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Abstract
In this thesis we investigate the extremal behaviour of some well-known stochastic models in�nance. We consider discrete-time as well as continuous-time models. The thesis is thereforedivided into two parts:In a �rst part we study the class of autoregressive processes with ARCH(1) errors given bythe stochastic di�erence equationXn = �Xn�1 +q� + �X2n�1 "n ; n 2 N ;where ("n)n2N are i.i.d. random variables. Under general and tractable assumptions we show theexistence and uniqueness of a stationary distribution. We prove that the stationary distributionhas a Pareto-like tail with a well-speci�ed tail index depending on � and �. This thesis generalisesresults for the ARCH(1) process (the case � = 0) proved by Kesten (1973), Vervaat (1979) andGoldie (1991). However, we present a di�erent method of proof invoking a Tauberian theorem.We apply these results in order to investigate the extremal behaviour of the autoregressiveprocesses with ARCH(1) errors.The extremes of such processes occur typically in clusters. We give an explicit formula forthe extremal index and the probabilities for the length of a cluster. Autoregressive processeswith ARCH(1) errors are used for �nancial data, in particular for exchange rates.In a second part we investigate the extremes of di�usion processes (Xt)t2R given by stochasticdi�erential equations of the formdXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ;where W denotes the standard Brownian motion, � is the drift term and � is the di�usioncoe�cient. Under some appropriate conditions on (Xt)t2R we prove that the point process ofv



vi ABSTRACT"{upcrossings converges in distribution to a homogeneous Poisson process. We apply our resultsto term structure models or asset price processes such as the Vasicek model, the Cox-Ingersoll-Ross model and the generalised hyperbolic di�usion. We also show how to construct a di�usionwith pre-determined stationary density which captures any extremal behaviour. As an examplewe introduce a new model, the generalised inverse Gaussian di�usion.



Chapter 1
Introduction
1.1 Extreme Value Theory - from Hydrology to FinanceExtreme value theory - the theory of weak convergence of maxima and/or upcrossings of stochas-tic processes over a high threshold - is a very elegant and fascinating mathematical theory aswell as a toolbox which can be applied to a broad class of problems in many di�erent areas (thework of Gumbel (1958) is still an excellent reference in this context).The following examples are situations where extreme value theory typically enters.- Premium volumes of insurance companies have to be calculated in order to cover, withsu�ciently high probability, future losses.- Dams or dikes at locations along a river or sea must be built high enough to exceed themaximum water height.- Sports records (athletics, cycling, skating etc.) are frequently broken.- The detection of air-quality standards is often formulated in terms of the highest level ofpermitted emissions.- Mechanical components of trains, airplanes etc. must be su�ciently strong and 
exible towithstand strong forces.All these examples have in common that they concern questions about extremal behaviour.A typical procedure is to model the observed data and to make decisions on the basis of aprobabilistic model of the extreme values of the data set.1



2 CHAPTER 1. INTRODUCTIONClassical extreme value theory - the extreme value theory for independent, identically dis-tributed (i.i.d.) random variables - has its roots in the late twenties of this century. More precisely,it starts with the famous paper by Fisher and Tippett (1928). Their central result, often referredto as the Extremal Types Theorem and later proved in complete generality by Gnedenko (1943),is the speci�cation of the form of a non-degenerate limit distribution for centred and normalisedmaxima. In fact, there are only three possible types of extreme value distributions: the Gum-bel law �, the Fr�echet law �� and the Weibull law 	�. In other words: if F is the underlyingdistribution function of the random variables thenlimn!1F n(anx+ bn) = Q(x) ; x 2 R ; (1.2)where an > 0; bn 2 R are properly chosen constants and Q is either �, �� or 	�. For the preciseform of the extreme value distributions see Appendix A1.
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•• • •• • • • • • • •Figure 1.1: Sequence of i.i.d. random variables and associated point process of exceedances above the level 12.Exceedances are indicated at the horizontal line through -30. There is no clustering visible.Furthermore, it is not necessary to know the detailed nature of the distribution function Fin order to know which limit distribution occurs. The extreme value distribution is determinedby the behaviour of the tail of F (x) for large x. More precisely: (1.2) is equivalent tolimn!1n (1� F (anx+ bn)) = � lnQ(x) ; x 2 R : (1.3)Indeed, for x 2 R, de�ne Sn = Pni=1 1fXi>anx+bng as the number of exceedances of anx + bnby X1; :::; Xn. As usual 1A denotes the indicator function of the set A. Then Sn is a binomial



3random variable with parameters (n; 1�F (anx+bn)). An application of Poisson's limit theoremyields Sn d! Poi(� lnQ(x)), n!1, if and only if (1:3) holds. This asymptotic Poisson propertymay be generalised by considering the point process Nn of exceedances of the level anx + bn.Actually, if Nn(�) = #fexceedances of anx+ bn by (Xi)1�i�n: i=n 2 �g, n 2 N, thenNn(�) w! N(�) ; n!1 ; (1.4)where N is a homogeneous Poisson process with intensity � lnQ(x) and w! denotes the weakconvergence. In particular, the exceedances are simple (see Figure 1.1).Since Fisher and Tippett (1928), extreme value theory has passed through an exciting theo-retical development. Extending the classical results, a satisfying general theory has been devel-oped which includes extreme value theory of dependent random sequences as well as extremevalue theory of continuous parameter processes. For an introduction to classical extreme valuetheory we refer to Leadbetter, Lindgren and Rootz�en (1983), Resnick (1987) or Embrechts,Kl�uppelberg and Mikosch (1997, Chapter 3).The extremal behaviour of discrete-time stationary processes is quite well-understood. Incontrast to the independent case, extremes of dependent sequences may cluster (see Figure 1.2).Suppose that we have a stationary sequence (Xn)n�0 with marginal distribution function Fwhich satis�es some weak dependence assumptions (strong mixing or the weaker assumptionD(un) of Leadbetter (1983)). Let Mn = max1�j�nXj and let anx + bn be the sequence suchthat (1.2) holds and such that limn!1 P (Mn � anx+ bn) exists. Then, there exists a constant� 2 [0; 1] such that limn!1P (Mn � anx+ bn) = Q�(x) ; x 2 R : (1.5)� is called the extremal index of the sequence (Xn)n�0 . This concept, originated by Newell (1964),Loynes (1965) and O'Brien (1974), was taken �rst as a de�nition by Leadbetter (1983). SinceQ is computable from knowledge of the marginal distribution F , it turns out that � is the keyparameter for extending extreme value theory for i.i.d. random variables to stationary processes.The point process convergence of exceedances is a bit more complicated than in the indepen-dent case: for �xed x 2 supp(Q), let Nn be again the point process of exceedances, i.e. Nn(�) =#fexceedances of anx+bn by (Xi)1�i�n: i=n 2 �g. Let n = r k and Ii = ((i�1)=k; i=k]; i = 1; :::; kbe a partition of (0; 1] into k blocks. For a suitable choice of k and r see for instance Embrechts,Kl�uppelberg and Mikosch (1997), Section 8.1. If Nn(Ii) > 0 a cluster of exceedances occurs atblock i and then �n(j) = P (Nn(Ii) = j jNn(Ii) > 0) =P (Nn(I1) = j jNn(I1) > 0), j 2 N, is



4 CHAPTER 1. INTRODUCTION
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••••••••••••••• ••••••• ••• •••••••Figure 1.2: Sequence of dependent random variables and associated point process of exceedances. We have a strongclustering indicated at the horizontal line through -30.the probability of cluster length j in the interval Ii for any j 2 N. Hsing, H�usler and Leadbet-ter (1988) showed that under (1.2), (1.5) and if �n(j) ! �(j); n ! 1 for any j 2 N, where(�(j))j2N is a probability distribution, thenNn(�) w! N(�) ; n!1 ; (1.6)where N is a compound Poisson process with intensity �� lnQ(x) and jump probabilities(�(j))j2N . Moreover, under additional conditions on �n(j) (see Smith 1988),1Xj=1 j�(j) = 1=� :Thus, a natural interpretation of � is that of the reciprocal of mean cluster size. In the i.i.d.case, extremes are simple and hence � = 1=� = 1.For a number of special dependent sequences, the extremal behaviour has been studied inmore detail. Extreme value theory for linear time series (moving average processes, autoregressiveprocesses etc.) with heavy tailed innovations has been studied in a series of papers by Davis andResnick, we refer to Resnick (1987), Chapter 4.5. A further reference is the book by Leadbetter,Lindgren and Rootz�en (1983). Rootz�en (1988) and Leadbetter, Rootz�en (1988) and Asmussen(1998) have investigated regenerative and Markov sequences. Extremes of the ARCH(1) pro-cess have been studied by de Haan, Resnick, Rootz�en and de Vries (1989), Perfekt (1994) andHooghiemstra and Meester (1995).



5The theory of extremes for continuous parameter processes started with the work of Rice (1939)for mean square di�erentiable normal processes leading to a celebrate formula for the mean num-ber of upcrossings per unit. Brie
y, for a constant u the process (Xt) has an upcrossing at t0 iffor some " > 0;Xt � u in (t0� "; t0) and Xt � u in (t0; t0+ ") . If Nu((0; 1)) denotes the numberof upcrossings of u by (Xt) in the interval (0; 1) and if �(u) = ENu((0; 1)) < 1, then the up-crossings form a stationary point process Nu with intensity �(u). Rice could show that for meansquare di�erentiable Gaussian processes �(u) = pC=2��1 exp(�u2=2) , where the constant Ccomes from (1.7). The results of Rice were extended in various ways. Two review papers on thetheory of extremes of Gaussian processes and related problems are Leadbetter, Lindgren andRootz�en (1983) and Leadbetter and Rootz�en (1988). Further work on Gaussian processes can befound in Adler (1990) and Berman (1992). In particular, under certain restrictions there existcorresponding results to (1.2) and (1.4) in the continuous Gaussian case. For a standardised,continuous stationary normal process (Xt) with convariance function r(t) such that Berman'scondition r(t) ln(t)! 0 ; t!1 ;holds and r(t) = 1� C jtj� + o(jtj�) ; t! 0 ; (1.7)for some � 2 (0; 2] is satis�ed, thenP ( max0<u�tXu � atx+ bt)! exp(�e�x) ; t!1 ;for certain known deterministic functions at > 0 and bt 2 R. Furthermore, we havefor � = 2 : Natx+bt(t �)for � < 2 : N";atx+bt(t �) 9=; w! N( �) ; t!1 ; (1.8)where Natx+bt(t�) = #fupcrossings of atx + bt by (Xs)0�s�t : s=t 2 �g, N";atx+bt(t�) = #f"-up-crossings of atx+ bt by (Xs)0�s�t : s=t 2 �g , N is a homogeneous Poisson process with intensitye�x and w! denotes weak convergence. The notion of "-upcrossings is discussed in detail inChapter 3 and is needed since normal processes with � < 2 are not mean square di�erentiableand hence the mean number of upcrossings need not be �nite. An "-upcrossing is always anupcrossing while the converse does not hold.



6 CHAPTER 1. INTRODUCTIONThe theory of Gaussian processes was generalised to a broader class of continuous parameterprocesses by Leadbetter and Rootz�en (1982) and Leadbetter, Lindgren and Rootz�en (1983).Their results apply in particular to two cases: �rst to normal processes and then to stationaryprocesses with �nite upcrossing intensities.Newell (1962), Berman (1964), Mandl (1968) and Davis (1982) investigate extremes of dif-fusion processes. Proposition 3.2.1 in Chapter 3 of this thesis quotes an important result oftheir work: the limit relation (1.2) also holds for di�usion processes under certain assumptionswhereas the point process convergence of upcrossings is not known in the literature. We presentthe analogue of (1.4) for di�usion processes in Theorem 3.2.4 in Chapter 3.This thesis aims at applications in �nance and econometrics: loosly speaking, we consider�nancial time series models of changing variance and covariance over time. These models areoften denoted as volatility models. There are numerous volatility models used for �nancial instru-ments. A logical conceptual division of such models results into continuos-time and discrete-timemodels.Continuous-time volatility models are natural models for physicists and mathematicianswith an analytic background from stochastic analysis. They are typically given by a stochasticdi�erential equation of the formdXt = �(t;Xt)dt+ �(t;Xt)dWt ; t > 0 ; X0 = x ; (1.9)where W is standard Brownian motion, � is the drift term and � is the di�usion coe�cient orvolatility. Stochastic processes which are de�ned by (1.9) are di�usion processes. They are oftenused as models for interest rates or price processes. As a �rst approximation, the statistical �t ofdi�usion processes to data may be reasonable. Choosing the volatility � in (1.9) appropriatelyprovides a large variety of models ranging from Gaussian processes to models which capturelarge 
uctuations in real data (see Chapter 3). However, there are also various arguments againstsuch models. These include that real world processes are not continuous in time. Furthermore,di�usions with arbitrary volatility are in general untractable with respect to computations.Numerical methods can then be helpful to solve such problems.Discrete-time versions of stochastic volatility models have their roots in time series analy-sis and econometrics. They are usually referred to as conditional heteroskedastic models. Thesimplest examples of such models can be written by random recurrence equations of the formXn = �n + �n "n ; n 2 N ; (1.10)



7where "n are i.i.d. innovations with mean zero, �n is the conditional expectation of Xn (whichmay or may not depend on n) and the volatility �n describes the change of (conditional) variance.Empirical work has con�rmed that such models �t many types of �nancial data (log-returns,exchange rates, etc.). The following empirical stylised facts of �nancial data can be modelled bysuch discrete-time stochastic volatility models:- heavy-tailedness- clustering in the extremes- large 
uctuations- data are uncorrelated, but not independentProcesses which are most popular in econometrics and which belong to the class (1.10) areARCH (autoregressive conditional heteroskedastic) models and GARCH (generalised ARCH)models.
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8 CHAPTER 1. INTRODUCTIONwinter storms Daria and Vivian) and 1992 (the year of hurricane Andrew) have caused anextremely high damage and put signi�cant �nancial demands on society, for details on these,see Sigma (1995)-(1998).Within the �nance context, extremal events can be observed whenever stock market crasheslike the one this year occur (see Figures 1.3 and 1.4). Other examples are the losses within therealm of derivatives such as the collapse of Barings Bank or the losses of the Metallgesellschaft.
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91.2 An outline of the thesisAs indicated in Section 1.1 and in the table of contents this thesis consists of two main parts.In Chapter 2 we consider a class of autoregressive (AR) processes with ARCH(1) errors givenby the random recurrence equationXn = �Xn�1 +q� + �X2n�1"n ; n 2 N ; (2.11)where the innovations ("n)n2N are i.i.d. random variables and � 2 R, �; � > 0. As mentionedbefore, processes de�ned by such a stochastic di�erence equation are suitable models for log-returns of stock prices and exchange rates because of their non-constant volatilities (see also forinstance Duan (1996)).In Section 2.1 we investigate this model in detail. We introduce some assumptions on theinnovations ("n)n2N : the general conditions guarantee the existence and uniqueness of a station-ary version of (Xn)n2N whereas (D:1) � (D:3) allow us to describe the tail behaviour of thestationary distribution and the extremal behaviour of (Xn)n2N . The normal distribution, forinstance, satis�es all these assumptions.In Section 2.2 we determine the parameter set of stationarity for model (2.11) and the tail ofthe stationary distribution. Theorem 2.2.3 collects some probabilistic properties of (Xn)n2N , inparticular the existence and uniqueness of a stationary distribution. The results are an extensionof the results of Diebolt and Gu�egan (1990) and Maercker (1997). The main result of Section 2.2is given in Theorem 2.2.11. Under the general conditions and (D:1) � (D:3) the tail of thestationary distribution of (Xn)n2N , which is the distribution function of a random variable X,behaves asymptotically like P (X > x) � c x�� ; x!1 ; (2.12)where c = c(�; �; �; ") and � = �(�; �; ") are well-speci�ed constants depending on �; �; �; "and �; �; ", respectively, and " is a generic random variable with the same distribution as theinnovations ("n)n2N . For � = 0 the asymptotic relation (2.12) coincides with the correspondingresult in Goldie (1991). We extend his result to the larger class of processes (2.11) to whichhis idea of proof does not apply. Our method of proof uses the Tauberian theorem of Drasinand Shea which was proven �rst in Jordan (1974). The theorem takes its name from Drasinand Shea (1976). Loosely speaking, Tauberian theory draws conclusions from the asymptoticbehaviour of some transform to the asymptotic behaviour of a kernel density or distribution tail(see Bingham, Goldie, Teugels (1987)).



10 CHAPTER 1. INTRODUCTIONIn Section 2.3 we investigate the extremal behaviour of the AR(1) process with ARCH(1)errors (2.11). In order to do this we investigate the related process (Zn)n2N = (ln(X2n))n2N .The process (Zn)n2N is crucial for the study of the extremal behaviour of (Xn)n2N . We show inLemma 2.3.1 that (Zn)n2N behaves above a high threshold asymptotically like a random walkwith negative drift, which can be completely speci�ed. Subsection 2.3.2 contains the main results(Theorem 2.3.5) concerning the extremal behaviour of (Xn)n2N . An explicit formula for theextremal index is given and the probability distribution for the length of a cluster is calculated.We interpret these results and present some simulations. The proof of our results invokes thework of Perfekt (1995) where the extremal behaviour of real-valued, stationary Markov chainsis studied under certain assumptions.In Chapter 3 we investigate the extremal behaviour of di�usion processes which are given bystochastic di�erential equations of the form (1.9) with �(t;Xt) = �(Xt) and �(t;Xt) = �(Xt),i.e. we consider always homogeneous di�usion processes which can be completely characterisedby their associated scale function and speed measure. Although di�usion processes are idealisedmodels for �nancial data (continuous trading is not possible in the real world), some of themcapture quite well empirical observations in real data.In Section 3.1 we present the framework for the results about the extremal behaviour ofdi�usion processes to follow. We shall require certain properties of the speed measure and scalefunction of (Xt)t�0, which we explain and summarise in the so-called usual conditions. Theyguarantee in particular that the di�usion process (Xt)t�0 is ergodic and has inaccessible bound-aries .Section 3.2 presents some results on extreme value theory for di�usion processes which werealready mentioned. We show that, provided the properly normalised maxima MXt of a di�usionprocess up to time t have a weak non-degenerate limit as t ! 1, then, under weak additionalconditions, the point processes of "-upcrossings converge to a homogeneous Poisson process(Theorem 3.2.4). This result is comparable to (1.8) for � < 2 in the Gaussian case. Furthermore,we derive the limit distribution ofMXt (suitably normalised) under simple conditions on the driftterm and the di�usion coe�cient (Theorem 3.2.7). Finally, we show how to construct a di�usionwith pre-determined stationary density which captures any extremal behaviour (Theorem 3.2.8).In Section 3.3 we apply these results in order to derive the extremal behaviour of such di�u-sions as the Vasicek model, the Cox-Ingersoll-Ross (CIR) model, including a generalised version,and the generalised hyperbolic di�usion. They are all standard models in �nance. Depending



11on the choice of parameters the generalised CIR model allows for large 
uctuations in the data.This is captured by the limit distribution of MXt and the intensity of the limit point process of"-upcrossings.In Section 3.4 we present a new model, the generalised inverse Gaussian di�usion, whichis constructed with the pre-determined generalised inverse Gaussian stationary density and apre-determined di�usion coe�cient. If we choose the di�usion coe�cient as in the CIR modelwe obtain a further generalisation of this important model. Whereas in Section 3.3 we mainlypresent results without explicit calculations, for this new model we derive certain quantities indetail.The Appendix is made up of four di�erent parts, A1-A4. Appendix A1 is concerned withclassical extreme value theory. We describe the maximum domains of attraction of the Fr�echetand Gumbel distribution and present how to compute the centring and normalising constants.In Appendix A2 we derive the normalising constants at > 0 and bt 2 R for the maxima of theVasicek di�usion and the generalised Cox-Ingersoll-Ross di�usion for 1=2 < 
 < 1. Finally, someadditional extreme value theory for Markov chains and some general Markov chain theory areprovided in Appendix A3 and A4, respectively.
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Chapter 2
The Autoregressive Process withARCH(1) Errors
Recently there has been considerable interest in nonlinear time series models (see e.g. Priest-ley (1988), Tong (1990), Taylor (1995)). Many of these models were introduced to allow theconditional variance (conditional heteroskedasticity) of a time series model to depend on pastinformation. It has turned out that such models �t very well to many types of �nancial data.Empirical work (see e.g. Mandelbrot (1963), Fama (1965)) has shown that large changes inequity returns and exchange rates, with high sampling frequency, tend to be followed by largechanges setting down after some time to a more normal behaviour. This observation leads tomodels of the form Xn = �n "n ; n 2 N ; (0.1)where the innovations ("n)n2N are i.i.d. symmetric random variables with mean zero, and thevolatility �n describes the change of (conditional) variance.One of the speci�cations of (0.1) are the autoregressive conditionally heteroskedastic (ARCH)models where the conditional variance �2n is a linear function of the squared past observations.ARCH(p) models introduced by Engle (1982) are de�ned by�2n = �0 + pXj=1 �jX2n�j ; �0 > 0; �1; :::; �p �; �p > 0; n 2 N ; (0.2)where p is the order of the ARCH process.In a series of papers, the ARCH model has been analysed, generalised and used to test fortime-varying risk premia in the �nancial market. We refer for instance to the survey article by13



14 CHAPTER 2. AR(1) PROCESS WITH ARCH(1) ERRORSBollerslev, Chou and Kroner (1992) and the statistical review paper by Shephard (1996). Themost famous generalisation to so-called generalised ARCH (GARCH) processes was proposed inBollerslev (1986). The volatility �n is now a linear function inX2n�1; X2n�2; ::: and �2n�1; �2n�2; ::: .ARCH and GARCH models are widely used to model �nancial time series since they captureexactly the empirical observation in �nancial data, namely the tendency for volatility clusteringand the fact that unconditional price and return distributions tend to have fatter tails than thenormal distribution.Another extension are the class of autoregressive (AR) models with ARCH errors introduced byWeiss (1984). These models are also called SETAR-ARCH models (self-exciting autoregressive).They are de�ned by Xn = f(Xn�1; :::;Xn�k) + �n "n; n � k ; (0.3)where f is again a linear function in its arguments and �n is given by (0.2). This model combinesthe advantages of an AR model which targets more on the conditional mean of Xn given the pastand an ARCH model which concentrates on the conditional variance of Xn (given the past).The class of models de�ned by (0.3) embodies various nonlinear models. In this chapter wefocus on the AR(1) process with ARCH(1) errors, i.e. f(Xn�1; :::;Xn�k) = �Xn�1 for some� 2 R and �n is given in (0.2) with p = 1. Note that in the special case � = 0 we get just theARCH(1) model of Engle (1982). This Markovian model is analytically tractable and may serveas a prototype for the larger class of models (0.3).The purpose of this work is to investigate the tail of the stationary distribution of the AR(1)process with ARCH(1) errors (Xn)n2N . The model has also been considered for instance byDiebolt and Gu�egan (1990) and Maercker (1997). For � = 0 the process is an AR(1) processwhose stationary distribution is determined by the innovations ("n)n2N , for "n normal it is aGaussian process. In the ARCH(1) case (the case when � = 0) the tail is known (see e.g. Goldie(1991) or Embrechts, Kl�uppelberg, Mikosch (1997)). The result was obtained by consideringthe squared ARCH(1) process which leads to a stochastic di�erence equation which �ts in thesetting of Kesten (1973) and Vervaat (1979). This approach is, however, in general not possibleor at least not obvious for � 6= 0. Nevertheless for "n normal, provided a stationary distributionexists, a characteristic function argument transforms the model such that the results by Kesten(1973), Vervaat (1979) and Goldie (1991) may be applied. We refer to Remark 2.2.21 for furtherdetails. For the general case we present another technique using the Drasin-Shea Tauberiantheorem which can be found for instance in Bingham, Goldie, Teugels (1987). This method may



