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Abstract

In this thesis we investigate the extremal behaviour of some well-known stochastic models in
finance. We consider discrete-time as well as continuous-time models. The thesis is therefore

divided into two parts:

In a first part we study the class of autoregressive processes with ARCH(1) errors given by

the stochastic difference equation

Xn:aXn,l-l-\/B-l-)\X?l_len, n €N,

where (e, )pen are i.i.d. random variables. Under general and tractable assumptions we show the
existence and uniqueness of a stationary distribution. We prove that the stationary distribution
has a Pareto-like tail with a well-specified tail index depending on & and A. This thesis generalises
results for the ARCH(1) process (the case a = 0) proved by Kesten (1973), Vervaat (1979) and
Goldie (1991). However, we present a different method of proof invoking a Tauberian theorem.
We apply these results in order to investigate the extremal behaviour of the autoregressive
processes with ARCH(1) errors.

The extremes of such processes occur typically in clusters. We give an explicit formula for
the extremal index and the probabilities for the length of a cluster. Autoregressive processes

with ARCH(1) errors are used for financial data, in particular for exchange rates.
In a second part we investigate the extremes of diffusion processes (X;);cr given by stochastic
differential equations of the form

dXt :,U,(Xt)dt-l-O'(Xt)th, t > 0, XO =x,

where W denotes the standard Brownian motion, p is the drift term and o is the diffusion

coefficient. Under some appropriate conditions on (X;);cg we prove that the point process of



vi ABSTRACT

e—upcrossings converges in distribution to a homogeneous Poisson process. We apply our results
to term structure models or asset price processes such as the Vasicek model, the Cox-Ingersoll-
Ross model and the generalised hyperbolic diffusion. We also show how to construct a diffusion
with pre-determined stationary density which captures any extremal behaviour. As an example

we introduce a new model, the generalised inverse Gaussian diffusion.



Chapter 1

Introduction

1.1 Extreme Value Theory - from Hydrology to Finance

Extreme value theory - the theory of weak convergence of maxima and/or upcrossings of stochas-
tic processes over a high threshold - is a very elegant and fascinating mathematical theory as
well as a toolbox which can be applied to a broad class of problems in many different areas (the
work of Gumbel (1958) is still an excellent reference in this context).

The following examples are situations where extreme value theory typically enters.

Premium volumes of insurance companies have to be calculated in order to cover, with

sufficiently high probability, future losses.

- Dams or dikes at locations along a river or sea must be built high enough to exceed the

maximum water height.
- Sports records (athletics, cycling, skating etc.) are frequently broken.

- The detection of air-quality standards is often formulated in terms of the highest level of

permitted emissions.

- Mechanical components of trains, airplanes etc. must be sufficiently strong and flexible to

withstand strong forces.

All these examples have in common that they concern questions about extremal behaviour.
A typical procedure is to model the observed data and to make decisions on the basis of a

probabilistic model of the extreme values of the data set.

1



2 CHAPTER 1. INTRODUCTION

Classical extreme value theory - the extreme value theory for independent, identically dis-
tributed (i.i.d.) random variables - has its roots in the late twenties of this century. More precisely,
it starts with the famous paper by Fisher and Tippett (1928). Their central result, often referred
to as the Extremal Types Theorem and later proved in complete generality by Gnedenko (1943),
is the specification of the form of a non-degenerate limit distribution for centred and normalised
maxima. In fact, there are only three possible types of extreme value distributions: the Gum-
bel law A, the Fréchet law ®, and the Weibull law ¥,. In other words: if F' is the underlying
distribution function of the random variables then

lim F"(apz +by) = Q(z), z€R, (1.2)

n—o0

where a,, > 0, b, € R are properly chosen constants and @ is either A, &, or ¥,,. For the precise

form of the extreme value distributions see Appendix Al.

-30

Figure 1.1: Sequence of i.i.d. random variables and associated point process of exceedances above the level 12.

Exceedances are indicated at the horizontal line through -30. There is no clustering visible.

Furthermore, it is not necessary to know the detailed nature of the distribution function F
in order to know which limit distribution occurs. The extreme value distribution is determined

by the behaviour of the tail of F(z) for large . More precisely: (1.2) is equivalent to

lim n(l — F(anz+by)) =—InQ(z), ze€R. (1.3)
n—oo
Indeed, for z € R, define S, = > 1" |1 {X;>anao+b,} @S the number of exceedances of apz + by

by Xi,...,X,. As usual 14 denotes the indicator function of the set A. Then S, is a binomial



random variable with parameters (n, 1 — F(a,x +by)). An application of Poisson’s limit theorem
yields S, LA Poi(—InQ(z)), n — oo, if and only if (1.3) holds. This asymptotic Poisson property
may be generalised by considering the point process N,, of exceedances of the level a,z + b,.

Actually, if Ny, (-) = #{exceedances of a,z + b, by (X;)i<i<n: i/n € -}, n € N, then
Na() B N(), n— oo, (1.4)

where N is a homogeneous Poisson process with intensity —In Q(z) and 2 denotes the weak
convergence. In particular, the exceedances are simple (see Figure 1.1).

Since Fisher and Tippett (1928), extreme value theory has passed through an exciting theo-
retical development. Extending the classical results, a satisfying general theory has been devel-
oped which includes extreme value theory of dependent random sequences as well as extreme
value theory of continuous parameter processes. For an introduction to classical extreme value
theory we refer to Leadbetter, Lindgren and Rootzén (1983), Resnick (1987) or Embrechts,
Kliippelberg and Mikosch (1997, Chapter 3).

The extremal behaviour of discrete-time stationary processes is quite well-understood. In
contrast to the independent case, extremes of dependent sequences may cluster (see Figure 1.2).
Suppose that we have a stationary sequence (X,),>o with marginal distribution function F'
which satisfies some weak dependence assumptions (strong mixing or the weaker assumption
D(uy) of Leadbetter (1983)). Let M,, = maxi<j<, X; and let a,z + b, be the sequence such
that (1.2) holds and such that lim,,_,., P(M,, < a,z + b,) exists. Then, there exists a constant
6 € [0, 1] such that

lim P(M, < a,z+b,) =Q%x), zeR. (1.5)

n— 00

6 is called the eztremal index of the sequence (X, )n>0 . This concept, originated by Newell (1964),
Loynes (1965) and O’Brien (1974), was taken first as a definition by Leadbetter (1983). Since
Q is computable from knowledge of the marginal distribution F', it turns out that 6 is the key
parameter for extending extreme value theory for i.i.d. random variables to stationary processes.

The point process convergence of exceedances is a bit more complicated than in the indepen-
dent case: for fixed z € supp(Q), let N, be again the point process of exceedances, i.e. Ny (:) =
#{exceedances of a,x+b, by (X;)1<i<n:i/n € -}.Letn =rkand I; = ((i—1)/k,i/k], i=1,...,k
be a partition of (0, 1] into &k blocks. For a suitable choice of k and r see for instance Embrechts,
Kliippelberg and Mikosch (1997), Section 8.1. If N, (I;) > 0 a cluster of exceedances occurs at
block i and then m,(j) = P(Nn(l;) = j|Nu(L;) > 0) =P(N,([1) = j|Nn(I1) > 0), 7 € N, is
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Figure 1.2: Sequence of dependent random variables and associated point process of exceedances. We have a strong

clustering indicated at the horizontal line through -30.

the probability of cluster length j in the interval I; for any j € N. Hsing, Hiisler and Leadbet-
ter (1988) showed that under (1.2), (1.5) and if 7,(5) — w(j), n — oo for any j € N, where

(m(j))jen is a probability distribution, then
N.() B3 N(), n— oo, (1.6)

where N is a compound Poisson process with intensity —fInQ(z) and jump probabilities

((j))jen. Moreover, under additional conditions on ,(j) (see Smith 1988),
o0
> in(i) =1/6.
i=1

Thus, a natural interpretation of 6 is that of the reciprocal of mean cluster size. In the i.i.d.
case, extremes are simple and hence § = 1/6 = 1.

For a number of special dependent sequences, the extremal behaviour has been studied in
more detail. Extreme value theory for linear time series (moving average processes, autoregressive
processes etc.) with heavy tailed innovations has been studied in a series of papers by Davis and
Resnick, we refer to Resnick (1987), Chapter 4.5. A further reference is the book by Leadbetter,
Lindgren and Rootzén (1983). Rootzén (1988) and Leadbetter, Rootzén (1988) and Asmussen
(1998) have investigated regenerative and Markov sequences. Extremes of the ARCH(1) pro-
cess have been studied by de Haan, Resnick, Rootzén and de Vries (1989), Perfekt (1994) and
Hooghiemstra and Meester (1995).



The theory of extremes for continuous parameter processes started with the work of Rice (1939)
for mean square differentiable normal processes leading to a celebrate formula for the mean num-
ber of upcrossings per unit. Briefly, for a constant u the process (X;) has an upcrossing at tq if
for some £ > 0, X; < wuin (tg—e,t9) and Xy > w in (tg,to+¢) . If Ny ((0,1)) denotes the number
of upcrossings of u by (X;) in the interval (0,1) and if p(u) = EN,((0,1)) < oo, then the up-
crossings form a stationary point process N, with intensity p(u). Rice could show that for mean
square differentiable Gaussian processes u(u) = \/C/2n~ ' exp(—u?/2) , where the constant C
comes from (1.7). The results of Rice were extended in various ways. Two review papers on the
theory of extremes of Gaussian processes and related problems are Leadbetter, Lindgren and
Rootzén (1983) and Leadbetter and Rootzén (1988). Further work on Gaussian processes can be
found in Adler (1990) and Berman (1992). In particular, under certain restrictions there exist
corresponding results to (1.2) and (1.4) in the continuous Gaussian case. For a standardised,
continuous stationary normal process (X;) with convariance function r(¢) such that Berman’s

condition
r(t)In(t) - 0, t— oo,
holds and
r(t) =1—=Clt* +o(Jt|*), t—0, (1.7)
for some « € (0,2] is satisfied, then

P(max X, < aur+b) — exp(—e *), t— o0,
O<u<t

for certain known deterministic functions a; > 0 and b; € R. Furthermore, we have

foraa=2: N, t-
R S R (1.8)

for o <2: Negain(t-)
where Ny, 44, (t-) = #{upcrossings of a;x + by by (Xs)o<s<t : 5/t € -}, Neguwtb, (t) = #{e-up-
crossings of a;x + by by (Xs)o<s<t : s/t € -} , N is a homogeneous Poisson process with intensity

— w . . . . . oy .
T and — denotes weak convergence. The notion of e-upcrossings is discussed in detail in

e
Chapter 3 and is needed since normal processes with o < 2 are not mean square differentiable
and hence the mean number of upcrossings need not be finite. An e-upcrossing is always an

upcrossing while the converse does not hold.
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The theory of Gaussian processes was generalised to a broader class of continuous parameter
processes by Leadbetter and Rootzén (1982) and Leadbetter, Lindgren and Rootzén (1983).
Their results apply in particular to two cases: first to normal processes and then to stationary
processes with finite upcrossing intensities.

Newell (1962), Berman (1964), Mandl (1968) and Davis (1982) investigate extremes of dif-
fusion processes. Proposition 3.2.1 in Chapter 3 of this thesis quotes an important result of
their work: the limit relation (1.2) also holds for diffusion processes under certain assumptions
whereas the point process convergence of upcrossings is not known in the literature. We present
the analogue of (1.4) for diffusion processes in Theorem 3.2.4 in Chapter 3.

This thesis aims at applications in finance and econometrics: loosly speaking, we consider
financial time series models of changing variance and covariance over time. These models are
often denoted as volatility models. There are numerous volatility models used for financial instru-
ments. A logical conceptual division of such models results into continuos-time and discrete-time
models.

Continuous-time volatility models are natural models for physicists and mathematicians
with an analytic background from stochastic analysis. They are typically given by a stochastic

differential equation of the form
dX; Z,u(t,Xt)dt—l-U(t,Xt)th, t>0, Xg==x, (19)

where W is standard Brownian motion, y is the drift term and o is the diffusion coefficient or
volatility. Stochastic processes which are defined by (1.9) are diffusion processes. They are often
used as models for interest rates or price processes. As a first approximation, the statistical fit of
diffusion processes to data may be reasonable. Choosing the volatility o in (1.9) appropriately
provides a large variety of models ranging from Gaussian processes to models which capture
large fluctuations in real data (see Chapter 3). However, there are also various arguments against
such models. These include that real world processes are not continuous in time. Furthermore,
diffusions with arbitrary volatility are in general untractable with respect to computations.
Numerical methods can then be helpful to solve such problems.

Discrete-time versions of stochastic volatility models have their roots in time series analy-
sis and econometrics. They are usually referred to as conditional heteroskedastic models. The

simplest examples of such models can be written by random recurrence equations of the form

Xn=pn+0onen, neN, (1.10)



where ¢, are i.i.d. innovations with mean zero, p, is the conditional expectation of X, (which
may or may not depend on n) and the volatility o, describes the change of (conditional) variance.
Empirical work has confirmed that such models fit many types of financial data (log-returns,
exchange rates, etc.). The following empirical stylised facts of financial data can be modelled by

such discrete-time stochastic volatility models:

heavy-tailedness

clustering in the extremes

large fluctuations

- data are uncorrelated, but not independent

Processes which are most popular in econometrics and which belong to the class (1.10) are
ARCH (autoregressive conditional heteroskedastic) models and GARCH (generalised ARCH)

models.
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Figure 1.3: DAX (the German stock market index) closing prices during 29/8/95-9/10/98.

In this thesis we investigate the extremal behaviour of stochastic volatility models which
are either time-discrete or time-continuous. Whereas extreme value theory has a long history of
applications in engineering, climatology and in particular hydrology, it has only more recently
entered into the financial world (see e.g. Embrechts, Kliippelberg and Mikosch (1997)). There
is a growing interest in this subject in the insurance and banking world. Catastrophic losses

have been rising during the last decade for the reinsurance industry. 1990 (the year of the
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winter storms Daria and Vivian) and 1992 (the year of hurricane Andrew) have caused an
extremely high damage and put significant financial demands on society, for details on these,
see Sigma (1995)-(1998).

Within the finance context, extremal events can be observed whenever stock market crashes
like the one this year occur (see Figures 1.3 and 1.4). Other examples are the losses within the

realm of derivatives such as the collapse of Barings Bank or the losses of the Metallgesellschaft.
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Figure 1.4: Log-returns of the DAX closing prices during 29/8/95-9/10/98.

Due to the increase over the recent past in both frequency as well as size of casualities,
risk management has become a key issue in any financial institution or corporation. Loosly
speaking, risk management needs precise estimates of tail probabilities and quantiles of profit-
loss distributions , and indeed of general financial data. Extreme value theory yields methods for
quantifying events of great losses and their consequences in a statistically optimal way. It gives
the best estimates of extremal events and represents the most honest approach to measuring
the uncertainity inherent in the problem. Interesting papers from a practical point of view on
such problems are Embrechts, Resnick and Samorodnitsky (1997), McNeil (1998) and Emmer,
Kliippelberg and Triistedt (1998).

In order to quantify the risk of financial products a theory of the extremal behaviour of
stochastic processes used in finance is required. This thesis is a contribution to the mathematical
problems in this area. It lays the foundation for practical applications in finance, in particular

the increasingly important area of risk management.



1.2 An outline of the thesis

As indicated in Section 1.1 and in the table of contents this thesis consists of two main parts.
In Chapter 2 we consider a class of autoregressive (AR) processes with ARCH(1) errors given

by the random recurrence equation

Xp=aXn_1+4/B+AX2_ie,, neN, (2.11)

where the innovations (gy,)nen are i.i.d. random variables and o € R, 3, A > 0. As mentioned
before, processes defined by such a stochastic difference equation are suitable models for log-
returns of stock prices and exchange rates because of their non-constant volatilities (see also for
instance Duan (1996)).

In Section 2.1 we investigate this model in detail. We introduce some assumptions on the
innovations (&y,)nen: the general conditions guarantee the existence and uniqueness of a station-
ary version of (X, )pen whereas (D.1) — (D.3) allow us to describe the tail behaviour of the
stationary distribution and the extremal behaviour of (X,),cn. The normal distribution, for
instance, satisfies all these assumptions.

In Section 2.2 we determine the parameter set of stationarity for model (2.11) and the tail of
the stationary distribution. Theorem 2.2.3 collects some probabilistic properties of (X}, )nen, in
particular the existence and uniqueness of a stationary distribution. The results are an extension
of the results of Diebolt and Guégan (1990) and Maercker (1997). The main result of Section 2.2
is given in Theorem 2.2.11. Under the general conditions and (D.1) — (D.3) the tail of the
stationary distribution of (X, )nen, which is the distribution function of a random variable X,

behaves asymptotically like
PX>z)~czx ™™, z— 00, (2.12)

where ¢ = ¢(a, 8,k,¢) and kK = k(a, A, e) are well-specified constants depending on «, 3, K, €
and «, A, €, respectively, and ¢ is a generic random variable with the same distribution as the
innovations (e )nen. For a = 0 the asymptotic relation (2.12) coincides with the corresponding
result in Goldie (1991). We extend his result to the larger class of processes (2.11) to which
his idea of proof does not apply. Our method of proof uses the Tauberian theorem of Drasin
and Shea which was proven first in Jordan (1974). The theorem takes its name from Drasin
and Shea (1976). Loosely speaking, Tauberian theory draws conclusions from the asymptotic
behaviour of some transform to the asymptotic behaviour of a kernel density or distribution tail

(see Bingham, Goldie, Teugels (1987)).
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In Section 2.3 we investigate the extremal behaviour of the AR(1) process with ARCH(1)
errors (2.11). In order to do this we investigate the related process (Z,)nen = (In(X2))nen.
The process (Z,)nen is crucial for the study of the extremal behaviour of (X),),en. We show in
Lemma 2.3.1 that (Z,),cn behaves above a high threshold asymptotically like a random walk
with negative drift, which can be completely specified. Subsection 2.3.2 contains the main results
(Theorem 2.3.5) concerning the extremal behaviour of (X, )nen. An explicit formula for the
extremal index is given and the probability distribution for the length of a cluster is calculated.
We interpret these results and present some simulations. The proof of our results invokes the
work of Perfekt (1995) where the extremal behaviour of real-valued, stationary Markov chains

is studied under certain assumptions.

In Chapter 3 we investigate the extremal behaviour of diffusion processes which are given by
stochastic differential equations of the form (1.9) with u(¢, X;) = p(X;) and o(¢, Xy) = o(Xy),
i.e. we consider always homogeneous diffusion processes which can be completely characterised
by their associated scale function and speed measure. Although diffusion processes are idealised
models for financial data (continuous trading is not possible in the real world), some of them

capture quite well empirical observations in real data.

In Section 3.1 we present the framework for the results about the extremal behaviour of
diffusion processes to follow. We shall require certain properties of the speed measure and scale
function of (X};);>0, which we explain and summarise in the so-called usual conditions. They
guarantee in particular that the diffusion process (X;);>¢ is ergodic and has inaccessible bound-

aries .

Section 3.2 presents some results on extreme value theory for diffusion processes which were
already mentioned. We show that, provided the properly normalised maxima MtX of a diffusion
process up to time ¢ have a weak non-degenerate limit as ¢ — 0o, then, under weak additional
conditions, the point processes of e-upcrossings converge to a homogeneous Poisson process
(Theorem 3.2.4). This result is comparable to (1.8) for & < 2 in the Gaussian case. Furthermore,
we derive the limit distribution of M (suitably normalised) under simple conditions on the drift
term and the diffusion coefficient (Theorem 3.2.7). Finally, we show how to construct a diffusion

with pre-determined stationary density which captures any extremal behaviour (Theorem 3.2.8).

In Section 3.3 we apply these results in order to derive the extremal behaviour of such diffu-
sions as the Vasicek model, the Cox-Ingersoll-Ross (CIR) model, including a generalised version,

and the generalised hyperbolic diffusion. They are all standard models in finance. Depending
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on the choice of parameters the generalised CIR model allows for large fluctuations in the data.
This is captured by the limit distribution of M;* and the intensity of the limit point process of
g-upcrossings.

In Section 3.4 we present a new model, the generalised inverse Gaussian diffusion, which
is constructed with the pre-determined generalised inverse Gaussian stationary density and a
pre-determined diffusion coefficient. If we choose the diffusion coefficient as in the CIR model
we obtain a further generalisation of this important model. Whereas in Section 3.3 we mainly
present results without explicit calculations, for this new model we derive certain quantities in
detail.

The Appendix is made up of four different parts, A1-A4. Appendix Al is concerned with
classical extreme value theory. We describe the maximum domains of attraction of the Fréchet
and Gumbel distribution and present how to compute the centring and normalising constants.
In Appendix A2 we derive the normalising constants a; > 0 and b; € R for the maxima of the
Vasicek diffusion and the generalised Cox-Ingersoll-Ross diffusion for 1/2 < v < 1. Finally, some
additional extreme value theory for Markov chains and some general Markov chain theory are

provided in Appendix A3 and A4, respectively.
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Chapter 2

The Autoregressive Process with

ARCH(1) Errors

Recently there has been considerable interest in nonlinear time series models (see e.g. Priest-
ley (1988), Tong (1990), Taylor (1995)). Many of these models were introduced to allow the
conditional variance (conditional heteroskedasticity) of a time series model to depend on past
information. It has turned out that such models fit very well to many types of financial data.
Empirical work (see e.g. Mandelbrot (1963), Fama (1965)) has shown that large changes in
equity returns and exchange rates, with high sampling frequency, tend to be followed by large
changes setting down after some time to a more normal behaviour. This observation leads to

models of the form
X, =0,en, neEN, (0.1)

where the innovations (gp,)nen are i.i.d. symmetric random variables with mean zero, and the
volatility o, describes the change of (conditional) variance.

One of the specifications of (0.1) are the autoregressive conditionally heteroskedastic (ARCH)

2
n

ARCH(p) models introduced by Engle (1982) are defined by

models where the conditional variance o is a linear function of the squared past observations.

p
02 =g + Zang,j, ap >0, ar,..,ap >, a, >0, n €N, (0.2)
i=1

where p is the order of the ARCH process.
In a series of papers, the ARCH model has been analysed, generalised and used to test for

time-varying risk premia in the financial market. We refer for instance to the survey article by

13
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Bollerslev, Chou and Kroner (1992) and the statistical review paper by Shephard (1996). The
most famous generalisation to so-called generalised ARCH (GARCH) processes was proposed in
Bollerslev (1986). The volatility o, is now a linear function in X?lfl, X?FQ, ...and 0271, 072172, .
ARCH and GARCH models are widely used to model financial time series since they capture
exactly the empirical observation in financial data, namely the tendency for volatility clustering
and the fact that unconditional price and return distributions tend to have fatter tails than the
normal distribution.

Another extension are the class of autoregressive (AR) models with ARCH errors introduced by

Weiss (1984). These models are also called SETAR-ARCH models (self-exciting autoregressive).
They are defined by

Xn=f(Xn-1,.,Xpn—k) +onen, n>k, (0.3)

where f is again a linear function in its arguments and o, is given by (0.2). This model combines
the advantages of an AR model which targets more on the conditional mean of X, given the past
and an ARCH model which concentrates on the conditional variance of X,, (given the past).
The class of models defined by (0.3) embodies various nonlinear models. In this chapter we
focus on the AR(1) process with ARCH(1) errors, i.e. f(Xp—1,..., X k) = o X,_1 for some
a € R and o, is given in (0.2) with p = 1. Note that in the special case a = 0 we get just the
ARCH(1) model of Engle (1982). This Markovian model is analytically tractable and may serve
as a prototype for the larger class of models (0.3).

