for every level of the IFC-file, the result, meaning

on which level the minimum distance between histograms is achieved, is printed.
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Chapter 5

Evaluation and case study

Four factors are determining the precision of the histogram build for each drawing, the number

of sampling points, the size of the shells on which the number of points are counted on, the

source point location from which the distance of the shells is measured and the accuracy of

the method used to measure the distance between the histograms.

As (Pu & Ramani, 2006) showed in their paper, 105 points seemed to give the best results.

While trying to match their number of sample points on this code, the runtime exceeded

any reasonable measure with over 5 minutes for one drawing only.

To determine which values are giving the best results, a series of tests have been made.

1. Analysing which number of sample points is giving a precise portrayal of the construction

drawing as shown in the figure 5.1.

The 5.1d serves as a reference as it is the extracted drawing represented as line segments

before the random sampling process is applied. The closer the plotted points get to this

representation the more precise they are, which seems to be more than enough in 5.1c.

A direct correlation is to be found between the number of points and the precision of

the representation. Consequently, an increased point count results in a more accurate

representation as well as corresponding rise in runtime.

2. When the number of sampling points is lower than 104, the distribution of the points is

not similar enough due to the lack of point density. The histograms of a same drawing will

differ due to this as figures 5.2, 5.3, 5.4 show.
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(a) 102 sampling points (b) 103 sampling points

(c) 104 sampling points (d) lines

Figure 5.1: Plots of the DXF-file with different numbers of sampling points and the plot of the
drawing before the random sampling process.
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(a) First iteration (b) According histogram to plot of first iteration

(c) second iteration (d) According histogram to plot of second itera-
tion

Figure 5.2: Plots of the DXF-file with 102 sampling points and according histograms after first and
second iteration.
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(a) First iteration (b) According histogram to plot of first iteration

(c) Second iteration (d) According histogram to plot of second itera-
tion

Figure 5.3: Plots of the DXF-file with 103 sampling points and according histograms after first and
second iteration.
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(a) First iteration (b) According histogram to plot of first iteration

(c) Second iteration (d) According histogram to plot of second itera-
tion

Figure 5.4: Plots of the DXF-file with 104 sampling points and according histograms after first and
second iteration.
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3. Although the drawings are all issued from the same 3D model, extracting the drawing

as a DXF-file beforehand and directly cutting the IFC based BIM model does not result in

an identical representation of the drawing as figure 5.5 demonstrates.

(a) DXF drawing (b) IFC drawing

Figure 5.5: Plots of DXF drawing and IFC cross-section on the same level (-1.3)

(a) DXF drawing (b) IFC drawing

Figure 5.6: Plots of DXF drawing and IFC cross-section on the same level (1.2)

(a) Histogram based on DXF drawing (b) Histogram based on IFC drawing

Figure 5.7: Histograms based on the DXF drawing and the IFC cross-section on level 1.2, plots of
the drawings are in figure 5.6
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Furthermore, the descriptor does not seem to support partial matching. Meaning that it

is not able to match parts of an image to another image. It will always compare the two

whole images which creates problems when trying to match an IFC cross-section to a DXF

drawing.

The cross-section takes only the parts of the building which exactly intersect with the cutting

level into account. A staircase or terrace will not be displayed, partially for the staircase

and completely for the terrace as figure 5.6 shows.

While extracting a DXF-file these attributes are completely forwarded. This creates a clear

difference between the two, originally identical, drawings.

Therefore, the histograms issued from these drawings will not match perfectly even if the

rest of the process works correctly as shown by figure 5.7.

The chances of a wrong assignment of the corresponding level increases because of this as

5.8 shows.

Figure 5.8: Progress report on level 1.2 with terrace, the wrong level is selected.

When the differences are not as dramatic as a missing terrace, for example a staircase which

is not completely shown, the program still is able to find the proper drawing as figure 5.9

shows.
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Figure 5.9: Progress report on level -1.3 without a terrace, the correct level is selected.

4. The second variable which influences the histogram output is the size of the shells. All

previous examples have been made with a shell size of 1000 millimeters.

The histogram gets more detailed when the shell size is small and less detailed when it is

big as shown in figure 5.10. When the histogram is built with too large steps, the histogram

gets unusable as 5.10c demonstrates.

The runtime augments the degree of detail as show by figure 5.11.