15also be applied to other models given by a stochastic di�erence equation but falling out of theframework of Kesten (1973), Vervaat (1979) and Goldie (1991). In section 2.3 we investigate theextremal behaviour of the AR(1) process with ARCH(1) errors (Xn)n2N extending the work byde Haan, Resnick, Rootz�en and de Vries (1989) .2.1 Assumptions on the modelIn this section we present the model and introduce the required assumptions on the innovations("n)n2N . They are assumed to hold from now on if it is not stated otherwise.We consider throughout this chapter an autoregressive model of order 1 with autoregressiveconditionally heteroskedastic errors of order 1 (AR(1) model with ARCH(1) errors) which isde�ned by the stochastic di�erence equationXn = �Xn�1 +q� + �X2n�1"n ; n 2 N ; (1.1)where ("n)n2N are i.i.d. random variables with mean zero , � 2 R; �; � > 0 and X0 independentof ("n)n2N . Let " be a generic random variable with the same distribution as "n. Throughoutthis chapter, we assume that the following general conditions for " are in force:" has full support R ;" is symmetric with continuous Lebesgue density p ; (1.2)the second moment of " exists :Note that the process is evidently a homogeneous Markov chain with state space R equippedwith the Borel �-algebra. The transition kernel density is given byP (X1 2 dy jX0 = x) = 1p� + �x2 p( y � �xp� + �x2 )dy ; x 2 R : (1.3)Under appropriate conditions on � and �, Theorem 2.2.3 in Section 2 guarantees the existenceand uniqueness of a stationary distribution � of (Xn)n2N . In the following F denotes the dis-tribution function of � and X is a random variable with distribution function F . From thestochastic di�erence equation (1.1) it is straightforward that X satis�es the �xpoint equationX d= �X +p� + �X2 " ; (1.4)where " is a random variable with probability density p, independent of X. In order to determinethe tail of the stationary distribution function F we need some additional technical assumptionson p:



16 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTION(D.1) p(x) � p(x0) for any 0 � x < x0 .(D.2) For any c � 0 there exists a constant q = q(c) 2 (0; 1) and functions f+(c; �); f�(c; �) withf+(c; x); f�(c; x)! 1 as x!1 such that for any x > 0 and t > xqp(x+ c+ �tp� + �t2 ) � p( x+ �tp� + �t2 ) f+(c; x) ;p(x+ c� �tp� + �t2 ) � p( x� �tp� + �t2 ) f�(c; x) :(D.3) There exists a constant � > 0 such thatp(x) = o(x�(N+1+�+3q)=(1�q)) ; as x!1 ;where N := inffu � 0 jE(jp�"ju) > 2g and q is the constant in (D:2) .The general conditions (1.2) and assumption (D:1) are fairly general and can be checked eas-ily, wheras (D:2) � (D:3) seem to be quite technical and untractable. Nevertheless, numerousdensities satisfy these assumptions, one being the normal (see Example 2.2.13).2.2 The tail of the stationary distribution of an AR(1) processwith ARCH(1) errorsIn this section we want to determine the parameter set of stationarity for our model and the tailof the stationary distribution. In Theorem 2.2.3 we summarize some probabilistic properties of(Xn)n2N , in particular the existence and uniqueness of a stationary distribution. Theorem 2.2.11is the main theorem in this section. We show that the stationary distribution has a Pareto-liketail with a well-speci�ed tail index . For � = 0 our result coincides with the corresponding resultin Goldie (1991) whereas for � 6= 0 the tail index is determined by the autoregressive coe�cient�, the ARCH(1) parameter � and the distribution function of the innovations ("n)n2N . The proofof this result will be an application of a modi�cation of the Drasin-Shea Tauberian theorem.2.2.1 Existence and uniqueness of a stationary distributionIn order to determine the tail of the stationary distribution we need some properties of theprocess (Xn)n2N . They are summarised in Theorem 2.2.3. In particular, the geometric ergodicityguarantees the existence and uniqueness of a stationary distribution. A short introduction to



17Markov chain terminology and the proof of Theorem 2.2.3 is given in the Appendix A4. Forfurther details we refer to Tweedie (1976) or Meyn and Tweedie (1993).Proposition 2.2.1 Let " be a random variable with probability density p satisfying our generalconditions. De�ne h�;� : [0;1) ! [0;1] for � 2 R; � > 0 byh�;�(u) := E(j�+p� "ju) ; u � 0 : (2.1)(a) The function h�;�(�) is strictly convex in [0; T ), where T := inffu � 0 jE(jp� "ju) =1g.(b) If furthermore the parameters � and � are chosen such thath0�;�(0) = E(ln j�+p� "j) < 0 ; (2.2)then there exists a unique solution � = �(�; �) > 0 to the equation h�;�(u) = 1. Moreover,under h0�;�(0) < 0 , �(�; �)8>>><>>>: > 2 ; �2 + �E("2) < 1= 2 ; �2 + �E("2) = 1< 2 ; �2 + �E("2) > 1 : (2.3)Proof. The function h�;�(�) has derivatives of all orders in [0; T ). In particular, for u 2 [0; T ),h0�;�(u) = E(j�+p� "ju ln(j�+p� "j)) ;h00�;�(u) = E(j� +p� "ju(ln j�+p� "j)2) > 0 : (2.4)Statement (a) follows from (2.4). Because of the symmetry of " we may assume w.l.o.g. � � 0and hence h�;�(u) � E(1f"�2=p�gj�+p� "ju) � E(1f"�2=p�gjp� "ju)= 2uE(1f"�2=p�g)!1 ; u!1 :The latter fact, together with h�;�(0) = 1, assumption (2.2) and the strict convexity of h�;�implies that there exists a unique solution � > 0 such that h�;�(�) = 1. Finally,h�;�(2) = �2 + �E("2) ;which �nishes the proof. 2



18 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONj�j 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7� (0,3.56] (0,3.55] (0,3.52] (0,3.47] (0,3.39] (0,3.30] (0,3.18] (0,3.04]j�j 0.8 0.9 1 1.1 1.2 1.25 1.27 1.27805� (0,2.87] (0,2.66] (0,2.42] (0.17,2.11] (0.38,1.69] (0.58,1.38] (0.75,1.19] (0.94,0.96]Table 2.1: Numerical domain of � dependent on j�j such that h0�;�(0) < 0 in the case " � N(0; 1).� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9j�j 1.05 1.11 1.16 1.20 1.23 1.25 1.26 1.27 1.28� 1 1.1 1.2 1.5 2 2.5 3 3.5 3.56j�j 1.28 1.27 1.27 1.23 1.13 0.97 0.72 0.24 0.04Table 2.2: Numerical supremum of j�j dependent on � such that h0�;�(0) < 0 in the case " � N(0; 1).Remark 2.2.2 (a) By Jensen's inequality �2 + �E("2) < 1 implies h0�;�(0) < 0.(b) Proposition 2.2.1 holds in particular for a standard normal distributed random variable ".In this case T =1.(c) In general, it is not possible to determine explicitly which parameters � and � satisfy (2.2).If � = 0 and " � N(0; 1) (i.e. in the ARCH(1) case) (2.2) is ful�lled if and only if � 2 (0; 2e
),where 
 is Euler's constant (see Embrechts et al. (1997), Section 8.4). For � 6= 0, Tables 2.1 and2.2 show numerical domains of � and � for " � N(0; 1).(d) Note that � is a function of � and �. Since " is symmetric � does not depend on the signof �. For " � N(0; 1) we can show: for �xed �, � is decreasing in j�j. See also Table 3.Proof. W.l.o.g. � � 0. Let '(� j�; �2) denote the normal density with mean � and variance �2.Then, by symmetry of ',@h�;�(u)@� = 1� Z 1�1 jyju(y � �)'(yj�; �)dy= 1� �Z 0�1(�y)u(y � �)'(yj�; �)dy + Z 10 yu(y � �)'(yj�; �)dy�



19j�j � 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.50 12.85 6.09 3.82 2.67 1.99 1.54 1.07 0.61 0.33 0.15 0.010:2 11.00 5.49 3.52 2.51 1.89 1.46 1.03 0.59 0.32 0.13 0.010:4 8.12 4.28 2.87 2.10 1.61 1.26 0.90 0.51 0.27 0.10 -0:6 5.41 3.03 2.12 1.60 1.25 0.99 0.71 0.39 0.19 0.05 -0:8 3.00 1.85 1.37 1.07 0.85 0.68 0.48 0.25 0.09 - -1:0 0.96 0.83 0.70 0.57 0.47 0.37 0.25 0.09 - - -1:2 - 0.01 0.01 0.01 0.01 0.01 0.01 - - - -Table 2.3: Numerical solution of h�;�(�) = 1 for � = �(�; �) dependent on � and � in the case " � N(0; 1). For� = 0 a similar table can be found in de Haan et al. (1989).= uZ 10 yu�1 ('(yj�; �) � '(yj � �; �)) dy > 0 ; u � 0 ;where the last line follows by partial integration with respect to y. We may therefore concludethat, if �0 > � then h�;�(u) < h�0;�(u) for any �; u. Assume �(�) � �(�0). Then we have byProposition 2.2.1(b) and H�older's inequality that1 = h�;�(�(�)) < h�0;�(�(�)) � h�0;�(�(�0))�(�)=�(�0) = 1 ;which is a contradiction. 2We are now ready to state the following theorem.Theorem 2.2.3 Consider the process (Xn)n2N in (1.1) with ("n)n2N satisfying the general con-ditions and with parameters � and � satisfying (2.2). Then the following assertions hold:(a) Let � be the normalised Lebesgue-measure �(�) := �(� \ [�M;M ])=�([�M;M ]). Then(Xn)n2N is an aperiodic positive �-recurrent Harris chain with regeneration set [�M;M ]for M large enough.(b) (Xn)n2N is geometric ergodic. In particular, (Xn)n2N has a unique stationary distributionand satis�es the strong mixing condition with geometric rate of convergence. The stationarydistribution is continuous and symmetric.



20 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTION(c) If �2+�E("2) < 1, then the stationary distribution of (Xn)n2N has �nite second moment.Remark 2.2.4 (a) Statements (a) and (b) are basically a collection of results of Diebolt andGu�egan (1990) and Maercker (1997). They assume �2 + �E("2) < 1 and hence only cover the�nite variance case.(b) When we study the stationary distribution of (Xn)n2N we may w.l.o.g. assume that � �0. For a justi�cation, consider the process ( eXn)n2N = ((�1)nXn)n2N which satis�es to thestochastic di�erence equationeXn = �� eXn�1 +q� + � eX2n�1 "n ; n 2 N ;where ("n)n2N are the same random variables as in (1.1) and eX0 = X0. If � < 0, because of thesymmetry of the stationary distribution we may hence study the new process ( eXn)n2N :(c) By statement (c), the assumption �2 + �E("2) < 1 is su�cient for the existence of thesecond moment. We will see in Remark 2.2.12(c) that it is also necessary.(d) Theorem 2.2.3 is crucial for investigating the extremal behaviour of (Xn)n2N . The strongmixing property includes automatically that the sequence (Xn)n2N satis�es the conditionsD(un)and �(un). The condition D(un) is a frequently used mixing condition due to Leadbetter et al.(1983) whereas the slightly stronger condition �(un) was introduced by Hsing (1984). Looslyspeaking, D(un) and �(un) give the \degree of independence" of extremes situated far apartfrom each other.Proof. Because of the strict positivity and continuity of the transition density the process(Xn)n2N is a �-irreducible Feller chain. By Feigin and Tweedie (1985), p.3, this implies thatevery compact set of the state space is small and thus [�M;M ] for arbitrary M > 0 is small.Finally, by Proposition 5.3 of Tweedie (1976), [�M;M ] is a status set for (Xn)n2N .(a) Because of Proposition 2.2.1, for � 2 R and � > 0 such that h0�;�(0) < 0 there existsa � > 0 such that h�;�(u) < 1 for any u 2 (0; �) and h�;�(0) = h�;�(�) = 1. Now choose� 2 (0;min(�; 2)) and � 2 (0; 1�h�;�(�)) arbitrary. For any such � and � there exists a constantC = C(�; �) 2 (0; 1) such that h�;�(�) + � � 1� 2C : (2.5)



21De�ne g(x) := 1 + jxj� � 1 for any x 2 R. For M large enough and jxj > M we have bycontinuity of h�;� in � ���h�x=px2+�=� ;�(�)� h�;�(�)��� < � (2.6)and C g(x) � 1 + (h�;�(�)� �)(�1 +O(jxj��2)) (2.7)since � < 2, h�;�(�) � � is independent of x and g increases to 1. From (1.3) we obtain forx!1 Z(�1;1) g(y)P (X1 2 dy jX0 = x) = 1 + (� + �x2)�=2E(j �xp�x2 + � + "j�)= 1 + (�� + x2)�=2h�x=px2+�=� ;�(�)= 1 + (1 +O(x�2))jxj� h�x=px2+�=� ;�(�)= 1 +O(jxj��2)h�x=px2+�=� ;�(�) + jxj� h�x=px2+�=� ;�(�)= 1 + ��1 +O(jxj��2)� h�x=px2+�=� ;�(�) + g(x)h�x=px2+�=� ;�(�) ; (2.8)where the third line follows from Taylor expansion. From (2.5)-(2.8), we obtain for any x 2 Rwith jxj > M ,Z(�1;1) g(y)P (X1 2 dy jX0 = x) � C g(x) + (1� 2C)g(x) = (1� C)g(x) : (2.9)De�ne �[�M;M ] := inffn � 1 jXn 2 [�M;M ]gand let x 2 R be arbitrary. Then we haveE(�[�M;M ] jX0 = x) = E(1fX12[�M;M ]gE(�[�M;M ]jX1)jX0 = x)+E(1fX12[�M;M ]cgE(�[�M;M ]jX1)jX0 = x)� 1 +E(1fX12[�M;M ]cgE(�[�M;M ]jX1)jX0 = x)� 1 + Z[�M;M ]c E(�[�M;M ]jX1 = y)P (X1 2 dyjX0 = x) :By (2.9), Lemma A4.1 holds and we obtain for all x 2 R ,E(�[�M;M ]jX0 = x) � 1 + Z[�M;M ]c g(y)C P (X1 2 dyjX0 = x)� 1 + 1C +E �����x+p�x2 + �"����� <1 (2.10)



22 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONand thus [�M;M ] is Harris recurrent. Since the transition density of (Xn)n2N is strictly positiveon [�M;M ] we know from Asmussen (1987), p.151, that there exists some constant eC 2 (0; 1)such that P (X1 2 B jX0 = x) � eC �(B) (2.11)for any x 2 [�M;M ] and any Borel-measurable set B, i.e. (Xn)n2N is a Harris chain withregeneration set [�M;M ]. Finally, by Theorem A4.2, (2.9) and the fact that [�M;M ] is astatus set, (Xn)n2N is positive Harris �-recurrent.(b) Note thatsupx2[�M;M ]ZR g(y)P (X1 2 dyjX0 = x) = 1 + supx2[�M;M ]E �����x+p�x2 + �"����� <1 : (2.12)Thus the geometric ergodicity follows from Theorem A4.3 and the same arguments as in theproof of statement (a) of this theorem. The process is therefore strongly mixing with a geometricrate. The symmetry of the stationary distribution follows from the ergodicity and the fact thatthe processes (Xn)n2N and (�Xn)n2N have the same transition probabilities, hence the sameunique stationary distribution. Finally, because of the continuity of the transition probabilities,the stationary distribution function is continuous as well.(c) De�ne now the small set A := fx 2 R jx2 � maxf1; �(1� 2�) � (�2 + �E("2))gg with � > 0such that (1� 2 �) � (�2 + �E("2)) > 0 :Choose g(x) = 1 + x2 . Note that for any x 2 Ac ,ZR g(y)P (X1 2 dy jX0 = x) = 1 + x2 ��2 + �E("2) + �x2�� 1 + x2 (1� 2�)= 1� x2� + x2(1� �)� 1� � + x2(1� �) = g(x) (1 � �) : (2.13)By (2.13), (2.12) for � = 2 and A instead of [�M;M ], Theorem A4.4 holds and the secondmoment of the stationary distribution is �nite. 2



232.2.2 The Pareto-like tail of the stationary distributionIn this subsection we investigate the tail F (x) = 1�F (x) of the stationary distribution for largex of the AR(1) process (Xn)n2N with ARCH(1) errors de�ned in (1.1). It turns out that thestationary distribution has a Pareto-like tail. We completely specify this tail. To start with, weshow that even if the building blocks ("n)n2N have moments of all orders not all moments of thestationary distribution are �nite.Proposition 2.2.5 Suppose (Xn)n2N is given by equation (1.1) with ("n)n2N satisfying the gen-eral conditions and with parameters � and � satisfying (2.2). Let X be the stationary limitvariable of (Xn)n2N. Choose N > 0 such thatE(jp�"jN ) > 2 : (2.14)Then E(jXjN ) =1 :Proof. Assume that the N -th moment is �nite. As a consequence of (1.4)E(jXjN ) = E(j�X +p� + �X2"jN )= E(1fX<0gjXjN j�+r �X2 + �(�")jN ) +E(1fX>0gjXjN j�+r �X2 + �"jN )= E(jXjN j�+r �X2 + �"jN )� E(jXjN )E(1f">0gjp�"jN )> E(jXjN ) ;where we used in the third and forth line that X and " are independent. The last line is aconsequence of (2.14) and the symmetry of ". 2Remark 2.2.6 (a) Note that N > 2 if �2 + �E("2) < 1 since the second moment exists byTheorem 2.2.3(c).(b) Condition (2:14) can be replaced by E(1f">0gj�+p�"jN ) > 1 for � � 0 and E(1f"<0gj�+p�"jN ) > 1 for � < 0, respectively. These alternative conditions may enable us to �nd a smallerN .In order to determine the tail of the distribution of X we need the following technical corollary.



24 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONCorollary 2.2.7 Let F (x) = P (X > x); x � 0; be the right tail of the stationary distributionfunction . For any C1 > 1; C2 > 0 and � > 0, there exists some x0 > C1 such thatF (x0) > C2 x�(N+�)0 ;where N is chosen to satisfy (2.14).Proof. Assume there exist some constants C1 > 1; C2 > 0 and � > 0 such thatF (x) � C2 x�(N+�) 8x > C1: (2.15)Let 0 < � < 1 be arbitrary. Then, by symmetry of X, using partial integration and (2.15),E(1fjXj>C1gjXjN��) = 2Z 1C1 xN��dF (x)= �2Z 1C1 xN��dF (x)� 2CN1 + 2(N � �)Z 1C1 xN�1��F (x)dx� 2CN1 + 2NC2 Z 1C1 x�1����dx� 2CN1 + 2N C2� <1 :Since the rhs is independent of �, by the monotone convergence theorem ,E(1fjXj>C1gjXjN ) � 2CN1 + 2N C2� <1 :But this is a contradiction to Proposition 2.2.5 and hence (2.15) is false. 2Because of Proposition 2.2.5 we know that the distribution of X is heavy-tailed in the sensethat not all moments exist. In the following we want to �nd out the precise asymptotic behaviourof its tail. We need the notion of bounded increase of a function, see Bingham, Goldie, Teugels(1987), p.71.De�nition 2.2.8 Let h : (c;1) ! [0;1) for some c 2 R and let �(h) be the upper Ma-tuszewska index, i.e. �(h) is the in�mum of those � 2 R for which there exists a constantC = C(�) such that for each � > 1,h(�x)=h(x) � C(1 + o(1))��; x!1; uniformly in � 2 [1;�] :The function h has bounded increase if �(h) <1.



25Remark 2.2.9 Note that non-negative functions which are decreasing have bounded increase.It turns out that the following modi�cation of the Drasin-Shea Theorem (Bingham et al. (1987),Theorem 5.2.3, p.273) is the key to our result.Theorem 2.2.10 Let k : [0;1)! [0;1) be an integrable function and let (a; b) be the maximalopen interval (where a < 0) such that�k(z) = Z(0;1) t�z k(t)t dt <1 for z 2 (a; b) :If a > �1, assume lim�#0 �k(a+�) =1, if b <1, assume lim�#0 �k(b��) =1. Let h : [0;1)![0;1) be locally bounded. Assume h has bounded increase. Iflimx!1 R(0;1) k(x=t)h(t)dt=th(x) = c > 0 ; (2.16)then c = �k(�) for some � 2 (a; b) and h(x) � x�l(x) ;where l is some slowly varying function.We will identify h with the tail F of the distribution of X. Now we are ready to formulateour main theorem in this section.Theorem 2.2.11 Suppose (Xn)n2N is given by equation (1.1) with ("n)n2N satisfying the generalconditions and (D:1)� (D:3) and with parameters � and � satisfying (2.2). Let F (x) = P (X >x); x � 0; be the right tail of the stationary distribution function. ThenF (x) � l(x)x�� ; x!1 ; (2.17)where l is a slowly varying function and � is given as the unique positive solution toE(j�+p�"j�) = 1 : (2.18)Remark 2.2.12 (a) For the ARCH(1) process (i.e. the case � = 0) this result is well-known.The slowly varying function l is then a constant, given implicitly by certain moments of thestationary distribution (see Goldie (1991)).(b) Note that E(j�+p�"j�) = h�;�(�) as in Lemma 2.2.1. Recall that for " � N(0; 1) and �xed�, the exponent � is decreasing in j�j. This means that the distribution of X gets heavier tails.In particular, our new model has for � 6= 0 heavier tails than the ARCH(1) process (see also



26 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONTable 2.3).(c) Theorem 2.2.11 together with Lemma 2.2.1 implies that the second moment of the stationarydistribution exists if and only if �2 + �E("2) < 1.Example 2.2.13 We give three di�erent distributions for ("n)n2N which satisfy the generalconditions and (D:1)� (D:3).(a) The normal distribution with mean 0 and variance �2:From Remark 2.2.2(b) it is straightforward that the general conditions and (D:1); (D:3) hold.It remains to show (D:2). Choose c � 0; q 2 (1=2; 1); x > 0 and t > xq arbitrary. Thenp(x+ c� �tp� + �t2 ) = 1p2��2 exp�� (x� �t)22�2(� + �t2) � (x� �t)c�2(� + �t2) � c22�2(� + �t2)�� 1p2��2 exp�� (x� �t)22�2(� + �t2) � c��2x1�2q � c22�2(� + �x2q)�= p( x� �tp� + �t2 ) exp�� c��2x1�2q � c22�2(� + �x2q)� :Similarly, we obtainp(x+ c+ �tp� + �t2 ) � p( x+ �tp� + �t2 ) exp�� c��2x1�2q(1 + �xq�1)� c22�2(� + �x2q)� :(b) The Laplace (double exponential) distribution:Consider the probability density p(x) = 12� exp(�jxj� ); x 2 R; � > 0. Again it is obvious that thegeneral conditions and (D:1); (D:3) are satis�ed. (D:2) holds since for any c � 0; q 2 (0; 1); x > 0and t > xq p(x+ c� �tp� + �t2 ) � p( x� �tp� + �t2 ) exp(� c�p�xq )and p(x+ c+ �tp� + �t2 ) � p( x+ �tp� + �t2 ) exp(� c�p�xq ) :(c) The Student's t distribution with � > 2 degrees of freedom:p�(x) = �(12(� + 1))p���(12�) �1 + x2� ��(�+1)=2 :



27It is well-known that for � � 4 E(j"j4) = 3 + 6� � 4 (2.19)and for any r � � E(j"jr) =1 (2.20)(see e.g. Johnson, Kotz, Balakrishnan (1995)). The general conditions and (D:1) are clearlyful�lled. Now note that for any c � 0; q 2 (0; 1); x > 0 and t > xqp�(x+ c� �tp� + �t2 ) � p�( x� �tp� + �t2 ) � x� � tx+ c� � t��+1� p�( x� �tp� + �t2 ) (1 + x�1 c1� �xq�1 )�(�+1)and similarly, p�(x+ c+ �tp� + �t2 ) � p�( x+ �tp� + �t2 ) (1 + x�1 c1 + �xq�1 )�(�+1) :It remains to check (D:3). Because of (2.20) with r = �, there exist constants � > 0 and q 2 (0; 1)such that � > N + � + q(� + 1) + 3q ; (2.21)where N = inffu � 0 jE(jp� "ju) > 2g : For x large enough we thus havep�(x)x(N+1+�+3q)=(1�q) � const x(N+���+q(�+1)+3q)=(1�q) : (2.22)By (2.21), the exponent in (2.22) is strictly negative and hence (D:3) holds.The proof of Theorem 2.2.11 will be an application of Theorem 2.2.10. Proposition 2.2.14 presentsan implicit formula for the right tail F (x); x > 0; of the distribution of X. We will needthe formula to show that assumption (2.16) is ful�lled. In the following all assumptions ofTheorem 2.2.11 hold. Recall that we may w.l.o.g. assume that � � 0.Proposition 2.2.141 = H(x=p�)F (x) + Z 10 f(x; t)dt+ Z 10 h(x; t)dt ; x 2 R ; (2.23)where H = 1�H denotes the tail of the distribution function of " and for x 2 R; t > 0,f(x; t) := �p( x� �tp� + �t2 ) + p( x+ �tp� + �t2 )� x�t2(� + �t2)3=2 F (t)F (x) 1t ;h(x; t) := �p( x� �tp� + �t2 )� p( x+ �tp� + �t2 )� ��t(� + �t2)3=2 F (t)F (x) 1t :