The purpose of this work is to investigate the tail of the stationary distribution of the AR(1)
process with ARCH(1) errors (X, )nen. The model has also been considered for instance by
Diebolt and Guégan (1990) and Maercker (1997). For A = 0 the process is an AR(1) process
whose stationary distribution is determined by the innovations (&,)nen, for &, normal it is a
Gaussian process. In the ARCH(1) case (the case when a = 0) the tail is known (see e.g. Goldie
(1991) or Embrechts, Kliippelberg, Mikosch (1997)). The result was obtained by considering
the squared ARCH(1) process which leads to a stochastic difference equation which fits in the
setting of Kesten (1973) and Vervaat (1979). This approach is, however, in general not possible
or at least not obvious for o # 0. Nevertheless for ¢, normal, provided a stationary distribution
exists, a characteristic function argument transforms the model such that the results by Kesten
(1973), Vervaat (1979) and Goldie (1991) may be applied. We refer to Remark 2.2.21 for further
details. For the general case we present another technique using the Drasin-Shea Tauberian

theorem which can be found for instance in Bingham, Goldie, Teugels (1987). This method may
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also be applied to other models given by a stochastic difference equation but falling out of the
framework of Kesten (1973), Vervaat (1979) and Goldie (1991). In section 2.3 we investigate the
extremal behaviour of the AR(1) process with ARCH(1) errors (X,),en extending the work by
de Haan, Resnick, Rootzén and de Vries (1989) .

2.1 Assumptions on the model

In this section we present the model and introduce the required assumptions on the innovations
(én)nen. They are assumed to hold from now on if it is not stated otherwise.

We consider throughout this chapter an autoregressive model of order 1 with autoregressive
conditionally heteroskedastic errors of order 1 (AR(1) model with ARCH(1) errors) which is

defined by the stochastic difference equation

Xnp=aX,1++/B+AX2 e, nEN, (1.1)

where (e, )nen are i.i.d. random variables with mean zero , a € R, 8, A > 0 and X independent
of (en)nen. Let € be a generic random variable with the same distribution as ¢,. Throughout

this chapter, we assume that the following general conditions for ¢ are in force:

¢ has full support R,
€ is symmetric with continuous Lebesgue density p, (1.2)

the second moment of € exists.

Note that the process is evidently a homogeneous Markov chain with state space R equipped

with the Borel o-algebra. The transition kernel density is given by

1 ( Y — QT
\/ﬁ-l-)\pr VB + A2

Under appropriate conditions on a and A, Theorem 2.2.3 in Section 2 guarantees the existence

P(X,edy|Xo=1x)= )y, z€R. (1.3)

and uniqueness of a stationary distribution 7 of (X,,)nen. In the following F' denotes the dis-
tribution function of 7 and X is a random variable with distribution function F'. From the

stochastic difference equation (1.1) it is straightforward that X satisfies the fixpoint equation

X 2 aX +/BFAX2e, (1.4)

where ¢ is a random variable with probability density p, independent of X. In order to determine
the tail of the stationary distribution function F' we need some additional technical assumptions

on p:
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(D.1) p(z) > p(z') forany 0 < z < z’.

(D.2) For any ¢ > 0 there exists a constant ¢ = ¢(c) € (0, 1) and functions fi(c,-), f—(c,-) with

fi(e,z), f—(c,z) — 1 as & — oo such that for any z > 0 and ¢ > 27

r+c+at T+ at
P(m) ZP(W)J‘#(C,@"%

M) > p(LO‘t) f(c,z).

ol VB + 2 VB + A2

(D.3) There exists a constant n > 0 such that

N+1+n+3q)/(1—q)) :

p(z) = o(z~( as & — 00,

where N := inf{u > 0| E(|v/Xe|*) > 2} and g is the constant in (D.2) .

The general conditions (1.2) and assumption (D.1) are fairly general and can be checked eas-
ily, wheras (D.2) — (D.3) seem to be quite technical and untractable. Nevertheless, numerous

densities satisfy these assumptions, one being the normal (see Example 2.2.13).

2.2 The tail of the stationary distribution of an AR(1) process
with ARCH(1) errors

In this section we want to determine the parameter set of stationarity for our model and the tail
of the stationary distribution. In Theorem 2.2.3 we summarize some probabilistic properties of
(Xn)nen, in particular the existence and uniqueness of a stationary distribution. Theorem 2.2.11
is the main theorem in this section. We show that the stationary distribution has a Pareto-like
tail with a well-specified tail index . For a = 0 our result coincides with the corresponding result
in Goldie (1991) whereas for « # 0 the tail index is determined by the autoregressive coefficient
a, the ARCH(1) parameter A and the distribution function of the innovations (e, )pen. The proof

of this result will be an application of a modification of the Drasin-Shea Tauberian theorem.

2.2.1 Existence and uniqueness of a stationary distribution

In order to determine the tail of the stationary distribution we need some properties of the
process (X, )nen. They are summarised in Theorem 2.2.3. In particular, the geometric ergodicity

guarantees the existence and uniqueness of a stationary distribution. A short introduction to
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Markov chain terminology and the proof of Theorem 2.2.3 is given in the Appendix A4. For
further details we refer to Tweedie (1976) or Meyn and Tweedie (1993).

Proposition 2.2.1 Let € be a random variable with probability density p satisfying our general

conditions. Define hq y : [0,00) — [0,00] for a € R, A >0 by
haa(uw) := E(la+VXel"), u>0. (2.1)
(a) The function hg(-) is strictly conve in [0,T), where T := inf{u > 0| E(|]vVX¢e|*) = oo}
(b) If furthermore the parameters o and X\ are chosen such that
a(0) = E(lna + vXe|) <0, (2.2)

then there exists a unique solution k = k(a, ) > 0 to the equation hox(u) = 1. Moreover,

under hy, ,(0) <0,

>2 , o2+ )AE(EH) <1
, 2+ AE(E?) =1 . (2.3)
<2 , &>+ 2E(?)>1

Kla,A) 8 =2

Proof. The function hq () has derivatives of all orders in [0,T'). In particular, for v € [0,T),

o) = E(ja + Vel In(la+ vVXe))
(@) = E(la+ VXel"(Infa + VXe])?) > 0. (2.4)

Statement (a) follows from (2.4). Because of the symmetry of ¢ we may assume w.l.o.g. @ > 0

and hence

ha,)\(u)

Y

B(l(essyymyle+ VAel") 2 B(1 o 5 VA"

The latter fact, together with h, (0) = 1, assumption (2.2) and the strict convexity of hq )

implies that there exists a unique solution £ > 0 such that h, (k) = 1. Finally,
ha,)\(2) =a’ + )‘E(‘gZ) )

which finishes the proof. O
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ol 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
A | (0,3.56] (0,3.55] (0,3.52]  (0,3.47] (0,3.39] (0,3.30] (0,3.18] (0,3.04]
laf | 08 0.9 1 1.1 1.2 1.25 1.27 1.27805

A || (0,287 (0,2.66] (0,2.42] (0.17,2.11] (0.38,1.69] (0.58,1.38] (0.75,1.19]  (0.94,0.96]

Table 2.1: Numerical domain of A dependent on || such that kg, 5 (0) < 0 in the case € ~ N(0, 1).

A 01 02 03 04 05 06 07 08 09

laf || 1.05 1.11 1.16 1.20 1.23 1.25 1.26 1.27 1.28

A 1 1.1 1.2 15 2 2.5 3 3.5 3.56

lof || 1.28 1.27 1.27 1.23 1.13 0.97 0.72 0.24 0.04

Table 2.2: Numerical supremum of |o| dependent on X such that hj, ,(0) < 0 in the case e ~ N(0,1).

Remark 2.2.2 (a) By Jensen’s inequality o + X F(e?) < 1 implies hiy2(0) <0.

(b) Proposition 2.2.1 holds in particular for a standard normal distributed random variable «.

In this case T' = oo.

(c) In general, it is not possible to determine explicitly which parameters o and A satisfy (2.2).
If « =0and e ~ N(0,1) (i.e. in the ARCH(1) case) (2.2) is fulfilled if and only if A € (0,2¢e7),
where 7 is Euler’s constant (see Embrechts et al. (1997), Section 8.4). For « # 0, Tables 2.1 and

2.2 show numerical domains of a and A for ¢ ~ N(0,1).

(d) Note that » is a function of @ and A. Since ¢ is symmetric £ does not depend on the sign

of a. For € ~ N(0,1) we can show: for fixed A, k is decreasing in |«/|. See also Table 3.

Proof. W.Lo.g. @ > 0. Let ¢(- | 4,0?) denote the normal density with mean p and variance o2.

Then, by symmetry of ¢,

Oha (1)

oo

/OO ly[“(y — @)p(yla, N\)dy

—00

N

< /0 (=9)"“(y — @)p(yla, \)dy + /0 * Py — a)olylo A) dy)

— 00
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|| A 0.2 04 06 08 10 12 15 20 25 30 3.5
0 12.85 6.09 3.82 2.67 199 1.54 1.07 0.61 033 0.15 0.01
0.2 11.00 5.49 3.52 251 1.89 146 1.03 0.59 032 0.13 0.01
0.4 8.12 428 287 210 1.61 1.26 090 0.51 0.27 0.10 -
0.6 541 3.03 212 1.60 1.25 0.99 0.71 039 0.19 0.05 -
0.8 3.00 1.8 1.37 1.07 0.85 0.68 0.48 0.25 0.09 - -
1.0 0.96 0.83 0.70 0.57 047 037 0.25 0.09 - - -
1.2 - 0.01 0.01 0.01 0.01 0.01 0.01 - - - -

Table 2.3: Numerical solution of ha,x(k) = 1 for & = (e, X) dependent on « and A in the case £ ~ N(0,1). For

a = 0 a similar table can be found in de Haan et al. (1989).

[oe]
- “/o 5 (p(ylon A) — oyl —  N) dy >0, u>0,

where the last line follows by partial integration with respect to y. We may therefore conclude
that, if o/ > «a then hq x(u) < ho \(u) for any A, u. Assume k(o) < k(o). Then we have by

Proposition 2.2.1(b) and Hoélder’s inequality that
1= hax((@) < ha A(K(@) < B a(K(a)F@/F@) =1

which is a contradiction. O

We are now ready to state the following theorem.

Theorem 2.2.3 Consider the process (Xp)nen in (1.1) with (e,)nen Satisfying the general con-
ditions and with parameters o and X\ satisfying (2.2). Then the following assertions hold:

(a) Let v be the normalised Lebesque-measure v(-) = A(- N [-M, M])/\([-M, M]). Then
(Xn)nen is an aperiodic positive v-recurrent Harris chain with regeneration set [—M, M]

for M large enough.

(b) (Xpn)nen is geometric ergodic. In particular, (X, )nen has a unique stationary distribution
and satisfies the strong mizing condition with geometric rate of convergence. The stationary

distribution is continuous and symmetric.



20 CHAPTER 2.2. TAIL OF THE STATIONARY DISTRIBUTION

(¢c) If &> + X E(e2?) < 1, then the stationary distribution of (X, )nen has finite second moment.

Remark 2.2.4 (a) Statements (a) and (b) are basically a collection of results of Diebolt and
Guégan (1990) and Maercker (1997). They assume o + X E(¢2) < 1 and hence only cover the

finite variance case.

(b) When we study the stationary distribution of (X,)nen we may w.l.o.g. assume that a >
0. For a justification, consider the process (Xp)nen = ((—=1)"Xn)nen which satisfies to the

stochastic difference equation

Xp=—aX,_1+\/B+AX2_e,, neN,

where (), )nen are the same random variables as in (1.1) and )?0 = Xy. If a < 0, because of the

symmetry of the stationary distribution we may hence study the new process ()Z'n)ngN.

(c) By statement (c), the assumption o + A E(e?) < 1 is sufficient for the existence of the

second moment. We will see in Remark 2.2.12(c) that it is also necessary.

(d) Theorem 2.2.3 is crucial for investigating the extremal behaviour of (X, )nen. The strong
mixing property includes automatically that the sequence (X, ),en satisfies the conditions D(u,,)
and A(uy). The condition D(uy,) is a frequently used mixing condition due to Leadbetter et al.
(1983) whereas the slightly stronger condition A(u,) was introduced by Hsing (1984). Loosly
speaking, D(uy) and A(u,) give the “degree of independence” of extremes situated far apart

from each other.

Proof. Because of the strict positivity and continuity of the transition density the process
(Xn)nen is a v-irreducible Feller chain. By Feigin and Tweedie (1985), p.3, this implies that
every compact set of the state space is small and thus [—M, M| for arbitrary M > 0 is small.
Finally, by Proposition 5.3 of Tweedie (1976), [—M, M] is a status set for (X, )nen.

(a) Because of Proposition 2.2.1, for « € R and A > 0 such that A, ,(0) < 0 there exists
a & > 0 such that hy(u) < 1 for any v € (0,x) and ha(0) = hox(x) = 1. Now choose
n € (0,min(k,2)) and § € (0,1 — hqyx(n)) arbitrary. For any such n and ¢ there exists a constant
C =C(n,0) € (0,1) such that

hax(n) +6<1-2C. (2.5)
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Define g(z) := 1 4 |z|7 > 1 for any x € R. For M large enough and |z| > M we have by

continuity of h, ) in o

hax/ 22+ 8/\ ,/\(77) - ha,)\(n) <4 (2'6)

and
Cg(x) > 1+ (han(n) £ 6)(=1+O(|z|"?)) (2.7)

since < 2, hox(n) — 0 is independent of z and ¢ increases to oo. From (1.3) we obtain for
T — 00

ar

VAr? + 3

/ g(W)P(Xy € dy| Xo =) = L+ (8 + )2 E(| el
(700700)

g
= 1+ (X + $2)n/2hax/ 22+ 3/ ,/\(77)

= 1+ 1 +0@))a"h,,, s A1)

= 10"V, s () + el B, s ()
= L+ (O 2) by ) 0@ by s ), (28)

where the third line follows from Taylor expansion. From (2.5)-(2.8), we obtain for any z € R
with |z| > M,

[ WP( € dy| Xy =) £ Cgla) +(1-2009(0) = (1= Chole). (29)
Define
Ti—a,m) = inf{n > 1| X,, € [-M, M]}
and let € R be arbitrary. Then we have
E(r—ma | Xo=12) = E(lyx,el-mmE(m—man] X1)|Xo = )
+E(Lix, e[ vy B(maan) X1) | Xo = )

S 1 + E(l{XlE[fM,M]C}E(T[fM,M]|X1)|X0 = ZE)

< 1+ [ Bl = n)PG € dylXo = ).
[_MsM}C
By (2.9), Lemma A4.1 holds and we obtain for all z € R,

E(T[—M,MHXO:Z‘) < 1—|—/ %P(Xl 6dy|X0=x)
[_MsM}C

< 1+é+E(‘o¢x+\/>\x2+ﬁe‘n) < 0o (2.10)
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and thus [—M, M] is Harris recurrent. Since the transition density of (X, )nen is strictly positive
on [—~M, M] we know from Asmussen (1987), p.151, that there exists some constant C € (0,1)

such that

P(X, € B| Xy =z) > Cv(B) (2.11)

for any © € [—M, M] and any Borel-measurable set B, i.e. (X,)nen is a Harris chain with
regeneration set [—M, M]. Finally, by Theorem A4.2, (2.9) and the fact that [-M,M] is a

status set, (X, )nen is positive Harris v-recurrent.

(b) Note that

sup /g(y)P(X1 €dylXo=z)=1+ sup FE (‘am +VAz? + 8‘77) <oo. (2.12)
ze[—M,M]JR z€[—M,M]

Thus the geometric ergodicity follows from Theorem A4.3 and the same arguments as in the
proof of statement (a) of this theorem. The process is therefore strongly mixing with a geometric
rate. The symmetry of the stationary distribution follows from the ergodicity and the fact that
the processes (Xp)nen and (—X,)nen have the same transition probabilities, hence the same
unique stationary distribution. Finally, because of the continuity of the transition probabilities,

the stationary distribution function is continuous as well.

g

(¢) Define now the small set A := {z € R|2? < max{l, 1=20) — (2 T ED)

}} with 6 > 0
such that

(1 -26) — (a® + XE(e?)) > 0.

Choose g(z) = 1 + 22. Note that for any z € A°,

/g(y)P(XledeO:x) - e (0‘2+AE(52)+%>
R

< 1+2%(1-26)

= 1—2%+2%(1—9)

< 1-6+2%(1—-06) = g(z) (1 —9). (2.13)

By (2.13), (2.12) for n = 2 and A instead of [-M, M], Theorem A4.4 holds and the second

moment of the stationary distribution is finite. O
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2.2.2 The Pareto-like tail of the stationary distribution

In this subsection we investigate the tail F(z) = 1 — F(z) of the stationary distribution for large
z of the AR(1) process (Xp)nen with ARCH(1) errors defined in (1.1). It turns out that the
stationary distribution has a Pareto-like tail. We completely specify this tail. To start with, we
show that even if the building blocks (£, ),cn have moments of all orders not all moments of the

stationary distribution are finite.

Proposition 2.2.5 Suppose (X, )nen is given by equation (1.1) with (ep)nen satisfying the gen-
eral conditions and with parameters « and X\ satisfying (2.2). Let X be the stationary limit
variable of (Xp)nen. Choose N > 0 such that

E(VXelN) > 2. (2.14)

Then
E(IX|N) =o00.

Proof. Assume that the N-th moment is finite. As a consequence of (1.4)

E(XIY) = E(laX +v/p+XX2%|V)

= B ey XVt (o + MM+ By X Vet g+ 2cl)
p
= E(IX|"a+ /57 +2el")

E(IX]")E(Lies0y [V AeY)

v

> E(X|V),

where we used in the third and forth line that X and e are independent. The last line is a

consequence of (2.14) and the symmetry of e. O

Remark 2.2.6 (a) Note that N > 2 if a® + XA E(¢2) < 1 since the second moment exists by
Theorem 2.2.3(c).

(b) Condition (2.14) can be replaced by E(1{.~oy|a + Ve[V) > 1 for a > 0 and E(ljecoy|la+
\/X£|N ) > 1 for a < 0, respectively. These alternative conditions may enable us to find a smaller

N.

In order to determine the tail of the distribution of X we need the following technical corollary.
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Corollary 2.2.7 Let F(z) = P(X > z), > 0, be the right tail of the stationary distribution

function . For any C; > 1, Cy > 0 and n > 0, there exists some xg > C1 such that
F(l‘g) > CQ Z‘E(N-'_n) ,
where N is chosen to satisfy (2.14).

Proof. Assume there exist some constants Cy > 1,y > 0 and n > 0 such that
F(z) < Coz~ N1 vz > 0. (2.15)
Let 0 < 6 < 1 be arbitrary. Then, by symmetry of X, using partial integration and (2.15),

E(lyxsonl X1V = 2/0 N dF (z)
1

= -2 / ooxN—ﬁdF(g:)

C1

< 20V 42N ) / N1 () do
Cy

o0
< 2c) +2NCy / o0y
C1

C
< 20N 42N < .
1

Since the rhs is independent of §, by the monotone convergence theorem |,
N N Cy
E(lxsen|XIY) £20) +2N 22 < oo,

But this is a contradiction to Proposition 2.2.5 and hence (2.15) is false. 0

Because of Proposition 2.2.5 we know that the distribution of X is heavy-tailed in the sense
that not all moments exist. In the following we want to find out the precise asymptotic behaviour

of its tail. We need the notion of bounded increase of a function, see Bingham, Goldie, Teugels

(1987), p.71.

Definition 2.2.8 Let h : (c,00) — [0,00) for some ¢ € R and let a(h) be the upper Ma-
tuszewska index, i.e. a(h) is the infimum of those a € R for which there exists a constant

C = C(a) such that for each A > 1,
h(Az)/h(z) < C(140(1))AY, =z — oo, uniformly in X € [1,A].

The function h has bounded increase if a(h) < co.
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Remark 2.2.9 Note that non-negative functions which are decreasing have bounded increase.

It turns out that the following modification of the Drasin-Shea Theorem (Bingham et al. (1987),

Theorem 5.2.3, p.273) is the key to our result.

Theorem 2.2.10 Let k : [0,00) — [0,00) be an integrable function and let (a,b) be the mazimal

open interval (where a < 0) such that

. E(t
k(z) = / t_zﬁdt < oo forz € (a,b).
(000)
If a > —o0, assume limg|o k(a+8) = oo, if b < 0o, assume limg|o k(b—0) = 0o. Let h: [0,00) —
[0,00) be locally bounded. Assume h has bounded increase. If

lim J0.00) (@ /D) h(2)dt [t

T—00 h(z)

=¢>0, (2.16)

then
¢ = k(p) for some p € (a,b) and h(z) ~ z"I(z),

where | is some slowly varying function.

We will identify A with the tail F of the distribution of X. Now we are ready to formulate

our main theorem in this section.

Theorem 2.2.11 Suppose (X, )nen is given by equation (1.1) with (e, )nen satisfying the general
conditions and (D.1) — (D.3) and with parameters o and X satisfying (2.2). Let F(z) = P(X >

x), x >0, be the right tail of the stationary distribution function. Then
F(z) ~l(z)z™", x— o0, (2.17)
where | is a slowly varying function and k is given as the unique positive solution to
E(la+Vaelf) =1. (2.18)

Remark 2.2.12 (a) For the ARCH(1) process (i.e. the case a = 0) this result is well-known.
The slowly varying function [ is then a constant, given implicitly by certain moments of the

stationary distribution (see Goldie (1991)).

(b) Note that E(Ja+vXe|*) = hax(x) as in Lemma 2.2.1. Recall that for e ~ N(0,1) and fixed
A, the exponent « is decreasing in |a|. This means that the distribution of X gets heavier tails.

In particular, our new model has for o # 0 heavier tails than the ARCH(1) process (see also
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Table 2.3).

(c) Theorem 2.2.11 together with Lemma 2.2.1 implies that the second moment of the stationary
distribution exists if and only if a? + X E(¢?) < 1.

Example 2.2.13 We give three different distributions for (e,),ecn which satisfy the general
conditions and (D.1) — (D.3).

(a) The normal distribution with mean 0 and variance o
From Remark 2.2.2(b) it is straightforward that the general conditions and (D.1),(D.3) hold.
It remains to show (D.2). Choose ¢ >0, q € (1/2,1), > 0 and ¢ > z7 arbitrary. Then

(ZE+C—O[t) _ 1 . (_ (z — at)? _ (z—at)e c? )
P~ Vamor P\T22(B A2 a2(B M) 202(B + AP)
1 (z — at)? c 19 c?
> —— -7 qg__ - @
= Vo2 exp( 202(B 4+ M?) o2 v 202%(8 + Aqu))
_ T — ot € 19 c?
N p(1/ﬂ+>\t2)exp( Ao’ 202(ﬁ+)\x2‘1))'
Similarly, we obtain
T+c+at T+ ot c 19 . c?
LTOTHEY S (2T _ & 120 ¢-y_ __© )
" \/5+At2)_p(\/ﬁ+xt2)eXp< =R 2rf2(ﬁ+>\av2"))

(b) The Laplace (double exponential) distribution:

1
Consider the probability density p(z) = % exp(—%), z € R, 6 > 0. Again it is obvious that the
general conditions and (D.1), (D.3) are satisfied. (D.2) holds since for any ¢ > 0, ¢ € (0,1), > 0
and t > z
r+c—at T —at c
—F—) 2 P—F—=)exp(——F—
( ﬁ+>\t2) ( ﬁ+>\t2) ( 9\/Xx‘1)
and
r+c+at T+ at c
NW———) 2 P—F—=)exp(——F=—).
( ﬁ+>\t2) ( B+>\t2) ( 0\/qu)

(c) The Student’s ¢ distribution with v > 2 degrees of freedom:

o TGE+D) ¢ a2\
w =y (7))
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It is well-known that for v > 4

B(lel') =3+ —— (219)

and for any r > v
E(le|") = o0 (2.20)

(see e.g. Johnson, Kotz, Balakrishnan (1995)). The general conditions and (D.1) are clearly
fulfilled. Now note that for any ¢ >0, ¢ € (0,1), x > 0 and ¢ > 24

» (:v—i-c—ozt) > ol T — ot )< T —at >U+1
RV ESY VB2 \zt+ce—at
T —at _1 c —(v+1)
> ———— - -
- pV(\/m) ( 1 — axqfl)
and similarly,
z-l—c-l—ozt > p w-l—ozt . c )7(1,“)_

/6+>‘t2) /ﬁ—l—)\tQ m

It remains to check (D.3). Because of (2.20) with » = v, there exist constants n > 0 and ¢ € (0,1)

such that
v>N+n+qv+1)+3q, (2.21)
where N = inf{u > 0| E(]v/Ae|*) > 2} . For z large enough we thus have
po (@) N E30/(0=0) < o gt z(NHn—vHalv+1)+30)/(1=a) (2.22)
By (2.21), the exponent in (2.22) is strictly negative and hence (D.3) holds.

