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Abstract

The implementation of large-scale finite-element simulations on distributed systems
requires specific memory management and disk I/O handling. This is due to the
immense spatial and temporal resolutions and the grade of heterogeneous paralleliza-
tion, i.e. hybrid MPI/OpenMP. In this thesis, a new approach for storing, visualizing
and restoring (referred to as checkpointing) simulation data in the sam(oa)2 project is
presented, introducing a parallel storage system based on the HDF5 and XDMF file
formats. The presented implementation measurably reduces disk space usage and file
system strain, while improving run-time performance compared to previous output
formats.
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1 Introduction

1.1 The sam(oa)2 Project

The sam(oa)2 software project, designed constructed and implemented by Oliver Meister
in 2016 is a framework written in Fortran for fluid dynamic problems primarily in the
field of geosciences [5]. It employs a finite-element or finite-volume approach to provide
high scalability on typical high-performance systems, such as the LRZ CoolsMUC-2
cluster [3] used in this thesis. The numerical problems are formulated as a set of partial
differential equations, which are solved by discretization using said finite-element
methods.

1.1.1 Adaptive Refinement

One of the key features of this framework is the ability to dynamically adapt the
domain’s refinement in respect to element size and count, allowing for focus of compu-
tational power on critical simulation parts. This is achieved by partitioning the quadratic
domain recursively into half-sized right-angled isosceles triangles, and traversing them
according to a Sierpinski space-filling curve [5] as can be seen in figure 1.1.

Depending on the relative change or importance of an element, it may be split into
two when additional spatial resolution is needed. Similarly, neighboring triangles may
be merged when a low amount of change occurs, freeing computational power. These
operations are referred to as refine and coarsen, generally performed in an adaption
traversal.

Figure 1.1: Adaptive triangular mesh, taken from [5], p. 16
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1 Introduction

Sections of the traversal curve are then distributed across all available compute
resources to be traversed, while making sure that the load (i.e. the number of elements
crossed by this section) is as balanced as possible. As a result of this strategy, the
simulation maintains an efficient work distribution across the available compute hard-
ware (see section 1.1.3). Consequently, in order for the framework to efficiently process
and parallelize operations on cells, those operations have to be implemented using a
traversal.

1.1.2 Shallow Water Equations

One of the applications of the sam(oa)2 framework is computing numerical solutions for
the Shallow Water Equations, or SWE for short. These equations can be derived from the
Navier–Stokes equations by depth-integrating [9], assuming some simplifications - such
as that the spatial horizontal scale of the domain (i.e. its height) is much smaller than
its vertical scale.

These equations can then be used to model large-scale tsunami simulations [4],
requiring the solution of a nonlinear Riemann problem. Luckily, several numerical
approaches exists, and some were implemented in the SWE module of sam(oa)2. Here,
the Riemann problem is solved amongst others by a Roe Riemann solver [4].

This specific use case of the framework is the starting point and environment for the
work done in this thesis.

1.1.3 Parallelization Model

The sam(oa)2 framework uses a heterogeneous parallelization approach, consisting of
thread-level and node-level parallelism. Thread-level parallelism is achieved with the
OpenMP [8] (Open Multi-Processing) compiler extensions. Node-level work parallelism
is made possible by using the Message Passing Interface, or MPI [6] for short.

Figure 1.2 shows an example configuration, using two nodes with two threads each,
computing a problem split into sixteen sections.

2



1 Introduction

Problem of size 16
Sections 1 to 16

MPI Node #1

Problem of size 8
Sections 1 to 8

Thread #1

Problem of size 4
Sections 1 to 4

Thread #2

Problem of size 4
Sections 5 to 8

MPI Node #2

Problem of size 8
Sections 9 to 16

Thread #1

Problem of size 4
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Problem of size 4
Sections 12 to 16

Node-Level Parallelism Thread-Level Parallelism
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OpenMP

OpenMP
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MPI

Figure 1.2: Example of heterogeneous parallelization
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2 Scope of this Thesis

The stating point for all work done in this thesis is the existing sam(oa)2 project, and
specifically the SWE module, as mentioned in chapter 1. Due to several shortcomings of
the previously existing XML-based output writer (see 6), such as a disproportionately
high amount of individual files, and general low performance, a new XDMF [16]
and HDF5 [12] (see chapter 3) based writer was implemented (see section 4.3), which
improves on said problems.

Additionally, it was ensured that the generated output files could be visualized
using the ParaView [2] software (see section 4.5) just as before. This was done to ease
migration from the previous file format. The module was also extended to be able
to read generated output files back in, in order to continue an aborted or crashed
simulation. This allows for reentrant simulations, and thus for more efficient compute
resource usage, and is referred to as checkpointing (see section 4.4).