28 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONProof. By (1.4) and the symmetry of X, we haveF (x) = Z 1�1 P (�X +p� + �X2 " > x jX = t)dF (t)= Z 0�1 P (�t+p� + �t2" > x)dF (t) + Z 10 P (�t+p� + �t2" > x)dF (t)= �Z 10 P (��t+p� + �t2" > x)dF (�t) + Z 10 P (�t+p� + �t2" > x)dF (t)= �Z 10 P (��t+p� + �t2" > x)dF (t) + Z 10 P (�t+p� + �t2" > x)dF (t)= �Z 10 �H( x+ �tp� + �t2 ) +H( x� �tp� + �t2 )�dF (t) ;where we used in the fourth line that the distribution of X is symmetric. By partial integrationand again symmetry, we obtainF (x) = H( xp� )� Z 10 �p( x+ �tp� + �t2 )�(� + �t2)� (x+ �t)�t(� + �t2)3=2+ p( x� �tp� + �t2 )��(� + �t2)� (x� �t)�t(� + �t2)3=2 �F (t)dt= H( xp� ) + Z 10 �p( x� �tp� + �t2 ) + p( x+ �tp� + �t2 )� x�t2(� + �t2)3=2F (t)dtt (2.24)+ Z 10 �p( x� �tp� + �t2 )� p( x+ �tp� + �t2 )� ��t(� + �t2)3=2F (t)dtt :This �nishes the proof. 2We investigate now (2.23). Together with Lemma 2.2.5 and Corollary 2.2.7 we collect some resultsin the following lemmas and corollaries. These results will be crucial in applying Theorem 2.2.10.Lemma 2.2.15 limx!1 R10 f(x; t)dt = 1 .Proof. Let q 2 (0; 1) and � > 0 be the constants in (D:2) and (D:3), respectively. Because ofassumption (D:3), there exist constants x0; D > 0 such that for all x > x0p(x) � Dx�(N+1+�+3q)and thus we have for all x > x0H(x=p�) � D�(N+�+3q)=2N + � + 3q x�(N+�+3q) : (2.25)By Corollary 2.2.7 and (2.25), there exists therefore a sequence (xn) " 1 and a constant eD > 0such that for any xn > p� x0H(xn=p�)F (xn) � D�(N+�+3q)=2eD (N + � + 3q) x�3qn : (2.26)



29Note now that jh(x; t)j � ��x�f(x; t); for any t � 1 and x � 0: (2.27)Hence, ����Z 11 h(x; t)dt���� � ��x� Z 11 f(x; t)dt : (2.28)Because of (2.28) and the fact that due to assumption (D:1)h(x; t) � 0 (2.29)for x large enough and t 2 [0; 1], we havelim supx!1 Z 10 f(x; t)dt � 1 : (2.30)Fix now some t � 0. By Corollary 2.2.7 there exists a sequence (xn)n2N " 1 such that for somefunction c(t) � 0 and any � > 00 � f(xn; t) � c(t)�p( xn � �tp� + �t2 ) + p( xn + �tp� + �t2 )�xN+1+�n ;and therefore by condition (D:3)lim infx!1 f(x; t) = 0 ; for any t 2 (0;1) :With similar arguments we derive alsolim infx!1 h(x; t) = 0 ; for any t 2 (0;1) :Because of the continuity of the functions f and h we have thus that for any �xed T � 0lim infx!1 Z T0 f(x; t)dt = 0 and lim infx!1 Z T0 h(x; t)dt = 0 : (2.31)Thus again with (2.26), (2.28) and (2.31) with T = 1 we obtainlim infx!1 Z 10 f(x; t)dt = 1 ;which �nishes the proof. 2The next corollary is a consequence of Lemma 2.2.15 and its proof. The result supports oursupposition that the stationary distribution has a Pareto-tail.Corollary 2.2.16 limx!1 F (x+ c)=F (x) = 1 for any c 2 (0;1).



30 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONProof. By monotonicity, lim supx!1 F (x+ c)=F (x) � 1. Furthermore, due to Lemma 2.2.15,lim infx!1 F (x+ c)F (x)= lim infx!1 F (x+ c)F (x) Z 10 f(x+ c; t)dt� lim infx!1 Z 10 �p(x+ c� �tp� + �t2 ) + p(x+ c+ �tp� + �t2 )� (x+ c)�t2(� + �t2)3=2 F (t)F (x) dtt� lim infx!1 Z 1xq �p(x+ c� �tp� + �t2 ) + p(x+ c+ �tp� + �t2 )� x�t2(� + �t2)3=2 F (t)F (x) dtt ; (2.32)where q 2 (0; 1) is the constant in (D:2). Now choose � > 0 arbitrary. Because of condition (D:2)(2.32) may be estimated below bylim infx!1 F (x+ c)F (x)� (1� �) lim infx!1 Z 1xq �p( x� �tp� + �t2 ) + p( x+ �tp� + �t2 )� x�t2(� + �t2)3=2 F (t)F (x) dtt= (1� �) lim infx!1 Z 1xq f(x; t)dt : (2.33)Next considerlim infx!1 Z 10 f(x; t)dt= lim infx!1 Z T0 f(x; t)dt+ lim infx!1 Z xqT f(x; t)dt+ lim infx!1 Z 1xq f(x; t)dt=: J1 + J2 + J3 : (2.34)We showed in the proof of Lemma 2.2.15 that J1 = 0. Furthermore, by assumption (D:1),J2 � lim infx!1 �p( x� �xqp� + �x2q ) + p( xp� + �x2q )� x2q+1�(� + �T 2)3=2T 1F (x) (xq � T )� lim infx!1 �p( x� �xqp� + �x2q ) + p( xp� + �x2q )� x3q+1�(� + �T 2)3=2T 1F (x)= lim infx!1 �p(x1�q(1� �xq�1)p�=x2q + � ) + p( x1�qp�=x2q + �)� x3q+1�(� + �T 2)3=2T 1F (x) :From Corollary 2.2.7 and the assumption (D:3) we conclude J2 = 0. Plugging all this togetherwe get from (2.33) thatlim infx!1 F (x+ c)F (x) � (1� �) lim infx!1 Z 10 f(x; t)dt = 1� � ;where the last line follows from Lemma 2.2.15. Because � was arbitrary the corollary is proven.2



31Lemma 2.2.17 limx!1 R10 g(x; t)dt = 1, whereg(x; t) := �p(x� �tp�t ) + p(x+ �tp�t )� x�t2(�t2)3=2 F (t)F (x) 1t :Proof. By the general conditions and assumption (D:1) , for any x; t � 0p(x� �tp� t ) � p( x� �tp� + �t2 )and hence with Lemma 2.2.15 and the same arguments as in the proof of Corollary 2.2.16 weget lim supx!1 Z 10 g(x; t)dt = lim supx!1 Z 1xq g(x; t)dt� lim supx!1 Z 1xq f(x; t)dt= lim supx!1 Z 10 f(x; t)dt = 1 ;where q 2 (0; 1) is the constant in (D:2). It remains to show the converse inequality for the limesinferior. Note that for any �xed T � 0lim infx!1 Z T0 g(x; t)dt = 0 : (2.35)By (2.35), the general conditions and assumptions (D:1); (D:2) and substitution t =p�=�+ s2,we havelim infx!1 Z 10 g(x; t)dt = lim infx!1 Z 1p�=� g(x; t)dt= lim infx!1 Z 10 �p(x� �p�=�+ s2p� + �s2 ) + p(x+ �p�=�+ s2p� + �s2 )� x�s2(� + �s2)3=2 F (ps2 + �=�)F (x) dss� lim infx!1 Z 10 1fx��p�=�+s2�0gp( x� �sp� + �s2 ) x�s2(� + �s2)3=2 F (ps2 + �=�)F (x) dss+ lim infx!1 Z 10 1fx��p�=�+s2<0gp(x� �p�=�� �sp� + �s2 ) x�s2(� + �s2)3=2 F (ps2 + �=�)F (x) dss+ lim infx!1 Z 10 p(x+ �p�=�+ �sp� + �s2 ) x�s2(� + �s2)3=2 F (ps2 + �=�)F (x) dss� lim infy!1 Z 1(y+�p�=�)q 1fy+�p�=���p�=�+s2�0gp(y + �p�=�� �sp� + �s2 )y�s2(� + �s2)3=2 F (ps2 + �=�)F (y + �p�=�) dss+ lim infy!1 Z 1(y+�p�=�)q 1fy+�p�=���p�=�+s2<0gp( y � �sp� + �s2 )



32 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONy�s2(� + �s2)3=2 F (ps2 + �=�)F (y + �p�=�) dss+ lim infy!1 Z 1(y+�p�=�)q f+(�p�=�; y + �p�=�) p(y + �p�=�+ �sp� + �s2 )y�s2(� + �s2)3=2 F (ps2 + �=�)F (y + �p�=�) dss� lim infy!1 Z 1(y+�p�=�)q 1fy+�p�=���p�=�+s2�0gf�(�p�=�; y) p( y � �sp� + �s2 )y�s2(� + �s2)3=2 F (ps2 + �=�)F (y) dss+ lim infy!1 Z 1(y+�p�=�)q 1fy+�p�=���p�=�+s2<0gp( y � �sp� + �s2 )y�s2(� + �s2)3=2 F (ps2 + �=�)F (y) dss (2.36)+ lim infy!1 Z 1(y+�p�=�)q f+(�p�=�; y + �p�=�) f+(�p�=�; y) p( y + �sp� + �s2 )y�s2(� + �s2)3=2 F (ps2 + �=�)F (y) dss ;where q 2 (0; 1) is the constant in (D:2). Now choose any � > 0 and T so large that for anys; y � T f�(�p�=�; y) > (1� �)1=3 ; (2.37)f+(�p�=�; y) > (1� �)1=3 ; (2.38)F (ps2 + �=�)F (s) > (1� �)1=3 : (2.39)(2.39) holds because of Corollary 2.2.16. Plugging (2.37)-(2.39) in (2.36) we getlim infx!1 Z 10 g(x; t)dt� (1� �)2=3 lim infy!1 Z 1(y+�p�=�)q 1fy+�p�=���p�=�+s2�0gp( y � �sp� + �s2 ) y�s2(� + �s2)3=2 F (s)F (y) dss+(1� �)1=3 lim infy!1 Z 1(y+�p�=�)q 1fy+�p�=���p�=�+s2<0gp( y � �sp� + �s2 ) y�s2(� + �s2)3=2 F (s)F (y) dss+(1� �) lim infy!1 Z 1(y+�p�=�)q p( y + �sp� + �s2 ) y�s2(� + �s2)3=2 F (s)F (y) dss� (1� �) lim infy!1 Z 1(y+�p�=�)q f(y; t)dt = (1� �) ;where the last line follows from Lemma 2.2.15 and the proof of Corollary 2.2.16. 2With these lemmas we are now able to prove Theorem 2.2.11.



33Proof of Theorem 2.2.11. The proof is just an application of Theorem 2.2.10. Choosek(x) = xp��p(x� �p� ) + p(x+ �p� )� ; x > 0 ; (2.40)and h(x) = F (x) ; x > 0 : (2.41)One can readily see that k is non-negative, h is non-negative, locally bounded and of boundedincrease because of Remark 2.2.9. Note that for any z 2 (�1;1)�k(z) = Z 10 t�z k(t)t dt= Z 10 t�z 1p�p( t� �p� )dt+ Z 0�1(�t)�z 1p�p( t� �p� )dt= E(j� +p�"j�z) :Let (a; b) be the maximal open interval such that�k(z) <1 for z 2 (a; b) :Note that a = �T = � inffu � 0 jh�;�(u) =1g < 0 and b = 1 because of Proposition 2.2.1 andthe fact that for z � 0Z 11 t�z k(t)t dt � Z 11 1p��p( t� �p� ) + p( t+ �p� )�dt <1and Z 10 t�z k(t)t dt � const Z 10 t�zdt = 8<: <1 ; z < 1=1 ; z � 1 :Furthermore, by the dominated and monotone convergence theorem, respectively,lim�#0 �k(a+ �) = lim�#0 E �1fj�+p� "j�1gj�+p� "j�(a+�)�+ lim�#0 E �1fj�+p� "j>1gj�+p� "j�(a+�)�= E �1fj�+p� "j�1gj�+p� "jT� + E �1fj�+p� "j>1gj�+p� "jT�= h�;�(T ) = 1and lim�#0 �k(b� �) = lim�#0 Z 10 t�(1��) 1p��p( t� �p� ) + p( t+ �p� )�dt� const lim�#0 Z 10 t�(1+�)dt = const lim�#0 1� = 1 :
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Figure 2.1: The Hill estimator for the stationary distribution of the autoregressive process with ARCH(1) errorswith length n = 10000 and parameters � = 0:4, � = 0:6 and " � N(0; 1). We calculate the 5 and 95 percentempirical quantiles (dotted lines) and the empirical median (solid line). The horizontal line indicates the numericalsolution of � in (2.18). From Table 2.3 we know that � = 2:87.Finally, by Lemma 2.2.17, we havelimx!1 R10 k(x=t)F (t)dt=tF (x) = limx!1Z 10 g(x; t)dt = 1and hence condition (2.16) is ful�lled with c = 1. Therefore all assumptions of Theorem 2.2.10are satis�ed and we derive (setting � = ��) thatF (x) � x��l(x) ; (2.42)where l is some slowly varying function and � is determined by the equationE(j�+p�"j�) = 1 ; for some � 2 (�1; T ) : (2.43)Since the tail of the stationary distribution function is decreasing the solution � in (2.43) hasto be strictly positive and hence by Theorem 2.2.10 there exists a solution � 2 (0; T ) in (2.43)which is unique because of Lemma 2.2.1. 2Theorem 2.2.11 is a generalisation of the result of the ARCH(1) process as a consequence ofusing a di�erent kind of technique for the proof. However, the Drasin-Shea Tauberian theoremguarantees only a regularly varying tail, i.e. an unknown slowly varying function l appearswhereas in the ARCH(1) case this is a constant which was calculated explicitly by Goldie (1991).In Goldie (1991), the distribution tail of a random recurrence equation is derived by renewal



35arguments. As mentioned before, the AR(1) process with ARCH(1) errors does not �t intothis setting. However, we introduce another process (Yn)n2N which has the same stationarydistribution as the process (jXnj)n2N and which satis�es the conditions needed to �t into Goldie'sframework. To check Goldie's assumptions leading to a Pareto-like tail we rely on the resultswhich we have worked out so far.We investigate the process (Yn)n2N given by the stochastic di�erence equationYn = j�Yn�1 +q� + �Y 2n�1"nj ; n � 1 ; (2.44)where ("n)n2N are the same i.i.d. random variables as in Theorem 2.2.11, the constants are thesame as for the process (Xn)n2N and Y0 equals jX0j a.s. The following lemma manifests that theprocesses (Yn)n2N and (jXnj)n2N have trivially the same stationary distribution.Lemma 2.2.18 If jX0j = Y0 a.s. then (jXnj)n2N d= (Yn)n2N.Proof. Note �rst that the processes (jXnj)n2N and (Yn)n2N are homogeneous Markov processes.It su�ces therefore to show that the one-dimensional transition probabilities are the same. Forany x 2 R,P (Y1 � x jY0) = P ������jX0j+q� + �X20"1���� � x ��� jX0j�= P (�x � �X0 +q� + �X20"1 � x;X0 � 0 j jX0j)+P (�x � �(�X0) +q� + �X20"1 � x;X0 < 0 j jX0j)= P (�x � �X0 +q� + �X20"1 � x;X0 � 0 j jX0j)+P (�x � �X0 +q� + �X20"1 � x;X0 < 0 j jX0j)= P (j�X0 +q� + �X20"1j � x j jX0j)= P (jX1j � x j jX0j)This �nishes the proof. 2Corollary 2.2.19 The slowly varying function l in Theorem 2.2.11 can be chosen as the con-stant c = 12� E �����jXj +p� + �X2"���� � ���(�+p�")jXj�����E �j�+p�"j� ln j�+p�"j� : (2.45)



36 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTIONRemark 2.2.20 In the ARCH(1)-case this result is known (see Goldie (1991)). But there, theresult was proven di�erently by investigating (X2n)n2N .Proof. The proof is an application of Corollary 2.4 of Goldie (1991). Consider the process in(2.44). De�ne M := j� + p�"j and choose � as in Theorem 2.2.11. Due to our assumptionson " the conditions of Corollary 2.4 of Goldie (1991) on M are satis�ed. By Lemma 2.2.18 thestationary distribution of the process (Yn)n2N is the same as for (jXjn)n2N . In particular, byTheorem 2.2.11, E(Y ��1) <1 ; (2.46)where Y has the stationary distribution of (Yn)n2N . Finally,E ����(j�Y +p� + �Y 2 "j)� � (j�+p� "jY )������ E ��j(�Y +p� + �Y 2")� (�Y +p�Y ")jmaxfj�Y +p� + �Y 2"j; j� +p�"jY g��1�� E ��p�j"j(j�Y +p� + �Y 2"j+ j�+p�"jY )��1�� E ��p�j"j(const ���1Y ��1 + const (� + �Y 2)(��1)=2j"j��1 + const �(��1)=2j"j��1Y ��1)�� const �p����1E(j"j)E(Y ��1) + const ���=2E(j"j�)+const �p��(��1)=2E(Y ��1) + const �p��(��1)=2E(j"j�)E(Y ��1) ;where the second line follows from the fact thatjjxjr � jyjrj � rjx� yjmaxfjxj; jyjgr�1; for any x; y 2 R and 1 < r <1 ;and in the forth and �fth line we used thatjx+ yjr � const (jxjr + jyjr); for any x; y 2 R and r > 0 :Together with (2.46) we haveE ����(j�Y +p� + �Y 2 "j)� � (j� +p� "jY )����� <1 :Hence all assumptions of Corollary 2.4 of Goldie (1991) are satis�ed and the result follows usingthe facts that Y and jXj have the same distribution and X is symmetric. 2Remark 2.2.21 In the proof of Corollary 2.2.19 we did not use the whole knowledge of thetail of the stationary distribution of the process (Xn)n2N from Theorem 2.2.11. We only used
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Figure 2.2: Simulated sample path of the AR(1) process with ARCH(1) errors (Xn)n2N with parameters � =0:8; � = 1; � = 0:8 (top, left), with � = �0:8; � = 1; � = 0:8 (top, right), with � = 0; � = 1; � = 0:8 (bottom, left),and with � = 0:8; � = 1; � = 0 (bottom, right) in the case " � N(0; 1). The innovations ("n)n2Nare the same inall four pictures. It appears that the marginal distributions of the nondegenerate AR(1) processes with ARCH(1)errors (top) have clearly fatter tails than the ones of the ARCH(1) process and of the AR(1) process.



38 CHAPTER 2.3. EXTREMAL BEHAVIOURthat the (� � 1)-th moment of the stationary distribution exists. It might be supposed thatthis result could be found easier. In the case " � N(0; 1) this is indeed possible. Recall thatthe random variable X which has the stationary distribution function is characterized by the�xpoint equation X d= �X + p� + �X2 " : (2.47)Now note that for any t 2 RE(eitX ) = E(eit�XE(eitp�+�X2 " jX) )= e��t2=2E(eit�X�t2�X2=2) (2.48)= E(eitp�N1)E(eit(�X+p�X N2)) ;where N1 and N2 are independent standard normal random variables, independent of X. From(2.48) we obtain the �xpoint equationX d=p�N1 + (�+p�N2)X :Hence X is limit variable of the ergodic process ( eXn)n2N given by the stochastic di�erenceequation eXn =p�N1;n + (�+p�N2;n) eXn�1 ; (2.49)where (N1;n)n2N and (N2;n)n2N are two independent sequences of iid normal distributed ran-dom variables. The stationary distribution of the process ( eXn)n2N follows from Goldie (1991,Corollary 2.4), see also Embrechts et al. (1997), Section 8.4.2.3 Extremal behaviour of the AR(1) process with ARCH(1)errorsIn the present section we study the extremal behaviour of AR processes with ARCH errors.We again focus on the AR(1) process with ARCH(1) errors, i.e. f(Xn�1; :::;Xn�k) = �Xn�1for some � 2 R and �n is given in (0.2) with p = 1. Our results for the extremes will be anextension of the results in de Haan, Resnick, Rootz�en and de Vries (1989).Extremal behaviour of a Markov process (Xn)n2N is for instance manifested in the asymptoticbehaviour of the maxima Mn = max1�k�nXk ; n � 1 :



39The limit behaviour of Mn is a well-studied problem in extreme value theory. Two review paperon this and related problems are Rootz�en (1988) and Perfekt (1994). For a general overview ofextremes of Markov processes, see also Leadbetter, Lindgren and Rootz�en (1983), Leadbetterand Rootz�en (1988) and the references therein. Loosly speaking, under quite general mixingconditions, one can show that for n and x largeP (Mn � x) � F n�(x) ; (3.1)where F is the stationary distribution function of (Xn)n2N and � 2 (0; 1) is a constant calledextremal index. A natural interpretation of � is that of the reciprocal of mean cluster size (seee.g. Embrechts, Kl�uppelberg and Mikosch (1997, Chapter 6) and the references therein). Thepractical implication of (3.1) is that dependence in data does often not invalidate the applicationof classical extreme value theory. There are many methods for determing the extremal index.However, most are very technical and often useless in practice. An alternative is then to estimate� from the data.For the AR(1) process with ARCH(1) errors we derive an explicit formula for the extremal index.We furthermore investigate the point process of exceedances of a high threshold u of (Xn)n2Nwhich characterizes the extremal behaviour of the process in detail. This point process convergesin distribution to a compound Poisson process with a well-speci�ed intensity and a well-speci�eddistribution of the size of the jumps.2.3.1 PreliminariesIn order to study the extremal behaviour of (Xn)n2N and (X2n)n2N we de�ne the auxiliary process(Zn)n2N := (ln(Y 2n ))n2N . Since (Yn)n2N follows (2.44) the process (Zn)n2N satis�es the stochasticdi�erence equationZn = Zn�1 + ln�(�+p� e�Zn�1 + � "n)2� ; n 2 N ; (3.2)where ("n)n2N are i.i.d. random variables that satisfy the general conditions and (D:1)� (D:3),the constants are the same as in our old process (Xn)n2N and Z0 equals ln(X20 ) a.s.. Note that(Zn)n2N d= (ln(X2n))n2N and thus the process (Zn)n2N is again regenerative and strongly mixing.Moreover, (Zn)n2N does not dependent on the sign of the parameter � since "n is symmetric. Inthe following we assume therefore that � � 0. We will see that (Zn)n2N can be bounded by tworandom walks (Sl;an )n2N and (Su;an )n2N from below and above, respectively. This result together



40 CHAPTER 2.3. EXTREMAL BEHAVIOURwith (Zn)n2N d= (ln(X2n))n2N appears to be the key to the description of the extremal behaviourof (Xn)n2N . Via results for (Zn)n2N , we prove for instance that the regenerative process (Xn)n2Nhas �nite mean recurrence times which allow us to consider only the extremal behaviour of thestationary process (Xn)n2N . The process (Zn)n2N will be also important in the proof of Lemma2.3.7. For the construction of the two random walks (Sl;an )n2N and (Su;an )n2N we need some morede�nitions. With the same notation as before, letAa := f! j ��p� e�a + ��p� e�a=2 � "(!) � ��p� e�a + �+p� e�a=2 g ; (3.3)p(a; �; �; �; ") := ln�(� +p� e�a + � ")2� ;q(a; �; �; �; ") := ln�1� 2�p�e�a=2"(�+p� e�a + � ")2 1f"<0g� ; (3.4)r(a; �; �; �; ") := ln�1� �"2e�a(�+p� e�a + � ")2 1f"<0g� :Note that q(a; �; �; �; "); r(a; �; �; �; ") ! 0 a.s. for a!1. Now de�neSl;an := nXj=1 Uaj and Su;an := nXj=1 V aj ; n 2 N ; (3.5)where Uaj := �1 � 1Aa + �p(a; �; �; �; "j ) + r(a; �; �; �; "j )� � 1Aca\f"j<0g+ ln(�+p�"j)2 � 1f"j�0g (3.6)and V aj := p(a; �; �; �; "j ) + q(a; �; �; �; "j ) (3.7)for some a � 0. The following lemma shows that the random walks de�ned in (3.5)-(3.7) arereally upper and lower bounds for (Zn)n2N above a high level.Lemma 2.3.1 Let a be large enough, Na := inffj � 1 jZj � ag and Z0 > a. ThenZ0 + Sl;ak � Zk � Z0 + Su;ak for any k � Na a.s. (3.8)