The proof of Theorem 2.2.11 will be an application of Theorem 2.2.10. Proposition 2.2.14 presents
an implicit formula for the right tail F(z), z > 0, of the distribution of X. We will need
the formula to show that assumption (2.16) is fulfilled. In the following all assumptions of

Theorem 2.2.11 hold. Recall that we may w.l.o.g. assume that o > 0.

Proposition 2.2.14

= M + /Oof(x,t)dt + /OO h(z,t)dt, =z € R, (2.23)
F(x) 0 0
where H = 1 — H denotes the tail of the distribution function of € and for x € R, t > 0,
Fat) = ( T — ot T+ at ) Tt E(t) 1
’ \/ﬂ-l-)\t? \/B-l-)\t? (B+M2)3/2F(z) t’
Wz 1) ::( T — at T+ at ) aft E(t)l,
’ e P ) B e )t
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Proof. By (1.4) and the symmetry of X, we have
Flz) = /Oo P(aX +/B+AX2e>z| X = t)dF(t)
= /0 Plat + /B + A2 > z)dF(t) + /Ooo P(at + /B + AM2e > z)dF(t)
= — /OOO P(—at + /B + M2e > z)dF(—t) + /OOO P(at + /B + M2 > z)dF(t)
= — /Ooo P(—at + /B + M2e > z)dF (t) + /Ooo P(ot + /B + M2e > z)dF (t)
00 — _

_ /0 (ﬁ(ixri‘)‘;ﬁ) HH(= +O‘;t2 ))dE ().

where we used in the fourth line that the distribution of X is symmetric. By partial integration

and again symmetry, we obtain

Rl = () - [ (e e
A e e L
- A+ [ () ) s 0 (29
+ /Ooo(p(;ﬁ;—oft?) —p(;f%)) G ff;)wﬁ(t)%.
This finishes the proof. .

We investigate now (2.23). Together with Lemma 2.2.5 and Corollary 2.2.7 we collect some results

in the following lemmas and corollaries. These results will be crucial in applying Theorem 2.2.10.
Lemma 2.2.15 lim, o, [;° f(z,t)dt = 1.

Proof. Let ¢ € (0,1) and > 0 be the constants in (D.2) and (D.3), respectively. Because of

assumption (D.3), there exist constants zy, D > 0 such that for all x > z

and thus we have for all z > xg
— D pWN+nt3a)/2
H e — G A L A 2.25
@/VB) < g (2.25)
By Corollary 2.2.7 and (2.25), there exists therefore a sequence (z,) 1 oo and a constant D>0

such that for any z,, > /B xo

F(_xn/\/ﬁ) . Pﬁ(N+n+3q)/2 = (2.26)

F(zy,) D (N +n+3q)
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Note now that

af

|h(z,t)] < af(x,t), for any t > 1 and z > 0. (2.27)

Hence,

/looh(xtdt‘ ﬂ/ fz,t)d (2.28)

Because of (2.28) and the fact that due to assumption (D.1)
h(z,t) >0 (2.29)
for = large enough and ¢ € [0, 1], we have

o0
lim sup/ flz,t)dt < 1. (2.30)
z—o0 Jo

Fix now some ¢ > 0. By Corollary 2.2.7 there exists a sequence (z,)nen T 0o such that for some

function ¢(¢) > 0 and any n > 0

’

0 < F(rat) < et) (p(-—"0) 4 p(-— L))ot

\/ﬂ-l-)\t? \/B-I—)\t?

and therefore by condition (D.3)

liminf f(z,t) =0, for any ¢ € (0,00).

T—00

With similar arguments we derive also

liminfh(z,t) =0, for any ¢t € (0,00).

T—00

Because of the continuity of the functions f and h we have thus that for any fixed T'> 0

T—00 r—00

T T

lim inf/ f(z,t)dt=0 and lim inf/ h(z,t)dt = 0. (2.31)
0 0

Thus again with (2.26), (2.28) and (2.31) with T'=1 we obtain

lim inf/ flx, t)dt =
0

T—00

which finishes the proof. O

The next corollary is a consequence of Lemma 2.2.15 and its proof. The result supports our

supposition that the stationary distribution has a Pareto-tail.

Corollary 2.2.16 lim, o F(z +¢)/F(z) = 1 for any c € (0,00).
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Proof. By monotonicity, limsup,_,., F(z + ¢)/F(z) < 1. Furthermore, due to Lemma 2.2.15,

lim inf L&)
T—00 F(gp)
= 11rr_1>1nf x—i— / flz+c t)dt
T—00
. o0 x+c—at r+c+at (z+c) ? F(t) dt
> liminf ——
= ah / ( \/B-l-)\t? (\/B-l-)\t? )> (B+ M2)32F(z) t
% x-l—c—ozt x-l-c-l-ozt o t?  F(t) dt
> liminf — 2.32
= ah / ( \/B-l-)\t? \/B-l-)\t? ) (B+A2)32F(z) t (2:32)

where ¢ € (0,1) is the constant in (D.2). Now choose § > 0 arbitrary. Because of condition (D.2)

(2.32) may be estimated below by

lim inf M
T—00 F(gp)

>

1 —4)liminf

T—00

(1—5)liminf/oo< x — at x4+ at ) TAt? F(t) dt

700 B+ At2 B+ )\t2 (B4 M2)3/2F(z) t

( ) / f(z, t)dt. (2.33)
x4

Next consider

o¢]
lim inf/ f(z, t)dt
0

T—00

x4 00
= liminf/ f(z,t) dt+11m1nf/ f(x,t)dt—l—lirginf/ [z, t)dt
r—00  Joq

T—>00

= Ji+Jo+J;5. (2.34)

We showed in the proof of Lemma 2.2.15 that J; = 0. Furthermore, by assumption (D.1),

J | ¢ T — az? TN o,
< limi -T
2 = lxrggé (p /ﬁ-l- )\:E2q /ﬁ-l- Az24 ) B+ )\T2 3/2T F(m) (a )

x — ax? o3t ) 1
< lim inf( )
- 72900 B+ >\$2q , /B + )@2!1 B+ AT2)3/2T F(x)

(0 0at) LM —
- O M ) s

From Corollary 2.2.7 and the assumption (D.3) we conclude Jy = 0. Plugging all this together
we get from (2.33) that

hmlnfM (1—611m1nf/ flz,t)ydt=1-19,

where the last line follows from Lemma 2.2.15. Because § was arbitrary the corollary is proven.

a



31

Lemma 2.2.17 lim,_, fooo g(z,t)dt =1, where

1
.

r — a (0] M 2 F
ol t) = (p( t + t)>( A2 F(t)

+ =
NS VIR, R NOVEETE
Proof. By the general conditions and assumption (D.1), for any z,t > 0

(azzlzozt)< ( T+ ot
Y VAN v

and hence with Lemma 2.2.15 and the same arguments as in the proof of Corollary 2.2.16 we

)

get

o0 o0
limsup/ g(z, t)dt = limsup/ g(z,t)dt
0 T

T—00 T—00 q

o0
< limsup f(z,t)dt

z—o0 Jrya
o0
= limsup/ flz,t)dt =1,
z—o0 Jo

where ¢ € (0,1) is the constant in (D.2). It remains to show the converse inequality for the limes
inferior. Note that for any fixed T' > 0

T
liminf/ g(z,t)dt =0. (2.35)
0

T—00

By (2.35), the general conditions and assumptions (D.1), (D.2) and substitution t = \/8/\ + s2,

we have

liminf/ glx,t dtzliminf/ gz, t)dt

_ liminf/oo(p(z—a\/ﬁ/k-l-sZ)+p(az+a\/ﬁ/>\+32)) TAs? F(\/32+,3/)\)§
0 VB + As? V B+ As? (B + As2)3/2 F(z) s

T—00

S liminf °°1 (B aXs®  F(\/s*+B/X\) ds
= lxn_1>£ 0 {x—a\/ﬁ/z\+5220}p /,64-)\82 (/6+>\32)3/2 F(x) s
+liminf/ool EoevBA—as, o PS5/ ds
s o AraV/BEe <P T e (B A3 F(x) s
—|—liminf/oo (ZE-I-Ol B/A + as T8> F(wﬁ-}-ﬂ/k)@
o Jo T JBtas? (B2 Fla) s
> liminf/oo 1 p(LEVBA — as
T =0 Jiyray/Ey WHOVB/Aay/B/As20} /B + As?

yAs? F(\/s2+B/)) ds

(B+ AP F(y + an/BN) 8

. . 0 y _ as
* hyrggjlf /(y+a\/ﬁ//\)q 1{y+a\/m_a\/ﬁ//\+s2<0}p( \/,m)
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yAs? _(\/W)
(B4 Xs2)32F y—i—a\/

y)\32 _(\/W)
(B +Xs2)32 F(y + a/B/N)

> liminf/oo f=(a/B/ N y)p %“8)
T 920 Jyray/Ene {y-l-oz\/ﬁ//\ ay/ B/ +52>0} W
P F(/TEBN ds

(B+As2)32  F(y) $
-I-liminf/ 1 NG TPl — )
y—00 (y+oz\/m)q {y+ar/8/ —a\/ﬁ/ +52<0} ‘//3"')\32
y s> F(\/s2+B/X) ds (2.36)

(B+As?)32 Fly) s

+ as
Frlan/BINy + av/BIN) fi(av/BINy)p (h)

yrs®  F(V/s*+ B/ ds

(B+As2)32 F(y) s

where ¢ € (0,1) is the constant in (D.2). Now choose any 6 > 0 and T so large that for any

+ lim inf

y—oo -/(y+a\/6/>\

s,y>T
Fo(an/B/Ny) > (1= 8)V/3, (2.37)
Selev/BAy) > (1= 87, (2.38)
FVs* +B/N V%Q(j)ﬁm > (1—6)'/3. (2.39)

(2.39) holds because of Corollary 2.2.16. Plugging (2.37)-(2.39) in (2.36) we get

lim inf/ g(z,t)dt
0

T—>00
o0 — As?2 F(s)ds
> (1-6)231 'f/ 1 y—as Y e
2 (1—0Flimin (y+ay/BIA) (rray/FR-ay/Bxi 20} P VB + vl (B+ 2232 F(y) s
00 2 inl
oe\1/3s Yy — Qs YAS F(s)@
+(1=9) hyrgégf/(ym /BTNy 1{y+a\/ﬁ/z\—a\/ﬂ/)\+sz<0}p( /B + )\32)(54_ As2)3/2 F(y) s
00 2 inl
. y+as YAs F(s) ds
—|—1—6hm1nf/ P =
U= S oy " VBT A B+ AP T s
zu—wmwf Fly,t)dt = (1),
Y70 J(y+ay/B/X)
where the last line follows from Lemma 2.2.15 and the proof of Corollary 2.2.16. O

With these lemmas we are now able to prove Theorem 2.2.11.
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Proof of Theorem 2.2.11. The proof is just an application of Theorem 2.2.10. Choose

x r—« T+
k<x>=ﬁ(p(\/x>+p<ﬁ>), £>0, (2.40)
and
h(z)=F(z), z>0. (2.41)

One can readily see that k is non-negative, h is non-negative, locally bounded and of bounded

increase because of Remark 2.2.9. Note that for any z € (—o00, 00)

k(z) = /000 2B g

t
0o o1 0 *Zi t—«
- | t \/_(f)dt+/ (1) \/Xp(—\/X)dt
= E(la+ Vi),

Let (a,b) be the maximal open interval such that
k(z) < oo for z € (a,b).

Note that a = =T = —inf{u > 0|k r(u) = 00} < 0 and b = 1 because of Proposition 2.2.1 and
the fact that for z > 0

/loo tZ@dt < /loo %(p(t\;;[) -I-p(t;Xa))dt <

and
1 1
k(t <oo, z<1
/t_zﬂdtgconst/ t23dt =
0 L 0 =00, z>1

Furthermore, by the dominated and monotone convergence theorem, respectively,

s _ 1 —(a+79)
%ﬁlk(a-l—(S) = %$E<1{|a+ﬁe\§1}|a+\/x6| )

. —(a+9)

- B (1{‘a+ﬁ8|§1}|a+ \/Xe|T) +E (1{|a+ﬁ5‘>1}|a+ x/Xg|T)
= ha,,\(T) =

and

.y ) a1 t—a t+
lamk(b—6) = tim | 0 5>7X(p<f>+p<7>)

const hm/ (40 gt — const hm

v

= 0.

1
00
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T T T T T
(o} 100 200 300 400

Figure 2.1: The Hill estimator for the stationary distribution of the autoregressive process with ARCH(1) errors
with length n = 10000 and parameters a = 0.4, A = 0.6 and ¢ ~ N(0,1). We calculate the 5 and 95 percent
empirical quantiles (dotted lines) and the empirical median (solid line). The horizontal line indicates the numerical

solution of x in (2.18). From Table 2.3 we know that x = 2.87.

Finally, by Lemma 2.2.17, we have

 k(x/t)F(t)dt/t o0
lim Jo_ FE/OF@AE_ g(w, t)dt = 1
T—00 F(w) z—o0 [y

and hence condition (2.16) is fulfilled with ¢ = 1. Therefore all assumptions of Theorem 2.2.10

are satisfied and we derive (setting Kk = —p) that
F(z) ~z "l(x), (2.42)
where [ is some slowly varying function and & is determined by the equation
E(la+Ve|®) =1, for some x € (—=1,T). (2.43)

Since the tail of the stationary distribution function is decreasing the solution  in (2.43) has
to be strictly positive and hence by Theorem 2.2.10 there exists a solution x € (0,7") in (2.43)

which is unique because of Lemma 2.2.1. O

Theorem 2.2.11 is a generalisation of the result of the ARCH(1) process as a consequence of
using a different kind of technique for the proof. However, the Drasin-Shea Tauberian theorem
guarantees only a regularly varying tail, i.e. an unknown slowly varying function [ appears
whereas in the ARCH(1) case this is a constant which was calculated explicitly by Goldie (1991).

In Goldie (1991), the distribution tail of a random recurrence equation is derived by renewal
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arguments. As mentioned before, the AR(1) process with ARCH(1) errors does not fit into
this setting. However, we introduce another process (Y,)nen which has the same stationary
distribution as the process (| X, |)nen and which satisfies the conditions needed to fit into Goldie’s
framework. To check Goldie’s assumptions leading to a Pareto-like tail we rely on the results
which we have worked out so far.

We investigate the process (Y, )nen given by the stochastic difference equation

Yo =laYn 1+ /B+AY2 en], n>1, (2.44)

where (£, )nen are the same i.i.d. random variables as in Theorem 2.2.11, the constants are the
same as for the process (X, )nen and Yy equals | X| a.s. The following lemma manifests that the

processes (Y, )nen and (| X, |)nen have trivially the same stationary distribution.

Lemma 2.2.18 If [Xo| = Yy a.s. then (| Xu|)nen = (V)nen.

Proof. Note first that the processes (| X, |)nen and (Yy,)nen are homogeneous Markov processes.
It suffices therefore to show that the one-dimensional transition probabilities are the same. For

any x € R,

ol Xo| +1/B+AXier1| <=z ‘ |X0|>
= P(—z <aXy+/B+IX2e1 <z,Xp >0]]|Xo|)

+P(—z < a(—=Xo) + /B + AXZe1 <z, Xy < 0]]Xo])

= P(—z <aXy+/B+IX2e1 <z,Xp >0]]|Xo|)

+P(—z < aXop+1/B+AXZe1 < z,X < 0]]Xo])

= P(|04X0 + \/ﬁ—l—)\Xg&‘ﬂ < $||X0|)

= P(Xi| <z ]|Xo])

This finishes the proof. O

Corollary 2.2.19 The slowly varying function [ in Theorem 2.2.11 can be chosen as the con-

stant

B (‘a|X| + \/mg‘" - ‘(a + \/Xg)|X|‘”)
2% E<|a+\/X6|""ln|a+\/X£|)

. (2.45)

CcC =
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Remark 2.2.20 In the ARCH(1)-case this result is known (see Goldie (1991)). But there, the

result was proven differently by investigating (X2),en-

Proof. The proof is an application of Corollary 2.4 of Goldie (1991). Consider the process in
(2.44). Define M := |a 4+ VAe| and choose « as in Theorem 2.2.11. Due to our assumptions
on ¢ the conditions of Corollary 2.4 of Goldie (1991) on M are satisfied. By Lemma 2.2.18 the
stationary distribution of the process (Y, )nen is the same as for (| X|,)nen. In particular, by

Theorem 2.2.11,
EY* 1 < oo, (2.46)

where Y has the stationary distribution of (Y},),ecn. Finally,

E ([(laY + VBFXYZel)* = (o + Vel V) )
< (K,| aY + /B +AY2e) — (oY + VAYe)| max{|aY + /B + \Y 2], |a + VeV 1)
E (H\/B|g|(|ay + B+ AY 2| + o+ \/X6|Y)"”"_1)

E (n\/E|e|(const YR const (B4 AY2)ETD2 1|51 4 const )\(”_1)/2|£|“_1Y”_1)>

IN A

IN

const k\/Bo" E(|e)) E(Y*™") + const k32 E(|e|")

+const kn/BAETV2E(Y5Y) + const ky/BAEV2E (|| E(YFY),
where the second line follows from the fact that
lz|" = y|"| < rlz —y|max{|z|,|y|}"~", foranyz,y €Rand1<r< oo,
and in the forth and fifth line we used that
|z +y|" < const (|z|" + |y|"), for any z,y € R and r > 0.
Together with (2.46) we have

(‘ Y + VB L AY2e))E — (| + VAe|Y)"

Hence all assumptions of Corollary 2.4 of Goldie (1991) are satisfied and the result follows using

) <.

the facts that Y and |X| have the same distribution and X is symmetric. 0

Remark 2.2.21 In the proof of Corollary 2.2.19 we did not use the whole knowledge of the

tail of the stationary distribution of the process (X, )nen from Theorem 2.2.11. We only used
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Figure 2.2: Simulated sample path of the AR(1) process with ARCH(1) errors (X,)nen with parameters o =
0.8,8 =1,A = 0.8 (top, left), with o = —0.8, 3 = 1, A = 0.8 (top, right), with « = 0,3 = 1, A = 0.8 (bottom, left),
and with @ = 0.8, 8 = 1, A = 0 (bottom, right) in the case € ~ N(0,1). The innovations (¢, )n,en are the same in
all four pictures. It appears that the marginal distributions of the nondegenerate AR(1) processes with ARCH(1)
errors (top) have clearly fatter tails than the ones of the ARCH(1) process and of the AR(1) process.
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that the (k — 1)-th moment of the stationary distribution exists. It might be supposed that
this result could be found easier. In the case ¢ ~ N(0,1) this is indeed possible. Recall that
the random variable X which has the stationary distribution function is characterized by the

fixpoint equation

XLaX +VB+AX2e, (2.47)

Now note that for any ¢ € R
E(eitX) _ E(eitaXE(eit\/ﬂ-i-)\X?a | X) )
e—Bt2/2 E(eitaX—t2,\X2/2) (2.48)

_ E(eit\/BNl)E(eit(ax+\/XXN2))

)

where N1 and Nj are independent standard normal random variables, independent of X. From

(2.48) we obtain the fixpoint equation

X i \/BNI + (Oé‘l‘\/XNQ)X.

Hence X is limit variable of the ergodic process (X,)nen given by the stochastic difference

equation
)’Z-n = \/,BNI,n + (Of + \/XNQ,n))?n—l ) (2'49)

where (N1 p)nen and (Nap)pen are two independent sequences of iid normal distributed ran-
dom variables. The stationary distribution of the process ()?n)nEN follows from Goldie (1991,

Corollary 2.4), see also Embrechts et al. (1997), Section 8.4.

2.3 Extremal behaviour of the AR(1) process with ARCH(1)

errors

In the present section we study the extremal behaviour of AR processes with ARCH errors.
We again focus on the AR(1) process with ARCH(1) errors, i.e. f(Xp_1,....; Xpn k) = @ Xp_1
for some o € R and o, is given in (0.2) with p = 1. Our results for the extremes will be an
extension of the results in de Haan, Resnick, Rootzén and de Vries (1989).

Extremal behaviour of a Markov process (X, )nen is for instance manifested in the asymptotic

behaviour of the maxima

M, = max X, n>1.
1<k<n
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The limit behaviour of M, is a well-studied problem in extreme value theory. Two review paper
on this and related problems are Rootzén (1988) and Perfekt (1994). For a general overview of
extremes of Markov processes, see also Leadbetter, Lindgren and Rootzén (1983), Leadbetter
and Rootzén (1988) and the references therein. Loosly speaking, under quite general mixing

conditions, one can show that for n and x large
P(M, <z)~ F"(z), (3.1)

where F' is the stationary distribution function of (X,),eny and 6 € (0,1) is a constant called
extremal indezx. A natural interpretation of 0 is that of the reciprocal of mean cluster size (see
e.g. Embrechts, Kliippelberg and Mikosch (1997, Chapter 6) and the references therein). The
practical implication of (3.1) is that dependence in data does often not invalidate the application
of classical extreme value theory. There are many methods for determing the extremal index.
However, most are very technical and often useless in practice. An alternative is then to estimate
f from the data.

For the AR(1) process with ARCH(1) errors we derive an explicit formula for the extremal index.
We furthermore investigate the point process of exceedances of a high threshold u of (X, )nen
which characterizes the extremal behaviour of the process in detail. This point process converges
in distribution to a compound Poisson process with a well-specified intensity and a well-specified

distribution of the size of the jumps.

