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Abstract: The paper presents a local stability analysis for machine speed control of wind turbine
systems (WTS) in regime II.5, where the control objective is set-point reference tracking of the machine
speed via a PI-controller. Stability criteria for the controller parameters are derived. Based on these
criteria, the controller parameters are chosen by pole placement. Moreover, a model-based tuning
rule is proposed which leads (i) to a stable and (ii) to an accurate and fast control performance.
The control system is additionally augmented by anti-windup (AWU) and saturation (SAT) strategies
to enhance its performance. Simulation results illustrate stability and tracking performance of the
closed-loop system.
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1. Introduction

The increasing amount of wind power for electrical power generation (12.4 % in Germany 2016 [1],
p. 7) necessitates a detailed understanding of wind turbine systems (WTS) to be capable of fulfilling
the increasing requirements [2] (e.g., more strict grid codes) for wind turbine operators.

This paper discusses machine speed control of WTS in regime II.5. Figure 1 shows the (simplified)
dependence of machine speed reference ωm,ref (in rad

s ) on the wind speed vw (in m
s ) for different

operation regimes (for details see e.g., [3–5]). Each regime has its own machine speed control system.
In regime I, the wind speed vw is too small to achieve an economic operation of the WTS, whereas, in
regime IV, the wind speed vw is too high and would overload the mechanical structure of the WTS [6].
Hence, in both regimes, the WTS is not operated. In regime I, it is freely floating (without active speed
control) to be ready to start its operation as soon as the wind speed exceeds the cut-in wind speed vin

w
(transition to regime II). In regime IV, the WTS is usually at standstill for safety reasons.

In regime II, the machine speed ωm (in rad
s ) is controlled by a nonlinear controller (see e.g., [7,8])

to achieve an optimal and constant ratio ωm
vw

. This ensures maximal power generation in regime II
(i.e., maximum power point tracking, for details see [6–8]). In regime II.5, the machine speed ωm is
limited by some ωmax

m (in rad
s ) to reduce e.g., acoustic noise (when the WTS is close to buildings). But,

then, since nominal power is not yet reached, the machine torque mm (in N m) and, hence, the output
power can still be increased [9]. Regime III is characterized by a limitation of both, machine speed ωm

and machine torque mm. In this regime, the pitch angle βt (in ◦) controls the machine speed ωm and
compensates for the increasing wind speed vw and wind power pw (in W) (see e.g., [10,11]).
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Figure 1. Machine speed reference for different operation regimes in wind turbine systems (based on
Figure 12-2 in [3]).

This paper focuses on regime II.5. In [12,13], it is explained that reasons for the machine speed
limitation are, e.g., “acoustic noise, loads or other design constraints” ([12], p. 488). In regime II.5,
neither the nonlinear controller of regime II (see e.g., [6,7]) nor the pitch controller of regime III (see
e.g., [2], Chapter 25) can achieve the goals of machine speed control in regime II.5: (a) tracking of the
constraint machine speed reference ωm,ref (= ωmax

m ) and (b) maximized power generation of the WTS.
A simple method to achieve (a) is “to implement a torque-speed ramp” [13], which is explained in
detail in [13,14]. This method has several drawbacks; e.g., the WTS does not operate at its maximally
achievable power generation and the “torque demand will be varying rapidly up and down the
slope” ([12], p. 489). To overcome these drawbacks, ref. [15] proposes the use of a simple PI-controller,
where the (optimal) reference torque mm,ref (in N m) is the controller output. Besides the benefit that a
PI-controller is a state-of-the-art controller and widely spread in industry, the use of the PI-controller
achieves both goals (a) & (b), and, additionally, is able to produce only small torque variations (see [12],
p. 489). Therefore, in the following, a PI-controller will be considered to control the machine speed ωm

via the machine torque mm in regime II.5. To the best knowledge of the authors, there does not exist a
(local) stability analysis and model-based tuning rule for a speed PI-controller in regime II.5.

This paper analysis the dynamical system (including mechanical system, speed control system
with PI-controller and underlying torque control loop) of a WTS in regime II.5. It will be shown that
a bad controller parameter design will cause instability of the closed-loop system. To avoid that,
model-based stability criteria for a stable closed-loop system are derived. Based on these criteria,
a tuning rule for the controller parameters is proposed which (i) guarantees (local) stability of the
closed-loop system and (ii) leads to an accurate and fast tracking of the machine speed reference ωm,ref.
Moreover, additional anti-windup (AWU) and saturation (SAT) strategies are applied to enhance the
control performance further.