41Proof. We prove only the lower bound. The proof of the upper bound is similar but easier. Letx � a be arbitrary. If " � 0 it is obvious that(� +p� e�x + � ")2 � (�+p� ")2 : (3.9)Consider now " < 0, then(�+p� e�x + � ")2 � (�+p� e�a + � ")2= 2�(�")�p� e�a + ��p� e�x + ��� �(e�a � e�x) "2� �� e�a "2 : (3.10)Note that we have a non-trivial lower bound of (�+p� e�x + � ")2 if and only if(�+p� e�a + � ")2 � � e�a "2 > 0 : (3.11)It is straightforward that (3.11) is equivalent to" > ��p� e�a + �+p� e�a=2 or " < ��p� e�a + ��p� e�a=2 : (3.12)From (3.9), (3.10) and (3.12), we obtain��+p� e�x + � "(!)�2 � 8>>><>>>: (�+p� "(!))2 ; ! 2 f" � 0g(�+p� e�a + � "(!))2 � � e�a "(!)2 ; ! 2 Aca \ f" < 0g0 ; ! 2 Aa (3.13)Now take logarithms and use the additive structure (3.2) of (Zn)n2N . 2Remark 2.3.2 (a) If a is large enough then Su;an and Sl;an are random walks with negativedrift.Proof. Note thatE(V a1 ) = E (p(a; �; �; �; "1) + q(a; �; �; �; "1))= E �ln�(�+p� e�a + � "1)2 + 2�p� e�a=2 (�"1) 1f"1<0g��! E(ln(�+p�"1)2) < 0 ; as a!1 ;where we used the dominated convergence theorem and (2.2) in the last step . Hence for a largeenough the statement follows. 2



42 CHAPTER 2.3. EXTREMAL BEHAVIOUR(b) Let (Sn)n2N := �Pnj=1 ln�(�+p�"j)2��n2N . For a " 1 we haveSl;ak P! Sk and Su;ak a:s:! Sk ; (3.14)for any k 2 N, i.e. both random walks converge at least in probability to the same random walk.Furthermore, supk�1 Sl;ak d! supk�1 Sk and supk�1 Su;ak a:s:! supk�1 Sk : (3.15)Proof. The a.s. convergence of (Su;an )n2N and supk�1 Su;ak is straightforward since p; q and rconverge a.s.. Consider therefore the lower random walk (Sl;an )n2N . Note that for a " 1P (Aa)! 0and hence 1Aca\f"<0g P! 1f"<0g and 1Aa\f"<0g P! 0 : (3.16)Furthermore, p(a; �; �; �; "1) + r(a; �; �; �; "1) a:s:! ln�(�+p�"1)2� ; (3.17)and therefore (3.14) holds. Finally we note thatEmax(0; Ua1 ) = Emax�0;�p(a; �; �; �; "1) + r(a; �; �; �; "1)� 1Aca\f"1<0g�+Emax�0; ln(�+p�"1)2 1f"1�0g�! Emax(0; ln(�+p�"1)2); as a!1 ; (3.18)where we used (3.16), (3.17) and the dominated convergence theorem. By Borovkov (1976) ,Theorem 22, p.53, (3.14) and (3.18) we derive thatsupk�1 Sl;ak d! supk�1 Sk : 2Lemma 2.3.1 characterizes the behaviour of the process (Zn)n2N above a high treshold a andhence also the behaviour of (X2n)n2N . This is the key to what follows: the process (Sn)n2N willdetermine completely the extremal behaviour of (X2n). Recall from Theorem 2.2.3 that (Xn)n2Nis Harris recurrent with regeneration set [�ea=2; ea=2] for a large enough. Thus there exists inparticular a renewal point process T0; T1; T2; ::: which describes the regenerative structure of(Xn)n2N .



43

0 10 20 30 40 50 60

-2
0

0
20

40

Figure 2.3: Simulated sample path of (Zn)n2Nwith parameters � = 0:6; � = 1; � = 0:4 and starting point Z0 = 50(solid line) and the corresponding random walks (Sl;an )n2Nand (Su;an )n2Nwith a = 20 (dotted lines), respectively.Note that the random walks are hardly distinguishable from each other and (Zn)n2N for n � 47. Hence theyare extremely good bounds above the level a = 20. If the process falls far below the level 20 they are still veryclose, but are no longer bounds for (Zn)n2N. The picture also con�rms our statement that the random walks havenegative drift and converge to the same limit.Corollary 2.3.3 The renewal point process (Tn)n2N0 which describes the regenerative structureof (Xn)n2N is aperiodic and has �nite mean recurrence times C0 = T0 and C1 = T1 � T0.Proof. The renewal process can be constructed in the following way (see e.g. Asmussen (1987),Section VI.3 for some background on regenerative processes):De�ne �1 := inffk � 1 jXk 2 [�ea=2; ea=2]g d= inffk � 1 jZk � ag = Naand �i+1 := inffk > �i jXk 2 [�ea=2; ea=2]g d= inffk > �i jZk � ag for i = 1; 2; 3; : : :. Since, abovelevel a, (Zn)n2N is dominated by the random walk with negative drift (Su;an )n2N andsupx2(�1;a]E(max(0; Z1) jZ0 = x) <1 ; (3.19)it follows that �1; �2; �3; ::: are well de�ned and have �nite expectations. Now let M1 := inffi �1 j I�i = 1g and Mj+1 := inffi > Mj j I�i = 1g for j = 1; 2; 3; ::: with P (I1 = 1) = 1 � P (I1 =0) = eC and independent of (Xn)n2N where eC is the constant in (2.11). Note thatP (Mj �Mj�1 = i) = eC(1� eC)i�1 for i; j = 1; 2; ::: and M0 = 0 : (3.20)



44 CHAPTER 2.3. EXTREMAL BEHAVIOURFrom Asmussen (1987), p.151 and (2.11), the renewal process (Tn)n�0 is now given byTn := �Mn+1 + 1 ; n � 0 ;and hence, by (3.20)E(C0) = E(T0) � E(�M1+1) � constE(M1 + 1) <1 :Similar calculation shows that E(C1) < 1 as well. Since the transition density of (Zn)n2N ispositive and continuous it follows �nally that C1 is aperiodic. 2As a consequence of Corollary 2.3.4 we may suppose in the following that the process (Xn)n2Nis stationary.Corollary 2.3.4 For any probability measure � and any sequence (un)n2N���P �� max1�k�nXk � un�� P �� max1�k�nXk � un����! 0; as n!1 ;where P � denotes the probability law for (Xn)n2N when X0 starts with distribution � and � isthe stationary distribution.Proof. The proof invokes a coupling argument. Let X = (Xn)n2N be the AR(1) process withARCH(1) errors with arbitrary initial probability � and let X 0 = (X 0n)n2N be a parallel pro-cess, governed by the same transition probabilities as and independent of X, and with initialdistribution �. Now de�ne T as the �rst common renewal time of X and X 0, i.e.T := inffn 2 N j Tn = T 0n g :From Asmussen (1987) and (2.11) we get in particular thatXT d= X 0T � � : (3.21)De�ning Ml;r := maxl�j�rXj and Mr :=M1;r we get that���P� max1�k�nXk � un�� P� max1�k�nX 0k � un����= ���E�P (Mn � un jT;MT ;M 0T )� P (M 0n � un jT;MT ;M 0T )����� ���E�1fT�n;MT�Mn;M 0T�M 0ng�P (Mn � un jT;MT ;M 0T )� P (M 0n � un jT;MT ;M 0T )�����+���E�1fMT>Mng[fM 0T>M 0ng�P (Mn � un jT;MT ;M 0T )� P (M 0n � un jT;MT ;M 0T )�����



45= ���E�1fT�n;MT�Mn;M 0T�M 0ng�P (MT;n � un jT;MT ;M 0T )� P (M 0T;n � un jT;MT ;M 0T )�����+���E�1fMT>Mng[fM 0T>�M 0ng�P (Mn � un jT;MT ;M 0T )� P (M 0n � un jT;MT ;M 0T )�����= ���E�1fT�n;MT�Mn;M 0T�M 0ng � 0����+���E�1fMT>Mng[fM 0T>�M 0ng�P (Mn � un jT;MT ;M 0T )� P (M 0n � un jT;MT ;M 0T )������ E�1fMT>Mng[fM 0T>�M 0ng���P (Mn � un jT;MT ;M 0T )� P (M 0n � un jT;MT ;M 0T )����� 2P (fMT > Mng [ fM 0T > M 0ng)� 2E�P (MT > Mn jT ) + P (M 0T > M 0n jT )�= 2E�1fT>ng�P (MT > Mn jT ) + P (M 0T > M 0n jT )��� 4P (T > n) ;where we used in the forth line that fT > ng � fMT > Mng and in the seventh line (3.21) andthe Markov structure of X and X 0. Hence, if we prove that T is almost sure �nite we are �nished.But by Corollary 2.3.4 the process (Xn)n2N is regenerative and the embedded renewal process isaperiodic and has �nite mean recurrence time. From Lindvall (1992), p.23 the statement follows.2
2.3.2 Limit distribution of the normalised maximum and cluster probabilitiesof the exceedancesIn this section we present the main results concerning the extremal behaviour of the AR(1)process with ARCH(1) errors and the associated squared process. Let ( bXn)n2N be the associatedindependent process of (Xn)n2N , i.e. bX1; bX2; ::: are i.i.d. random variables with the stationarydistribution function of (Xn)n2N . From (2.17), Corollary 2.2.19 and classical extreme value theorywe obtain limn!1P (n�1=� max1�k�n bXk � x) = exp(�c x��) ; x � 0 ; (3.22)hence the maximum of the associated independent process ( bXn)n2N belongs to the domain ofattraction of a Fr�echet distribution. In the dependent case we prove a similar result. The limitdistribution is still a Fr�echet distribution but a constant � occurs in the exponent. � is calledthe extremal index of the process (Xn)n2N and is a measure of local dependence amongst theexceedances over a high threshold by the process (Xn)n2N . It has a natural interpretation as



46 CHAPTER 2.3. EXTREMAL BEHAVIOURthe reciprocal of the mean cluster size. In order to describe the extremes in more detail, we alsoconsider the point process (Nn)n2N of exceedances of an appropriately chosen high threshold ungiven by Nn(�) := #fk=n 2 � jXk > un ; k 2 f1; :::; ng g (3.23)and show that this point process converges to a compound Poisson process N. We derive theintensity and the distribution of the jumps which we denote by (�k)k2N . Note that in the extremevalue theory for strong mixing processes the jumps equal the lengths of clusters of exceedances.For further background we refer to Leadbetter et al. (1983), Rootz�en (1988) or Embrechtset al. (1997, Section 8.1). For the ARCH(1) process it was convenient to investigate �rst thesquared process. This is not the case for our model since we have a completely di�erent structuredue to the autoregressive part of (Xn)n2N . Nevertheless, only for the squared process (X2n)n2Na comparison with results in the ARCH(1) case (see de Haan et al. (1989)) is possible. Thefollowing theorem collects our results.Theorem 2.3.5 (a) Suppose (Xn)n2N is given by equation (1.1) with ("n)n2N satisfying thegeneral conditions (1.2) and (D:1)�(D:3) with parameters � and � satisfying (2.2) and X0 � �.Then limn!1P �(n�1=� max1�j�nXj � x) = exp(�c�x��) ; x � 0 ; (3.24)where P � denotes the law for (Xn)n2N when X0 starts with the distribution �, � solves theequation E(j� + �"j�) = 1, c is de�ned by (2.45) and� = � Z 11 P (supk�1 kYi=1(�+p�"i) � y�1)y���1dy :For x 2 R, let Nn be the point process of exceedances of the threshold un = n1=�x by X1; :::;Xngiven by (3.23). Then Nn d! N; n!1 ;where N is a compound Poisson process with intensity c�x�� and cluster probabilities�k = �k � �k+1� ; k 2 N ; (3.25)where �k = � Z 11 P (#fj � 1 j jYi=1(�+p�"i) > y�1g = k � 1)y���1dy ; k 2 N :



47In particular, �1 = �.(b) Let (Xn)n2N be the AR(1) process with ARCH(1) errors in (a) and (X2n)n2N the squaredprocess. Then limn!1P �(n�2=� max1�j�nX2j � x) = exp(�2c�(2)x��=2) ; x � 0 ; (3.26)where �; c are the same constants as in (a) and�(2) = �2 Z 11 P (supk�1 kYi=1(�+p�"i)2 � y�1)y��2�1dy :For x 2 R, let N (2)n be the point process of exceedances of the threshold un = n2=�x by X21 ; :::;X2n.Then N (2)n d! N (2); n!1 ;where N (2) is a compound Poisson process with intensity 2c�(2)x��=2 and cluster probabilities�(2)k = �(2)k � �(2)k+1�(2) ; k 2 N ; (3.27)where �(2)k = �2 Z 11 P (#fj � 1 j jYi=1(�+p�"i)2 > y�1g = k � 1)y��2�1dy ; k 2 N :In particular, �(2)1 = �(2).Remark 2.3.6 (a) Theorem 2.3.5 is a generalisation of the result of de Haan et al. (1989) inthe ARCH(1) case (i.e. � = 0). They use a di�erent approach which does not extend to thegeneral case because of the autoregressive part of (Xn)n2N .(b) Note that for the squared process one can describe the extremal index and the clusterprobabilities by the random walk (Sn)n2N , namely�(2)k = �2 Z 10 P (#fj � 1 jSj > �xg = k � 1) e��2 x dx ; k 2 N :The description of the extremal behaviour of (X2n)n2N by the random walk (Sn)n2N is to beexpected since by Lemma 2.3.1 and Remark 2.3.2 the process (Zn)n2N = (ln(X2n))n2N behavesabove a high threshold asymptotically like (Sn)n2N . Unfortunately, this link fails for (Xn)n2N. Another possibility for proving statement (b) is to follow the work of Hooghiemstra and



48 CHAPTER 2.3. EXTREMAL BEHAVIOURMeester (1995) using the regenerative structure of (Zn)n2N , Lemma 2.3.1, Remark 2.3.2(b) andCorollary 2.3.4.(c) Analogous to de Haan et al. (1989) we may construct \estimators" for the extremal indices�(2) and �(2)k of (X2n)n2N , respectively, byb�(2) = 1N NXi=1 1fsup1�j�m S(i)j ��E(i)�=2gand b�(2)k = 1N NXi=1 1fPmj=1 1fS(i)j >�E(i)�=2g=k�1g ; for k 2 N ;where N denotes the number of simulated sample paths of (Sn)n2N , E(i)�=2 are i.i.d. exponentialrandom variables with intensity � andm is chosen large enough. These estimators can be studiedas in the case � = 0 and " � N(0; 1) in de Haan et al. (1989). In particular,�(2) � b�(2)(�(2)(1� �(2))=N)1=2is approximately N(0; 1) distributed. Because of Remark 2.3.6(b) this approach is not possiblefor (Xn)n2N . We choose as \estimators" for � and �k for (Xn)n2Nb� = 1N NXi=1 1fsup1�j�mQjl=1(�+p� "(i)l )�1=P (i)� g (3.28)and b�k = 1N NXi=1 1fPmj=1 1fQjl=1(�+p� "(i)l )>1=P (i)� g=k�1g ; for k 2 N ; (3.29)where N denotes the number of simulated paths of (Qnl=1(�+p� "l))n2N , P (i)� are i.i.d. Pareto-distributed random variables with intensity �, i.e. with distribution function G(x) = 1 � x��,x � 0, and m is large enough. These are suggestive estimators since Qnl=1(� +p� "l) ! 0 a.s.as n!1 because of assumption (2.2).(d) Note that the extremal index � of (Xn)n2N is not symmetric in the parameter � (see Ta-ble 2.4). This observation is intuitively obvious since for � > 0 the clustering is stronger by theautoregressive part than for � < 0.
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Figure 2.4: Estimated extremal index of a simulated sample path of (Xn)0�n�10000 with parameters � = 0:8; � =1; � = 0:6 and " � N(0; 1) using the blocks method for the data (see Embrechts et al. (1997), Section 8.1) . Thelength of a block is chosen as 60. The solid line is the numerically computed extremal index using (3.28), see alsoTable 2.4.� � 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.5�1:2 - 0.001 0.001 0.003 0.004 0.001 0.000 - - - -�1 0.15 0.19 0.19 0.16 0.13 0.09 0.05 0.01 - - -�0:8 0.56 0.47 0.41 0.34 0.26 0.21 0.13 0.05 0.01 - -�0:6 0.86 0.71 0.61 0.50 0.41 0.33 0.22 0.10 0.03 0.00 -�0:4 0.96 0.85 0.71 0.60 0.50 0.40 0.30 0.14 0.06 0.01 -�0:2 0.98 0.89 0.77 0.65 0.56 0.47 0.33 0.18 0.07 0.02 0.000 0.98 0.89 0.78 0.65 0.55 0.45 0.33 0.18 0.08 0.02 0.000:2 0.94 0.82 0.72 0.61 0.52 0.43 0.32 0.18 0.07 0.02 0.000:4 0.85 0.72 0.63 0.53 0.45 0.37 0.28 0.13 0.06 0.01 -0:6 0.68 0.55 0.48 0.41 0.35 0.29 0.21 0.10 0.03 0.00 -0:8 0.39 0.34 0.32 0.27 0.22 0.19 0.12 0.05 0.01 - -1:0 0.09 0.14 0.13 0.13 0.11 0.08 0.04 0.01 - - -1:2 - 0.000 0.001 0.003 0.004 0.001 0.000 - - - -Table 2.4: \Estimated" extremal index � of (Xn)n2N in the case " � N(0; 1). We chose N = m = 2000. Note thatthe extremal index decreases as j�j increases and that we have no symmetry in �.
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Figure 2.5: Simulated sample path of (Xn)n2Nwith parameters � = 0:8; � = 1; � = 0:2 (top, left), of (X2n)n2Nwith the same parameters (top, right), of (Xn)n2Nwith parameters � = �0:8; � = 1; � = 0:2 (middle, left), of(X2n)n2Nwith the same parameters (middle, right), of (Xn)n2Nwith parameters � = 0; � = 1; � = 0:2 (bottom,left) and of (X2n)n2Nwith the same parameters (bottom,right) in the case " � N(0; 1). All simulations are basedon the same simulated noise sequence ("n)n2N.



51j�j � 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.50 0.95 0.80 0.65 0.52 0.41 0.31 0.22 0.11 0.04 0.01 0.000:2 0.94 0.77 0.62 0.49 0.38 0.31 0.22 0.10 0.04 0.01 0.000:4 0.84 0.67 0.55 0.43 0.35 0.26 0.19 0.08 0.03 0.01 -0:6 0.67 0.52 0.41 0.34 0.25 0.18 0.14 0.06 0.02 0.00 -0:8 0.38 0.31 0.26 0.20 0.16 0.13 0.08 0.03 0.00 - -1:0 0.09 0.12 0.11 0.10 0.07 0.05 0.03 0.01 - - -1:2 - 0.000 0.001 0.001 0.000 0.000 0.000 - - - -Table 2.5: \Estimated" extremal index �(2) of (X2n)n2Ndependent on j�j and � in the case " � N(0; 1). We choseN = m = 2000. Note that the extremal index decreases as j�j increases.2.3.3 Proof of Theorem 2.3.5The proof of Theorem 2.3.5 will be an application of results in Perfekt (1994) (see also Ap-pendix A3). In order to apply these results we need to check the assumptions in Theorem A3.1and A3.2. The next lemma provides a technical property for the squared AR(1) process withARCH(1) errors (X2n)n2N . It is the most restrictive assumption in Perfekt (1994).Lemma 2.3.7 Let (pn)n2N be an increasing sequence such thatpnn ! 0 and n
(ppn)pn ! 0 as n!1 ; (3.30)where 
 is the mixing function of (Xn)n2N, i.e. for any m 2 N
(m) = sup f jP (A \B)� P (A)P (B)j : A 2 �(Xj ; 1 � j � k); B 2 �(Xj ; j � k +m); k 2 Ng :Then for un = n2=�x limp!1 lim supn!1 P ( maxp�j�pnX2j > un jX20 > un) = 0 : (3.31)Remark 2.3.8 (a) The strong mixing condition is a property of the underlying ���eld of aprocess. Hence 
 is also the mixing function of (X2n)n2N and (Zn)n2N and we may work in allthese cases with the same sequence (pn)n2N . Note that because of Theorem 2.2.3(b) there existconstants � 2 (0; 1) and c > 0 such that 
(m) � c �m for any m 2 N.(b) In the case of a strong mixing process, conditions (3.30) are su�cient to guarantee that(pn)n2N is a �(un)-separating sequence. This is a straightforward consequence of the fact that



52 CHAPTER 2.3. EXTREMAL BEHAVIOUR
� � � �1 �2 �3 �4 �5 �60 0.2 0.974 0.973 0.027 0.000 0.000 0.000 0.0000 0.4 0.889 0.895 0.088 0.013 0.003 0.001 0.0000 0.6 0.781 0.799 0.147 0.036 0.012 0.005 0.0010 0.8 0.664 0.702 0.175 0.087 0.013 0.011 0.0090 1 0.549 0.607 0.188 0.107 0.036 0.034 0.017-0.4 0.2 0.962 0.962 0.037 0.001 0.000 0.000 0.0000.4 0.2 0.853 0.867 0.103 0.026 0.002 0.002 0.000-0.4 0.4 0.837 0.860 0.110 0.024 0.006 0.001 0.0000.4 0.4 0.717 0.734 0.186 0.048 0.018 0.009 0.001-0.4 0.6 0.715 0.747 0.168 0.048 0.026 0.006 0.0020.4 0.6 0.624 0.676 0.182 0.066 0.040 0.019 0.012-0.4 0.8 0.595 0.623 0.220 0.097 0.018 0.016 0.0140.4 0.8 0.539 0.611 0.167 0.111 0.045 0.036 0.018-0.4 1 0.497 0.540 0.210 0.115 0.075 0.040 0.0040.4 1 0.445 0.533 0.185 0.080 0.109 0.032 0.017-0.8 0.2 0.572 0.626 0.185 0.111 0.026 0.033 0.0010.8 0.2 0.386 0.470 0.172 0.148 0.062 0.068 0.006-0.8 0.4 0.488 0.559 0.193 0.107 0.067 0.020 0.0160.8 0.4 0.331 0.429 0.184 0.099 0.066 0.62 0.057-0.8 0.6 0.414 0.520 0.159 0.134 0.072 0.043 0.0160.8 0.6 0.314 0.443 0.156 0.110 0.087 0.073 0.041-0.8 0.8 0.338 0.392 0.219 0.130 0.090 0.053 0.0300.8 0.8 0.266 0.358 0.158 0.132 0.140 0.068 0.000-0.8 1 0.273 0.429 0.137 0.126 0.106 0.016 0.0120.8 1 0.224 0.346 0.132 0.114 0.129 0.045 0.004Table 2.6: \Estimated" extremal index � and cluster probabilities (�k)1�k�6 of (Xn)n2N dependent on � and �in the case " � N(0; 1). We chose N = m = 2000. Note that the extremal index for � > 0 is much larger than for� < 0.
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j�j � � �1 �2 �3 �4 �5 �60 0.2 0.954 0.959 0.037 0.004 0.000 0.000 0.0000 0.4 0.803 0.819 0.137 0.029 0.014 0.001 0.0000 0.6 0.651 0.682 0.186 0.092 0.018 0.010 0.0080 0.8 0.521 0.578 0.215 0.103 0.036 0.027 0.0190 1 0.406 0.455 0.233 0.135 0.054 0.044 0.0230.4 0.2 0.844 0.853 0.122 0.018 0.004 0.002 0.0010.4 0.4 0.664 0.686 0.203 0.069 0.026 0.008 0.0040.4 0.6 0.553 0.610 0.201 0.095 0.054 0.015 0.0080.4 0.8 0.423 0.506 0.219 0.084 0.074 0.028 0.0230.4 1 0.342 0.431 0.216 0.107 0.066 0.045 0.0230.8 0.2 0.378 0.445 0.184 0.159 0.071 0.057 0.0110.8 0.4 0.309 0.423 0.143 0.131 0.097 0.060 0.0180.8 0.6 0.255 0.328 0.202 0.145 0.088 0.012 0.0450.8 0.8 0.208 0.301 0.186 0.092 0.077 0.077 0.0480.8 1 0.152 0.237 0.178 0.099 0.092 0.053 0.010Table 2.7: \Estimated" extremal index �(2) and cluster probabilities (�(2)k )1�k�6 of (X2n)n2Ndependent on � and� in the case " � N(0; 1). We chose N = m = 2000.