(a) Shell size 100 millimeters (b) Shell size 1000 millimeters (c) Shell size 10000 millimeters

Figure 5.10: Histograms based on the DXF drawing on level -1.3 built with different shell sizes.

The runtime augments accordingly to the degree of detail as show by figure 5.11 as it is

multiplied by a factor 5 when the shell steps are narrowed down from 1000 to 100 millimeters.

Furthermore, the stability of a histogram as a reliable comparison tool is weakened by a too

small shell size. The points being randomly chosen, their distribution is likewise, resulting in

an ever changing histogram with each time the program is run an additional time, as figure

5.12 displays.
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(a) Shell size 100 millimeters

(b) Shell size 1000 millimeters

(c) Shell size 10000 millimeters

Figure 5.11: Runtime of histograms based on the DXF drawing on level -1.3 built with different
shell sizes.

Figure 5.12: Histograms based on the DXF drawing on level -1.3 built with shell size 100 millimeter.

5. The third parameter to influence the result is the location of the source point, from which

the distances are measured. [0, 0], as it seemed to be the most obvious one, was compared to

[1000, 1000], [5000, 5000], [10000, 10000] and proved to be the right choice as histograms built

with the same number of sampling points and shell sizes but with one of the other source

point proved to give less precise, or sometimes even wrong, results as the difference between

the levels was not as clear.

The results of the test can be found in the appendix.

6. The fourth parameter to affect the results is the method used to measure the distance

between the histograms. (Pu & Ramani, 2006) proposed the Minkowski distance due to

its simplicity, but neither L1, nor L2, seemed to give results which would not necessairly be

correct with each time the program is running through. The Hellinger distance however

seemed to fit to the way this program was implemented, as it can be seen in the test results

shown in the appendix.
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5.1 Results

To find out which configuration of these three variables is providing the most accurate results,

a test has been performed which results are displayed in the appendix.

The test consist of running three for loops encapsulated into each other. Each loop going

through an array filled with sensible input for each variable (sample points, shell size, source

point location).

Listing 5.1: For-loop run over the whole program for testing purposes

number of sampl ing p = [1000 , 2500 , 5000 , 7500 , 10000 ]

s h e l l s i z e = [500 , 750 , 1000 , 2000 , 3000 , 4000 , 5000 , 6000 , 7000 , 8000 ,

9000 , 10000 ]

s o u r c e p o i n t = [ [ 0 , 0 ] , [ 1000 , 1000 ] , [ 5000 , 5000 ] , [ 10000 , 1 0 0 0 0 ] ]

for a in number of sampl ing p :

for b in s h e l l s i z e :

for c in s o u r c e p o i n t :

The result was: Best results are achieved on [10000, 1000, [0, 0]]

Meaning that the most efficient setup, for this implementation, for the 2D shape histogram

of a construction drawing to be built is to have 104 sample points with a shell distance of

1000 millimeters to select their dispersion and [0, 0] as a source point.

The whole testing results can be found in the attached digital data of this thesis.
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Chapter 6

Conclusion

In this thesis, the second step of the 3D-to-2D registration problem (similarity measurement

and matching) has been addressed in the context of construction drawings and BIM.

The method tested was developed by (Pu & Ramani, 2006) for the matching of sketches to

2D drawings and is called 2D shape histograms. In this case, it has been implemented

to perform the matching process between a 3D BIM model and a 2D construction drawing

derived from the same model.

To simplify the process, the comparison in this thesis has been performed exclusively from

2D to 2D. The 3D model was cut into cross-sections at the level were construction drawings

usually are derived from.

The difference between a derived construction drawing and an IFC cross-section is that

with the deriving process the floor slab is taken into account and transmitted as well as

the other interior features of the specific floor. With a cross-section the only parts that are

transmitted from 3D to 2D are the parts of the building which are in direct contact with the

cross-section, the floor slab is disregarded.

This is not a problem for any facility built with the outer walls being flush with the floor slab

as the contour does not change. Yet a building which has a balcony or an terrace planned,

the contour is significantly altered when this information is disregarded.

This is where the descriptor encountered severe problems with some of the drawings as,

(Pu & Ramani, 2006) had already determined this in their paper, the 2D shape histogram

method is good at differentiating 2D drawings with similar contours and different interior

structure (Pu & Ramani, 2006), but as it does not support partial matching, as soon as the

contour changes too much the method becomes unreliable.
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To solve this issue different approaches can be thought of.