A special focus was laid on parallel performance, or at least parallel compatibility.
This ensures smooth integration of the new module into the existing heterogeneous
OpenMP [8] and MPI [6] environment, resulting in a performance several times better
than the existing solution (see chapter 5).
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3 Utilized Storage Technologies

3.1 The Hierarchical Data Format (HDF)

The Hierarchical Data Format version 5, or HDF5 for short, is a binary data format
developed and supported by the HDF Group [10]. Its high performance, parallel
capabilities and excellent handling of huge datasets did popularize it in all sorts of
scientifically and industrial applications [12].

3.1.1 History

The HDF file format was originally developed at the National Center for Supercomputing
Applications [13] at the University of Illinois at Urbana-Champaign [14] as a general and
portable scientific data format [10]. The latest version 5 offers many advantages above
the previous version 4; such as a unified and simplified API, and support for much
larger datasets. Nevertheless, version 4 continues to receive support to maintain
backwards compatibility.

3.1.2 Internal structure

A HDF5 file consists of groups and datasets. As the verb hierarchical in its name implies,
these elements are organized in a graph-like structure; similar to the tree of a traditional
file system such as FAT32 or NTFS. In fact, a HDF5 file could be understood as a kind
of sophisticated Microsoft Windows cabinet file or Unix Tarball, but storing raw datasets
instead of files. However, unlike traditional file systems, HDF5 groups may be linked
not only in the shape of a hierarchical tree, but also in an arbitrary graph. This allows
for cyclic linkage and data deduplication.

The HDF5 file itself is structured in two main parts, a small section of metadata
containing symbols and type information, and a large raw data store. Due to the
individually accessible metadata, the structure of the file and the location of any dataset
can be read with minimal effort, avoiding having to search in the potentially huge
data section. Datasets can be of any dimension and rank, and contain data of any
standard types such as integer, floating point numbers and character strings, or even
user defined composite types.

5



3 Utilized Storage Technologies

3.1.3 Example

1 HDF5 "example.h5" {
2 GROUP "/" {
3 DATASET "Foo" {
4 DATATYPE H5T_IEEE_F32LE
5 DATASPACE SIMPLE { ( 3, 2 ) / ( 3, 2 ) }
6 DATA {
7 (0,0): -0.8, -0.5,
8 (1,0): 0, 0.5,
9 (2,0): 0.5, -0.75

10 }
11 }
12 DATASET "Bar" {
13 DATATYPE H5T_STD_I32LE
14 DATASPACE SIMPLE { ( 1, 3 ) / ( 1, 3 ) }
15 DATA {
16 (0,0): 0, 1, 2
17 }
18 }
19 }
20 }

Listing 3.1: Text definition of an exemplary HDF5 file

To further clarify the structure of a HDF5 file, a short example is given in text form
in 3.1. This file contains two datasets, Foo and Bar. Foo stores three records of size two
and type 32 Bit Float (see lines 3-11), whereas Bar stores one record of size three and
type 32 Bit Integer (see lines 12-18).

The schema 3.1 provides a visual presentation of the previously defined HDF5 file.
Note the metadata and the raw data sections; marked in blue and red respectively.

3.2 The Extensible Data Model and Format (XDMF)

The XDMF format is a widely supported composite XML-based file format that may
be validated according to its formal definition [18]. A XDMF file is used to further
augment one or more HDF5 files by providing semantic annotations. Thus, it is
inherently coupled to the HDF5 file format. The additional semantic information
may be used by data processing programs like ParaView [2] to correctly visualize the

6



3 Utilized Storage Technologies

Example HDF5 File
Metadata

General Data
Dataset Foo Description

Type 32 Bit Float
Size 3 x 2

Dataset Bar Description
Type 32 Bit Integer
Size 1 x 3

Dataset Foo
-0.8 -0.5
0 0.5
0.5 -0.75

Dataset Bar
0 1 2

Table 3.1: Visual representation of the file defined at 3.1

underlying HDF5 datasets.

3.2.1 Motivation

Although HDF5 already contains a metadata section, XDMF encodes additional in-
formation which goes far beyond the HDF5 metadata section. Usually, a HDF5 file
only contains the absolute minimum of metadata necessary to locate and read datasets
correctly, but no semantic information about how to interpret the stored data. This is
where XDMF comes into play, providing typically a specification on how to interpret
the raw HDF5 data as geometric data and associated attributes across a special or
temporal domain.