54 CHAPTER 2.3. EXTREMAL BEHAVIOUR�(fXj � ung; 1 � j � k) � �(Xj ; 1 � j � k), �(fXj � ung; j � ln + k) � �(Xj ; j � ln + k)and choosing additionally ln = ppn . The notion of a �(un)�separating sequence was �rstintroduced by O'Brian (1989) and describes somehow the interval length needed to accomplishasymptotic independence of extremal events over a high level un in separate intervals. For ade�nition see also Perfekt (1994). Note that (pn)n2N is in the case of a strong mixing processindependent of (un)n2N .Proof. Note thatP ( maxp�j�pnX2j > un jX20 > un) = P (�1 < p; maxp�j�pnX2j > un jX20 > un)+ P (p � �1 < pn; maxp�j�pnX2j > un jX20 > un)+ P (�1 � pn; maxp�j�pnX2j > un jX20 > un)=: I1 + I2 + I3 ; (3.32)where �1 = inffj � 1 jX2j � eag d=2 fj � 1 jZj � ag = Na as in Lemma 2.3.1 and Corollary2.3.4. In order to get upper bounds of I1; I2 and I3 we show �rst that there exist constants C > 0and N 2 N such that for any n > N; x 2 [e�n; ea] and k 2 NnP (X2k > un jX20 = x) � C : (3.33)Assume that (3.33) does not hold. Choose C; N > 0 arbitrary and � > 0 small. Because ofthe continuity of the transition probability (i.e. equicontinuity on compact sets) , there existn > N; x 2 [e�n; ea]; k 2 N and � = �(�) > 0 such that for any y 2 (x� �; x+ �) \ [e�n; ea]nP (X2k > un jX20 = y) > C � � : (3.34)Let FX2 denote the stationary distribution function of (X2n)n2N . By Theorem 2.2.3 we have thatlimn!1nFX2(un) = 2 c x��=2 ; (3.35)where c is given by the formula in (2.45) and � is the solution of (2.18). Furthermore, by (3.34)we have nFX2(un) = Z(�1;1) nP (X2k > un jX20 = y)dFX2(y)� Z(x��;x+�)\[e�n;ea] nP (X2k > un jX20 = y)dFX2(y)> (C � �)P (X20 2 (x� �; x+ �) \ [e�n; ea])� (C � �)D ;



55where D := infz2[0;ea](FX2(z + �) � FX2(z)) > 0 because FX2 is continuous. Since C > 0 isarbitrary this is a contradiction to (3.35).Now we estimate (3.32).I1 � p�1Xl=1 P��1 = l; maxp�j�pnX2j > un ���X20 > un�� p�1Xl=1 pnXj=l+1P��1 = l; X2j > un ���X20 > un�= p�1Xl=1 pnXj=l+1E�1f�1=lg P (X2j > un jX2l ) ���X20 > un� (3.36)= p�1Xl=1 pnXj=l+1E�1f�1=lg 1fX2l �e�ng P (X2j > un jX2l ) ���X20 > un�+ p�1Xl=1 pnXj=l+1E�1f�1=lg 1fX2l <e�ng P (X2j > un jX2l ) ���X20 > un�=: J1 + J2 :Furthermore, by (3.33),J1 � p�1Xl=1 pnXj=l+1 1nE�1f�1=lg 1fX2l �e�ng nP (X2j > un jX2l ) ���X20 > un�� p�1Xl=1 pnXj=l+1 CnE�1f�1=lg 1fX2l �e�ng ���X20 > un�� pnXj=1 Cn P (�1 < p jX20 > un) (3.37)� C pnn! 0 ; as n!1 ;since pn = o(n). Similarly, with Bl := fX21 > ea; :::;X2l�1 > eag for any l = 2; 3; 4; ::: and B1 = 
,we obtainJ2 � p�1Xl=1 pnXj=l+1E�1f�1=lg 1fX2l <e�ng ���X20 > un�= p�1Xl=1 pnXj=l+1E�1Bl P (X2l < e�n jX2l�1) ���X20 > un�= p�1Xl=1 pnXj=l+1E �1Bl P�(�Xl�1 +q� + �X2l�1 "l)2 < e�n ���X2l�1� ���X20 > un�



56 CHAPTER 2.3. EXTREMAL BEHAVIOUR= p�1Xl=1 pnXj=l+1E0@1Bl\fXl�1>0g P��e�n=2=Xl�1 � �q�=X2l�1 + � < "l < e�n=2=Xl�1 � �q�=X2l�1 + � � ���X20 > un1A+ p�1Xl=1 pnXj=l+1E0@1Bl\fXl�1<0g P�e�n=2=Xl�1 + �q�=X2l�1 + � < "l < �e�n=2=Xl�1 + �q�=X2l�1 + � � ���X20 > un1A= p�1Xl=1 pnXj=l+1E 1Bl\fXl�1>0g P��e�n=2�a=2 � �p� < "l < e�n=2�a=2 � �p� � ���X20 > un!+ p�1Xl=1 pnXj=l+1E 1Bl\fXl�1<0g P��e�n=2�a=2 + �p� < "l < e�n=2�a=2 + �p� � ���X20 > un!� 2 const p pn e�n=2�a=2! 0 ; as n!1 ;and therefore with (3.37) I1 ! 0 as n!1.Now we estimate lim supn!1 I3. Note �rst that by the Markov inequalityP� maxp�j�pn Su;aj > �z� � pnXj=p P�e�4 Su;aj > e��4 z�= pnXj=p P� jYm=1�(�+p�e�a + � "m)2 � 2�p�e�a=2"m1f"m<0g��=4 > e��4 z�� e�4 z pnXj=pE �(� +p� e�a + � "1)2 � 2�p�e�a=2"11f"1<0g��=4!j� e�4 z pnXj=p �j ; (3.38)where � < 1 such that E��(�+p� e�a + � "1)2 � 2�p�e�a=2"11f"1<0g��=4� � � for a largeenough. This is possible because of (2.2) which implies that E(j�+p� "1ju) < 1 for all u 2 (0; �)and the fact thatE��(�+p� exp(�a) + � "1)2 � 2�p�e�a=2"11f"1<0g��=4�! E�j�+p� "1j�=2� ; a!1by the dominated convergence theorem. Thus from Theorem 2.2.3, Lemma 2.3.1, (3.38) and alarge enough,lim supn!1 I3 � lim supn!1 P (Na � pn; maxp�j�pnZ0 + Su;aj > lnun jZ0 > lnun)� lim supn!1 P ( maxp�j�pn Z0 + Su;aj > lnun jZ0 > lnun)= lim supn!1 Z 10 P ( maxp�j�pn Su;aj > �z)�2 e��2 zdz (3.39)



57� 2 1Xj=p �j = 2 �p�11� � :Finally, note thatI2 � P (p � �1 < pn; max�1<j�pnX2j > un jX20 > un) + P (p � �1 < pn; maxp�j��1X2j > un jX20 > un)=: K1 + K2 :Similarly as for I1 and I3, respectively, we derive thatlim supn!1 K1 = 0 and lim supn!1 K2 = 2 �p�11� � :Now plugging all together and letting p!1 the statement follows. 2Corollary 2.3.9 Let (pn)n2N be the same sequence as in Lemma 2.3.7. Then (pn)n2N is also a�(un)�separating sequence for (Xn)n2N , where un = n1=�x and x 2 R arbitrary andlimp!1 lim supn!1 P ( maxp�j�pnXj > un jX0 > un) = 0 : (3.40)Proof. Because of Remark 2.3.8(a) and (b), it is straightforward that (pn)n2N is a �(un)�separatingsequence for (Xn)n2N . Note furthermore thatP ( maxp�j�pnX2j > u2n jX20 > u2n) = P (maxp�j�pnX2j > u2n; X20 > u2n)P (X20 > u2n)� P (maxp�j�pnXj > un; X0 > un)P (X0 > un) + P (X0 < �un) = 12P ( maxp�j�pnXj > un jX0 > un)and hence the statement follows using Lemma 2.3.7. 2Now we are �nally able to prove Theorem 2.3.5.Proof of Theorem 2.3.5. The proof is an application of Theorem A3.2. We prove onlystatement (a), statement (b) follows along the same lines using Theorem A3.1. As stated alreadywe may assume w.l.o.g. that (Xn)n2N is stationary. Let x 2 R be arbitrary. Note thatlimu!1 P (X0 > u+ 1�ux)P (X0 > u) = 8<: 1 ; 1 + 1�x � 0(1 + 1�x)�� ; 1 + 1�x > 0and limu!1P (X1u � x jX0 = u) = P (�+p� " � x) :



58 CHAPTER 2.4. CONCLUSIONSBy Corollary 2.3.9 and the strong mixing property of (Xn)n2N all assumptions of Theorem A3.2are ful�lled and we have that the extremal index � is given by� = Z 11 P (#fj � 1 j ( jYi=1(�+p� "i))Y0 > 1g = 0 jY0 = y)� y���1dy= Z 11 P (maxj�1 ( jYi=1(�+p� "i) � y�1)� y���1dy :The cluster probabilities can be determined in the same way and hence the statement follows.2
2.4 ConclusionsIn this chapter we investigated the tail of the stationary distribution of the AR(1) process withARCH(1) errors (Xn)n2N . Our main tool was a Tauberian theorem. This approach is new as faras we know. One might expect that the method may also be applied to other models than theAR(1) model with ARCH(1) errors. Unfortunately, each model has to be studied individuallyin the same way as in the case of the AR(1) process with ARCH(1) errors presented in thischapter. Finally, the method does not seem to be very robust towards model changes.After having determined the tail of the stationary distribution we studied the extremalbehaviour of (Xn)n2N . Although there exist plenty of results concerning the extremal behaviourof Markov chains, especially regenerative Markov chains, they are usually not very tractable.Checking the assumptions is a tedious and often seems even an impossible task. However, in thecase of the AR(1) process with ARCH(1) errors this was possible. It appeared that the strongmixing condition and the �(un)-separating sequence were crucial for the extremes of the process(Xn)n2N .The notion of strong mixing and �(un)-separating sequence are not only known in extremevalue theory but also in other areas as for instance in the theory for sample autocovariance andautocorrelation functions of heavy-tailed stationary processes (see Davis and Mikosch (1998)).Davis and Mikosch showed that if the strong mixing condition, (3.40) in a multivariate formand additionally a regular variation condition on the �nite-dimensional distribution of the pro-cess hold then the weak convergence of the point processes Nn = Pnj=1 "Xj=an exists, whereXj = (Xj ; :::;Xj+m) for some m � 0. Finally, under some additional restrictions, even joint con-



59vergence of the sample autocovariances and autocorrelations at di�erent lags can be established.In the case of in�nite variance of (Xn)n2N , the limits of the sample autocorrelation function arein general random. This is in contrast to in�nite variance linear processes (see Davis and Resnick(1985), (1986)). Since the assumptions are ful�lled for the ARCH(1) process one might expectthat they also hold for the AR(1) process with ARCH(1) errors which is simply an extension ofthe �rst. This project is part of current research and some interesting results have already beenachieved. The work will be presented in a forthcoming paper.



60 CHAPTER 2.4. CONCLUSIONS



Chapter 3
Extreme Value Theory for Di�usionProcesses
Over the last decade a variety of stochastic models have been suggested as appropriate modelsfor �nancial products. In a continuous time setting the dynamics of an interest rate or priceprocess is often modelled as a di�usion process given by a stochastic di�erential equation (SDE)dXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ; X0 = x ; (0.1)where W is standard Brownian motion, � is the drift term and � is the di�usion coe�cient orvolatility. Two standard models in �nance are of the above form:(i) The Black-Scholes model: (Xt) models the price process of an asset, here �(x) = �xand the volatility �(x) = �x. The resulting model for the price process is geometric Brownianmotion.(ii) The Vasicek model: the process (Xt) models an interest rate, the drift term � is linearand the volatility � > 0 is some constant.Both models can be considered in the framework of Gaussian models. It has been recognisedfor decades that �nancial data like interest rates and asset prices exhibit 
uctuations whichcannot be modelled by Gaussian processes or simple transformations as in the two standardmodels above.There are two features, heavy-tailedness and the dependence structure, that require mod-elling for �nancial data. Various models have been suggested to capture these features. For adiscussion of non-linear heavy-tailed models and further references we refer to Section 7.6 ofEmbrechts, Kl�uppelberg and Mikosch (1997). There are in principle two di�erent approaches.61



62 CHAPTER 3. EXTREME VALUE THEORY FOR DIFFUSION PROCESSESA �rst concept replaces the Gaussian driving process in the Black-Scholes or Vasicek model(or any other traditional model) by a process with heavy-tailed marginals as for instance astable process, a L�evy process or a discrete time counterpart as an ARMA (autoregressive-moving average) process with heavy-tailed noise (see e.g. Barndor�-Nielsen (1995), Eberleinand Keller (1995), Kl�uppelberg and Mikosch (1996), Mittnik and Rachev (1997)).The second concept sticks to Brownian motion as the driving dynamic of the process, butintroduces a path-dependent, time-dependent or even stochastic volatility into the model. Thesemodels are commonly referred to as volatility models, and include di�usions given by theSDE (0.1). Hence this paper is about such models. Discrete time counterparts are for instance(G)ARCH models and extensions, which have been successfully applied in econometrics. Theextremal behaviour of the AR(1) process with ARCH(1) errors has been studied in Chapter 2and is an interesting complement to the present paper.In this chapter we study the extremal behaviour of di�usion processes de�ned by (0.1).The stationary distributions of the processes under investigation are well-known and one mightexpect that they in
uence the extremal behaviour of the process in some way. This is however notthe case: for any pre-determined stationary distribution the process can exhibit quite di�erentbehaviour in its extremes.Extremal behaviour of a stochastic process (Xt) is for instance manifested in the asymptoticbehaviour of the maxima MXt = max0�s�tXs ; t > 0 : (0.2)The asymptotic distribution of MXt for t ! 1 has been studied by various authors, see Davis(1982) for detailed references. Two monographs on this and related problems are by Leadbetter,Lindgren and Rootz�en (1983) and Berman (1992). It is remarkable that running maxima andminima of (Xt) are asymptotically independent and have the same behaviour as the extremesof i.i.d. random variables. In this chapter we restrict ourselves to the investigation of maxima,the mathematical treatment for minima being similar.We furthermore investigate the point process of upcrossings (more precisely "-upcrossings)of a high threshold u by (Xt). For �xed " > 0 the process has an "-upcrossing at t if it hasremained below u on the interval (t � "; t) and is equal to u at t. Under weak conditions, thepoint process of "-upcrossings, properly scaled in time and space, converges in distribution to ahomogeneous Poisson process , i.e. it behaves again like i.i.d. random variables, coming however



63not from the stationary distribution of (Xt), but from the distribution function F which alsodescribes the maxima MXt (see Theorem 3.2.4).3.1 The usual conditionsThe di�usion (Xt) given by the SDE (0.1) has state space (l; r) � R, where l; r can be �1or +1. We only consider the case when the boundaries l and r are inaccessible and (Xt) isrecurrent. We require furthermore that, for all x 2 (l; r), �2(x) > 0 and there exists some " > 0such that R x+"x�" (1 + j�(t)j)=�2(t)dt <1. These two conditions guarantee in particular that theSDE (0.1) has a weak solution which is unique in probability (see Karatzas and Shreve (1988),Chapter 5.5.C).Associated with the di�usion is the scale function s and the speed measure m. The scalefunction is de�ned ass(x) = Z xz exp��2Z yz �(t)�2(t)dt� dy ; x 2 (l; r) ; (1.1)where z is any interior point of (l; r). Since the scale function is unique only up to a positivea�ne transformation (if es(x) = �s(x) + � for some � > 0 and � 2 R, then es is a scale functionif and only if s is), in a �rst order approximation, the choice of z is of no importance. The scalefunction s de�nes in the usual way a measure on (l; r), the so-called scale measure, which isabsolutely continuous with Lebesgue densitys0(x) = exp��2Z xz �(t)�2(t)dt� ; x 2 (l; r) : (1.2)For the speed measure m we know that m(I) > 0 for every non-empty open subinterval I ofthe interior of (l; r). We only consider di�usions with �nite speed measure m and denote itstotal mass by jmj = m((l; r)). The speed measure of model (0.1) is absolutely continuous withLebesgue density m0(x) = 2�2(x)s0(x) ; x 2 (l; r) : (1.3)In this situation (Xt) is ergodic and its stationary distribution is absolutely continuous withLebesgue density h(x) = m0(x)=jmj : (1.4)



64 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONSNotice that the connection between stationary distribution, speed measure, scale function, driftterm and di�usion coe�cient (given by (1.1)-(1.4)) allows us to construct di�usions with arbi-trary stationary distribution (see Examples 3.3.4 and the generalised inverse Gaussian di�usionof Section 3.4) .Since the process is recurrent and the boundaries l and r are inaccessible, we must haves(u)!1 as u " r and s(u)! �1 as u # l. Conversely, if s(u)!1 (resp. �1) as u " r (resp.u # l), then l and r are inaccessible, and therefore (Xt) is recurrent.For proofs of the above relations and further results on di�usions we refer to the monographsby Karlin and Taylor (1981), Karatzas and Shreve (1987), Rogers and Williams (1987), Revuzand Yor (1991) or any other advanced textbook on stochastic processes.Throughout this paper, we assume that the di�usion process (Xt) de�ned in (0.1) satis�esthe usual conditions: s(r) = �s(l) =1 ; (1.5)jmj <1 :3.2 Extremal behaviour of di�usionsThe following formulation can be found in Davis (1982).Proposition 3.2.1 Let (Xt) satisfy the usual conditions (1.5). Then for any initial value X0 =y 2 (l; r) and any ut " r, limt!1 jP y(MXt � ut)� F t(ut)j = 0 ; (2.1)where F is a distribution function, de�ned byF (x) = e�1=(jmjs(x))1(z;r)(x) ; x 2 R ; (2.2)for any z 2 (l; r). (1A denotes the indicator function of A.) The function s and the quantity jmjalso depend on the choice of z. 2Various proofs of this result exist and we refer to Davis (1982) for further references. Davis'proof is based on a representation of such a di�usion as an Ornstein-Uhlenbeck process after arandom time-change . Standard techniques for extremes of Gaussian processes apply leading tothe above result.



65It is not di�cult to show that Proposition 3.2.1 is true for arbitrary initial probability measureH. For the special choice of H = m=jmj the di�usion (Xt) is stationary.As a consequence of Proposition 3.2.1, the maxima MXt have, properly normalised, a non-degenerate limit distribution Q if and only if F belongs to the maximum domain of attraction ofQ (we write MDA(Q)) for some extreme value distributionQ . In Proposition 3.2.1, any functionut " r is possible, but as usual in classical extreme value theory we restrict ourselves to positivea�ne functions, i.e. ut = atx+ bt : (2.3)The norming constants at > 0 and bt 2 R have to be chosen appropriately to ensure convergenceto a non-degenerate limit.The extremal behaviour (in particular the behaviour of the maximum) of an i.i.d. sequencewith common distribution function F is determined by the far end of the right tail F = 1 � F .In our situation the asymptotic behaviour of the maxima MXt is determined by the tail of F asin (2.2): If F 2 MDA(Q) with norming constants at > 0 and bt 2 R, thena�1t �MXt � bt� d! Q ; t!1 : (2.4)As already noted the scale and speed measure of a di�usion (Xt) are not unique. Di�erent scaleand speed measures (and therefore di�erent z) lead to di�erent distribution function's F inProposition 3.2.1. They are however all tail-equivalent.Corollary 3.2.2 Under the conditions of Proposition 3.2.1 the tail of the distribution functionF in (2.2 ) satis�es F (x) � �jmjZ xz s0(y)dy��1 � (jmjs(x))�1 ; x " r ; (2.5)where � means that the quotient of lhs and rhs converges to 1.Proof. The representation of (2.5) follows immediately by Taylor expansion from (2.2) and thefact that s(x)!1 as x " r.We show that the rhs is for di�erent z asymptotically equivalent, and thus independent ofz 2 (l; r). Let z1; z2 2 (l; r) and z1 6= z2. Denote si;m0i and jmij the functions and constantscorresponding to zi for i = 1; 2. Then from (1.1) we obtains1(x) = �+ �s2(x) ;



66 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONSwhere � and � are constants depending on z1 and z2. Furthermore, from (1.3) we obtainm01(x) = 2�2(x)s01(x) = 2�2(x)�s02(x) = 1�m02(x) :Hence jm1j = jm2j=� andF (x) � (jm1js1(x))�1 = �jm2j(�� + s2(x))��1 � (jm2js2(x))�1 ; x " r ;since limx"r s2(x) =1. 2Proposition 3.2.1 reduces the asymptotic behaviour of the maximum of (Xt) to that of themaximum of i.i.d. random variables with distribution function F having tail (2.5). It would beinteresting to know more about the extremal behaviour of the corresponding di�usion (Xt) thanjust the behaviour of its maxima. From classical extreme value theory it is well-known that thepoint process of exceedances of an i.i.d. sequence of a level ut, plotted at points i=t, convergesto a homogeneous Poisson process for ut " r as t " 1 in an appropriate way. Extremes of acontinuous time stochastic process over a high threshold ut typically occur on intervals and formexcursions over this level. However, an analogous discrete skeleton which describes the behaviourof the extremes of a continuous time stochastic process is provided by a point process of theupcrossings (i.e. the events where excursions above a level begin). This is quite natural andupcrossings are well{de�ned if the sample paths of the corresponding process are regular (i.e.di�erentiable in the L2{sense). In cases with irregular sample paths there can be in�nitely manyupcrossings on a �nite interval.To avoid such problems special upcrossings, namely "-uprossings, are considered. We usethe de�nition given by Pickands (1969) for continuous processes. We also refer to Leadbetter,Lindgren and Rootz�en (1983), Chapter 12, for more mathematical background.De�nition 3.2.3 Let (Xt) be a di�usion satisfying the usual conditions (1.5). Take " > 0.(a) The process (Xt) is said to have an "{upcrossing of the level u at t0 if Xt < u for t 2 (t0��; t0)and Xt0 = u.(b) Let N";u(t) denote the number of "-upcrossings of u by (Xs)0�s�t. Then for any t > 0,N�t (B) = N";ut(tB) = #f"-upcrossings of ut by (Xs)0�s�t : st 2 Bgis the time{normalised point process of "-upcrossings on the Borel sets B of (0; 1] . 2The point process (N�t ) has a point at t0 if (Xs)0�s�t has an "{upcrossing at t0t. "{upcrossingsof a continuous time process correspond to exceedances of an i.i.d. sequence. It is well-known
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Figure 3.1: Sample path of a di�usion with threshold u = 3:8. For the values of " = 3:2; 1:2; 0:8; 0:4 we get6; 7; 10; 14 "{upcrossings, respectively. The number of "{upcrossings depends crucially on ". The dependenceonly disappears in the limit.that for a sequence (Xt) of i.i.d. random variables, all with distribution function F , the pointprocesses (N�t ) of exceedances converge to a homogeneous Poisson process with intensity � ,provided the ut are appropriately chosen, namely such thattF (ut)! � 2 (0;1) ; t!1 : (2.6)Recall from (2.4) that for the choice of ut = atx+ bt:P �MXt � atx+ bt� = F t(atx+ bt)! Q(x) = e�� ; x 2 R : (2.7)Taking logarithms in (2.7) shows that (2.6) is equivalent to (2.7). Convergence of the pointprocesses of exceedances to a Poisson process also holds for more general sequences (Xt) ifthe dependence structure is nice enough to prevent clustering of the extremes in the limit. Fordi�usions (0.1) the dependence structure of the extremes is such that the point processes of "-upcrossings converge to a homogeneous Poisson process, however, the intensity is not determinedby the stationary distribution function H , but by the distribution function F from Proposi-tion 3.2.1. This means that the "-upcrossings of (Xt) are likely to behave as the exceedances ofi.i.d. random variables with distribution function F .The extra condition (2.10) of the following theorem relates the scale function s and speedmeasure m of (Xt) to the corresponding quantities sou and mou of the standard Ornstein-