2.3.1 Preliminaries

In order to study the extremal behaviour of (X,)nen and (X2),en we define the auxiliary process
(Z)nen := (In(Y;2))nen. Since (Y;,)nen follows (2.44) the process (Z,)nen satisfies the stochastic

difference equation
Iin = Zn 1+ ln((oz +VBe Zn-1 4 Asn)Q) , n€N, (3.2)

where (ep,)nen are i.i.d. random variables that satisfy the general conditions and (D.1) — (D.3),
the constants are the same as in our old process (X,)neny and Zy equals In(X3) a.s.. Note that
(Zn)nen 4 (In(X2))nen and thus the process (Z,)nen is again regenerative and strongly mixing.
Moreover, (Z,)nen does not dependent on the sign of the parameter « since ¢, is symmetric. In
the following we assume therefore that o > 0. We will see that (Z,),ecn can be bounded by two

random walks (S5")nen and (&™) nen from below and above, respectively. This result together
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with (Z,)nen 4 (In(X2))nen appears to be the key to the description of the extremal behaviour
of (Xp)nen. Via results for (Z,),en, we prove for instance that the regenerative process (X, )nen
has finite mean recurrence times which allow us to consider only the extremal behaviour of the
stationary process (X, )nen. The process (Z,)nen will be also important in the proof of Lemma
2.3.7. For the construction of the two random walks (Sf;a)ngN and (Spn'*)nen we need some more

definitions. With the same notation as before, let

- -
Ay = {w <eglw) < , 3.3
=l e s R =W S g vaee) (33)
pla,a, B, 2) i=In((a+ VBe o+ xe)?),
20/Be= ¢
a,a,B,\,¢) :=In{1— 1s, , 3.4
q(a,a, B, A €) ( PR/ T=ruerh <o}) (3.4)
r(a,a, B, €) = ln(l - fete © 1 )
y Gy Dy Ay . (a+ /66_0‘+)\8)2 {e<0} | -
Note that g(a,a, B, A, €),7(a,a, B, A,e) — 0 a.s. for a — oo. Now define
n n
S =Y "Uf and Sp:=) V! neN, (3.5)
j=1 j=1
where
U;'l = 0 1Aa + (p(aﬂaﬂlgﬂ >‘7€j) —I—r(a,a,ﬁ, >‘7€])) ’ 1Agﬂ{£j<0}
+ In(a + VAgj)? - 1,50 (3.6)
and
‘/}a 2=p(a,04,,8,>\,8j)+Q(0,,O4,6,>\,8j) (37)

for some a > 0. The following lemma shows that the random walks defined in (3.5)-(3.7) are

really upper and lower bounds for (Z,,),cn above a high level.
Lemma 2.3.1 Let a be large enough, N, :=inf{j > 1|Z; < a} and Zy > a. Then

Zoy + S,lc’a < Zp < Zo+ S for any k < N, a.s. (3.8)
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Proof. We prove only the lower bound. The proof of the upper bound is similar but easier. Let

> a be arbitrary. If ¢ > 0 it is obvious that
(a+VBe T4+ Xxe)? > (a4 Vhe)?. (3.9)
Consider now € < 0, then

(a++/Be®+Xe)? = (a+/Be @+ Xe)?
- 2a(—e)(\/ﬁe—a+)\— \/ﬁe_x—i—)\) —Be™ —e ™) e?
> —fe e, (3.10)

Note that we have a non-trivial lower bound of (a + \/Be % + Ae)? if and only if
(a4 /Be v+ Xe)? —Be %e? > 0. (3.11)

It is straightforward that (3.11) is equivalent to

(3.12)

—Q —
e > or < .
VBe v+ X+ /Bea/? Ve @+ X—/Be /2

From (3.9), (3.10) and (3.12), we obtain

(a+ VA=@)?, we{e>0)
2
(a+ ﬁe*l’—l—)\e(w)) > (a+/PBet+re(w)? —Pee(w)?, we ASN{e <0}(3.13)
0, weA,

Now take logarithms and use the additive structure (3.2) of (Z,)nen. O

Remark 2.3.2 (a) If a is large enough then S;’* and S5 are random walks with negative
drift.
Proof. Note that

E(‘/la) = E(p(a,oz,ﬁ,)\,gl)—i—q(a,oz,ﬁ,)\,sl))

= E(ln ((a—i— 56_“—%)\81)24—204\/_67&/2(—51)1{81<0}>>
— E(n(a+vXe)?) <0, asa— oo,

where we used the dominated convergence theorem and (2.2) in the last step . Hence for a large

enough the statement follows. O
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- n )2
(b) Let (Sp)nen := (ijl 1n<(oz +Ve;) ))neN' For a 1 co we have
ste Log and §M %Y Sy, (3.14)

for any k£ € N, i.e. both random walks converge at least in probability to the same random walk.
Furthermore,

S

sup S,lc’a 4 sup Sy and sup S 2 sup S . (3.15)
k>1 k>1 k>1 k>1

Proof. The a.s. convergence of (Sp*),en and SUpy>1 S;j’a is straightforward since p,q and r

converge a.s.. Consider therefore the lower random walk (Sf;a)neN. Note that for a 1 oo

P(A4,) — 0
and hence
P P
Lacnfe<oy = Liecoy and 1y nge<oy = 0. (3.16)
Furthermore,
p(a’7 «, Ba >‘7 81) + 7’(@, a, /67 >‘7 51) ‘E). In ((O{ + \/Xgl)Z) ) (317)

and therefore (3.14) holds. Finally we note that

Emax(O, U{I) = Emax(O, (p(a'aaa/Ba)‘agl) +’I"(0,,O4,,8,)\,81)) 1Azﬂ{61<0}>
+ E'max (0, In(a + Ve )? 1{5120})

—  Emax(0,In(a + VAe1)?), as a— o0, (3.18)

where we used (3.16), (3.17) and the dominated convergence theorem. By Borovkov (1976) ,
Theorem 22, p.53, (3.14) and (3.18) we derive that

d
sup S,i’a — sup Sy, .
E>1 k>1

Lemma 2.3.1 characterizes the behaviour of the process (Z,)nen above a high treshold ¢ and
hence also the behaviour of (X?2),en. This is the key to what follows: the process (Sp)nen will
determine completely the extremal behaviour of (X?2). Recall from Theorem 2.2.3 that (X, )nen
is Harris recurrent with regeneration set [—ea/ 2 o/ 2] for a large enough. Thus there exists in
particular a renewal point process Ty, T4, Ts, ... which describes the regenerative structure of

(Xn)neN-
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20

-20

Figure 2.3: Simulated sample path of (Z,)nen with parameters a = 0.6, 8 = 1, A = 0.4 and starting point Zo = 50
(solid line) and the corresponding random walks (S5*)nen and (S%*)nen with a = 20 (dotted lines), respectively.
Note that the random walks are hardly distinguishable from each other and (Z,)nen for n < 47. Hence they
are extremely good bounds above the level a = 20. If the process falls far below the level 20 they are still very
close, but are no longer bounds for (Z, )nen. The picture also confirms our statement that the random walks have

negative drift and converge to the same limit.

Corollary 2.3.3 The renewal point process (Ty)nen, which describes the regenerative structure

of (Xn)nen 18 aperiodic and has finite mean recurrence times Cy = Ty and Cy = Ty — Tp.

Proof. The renewal process can be constructed in the following way (see e.g. Asmussen (1987),
Section V1.3 for some background on regenerative processes):

Define
o= inf{k > 1| X, € [—e¥2,e¥?]} Linf{k > 1| Z, <a} = N,

and 75,1 == inf{k > 7; | X}, € [—e¥/?,e%/?]} 4 inf{k > 7;| Z < a} fori=1,2,3,.... Since, above

level a, (Z,)nen is dominated by the random walk with negative drift (S;*),en and

sup E(max(0,721)|Zy =1x) < 00, (3.19)
z€(—00,a]
it follows that 7y, 79, 73, ... are well defined and have finite expectations. Now let M; := inf{i >
1| I, =1} and Mjyq = inf{i > M;|I;, = 1} for j = 1,2,3,... with P([; = 1) =1—- P(I; =
0) = C and independent of (X,,)nen where C is the constant in (2.11). Note that

P(Mj—M; | =i)=C(1—-C)~" fori,j=1,2,.. and My=0. (3.20)



44 CHAPTER 2.3. EXTREMAL BEHAVIOUR
From Asmussen (1987), p.151 and (2.11), the renewal process (T, )p>0 is now given by
Ty :=1Mm,,, +1, n>0,
and hence, by (3.20)
E(Cy) = E(Ty) < E(tpy+1) < const E(My +1) < co.

Similar calculation shows that E(Cy) < oo as well. Since the transition density of (Z,)pen is

positive and continuous it follows finally that C is aperiodic. O

As a consequence of Corollary 2.3.4 we may suppose in the following that the process (X, )nen

is stationary.

Corollary 2.3.4 For any probability measure u and any sequence (Up)neN

‘P“( max X < un> — P”( max X < un)
1<k<n 1<k<n

-0, asn— o0,

where P* denotes the probability law for (X, )nen when Xo starts with distribution p and 7 is

the stationary distribution.

Proof. The proof invokes a coupling argument. Let X = (X, )nen be the AR(1) process with
ARCH(1) errors with arbitrary initial probability p and let X' = (X, )nen be a parallel pro-
cess, governed by the same transition probabilities as and independent of X, and with initial

distribution w. Now define T' as the first common renewal time of X and X', i.e.
T:=inf{neN|T, =T, }.
From Asmussen (1987) and (2.11) we get in particular that
d <1
Xr=Xp~v. (3.21)
Defining M) , := max;<j<, X; and M, := My, we get that

‘P( max X < un> —P( max X/,'c < un)
1<k<n 1<k<n

— |B(P(My < un | T, M, M}y) = P(M;, < uy | T, Mr, M) )|
< |B(Urenrrcrn ) (P(Ma < | T, My, M) = P(M;, < un | T, Mr, M7) )

+‘E<1{MT>Mn}u{M'T>M,g} (P(Mn < tp | T, My, Mp) — P(My, < up | T, MT,MIT)))‘
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+‘E<1{MT>MR}U{M,T>SMH (p(Mn <y, |T, M, M}) — P(M}, < u, | T, Mr, M’T)))\
- ‘E(l{Tgn,MTSMn,M’TSMA} ' 0)‘

+‘E<1{MT>M,I}U{M§">§M,’L} (P(Mn < uy | T, My, My) — P(Mj, < up | T, Mr, M’T)))‘

< E(l{MT>Mn}u{M'T>gM;} P(M,, < un | T, My, My) — P(M!, < un | T, Mz, M}) )
< 9P({My > M} U (M} > M.))

< 2E<P(MT > M, |T) + P(M} > M, |T)>

- 2E<1{T>n} (P(MT > M, |T) + P(M} > M, |T))>

< 4P(T >n),

where we used in the forth line that {T' > n} C {M7 > M, } and in the seventh line (3.21) and
the Markov structure of X and X’. Hence, if we prove that 7" is almost sure finite we are finished.
But by Corollary 2.3.4 the process (X, )nen is regenerative and the embedded renewal process is
aperiodic and has finite mean recurrence time. From Lindvall (1992), p.23 the statement follows.

a

2.3.2 Limit distribution of the normalised maximum and cluster probabilities

of the exceedances

In this section we present the main results concerning the extremal behaviour of the AR(1)
process with ARCH(1) errors and the associated squared process. Let ()/{:n)neN be the associated
independent process of (X, )nen, i.e. )?1,5(\2, ... are 1.i.d. random variables with the stationary
distribution function of (X, )pen. From (2.17), Corollary 2.2.19 and classical extreme value theory
we obtain

lim P(n~'/* X, < 1) = exp(—ca ™" > 22
Jlim P(n max. k< @) =exp(—cz™"), >0, (3.22)

hence the maximum of the associated independent process ()?n)neN belongs to the domain of
attraction of a Fréchet distribution. In the dependent case we prove a similar result. The limit
distribution is still a Fréchet distribution but a constant # occurs in the exponent. # is called
the extremal indez of the process (X, )nen and is a measure of local dependence amongst the

exceedances over a high threshold by the process (X,)nen. It has a natural interpretation as
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the reciprocal of the mean cluster size. In order to describe the extremes in more detail, we also
consider the point process (N, )nen of exceedances of an appropriately chosen high threshold u,,

given by
No() =#{k/n€ | Xy >uy, k€ {l,...,n}} (3.23)

and show that this point process converges to a compound Poisson process N. We derive the
intensity and the distribution of the jumps which we denote by (71 )ren. Note that in the extreme
value theory for strong mixing processes the jumps equal the lengths of clusters of exceedances.
For further background we refer to Leadbetter et al. (1983), Rootzén (1988) or Embrechts
et al. (1997, Section 8.1). For the ARCH(1) process it was convenient to investigate first the
squared process. This is not the case for our model since we have a completely different structure
due to the autoregressive part of (X,)nen. Nevertheless, only for the squared process (X2),en
a comparison with results in the ARCH(1) case (see de Haan et al. (1989)) is possible. The

following theorem collects our results.

Theorem 2.3.5 (a) Suppose (Xp)nen is given by equation (1.1) with (¢n)nen satisfying the
general conditions (1.2) and (D.1)—(D.3) with parameters o and A satisfying (2.2) and Xy ~ pu.
Then

lim P*(n~"* max X; <z)=exp(—clz "), x>0, (3.24)

n—00 1<j<n
where P* denotes the law for (Xp)nen when Xy starts with the distribution p, k solves the
equation E(|a+ Xel®) =1, ¢ is defined by (2.45) and
0o k
0=k /1 P(sup H(oz +Vei) <y Hyldy.

k2121

For x € R, let Ny, be the point process of exceedances of the threshold u, = nt/fg by X1,..., X,
given by (3.23). Then

—K

where N is a compound Poisson process with intensity cOx ™" and cluster probabilities

0, — 0
wkz%, keN, (3.25)

where

0 J
O = K / P(#{j > 1| H(Oz-l— Ve) >y Y =k—-1)y *ldy, keN.
! i=1
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In particular, 61 = 6.

(b) Let (Xp)nen be the AR(1) process with ARCH(1) errors in (a) and (X2)nen the squared

process. Then

lim P*(n~%* max XJ2 < z) =exp(—2e0Pz75/%) >0, (3.26)

n—+00 1<5<n

where k,c are the same constants as in (a) and
A e b "
o = = / P(sup H(a + V)2 <y Ny i ldy.
1

2
k>1;24

Forx e R, let NT(LQ) be the point process of exceedances of the threshold u, = n*/*z by X2, X2,
Then

ol =k ke, (3.27)
where

o J
o) = g / P#{ > 1 [[(a+ VX)) >y} =k = 1)y >"'dy, keN.
1 i=1

In particular, 9%2) =92,

Remark 2.3.6 (a) Theorem 2.3.5 is a generalisation of the result of de Haan et al. (1989) in
the ARCH(1) case (i.e. @ = 0). They use a different approach which does not extend to the

general case because of the autoregressive part of (X, )nen.
(b) Note that for the squared process one can describe the extremal index and the cluster
probabilities by the random walk (S),)nen, namely

9}?:%/ P#{j>1|S;> -z} =k—1)e 2"dz, keN.
0

The description of the extremal behaviour of (X2),cn by the random walk (S,)nen is to be
expected since by Lemma 2.3.1 and Remark 2.3.2 the process (Z,)nen = (In(X2)),en behaves
above a high threshold asymptotically like (S, )nen. Unfortunately, this link fails for (X),)nen

. Another possibility for proving statement (b) is to follow the work of Hooghiemstra and
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Meester (1995) using the regenerative structure of (Z,)nen, Lemma 2.3.1, Remark 2.3.2(b) and
Corollary 2.3.4.

(c) Analogous to de Haan et al. (1989) we may construct “estimators” for the extremal indices

02) and 0,(62) of (X2),en, respectively, by

o _ 1 o
0 = N 2; 1{Sup1gjgm SU)S*ES/)Q}

and

N
1
0P = SN 1em 4, forkeN,
’ N; R AN o

where N denotes the number of simulated sample paths of (S, )nen, o)

/2 ATe i.i.d. exponential

random variables with intensity « and m is chosen large enough. These estimators can be studied
as in the case & = 0 and € ~ N(0,1) in de Haan et al. (1989). In particular,

92 _ p(2)
(6®(1— 6@)/N)1/2

is approximately N (0,1) distributed. Because of Remark 2.3.6(b) this approach is not possible

for (X,,)nen. We choose as “estimators” for 6 and 6y, for (X,,)nen

~ 1
b= N i1 1{5u91§j§m H{zl(a+ﬁa§i))g1/p,§i>} (3.28)
and
~ 1
b=~ lym | . frken, .
k N; {Zj=1 I{ngl(a+ﬁ€l(l))>1/P;$1)}7k 1} r ( )

where N denotes the number of simulated paths of ([T} (@ + VA &;))nen, P are i.i.d. Pareto-
distributed random variables with intensity «, i.e. with distribution function G(z) =1 — 2",
z >0, and m is large enough. These are suggestive estimators since [[}_;(a + vXg) — 0 a.s.

as n. — oo because of assumption (2.2).

(d) Note that the extremal index 6 of (X, )nen is not symmetric in the parameter « (see Ta-
ble 2.4). This observation is intuitively obvious since for @ > 0 the clustering is stronger by the

autoregressive part than for a < 0.
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Threshold
119.00 25.40 19.10 13.80 11.20 9.29 7.57 6.40 5.32 4.75 3.51 2.63

A,

0.40

0.35

0.30

theta (167 blocks of size 60)

0.25

0.20

5 9 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 105 113 121 129 137 145 153 161
K

Figure 2.4: Estimated extremal index of a simulated sample path of (X5 )o<n<10000 With parameters a = 0.8, =
1,A=0.6 and € ~ N(0,1) using the blocks method for the data (see Embrechts et al. (1997), Section 8.1) . The
length of a block is chosen as 60. The solid line is the numerically computed extremal index using (3.28), see also

Table 2.4.

a A 02 0.4 0.6 0.8 1.0 1.2 1.5 20 25 3.0 35

—-1.2 - 0.001 0.001 0.003 0.004 0.001 0.000 - - - -
-1 0.15 0.19 019 016 013 0.09 0.05 0.01 - - -
-0.8 || 0.56 047 041 034 026 0.21 0.13 0.05 0.01 - -
-0.6 || 0.86 071 061 050 041 033 0.22 0.10 0.03 0.00 -
—-04 1096 0.8 071 0.60 0.50 040 030 0.14 0.06 0.01 -
-0.2 || 098 0.8 077 065 056 047 033 0.18 0.07 0.02 0.00
0 098 0.89 078 065 055 045 033 0.18 0.08 0.02 0.00
0.2 094 0.82 0.72 061 052 043 032 0.18 0.07 0.02 0.00
04 108 072 0.63 053 045 037 028 0.13 0.06 0.01 -
0.6 0.68 0.55 048 041 035 029 021 0.10 0.03 0.00 -
0.8 039 034 032 027 022 019 012 0.06 0.01 - -
1.0 | 0.09 014 013 013 011 008 0.04 0.01 - - -
1.2 - 0.000 0.001 0.003 0.004 0.001 0.000 - - - -

Table 2.4: “Estimated” extremal index 6 of (X,),en in the case € ~ N(0,1). We chose N = m = 2000. Note that

the extremal index decreases as |a| increases and that we have no symmetry in .
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Figure 2.5: Simulated sample path of (X, ).en with parameters o = 0.8,8 = 1, A = 0.2 (top, left), of (X2)nen
with the same parameters (top, right), of (X,)neny with parameters @« = —0.8,3 = 1, A = 0.2 (middle, left), of
(X2),en with the same parameters (middle, right), of (X,)nen with parameters & = 0,3 = 1, A = 0.2 (bottom,
left) and of (X2)nen with the same parameters (bottom,right) in the case ¢ ~ N(0,1). All simulations are based

on the same simulated noise sequence (£, )nen-
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|| Al o2 0.4 0.6 0.8 1.0 1.2 1.5 20 25 3.0 35
0 095 080 065 052 041 031 022 0.11 0.04 0.01 0.00
0.2 094 077 062 049 038 031 022 0.10 0.04 0.01 0.00
0.4 0.84 067 055 043 035 026 019 0.08 0.03 0.01 -
0.6 0.67 052 041 034 025 018 0.14 0.06 0.02 0.00 -
0.8 038 031 026 020 016 013 0.08 0.03 0.00 - -
1.0 0.09 0.12 011 010 0.07 005 0.03 0.01 - - -
1.2 - 0.000 0.001 0.001 0.000 0.000 0.000 - - - -

Table 2.5: “Estimated” extremal index 6® of (X2),en dependent on |a| and A in the case € ~ N(0,1). We chose

N = m = 2000. Note that the extremal index decreases as |a| increases.

2.3.3 Proof of Theorem 2.3.5

The proof of Theorem 2.3.5 will be an application of results in Perfekt (1994) (see also Ap-
pendix A3). In order to apply these results we need to check the assumptions in Theorem A3.1
and A3.2. The next lemma provides a technical property for the squared AR(1) process with
ARCH(1) errors (X2),en. It is the most restrictive assumption in Perfekt (1994).

Lemma 2.3.7 Let (pp)nen be an increasing sequence such that
Pn

— —0 and 7717(\/%)

—0 asn— oo, (3.30)
n bn

where v is the mizing function of (X, )nen, i.e. for any m € N
¥(m) =sup{|P(ANB)—-P(A)P(B)| : A€co(X;,1<j<k),Beo(X;,j>k+m), keN}.

2/k

Then for u, = n*/*x

lim limsup P( max X7 > uy, | XZ > uy,) = 0. (3.31)
P20 nyoo  PSiSPn ?

Remark 2.3.8 (a) The strong mixing condition is a property of the underlying o—field of a
process. Hence 1 is also the mixing function of (X2),en and (Z,)nen and we may work in all
these cases with the same sequence (p,)nen - Note that because of Theorem 2.2.3(b) there exist
constants n € (0,1) and ¢ > 0 such that y(m) < ¢p™ for any m € N.

(b) In the case of a strong mixing process, conditions (3.30) are sufficient to guarantee that

(Pn)nen is a A(uy,)-separating sequence. This is a straightforward consequence of the fact that
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a A 0 T Ty T3 Ty 5 T

0 020974 0973 0.027 0.000 0.000 0.000 0.000
0 0.40.889 0.895 0.088 0.013 0.003 0.001 0.000
0 0.6 0781 0.799 0.147 0.036 0.012 0.005 0.001
0 080664 0.702 0.175 0.087 0.013 0.011 0.009

0 1 {0549 0.607 0.188 0.107 0.036 0.034 0.017
-04 0.2 0962 0.962 0.037 0.001 0.000 0.000 0.000
04 0.20.85 0867 0.103 0.026 0.002 0.002 0.000
-0.4 0.4 ]0.837 0.860 0.110 0.024 0.006 0.001 0.000
04 040717 0734 0.18 0.048 0.018 0.009 0.001
-04 0.6 | 0.715 0.747 0.168 0.048 0.026 0.006 0.002
04 0.6 0624 0.676 0.182 0.066 0.040 0.019 0.012
-0.4 0.8 10595 0.623 0.220 0.097 0.018 0.016 0.014
04 0.80539 0611 0.167 0.111 0.045 0.036 0.018
-04 1 ]0497 0.540 0.210 0.115 0.075 0.040 0.004
04 1 |0445 0.533 0.185 0.080 0.109 0.032 0.017
-0.8 0.2 10572 0.626 0.185 0.111 0.026 0.033 0.001
0.8 02038 0470 0.172 0.148 0.062 0.068 0.006
-0.8 0.4 10488 0.559 0.193 0.107 0.067 0.020 0.016
0.8 0.4 0331 0429 0.184 0.099 0.066 0.62 0.057
-0.8 0.6 | 0.414 0.520 0.159 0.134 0.072 0.043 0.016
0.8 0.6 0314 0443 0.156 0.110 0.087 0.073 0.041
-0.8 0.8 10338 0.392 0.219 0.130 0.090 0.053 0.030
0.8 0.80.266 0358 0.158 0.132 0.140 0.068 0.000
-0.8 1 10273 0429 0.137 0.126 0.106 0.016 0.012
08 1 (0224 0346 0.132 0.114 0.129 0.045 0.004

Table 2.6: “Estimated” extremal index 6 and cluster probabilities (7x)1<k<6 0f (Xn)nen dependent on a and A
in the case £ ~ N(0,1). We chose N = m = 2000. Note that the extremal index for o > 0 is much larger than for
a < 0.
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o] A 0 T Ty T3 Ty s g

0.2 10954 0959 0.037 0.004 0.000 0.000 0.000
0.4 0.803 0.819 0.137 0.029 0.014 0.001 0.000
0.6 | 0.651 0.682 0.186 0.092 0.018 0.010 0.008
0.8 10.521 0.578 0.215 0.103 0.036 0.027 0.019

1 {0406 0455 0.233 0.135 0.064 0.044 0.023
04 0.2]0844 0.853 0.122 0.018 0.004 0.002 0.001
04 0.4 0664 0.686 0.203 0.069 0.026 0.008 0.004
0.4 0.6 | 0.553 0.610 0.201 0.095 0.054 0.015 0.008
0.4 0.8 1]0423 0.506 0.219 0.084 0.074 0.028 0.023
04 1 ]0342 0431 0.216 0.107 0.066 0.045 0.023
0.8 0.2]0378 0445 0.184 0.159 0.071 0.057 0.011
0.8 0.4 10309 0423 0.143 0.131 0.097 0.060 0.018
0.8 0.6 | 0255 0.328 0.202 0.145 0.088 0.012 0.045
0.8 0.8 ]0.208 0.301 0.186 0.092 0.077 0.077 0.048
0.8 1 ]0.152 0.237 0.178 0.099 0.092 0.053 0.010

o o o o O

Table 2.7: “Estimated” extremal index #® and cluster probabilities (7r,(c2))1§k§6 of (X2)nen dependent on o and

A in the case € ~ N(0,1). We chose N = m = 2000.
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o({X; <up}, 1 <3 <k)Co(X;,1 <5 <k), o({Xj Sunkyj 2 1ln+k) Co(Xy, 5 21y +Fk)
and choosing additionally I,, = /p, . The notion of a A(u,)—separating sequence was first
introduced by O’Brian (1989) and describes somehow the interval length needed to accomplish
asymptotic independence of extremal events over a high level u, in separate intervals. For a
definition see also Perfekt (1994). Note that (p,)nen is in the case of a strong mixing process

independent of (uy,)nen.