First of all, a combination, with a second method, such as the 2.5D spherical harmonics

(Pu & Ramani, 2006) is better at differentiating drawings with obvious structure shape

distinctions, could be implemented.

A second possible approach would be to combine two cross-sections extracted from the

BIM model, one at floor level and the other at the height on which DXF drawings are

usually extracted, to create a drawing closer to the derived construction drawing. This

could help bypass the issue of the current method not being able to perform partial matching.

In conclusion, the method is only working adequately for drawings with similar contours,

which can be an issue when generalizing the process and needs further addressing. The

random sampling process works flawlessly, but the point query should be refined as the

runtimes reached in the paper of (Pu & Ramani, 2006) were far superior to the ones obtained

in this thesis. The point query seems to be the critical phase for optimization of the runtime

itself.
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Appendix A

Appendix

A.1 Attached Data

The attached data contains:

- The written part of this thesis as PDF document

- The full python code of the 2D shape histogram

- The full testing results as a PDF document

A.2 Details of the testing results

A.2.1 Test for source point

Test is run with 10000 sampling points with a shellsize of 1000 and over different source

points:

number o f sampling po in t s i s : 10000

s h e l l s i z e i s : 1000

s o u r c e p o i n t i s : [ 0 , 0 ]

Leve l be ing checked : −1.3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l −1.3

i s 9.760922311164874

Leve l be ing checked : 1 . 2 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 1 . 2

i s 13.39337025526842

Leve l be ing checked : 3 m
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H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 3

i s 12.854796692627927

Leve l be ing checked : 4 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 4

i s 13.773125716522468

Minimum d i s t ance between histograms i s achieved on l e v e l : −1.3

3.5795085769747312

number o f sampling po in t s i s : 10000

s h e l l s i z e i s : 1000

s o u r c e p o i n t i s : [ 1000 , 1000 ]

Leve l be ing checked : −1.3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l −1.3

i s 11.317321295669085

Leve l be ing checked : 1 . 2 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 1 . 2

i s 10.750396562024795

Leve l be ing checked : 3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 3

i s 11.951533135100533

Leve l be ing checked : 4 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 4

i s 13.697869568096973

Minimum d i s t ance between histograms i s achieved on l e v e l : 1 . 2

number o f sampling po in t s i s : 10000

s h e l l s i z e i s : 1000

s o u r c e p o i n t i s : [ 5000 , 5000 ]

Leve l be ing checked : −1.3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l −1.3

i s 12.710445724281039

Leve l be ing checked : 1 . 2 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 1 . 2

i s 13.188517999354175

Leve l be ing checked : 3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 3

i s 13.72358162380639

Leve l be ing checked : 4 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 4

i s 13.173924789913817

Minimum d i s t ance between histograms i s achieved on l e v e l : −1.3
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1.8447319390686665

number o f sampling po in t s i s : 10000

s h e l l s i z e i s : 1000

s o u r c e p o i n t i s : [ 10000 , 10000 ]

Leve l be ing checked : −1.3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l −1.3

i s 10.938707010266395

Leve l be ing checked : 1 . 2 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 1 . 2

i s 13.478103833294869

Leve l be ing checked : 3 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 3

i s 11.084028904956071

Leve l be ing checked : 4 m

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 4

i s 11.714439402567102

Minimum d i s t ance between histograms i s achieved on l e v e l : −1.3

1.7683943496958412

Best r e s u l t s are achieved on [10000 , 1000 , [ 0 , 0 ] ] with 3.5795085769747312

A.2.2 Testing results for the method chosen

Test is run with 10000 smapling points und a shellsize of 1000 over the source points:

Level be ing checked : −1.3 m

L1 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l −1.3 i s 2362

L2 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l −1.3 i s 567926.0

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l −1.3

i s 10.10026917265048

Leve l be ing checked : 1 . 2 m

L1 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l 1 . 2 i s 1658

L2 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l 1 . 2 i s 245152.0

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 1 . 2

i s 12.549325159483635

Leve l be ing checked : 3 m

L1 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l 3 i s 1678

L2 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l 3 i s 219444.0

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 3

i s 12.98061210197332
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Level be ing checked : 4 m

L1 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l 4 i s 1944

L2 d i s t ance between DFX− f i l e and IFC− f i l e in l e v e l 4 i s 323237.0

H e l l i n g e r d i s t anc e between the DXF− f i l e and the IFC− f i l e in l e v e l 4

i s 13.04797870673757
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