68 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONSUhlenbeck process, de�ned bysou(x) = p2� Z x0 et2=2dt and m0ou(x) = 1=s0ou(x) ; x 2 R : (2.8)Theorem 3.2.4 Let (Xt) satisfy the usual conditions (1.5) and ut " r such thatlimt!1 tjmjs(ut) = � 2 (0;1) : (2.9)Assume there exists some positive constant c such thatm0ou(s�1ou (s(z)))s0ou(s�1ou (s(z))) s0(z)m0(z) � c ; 8z 2 (l; r) : (2.10)Then for all starting points y 2 (l; r) of (Xt) and " > 0 the time-normalised point processes (N�t )of "-upcrossings of the level ut converge in distribution to N as t " 1, where N is a homogeneousPoisson process with intensity � on (0; 1].Remark 3.2.5 (a) Notice from Corollary 3.2.2 that tF (ut) � t=(jmjs(ut)). Hence, if ut =atx+ bt and � = � lnQ(x), then condition (2.9) guarantees that F belongs to some maximumdomain of attraction.(b) Pickands (1969) proved that the point processes of "-upcrossings converge to a homogeneousPoisson process in the case when (Xt) is a Gaussian process. Notice that the assumptions ofTheorem 3.2.4 are particular satis�ed for the Ornstein-Uhlenbeck process with c = 1.(c) Examples which satisfy condition (2.10) are the Vasicek model, the Cox-Ingersoll-Ross modelor the generalised Cox-Ingersoll-Ross model for 
 6= 1. All these models are presented in Sec-tion 4. Nevertheless not every di�usion satis�es the assumptions in Theorem 3.2.4. Lemma 3.2.6indicates that for the generalised inverse Gaussian di�usion with � > 0;  > 0 and 
 > 1:5 or
 < 0:5 the assertion of Theorem 3.2.4 may not hold.Proof. The proof invokes a random time change argument. An application of Theorem 12.4.2of Leadbetter et al. (1983) shows that the theorem holds for the standard Ornstein-Uhlenbeck(Ot) process. Denote by Zt = sou(Ot) ; t � 0 ;the Ornstein-Uhlenbeck process in natural scale. Now de�neYt = s(Xt) ; t � 0 ;



69which is again a di�usion process in natural scale. (Yt) can then be considered as a random timechange of the process (Zt), i.e. Yt = Z�t a:s: (2.11)The random time �t has a representation via the local time of the process Y . This is a conse-quence of the Dambis-Dubins-Schwarz Theorem (Revuz and Yor (1991), Theorem 1.6, p.173),Theorem 47.1 of Rogers and Williams (1987), p.277 and Exercise 1.27 of Revuz and Yor (1991),p.226. For z 2 (l; r) denote Lt(z) the local time of (Ys)0�s�t in z. Then�t = Z 1�1 Lt(z)dmou(s�1ou (z))= Z 1�1 Lt(z)m0ou(s�1ou (z))s0ou(s�1ou (z)) s0(s�1(z))m0(s�1(z))dm(s�1(z))= Z t0 m0ou(s�1ou (Ys))s0ou(s�1ou (Ys)) s0(s�1(Ys))m0(s�1(Ys))ds= Z t0 m0ou(s�1ou (s(Xs)))s0ou(s�1ou (s(Xs))) s0(Xs)m0(Xs)ds ; t � 0 ;where we used the occupation time formula (cf. Revuz and Yor (1991), p.215) . Notice also that�t is continuous and strictly increasing. Under condition (2.10) we obtain�t � �t�" � c" ; t � 0 : (2.12)Moreover, Itô and McKean (1974), p. 228 proved the following ergodic theorem�tt a:s:! 1jemj = 1jmj : (2.13)Wlog we assume jmj = 1 in the following.According to Theorem 4.7 of Kallenberg (1983) it su�ces to show for any y 2 (l; r)limt!1P y(NX";ut(tU) = 0) = P (N(U) = 0) ; (2.14)where U is an arbitrary union of semi-open intervals, andlim supt!1 Ey(NX";ut(t(a; b])) � E(N((a; b])) <1; for every (a; b] � (0; 1] : (2.15)By de�nition of the processes O, Z, X and Y , setting vt = s(ut), z = s(y), wt = s�1ou (vt) andx = s�1ou (z), we have for k � 1,P y(NX";ut(t(a; b]) � k)



70 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONS= P (#f"-upcrossings ofut byX� ; � 2 t(a; b]g � k jX0 = y)= P (#f"-upcrossings of vt byY� ; � 2 t(a; b]g � k jY0 = z)= P (f9�1; : : : ; �k 2 t(a; b] : 8i = 1; : : : ; k ; Y� < vt 8� 2 (�i � "; �i) and Y�i = vtg jY0 = z)= P (f9��1 ; : : : ; ��k 2 (�ta; �tb] : 8i = 1; : : : ; k ; Zu < vt 8u 2 (��i�"; ��i) and Z��i = vt g jZ0 = z)� P (f9��1 ; : : : ; ��k 2 (�ta; �tb] : 8i = 1; : : : ; k ; Zu < vt 8u 2 (��i � c"; ��i) and Z��i = vt g jZ0 = z)= P (#fc"-upcrossings of vt byZu ; u 2 (�ta; �tb]g � k jZ0 = z) (2.16)= P (#fc"-upcrossings of s�1ou (vt) by s�1ou (Zu) ; u 2 (�ta; �tb]g � k j s�1ou (Z0) = s�1ou (z))= P x(NOc";wt((�ta; �tb]) � k) :The inequality is a consequence of (2.12). Note, since all transformations are strictly monotoneand continuous, when we start with (a; b], then we get again an interval (�a; �b]. Furthermore,we know already that the theorem holds for the OU-process O. We show that for all k � 0,lim supt!1 ��P x(NOc";wt((�ta; �tb]) � k)� P x(NOc";wt((ta; tb] � k)�� = 0 ; x 2 R ;equivalently, for all k � 0,lim supt!1 ��P x(NOc";wt((�ta; �tb]) � k)� P x(NOc";wt((ta; tb] � k)�� = 0 ; x 2 R ; (2.17)For any 0 < � < 1, de�neAt = fj�ta � taj � �ta ; j�tb � tbj � �tbg ; t � 0 :By the triangular inequality , the lhs of (2.17) is bounded bylim supt!1 ��P x(NOc";vt((�ta; �tb]) � k;At)� P x(NOc";wt((ta; tb]) � k;At)��+2 lim supt!1 fP x(j�ta � taj � �ta) + P x(j�tb � tbj � �tb)g =: I1 + I2 :Merely observed that I2=0 by (2.13).Again by the triangular inequality and the fact that (�ta; �tb] � ((1� �)ta; (1 + �)tb] in At,I1 � lim supt!1 �P x(NOc";wt((�ta; �tb]) � k;At)� P x(NOc";wt(((1� �)ta; (1 + �)tb]) � k;At)�+ lim supt!1 �P x(NOc";wt((ta; tb]) � k;At)� P x(NOc";wt(((1� �)ta; (1 + �)tb]) � k;At)�=: J1 + J2 :



71Furthermore,J1 � lim supt!1 �P x(NOc";wt((�ta; �tb]) � k;At; NOc";wt(((1� �)ta; (1 + �)tb]) > k)�� lim supt!1 �P x(NOc";wt(((1 � �)ta; (1 + �)ta]) > 0) + P x(NOc";wt(((1� �)tb; (1 + �)tb]) > 0)�= lim supt!1 �PH(N�t ((0; 2�a] > 0) + PH(N�t ((0; 2�b] > 0)�= P (N((0; 2�a] > 0) + P (N((0; 2�b] > 0) � 2(1 � e��2�b) ;where H is the stationary distribution and N�t is the time-normalised point process of "-upcrossings of the process O. We used that the Ornstein-Uhlenbeck process O has the strongMarkov property and is ergodic, and that the result holds for O.Similar considerations yield the same upper bound for J2 and hence the lhs of (2.17) is boundedby 4(1 � e��2�b). Letting � # 0 we have proved (2.17) for all k � 0, which yields together with(2.16) and x = s�1ou (s(y)),lim supt!1 Ey(NX";ut(t(a; b])) = lim supt!1 1Xk=1P y(NX";ut(t(a; b]) � k)� 1Xk=1 lim supt!1 P x(NOc";wt(t(a; b]) � k)= 1Xk=1P (N((a; b]) � k) = E(N((a; b])) ;and therefore (2.15) holds. Now we check (2.14):W.l.o.g. choose an arbitrary U of the form U = Sdi=1(ai; bi] with disjoint intervals and a1 � a2 �: : : � ad. Then, by de�nition of the "-upcrossings,limt!1P y(NX";ut(tU) = 0) = limt!1P y(fNX";ut(tU) = 0g \ d\i=1fMX[tai ;tai+"] < utg)+ limt!1P y(fNX";ut(tU) = 0g \ d[i=1fMX[tai ;tai+"] � utg)= limt!1P y( d\i=1fMXt[ai;bi] < utg)+ limt!1P y(fNX";ut(tU) = 0g \ d[i=1fMX[tai ;tai+"] � utg)=: K1 +K2 :We show by induction that the rhs equals P (Tdi=1fN((ai; bi]) = 0). Because of Proposition 3.2.1and the fact that K2 = 0 (see below) this is true for d = 1. Now we may assume that1fTd�1i=1 fMXt[ai;bi]<utgg d! 1fTd�1i=1 fN((ai ;bi])=0gg ; t!1 ; (2.18)



72 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONSand by the Markov property,P (MXt[ad ;bd] < utjXtad) P! e��(bd�ad) t!1 : (2.19)By Slutzki's theorem, the product of the lhss of (2.18) and (2.19) converges in distribution tothe product of their rhss. Applying Theorem 5.2 of Billingsley (1968) we obtainK1 = limt!1Ey(1fTd�1i=1 fMXt[ai;bi]<utggP (MXt[ad;bd] < utjXtad))= E(1fTd�1i=1 fN((ai ;bi])=0gge��(bd�ad))= P (d�1\i=1fN((ai; bi]) = 0g)e��(bd�ad)= P ( d\i=1fN((ai; bi]) = 0g) = P (N(U) = 0) :In the last step we used that a homogeneous Poisson process has independent increments. Itremains to show K2 = 0. With the same notation as before we haveK2 � limt!1P y( d[i=1fMX[tai;tai+"] � utg)� dXi=1 limt!1P y(MX[tai;tai+"] � ut)� dXi=1 limt!1P z(MZ[�tai ;�tai+"] � vt)� dXi=1 limt!1P z(MZ[�tai ;�tai+"] � vt; j�tai � taij < �tai; j�tai+" � taij < �tai)+ dXi=1 limt!1 (P z(j�tai � taij � �tai) + P z(j�tai+" � taij � �tai)) :Because of (2.13), the second and third term vanish. Again by ergodicy and Proposition 3.2.1,K2 �Pdi=1(1� e�2��ai). Letting � # 0, K2 = 0 and we provedlimt!1P y(NX";ut(tU) = 0) = P (N(U) = 0) : (2.20)and hence (2.14). 2Theorem 3.2.4 describes the asymptotic behaviour of the number of "-upcrossings of a suitablyincreasing level. In particular, on average there are � "-upcrossings of ut by (Xs)0�s�t for large t.Notice furthermore, that we get a Poisson process in the limit which is independent of the choice



73of " > 0. A visualisation of the Poisson approximation of Theorem 3.2.4 is shown in Figure 3.13for the generalised inverse Gaussian di�usion.The next lemma provides a simple su�cient condition, only on scale function and speedmeasure of (Xt), for (2.10). By positivity and continuity, (2.10) holds automatically on compactintervals. It remains to check this condition for z in a neighbourhood of r and l.Lemma 3.2.6 Let (Xt) satisfy the usual conditions (1.5). Assume furthermore that (2.9) holdsand that there exist c1; c2 2 (0;1] such that14 ln(js(z)j)s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2� ! c1 or c2 (2.21)according as z " r or z # l, then the assertion of Theorem 3.2.5 holds.Proof. By l'Hospital , sou(x) � g(x) = p2�ex2=2=x ; x!1 ; (2.22)and sou and g are unbounded and non-decreasing for all x large enough. Moreover, sou and gare inversely asymptotic , i.e. for all � > 1, there exists some x0(�) such thatsou(x=�) � g(x) � sou(�x); 8x � x0(�) :This implies by Exercise 14 of Bingham, Goldie and Teugels (1987), Section 3.13, thats�1ou (x) � g�1(x) � p2 lnx as x!1. Thus, by l'Hospital,m0ou(s�1ou (s(z)))s0ou(s�1ou (s(z))) s0(z)m0(z) � s00(z)=m0(z)� s0(z)m00(z)=(m0(z))22s00ou(s�1ou (s(z)))s0(z)� 12(s�1ou (s(z)))2s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2�� 14 ln(js(z)j)s(z) � s00(z)s0(z)m0(z) � m00(z)(m0(z))2� ; z " r or z # l :The second line is a consequence of (2.22) for x = s�1ou (s(z)) which tends to �1 as z # l or z " r.In the last line we have used that s�1ou (x) � �p2 ln jxj as x! �1. 2In the following situations we work out conditions on � and � such that the tail behaviour of Fcan easily be described. We apply these results to the examples in Sections 3.3 and 3.4.Theorem 3.2.7 Assume that the usual conditions hold.(a) Assume that � � 0. Then (l; r) = (�1;1) andF (x) � �Z 1�1(2=�2(t))dt��1 x�1 ; x!1 :



74 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONS(b) Assume that r =1 and �1 < � = R rz �(t)=�2(t)dt <1 for some z 2 (l;1). ThenF (x) � e2�jmj�1x�1 ; x!1 : (2.23)(c) Let � and �2 be di�erentiable functions on (x0; r) for some x0 < r such thatlimx"r ddx ��2(x)�(x) � = 0 and limx"r �2(x)�(x) exp��2Z xz �(t)�2(t)dt� = �1 : (2.24)Then F (x) � j�(x)jh(x) ; x " r ; (2.25)where h is the stationary density of (Xt).Proof. We �rst prove (b). By l'Hospital and (1.2),limx!1 s(x)x = limx!1 s0(x)! e�2� ; x!1 :This implies that s(x) � e�2�x as x!1. Now Corollary 3.2.2 applies.(a) Immediately from (1.2) we have s0(x) = 1 for all x 2 (l; r). Hence by (1.1) s(x) = x� z forz 2 (l; r). Since limx"r s(x) =1 and limx#l s(x) = �1, we must have l = �1 and r =1. Thenpart (b) applies with � = 0 and jmj = R1�1(2=�2(t))dt.(c) s0 is an exponential function , hences00(x) = �2s0(x) �(x)�2(x) ; x 2 (l; r) :Then by l'Hospital (which can be applied because of (2.24)),limx"r 2 R xz s0(y)dy�s0(x)�2(x)=�(x) = limx"r 2s0(x)�s0(x)o(1) � s00(x)�2(x)=�(x) = 1 ; x " r :Inserting this in (2.5) yields F (x) � �2�(x)=(jmjs0(x)�2(x)) as x " r, and the result followsfrom (1.3) and (1.4). 2From equations (1.1)-(1.4) it is clear that (Xt) is also uniquely determined by its stationarydensity h(x) and the di�usion coe�cient �(x) . They determine the drift term which is fordi�erentiable volatility ��(x) = �2(x)2 ddx ln(�2(x)h(x)) ; x 2 (l; r) : (2.26)



75Theorem 3.2.8 Assume that the usual conditions hold with r = 1. Let h be the stationarydensity, h positive on (x0;1) for some x0 > 0.(a) If �2(x) � x1��`(x)=h(x) as x ! 1 for some � > 0 , where ` is a slowly varying functionsuch that 1=` is locally bounded. ThenF (x) � �2x��`(x) ; x!1 :(b) If �2(x) � c x��1e��x�=h(x) as x!1 for �; �; c > 0; � 2 R ; thenF (x) � c2x��2e��x� ; x!1 : (2.27)Proof. (a) By (1.3) and (1.4) s0(x) � 2x�(1��)=(jmj`(x)) as x!1. Hence s0 is regularly varyingwith index ��1 and is locally bounded. From Corollary 3.2.2 it follows with Karamata's theorem(Theorem 1.5.11 of Bingham, Goldie and Teugels (1987)) thatF (x) � �2x��`(x) ; x!1 :(b) By (1.3) and (1.4) we obtain s0(x) � 2x�(��1)e�x�=(cjmj) as x!1. Then by l'Hospitals(x) � 2jmjcx��+2e�x� ; x!1 :giving (2.27) by Corollary 3.2.2. 2This result provides a method to construct di�usions with any arbitrary stationary density (withright endpoint r =1) and any extremal behaviour.3.3 Extremes of stochastic models in �nanceDi�usion processes given by the SDE (0.1)dXt = �(Xt)dt+ �(Xt)dWt ; t > 0 ;with properties as described in Section 3.1 are common models in �nance; see e.g. Lamberton andLapeyre (1991), Du�e (1992), Merton (1994) or Baxter and Rennie (1996). Examples 3.3.1, 3.3.2,and 3.3.3 are standard models for the term structure of interest rates; di�usions as Example 3.3.4have been successfully �tted to share prices (K�uchler et al. (1994), Eberlein and Keller (1995)).The state space (l; r) and the range of parameters of all models below is such that limx"r s(x) =1 and limx#l s(x) = �1, hence the boundaries are inaccessible. This can easily be checked by



76 CHAPTER 3.3. EXTREMES OF STOCHASTIC MODELS IN FINANCEstandard calculations and (1.1). Furthermore, the speed measure m is �nite for all models, theprocesses are ergodic with stationary distribution which is absolutely continuous with density hgiven by (1.4). Hence all these models satisfy the usual conditions (1.5).Once F is determined for any of these models, classical extreme value theory takes over.Recall that there are three extreme value distribution functions (up to a�ne transformations).Since all the examples we treat in Section 3.3 are di�usions with state space unbounded above,we only consider the Fr�echet distribution function and the Gumbel distribution function givenby ��(x) = expf�x��g1(0;1)(x) ; � > 0 ;�(x) = expf�e�xg ; x 2 R :If F 2 MDA(��), then the norming constants at and bt can be chosen such thatF (at) � t�1 and bt = 0 : (3.28)If F 2 MDA(�), then the norming constants at and bt can be chosen such thatF (bt) = t�1 and at � a(bt) ; (3.29)where a is the so-called auxiliary function; see e.g. Theorem 3.3.26 of Embrechts et al. (1997).Calculating the norming constants explicitly is then a standard, though often tedious task. Forbt a Taylor expansion leads to the necessary accurracy required by the convergence to typestheorem. We refer to the monographs by Leadbetter, Lindgren and Rootz�en (1983), Resnick(1987) or Embrechts et al. (1997) for some tutorial examples (see also Appendix A2).Then (2.4) implies that MXtat d! �� if F 2 MDA(��) (3.30)and MXt � btat d! � and MXtbt P! 1 if F 2 MDA(�) : (3.31)Furthermore, all the models in this section except the generalised Cox-Ingersoll-Ross model 
 = 1satisfy condition (2.21) of Lemma 3.2.6, hence the Poisson approximation of the "{upcrossingsis also explicitly given for ut = atx+ bt and � = � lnQ(x), where Q is either �� or �.Figures 3.2, 3.4, 3.5, 3.7, 3.9, 3.11 and 3.12 show simulated sample paths (of length t =1000, 10 000 and 25 000, respectively) of the di�erent models. The solid line indicates those



77norming constants which describe the increase of MXt for large t, i.e. in MDA(��) we plot at(see (3.30)) and in MDA(�) we plot bt (see (3.31)). Figures 3.3, 3.6, 3.8, 3.10 display the empiricaldistribution function of the normalised maximum of the di�erent models and the correspondinglimit distributions (based on 50 simulated sample paths of length n = 20 000). Figure 3.15 and3.16 show the empirical distribution function, the empirical density and the QQ-plot (basedon 350 simulated maxima, each taken from a sample path with t = 25 000) of the normalisedmaxima of the generalised inverse Gaussian model for certain parameter values together withthe corresponding limit distribution function and density. The models were simulated by meansof the Milstein Scheme (strong Taylor approximation of convergence order 1) and we refer toKloeden and Platen (1992) for details. The quality of the simulation depends on the stepsize �of the discretisation: a too big stepsize � can actually have disastrous e�ects on the precision ofthe simulation in the extremes. For our simulations we obtained acceptable results for � = 10�4,but this may also depend on the parameters chosen.Example 3.3.1 (The Vasicek model)
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Figure 3.2: Simulated sample path of the Vasicek model (with parameters c = d = � = 1) and correspondingnormalising constants bt.In this model the drift term is �(x) = c � dx for c 2 R, d > 0 and the di�usion coe�cient�(x) � � > 0. The solution of the SDE (0.1) with X0 = x is given byXt = cd + (x� cd)e�dt + � Z t0 e�d(t�s)dWs ; t � 0 :
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Figure 3.3: Empirical distribution function of the normalised maxima of the Vasicek model and the Gumbeldistribution function with the same parameters as in Figure 3.2. We used 50 simulated sample paths of lengthn = 20000.(Xt) is a Gaussian process and has state space R (which is not very satisfactory from a practicalpoint of view), mean value functionEXt = cd + (x� cd)e�dt ! cd and varXt = �22d �1� e�2dt�! �22d ; t!1 :The scale function s has density according to (1.2) (with z = 0)s0(x) = exp�� c2�2d� exp� d�2 �x� cd�2� ; x 2 R ; (3.32)and speed measure m with density according to (1.3)m0(x) = 2�2 exp� c2�2d� exp�� d�2 �x� cd�2� ; x 2 R :By standard calculation, jmj = Z 1�1m0(x)dx = 2�r�d ec2=(d�2) <1 :The assumptions of Theorem 3.2.7(c) are satis�ed and henceF (x) � dp2� x� c=dp�2=(2d) exp��12 (x� c=d)2�2=(2d) �= dp2� G x� c=dp�2=(2d)! ; x!1 ;where G(x) = x expf�x2=2g. Note that F (x) � A (x � c=d)2H(x), where H(x) is the tailof the stationary normal distribution function and A is some constant; hence F has heavier



79tail than H. In order to investigate the extremal behaviour of F we �rst consider the one ofG. One can readilly see that G is a von Mises function (see Proposition A1.2) with auxiliaryfunction a(x) � 1=x . Hence G 2 MDA(�) and the norming constants can be calculated as inProposition A1.3(b): the centering constants ebt as asymptotic solution to G(ebt) = 1�t�1 and thenormalising constants eat � a(ebt). Standard calculation (see Appendix A2) yields G (1� t�1) =p2 ln t+ ln(2 ln t)2p2 ln t + o( 1p2 ln t). Hence by Proposition A1.3(c), we chooseeat = 1p2 ln t and ebt = p2 ln t+ ln(2 ln t)2p2 ln t :From Proposition A1.7 we obtain thus the norming constants to the tailG�(x� c=d)=p�2=(2d)�as bat = �p2deat and bbt = cd + �p2debt ;Finally, by tail equivalence and Proposition A1.6 we obtain the norming constants of F asat = �2pd ln t ;bt = �pdpln t+ cd + �4pd ln ln t+ ln(d2=�)pln t :By Proposition 3.2.1 this implies that2�pd ln t�MXt � �pdpln t� cd � �4pd ln ln t+ ln(d2=�)pln t � d! � :Example 3.3.2 (The Cox-Ingersoll-Ross model)In this model (Xt) satis�es the SDE (0.1) with �(x) = c� dx for d > 0, �(x) = �px for � > 0and 2c � �2. It has state space (0;1), mean value functionEXt = cd + �x� cd� e�dt ! cd ; t!1andvarXt = c�22d2 �1��1 + �x� cd� 2dc � e�2dt + �x� cd� 2dc e�3dt�! c�22d2 ; t!1 ;where X0 = x. For the exact marginal distribution of Xt we refer to Lamberton, Lapeyre (1991),Chapter 6. The scale function s has density according to (3.32) (with z = 1),s0(x) = x�2c=�2 exp�2d�2 (x� 1)� ; x 2 (0;1) :
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Figure 3.4: Simulated sample path of the Cox-Ingersoll-Ross model (with parameters c = d = � = 1) and thecorresponding norming constants bt.The speed measure m has densitym0(x) = 2�2x2c=�2�1 exp�� 2�2 d(x� 1)� ; x 2 (0;1) :and hence jmj = 2�2 e2d=�2 Z 10 x2c=�2�1e�(2d=�2)xdx= 2�2 e2d=�2 ��22d�2c=�2 �� 2c�2� <1 :We conclude that the stationary distribution is �( 2c�2 ; 2d�2 ).For the asymptotic distribution of the maximum MXt of (Xt) we calculate the tail of F .Theorem 3.2.7(c) applies and we obtainF (x) � (dx� c)h(x)� dxh(x)� d�2d�2�2c=�2 ��� 2c�2���1 x(2c=�2+1)�1e�(2d=�2)x� cg(x)� 2cd�2 G(x) ; x!1 ;where g is the density and G(x) is the tail of the �( 2c�2 + 1; 2d�2 ) distribution. It can be seen thatF (x) � B xH(x) for some B > 0. It is well-known (see e.g. Embrechts at al. (1997), Section 3.3,