Proof. Note that

P(pg;%);n X; >u, | X3 >u,) = P(r <p, pg;%);n X; > up | X3 > uy)
+ P(p <71 < pp, jmax X]2 > Uy | X2 > uy)
+ P(11 > pn, e X3 > un | X3 > un)
= L + 1, + I3, (3.32)

where 71 = inf{j > 1|Xj2 < e’} Le {j >1|Z; <a} = N, as in Lemma 2.3.1 and Corollary
2.3.4. In order to get upper bounds of I, Is and I3 we show first that there exist constants C' > 0

and N € N such that for any n > N, z € [e™",e%] and k € N
nP(X2>u, | XZ =1z) < C. (3.33)

Assume that (3.33) does not hold. Choose C, N > 0 arbitrary and n > 0 small. Because of
the continuity of the transition probability (i.e. equicontinuity on compact sets) , there exist

n>N,z€le " e,k € Nand § =d(n) > 0 such that for any y € (z — 0,z + ) N[e ", e"]
nP(X?>u, | Xg =y) > C—1. (3.34)
Let Fy»> denote the stationary distribution function of (X2),en. By Theorem 2.2.3 we have that

lim nFy2(uy) =2cz "2, (3.35)

n— 00

where ¢ is given by the formula in (2.45) and & is the solution of (2.18). Furthermore, by (3.34)

we have
nFxa(un) = / 0 P(XE > up | X2 = y)dFya(y)
(700700)

> / 0 P(XE > un| X2 = y)dFy(y)
(z—d,z+d)N[e~",e]

(C—n) P(Xg E(x—dz+d) N " e)

\%

Y



where D := inf, (g e (Fx2 (2 + 0)

arbitrary this is a contradiction to (3.35).

Now we estimate (3.32).

p—1
< =
I < ZP(Tl lpg;zé}; X > Uy, Xo >un>
p—1 pn
< 3> P(n=b X > un | X > )
I=1 j—l+1

= Z zn: (1{7.1 l}PX >Un|Xl ‘Xo >un)

=1 j=l+1
p—1 pn

-y E(l{ﬁ:l} Lixzseny P(X? > uy | XP) ‘Xg > un)

1=1 j=I+1

V4 n
+ Y E(l{n:l} Lx2ee ) P(X2 > un | X7) \Xg > un)

1=1 j=I+1
= Ji + Jo.

Furthermore, by (3.33),

since p, = o(n). Similarly, with B; := {X? > ¢,

Io< zz "B (1) Lxese ny n PX > | XP) | X3 > )

=1 j= l—|—1
p—1 pn
C

> 0 TE(Lney Lxzseny
=1 j=I+1
Pn

C
Y =P(n <p| X5 > up)
="
obn

n

IN

X3 > un>

IN

IN

—- 0, as n— oo,

we obtain

Jo

<

p—1 pn

> B(lpmy xzcen)

=1 j=l+1
p—1 pn

% E(lB, P(X?<e™|X2 ) ‘Xo >un)
=1 j=l+1

pzl i E(lBlP((aXl_l+,/5+AX1271@)2

=1 j=l+1

Xg > un>

W XP >e"} forany | =2,3,4, ...

BIEE
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— Fx2(2z)) > 0 because Fx» is continuous. Since C' > 0 is

(3.36)

(3.37)

and By =

Q,
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— & —e2/X,_ —« e 2/X, 1 —«
5 30 (v o P TRy
=1 j=I+1 BIX[ 1+ A BIX[  +A

P n -n/2/x _pn/2
e -1+« e X 1+«
+Z Z FE 1Blﬂ{Xl—1<0}P< / ! <g < / L )‘Xg>un

=1 j=i+1 BIXE+ A BIX? |+
—l Pn —e—n/2-a/2 _ e—n/2—a/2 _
Z > E(le{Xl >0} ( <6;<—>‘X§>un
=1 j=l+1 \/X \/X
p—1 pn —n/2—a/2 —n/2—a/2
—e + « e +« 9
-l—; _2: E (1B10{X,_1<0} P( I <é&< T> ‘Xo > “n)
=1 j=I+1
2 const pp, e "/2/?

0, as n— oo,

and therefore with (3.37) I; — 0 as n — oo.

Now we estimate limsup,,_,., I3. Note first that by the Markov inequality

P( max S ) ZP(eZSJM > e_%z>

p<j<pn

n

= ZP(ﬁ ( Beo + >\5m)2 _ 2a\/_efa/26m1{5m<0})n/4 . e*%z)

1=p m=1

) J
< eﬂZE(((oz—i— Be=@+ Xei)® —2a ﬁe_a/2811{51<0}> / )
j=p
K pn ]
< S, (3.38)

/4
where 1 < 1 such that E(((a—i— Bet+ \ey)? — 204\/_6*“/2811{51@})” ) < n for a large
enough. This is possible because of (2.2) which implies that E(ja+v/Ae;[*) < 1 for allu € (0, &)

and the fact that

E(((a—i—

4
Bexp(—a) 4+ Aer)? — 2a ﬁe*“/2611{51<0}>n/ ) — E(|a + \/X81|”/2> , a4 — 00

by the dominated convergence theorem. Thus from Theorem 2.2.3, Lemma 2.3.1, (3.38) and a

large enough,

limsupls < limsup P(N, > pp, gnzix Zy + S;-L’a > Inuy, | Zg > Inuy,)

n— 00 n—00 S)SPn

< limsup P( max Zy + S > Inuy | Zg > Inwuy,)

o n— 00 p<j<pn

o0
lim su P( max S"%> —2)2e 5%dy 3.39
n—)oop/()v (sz'Spn J )2 ( )



o7

00 p—1
2.7 2

-n

Finally, note that

I, < Pp<7<p, max X >, | X2 > u,) + P(p <7 < p,, max X >y | Xo > up)
T1<J3<pn p<j<T1

= K1 +K2.

Similarly as for I; and I3, respectively, we derive that

p—1
limsupK; =0 and limsupKsy = 2 il
n—00 n—00 1-— n
Now plugging all together and letting p — oo the statement follows. O

Corollary 2.3.9 Let (pp)nen be the same sequence as in Lemma 2.8.7. Then (pp)nen is also a

A(uy)—separating sequence for (Xp)nen, where u, = n'/%z and z € R arbitrary and

lim lim sup P( max X >up|Xo>uy) =0. (3.40)

PO pco p<j<pn

Proof. Because of Remark 2.3.8(a) and (b), it is straightforward that (p,)nen is a A(uy,) —separating

sequence for (X, ),cn. Note furthermore that

P(max<< X>u2 X2>U)
P X2 X PSISPn
(o X5 > un Xy > ) = p(X2>uz>

P(maxp<j<p Xj > Up, Xg > Un)
<j<pn ~1p X; > up | Xp >
2 TP(Xy > )+ P(Xo < —uy) 2L max un | Xo > tn)

and hence the statement follows using Lemma 2.3.7. O

Now we are finally able to prove Theorem 2.3.5.

Proof of Theorem 2.3.5. The proof is an application of Theorem A3.2. We prove only
statement (a), statement (b) follows along the same lines using Theorem A3.1. As stated already
we may assume w.l.o.g. that (X,,),cn is stationary. Let € R be arbitrary. Note that

P(Xo > u+ tuz) oo , 14+1z<0

lim =
uoo P(Xo > u) (I+1iz)~ | 1+1lz>0

and

X,
lim P(ZL < 2| Xo=u)=Pla+Vie<uz).

uU— 00 u
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By Corollary 2.3.9 and the strong mixing property of (X, )nen all assumptions of Theorem A3.2
are fulfilled and we have that the extremal index @ is given by
J

o — /100 P#{ = 1| (J[(a + VAe)Yo > 1} = 0| Yo =) ky = dy

i=1

0 J
= [T Plnax([Tle+ Ve <y )my .
[ poma([L(e + VRe) <y sy

The cluster probabilities can be determined in the same way and hence the statement follows.

a

2.4 Conclusions

In this chapter we investigated the tail of the stationary distribution of the AR(1) process with
ARCH(1) errors (X,)nen. Our main tool was a Tauberian theorem. This approach is new as far
as we know. One might expect that the method may also be applied to other models than the
AR(1) model with ARCH(1) errors. Unfortunately, each model has to be studied individually
in the same way as in the case of the AR(1) process with ARCH(1) errors presented in this
chapter. Finally, the method does not seem to be very robust towards model changes.

After having determined the tail of the stationary distribution we studied the extremal
behaviour of (X}, ),en. Although there exist plenty of results concerning the extremal behaviour
of Markov chains, especially regenerative Markov chains, they are usually not very tractable.
Checking the assumptions is a tedious and often seems even an impossible task. However, in the
case of the AR(1) process with ARCH(1) errors this was possible. It appeared that the strong
mixing condition and the A(uy,)-separating sequence were crucial for the extremes of the process
(Xn)nen.

The notion of strong mixing and A(uy,)-separating sequence are not only known in extreme
value theory but also in other areas as for instance in the theory for sample autocovariance and
autocorrelation functions of heavy-tailed stationary processes (see Davis and Mikosch (1998)).
Davis and Mikosch showed that if the strong mixing condition, (3.40) in a multivariate form
and additionally a regular variation condition on the finite-dimensional distribution of the pro-
cess hold then the weak convergence of the point processes N, = 22:1 X, /an exists, where

X, = (Xj,...; Xjim) for some m > 0. Finally, under some additional restrictions, even joint con-
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vergence of the sample autocovariances and autocorrelations at different lags can be established.
In the case of infinite variance of (X, )nen, the limits of the sample autocorrelation function are
in general random. This is in contrast to infinite variance linear processes (see Davis and Resnick
(1985), (1986)). Since the assumptions are fulfilled for the ARCH(1) process one might expect
that they also hold for the AR(1) process with ARCH(1) errors which is simply an extension of
the first. This project is part of current research and some interesting results have already been

achieved. The work will be presented in a forthcoming paper.
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Chapter 3

Extreme Value Theory for Diffusion

Processes

Over the last decade a variety of stochastic models have been suggested as appropriate models
for financial products. In a continuous time setting the dynamics of an interest rate or price

process is often modelled as a diffusion process given by a stochastic differential equation (SDE)
dXt = /J,(Xt)dt-l-O'(Xt)th, t> 0, XU =T, (0].)

where W is standard Brownian motion, pu is the drift term and o is the diffusion coefficient or
volatility. Two standard models in finance are of the above form:

(i) The Black-Scholes model: (X;) models the price process of an asset, here p(z) = px
and the volatility o(2) = ox. The resulting model for the price process is geometric Brownian
motion.

(ii) The Vasicek model: the process (X;) models an interest rate, the drift term fx is linear
and the volatility ¢ > 0 is some constant.

Both models can be considered in the framework of Gaussian models. It has been recognised
for decades that financial data like interest rates and asset prices exhibit fluctuations which
cannot be modelled by Gaussian processes or simple transformations as in the two standard
models above.

There are two features, heavy-tailedness and the dependence structure, that require mod-
elling for financial data. Various models have been suggested to capture these features. For a
discussion of non-linear heavy-tailed models and further references we refer to Section 7.6 of

Embrechts, Kliippelberg and Mikosch (1997). There are in principle two different approaches.

61
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A first concept replaces the Gaussian driving process in the Black-Scholes or Vasicek model
(or any other traditional model) by a process with heavy-tailed marginals as for instance a
stable process, a Lévy process or a discrete time counterpart as an ARMA (autoregressive-
moving average) process with heavy-tailed noise (see e.g. Barndorff-Nielsen (1995), Eberlein
and Keller (1995), Kliippelberg and Mikosch (1996), Mittnik and Rachev (1997)).

The second concept sticks to Brownian motion as the driving dynamic of the process, but
introduces a path-dependent, time-dependent or even stochastic volatility into the model. These
models are commonly referred to as volatility models, and include diffusions given by the
SDE (0.1). Hence this paper is about such models. Discrete time counterparts are for instance
(G)ARCH models and extensions, which have been successfully applied in econometrics. The
extremal behaviour of the AR(1) process with ARCH(1) errors has been studied in Chapter 2
and is an interesting complement to the present paper.

In this chapter we study the extremal behaviour of diffusion processes defined by (0.1).
The stationary distributions of the processes under investigation are well-known and one might
expect that they influence the extremal behaviour of the process in some way. This is however not
the case: for any pre-determined stationary distribution the process can exhibit quite different
behaviour in its extremes.

Extremal behaviour of a stochastic process (X;) is for instance manifested in the asymptotic
behaviour of the maxima

MY = max X, t>0. (0.2)
757

The asymptotic distribution of M/ for ¢+ — 0o has been studied by various authors, see Davis
(1982) for detailed references. Two monographs on this and related problems are by Leadbetter,
Lindgren and Rootzén (1983) and Berman (1992). It is remarkable that running maxima and
minima of (X}) are asymptotically independent and have the same behaviour as the extremes
of i.i.d. random variables. In this chapter we restrict ourselves to the investigation of maxima,
the mathematical treatment for minima being similar.

We furthermore investigate the point process of upcrossings (more precisely e-upcrossings)
of a high threshold u by (X}). For fixed ¢ > 0 the process has an e-upcrossing at t if it has
remained below u on the interval (¢t — ¢,¢) and is equal to u at . Under weak conditions, the
point process of e-upcrossings, properly scaled in time and space, converges in distribution to a

homogeneous Poisson process , i.e. it behaves again like i.i.d. random variables, coming however
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not from the stationary distribution of (X;), but from the distribution function F which also

describes the maxima M;* (see Theorem 3.2.4).

3.1 The usual conditions

The diffusion (X;) given by the SDE (0.1) has state space (I,7) C R, where [, can be —o0
or +00. We only consider the case when the boundaries [ and r are inaccessible and (X;) is
recurrent. We require furthermore that, for all = € (I,7), 0?(x) > 0 and there exists some £ > 0
such that | ;_Jf(l + (1)) /o%(t)dt < co. These two conditions guarantee in particular that the
SDE (0.1) has a weak solution which is unique in probability (see Karatzas and Shreve (1988),
Chapter 5.5.C).

Associated with the diffusion is the scale function s and the speed measure m. The scale

function is defined as

s(x) :/;exp{—Q/zy :2(8)dt} dy, we(l,r), (1.1)

where z is any interior point of (I,r). Since the scale function is unique only up to a positive

affine transformation (if 5(z) = as(x) +  for some a > 0 and € R, then § is a scale function
if and only if s is), in a first order approximation, the choice of z is of no importance. The scale
function s defines in the usual way a measure on ([,r), the so-called scale measure, which is
absolutely continuous with Lebesgue density

S () =exp{—2/; :2(3)dt} Cme(r). (1.2)

For the speed measure m we know that m(I) > 0 for every non-empty open subinterval I of

the interior of (I,7). We only consider diffusions with finite speed measure m and denote its
total mass by |m| = m((l,r)). The speed measure of model (0.1) is absolutely continuous with

Lebesgue density

m(az)zm, z e (l,r). (1.3)

In this situation (X;) is ergodic and its stationary distribution is absolutely continuous with

Lebesgue density

W) = m' () /Im] (L4)
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Notice that the connection between stationary distribution, speed measure, scale function, drift
term and diffusion coefficient (given by (1.1)-(1.4)) allows us to construct diffusions with arbi-
trary stationary distribution (see Examples 3.3.4 and the generalised inverse Gaussian diffusion
of Section 3.4) .

Since the process is recurrent and the boundaries [ and r are inaccessible, we must have
s(u) = oo as u T r and s(u) - —oo as u | [. Conversely, if s(u) — oo (resp. —oo) as u 1 r (resp.
u } 1), then [ and r are inaccessible, and therefore (X;) is recurrent.

For proofs of the above relations and further results on diffusions we refer to the monographs
by Karlin and Taylor (1981), Karatzas and Shreve (1987), Rogers and Williams (1987), Revuz
and Yor (1991) or any other advanced textbook on stochastic processes.

Throughout this paper, we assume that the diffusion process (X;) defined in (0.1) satisfies

the usual conditions:

s(r) =—s(l) = o,
" |(m)|<oo. (1.5)

3.2 Extremal behaviour of diffusions

The following formulation can be found in Davis (1982).

Proposition 3.2.1 Let (X;) satisfy the usual conditions (1.5). Then for any initial value Xy =

y € (I,r) and any u T 7,
lim |PY(M;" < u) — Fl(u)| =0, (2.1)
t—o00
where F is a distribution function, defined by
F(z) = 6_1/(‘m‘5(’”))1(z,r)(m) , z€R, (2.2)

for any z € (I,r). (14 denotes the indicator function of A.) The function s and the quantity |m|

also depend on the choice of z. O

Various proofs of this result exist and we refer to Davis (1982) for further references. Davis’
proof is based on a representation of such a diffusion as an Ornstein-Uhlenbeck process after a
random time-change . Standard techniques for extremes of Gaussian processes apply leading to

the above result.
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It is not difficult to show that Proposition 3.2.1 is true for arbitrary initial probability measure
H. For the special choice of H = m/|m| the diffusion (X}) is stationary.

As a consequence of Proposition 3.2.1, the maxima M have, properly normalised, a non-
degenerate limit distribution @ if and only if ' belongs to the maximum domain of attraction of
Q (we write MDA(Q)) for some extreme value distribution ) . In Proposition 3.2.1, any function
uy T 7 is possible, but as usual in classical extreme value theory we restrict ourselves to positive

affine functions, i.e.
up = apx + by . (2.3)

The norming constants a; > 0 and b; € R have to be chosen appropriately to ensure convergence
to a non-degenerate limit.

The extremal behaviour (in particular the behaviour of the maximum) of an i.i.d. sequence
with common distribution function F is determined by the far end of the right tail ¥ =1 — F.
In our situation the asymptotic behaviour of the maxima M;X is determined by the tail of F as

n (2.2): If F € MDA(Q) with norming constants a; > 0 and b; € R, then
at_l(MtX—bt)iQ, t— 0. (2.4)

As already noted the scale and speed measure of a diffusion (X;) are not unique. Different scale
and speed measures (and therefore different z) lead to different distribution function’s F' in

Proposition 3.2.1. They are however all tail-equivalent.

Corollary 3.2.2 Under the conditions of Proposition 3.2.1 the tail of the distribution function
F in (2.2) satisfies

@ -1
Fo)~ (ol [ Swdy)  ~ (olsta) ™, w1, 2.5)
where ~ means that the quotient of lhs and rhs converges to 1.

Proof. The representation of (2.5) follows immediately by Taylor expansion from (2.2) and the
fact that s(z) = oo as ¢ 1T r.

We show that the rhs is for different z asymptotically equivalent, and thus independent of
z € (I,r). Let z1,29 € (I,r) and z; # z9. Denote s;,m, and |m;| the functions and constants

corresponding to z; for i = 1,2. Then from (1.1) we obtain

s1(x) = a+ Bsa(z),



66 CHAPTER 3.2. EXTREMAL BEHAVIOUR OF DIFFUSIONS

where a and 3 are constants depending on z; and z9. Furthermore, from (1.3) we obtain

! = 2 = 2 = lm' x).
™) = e - A@pnE  p
Hence |mq| = |ms|/B and
F(a) ~ (jmalsi ()" = (|m2|(5 +32(x)>) ~ (malsa(@) L, ztr,
since limgy, s2(z) = o0o. O

Proposition 3.2.1 reduces the asymptotic behaviour of the maximum of (X;) to that of the
maximum of i.i.d. random variables with distribution function F' having tail (2.5). It would be
interesting to know more about the extremal behaviour of the corresponding diffusion (X;) than
just the behaviour of its maxima. From classical extreme value theory it is well-known that the
point process of exceedances of an i.i.d. sequence of a level u;, plotted at points i/t, converges
to a homogeneous Poisson process for u; T r as ¢t 1 oo in an appropriate way. Extremes of a
continuous time stochastic process over a high threshold u; typically occur on intervals and form
excursions over this level. However, an analogous discrete skeleton which describes the behaviour
of the extremes of a continuous time stochastic process is provided by a point process of the
upcrossings (i.e. the events where excursions above a level begin). This is quite natural and
upcrossings are well-defined if the sample paths of the corresponding process are regular (i.e.
differentiable in the L?-sense). In cases with irregular sample paths there can be infinitely many
upcrossings on a finite interval.

To avoid such problems special upcrossings, namely e-uprossings, are considered. We use
the definition given by Pickands (1969) for continuous processes. We also refer to Leadbetter,

Lindgren and Rootzén (1983), Chapter 12, for more mathematical background.

Definition 3.2.3 Let (X;) be a diffusion satisfying the usual conditions (1.5). Take € > 0.
(a) The process (X¢) is said to have an e—upcrossing of the level u at ¢y if Xy < u fort € (to—¢, to)
and Xy, = u.

(b) Let N, (t) denote the number of e-upcrossings of u by (Xs)o<s<¢. Then for any t > 0,

. s
N (B) = N., (tB) = #{e-upcrossings of u; by (Xs)o<s<t : n € B}

is the time—normalised point process of e-upcrossings on the Borel sets B of (0,1] . O

The point process (IN;) has a point at ¢y if (X;)o<s<; has an e-upcrossing at tot. e-upcrossings

of a continuous time process correspond to exceedances of an i.i.d. sequence. It is well-known
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Figure 3.1: Sample path of a diffusion with threshold v = 3.8. For the values of ¢ = 3.2, 1.2, 0.8, 0.4 we get
6, 7, 10, 14 e—upcrossings, respectively. The number of e—upcrossings depends crucially on £. The dependence

only disappears in the limit.

that for a sequence (X;) of i.i.d. random variables, all with distribution function F', the point
processes (N;) of exceedances converge to a homogeneous Poisson process with intensity T,

provided the u; are appropriately chosen, namely such that

tF(u) = 7 € (0,00), t— 00. (2.6)
Recall from (2.4) that for the choice of u; = ayz + by:
P (MtX < aix + bt) = Fllax+b) = Qz)=e, zcR. (2.7)

Taking logarithms in (2.7) shows that (2.6) is equivalent to (2.7). Convergence of the point
processes of exceedances to a Poisson process also holds for more general sequences (X;) if
the dependence structure is nice enough to prevent clustering of the extremes in the limit. For
diffusions (0.1) the dependence structure of the extremes is such that the point processes of e-
upcrossings converge to a homogeneous Poisson process, however, the intensity is not determined
by the stationary distribution function H , but by the distribution function F' from Proposi-
tion 3.2.1. This means that the e-upcrossings of (X;) are likely to behave as the exceedances of
i.i.d. random variables with distribution function F'.