A single XDMF file may reference multiple HDF5 files, essentially acting as a consoli-
dating index structure. This is especially useful when selectively loading steps from
a series stored across multiple HDF5 files is required. The application may lookup
the HDF5 dataset positions (in the so called heavy data) using the light XDMF index,
resulting in higher performance due to reduced disk I/O.

3.2.2 Example

In order to show the relation between XDMF and HDF5, the file 3.2 augments the
example HDF5 data file 3.1 from section 3.1. Using this file, the HDF5 data may be
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3 Utilized Storage Technologies

interpreted as a series of spatial grids across a temporal axis. Each grid object may be
different, however, this file only defines one time step. This lone time step contains a
single triangle, which is defined using the Foo HDF5 dataset as vertex data, and the
Bar dataset as topology definition, i.e. vertex interconnection information.

Additionally, a cell-bound attribute SomeAttribute is defined and set to an immediate
value defined in the XDMF file itself. This practice is not recommended for large
amounts of attribute data, as it blows up and pollutes the XDMF file, which would
defy the idea of a lean and fast indexing structure.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Xdmf Version="3.0">
3 <Domain>
4 <Grid GridType="Collection" CollectionType="Temporal">
5 <Grid>
6 <Time Value="7" />
7 <Geometry GeometryType="XY">
8 <DataItem Format="HDF" NumberType="Float" Dimensions="3␣2">
9 example.h5/Foo

10 </DataItem>
11 </Geometry>
12 <Topology TopologyType="Triangle">
13 <DataItem Format="HDF" NumberType="Int" Dimensions="1␣3">
14 example.h5/Bar
15 </DataItem>
16 </Topology>
17 <Attribute Name="SomeAttribute" Center="Cell">
18 <DataItem Format="XML" NumberType="Int" Dimensions="1">
19 42
20 </DataItem>
21 </Attribute>
22 </Grid>
23 </Grid>
24 </Domain>
25 </Xdmf>

Listing 3.2: Example XDMF file referencing the HDF5 file defined at 3.1

The rendering 3.1 shows an approximation of the interpretation of these XDMF and
HDF5 files, which could be generated by an application such as ParaView. Note the cell

8



3 Utilized Storage Technologies

2: (0.5, -0.75)

1: (0, 0.5)

0: (-0.8, -0.5)

Time = 7

SomeAttribute = 42

Figure 3.1: Approximate rendering of the XDMF file defined at 3.2

bound arbitrary attribute SomeAttribute and the time information.

3.2.3 Implementation Notes

Although the XDMF community provides an API for C++, Python, and Fortran [17], for
this thesis a custom XDMF output library was developed. This is due to the insufficient
flexibility of the official XDMF API at the time of writing, as fine-grained control over
the generated HDF5 and XML files was needed. Also, the official XDMF library only
provides rough MPI parallelization support, where again precise control was needed
(see chapter 5).

The XML file was written by utilizing raw Fortran text output, and the HDF5 files
were generated and read back using the much more sophisticated, albeit significantly
more complex HDF5 API [11]. Similarly, reading XML files was made possible by the
excellent Fortran Library for XML [1] (FoX for short), which implements a full XML
DOM parser.

9



4 Storing and Restoring Domains

4.1 Patch Geometry

Patch geometry describes the concept of further dividing all cells into sub-cells. The
amount and method of tessellation is the same for each cell, which then becomes a
patch.

Only those patches are individually traversed by the sam(oa)2 framework, not the
sub-cells.

(a) Patch order = 1 (b) Patch order = 2

(c) Patch order = 3 (d) Patch order = 4

Figure 4.1: Patch geometry for different patch orders

Figure 4.1 shows a tessellated cell with different grades of subdivision, referred to as
patch order. Each patch contains c = p2 cells, p being the patch order.

The XDMF writer does not output patch information for visualization purposes, but
stores it separately in order to correctly reconstruct a domain when needed.

10



4 Storing and Restoring Domains

Figure 4.2: Refinement tree of domain shown in figure 1.1, taken from [5], p. 16

4.2 Persistent Refinement Trees

The way a domain is partitioned into cells is referred to as its Refinement tree. This stems
from the fact that the state of refinement can be expressed using a binary tree. Figure 4.2
shows the refinement tree for the introductory partitioning example shown in figure 1.1.
Only the leaves of this tree are actual cells contained in the domain, intermediate nodes
can be interpreted as cells which have been previously refined.

To ensure the independent cell processing required for parallelization, the framework
traverses a cell using only the data associated with this exact cell. The framework does
not explicitly provide the refinement tree, nor the traversal curve (see section 1.1.1). In
fact, the refinement topology of a domain is implicitly stored by the order of cells on a
series of processing stacks [5]. Only the level of refinement of the currently traversed
cell is accessible, this corresponds to the depth of a leaf in the refinement tree.