81p.156) that the gamma distributions are in MDA(�) and the norming constants for G areeat = �2=(2d) and ebt = �22d �ln t+ 2c�2 ln ln t+ ln� 1�(2c=�2 + 1)�� :By Proposition ?? we obtain as norming constants for Fat = �2=(2d) (3.33)bt = �22d �ln t+ 2c�2 ln ln t+ ln� d�(2c=�2)�� : (3.34)This implies that 2d�2 �MXt � �22d �ln t+ 2c�2 ln ln t+ ln� d�(2c=�2)��� d! � :Notice that for �2 << c the constant �(2c=�2) is very large and consequently bt may becomenegative for small t. In extreme cases bt becomes positive only for very large t.Example 3.3.3 (Generalised Cox-Ingersoll-Ross model)In this model the drift term is given by �(x) = c� dx and the di�usion coe�cient has the form�(x) = �x
 for 
 2 [12 ;1). For 
 < 12 we have jmj = 1 and hence by Theorem 7 of Mandl(1968) , p.90, the process is not ergodic. For 
 � 12 the process is ergodic with state space (0;1).We distinguish the following four cases:
 = 1=2 : 2c � �2 ; d > 0 (see Example 3.3.2)1=2 < 
 < 1 : c > 0 ; d � 0
 = 1 : c > 0 ; d > ��2=2
 > 1 : c > 0 ; d 2 R or c = 0 ; d < 0 : (3.35)
For 12 � 
 � 1 the mean value function of (Xt) is given byEXt = 8>>>>><>>>>>: cd + �x� cd� e�dt ! cd if d > 0cd + �x� cd� e�dt !1 if d < 0x+ ct !1 if d = 0 (3.36)as t!1 where X0 = x. This indicates already that for certain parameter values the model cancapture large 
uctuations in data, which will re
ect also in the behaviour of the maxima.In all three cases we calculate the respective quantities with z = 1.
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Figure 3.5: Simulated sample path of the generalised Cox-Ingersoll-Ross model for 
 = 0:75 (with parametersc = d = � = 1) and the corresponding norming constants bt. A sample sample path of length t = 10 000 has beensimulated in order to show that at least for large t the approximation by bt is reasonable.� 12 < 
 < 1We calculate (1.2):s0(x) = exp�� 2�2 � c2
 � 1 + d2� 2
�� exp� 2�2 � c2
 � 1x�2
+1 + d2� 2
 x2�2
�� :With m0(x) as in (1.3) we obtainjmj = 2�2 exp� 2�2 � c2
 � 1 + d2� 2
��Z 10 t�2
 exp�� 2�2 � c2
 � 1 t�(2
�1) + d2� 2
 t2�2
�� dt (3.37)The stationary density as in (1.4) ish(x) = A�22 x�2
 exp�� 2�2 � c2
 � 1x�(2
�1) + d2� 2
 x2�2
�� ; x > 0 ;where A = jmj exp�� 2�2 � c2
 � 1 + d2� 2
�� :The assumptions of Theorem 3.2.7(c) are satis�ed and henceF (x) � dxh(x)� dA 2�2x�2
+1 exp�� d�2(1� 
)x2(1�
)�� dA 2�2G(x) ; x!1 :
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Figure 3.6: Empirical distribution function of the normalised maxima of the generalised Cox-Ingersoll-Ross modeland the Gumbel distribution function for the same parameters as in Figure 3.5.Notice that F (x) � C x2(1�
)H(x) for some C > 0.The distribution function G is a von Mises function with representation as in Proposi-tion A1.2, hence G 2 MDA(�). Rather lengthy, but standard calculations (see Appendix A2)yield the norming constants for G and then for F by Proposition A1.6, givingat = �22d ��2(1� 
)d ln t� 2
�12�2
 (3.38)
bt = ��2(1� 
)d ln t� 12�2
 0@1� 2
 � 12(1� 
) ln��2(1�
)d ln t�ln t 1A 12�2
 + at ln� 2dA�2� ; (3.39)and hence a�1t (MXt � bt) d! � :Note that at is continuous in the point 
 = 1=2, i.e. at as above converges to �2=(2d) as 
 # 1=2,which is the same as (3.33). For the norming constants bt we obtainbt � �22d ln t+ �22d ln� 2dA�2� ; 
 # 1=2 ;hence its �rst term coincides with the �rst term of (3.34).The behaviour of at and bt as 
 " 1 is much more dramatic. It indicates already that at 
 = 1there must be a qualitative change in the extremal behaviour. This is con�rmed in the following.
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Figure 3.7: Simulated sample path of the generalised Cox-Ingersoll-Ross model for 
 = 1 (with parametersc = d = � = 1) and the corresponding norming constants bt.� 
 = 1In this case the solution of the SDE (0.1) with X0 = x is explicitly given byXt = e�(d+�22 )t+�Wt �x+ cZ t0 e(d+�22 )s��Wsds� ; t � 0 :We obtain from (1.2) s0(x) = exp�� 2c�2�x2d=�2 exp� 2c�2x�1� :With m0(x) as in (1.3) we obtainjmj = 2�2 exp� 2c�2���2d�2 + 1���22c� 2d�2+1 :The density of the stationary distribution ish(x) = ��22c�� 2d�2�1���2d�2 + 1���1 x�2d=�2�2 exp�� 2c�2x�1� ; x > 0 :h is regularly varying with index �2d=�2�2 and hence by Karamata's theorem (Theorem 1.5.11of Bingham, Goldie and Teugels (1987)) the tail H of the stationary distribution is also regularlyvarying. This implies that certain moments are in�nite:limt!1EX�t = 8>><>>: � 2c�2�� � � 2d�2 + 1� ��� � 2d�2 + 1� if � < 2d�2 + 1 ;1 if � � 2d�2 + 1 :
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Figure 3.8: Empirical distribution function of the normalised maxima of the generalised Cox-Ingersoll-Ross modelfor 
 = 1 and the Fr�echet distribution function for the same paramters as in Figure 3.4.In particular, limt!1varXt =8><>: 2c2d(2d� �2) <1 if 2d�2 > 1 ;1 if �1 < 2d�2 � 1 :For the tail of F we obtain by Theorem 3.2.7(c)F (x) � �22 ��22c�� 2d�2�1���2d�2 + 1���1 �2d�2 + 1� x�2d=�2�1 exp�� 2c�2x�1�� �22 ��22c�� 2d�2�1���2d�2 + 1���1�2d�2 + 1�x�2d=�2�1 ; x!1 :Hence F is regularly varying and by Proposition A1.1 F 2 MDA(�1+2d=�2), with normingconstants and the normalising constants at chosen according to Proposition A1.3 asat �  �22 ��22c�� 2d�2�1���2d�2 + 1���1�2d�2 + 1� t!1=(1+2d=�2) ; bt = 0 :Notice that at � D t1=(1+2d=�2) for a constant D, i.e. at is a decreasing function of d=�2. Hencethe maxima MXt are likely do increase slower, when d=�2 gets larger. In particular,MXt =�Dt1=(1+2d=�2)� d! �1+2d=�2 ; t!1 :
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Figure 3.9: Simulated sample path of the generalised Cox-Ingersoll-Ross model for 
 = 1:5 (with parametersc = d = � = 1) and the corresponding norming constants at.� 
 > 1Notice �rst that the functions s0, m0, h and the constant A are of the same form as in the case12 < 
 < 1. We apply Theorem 3.2.7(b) and obtainF (x) � e2�jmjx�1 = (Ax)�1 ; x!1 ;where � = 1�2 � c2
 � 1 + d2� 2
� :Hence F 2 MDA(�1) with norming constants at � t=A. One can observe that the order ofincrease of at is always linear. The constant A decides about the slope. We obtain in particularAMXt =t d! �1 :For 
 = 3=2 it is possible to calculate A explicitly. We obtainA = 2�2 Z 10 x�3 exp(�2=�2(x�2c=2� x�1d))dx= 2�2 Z 10 y exp(�12 (y2 � 2yd=c)�2=2c )dy= 2�2 ed2=�2c Z 10 y exp(�12 (y � d=c)2�2=2c )dy= 1c  1 + 2rd2��2c ed2=(c�2)� r2d2c�2!! ;
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Figure 3.10: Empirical distribution function of the normalised maxima of the generalised Cox-Ingersoll-Ross modelfor 
 = 1:5 and the Fr�echet distribution function �1 with the same parameters as in Figure 3.9.where � denotes the standard normal distribution function . Note that (if we ignore c for themoment) A is increasing in the quotient d2=(c�2).Example 3.3.4 (Generalised hyperbolic di�usion)Di�usions with given stationary distribution have been considered as appropriate models forasset prices. Models considered assume that the price process follows the SDE (0.1) with driftterm zero; i.e. dXt = �(Xt)dWt ; t > 0 ;with di�usion coe�cient �(x) and state space R. Choose�2(x) = �2=h(x) ;where h is an arbitrary density, then (Xt) has exactly this stationary density h. These di�usionmodels have been considered as alternatives to Gaussian processes for asset prices. In theirmost general form, as introduced by Rydberg (1996) the stationary distribution is a generalisedhyperbolic distribution. A generalised hyperbolic random variable is N(a+ bZ; Z), where Z is ageneralised inverse Gaussian random variable; hence it is a normal variance-mean mixture. Themodel includes the hyperbolic di�usion and the normal inverse Gaussian di�usion.The hyperbolic di�usion has been considered as a model for asset prices by Bibby andS�rensen (1995). Eberlein and Keller (1995) and K�uchler et al. (1994) �tted the hyperbolicdistribution to the marginals of the price process of certain assets. Statistical modelling by



88 CHAPTER 3.4. GENERALISED INVERSE GAUSSIAN DIFFUSIONmeans of the hyperbolic distribution has been e�ective in a number of contexts (see Barndor�-Nielsen (1995) for further references).The normal inverse Gaussian di�usion has been considered by Rydberg (1996). The station-ary distribution is the normal inverse Gaussian distribution as de�ned in Rydberg (1996) orBarndor�-Nielsen (1995). A state space/stochastic volatility model based on the normal inverseGaussian distribution has been introduced in the latter paper.These models have in common that the tails of their stationary distribution are log-linear,hence the stationary distribution belongs to MDA(�).Since all these di�usions have been constructed with drift term � = 0 and �2(x) = �2=h(x)for � > 0 and pre-determined stationary density h, Theorem 3.2.7(a) applies, yielding2MXt =(�2t) d! �1 ; t!1 ;regardless of their stationary distribution. F 2 MDA(�1) means that the maximum of theprocess is likely to behave as the maximum of i.i.d. random variables with distribution tailF (x) � �22 x�1, so the process is likely to show more extreme 
uctuation than one expects fromits stationary distribution.3.4 Generalised inverse Gaussian di�usionIn Example 3.3.4 we have seen how an ergodic di�usion with drift term � � 0 and arbitrarystationary distribution can be constructed. This construction has the drawback that all thesedi�usions show the same behaviour in their maxima MXt represented by F (x) � Ax�1 for someA > 0. Guided by Theorem 3.2.8 we choose another method of construction. We choose a densityh(x) and a di�usion coe�cient �(x). By equation (2.26) this de�nes a drift term �, giving anSDE (0.1).We shall present this method by introducing a new class of di�usions with generalised inverseGaussian stationary distribution and state space (0;1). Its stationary distribution has (like thegeneralised hyperbolic distribution) tails with asymptotic behaviour reaching from exponentialto regularly varying. Moreover, this model can be viewed as a further generalisation of theCox-Ross-Ingersoll model (Example 3.3.2). It also includes Example 3.3.3 for 
 = 1.The density of the generalised inverse Gaussian distribution is given byh(x) = (�= )�=22K� �p� �x��1 exp��12(�x+  x�1)� ; x > 0 ;



89whereK� is the modi�ed Bessel function of the third kind and index �. The following parametersets are possible f� > 0 ;  > 0 ; � 2 Rgf� = 0 ;  > 0 ; � < 0gf� > 0 ;  = 0 ; � > 0g :The norming constant simpli�es for � = 0 and  = 0. For further details concerning thegeneralised inverse Gaussian distribution and its properties we refer to Joergensen (1982).Now we consider the special case of �(x) = �x
 for � > 0 and 
 � 0. For the sake ofcomparison we choose the di�usion coe�cient to be the same as in the Cox-Ingersoll-Ross model(Example 3.3.2) and its generalised version (Example 3.3.3). Of course, any other di�usioncoe�cient is possible, leading to di�erent classes of models (with the appropriate restriction ofthe parameter space).By equation (2.26), (1.2) and (1.3),�(x) = 14�2x2
�2 � + 2(2
 + �� 1)x� �x2� ;s0(x) = exp��12(�+  )� x�(2
+��1) exp�12(�x+  x�1)� andm0(x) = 2�2 exp�12(�+  )� x��1 exp��12(�x+  x�1)� :As formulated in Section 3.1 we require the process to be recurrent and to have inaccessibleboundaries 0 and 1, i.e.Z 11 x1���2
 expn�2 xo dx =1 and Z 10 x1���2
 exp� 2 x�1� dx =1 :This puts further restrictions on the parameter space and we considerf� > 0 ;  > 0 ; � 2 Rgf� = 0 ;  > 0 ; � < 0 and � � 2(1� 
)gf� > 0 ;  = 0 ; � > 0 and � � 2(1� 
)g : (4.1)The SDE (0.1) with � and � as above with this restricted parameter space has a unique solu-tion (Xt). This can be shown for instance by an application of Theorem 5.13 of Karatzas andShreve (1987) to ln(Xt). We call this solution (Xt) generalised inverse Gaussian di�usion (GIGdi�usion). For all parameters in (4.1), jmj < 1 and hence by Theorem 7 of Mandl (1968), p.90, (Xt) is ergodic.
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Figure 3.11: Simulated sample path of the GIG model (with parameters 
 = 0:5, � = 0,  = � = 1, � = �1) andthe corresponding norming constants at.Comparison of the drift terms show that the GIG di�usion for 
 = 1=2 and  = 0 (whichimplies � > 0 and � � 1) is just the CIR model with parameters c = �2�=2 and d = �2�=4. Ifwe choose 
 = 1 and � = 0 (which implies  > 0 and � < 0), then we obtain the generalisedCIR model with parameters c = �2 =4 and d = ��2(1 + �)=2.For the study of the extremal behaviour of (Xt) we distinguish three di�erent cases:� � = 0Then  > 0 and � < 0 and � � 2(1� 
). The stationary density is inverse gamma of the formh(x) = ( =2)���(��) x��1 exp��12 x�1�� ( =2)���(��) x��1 ; x!1 ;i.e. it is regularly varying. Now Theorem 3.2.8(b) applies givingF (x) � �2( =2)��(2� 2
 � �)2�(��) x�(2�2
��) ; x!1 :By Proposition A1.1 F 2 MDA(�2�2
��) with norming constants chosen according to Proposi-tion A1.3(a) yieldingat � ��2( =2)��(2� 2
 � �)�(��) t�1=(2�2
��) and bt = 0 :



91By Karamata's theorem (Theorem 1.5.8 of Bingham, Goldie and Teugels (1987))H(x) � ( =2)�
�(��)(��)x� ; x!1 ;and hence H(x) � 2�2(��)(2 � 2
 � �)x2�2
F (x) ; x!1 :Hence, depending on the choice of 
, the tail H of the stationary distribution can be heavier orlighter than F , the tail which describes the asymptotic behaviour of MXt .�  = 0Then � > 0 and � > 0 and � � 2(1� 
). The stationary density simpli�esh(x) = (�=2)���(�) x��1 exp��12�x� ; x > 0 ;which is a �(�; �=2) density. Now Theorem 3.2.8(b) applies givingF (x) � �2(�=2)�+12�(�) x�+2
�1 expf��2 xg� �2(�=2)2�2
�(2
 + �)2�(�) G(x) ; x!1 ;where G is the �(2
 + �; �=2) distribution function. Then as in the Cox-Ingersoll-Ross model,F is of gamma-type. Hence F 2 MDA(�) with norming constants chosen according to Proposi-tion A1.3(b). By tail-equivalence and Proposition A1.6 we obtainat = 2=� and bt = 2� �ln t+ (2
 + �� 1) ln ln t+ ln��2(�=2)2�2
2�(�) �� :Similar calculations as above yieldH(x) � 2�2 ��2��2��3 x�2
F (x) ; x!1 :Since 
 > 0 this implies that F has heavier-tail than the stationary distribution function H.Hence the extremal behaviour of (Xt) shows larger 
uctuations than an i.i.d. family of randomvariables with distribution function H was likely to show.�  > 0 ; � > 0Then � is arbitrary in R. Theorem 3.2.8(b) applies givingF (x) � �2(�=2)4K�(p� )x2
+��1 expf��2 xg� �2(�=2)2�2
��4 �� ��=2 �(2
 + �)K�(p� ) G(x) ; x!1 ;
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Figure 3.12: Simulated sample path of the GIG model (with parameters 
 = 0:5, � =  = � = � = 1) and thecorresponding norming constants bt.whereG is the �(2
+�; �=2) distribution function. Notice that G is exactly the same distributionfunction as in the previous case. By tail-equivalence and Proposition A1.6 we obtain the normingconstantsat = 2=� and bt = 2�  ln t+ (2
 + �� 1) ln ln t+ ln �2(�=2)2�2
��4K�(p� ) �� ��=2!! :As above H(x) � 2�2 � 2��2 x�2
F (x) ; x!1 :The remark at the end of the case  = 0 applies.Finally we investigate the assumptions in Theorem 3.2.4 for this case in detail. First noticethat s0(x)!1 for x # 0 or x " 1. Thus by l'Hospitals0(x)s(x) � �2 ; x " 1 and s0(x)s(x) � � 2 x�2; x # 0:By Lemma 3.2.6 and the fact that m0(x)s0(x) = 2x�2
=�2,m0ou(s�1ou (s(x)))s0ou(s�1ou (s(x))) s0(x)m0(x) � �24 s0(x)s(x) x2
�1ln(js(x)j) �s00(x)s0(x) x+ 
� ; x " 1 or x # 0:If we further distinguish between left and right endpoint we derivem0ou(s�1ou (s(x)))s0ou(s�1ou (s(x))) s0(x)m0(x) ! 8>>>><>>>>: 0 
 < 0:5�24 �2 
 = 0:51 
 > 0:5 ; x " 1;



93and m0ou(s�1ou (s(x)))s0ou(s�1ou (s(x))) s0(x)m0(x) ! 8>>>><>>>>: 1 
 < 1:5�24  2 
 = 1:50 
 > 1:5 ; x # 0:Hence by Remark 3.2.5(c), we may conclude that in the case 0:5 � 
 � 1:5 the assumptions ofthe Theorem 3.2.4 are ful�lled while in the other cases condition (2.21) of Lemma 3.2.6 does nothold.3.5 Concluding remarksAs was demonstrated in this chapter extreme value theory for a large class of di�usion pro-cesses is strongly connected with classical extreme value theory for i.i.d. random variables. Thisconnection is not only valid for the behaviour of the maximum of a di�usion process but also,under some additional restrictions, for the point processes of "-upcrossings. It appeared that"-upcrossings of a di�usion process are likely to behave as the exceedances of i.i.d. random vari-ables with a well-speci�ed distribution function, i.e. the associated point processes converge tothe same homogeneous Poisson process. It would be interesting to see whether this result evenholds if the technical assumption (2.10) is not satis�ed (e.g. in the case of the generalised CIRmodel with 
 = 1).The results of this chapter may be applied to study risk measures of �nancial products asfor instance the value at risk or related quantile risk measures; see Embrechts, Kl�uppelberg andMikosch (1997), Example 6.1.6. Nevertheless, one has to consider the quality of the approxi-mation in the extremes of the di�usion process and the associated sequence of i.i.d. randomvariables. The speed of convergence might be quite slow. Indeed, not much is known aboutthe rate of convergence for extremes of continuous parameter processes. Konakov and Piter-barg (1982) give bounds for the maximum of general stationary normal processes. However, thebounds do not seem to be very sharp (logarithmical decrease). In Kratz and Rootz�en (1998)they were improved considerably in the case of mean square di�erentiable stationary normalprocesses. There is no related result for di�usion processes. An obvious idea is to �rst inves-tigate again the order of convergence for the Ornstein-Uhlenbeck process and then transformthe result to arbitrary ergodic di�usion processes with inaccessible boundaries by means of ourrandom time change argument as in section 3.2. This work is currently under way and will bepresented in a forthcoming paper.