The extra condition (2.10) of the following theorem relates the scale function s and speed

measure m of (X;) to the corresponding quantities s,, and m,, of the standard Ornstein-
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Uhlenbeck process, defined by
x b
Sou(x) = \/271'/ e’/2dt  and ml,(z) =1/s,(z), =z€eR. (2.8)
0

Theorem 3.2.4 Let (X;) satisfy the usual conditions (1.5) and u; T r such that

t

tlrglom:TE(O,oo). (2.9)

Assume there exists some positive constant ¢ such that

Mo (Sou (5(2))) 5'(2)
Sou(50u (5(2))) m'(2)

>c, Vze(lr). (2.10)

Then for all starting points y € (I,r) of (X¢) and € > 0 the time-normalised point processes (N;°)
of e-upcrossings of the level u; converge in distribution to N ast 1 oo, where N is a homogeneous

Poisson process with intensity 7 on (0, 1].

Remark 3.2.5 (a) Notice from Corollary 3.2.2 that tF(u;) ~ t/(|m|s(u;)). Hence, if u; =
arr + by and 7 = —InQ(z), then condition (2.9) guarantees that F' belongs to some maximum
domain of attraction.

(b) Pickands (1969) proved that the point processes of e-upcrossings converge to a homogeneous
Poisson process in the case when (X;) is a Gaussian process. Notice that the assumptions of
Theorem 3.2.4 are particular satisfied for the Ornstein-Uhlenbeck process with ¢ = 1.

(c) Examples which satisfy condition (2.10) are the Vasicek model, the Cox-Ingersoll-Ross model
or the generalised Cox-Ingersoll-Ross model for v # 1. All these models are presented in Sec-
tion 4. Nevertheless not every diffusion satisfies the assumptions in Theorem 3.2.4. Lemma 3.2.6
indicates that for the generalised inverse Gaussian diffusion with x > 0,4 > 0 and v > 1.5 or

v < 0.5 the assertion of Theorem 3.2.4 may not hold.

Proof. The proof invokes a random time change argument. An application of Theorem 12.4.2
of Leadbetter et al. (1983) shows that the theorem holds for the standard Ornstein-Uhlenbeck
(Oy) process. Denote by

Zy=50u(0r), t>0,

the Ornstein-Uhlenbeck process in natural scale. Now define

th:S(Xt)a t>0,
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which is again a diffusion process in natural scale. (Y;) can then be considered as a random time

change of the process (Z;), i.e.
Yi=27, a.s. (2.11)

The random time 7; has a representation via the local time of the process Y. This is a conse-
quence of the Dambis-Dubins-Schwarz Theorem (Revuz and Yor (1991), Theorem 1.6, p.173),
Theorem 47.1 of Rogers and Williams (1987), p.277 and Exercise 1.27 of Revuz and Yor (1991),
p.226. For z € (I,r) denote L;(z) the local time of (Y;)p<s<; in z. Then

= / " L@ dmo(sy) (2)

e (s () ST E)
— /_OOLtUS,W(S&}(z)) e ()
il (55 (V) §(s7(Y2)

=y sl (V) m v
_ tm;u(s;ul(s(Xs))) SI(XS) s
T o (s sy M) P2

where we used the occupation time formula (cf. Revuz and Yor (1991), p.215) . Notice also that

7; is continuous and strictly increasing. Under condition (2.10) we obtain
Ty —Tpe >ce, t>0. (2.12)

Moreover, It6 and McKean (1974), p. 228 proved the following ergodic theorem

1 1
oas o o (2.13)
t [ m|
Wlog we assume |m| =1 in the following.
According to Theorem 4.7 of Kallenberg (1983) it suffices to show for any y € (I, r)
Jim PY(NE, (1) = 0) = P(N(U) = 0), (2.14)
where U is an arbitrary union of semi-open intervals, and
limsupEy(me(t(a, b))) < E(N((a,b])) < oo, for every (a,b] C (0,1]. (2.15)

t—o00
By definition of the processes O, Z, X and Y, setting v; = s(w), z = s(y), wy = 55, (v;) and

x = 5,1(2), we have for k > 1,

PY(NX (t(a,b]) > k)

£,ut
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= P(#{e-upcrossings ofu; by X, ,v € t(a,b]} > k| Xy =y)

(
= P(#{e-upcrossings of v, by Y, ,v € t(a,b]} > k|Yy = 2)
= P({3v,...,vp €t(a,b]:Vi=1,... k.Y, <uyVwv € (v —e,i;) and Y,, = v } | Yy = 2)
= P({3In,,....7, € (Tta, ™) :Vi=1,...,k,Z, <vVu € (1,_¢,7,) and Zr, = HZo = 2)
< P{Iruseeos Ty € (Ta,mp] 1 Vi=1,... Kk, Zy <vp Yu € (1, — cg,7,) and Zr, = v } | Zy = 2)
= P(#{ce-upcrossings of v, by Z,, ,u € (10, 7|} > k| Zo = 2) (2.16)
(

= P(#{ce-upcrossings ofs;u1 (v¢) by s;ul(Zu) U € (Tia, Twn)} > K | s;ul(Zg) = sgl(z))

U

= P*(N2 . ((T1a, 1)) > k).

CE Wt

The inequality is a consequence of (2.12). Note, since all transformations are strictly monotone
and continuous, when we start with (a,b], then we get again an interval (7,, 7). Furthermore,

we know already that the theorem holds for the OU-process O. We show that for all £ > 0,

limsup |P*(N2 ,, ((Tia, 7)) > k) = P*(N2 ,,, ((ta, tb] > k)| =0, =z €R,

ce, Wt
t—o00

equivalently, for all & > 0,

limsup |P*(NZ,, (Tta,7])) < k) — P*(NZ,,,,((ta,th] < k)| =0, =z €R, (2.17)

cE, Wi
t—00

For any 0 < 0 < 1, define
Ay = {|1a — ta] < d0ta,|myp —tb] < 5tb}, t>0.
By the triangular inequality , the lhs of (2.17) is bounded by

lim sup |[P*(N,,, ((71as 7)) < by A¢) = PE(N, ((ta, b)) < b, Ay)|

ce,wt
t—o00

+2lim sup{ P*(|7¢a — ta| > 6ta) + P*(|1y — tb| > 6tb)} =: I +1Iy.

t—o00

Merely observed that Io=0 by (2.13).
Again by the triangular inequality and the fact that (744, 7] C ((1 — d)ta, (1 + 0)tb] in Ay,

L < limsup (P*(N2 ., ((Tas 7)) < K, A) — PH(NZ . (((1 = 8)ta, (1 + 0)tb)) < k, Ay))

oo ce,wi CE Wt
+limsup (P*(NQ ,, (ta, th]) < k, Ar) — P*(NQ.,,, (1 — )ta, (1 + 6)tb]) < k, A;))
t—o00

= Ji+ Js.
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Furthermore,
JI < h?isogp (Px(Nca wt((TtaaTtb]) < k Ata ce wt(((l - 6)taa (1 + 6)tb]) > k))
< liin sup (P*(NZ ,,, (1 = d)ta, (1 + 8)ta]) > 0) + P*(NQ,,(((1 — 8)tb, (1 + 8)tb]) > 0))
= limsup (P (N;((0,20a] > 0) + PH(N;((0,26b] > 0))
t—00

P(N((0,26a] > 0) + P(N((0,26b] > 0) < 2(1 — e 72%) |

where H is the stationary distribution and N} is the time-normalised point process of e-
upcrossings of the process O. We used that the Ornstein-Uhlenbeck process O has the strong
Markov property and is ergodic, and that the result holds for O.

Similar considerations yield the same upper bound for Jy and hence the lhs of (2.17) is bounded
by 4(1 — e 72%). Letting 0 | 0 we have proved (2.17) for all k& > 0, which yields together with
(2.16) and = = s, (s()).

limsup EY(NX, (t(a,b])) = hmsupZPy NZ,, (t(a,b]) > k)

£, Ut
t—00 t—00 k=1

< lemsupmvo (t(a,]) > k)

= ZP (a,0]) 2 k) = E(N((a,b])),

and therefore (2.15) holds. Now we check (2.14):
W.lLo.g. choose an arbitrary U of the form U = U?Zl(ai, b;] with disjoint intervals and a; < ag <

.. < aq. Then, by definition of the e-upcrossings,
d
lim PY(NZY,, (tU) =0) = lim PY({NZ,,(tU) = 0} 0 [({M%, 0,1y < te})

t—00 &5t t—00 .
=1

d
+ Jim PY(NZ, (t0) = 03 0 (M, ooy > )
i=1

d
— lim Py(ﬂ{Mt)[f”’bi] < ug})
=1

t— 00

d
. X X
+t11)123 Py({Ne,ut (tU) = 0} N LJl{M[tai’tai+E] > Ut})
1=
= K|+ K>5.

We show by induction that the rhs equals P(ﬂ?ZI{N((ai, b;]) = 0). Because of Proposition 3.2.1
and the fact that Ky = 0 (see below) this is true for d = 1. Now we may assume that

LN t— 00, (2.18)

Loy, <o Lz v (asbi=0yy
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and by the Markov property,

P

P(MG,, g <wilXi,) = e 7070400, (2.19)

tlag 7bd]

By Slutzki’s theorem, the product of the lhss of (2.18) and (2.19) converges in distribution to

the product of their rhss. Applying Theorem 5.2 of Billingsley (1968) we obtain

_ : X

K= lim Ey(1{ﬂf:_11{Mt)[(a.,b']<ut}}P(Mt[ad’bd} < ut] Xia,))
_ —T(b —aq)
= E(l{n HN(ab=0p® )

= ﬂ{N ai, bi]) = 0})e (b ea)

- ﬂ{N ((ai, bs]) = 0}) = P(N(U) = 0).

In the last step we used that a homogeneous Poisson process has independent increments. It

remains to show Ky = 0. With the same notation as before we have

d
Ky < lim PY({ME, 1o = w})

t— 00
i=1
d
= tlggo pe (M[tautaﬂrE] > ut)
=1
d
yA
= tlggo P (M[Ttal Tragre] 2 vt)
=1
d
< 2 tlgglo PZ(M[Tml Tras o] > Ut | Tra; — tai| < 0tai, |Tra; +e — ta;| < dta;)
1=
Z hm P?(|Tta; — tai| > 6ta;) + P?(|Tea, 4= — tai| > dta;)) .

Because of (2.13), the second and third term vanish. Again by ergodicy and Proposition 3.2.1,
K, < Z?Zl(l — 72704 Letting § | 0, Ko = 0 and we proved

lim PY(NX, (tU) =0) = P(N(U) =0). (2.20)

t—o0 €,ut

and hence (2.14). O
Theorem 3.2.4 describes the asymptotic behaviour of the number of e-upcrossings of a suitably
increasing level. In particular, on average there are 7 e-upcrossings of u; by (X;)o<s<; for large t.

Notice furthermore, that we get a Poisson process in the limit which is independent of the choice
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of € > 0. A visualisation of the Poisson approximation of Theorem 3.2.4 is shown in Figure 3.13
for the generalised inverse Gaussian diffusion.

The next lemma, provides a simple sufficient condition, only on scale function and speed
measure of (X;), for (2.10). By positivity and continuity, (2.10) holds automatically on compact

intervals. It remains to check this condition for z in a neighbourhood of r and I.

Lemma 3.2.6 Let (X;) satisfy the usual conditions (1.5). Assume furthermore that (2.9) holds

and that there exist c1,co € (0,00] such that

: ( ') m'(e)
41n(|s(2)))s(z) \s'(z)m'(z)  (m/(z))?

according as z T r or z | 1, then the assertion of Theorem 3.2.5 holds.

) —  c1 orc (2.21)

Proof. By 'Hospital ,
Sou(x) ~ g(x) = v27rex2/2/x, T — 00, (2.22)

and s, and g are unbounded and non-decreasing for all = large enough. Moreover, s,, and g

are inversely asymptotic , i.e. for all A > 1, there exists some x4(\) such that
Sou(z/A) < g(z) < sou(Az), Vo >x0(N).

This implies by Exercise 14 of Bingham, Goldie and Teugels (1987), Section 3.13, that

s, (z) ~ g (z) ~ V2Inz as £ — oo. Thus, by 'Hospital,
Qu( L (5(2) s'(z)  s"(= )/m( ) — 8'(2)m" (2)/ (m (2))”
S’OU(Soul(S(Z))) m!(2) ou(sou (s(2)))s'(2)
( )

2(sou z)m!(
) ( 0 ) | s
dln([s(z))s(2) \s'(z)m/(2)  (m/(2))?

The second line is a consequence of (2.22) for z = s,,!(s(z)) which tends to +00 as z | [ or z 1 r.

>, ztrorzll.

In the last line we have used that s, (z) ~ £+/21In|z| as  — +o0. O

In the following situations we work out conditions on p and o such that the tail behaviour of F

can easily be described. We apply these results to the examples in Sections 3.3 and 3.4.

Theorem 3.2.7 Assume that the usual conditions hold.
(a) Assume that p=0. Then (I,r) = (—o00,00) and

F(z) ~ (/Oo (2/02(t))dt>_1x_1, T — 00,

—0o0
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(b) Assume that r =00 and —oo < p = [} u(t)/o?(t)dt < oo for some z € (I,00). Then
F(z) ~e®?m| 'z, z— 0. (2.23)

(¢) Let p and o? be differentiable functions on (zq,r) for some xo < r such that

lim -+ {02(9”)} —0 and w2 exp {—2 /I p(t) dt} = —0. (2.24)

o () (1)

Then
F(z) ~ |u(@)|h(z), =tr, (2.25)
where h is the stationary density of (X;).

Proof. We first prove (b). By 'Hospital and (1.2),

lim s(x) = lim s'(z) = e %, z— .
T—00 I T—00

This implies that s(z) ~ e 2’z as  — 0o. Now Corollary 3.2.2 applies.

(a) Tmmediately from (1.2) we have s'(z) = 1 for all z € (I,r). Hence by (1.1) s(z) = z — z for
z € (I,r). Since limgy, s(x) = oo and limg; s() = —oo, we must have [ = —oo and r = co. Then
part (b) applies with p =0 and |m| = [*_(2/0?(t))dt.

(c) s’ is an exponential function , hence

s"(z) = —28’(.’1)):2((:;)) , z€(lr).

Then by I'Hospital (which can be applied because of (2.24)),

. 278 (ydy 25’ () _

I @)@ e @) — s @@ e T
Inserting this in (2.5) yields F(z) ~ —2u(x)/(|m|s'(z)o?(x)) as = 1 r, and the result follows
from (1.3) and (1.4). O

From equations (1.1)-(1.4) it is clear that (X;) is also uniquely determined by its stationary
density h(z) and the diffusion coefficient o(z) . They determine the drift term which is for

differentiable volatility o

p(x) = 4 In(o?(z)h(z)), =€ (I,r). (2.26)
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Theorem 3.2.8 Assume that the usual conditions hold with r = oco. Let h be the stationary
density, h positive on (xg,00) for some zy > 0.
(a) If 0?(z) ~ x'=%%(x)/h(z) as x — oo for some § > 0 , where £ is a slowly varying function

such that 1/¢ is locally bounded. Then

(x) ~ gx_‘sé(az), T — 00.

|

(b) If 0%(z) ~ cx‘;*le*‘mﬁ/h(x) as x — oo for a,B,¢ > 0,0 € R, then

F(z) ~ gx‘s_Qe_a‘”B , I —00. (2.27)

Proof. (a) By (1.3) and (1.4) §'(z) ~ 2z~ (=9 /(|m|f(z)) as  — co. Hence s’ is regularly varying
with index § —1 and is locally bounded. From Corollary 3.2.2 it follows with Karamata’s theorem

(Theorem 1.5.11 of Bingham, Goldie and Teugels (1987)) that

F(z) ~ gx_‘sﬁ(x) , T —00.

(b) By (1.3) and (1.4) we obtain s'(z) ~ 2$_(‘5_1)eo‘“’5/(c|m|) as £ — oco. Then by I’'Hospital

2 _ 3
T 5+2eo¢z

s() ~ |m|c

, T —00.

giving (2.27) by Corollary 3.2.2. O

This result provides a method to construct diffusions with any arbitrary stationary density (with

right endpoint » = 00) and any extremal behaviour.

3.3 Extremes of stochastic models in finance
Diffusion processes given by the SDE (0.1)
dX; ZM(Xt)dt-FO'(Xt)th, t>0,

with properties as described in Section 3.1 are common models in finance; see e.g. Lamberton and
Lapeyre (1991), Duffie (1992), Merton (1994) or Baxter and Rennie (1996). Examples 3.3.1, 3.3.2,
and 3.3.3 are standard models for the term structure of interest rates; diffusions as Example 3.3.4
have been successfully fitted to share prices (Kiichler et al. (1994), Eberlein and Keller (1995)).
The state space ([, 7) and the range of parameters of all models below is such that limg, s(z) =

oo and limg; s(z) = —oo, hence the boundaries are inaccessible. This can easily be checked by
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standard calculations and (1.1). Furthermore, the speed measure m is finite for all models, the
processes are ergodic with stationary distribution which is absolutely continuous with density A
given by (1.4). Hence all these models satisfy the usual conditions (1.5).

Once F is determined for any of these models, classical extreme value theory takes over.
Recall that there are three extreme value distribution functions (up to affine transformations).
Since all the examples we treat in Section 3.3 are diffusions with state space unbounded above,
we only consider the Fréchet distribution function and the Gumbel distribution function given

by

Po(z) = exp{—2 (g u)(7), a>0,

Alz) = exp{—e "}, z€eR.
If F € MDA(®,), then the norming constants a; and b; can be chosen such that
F(a;) ~t7" and b =0. (3.28)
If F € MDA(A), then the norming constants a; and b; can be chosen such that
F(b) =t~" and a; ~a(by), (3.29)

where a is the so-called auxiliary function; see e.g. Theorem 3.3.26 of Embrechts et al. (1997).
Calculating the norming constants explicitly is then a standard, though often tedious task. For
by a Taylor expansion leads to the necessary accurracy required by the convergence to types
theorem. We refer to the monographs by Leadbetter, Lindgren and Rootzén (1983), Resnick
(1987) or Embrechts et al. (1997) for some tutorial examples (see also Appendix A2).

Then (2.4) implies that

X
—L 4, if FeMDA(D,) (3.30)
t
and
MX — M
Mi =bd 4 mE B1 if FeMDA(A). (3.31)
ag t

Furthermore, all the models in this section except the generalised Cox-Ingersoll-Ross model v = 1
satisfy condition (2.21) of Lemma 3.2.6, hence the Poisson approximation of the e—upcrossings
is also explicitly given for u; = a;z + by and 7 = —In Q(x), where @Q is either ®, or A.

Figures 3.2, 3.4, 3.5, 3.7, 3.9, 3.11 and 3.12 show simulated sample paths (of length ¢ =
1000, 10000 and 25000, respectively) of the different models. The solid line indicates those
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norming constants which describe the increase of M;* for large ¢, i.e. in MDA (®,) we plot a;
(see (3.30)) and in MDA (A) we plot b; (see (3.31)). Figures 3.3, 3.6, 3.8, 3.10 display the empirical
distribution function of the normalised maximum of the different models and the corresponding
limit distributions (based on 50 simulated sample paths of length n = 20000). Figure 3.15 and
3.16 show the empirical distribution function, the empirical density and the QQ-plot (based
on 350 simulated maxima, each taken from a sample path with ¢ = 25000) of the normalised
maxima of the generalised inverse Gaussian model for certain parameter values together with
the corresponding limit distribution function and density. The models were simulated by means
of the Milstein Scheme (strong Taylor approximation of convergence order 1) and we refer to
Kloeden and Platen (1992) for details. The quality of the simulation depends on the stepsize A
of the discretisation: a too big stepsize A can actually have disastrous effects on the precision of
the simulation in the extremes. For our simulations we obtained acceptable results for A = 1074,

but this may also depend on the parameters chosen.

Example 3.3.1 (The Vasicek model)

: m | NMW lh M W ”m %“ (A m I

(o] 200 400 600 800 1000

\ Wil

Figure 3.2: Simulated sample path of the Vasicek model (with parameters ¢ = d = ¢ = 1) and corresponding

normalising constants by.

In this model the drift term is u(x) = ¢ — dz for ¢ € R, d > 0 and the diffusion coefficient
o(x) = o > 0. The solution of the SDE (0.1) with Xy = z is given by

t
- g)e*dt + a/ e W, t>0.
0
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10

08

0.6

04

0.2

0.0

Figure 3.3: Empirical distribution function of the normalised maxima of the Vasicek model and the Gumbel
distribution function with the same parameters as in Figure 3.2. We used 50 simulated sample paths of length

n = 20000.

(X}) is a Gaussian process and has state space R (which is not very satisfactory from a practical

point of view), mean value function

2

2
Eths-l-(az—Ee*dt—) and varXt:%<1—ef2dt>—>a— t— 00.

C
d) d

The scale function s has density according to (1.2) (with z = 0)

3'(:16)=exp{—gc—22d}exp{gi2<x—§>2}, s ER, (3.32)

and speed measure m with density according to (1.3)

2 c? d c\?2
m'(m)zﬁexp{%}exp{—ﬁ (x—a> }, z € R.

By standard calculation,
o.¢]
2
|m| = / m/(z)dx = = L ee?/de®) < .
—00
The assumptions of Theorem 3.2.7(c) are satisfied and hence

— d z—c/d 1 (z — c/d)?
Fla) ~ V2r /o2 (2d) eXp{_§ o2/(2d) }

_ d el s c/d s oo
Vi \/o2ed)) ’
where G(z) = zexp{—z?/2}. Note that F(z) ~ A(z — ¢/d)? H(z), where H(z) is the tail

of the stationary normal distribution function and A is some constant; hence F' has heavier
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tail than H. In order to investigate the extremal behaviour of F' we first consider the one of
G. One can readilly see that G is a von Mises function (see Proposition A1.2) with auxiliary
function a(x) ~ 1/z . Hence G € MDA(A) and the norming constants can be calculated as in
Proposition A1.3(b): the centering constants by as asymptotic solution to G(gt) =1—¢"! and the

normalising constants a; ~ a(b;). Standard calculation (see Appendix A2) yields G« (1 —¢~!) =

V2Int+ 1;\(/221%3 + 0(\/211—nt). Hence by Proposition A1.3(c), we choose

~ 1 ~ In(21nt)
a; = and b =V2Int+ —=.
VOITY ! 2v21Int

From Proposition A1.7 we obtain thus the norming constants to the tail G ((az —c/d)/\/ 02/(2d))

as
~ g ~ C
a = —a; and b = —

o
+—
V2d d  V2d

Finally, by tail equivalence and Proposition A1.6 we obtain the norming constants of F' as

Zta

g

a b)
" oVdnt

o c o Inlnt + In(d? /)
by = —=vVInt+ - + .
bV d ' 4/d Vi

By Proposition 3.2.1 this implies that

2 o
“Vdint [ MY — —VInt —
( VZ

o

c o lnlnt+ln(d2/7r)>i>A
d 4/d Vint -

Example 3.3.2 (The Cox-Ingersoll-Ross model)
In this model (X;) satisfies the SDE (0.1) with u(z) = ¢ —dz for d > 0, o(z) = oy/z for o > 0

and 2c > o2. It has state space (0,00), mean value function

EXt:§+($—§>e_dt—>§, t— o0

and

2 2 2 2
varXt:%(1—<1+(x—§) ?d>e_2dt+(az—§) ?de_?’dt> %%, t— o0,

where Xy = x. For the exact marginal distribution of X; we refer to Lamberton, Lapeyre (1991),

Chapter 6. The scale function s has density according to (3.32) (with z = 1),

s'(z) = g2/ exp{i—i(m - 1)} , x€(0,00).
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T T
800 1000

Figure 3.4: Simulated sample path of the Cox-Ingersoll-Ross model (with parameters ¢ = d = ¢ = 1) and the

corresponding norming constants b;.