The restoration functionality has to be implemented in form of an recursive adaptive
traversal, and always starts with a non-partitioned domain (see section 4.4). Because
of this algorithms recursive nature, there needs to be a system to check whether an
arbitrary cell is adequately refined.

To provide such functionality, an index to look up cells based on their level of refine-
ment and position is stored alongside the cell data. Several different data structures
and techniques were evaluated in terms of access speed and disk space requirement. It
was found that a hash table provided great access performance compared to not using
any indexing structure. Not having any indexing structure would require scanning the
entire list of cells. The hash table does require too much additional disk space, like
storing the full refinement tree would.

4.2.1 Position-Based Cell Hashing

The employed hash function maps the spatial position and orientation of a cell to a
32 Bit signed integer. It is numerically stable for refinement levels up to about 29,

11



4 Storing and Restoring Domains

A

B

C
D

Figure 4.3: Sample domain with quadtree used for hashing

because each level of possible refinement (i.e. maximum domain refinement depth) on
average requires one Bit, and the cell orientation requires two Bits. Although the hash
is computed internally using 64 Bit logic, later steps of the implementation only handle
the lower 32 Bits.

Figure 4.3 shows a sample domain with some degree of refinement. Because of
the right-angled nature of all cells, and the way they are split down the middle, it is
possible to fit every cell into a quadtree as shown. The quadrants are then numbered
anti-clockwise from pi = 0 to 3, and each possible eight orientations and shapes (see
Plotter Type in table 4.2) of a cell is assigned an integer from w = 0 to 7.

To compute the hash key of a cell, first its bounding sub-quadrant is determined by
a recursively descending binary coordinate comparison. During this decent to depth
n, the indices of each surrounding quadrant at depth i are joined into a string of bits.
Following that, the cells shape index w is joined with this bit-string:

k(E) = w ∨
n∨

i=0

(pi << (i ∗ 2 + 3)) (4.1)

With the operator << denoting a bit-wise left shift. In figure 4.3, the theoretical hash
key values of cells A to D would be as follows:

k(A) = 0∨ 7 = 0b 111 = 7 (4.2)

k(B) = 0∨ 6 = 0b 110 = 6 (4.3)

k(C) = (1 << 3) ∨ 0 = 0b 01 000 = 8 (4.4)

k(D) = (1 << (2 + 3)) ∨ (2 << 3) ∨ 7 = 0b 01 10 111 = 55 (4.5)

12



4 Storing and Restoring Domains

In the actual implementation, the hash function additionally accounts for several
special cases and guarantees a nonzero result.

4.2.2 Double Hashing

The hash table itself is implemented using double hashing to resolve collisions. Given
the maximum amount p of cells to store, the size h of the hash table is computed by

h = nextprime(2p) (4.6)

with nextprime(n) being a function which returns the smallest prime that is greater
than n. The factor of 2 ensures a maximum load factor of 50%, ensuring good access
performance by reducing the amount of hash collisions. The actual hash function h(k, i)
is given by

h(k, i) = (h1(k) + i ∗ h2(k)) mod h (4.7)

h1(k) = k mod h (4.8)

h2(k) = k mod prevprime(h) (4.9)

with prevprime(n) being a function which returns the biggest prime that is smaller
than n, similar to the nextprime(n) function described above. The parameter i denotes
the number of previous hash collisions.

4.3 Storing Cell Data

4.3.1 Storage Layout

As demonstrated in chapter 3, the new writer uses a hybrid file format consisting of
one XDMF index file and several HDF5 database files.

Each MPI node stores the cell data of all sections assigned to this node in local
memory buffers. These buffers are then written to the corresponding HDF5 datasets in
parallel using concurrent MPI-IO via parallel HDF5 (see chapter 5).

Because the memory layout of these buffers was deliberately chosen to match the
internal HDF5 storage layout, writing to a dataset is very fast. Data only has to be
copied from memory onto the disk, not converted or reordered.

13



4 Storing and Restoring Domains

HDF5 Database

The generated HDF5 files are internally structured using HDF5 groups. The domain
data is stored in several datasets, as shown in table 4.1. All datasets are made up of
32-Bit records of type integer or floating point number.

According to the table 4.1 and the corresponding symbol definition in table 4.2, the
disk space usage of a single step encoded in a HDF5 file is about

S = ((8 + v)c + 2h + dcv) ∗ 32 Bit (4.10)

This expression can be further simplified by assuming the default values used in the
SWE implementation, according to table 4.2:

S = (17c + 2h) ∗ 32 Bit (4.11)

Using the definition of h (see table 4.2) and writing the number of cells as the product
of the number of patches as p, and the number of cells in a patch as r, the equation
becomes

S = (17pr + nextprime(2p)) ∗ 32 Bit (4.12)

Thus, the disk space for one step grows linearly with the amount of patches and the
amount of cells in a patch. Because the maximum amount p of patches is calculated by

p = 2k (4.13)

with k being the refinement depth, the disk space grows exponentially in respect to
the refinement depth.