94 CHAPTER 3.5. CONCLUDING REMARKSAnother problem concerning application of the results in this chapter to �nancial problemsis that the assumption of ergodicity is crucial. Unfortunately, di�usion models for stocks andother securities clearly do not satisfy this assumption. In these cases, the main problem is therandom time change transformation which makes no sense for t tending to in�nity, since thetotal speed measure is not �nite. Investigating how to overcome these di�culties would be asuitable topic for future research.Finally, another practical question is the behaviour of the maximum of a bond or swap pricefor a very large maturity T . Bond and swap prices are functions of interest rates which areusually modelled by di�usion processes that �t in our framework. We are optimistic that ourresults might help in solving this problem. However, a detailed analysis of this question is againleft for future research.
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Figure 3.13: The Poisson approximation for "-upcrossings of the GIG di�usion with parameters 
 = 0:5; � =0;  = 1; � = 1; � = �1 as in Figure 3.11. The threshold increases with the sample size. For the calculation of thethresholds we used � = 10, i.e. on average there are 10 "{upcrossings for large t and �xed small " > 0. The �rst�gure shows a realisation of the process Xt for 0 � t � 1 000, the last two �gures represent continuations of thisrealisation to t = 5000 and t = 25 000, respectively.
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Figure 3.14: The Poisson approximation for "-upcrossings of the GIG di�usion with parameters 
 = 0:5; � =  =� = � = 1 as in Figures 3.12. The threshold increases with the sample size. For the calculation of the thresholdswe used � = 10, i.e. on average there are 10 "{upcrossings for large t and �xed small " > 0. The �rst �gure showsa realisation of the process Xt for 0 � t � 1 000, the last two �gures represent continuations of this realisation tot = 5000 and t = 25 000, respectively.
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Figure 3.15: The empirical distribution function (top), the empirical density (middle) and the QQ-plot (bottom)of the normalised maxima of the GIG model and the Frechet distribution function and density (solid line), basedon 350 simulations with t = 25 000 and parameters 
 = 0:5; � = 0;  = 1; � = 1; � = �1 as in Figure 3.11.
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Figure 3.16: The empirical distribution function (top), the empirical density (middle) and the QQ-plot (bottom)of the normalised maxima of the GIG model and the Gumbel distribution function and density (solid line), basedon 350 simulations with t = 25 000 and parameters 
 = 0:5; � =  = � = � = 1 as in Figure 3.12.
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The Vasicek model: dXt = (c� dXt) dt + � dWt, � > 0; d > 0; c 2 R�Xt = cd + (x� cd )e�dt + � R t0 e�d(t�s)dWs ; t � 0�h(x) = 1p2��2=2 expf�12 (x� c=d)2�2=2d g; x 2 RF (x) � d(x� c=d)2�2=2d H(x); x!1at = �2pd ln tbt = �pdpln t+ cd + �4pd ln ln t+ ln(d2=�)pln ta�1t (MXt � bt) d! �
The Cox-Ingersoll-Ross model:dXt = (c� dXt) dt + �pXt dWt, � > 0; d > 0; c � �2=2h(x) = (2d=�2)2c=�2�(2c=�2) x�1+2c=�2 e�2dx=�2 ; x > 0F (x) � 2d2�2 xH(x); x!1at = �22dbt = �22d �ln t+ 2c�2 ln ln t+ ln� d�(2c=�2)��a�1t (MXt � bt) d! �
The generalised Cox-Ingersoll-Ross model:dXt = (c� dXt) dt + �X
t dWt; 
 > 1=2(a) 1=2 < 
 < 1 : � > 0; d � 0; c > 0h(x) = const x�2
e� 2�2 ( c2
�1x�(2
�1)+ d2�2
 x2�2
); x > 0F (x) � const x2(1�
)H(x); x!1at = �22d ��2(1�
)d ln t� 2
�12�2
bt = ��2(1� 
)d ln t� 12�2
 �1� 2
 � 12(1 � 
) ln(�2(1� 
)d ln t)= ln t�+�22d ��2(1� 
)d ln t� 2
�12�2
 ln� 2dA�2�a�1t (MXt � bt) d! �
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(b) 
 = 1 : � > 0; d > ��2=2; c > 0�Xt = e�(d+�22 )t+�Wt(x+ c R t0 e(d+�22 )s��Wsds); t � 0�h(x) = ��22c�� 2d�2�1 ��2d�2 + 1��1 x�2d=�2�2e� 2c�2 x�1F (x) � (2d+ �2)22�2 H(x); x!1at �  c��22c�� 2d�2 ��2d�2 + 1��1�2d�2 + 1� t!1=(1+2d=�2)bt = 0a�1t (MXt � bt) d! �1+2d=�2(c) 
 > 1 : � > 0; d 2 R; c > 0h(x) = const x�2
e� 2�2 ( c2
�1x�(2
�1)+ d2�2
 x2�2
); x > 0F (x) � const x2(1�
)H(x); x!1at � t=A,where A = 2�2 Z 10 t�2
 exp�� 2�2 � c2
 � 1 t�(2
�1) + d2� 2
 t2�2
�� dtbt = 0a�1t (MXt � bt) d! �1The Normal Inverse Gaussian Di�usion:dXt = � (1 + (Xt � �)2=�2)1=4qK1(��p1 + (Xt � �)2=�2) expf�12� Xtg; �; �; �; �; �where � 2 R; � > 0; 0 � j�j < �; � > 0 andK1(
) = 12 Z 10 expf�12
(t+ t�1)gdth(x) = �� expf�p�2 � �2 � ��gK1(��p1 + (x� �)2=�2)p1 + (x� �)2=�2 expf�zgat = ��22� expf�p�2 � �2 � ��gtbt = 0a�1t (MXt � bt) d! �1
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The Generalised Inverse Gaussian Di�usion:dXt = 14�2X2
�2t � + 2(2
 + �� 1)Xt � �X2t �+ �X
t dWt; � > 0; 
 > 0(a) � = 0;  > 0; � < minf0; 2(1 � 
)g :h(x) = ( =2)���(��) x��1 exp��12 x�1� ; x > 0F (x) � �2(��)(2� 2
 � �)2 x2
�2H(x); x!1at � ��2( =2)��(2� 2
 � �)�(��) t�1=(2�2
��)bt = 0a�1t (MXt � bt) d! �2�2
��(b)  = 0; � > 0; � > maxf0; 2(1 � 
)g :h(x) = (�=2)���(�) x��1 exp��12�x� ; x > 0F (x) � �22 ��2�2�+3 x2
H(x); x!1at = 2=�bt = 2� �ln t+ (2
 + �� 1) ln ln t+ ln��2(�=2)2�2
2�(�) ��a�1t (MXt � bt) d! �(c) � > 0;  > 0; � 2 R:h(x) = (�= )�=22K� �p� �x��1 exp��12(�x+  x�1)� ; x > 0 ;F (x) � �22 � 2���2 x2
H(x); x!1at = 2=�bt = 2�(ln t+ (2
 + �� 1) ln ln t+ ln(�2(�=2)2�2
��4K�(p� ) (� )�=2))a�1t (MXt � bt) d! �
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Appendix
A1 Classical Extreme Value TheoryThere are three extreme value distribution functions (up to a�ne transformations):Fr�echet: ��(x) = expf�x��gI(0;1)(x) ; � > 0 :Weibull:  �(x) = expf�(�x)�gI(�1;0)(x) ; � > 0 : (A.1)Gumbel: �(x) = expf�e�xg ; x 2 R :The distribution function F belongs to the maximum domain of attraction of an extremevalue distribution function Q (F 2 MDA(Q)) iflimt!1F t(atx+ bt) = Q(x) ; x 2 R :MDA( �) contains only distribution functions with �nite right endpoint. Since all the exampleswe treat in this work are stochastic processes with state space unbounded above, we only presentresults on MDA(��) and MDA(�).Proposition A1.1 F 2 MDA(��) if and only if F (x) = x��`(x), where ` is a slowly varyingfunction (i.e. limx!1 `(xt)=`(x) = 1 8 t > 0).Proposition A1.2 F 2MDA(�) if F has the representationF (x) = c exp��Z xz 1a(t)dt� ; x > z ; (A.2)where c > 0 and a(�) is an absolutely continuous function with Lebesgue density a0 such thatlimx"r a0(x) = 0. 2A distribution function with representation (A.2) is called a von Mises function. The functiona(�) is called auxiliary function. 103



104 APPENDIX A1. CLASSICAL EXTREME VALUE THEORYProposition A1.3 (a) If F 2 MDA(��), then the norming constants at can be chosen suchthat F (at) = t�1 and bt = 0 :(b) If F 2 MDA(�), then the norming constants at and bt can be chosen such thatF (bt) = t�1 and at = a(bt):(c) The norming constants are not unique. Iflimt!1F t(atx+ bt) = N(x) ; x 2 R ;and eat � at and ebt � bt = o(at), thenlimt!1F t(eatx+ebt) = N(x) ; x 2 R : 2Proposition A1.4 describes the increase of MXt .Corollary A1.4 (a) If F 2 MDA(��), thenMXtat d! �� ; t " r :(b) If F 2 MDA(�), then MXt � btat d! � ; t " r :In particular, MXtbt P! 1 ; t " r : 2De�nition A1.5 Let F and G be distribution functions with right endpoint r � 1. Iflimx"r F (x)G(x) = c 2 (0;1) ;then F and G are called tail-equivalent.Proposition A1.6 Let F and G be tail-equivalent distribution functions with right endpointr � 1 and F (x) � cG(x) as x " r. Assume that G 2 MDA(Q) with norming functions eat > 0and ebt 2 R such that limt!1Gt(eatx+ebt) = Q(x) ; x 2 R ;for an extreme value distribution function Q. Then F 2 MDA(Q) andlimt!1F t(atx+ bt) = Q(x) ; x 2 R ;



105where at = eat and bt = ebt + eat ln c if Q = � ;at = c1=�eat and bt = bt = 0 if Q = �� : 2Proposition A1.7 Let F (x) = G(cx+ d) for any c > 0 and d 2 R. Assume that G 2 MDA(Q)with norming functions eat > 0 and ebt 2 R such thatlimt!1Gt(eatx+ebt) = Q(x) ; x 2 R ;for an extreme value distribution function Q. Then F 2 MDA(Q) andlimt!1F t(atx+ bt) = Q(x) ; x 2 R ;where at = eat=c and bt = (ebt � d)=c . 2A2 Computation of Normalising ConstantsIn this section we compute explicitly the normalising constants an and bn which we presented inChapter 3 in Examples 3.3.1 and 3.3.3. Recall that the constants an and bn have to be chosensuch that the underlying distribution function F belongs to the maximum domain of attractionof one of the three extreme value distribution functions, i.e.limn!1F n(anx+ bn) = Q(x) ;where Q is either a Fr�echet, Weibull or Gumbel distribution function. We will proceed in asimilar way as in Embrechts et al. (1997, Chapter 3.3) or Resnick (1988, Chapter 1.5).Concerning Example 3.3.1:Suppose the tail of F is given byF (x) � x expf�x2=2g ; x!1 :Due to Proposition A1.6 it is su�cient to compute the normalising constants an and bn ofthe distribution function G(x) = 1 � x expf�x2=2g for x large enough. Notice that G is a vonMises function with auxiliary function a(x) = (x+1=x)�1. Thus G 2MDA(�) and according to



106 APPENDIX A2. COMPUTATION OF NORMALISING CONSTANTSProposition A1.3(b) bn = G (1�1=n) and an = a(bn). Hence look for a solution of � lnG(bn) =lnn, i.e. 12b2n � ln bn = lnn : (A.1)Since bn !1 we see by dividing through thatbn � p2 lnnand consequently bn = p2 lnn+ rn ; (A.2)where rn = o(plnn). By Proposition A1.3(b) we may hence choose an = 1=p2 lnn. Substituting(A.2) in (A.1) we obtainlnn+p2 lnnrn + 12r2n � ln(p2 lnn+ rn) = lnn ;i.e. p2 lnnrn + 12r2n � ln�p2 lnn(1 + rn=p2 lnn)� = 0 ;i.e. p2 lnnrn + 12r2n � 12 ln(2 lnn)� ln(1 + rn=p2 lnn) = 0 : (A.3)Divide through by p2 lnn rn and we get1 + 12 rnp2 lnn � 12 ln(2 lnn)p2 lnnrn � ln(1 + rn=p2 lnn)p2 lnnrn = 0 :Because rn = o(plnn) and since the last term is asymptotic to rn=p2 lnn)p2 lnnrn = 12 lnn ! 0 asn!1 we obtain that rn = 12 ln(2 lnn)p2 lnn + sn ; (A.4)where sn = o(ln lnn=plnn). In fact sn = o((lnn)�1=2). To see this observe that (A.3) impliesp2 lnnrn � 12 ln(2 lnn) = ln(1 + rn=p2 lnn)� 12r2n ! 0 ; n!1 : (A.5)Plugging now (A.4) in the lhs of (A.5) we getp2 lnn sn ! 0 ; n!1 :



107Therefore bn � (p2 lnn+ ln(2 lnn)=2p2 lnn)an = snan ! 0 ; n!1and hence, because of Proposition A1.3(c),bn = p2 lnn+ ln(2 lnn)p2 lnnis an acceptable choice.Concerning Example 3.3.3:Consider the tail F (x) � x�2
+1 expf� d�2(1� 
)x2(1�
)g (A.6)of a distribution function F , where 1=2 < 
 < 1; c > 0; d � 0 and � > 0. Again with the samearguments as in the last case we may assume w.l.o.g. that the tail of the distribution function Fequals the rhs of (A.6). It is straightforward that F is a von Mises function, hence F 2MDA(�)and the auxiliary function a(x) satis�esa(x) = �(2
 � 1) 1x + 2d�2x1�2
��1 � �22dx2
�1 ; x!1 :We now show that an = �22d ��2(1� 
)d lnn� 2
�12�2
 (A.7)and bn = ��2(1� 
)d ln t� 12�2
 0@1� 2
 � 12(1� 
) ln��2(1�
)d ln t�ln t 1A 12�2
 (A.8)are acceptable choices of the norming constants. By Proposition A1.3(b) we have to solveF (bn) = 1n ;i.e. b1�2
n expf� d�2(1� 
)b2(1�
)n g = 1nand logarithming both sides givesd�2(1� 
)b2(1�
)n � (1� 2
) ln bn = lnn : (A.9)



108 APPENDIX A2. COMPUTATION OF NORMALISING CONSTANTSWe will construct an expansion of bn and indicate how many terms are necessary. Since bn !1we see by dividing left and right sides of (A.9) by b2(1�
)n that as n!1bn � ��2(1� 
)d lnn�1=2(1�
) : (A.10)Since an = a(bn) � �22db2
�1n = �22d ��2(1� 
)d lnn�2
�1=2(1�
) we see that an acceptable choicefor an is an = �22d ��2(1� 
)d lnn�2
�1=2(1�
) :Next we have to study bn in more detail. In order to do this we de�ne the auxiliary sequencevn = b2(1�
)n : (A.11)From (A.9) we get thus d�2(1� 
)vn � (1� 2
)2(1 � 
) ln vn = lnn : (A.12)From (A.10) we see that vn = �2(1� 
)d lnn+ rn ; (A.13)where rn = o(lnn). Substituting (A.13) into (A.12) we �ndd�2(1� 
)rn = (1� 2
)2(1 � 
) ln��2(1� 
)d lnn�+ (1� 2
)2(1� 
) ln�1 + d rn�2(1� 
) lnn�and therefore rn = �2(1� 2
)2d ln��2(1� 
)d lnn�+ sn ; (A.14)where sn = �22d (1 � 2
) ln(1 + d rn�2(1� 
) lnn) � �22d (1 � 2
) d rn�2(1� 
) lnn ! 0 as n ! 1 , i.e.sn = o(1). Plugging all this together we obtainbn = v1=2(1�
)n = ��2(1� 
)d lnn+ �22d (1� 2
) ln(�2(1� 
)d lnn) + sn�1=2(1�
)= ��2(1� 
)d lnn+ �22d (1� 2
) ln(�2(1� 
)d lnn)�1=2(1�
)�  1 + sn�2(1�
)d lnn+ �22d (1� 2
) ln(�2(1�
)d lnn)!1=2(1�
) :



109A Taylor expansion and the fact that 1=2 < 
 < 1 yields thatbn � (�2(1�
)d lnn+ �22d (1� 2
) ln(�2(1�
)d lnn))1=2(1�
)an � 2d�2 sn ! 0 ; n!1:By Proposition A1.3(c)bn = ��2(1� 
)d lnn+ �22d (1� 2
) ln(�2(1� 
)d lnn)�1=2(1�
)is an acceptable choice.A3 Some Extreme Value Theory for Markov ChainsThe theorem below gives the extremal properties of a fairly large class of stationary Markovchains. The original version can be found in Perfekt (1994, Theorem 3.2, p. 538). We present asimpli�ed version of Perfekt's result which can be directly applied to our situation in Chapter 2.Theorem A3.1 Suppose (Xn)n2N is a stationary Markov chain which satis�es for some 
 2(�1;1) the following properties(i) limu"xF 1� F (u+ g(u)x)1� F (u) = (1� 
 x)1=
+ ; x 2 (�1;1);where F is the stationary distribution function, xF := supfx ; F (x) < 1g, y+ := maxf0; yg andxF =1 and g(u) = �
 u if 
 < 0xF <1 and g(u) = 
(xF � u) if 
 > 0If 
 = 0, then the auxiliary function g is unique up to asymptotic equivalence and strictly positiveon (x0; xF ) for some x0 < xF .(ii) limu!xF P�(1� 
 (X1 � u)g(u) )�1=
+ � x jX0 = u� = H(x)for some distribution function H on [0;1).Let furthermore (An)n2N be an i.i.d. sequence with marginal distribution function H and let Y0be a random variable independent of (An)n2N . De�ne the tail chain (Yn)n2N by Yn = An Yn�1



110 APPENDIX A3. SOME EXTREME VALUE THEORY FOR MARKOV CHAINSfor n � 1 and denote by P � the law of (Yn)n2N when Y0 has distribution �. Assume �(dx) =x�2dx; x > 1 and let (un(�)) be a sequence which satis�eslimn!1n(1� F (un(�)))! � :(a) Assume D(un(�)) holds for each � > 0. If for some �0 there is a D(un(�0))-separatingsequence (pn)n2N such thatlimp!1 lim supn!1 P ( maxp�j�pnXj > un jX0 > un) = 0 (A.1)holds with un = un(�) then (Xn)n2N has extremal index � given by� = P �(#fn � 1 jYn > 1g = 0) :(b) Suppose (Xn)n2N has extremal index � > 0 and, for some �1 > 0 satis�es �(un(��1))for each � > 0. Suppose further there is a �(un(�1))-separating sequence (pn)n2N such that(A.1) holds with un = un(�1). Then, for each � > 0, N��1n := #fk 2 f1; :::; ng j k=n 2 �; Xk >un(��1)g converges in distribution to a compound Poisson process N with intensity ���1 andjump probabilities �i given by�i = 1��P �(#fn � 1 jYn > 1g = i� 1)� P �(#fn � 1 jYn > 1g = i)� ; i 2 N :The next theorem is an extension of Theorem A3.1. In some cases it is easier to apply then thelast one.Theorem A3.2 (Extension of Theorem 3.2 of Perfekt (1994), p. 543) Suppose (Xn)n2N is astationary Markov chain which satis�eslimu"xF 1� F (u+ g(u)x)1� F (u) = (1� 
 x)1=
+ ; x 2 (�1;1);where F is the stationary distribution function, xF := supfx ; F (x) < 1g =1, y+ := maxf0; ygand g(u) = �
 u for some 
 < 0 :Suppose furthermore that inffx ; F (x) > 0g = �1 and thatlimu!1P (X1u � x jX0 = u) = H(x) ;



111for some distribution function H on (�1;1). Let (An)n2N be an i.i.d. sequence with distributionH and de�ne the tail chain through Yn = AnYn�1; n � 1, Y0 being independent of (An)n2N . Then,if (Xn)n2N satis�es the conditions in (a) and (b) of Theorem A3.1, the result of the theorem holdswith the initial distribution � given by �(dx) := j
j�1x1=
�1dx; for x > 1.A4 Classical Markov Chain TheoryHere we give a short introduction to the Markov chain theory we need in this paper. For detailswe refer to Tweedie (1976) or Meyn and Tweedie (1993) .Consider a homogeneous Markov chain (Xn)n2N on a locally compact complete separablemetric space E and E is the countably generated �-algebra on E. Let P = fP (x;A) := P (X1 2A jX0 = x) ; x 2 E;A 2 Eg denote the transition probability kernel and � the initial distribution.The n-step transition probabilities P n(x;A) := P (Xn 2 AjX0 = x) can be iterated asP n(x;A) = ZE P n�1(y;A)P (x; dy) ; x 2 E;A 2 E ; n = 1; 2; ::: ;where P 0(y;A) = 1A(y). Let P� be the corresponding probability measure which makes (Xn)n2Nto a Markov chain with transition probability P and initial distribution �. If � = �x; x 2 E;write Px instead of P�.Suppose � is a �-�nite non-trivial measure on E . Then (Xn)n2N is called �-irreducible ifP1n=1 P n(x;A) > 0 for every x 2 E whenever �(A) > 0. Note that if (Xn)n2N is �-irreducibleand if  is another �-�nite non-trivial measure on E which is absolutely continuous with respectto � then the process (Xn)n2N is  -irreducible as well. (Xn)n2N is called a �-irreducible Fellerchain if for each bounded continuous g on E, the function x 7! E(g(Xn)jXn�1 = x) is continuousin x.For any A 2 E , de�ne �(A) = inffn � 1; Xn 2 Ag. We callA 2 E recurrent ifP1n=1 P n(x;A) =1, and transient otherwise. A is Harris recurrent if Px(�(A) < 1) = 1 for all x 2 E. By thestrong Markov property, this is equivalent to fn; Xn 2 Ag being unbounded with probability 1,independent of the initial distribution. Note that if a set is Harris recurrent then it is recurrent.We call A a regeneration set if A is Harris recurrent and for some r > 0 there exist some " 2 (0; 1]and some probability measure � on E such thatP r(x;B) � "�(B); x 2 A



112 APPENDIX A4. CLASSICAL MARKOV CHAIN THEORYfor all B 2 E . We call a Markov chain with a regeneration set Harris (�-)recurrent or just aHarris chain. There are mainly two situations when a regeneration set exists:(a) When there is a Harris recurrent one-point set x0 (one can then take r = 1; " = 1; A = x0and �(B) = P (x0; B)).(b) When, for some r > 0, a transition density f r(�; �) exists (i.e. when P r(x; dy) = f r(x; y)�(dy)for some measure �) together with a Harris recurrent set A and a set S with 0 < �(S) <1such that f r(x; y) � " > 0 for any x 2 A; y 2 S.The process (Xn)n2N is called regenerative if there exist integer-valued random variables 0 <T0 < T1 < T2 < ::: which split the sequence up into independent cycles B0; B1; :::, i.e. ifB0 = fXn; 0 � n < T0g; B1 = fXn; T0 � n < T1g ;B2 = fXn; T1 � n < T2g; :::are independent and if in addition B1; B2; ::: have the same distribution. Note that (Tn)n2N0 isa renewal process. The process (Xn)n2N is called 1-regenerative if there exists a renewal process(Tn)n2N0 which splits (Xn)n2N up into 1-dependent cycles B0; B1; :::. Hence adjacent cycles mightbe dependent, while cycles seperated by at least one cycle are independent. If (Xn)n2N has aregeneration set then a renewal process (Tn)n2N0 can be constructed from (Xn)n2N which makes(Xn)n2N either regenerative or 1-regenerative (see for example Asmussen (1987), p.151) .The chain (Xn)n2N is called recurrent if it is �-irreducible and every set in E+ = fA 2E ; �(A) > 0g is recurrent. The chain (Xn)n2N is Harris recurrent if and only if it is �-irreducibleand every set in E+ = fA 2 E ; �(A) > 0g is Harris recurrent. If Px(�(A) < 1) = 1 andif E(�(A)jX0 = x) < 1 then A is called positive. We call (Xn)n2N positive if (Xn)n2N is �-irreducible and if every set in E+ is positive; otherwise we call (Xn)n2N null . If the chain(Xn)n2N is Harris recurrent then there exists an invariant measure �, i.e. a �-�nite measure �on E with the property �(A) = ZE P (x;A)�(dx) ; A 2 E :A set A 2 E is called a small set if for every B 2 E such that �(B) > 0, there exists an integern � 1 such that infx2APni=1 P i(x;B) > 0. If (Xn)n2N is a �-irreducible Feller chain, then thetopological conditions on our space imply that a set A 2 E is small if A is relatively compactand �(A) > 0.



113Let � be a class of chains (Yn)n2N on (E; E) which are �-irreducible for some �. A set A 2 E iscalled a status set for � if, for each (Yn)n2N 2 � with transition law fP (x;A)g ,(a) P1n=1 P n(x;A) <1 , �-a.a. x 2 E , if (Yn)n2N is transient ,(b) limn!1 P n(x;A) = 0 , �-a.a. x 2 E , if (Yn)n2N is null .This notation is often somewhat abused by calling A a status set for (Xn)n2N if A is a status setfor � and (Xn)n2N 2 �. Note furthermore that a status set A is characterized by the fact thatits status is always the same as that of the underlying chain. In general it is di�cult to showthat a set is status set of �. But if we consider �s = f(Yn)n2N ; (Yn) is �-irreducible for some �and P (x;A) is a continuous function of x for every A 2 Eg then every relatively compact set inE+ is a status set for �s.Finally the �-irreducible Markov chain (Xn)n2N is called aperiodic if there does not exist aninteger d � 2 and disjoint cycles C1; C2; :::; Cd 2 E such that for any j 2 f1; :::; dgP (x;Cj+1) = 1 ; x 2 Cj ;with Cd+1 = C1 and �(E n d[i=1Ci) = 0 :With these notions we are now ready to state some criteria for �niteness of hitting time moments,positivity, geometric ergodicity and existence of moments which we apply in this paper.Lemma A4.1 (Theorem 3 of Tweedie (1983)(a))Suppose that g is a non-negative measurable function on E. If, for some " > 0 and some A 2 E,ZE g(y)P (x; dy) � g(x) � " ; x 2 Ac ; (A.1)then E(�AjX0 = x) � g(x)" ; x 2 Ac :Theorem A4.2 (Theorem 9.1 of Tweedie (1976))Suppose (Xn)n2N is �-irreducible, and let g be a non-negative measurable function on E. Thechain (Xn)n2N is positive if there exists " > 0; � <1 and a status set A for (Xn)n2N such that(A.1) holds and ZAc g(y)P (x; dy) � � ; x 2 A : (A.2)



114 APPENDIX A4. CLASSICAL MARKOV CHAIN THEORYTheorem A4.3 (Theorem 4 of Tweedie (1983)(a))Suppose (Xn)n2N is aperiodic positive Harris recurrent. Moreover, g is a non-negative measurablefunction on E and A is a small set, and thatsupx2AZE g(y)P (x; dy) <1 :If g and A satisfy (A.1) then (Xn)n2N is geometric ergodic with stationary distribution �, i.e.there exists a � < 1 such that��njjP n(x; �)� �(�)jj ! 0 ; n!1 ;for every x 2 E, where jj � jj denotes total variation of signed measures on E.Theorem A4.4 (Theorem 3 of Tweedie (1983)(b))Suppose that (Xn)n2N is aperiodic and Harris recurrent with �(E) = 1. If A is small and ifsupx2AZAc g(y)P (x; dy) <1holds for some non-negative measurable g for which there exists " > 0 such thatZAc g(y)P (x; dy) � (1� ")g(x) ; x 2 Ac (A.3)and which is bounded away from 0 and 1 on A, thenZE g(x)�(dx) <1 ;and further, for some � < 1 ,ZE jjP n(x; �)� �(�)jjg�(dx) = O(�n) ; n!1 ;where jj�jjg := supjhj�g RE h(y)�(dy) for any signed measure �.
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