The speed measure m has density

m/(z) = %z%/gtl exp {—Ed(z — 1)} , = €(0,00).

o o2

and hence

2 2 [ 2 1 _ 2
|m| — _26201/0 $2c/a 1, (2d/o )Ide
o 0

2¢c/a?
. 2 2d/0’2 0'2 20
= 0_26 ¥ r 2 < 00.

We conclude that the stationary distribution is F(%, 3—%)

For the asymptotic distribution of the maximum M;* of (X;) we calculate the tail of F.

Theorem 3.2.7(c) applies and we obtain

F(z) ~ (dz—c)h(z)

~ dzh(x)
2¢/0? -1
N d(Z—;l) <F <2_g>> 2/ +1)=1 = (2d/0%)a
g g
~ cg(z)
~ 20%16(36), T — 00,

where ¢ is the density and G(z) is the tail of the F(% +1, 3—‘;) distribution. It can be seen that
F(x) ~ Bx H(x) for some B > 0. It is well-known (see e.g. Embrechts at al. (1997), Section 3.3,
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p.156) that the gamma distributions are in MDA (A) and the norming constants for G are

ay = 0’2/(2d) and bt ;d <lnt + — lnlnt + In <m>> .

By Proposition 7?7 we obtain as norming constants for F’

a; = 02 /(2d) (3.33)

by = 2; (lnt-l- Inlnt + In (r(%/ﬂ))) . (3.34)

This implies that

2d o? d d

Notice that for 02 << ¢ the constant I'(2¢c/0?) is very large and consequently b; may become

negative for small £. In extreme cases b; becomes positive only for very large ¢.

Example 3.3.3 (Generalised Cox-Ingersoll-Ross model)

In this model the drift term is given by pu(z) = ¢ — dz and the diffusion coefficient has the form
o(z) = oz for v € [§,00). For ¥ < 1 we have |m| = oo and hence by Theorem 7 of Mandl
(1968) , p.90, the process is not ergodic. For y > % the process is ergodic with state space (0, 00).

We distinguish the following four cases:

y=1/2 : 2¢ > 02, d>0 (see Example 3.3.2)
1/2<y<1 c>0, d>0
(3.35)
y=1 : c>0, d>—o%/2
vy>1 : c>0,deR or ¢=0,d<0.
For <+ <1 the mean value function of (X;) is given by
St(o-Z)e ™ 52 i d>0
EX, = §+<x—§> e oo if d<0 (3.36)
x+ct —o0 if d=0

as t = oo where Xy = z. This indicates already that for certain parameter values the model can
capture large fluctuations in data, which will reflect also in the behaviour of the maxima.

In all three cases we calculate the respective quantities with z = 1.
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T T T T T T
[o} 2000 4000 6000 8000 10000

Figure 3.5: Simulated sample path of the generalised Cox-Ingersoll-Ross model for v = 0.75 (with parameters
¢ =d =0 =1) and the corresponding norming constants b;. A sample sample path of length ¢ = 10000 has been

simulated in order to show that at least for large ¢ the approximation by b; is reasonable.
° % <y<l1
We calculate (1.2):
2 c d 2 c d
! = S S = =2yl P 22y
#() eXp{ o? <27—1 - 2—27>}6Xp{02 <27—1$ PR >} '

With m/(z) as in (1.3) we obtain

im| 2 2 c . d

m| = —expy—

o2 TP 2 2y —1  2—2y

/Oo 27 exp 2 € _4=@y-1 4 LR—?V dt (3.37)
0 o2 \2y—-1 2—2y .

The stationary density as in (1.4) is

2
_ 49 -2 2 ¢ —(2y-1 d 59
h(:E)—A?ZE 7exp{—§ <27_1£E (2 )+m$ 7)}, $>0,

2 c d
A = |m]|exp 2 27_1—1—2_27 .

The assumptions of Theorem 3.2.7(c) are satisfied and hence

where

F(z) ~ dzh(x)
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Figure 3.6: Empirical distribution function of the normalised maxima of the generalised Cox-Ingersoll-Ross model

and the Gumbel distribution function for the same parameters as in Figure 3.5.

Notice that F(z) ~ C 2= H(z) for some C > 0.

The distribution function G is a von Mises function with representation as in Proposi-
tion A1.2, hence G € MDA(A). Rather lengthy, but standard calculations (see Appendix A2)
yield the norming constants for G and then for F' by Proposition A1.6, giving

27-1

7 (=) \FF

_1

1 a2 (1—7) 2 24
2 1— 5-3 v — 1 In{—%*Int 2
by = (umt) B I p—" ( ! ) +a,ln <p> . (3.39)
ag

2(1—7) Int

and hence

ay (M —b) 5 A
Note that a; is continuous in the point v = 1/2, i.e. a; as above converges to 02/(2d) as vy | 1/2,
which is the same as (3.33). For the norming constants b; we obtain

o? o? 2d
thﬁlnt'l‘ﬁln(A—OQ), ’Y\L1/2,

hence its first term coincides with the first term of (3.34).
The behaviour of a; and b; as 4 1T 1 is much more dramatic. It indicates already that at v =1

there must be a qualitative change in the extremal behaviour. This is confirmed in the following.
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Figure 3.7: Simulated sample path of the generalised Cox-Ingersoll-Ross model for v = 1 (with parameters

¢ =d =0 =1) and the corresponding norming constants b;.

o v=1

In this case the solution of the SDE (0.1) with X, = = is explicitly given by

. t .
Xt — e*(d‘k%)t‘kﬂWt (l' +C/ e(d+°;)saWst> , t> 0.
0

2 : 2
s'(z) = exp {——2} 22417 oxp {—gxl} .
o o

With m/(z) as in (1.3) we obtain

2d
i 2 2¢ r 2d+1 o2\ 21!
m| = —=exp{ — = — )
o2 P o2 o2 2c

The density of the stationary distribution is

2d
o2\ o2t 2d e 2
— (2 st —2d/o? -2 st -1
h(z) (20) (F <02+1>> T exp{ 0236 }, z>0.

h is regularly varying with index —2d/0? —2 and hence by Karamata’s theorem (Theorem 1.5.11

We obtain from (1.2)

of Bingham, Goldie and Teugels (1987)) the tail H of the stationary distribution is also regularly

varying. This implies that certain moments are infinite:

20\ (2 +1-4 2d

<_§> (022d ) if 6<—+1,
lim EXS ={ \0?/) T (%+1) o
t—o00 d

2
g
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Figure 3.8: Empirical distribution function of the normalised maxima of the generalised Cox-Ingersoll-Ross model

for v = 1 and the Fréchet distribution function for the same paramters as in Figure 3.4.

In particular,

2’ < if 2d > 1
——<oo U — ,
lim varX; = d(2d — 0?) o?
t—00 . 2d
o

For the tail of F' we obtain by Theorem 3.2.7(c)

2 s 2\ —%-1 2 1 /94 2
_ o o o _ a2— Cc _
F(z) ~ 5 <%> (F <§+1>> (;-I—l) z 2/ lexp{—ﬁx 1}
2d
o2 (o2\ 27! 2d ~1 /24 2
~ == (= +1 21 gt .
(%) T ((E) (B eos

Hence F is regularly varying and by Proposition Al.1 F € MDA (®24/,2), with norming

constants and the normalising constants a; chosen according to Proposition A1.3 as
_2d 1/(142d/a?)
0% (o2\ 2t r 2d 1 ~1 /24 c1)e b — 0
ap~ | — | =— — — =0.
t 2 \ 2 o? o2 v
Notice that a; ~ D ¢t/ (1+2d/ *) for a constant D, i.e. a; is a decreasing function of d/o?. Hence

the maxima M;* are likely do increase slower, when d/o? gets larger. In particular,

MY/ (Dtl/(1+2d/02)> N B gg/pr. 1300,
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Figure 3.9: Simulated sample path of the generalised Cox-Ingersoll-Ross model for v = 1.5 (with parameters
¢ =d =0 =1) and the corresponding norming constants a;.
e v>1

Notice first that the functions s’, m’, h and the constant A are of the same form as in the case
% < v < 1. We apply Theorem 3.2.7(b) and obtain

= e’ -1 -1
F(:v)wmx =(Az)”", z— o0,

1 c n d
P2 \y =172 2¢) -

Hence FF € MDA(®;) with norming constants a; ~ t/A. One can observe that the order of

where

increase of a; is always linear. The constant A decides about the slope. We obtain in particular
AMY )t S @,

For v = 3/2 it is possible to calculate A explicitly. We obtain

2 o

A = = z73exp(—2/0%(z72%¢/2 — z7d))dz
7= Jo
2 [ 1 (y% —2yd/c)
= ;/0 yexp(—gi(ﬂ/zC )dy
_ 2 d2/020/oo 1 (y —d/c)?
- »2¢ 0 y exp( 2 o02/2c )y
1

L4 2/ T et [ 25
c o2c co? ’
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Figure 3.10: Empirical distribution function of the normalised maxima of the generalised Cox-Ingersoll-Ross model

for v = 1.5 and the Fréchet distribution function ®; with the same parameters as in Figure 3.9.

where ® denotes the standard normal distribution function . Note that (if we ignore ¢ for the

moment) A is increasing in the quotient d?/(co?).

Example 3.3.4 (Generalised hyperbolic diffusion)

Diffusions with given stationary distribution have been considered as appropriate models for
asset prices. Models considered assume that the price process follows the SDE (0.1) with drift
term zero; i.e.

dXt = O'(Xt)th, t> 0,

with diffusion coefficient o(z) and state space R. Choose
o*(x) = o®[h(z),

where h is an arbitrary density, then (X;) has exactly this stationary density h. These diffusion
models have been considered as alternatives to Gaussian processes for asset prices. In their
most general form, as introduced by Rydberg (1996) the stationary distribution is a generalised
hyperbolic distribution. A generalised hyperbolic random variable is N(a +bZ, Z), where Z is a
generalised inverse Gaussian random variable; hence it is a normal variance-mean mixture. The
model includes the hyperbolic diffusion and the normal inverse Gaussian diffusion.

The hyperbolic diffusion has been considered as a model for asset prices by Bibby and
Serensen (1995). Eberlein and Keller (1995) and Kiichler et al. (1994) fitted the hyperbolic

distribution to the marginals of the price process of certain assets. Statistical modelling by
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means of the hyperbolic distribution has been effective in a number of contexts (see Barndorff-
Nielsen (1995) for further references).

The normal inverse Gaussian diffusion has been considered by Rydberg (1996). The station-
ary distribution is the normal inverse Gaussian distribution as defined in Rydberg (1996) or
Barndorff-Nielsen (1995). A state space/stochastic volatility model based on the normal inverse
Gaussian distribution has been introduced in the latter paper.

These models have in common that the tails of their stationary distribution are log-linear,
hence the stationary distribution belongs to MDA(A).

Since all these diffusions have been constructed with drift term p = 0 and o?(z) = 02 /h(z)

for o > 0 and pre-determined stationary density h, Theorem 3.2.7(a) applies, yielding
2MX/(0%t) S By, t— oo,

regardless of their stationary distribution. ¥ € MDA(®;) means that the maximum of the
process is likely to behave as the maximum of i.i.d. random variables with distribution tail
F(z) ~ %fol, so the process is likely to show more extreme fluctuation than one expects from

its stationary distribution.

3.4 Generalised inverse Gaussian diffusion

In Example 3.3.4 we have seen how an ergodic diffusion with drift term p = 0 and arbitrary
stationary distribution can be constructed. This construction has the drawback that all these
diffusions show the same behaviour in their maxima M;* represented by F(z) ~ Az~! for some
A > 0. Guided by Theorem 3.2.8 we choose another method of construction. We choose a density
h(z) and a diffusion coefficient o(z). By equation (2.26) this defines a drift term p, giving an
SDE (0.1).

We shall present this method by introducing a new class of diffusions with generalised inverse
Gaussian stationary distribution and state space (0, 00). Its stationary distribution has (like the
generalised hyperbolic distribution) tails with asymptotic behaviour reaching from exponential
to regularly varying. Moreover, this model can be viewed as a further generalisation of the
Cox-Ross-Ingersoll model (Example 3.3.2). It also includes Example 3.3.3 for v = 1.

The density of the generalised inverse Gaussian distribution is given by

h(z) = (X/Q/J)A/2 A—1 {

_ 1 _1
)_QK,\(\/W)x expl —=(xz + ¢z )}, x>0,

2
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where K is the modified Bessel function of the third kind and index A. The following parameter

sets are possible

x>0, v>0, NeR}
{x=0, v>0, A<0}
{x>0, =0, X>0}.

The norming constant simplifies for y = 0 and ¥ = 0. For further details concerning the
generalised inverse Gaussian distribution and its properties we refer to Joergensen (1982).

Now we consider the special case of o(z) = oz” for 0 > 0 and v > 0. For the sake of
comparison we choose the diffusion coefficient to be the same as in the Cox-Ingersoll-Ross model
(Example 3.3.2) and its generalised version (Example 3.3.3). Of course, any other diffusion
coefficient is possible, leading to different classes of models (with the appropriate restriction of
the parameter space).

By equation (2.26), (1.2) and (1.3),
1
p(z) = 102x27_2 (1 +2(2y + X — 1)z — x2?) ,

s'(z) = exp {——(X + @ZJ)} 2~ A exp {%(Xw + 1/)331)} and

m!(z) = % exp {%(X + w)} 2 exp {—%(xx + wﬂ} :

As formulated in Section 3.1 we require the process to be recurrent and to have inaccessible

boundaries 0 and oo, i.e.

o 1
/ ' A exp {%w} dr =00 and / ' exp {%w_l} dr = oc0.
1 0

This puts further restrictions on the parameter space and we consider

{x>0, v>0, NeR}
{x=0, v>0, A<0 and A<2(1—4%)} (4.1)
{x>0, v=0, A>0 and A>2(1—v)}.

The SDE (0.1) with 4 and o as above with this restricted parameter space has a unique solu-
tion (X;). This can be shown for instance by an application of Theorem 5.13 of Karatzas and
Shreve (1987) to In(X;). We call this solution (X;) generalised inverse Gaussian diffusion (GIG
diffusion). For all parameters in (4.1), |m| < oo and hence by Theorem 7 of Mandl (1968), p.
90, (X¢) is ergodic.
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Figure 3.11: Simulated sample path of the GIG model (with parameters v =0.5, x =0, =c =1, A= —1) and

the corresponding norming constants a;.

Comparison of the drift terms show that the GIG diffusion for v = 1/2 and ¢ = 0 (which
implies xy > 0 and A > 1) is just the CIR model with parameters ¢ = 02)/2 and d = o2y /4. If
we choose ¥ = 1 and x = 0 (which implies ¢ > 0 and A < 0), then we obtain the generalised
CIR model with parameters ¢ = 021/4 and d = —o?(1 + )\)/2.

For the study of the extremal behaviour of (X;) we distinguish three different cases:

o =0

Then ¢ > 0 and A < 0 and A < 2(1 — 7). The stationary density is inverse gamma of the form

.Y
h(z) = 7(}[1(/3))\) A exp{—%a[)xl}

(¥/2)™

—— , T — 00,

I'(=3)
i.e. it is regularly varying. Now Theorem 3.2.8(b) applies giving

2 Ao om
Fz) ~ (¢/2)21“((i>\)27 A)$7(27277A),

T —r 00.

By Proposition Al1.1 F' € MDA (®3_5,_») with norming constants chosen according to Proposi-
tion Al.3(a) yielding

2 A9 _ oy _ 1/(2=2v-2)
at~<g ($/2)7(2 — 2y A)t> and b =0.

[(=2)
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By Karamata’s theorem (Theorem 1.5.8 of Bingham, Goldie and Teugels (1987))
- (¥/2)77

H(z) ~ —~——z", = — 0,

(=2 (=2

and hence
2
T
o2(=A)(2 =2y =)

Hence, depending on the choice of v, the tail H of the stationary distribution can be heavier or

H(z) ~ Z2F(x), x— oo.

lighter than F, the tail which describes the asymptotic behaviour of M;X.

[ ] w = 0
Then xy >0 and A > 0 and A > 2(1 — ). The stationary density simplifies

Y
h(z) = %x/\l exp {—%Xx} , >0,

which is a T'(A, x/2) density. Now Theorem 3.2.8(b) applies giving

o2 A+l
F(z) ~ 7(ZXF/(2)?) AL exp{—%x}
o?(x/2)*" T (27 +A)
TN G(z), z— o0,

where G is the I'(2y + X, x/2) distribution function. Then as in the Cox-Ingersoll-Ross model,
F is of gamma-type. Hence F' € MDA (A) with norming constants chosen according to Proposi-

tion A1.3(b). By tail-equivalence and Proposition A1.6 we obtain

2 o*(x/2)* ">
CLt—2/X and bt—;(lnt-l-(2’)/+>\—1)lnlnt+1n<T(>\)>> .

Similar calculations as above yield

_ 2 223 _
H(z) ~ — (g) ™ F(x), z— .

Since v > 0 this implies that F' has heavier-tail than the stationary distribution function H.
Hence the extremal behaviour of (X;) shows larger fluctuations than an i.i.d. family of random

variables with distribution function H was likely to show.

e Y>0,x>0

Then A is arbitrary in R. Theorem 3.2.8(b) applies giving
= a*(x/2) X
F(zx) ~ —2 2 g2 A loxp{—2Zg)
4K (v xb) 2
2(y /9)2-27-A M2 P9y 1))
o*(x/2) <§> (2y + )G(x),

4 (2 Kx(Vxb)

T — 00,
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Figure 3.12: Simulated sample path of the GIG model (with parameters v = 0.5, x =¥ = ¢ = A = 1) and the

corresponding norming constants by.

where G is the I'(2y+ ), x/2) distribution function. Notice that G is exactly the same distribution
function as in the previous case. By tail-equivalence and Proposition A1.6 we obtain the norming

constants

2 2-2y-A A/2
ag =2/x and th%(lnt—i—(Z’y—i—)\—l)lnlnt—i—ln(%<%> ))

As above

_ 2 /2\?2 _
Hiz)~ = (=) a72F(z), z— .
o? \ x

The remark at the end of the case ¢ = 0 applies.
Finally we investigate the assumptions in Theorem 3.2.4 for this case in detail. First notice
that s'(z) — oo for z | 0 or x T co. Thus by I"'Hospital

Y@ x
s(z) 27

By Lemma 3.2.6 and the fact that m/(z)s'(z) = 2227 /0?2,

Moy (5o (3(2) 8'(x) o s'(x) 2P <8”($)
Sou(s2u (s(2))) m'(2) 4 s(z) In(ls(z)[) \ &'(z)

If we further distinguish between left and right endpoint we derive

a:+*y>, z 1T ooorzx]0.

N
ERPeN

0 v <0.5
Mo (Su (3(2))) 5'(2) o

Sou(s0u (5(2))) ™/ (2)

- y=05 , =700,

4
00 v > 0.5



93

and
v<1.5
Mgy (500 (5(2))) 8'(2)

(5ol (5(2)) /(@)

= , xl0.
S vy=1.5 1

(an] |-l>| qw 8
[CTRSS

v>1.5

Hence by Remark 3.2.5(c), we may conclude that in the case 0.5 < < 1.5 the assumptions of
the Theorem 3.2.4 are fulfilled while in the other cases condition (2.21) of Lemma 3.2.6 does not
hold.

3.5 Concluding remarks

As was demonstrated in this chapter extreme value theory for a large class of diffusion pro-
cesses is strongly connected with classical extreme value theory for i.i.d. random variables. This
connection is not only valid for the behaviour of the maximum of a diffusion process but also,
under some additional restrictions, for the point processes of e-upcrossings. It appeared that
e-upcrossings of a diffusion process are likely to behave as the exceedances of i.i.d. random vari-
ables with a well-specified distribution function, i.e. the associated point processes converge to
the same homogeneous Poisson process. It would be interesting to see whether this result even
holds if the technical assumption (2.10) is not satisfied (e.g. in the case of the generalised CIR
model with v = 1).

The results of this chapter may be applied to study risk measures of financial products as
for instance the value at risk or related quantile risk measures; see Embrechts, Kluppelberg and
Mikosch (1997), Example 6.1.6. Nevertheless, one has to consider the quality of the approxi-
mation in the extremes of the diffusion process and the associated sequence of i.i.d. random
variables. The speed of convergence might be quite slow. Indeed, not much is known about
the rate of convergence for extremes of continuous parameter processes. Konakov and Piter-
barg (1982) give bounds for the maximum of general stationary normal processes. However, the
bounds do not seem to be very sharp (logarithmical decrease). In Kratz and Rootzén (1998)
they were improved considerably in the case of mean square differentiable stationary normal
processes. There is no related result for diffusion processes. An obvious idea is to first inves-
tigate again the order of convergence for the Ornstein-Uhlenbeck process and then transform
the result to arbitrary ergodic diffusion processes with inaccessible boundaries by means of our
random time change argument as in section 3.2. This work is currently under way and will be

presented in a forthcoming paper.
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Another problem concerning application of the results in this chapter to financial problems
is that the assumption of ergodicity is crucial. Unfortunately, diffusion models for stocks and
other securities clearly do not satisfy this assumption. In these cases, the main problem is the
random time change transformation which makes no sense for ¢ tending to infinity, since the
total speed measure is not finite. Investigating how to overcome these difficulties would be a
suitable topic for future research.

Finally, another practical question is the behaviour of the maximum of a bond or swap price
for a very large maturity 7. Bond and swap prices are functions of interest rates which are
usually modelled by diffusion processes that fit in our framework. We are optimistic that our
results might help in solving this problem. However, a detailed analysis of this question is again

left for future research.
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Figure 3.13: The Poisson approximation for e-upcrossings of the GIG diffusion with parameters v = 0.5,x =
0,9y =1,0 =1,A = —1 as in Figure 3.11. The threshold increases with the sample size. For the calculation of the
thresholds we used 7 = 10, i.e. on average there are 10 e—upcrossings for large ¢ and fixed small € > 0. The first
figure shows a realisation of the process X; for 0 <t < 1000, the last two figures represent continuations of this

realisation to ¢ = 5000 and ¢ = 25 000, respectively.
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Figure 3.14: The Poisson approximation for e-upcrossings of the GIG diffusion with parameters v = 0.5,y =¥ =
o =X =1 as in Figures 3.12. The threshold increases with the sample size. For the calculation of the thresholds
we used 7 = 10, i.e. on average there are 10 e—upcrossings for large ¢ and fixed small € > 0. The first figure shows
a realisation of the process X; for 0 < ¢ < 1000, the last two figures represent continuations of this realisation to

t = 5000 and t = 25000, respectively.
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Figure 3.15: The empirical distribution function (top), the empirical density (middle) and the QQ-plot (bottom)
of the normalised maxima of the GIG model and the Frechet distribution function and density (solid line), based

on 350 simulations with ¢ = 25000 and parameters v =0.5,x =0, =1,0 = 1, A = —1 as in Figure 3.11.
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Figure 3.16: The empirical distribution function (top), the empirical density (middle) and the QQ-plot (bottom)
of the normalised maxima of the GIG model and the Gumbel distribution function and density (solid line), based

on 350 simulations with ¢ = 25000 and parameters v = 0.5, x =¥ =0 = A =1 as in Figure 3.12.
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The Vasicek model: dX; = (c—dX;)dt + cdW;, 0>0,d>0, ce R
(Xt S+ (x—29e _dt-l—aft —dt=9) gy, , t20>

SRR R TLE57 S
Fl) Nd%ﬁ(x), oo
) ;Em+ jflnlntj/l;(d /)

atl( tX_bt) A

The Cox-Ingersoll-Ross model:
dX; = (c—dXy)dt + o /Xy dWy, >0, d>0, c>0%/2

( ) _ (2d/02)20/02 33714»20/02 672dz/02

D(20/0%) y ©>0
— 2d?
o
o2
ag 2—

by = Ug In t—|—2 Inln¢ +1In L
b 2d T'(2¢/0?)