XDMF Index

The accompanying XDMF file stores additional meta information as described in
section 3.2. In addition to defining the vertex geometry and topology, and exposing
the HDF5 cell attributes (see table 4.1), it adds several more attributes as according
to table 4.3. This allows for continuation of the simulation, using the stored data to
reconstruct the domain and simulation state.

4.4 Reconstructing Domain Data

The input module parses the XML file and reads the metadata. It reinitializes the
application with the previous command line arguments stored in the XML file.

14



4 Storing and Restoring Domains

Dataset path Name Data type Width Length Notes

/step/g Geometry Float d c * v Vertex coordinates
/step/p Topology Integer v c Vertex indices
/step/t Refinement Integer 2 h Checkpoint data
/step/a/b Bathymetry Float 1 c
/step/a/d Depth Integer 1 c Refinement level
/step/a/f Water Momentum Float 2 c
/step/a/h Water Height Float 1 c
/step/a/k Water Level Float 1 c
/step/a/l Plotter Type Integer 1 c Cell triangle type
/step/a/o MPI Rank Integer 1 c

Table 4.1: Layout of a HDF5 output file.

Symbol Explanation

v Number of vertices per element. Set to 3 vertices for triangles in SWE.
d Number of spatial dimensions per vertex. Set to 2 dimension for a plane in

SWE.
c Number of cells in the domain. This includes sub-patch cells.
h Size of the topology hash table. Equal to h > 2 ∗ p where h is the smallest

fitting prime and p the number of patches in the domain.

Table 4.2: Explanation of the symbols used in table 4.1

Name Context Notes

CommandLine Global The command line string the application was invoked with
FileStamp Global The file name of the output data
Time Step local The current simulation time of this step
Step Step local The number of this simulation step
DeltaTime Step local The current time step

Table 4.3: Additional attributes defined in the XDMF output file.

15



4 Storing and Restoring Domains

It also sets required runtime meta data, such as the current step number and elapsed
simulation time.

4.4.1 Cell Adaptation

The cell adaption traversal checks whether the current cell exists in the checkpoint
database. This is done by first hashing the cell as described in section 4.2.1, and then
looking it up in the previously mentioned hash table. If the cell is found, it is marked
as completed and subsequently populated with simulation-related data, such as water
height or bathymetry information.

If the cell is not found, it is refined by splitting it into two halves. This recursive
procedure runs until each cell is marked as complete.

This traversal is able to be run in parallel, because each cell can be evaluated
independently and the HDF5 dataset allows for concurrent read access.

4.5 Visualization and Verification

4.5.1 The ParaView Software

The ParaView application, developed and supported by KitWare, Inc. [2], provides a
highly flexible system for scientific data visualization and analysis. Conveniently, the
XDMF format is supported out of the box, without the need of any additional software
packets.

4.5.2 The HDFView Utility

The HDFView application is being developed and distributed by the HDF5 Group [12].
It provides a graphical interface to display and manipulate the internal structure of
HDF5 files.
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5 Parallelization

5.1 The Message Passing Interface (MPI)

The Message Passing Interface, MPI for short, is a software library used to communicate
between nodes in cluster. It is standardized by the MPI Forum [6] and typically
implemented by the compiler manufacturer.

5.1.1 Collective and Individual I/O

MPI-I/O is a subsystem of the MPI library, providing general and parallel access to the
file system. It is capable of exposing special features of the underlying file system, such
as true concurrency supported by various file systems used on compute clusters.

There are two modes of operation supported by MPI-I/O when accessing a file,
independent and collective access. Using independent access, the MPI I/O system
immediately performs the requested I/O operation.

In collective mode on the other hand, all participating MPI nodes are required to
participate on the same I/O operation, which is then aggregated and run in one step
by the MPI-I/O system. For example, small consecutive write operations may be joined
into one large block written to the disk. This tremendously reduces the amount of I/O
operations performed, but only contributes to performance if all nodes participate at
roughly the same time. Otherwise, the nodes will have to wait for each other.

5.1.2 Parallel HDF (PHDF)

Parallel HDF5 is a version of the HDF5 library developed with MPI support in mind. It
is specifically optimized to be run on distributed systems supporting concurrent file
access via MPI-I/O.