The generalised Cox-Ingersoll-Ross model:

dX; = (c—d X)) dt + o X dW,;, v>1/2

(@) 1/2<vy<1l: >0, d>0,¢c>0

z—@r— 1)+ 2*27)

2
h(z) = const g 2e o2 (BT , >0

F(z) ~ const 2"V H(z), z — oo
2y—1

2 201_ 3¢
a =% (70 (}1 ) lmt)2 o

by = <#m>ﬁ (1 - 22(1’:; 1n("2(1d_ ) lnt)/lnt>

2 (0%(1 —7) = 2d
o (0= )T (24
+2d< 7 lnt> In (A02>

CHME —by) S A
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v = a>0 d>—0%/2, ¢>0
<Xt t+aWt($+Cf 2)570W5d3)’ tZO)

o G 2d - 2d/0?-2, 265!
- (< {1 ~20/0° 2,75
h(z) (20) <02+ > z

— (2d + 0%)?
Fz) ~ 29 )

o\ — 24 1 1/(142d/o?)
o o? 2d 2d
ap ~ C 2_0 F ? + 1 ? —+ 1 t

by =0

|

(), x=— o0

d
Gy (MY =) S Q1 124/02

(c)y>1: o0>0,deR, ¢>0

c —(2v—-1) d 2—2y
T +2_27x )

h(z) = const g2 (o , >0
F(z) ~ const £>("NH(z), = — oo
ag ~ t/A,
2 [ 2 c d
here A== [ 2 —-= R GL A S [
where 02/0 exp{ 02 <27_1 —1-2_27
by =0

MK —b) S @

The Normal Inverse Gaussian Diffusion:

(1+ (X, — p)?/o%)H/4
\/Kl ad\/1+ (X; — p)?/8%)

where p € R, § > 0, 0§|B|<a, o >0and

Kit) =5 [ exo(=gae+t s

dX; =

1
eXp{_aﬁXt}a «, /63 o, 53 H

2

a 1(ady/1+ (z — p)?/62)
h(z) = —exp{ova? — 2 — Bu} \/1\1 e exp{fz}
ap = —— exp{dv a? — (%2 — Bult

thO
_ d
tl(MtX —b) > @




The Generalised Inverse Gaussian Diffusion:

(@) x=0, >0, A<min{0,2(1 —v)}:
-

h(w) = (zlgg) Wexp{_%ml}’ e
F(x) ~ o?(=) (22— 27— )) 2 (z), 3 — 0o
o?(1p/2) M2 — 2y — \) t 1/(2-2y-))

ar ~ ( e )

by =0

_ d
a; 1(MtX — bt) — @2_27_)\

(b) =0, x>0, A>max{0,2(1 —v)}:

-\
h(z) = (Xg{%x/\_l exp {—%Xx}, z >0
F(x) ~ % (§>2)\+3 2 H(z), = — o0
ay = 2/x
2 2-2
by = % <lnt+ (2y+A—1)Inlnt+In (%
ay (MY — b)) % A
(¢) x>0,9v>0, \e R
_ /M 1 _
h(fE) = WQZ exp{—g(xx-l-?,bx 1)}, e
F(z) ~ 7 <g> P H(z), = — 00
2 \x
ay = 2/x

(/2>

4K\ (v x¥)

2
by =—(Int+ 2y + A —1)Inlnt 4 In(
X

a7 (MY —b) 5 A

)

>0,

(5)”2»
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Appendix

A1l Classical Extreme Value Theory
There are three extreme value distribution functions (up to affine transformations):

Fréchet: Do (z) = exp{—17"}H(go0)(7), a>0.
Weibull: 4, (z) = exp{—(—2)* }H(—w0)(®), a>0. (A.1)
Gumbel:  A(z) =exp{—e™*}, z€R.

The distribution function F' belongs to the maximum domain of attraction of an extreme

value distribution function @ (F € MDA(Q)) if
tlim Fax +b) = Q(z), =€R.
—00

MDA (1)) contains only distribution functions with finite right endpoint. Since all the examples
we treat in this work are stochastic processes with state space unbounded above, we only present

results on MDA (®,) and MDA(A).

Proposition A1.1 F € MDA(®,) if and only if F(z) = z~%(z), where £ is a slowly varying
function (i.e. limy_yo0 £(xt)/l(z) =1 V¢ >0).

Proposition A1.2 F € MDA(A) if F has the representation

Fa) =cexp{—/j$dt}, >z, (A.2)

where ¢ > 0 and a(-) is an absolutely continuous function with Lebesgque density a' such that

limg4, @' (z) = 0. O

A distribution function with representation (A.2) is called a von Mises function. The function

a(-) is called auziliary function.
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Proposition A1.3 (a) If F € MDA(®,,), then the norming constants a; can be chosen such
that

Fla;)=t' and b =0.
(b) If F € MDA(A), then the norming constants a; and by can be chosen such that
F(by)=t"" and a; = a(by).
(¢) The norming constants are not unique. If
lim F'(a;z 4+ b) = N(z), z€R,
t—o00
and a; ~ a; and Zt — b, = o(ay), then
lim F'(az +b) = N(z), z€R. O
t—o00
Proposition A1.4 describes the increase of M;*.

Corollary Al1.4 (a) If F € MDA(®,,), then

MX
A d,, tTr.
at
(b) If F € MDA(A), then
M —b
LT 4 A,
a
In particular,
MX
T B 4y =
by

Definition A1.5 Let F' and G be distribution functions with right endpoint r < oo. If

) =c 00
im S — ¢ € (009

then F and G are called tail-equivalent.

Proposition A1.6 Let F' and G be tail-equivalent distribution functions with right endpoint
r < oo and F(z) ~ cG(x) as x T r. Assume that G € MDA(Q) with norming functions a; > 0
and gt € R such that

lim G'(az +b) = Q(z), z€R,

t—o00

for an extreme value distribution function Q. Then F € MDA(Q) and

lim F'(az 4+ b)) = Q(z), z€R,
t—o0
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where

ay = and by =b +anc if Q=A,
at:cl/aZit and bt:btzo Zf Q:q)a_

Proposition A1.7 Let F(z) = G(cx+d) for any ¢ > 0 and d € R. Assume that G € MDA(Q)

with norming functions a; > 0 and Et € R such that
lim G'(az + by) = Q(z), =z €R,
t—o00
for an extreme value distribution function Q. Then F € MDA(Q) and

lim F'(az + b)) = Q(z), =z €R,
t—o00

where ay = ay/c and by = (by — d)/c. O

A2 Computation of Normalising Constants

In this section we compute explicitly the normalising constants a,, and b,, which we presented in
Chapter 3 in Examples 3.3.1 and 3.3.3. Recall that the constants a, and b, have to be chosen
such that the underlying distribution function F' belongs to the maximum domain of attraction
of one of the three extreme value distribution functions, i.e.

lim F"(apz +by) = Q(x),

n—o0
where () is either a Fréchet, Weibull or Gumbel distribution function. We will proceed in a

similar way as in Embrechts et al. (1997, Chapter 3.3) or Resnick (1988, Chapter 1.5).

Concerning Example 3.3.1:

Suppose the tail of F' is given by
F(z) ~ z exp{—2?/2}, = — occ.

Due to Proposition A1.6 it is sufficient to compute the normalising constants a, and b, of
the distribution function G(x) = 1 — z exp{—22/2} for = large enough. Notice that G is a von
Mises function with auxiliary function a(z) = (z+1/z)~". Thus G € MDA(A) and according to
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Proposition A1.3(b) b, = G (1—1/n) and a,, = a(by,). Hence look for a solution of —In G(b,) =

Inn, i.e.
1o
§bn—lnbn=lnn. (A.1)
Since b, — 0o we see by dividing through that
b, ~V2Ilnn
and consequently
b, =V2Inn +r,, (A.2)

where 1, = o(VInn). By Proposition A1.3(b) we may hence choose a,, = 1/v/21Inn. Substituting
(A.2) in (A.1) we obtain

Inn +V2Innr, + %’F?L - ln(\/m+ rp) =Inn,
ie.
Va2Innr, + %r% ~In (\/M(l + rn/\/M)) ~0,
i.e.
V2Innr, + %ri — %ln(2lnn) —In(1 4+ r,/V2Inn) = 0. (A.3)
Divide through by v2Innr, and we get

" 1 r IIn(2lnn) In(l+7,/vV2Inn) 0

2\/2lnn_§\/2lnnrn V2Innr,

rn/V2Inn) 1

Because r, = o(VInn) and since the last term is asymptotic to = — 0 as

v2Innr, ~ 2lnn

n — oo we obtain that

+ 55, (A.4)

where s, = o(Inlnn/vInn). In fact s, = o((Inn)~1/2). To see this observe that (A.3) implies
V2Innr, — %ln(2lnn) =In(1+r,/vV2Inn) — %rﬁ —~0, n—oo. (A.5)

Plugging now (A.4) in the lhs of (A.5) we get

vV2lnns, -0, n—oo.
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Therefore

by — (V2Inn +In(2Ilnn)/2v2Inn) s,
=— =0, n—o
anp Gnp

and hence, because of Proposition A1.3(c),

In(21Inn)
by =V2Ilnn + ——
Vv2lnn

is an acceptable choice.

Concerning Example 3.3.3:
Consider the tail
F(z) ~ a2+ exp{—#xﬂl_”} (A.6)
o*(1 =)
of a distribution function F', where 1/2 < v < 1,¢ > 0,d > 0 and o > 0. Again with the same
arguments as in the last case we may assume w.l.o.g. that the tail of the distribution function ¥
equals the rhs of (A.6). It is straightforward that F' is a von Mises function, hence F' € M DA(A)
and the auxiliary function a(x) satisfies
2

1, 2 o
a(z) = ((27 - 1); + ;wl_%’) ~ %az%_l , T —00.

We now show that

2 /,2(1 ot
— 2—24
ap = ;—d <¥ lnn> (A.7)
and
) o!(1=7), . =% L2l 1“(@1“) o AS
n_( d n> 21 —+) Int (4.8)

are acceptable choices of the norming constants. By Proposition A1.3(b) we have to solve

— 1
i.e.
d 1
1-2y _ 2(1-7)y — —
bn eXp{ 0_2(1 — 7) bn }
and logarithming both sides gives
d bz(l_” —(1=29)Inb, =1nn. (A.9)

o(1—7)
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We will construct an expansion of b, and indicate how many terms are necessary. Since b, — o0

we see by dividing left and right sides of (A.9) by b2 that as n — 0o

2(1 _ 1/2(1—7)
by, ~ <¥ lnn) . (A.10)
2 2 /2 2y-1/2(1—7)

- _ LTy _ 0 (1) .
Since a, = a(by) 5 b, = 5 < 7 Inn we see that an acceptable choice
for a,, is

B 0__2 0_2(1 —) . 2y—-1/2(1—7)
n = oo | ———Inn .

Next we have to study b, in more detail. In order to do this we define the auxiliary sequence
vy = b2 (A.11)

From (A.9) we get thus

d _ (=2 nv, =Inn
02(1_7)1)” 2(1_7)1 n=1Inn. (A.12)

From (A.10) we see that

201 —
gr=m (1d ) Inn+r,, (A.13)

Unp —

where r, = o(Inn). Substituting (A.13) into (A.12) we find

d (=2 (o*(1=7), \ (=29 dry,
a%l—v)"‘2u—v)l( i >+2u—w)1(1+a%1—whnj

and therefore

o?(1=2y)  (o*(1—1)
Ty = 5 1n< y lnn>+sn, (A.14)
o? dry o? dry,
here s, = (1 —2y)In(1 + —2 )y~ 72 (1 —2y) 20
where s 2d( ) In( +o2(1—fy)lnn) 2d( 7)02(1_7)lnn—>0asn—>oo ie

sn = 0o(1). Plugging all this together we obtain

201 _ 2 2(1 _ 1/2(1=y)
by = o207 = (M Inn+ 2 (1 — 2y) 1n(¥ Inn) + Sn)

d 2d
02(1 —) o2 02(1 —) 1/2(1-7)
= (T Inn + ﬁ(l —27) ln(T lnn)>

Sn,
-1+ -
( P y 21 -

1/2(1—7)
2) ln(@ In n)) -
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A Taylor expansion and the fact that 1/2 <y < 1 yields that

a?(1— o2 o2 (1— _
by — (0" I+ 2 (1 = 2y) In( 222 1np))L/20-7) N z_gsn o e
g

Qp,
By Proposition A1.3(c)
2

*(l-9), o 2(1—y) T
b, = <T Inn + ﬁ(l —27v) IH(T 1nn)>

is an acceptable choice.

A3 Some Extreme Value Theory for Markov Chains

The theorem below gives the extremal properties of a fairly large class of stationary Markov
chains. The original version can be found in Perfekt (1994, Theorem 3.2, p. 538). We present a

simplified version of Perfekt’s result which can be directly applied to our situation in Chapter 2.

Theorem A3.1 Suppose (Xp)nen s a stationary Markov chain which satisfies for some 7y €

(—00,00) the following properties
(i)

i L= Flu+ ()

—(1_ L)y _
utzp 1 —F(U) - (1 ’)’:E)+ y L € ( O0,00),

where F' is the stationary distribution function, rp = sup{z; F(z) < 1}, y4 := max{0,y} and

xp=00 and g(u)=—yu if v <0

zp <oo and g(u) =v(rr—u) ify>0

If v = 0, then the auziliary function g is unique up to asymptotic equivalence and strictly positive

on (zo,xzr) for some zo < zp.

(1)

(X1 —u)
9(u)

for some distribution function H on [0,00).

lim P((l —

U—Tp

)27 < @) Xo = u) = H(x)

Let furthermore (Ap)nen be an i.i.d. sequence with marginal distribution function H and let Yy

be a random wvariable independent of (Ap)nen. Define the tail chain (Yy)nen by Y = A Yy
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for n > 1 and denote by P" the law of (Yn)nen when Yy has distribution p. Assume p(dz) =

v 2dz, z > 1 and let (u, (7)) be a sequence which satisfies

lim n(1 — F(uy(7))) = 7.

n—oo

(a) Assume D(un(7)) holds for each T > 0. If for some 1y there is a D(uy,(19))-separating

sequence (pp)nen Such that

lim lim sup P( max X > up|Xo>u,) =0 (A.1)

P—0 poo p<j<p

holds with u, = u,(7) then (X, )nen has extremal index 6 given by

0=Pl(#{n>1|Y, >1}=0).

(b) Suppose (Xp)nen has extremal index 6 > 0 and, for some 11 > 0 satisfies A(up(o71))
for each o > 0. Suppose further there is a A(u,(71))-separating sequence (pp)nen Ssuch that
(A.1) holds with u, = un(11). Then, for each o > 0, NI™ = #{k € {1,...,n}|k/n € -, X} >
un(oT)} converges in distribution to a compound Poisson process N with intensity 6oty and
Jump probabilities m; given by

W¢:%<P“(#{n21|Yn>1} —i—1)—Pr#{n>1]Y, > 1} = i)), i €N.

The next theorem is an extension of Theorem A3.1. In some cases it is easier to apply then the

last one.

Theorem A3.2 (Eztension of Theorem 3.2 of Perfekt (1994), p. 543) Suppose (X, )nen 1S a

stationary Markov chain which satisfies

o L= P+ g(u)a)
ulxp 1— F(U)

— (1 —y2)}/", z € (~00,00),

where F' is the stationary distribution function, xp := sup{z; F(z) < 1} = oo, y4 := max{0,y}

and
g(u) = —yu for some vy <0.
Suppose furthermore that inf{z; F(z) > 0} = —oo and that

X
lim P(ZL < 2| Xo=u)=H(z),

U—00 u
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for some distribution function H on (—o00,00). Let (An)nen be an i.i.d. sequence with distribution
H and define the tail chain through' Y, = A,Yn_1, n > 1, Yy being independent of (Ap)nen. Then,
if (Xy)nen satisfies the conditions in (a) and (b) of Theorem AS3.1, the result of the theorem holds

with the initial distribution p given by p(dz) == |y| ‘=7 Vdz, for z > 1.

A4 Classical Markov Chain Theory

Here we give a short introduction to the Markov chain theory we need in this paper. For details
we refer to Tweedie (1976) or Meyn and Tweedie (1993) .

Consider a homogeneous Markov chain (X,),cn on a locally compact complete separable
metric space E and & is the countably generated o-algebra on E. Let P = {P(z, A) := P(X; €
A| Xy ==z); z € E, A € £} denote the transition probability kernel and x the initial distribution.
The n-step transition probabilities P"(z, A) := P(X,, € A|X( = z) can be iterated as

P'(z,A) = / P Yy, A)P(z,dy), z€E,Ac& n=12,..,
E

where PO(y, A) = 14(y). Let P, be the corresponding probability measure which makes (X, )nen
to a Markov chain with transition probability P and initial distribution . If 4 = 6., © € E,
write P, instead of P,.

Suppose ¢ is a o-finite non-trivial measure on £. Then (X, )pen is called ¢-irreducible if
Soo0  P™*(z, A) > 0 for every z € E whenever ¢(A) > 0. Note that if (X,)nen is ¢-irreducible
and if 1 is another o-finite non-trivial measure on £ which is absolutely continuous with respect
to ¢ then the process (X, )nen is ¢-irreducible as well. (X,)nen is called a ¢-irreducible Feller
chain if for each bounded continuous g on E, the function z — E(g(X,)|X,—1 = z) is continuous

n z.

For any A € £, define 7(A) = inf{n > 1; X,, € A}. Wecall A € € recurrentify > | P"(z, A)
00, and transient otherwise. A is Harris recurrent if P,(7(A) < o) = 1 for all z € E. By the
strong Markov property, this is equivalent to {n; X,, € A} being unbounded with probability 1,
independent of the initial distribution. Note that if a set is Harris recurrent then it is recurrent.
We call A a regeneration set if A is Harris recurrent and for some r > 0 there exist some ¢ € (0, 1]

and some probability measure v on F such that

P"(z,B) >ev(B), ze€A
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for all B € £. We call a Markov chain with a regeneration set Harris (v-)recurrent or just a

Harris chain. There are mainly two situations when a regeneration set exists:

(a) When there is a Harris recurrent one-point set 7o (one can then take r =1,e =1, 4 =z

and v(B) = P(zy, B)).

(b) When, for some r > 0, a transition density f"(-,-) exists (i.e. when P" (z,dy) = f"(x,y)\(dy)
for some measure \) together with a Harris recurrent set A and a set S with 0 < A(S) < oo

such that f"(z,y) > e >0 for any x € A,y € S.

The process (X, )nen is called regenerative if there exist integer-valued random variables 0 <

Ty < Ty < Ty < ... which split the sequence up into independent cycles By, By, ..., i.e. if

By ={X,;0<n<Ty}, Bi={Xp;To<n<Ti},

By = {Xn; T <n< TQ},

are independent and if in addition Bj, Bs, ... have the same distribution. Note that (7,)nen, is
a renewal process. The process (X, )nen is called 1-regenerative if there exists a renewal process
(T )nen, which splits (X, )nen up into 1-dependent cycles By, By, .... Hence adjacent cycles might
be dependent, while cycles seperated by at least one cycle are independent. If (X,,),en has a
regeneration set then a renewal process (T},)nen, can be constructed from (Xp,)nen which makes
(Xn)nen either regenerative or 1-regenerative (see for example Asmussen (1987), p.151) .

The chain (X, )nen is called recurrent if it is ¢-irreducible and every set in £ = {A €
E; ¢(A) > 0} is recurrent. The chain (X,),en is Harris recurrent if and only if it is ¢-irreducible
and every set in £t = {A € &; ¢(A) > 0} is Harris recurrent. If P,(7(A) < oo0) = 1 and
if E(1(A)|Xo = z) < oo then A is called positive. We call (X, )nen positive if (Xy,)nen is ¢-
irreducible and if every set in £ is positive; otherwise we call (X,,)peny null . If the chain
(Xn)nen is Harris recurrent then there exists an invariant measure m, i.e. a o-finite measure 7

on £ with the property
m(A) = / P(z,A)r(dz), A€€&.
E

A set A € € is called a small set if for every B € £ such that ¢(B) > 0, there exists an integer
n > 1 such that infyeq Y i) Pi(z, B) > 0. If (Xp)nen is a ¢-irreducible Feller chain, then the
topological conditions on our space imply that a set A € £ is small if A is relatively compact

and ¢(A) > 0.
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Let © be a class of chains (Y},)pen on (E, E) which are ¢-irreducible for some ¢. A set A € € is
called a status set for © if, for each (Y,)nen € © with transition law {P(z,A4)},

(a) D02 P"(z,A) < o0, ¢raa.z€FE, if(Yy)nen is transient,
(b) lim,, 00 P"(z,A) =0, ¢-aa.xz € E, if (Y,)nen is null.

This notation is often somewhat abused by calling A a status set for (X, )nen if A is a status set
for © and (X, )nen € O. Note furthermore that a status set A is characterized by the fact that
its status is always the same as that of the underlying chain. In general it is difficult to show
that a set is status set of ©. But if we consider 5 = {(Yy)nen; (Yn) is ¢-irreducible for some ¢
and P(x, A) is a continuous function of x for every A € £} then every relatively compact set in
ET is a status set for .

Finally the ¢-irreducible Markov chain (X, ),en is called aperiodic if there does not exist an

integer d > 2 and disjoint cycles C4,Cs, ...,Cy € € such that for any j € {1,...,d}
P($,0j+1)=1, xECja

with Cd+1 == Cl and

d
(E\|JCi)=0.
i=1
With these notions we are now ready to state some criteria for finiteness of hitting time moments,

positivity, geometric ergodicity and existence of moments which we apply in this paper.

Lemma A4.1 (Theorem 3 of Tweedie (1983)(a))

Suppose that g is a non-negative measurable function on E. If, for some € > 0 and some A € £,

/E (W) Pla,dy) < gla) —¢, =€ A° (A1)
then
E(TA|X0=£E)§9(€—$), z € A°.

Theorem A4.2 (Theorem 9.1 of Tweedie (1976))
Suppose (X )nen is ¢-irreducible, and let g be a non-negative measurable function on E. The

chain (Xp)nen is positive if there exists € > 0,0 < oo and a status set A for (X, )nen such that
(A.1) holds and

/C g(y)P(z,dy) <0, ze€A. (A.2)
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Theorem A4.3 (Theorem 4 of Tweedie (1983)(a))
Suppose (Xp)nen is aperiodic positive Harris recurrent. Moreover, g is a non-negative measurable

function on E and A is a small set, and that

SUP/ 9(y) P(z,dy) < co.
r€AJE

If g and A satisfy (A.1) then (X,)nen is geometric ergodic with stationary distribution =, i.e.

there exists a p < 1 such that
p " |IP*(z,) =x ()| =0, n— oo,
for every x € E, where || - || denotes total variation of signed measures on &.

Theorem A4.4 (Theorem 3 of Tweedie (1983)(b))

Suppose that (Xp)nen is aperiodic and Harris recurrent with w(E) = 1. If A is small and if

sup/ 9(y)P(z,dy) < oo
TEA c

holds for some non-negative measurable g for which there exists € > 0 such that

| swPe.d <1 -y, sea (A3)

and which is bounded away from 0 and oo on A, then

/E g(w)m(de) < oo,

and further, for some p <1,

[ 1P ) = wOllgatds) = 0", > o,
E

where ||p|lg := supjni<g [ B(y)p(dy) for any signed measure p.
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