This enables a distributed application running on multiple nodes to perform parallel
read and write operations on the same file resource.

Figure 5.1 compares the performance of the two MPI-I/O output modes, using the
same scenario as in section 6.2. Clearly, the benefit of grouping I/O operations does
not compensate for the additional synchronization time needed in this use-case.
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Figure 5.1: Runtime comparison of different MPI output modes.

5.2 Parallel Distributed Hash Tables

5.2.1 Motivation

The hash table described in section 4.2 has to be read- and writeable by all nodes, while
still guaranteeing integrity. Ideally, this would happen in parallel. However, due to the
nature of a hash table and its collision handling, a clear order of operations has to be
establishes to guarantee data integrity.

If only a single node was used to store the hash table in memory, this node could
run out of available memory. Also, because write and read requests to the hash table
need to be atomic - to guarantee its integrity - and thereby synchronized using locking,
parallel access performance would drop.

5.2.2 MPI Remote Memory Access (RMA)

MPI traditionally supports synchronous communication, i.e. blocking send and receive
operations between two and multiple nodes, and asynchronous communication in form
of Remote Memory Access, RMA for short.

MPI RMA allows for data modification on another node without the target note

18



5 Parallelization

actively having to execute any logic. This mechanism is referred to as passive target
synchronization. Instead of explicitly participating in the data exchange, the target node
marks a section of memory (a window) as public, and the MPI library handles all read
and write operations concerning this window [15].

To combat the issues concerning the implementation using only a single node, the
hash table is segmented into as many parts of the same size as there are nodes, and
then those segments are distributed across the pool of nodes. Each node can then access
the full hash table by computing which node stores the requested segment, and then
accessing it using atomic MPI RMA operations. Although this still requires exclusively
locking the target node, this leads to a higher degree of concurrency due to parallel
inter-node communication, while still guaranteeing integrity.

5.3 Limitations

Unfortunately, at the time of writing, parallel HDF5 only allows for node-level concur-
rency, but does not support multithreaded access. Thus, all HDF5 related operations
have to be performed in a single thread on each node.

To still enable parallel output data preparation across threads, all threads write into
a shared memory buffer, which is then written out to the disk when all threads are
finished.
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6 Results

All tests were performed on the LRZ CoolMUC-2 cluster, consisting of Intel Xeon E5-2697
v3 ("Haswell") CPUs, with 28 cores per node and 64 GB of RAM per node [3]. For every
simulation step, an output step was written.

6.1 File System Usage and Strain

One of the main goals of the XDMF-based output format was to reduce the number of
output files which were generated, compared to the previously existing XML writer.
Because the HDF5 format allows for parallel access via MPI, the information in these
files was consolidated into a single file. Figure 6.1 compares the amount of files for a
hypothetical test case.

Figure 6.2 compares the total amount of disk scape required for the same hypothetical
test case.

6.1.1 Interpretation

Because the XML writer generates a file for each output step, each MPI node, and each
section on every node, the amount of files generated grows exponentially. The XDMF
writer on the other hand only uses a constant amount of files, configurable by the user.
This tremendously reduces the stress on the file system, as those systems are typically
built to handle about 216 to 232 files.

The total disk space used by the XDMF writer is less than that used by the XML
writer. This is mainly due to HDF5 being a binary data format, and thus having a
higher data density than the text-based XML format. Also, the total disk space used by
the XML writer is, just as the amount of files, independent of node count.

6.2 Strong Scaling

For the purpose of testing, the Radial dam break scenario of the SWE module was selected.
Dynamic cell adaption was disabled to ensure reproduceable and uniform results.

Figure 6.3 shows a rendering of this scenario, simulating 2000 seconds. Subsection
(a) displays the bathymetry, black denoting deep (10 meters below sea level) and gray
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6 Results

shallow (5 meters below sea level) shores. In this case, a circular pit exists in the center
of the domain. Subsections (b) to (f) show the progress of a 10 meter high water column
with a smaller diameter than the pit slumping down and creating waves on the pit
borders. Red denotes a high water column height, and blue a lower one.

Strong scaling evaluates how the program runtime behaves when a fixed problem of
size S is computed by a varying amount N of nodes. Thus, each node has to compute a
sub-problem of size

Sn =
S
N

(6.1)

A perfectly scaling program would complete after

Tn =
N
T1

(6.2)

seconds, with T1 being the program runtime on a single node.

6.2.1 Runtime

In the test case plotted in figure 6.4, a domain containing

S = 220 = 1048576 (6.3)

cells was simulated for 10 steps. Figure 6.4 shows the total runtime in seconds for the
pre-existing XML writer, the new XDMF-based writer. Figure 6.5 shows a configuration
without any output enabled. The XDMF writer was tested in two configurations,
with and without emitting checkpoint data required for restoring the simulation in a
potential subsequent run.

Interpretation

The diagram shows a considerable performance loss for all writers in comparison to
the configuration without any output enabled (see figure 6.5). This is expected, because
the required I/O operations to store the generated data on the disk are expensive,
compared to the in-memory calculations making up the rest of the program.

The XML writer experiences a performance penalty for each additional node, which
for this test case is greater than the performance gain achieved by added computational
power. This leads to a total runtime increase as the number of participating nodes
increases. Even though the XML writer is able to write simultaneously to the disk from
every node by writing to multiple files, the sheer amount of files and the accompanying
file system strain dampens the theoretical performance gain noticeably.
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The XDMF writer does not suffer from the same performance penalties as the XML
writer, because it writes only to a single HDF5 file. MPI-I/O enables all participating
nodes to write to the file at the same time, reducing the need for operation sequencing
due to file system locking. As figure 6.4 shows, the runtime of the XDMF writer stays
more or less constant. This demonstrates that the performance loss due to a more
complex disk I/O with an increasing amount of nodes can be compensated by the
performance gain in other sections of the program.

6.2.2 Parallel Efficiency

The parallel efficiency can be computed by comparing the theoretical linear scaling
performance to the actual scaling performance. Thus, the parallel efficiency is given by

Ei =
T1

N ∗ Ti
(6.4)

A program with ideal scaling (i.e. linear) would have a parallel efficiency of 1.
Figure 6.6 shows the scaling efficiency, similar to the graph in section 6.2.

Interpretation

While the program exhibits an efficiency of around 70% - 90% without any output
enabled (see figure 6.7), the performance degrades when using any output writer. The
XDMF writer manages to outperform the XML writer by about one order of magnitude.

6.2.3 Speedup Ratio

The speedup ratio is a metric for how much faster the program becomes when more
nodes are added and is computed by

Ri =
T1

Ti
(6.5)

Figure 6.8 shows the speedup ratio, similar to the graph in section 6.2 and section 6.2.2.
This metric further supports the conclusions made in the previous sections.

6.3 Weak Scaling

Weak scaling evaluates the program runtime while giving each node a sub-problem of
the same size to compute. Thus, the total problem size is directly dependent on the
number of participating nodes.
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6.3.1 Runtime

In the test shown in figure 6.10 and figure 6.12, a simulation containing

S = 210+k, k = [0; 5] (6.6)

cells was computed by N = 2k nodes. This simulation used the same dam break
scenario as the previous test (see section 6.2). Each node had a sub-problem containing

Sn =
210+k

2k = 210 (6.7)

cells to compute. Figure 6.10 compares the runtime of different output modes,
figure 6.11 serves as a comparison where no output writer is enabled.

Interpretation

Similar to the strong scaling tests performed in section 6.2, the XDMF writer generally
displays a similar scaling behavior to the XML writer. The XDMF writer manages to
perform consistently better.

6.3.2 Parallel Efficiency

Analogously to section 6.2.2, the parallel efficiency for weak scaling can be computed by
comparing the theoretical linear scaling performance to the actual scaling performance.
Thus, the parallel efficiency for weak scaling is given by

Ei =
T1

Ti
(6.8)

Just as before, a program with ideal scaling (i.e. linear) would have a parallel
efficiency of 1.

Interpretation

As can be seen in figure 6.12, the XDMF writer exhibits a similar scaling behavior as
the XDMF writer. However, it manages to scale consistently better. Figure 6.13 serves
as a comparison to a configuration without any output writers active.
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(a) Bathymetry (b) Water Height, t = 0 s

(c) Water Height, t = 300 s (d) Water Height, t = 600 s

(e) Water Height, t = 1300 s (f) Water Height, t = 2000 s

Figure 6.3: Radial dam break scenario
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Figure 6.6: Strong scaling: Parallel efficiency of different writers
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Figure 6.12: Weak scaling: Parallel efficiency of different writers
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7 Implementation Notes

The complete source code can be retrieved from https://gitlab.lrz.de/samoa/samoa.

7.1 Command Line Parameters

The XDMF implementation contributes the following new command line parameters:

• -xdmfoutput Enables the XDMF output writer. Disabled by default.

– -xdmfspf 100 Sets the amount of steps per HDF5 file. 100 by default.

– -xdmfcpint 1 Sets the checkpoint per output step interval. 1 by default. Set
to 0 to disable checkpointing.

• -xdmfinput filename.xmf Restores the simulation from the file filename.xmf.
Disabled by default.

7.2 Code Structure

Although the community supporting the XDMF format provides an official API for deal-
ing with the format, a custom implementation was established due to the inflexibility
of the official API in regards to the underlying HDF5 structures.

The provided code is split into two main parts, the base library functions and a
reference implementation for the SWE (see section 1.1.2) module. For both the input and
output traversal subroutines the base library provides a generic implementation, which
is wrapped and augmented by a module-specific implementation. Correspondingly,
the traversal data type is also wrapped and extended.

The base library consists of the following files residing in src/XDMF:

XDMF_compilation_control.f90 Compiler definitions and macros
XDMF_config.f90 Extensions to the configuration and CLI reader
XDMF_data_types.f90 Common data types used by the library
XDMF_hdf5.f90 Helper functions for handling HDF5 files
XDMF_math.f90 Handles prime numbers and hashing
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7 Implementation Notes

Modules handling the output are found in src/XDMF/output:

XDMF_output_base_data_types.f90 Base type of the output traversal data structure
XDMF_output_base.f90 Base implementation of the output traversal
XDMF_xmf.f90 Helper functions for generating XMF files

Similarly, modules handling the input are found in src/XDMF/input:

XDMF_fox.f90 Namespace for the FoX library
XDMF_initialize_base_data_types.f90 Base type of the input traversal data structure
XDMF_initialize_base.f90 Base implementation of the input traversal

The reference implementation of the XDMF writer and reader in the SWE module
consists of these additional files in src/SWE:

SWE_XDMF_adapt.f90 Empty traversal needed by the framework
SWE_XDMF_initialize.f90 Specific implementation of the input traversal
SWE_XDMF_output.f90 Specific implementation of the output traversal

Multiple pre-existing files have been modified to integrate the new system. Notably,
Config.f90 and SWE/SWE.f90.

7.3 Compilation

For successful compilation, the HDF5 libraries, FoX libraries and compiler scripts have
to be properly configured and installed.

7.3.1 SCons

SCons, the build system used by the sam(oa)2 software, was extended by a few command
line options regarding the optional compilation of the XDMF system:

xdmf Boolean Enables XDMF support, disabled by default
xdmf_fox_dir Path string FoX library directory
xdmf_hdf5_dir Path string HDF5 library directory
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7.3.2 HDF5

The HDF5 library is required to be installed at version 1.10.4 or later. All code using
the HDF5 libraries has to be compiled using the h5fc and h5pfc wrapper scripts.

It is recommended to compile the library from source, because some nonstandard
configuration parameters are required:

–enable-parallel Enables MPI support
–enable-threadsafe Enables HDF5 to run in a multithreaded process
–enable-fortran Creates Fortran bindings
–enable-unsupported Allows nonstandard configuration
–enable-optimization=high Enables compiler optimization

7.3.3 FoX

The Fortran Library for XML [1] (FoX for short) library has to be linked either statically
or dynamically to the program. Support for the DOM module has to be enabled at
compile-time.

-DFoX_ENABLE_DOM=1 Enables DOM support

7.3.4 Installation scripts

Several shell-scripts are provided in scripts/XDMF, simplifying the process of download-
ing, configuring and installing the required libraries. The scripts install_all_dev.sh
and install_all_hpc.sh may be invoked with an optional destination directory as
the first command line argument, otherwise they will install the required libraries into
/opt/samoa_xdmf_libs and /̃local, respectively.

The development variant will attempt to compile the libraries using the GNU Compiler
Collection without any MPI support, while the HPC variant will attempt to use the Intel
Compiler with support for MPI.

However, the scripts are easily adaptable to use other compilers or MPI variants.
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8 Future Work

8.1 Extension to 64 Bit

In order to process more than 231 cells and approximately 29 levels of refinement,
The XDMF output module would have to use 64 Bit counters and offsets internally,
as well as in the handling of HDF5 files. Although the hash computation itself (see
section 4.2.1) already operates purely on 64 Bit integers, other variables would need to
be expanded to provide full 64 bit support.

The HDF5 library already supports data offsets in 64 bit, but the record data types
would have to be upgraded. This of course would entail double memory and disk
space usage.

8.2 Adaption to Other Cell Types

The original SWE module is not the only use case for the sam(oa)2 framework, other
modules include ADER-DG and FLASH, which both take a different approach to
approximating inner-cell geometry.

Adaptation of the XDMF writer and reader should be possible without many issues,
as the substantial core part is independent of any specific module (see section 7.2).

8.3 Coarse Output

Coarse output would condense multiple neighboring cells into one, but just for the
output. This would entail a reduced disk space usage and higher output performance,
albeit less precision.

This would allow to quickly and visualize very large or dense domains.
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