The paper is organized as follows: Section 2 discusses the nonlinear dynamics of the system.
These dynamics will be linearized via Taylor series expansion in Section 3. In Section 4 the (linearized)
dynamics will be analyzed with respect to closed-loop system stability. Section 5 proposes a tuning
rule for PI-controller parameter design including the AWU & SAT strategies. Finally, in Section 6,
simulation results illustrate the theoretical results.

2. Dynamics of the System

Control objective is tracking of a machine speed reference ωm,ref in regime II.5 via a
proportional-integral (PI) controller. For the analysis, the machine torque reference mm,ref is considered
as control input, i.e., the control law is given by

mm,ref(t) = kixi(t) + kp (ωm,ref(t)−ωm(t)) (1)
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with proportional gain kp (in N m s
rad ), integral gain ki (in N m

rad ) and integral state xi (in rad). The dynamics
of the integral state xi are

d
dt

xi(t) = ωm,ref(t)−ωm(t) =: fxi (ωm, ωm,ref) , xi,0 = xi(0) . (2)

Hence, the tuning parameters are kp and ki which must be chosen carefully and properly to
achieve a stable closed-loop system with good tracking performance. Stability analysis and controller
design (tuning) are presented in Section 4 and Section 5, respectively.

2.1. Dynamics of the Mechanics

For the dynamics of the machine speed ωm with initial value ωm,0 = ωm(0) the following holds:

d
dt

ωm(t) =
1
θ

(
mt(t)

gb
−mm(t)

)
=

1
θ

(
1
2

ρwr2
t πvw(t)

3 cp (λt(ωm, vw), βt)

ωm(t)
−mm(t)

)
=: fωm (ωm, mm, vw, βt) , (3)

with total inertia θ > 0 (in kg m2), turbine torque mt (in N m), gear ratio gb > 0 (in 1), air density
ρw > 0 (in kg

m3 ), turbine radius rt > 0 (in m), wind speed vw > 0 (in m
s ) and power factor curve

cp ∈ C1 (in 1) which depends on tip speed ratio λt =
rtωm
gbvw

> 0 (in 1) and pitch angle βt. (3) is a standard
model of the machine speed dynamics in WTS and can e.g., be found in [16], ([17], Chapter 4).

2.2. Dynamics of the Underlying Control Loop of the Machine Torque

The capability to track the machine torque reference mm,ref results from an underlying control loop
of the machine torque (based on machine current control via a voltage source inverter and pulse-width
modulation). The dynamics of the machine torque control are quite fast (compared to those of the
mechanics) and are approximated via the first-order lag system (see e.g., [6])

d
dt

mm(t) = −
1

Tcl
mm(t) +

Vcl
Tcl

mm,ref(t)

(1)
= − 1

Tcl
mm(t) +

kiVcl
Tcl

xi(t) +
kpVcl

Tcl
(ωm,ref(t)−ωm(t)) =: fmm (ωm, mm, xi, ωm,ref) (4)

with initial value mm,0 = mm(0), gain Vcl > 0 (in 1) and time constant 0 < Tcl � 1 s. A well designed
machine torque controller yields Vcl = 1.

2.3. Overall Dynamics

By introducing state vector x := (ωm, mm, xi)
>, disturbance vector d := (vw, βt)

>, reference input
v := ωm,ref and output y := ωm, the overall (nonlinear) system dynamics can be written as

d
dt

x(t) = f (x(t), v(t), d(t)) , x0 = x(0) and y(t) =
(

1 0 0
)

x(t) =: c>x(t) (5)

with f (x, v, d) := ( fωm (ωm, mm, vw, βt) , fmm (ωm, mm, xi, ωm,ref) , fxi (ωm, ωm,ref))
>.

3. Linearization

The dynamics of system (5) will be linearized via Taylor series expansion around the operation
point ? :=

(
ω?

m, m?
m, x?i , ω?

m,ref, v?w, β?
t

)
. Hence, the following small-signal approximations are defined:

ω̃m := ωm−ω?
m, m̃m := mm−m?

m, x̃i := xi−x?i , ω̃m,ref := ωm,ref−ω?
m,ref, ṽw := vw−v?w, β̃t := βt−β?

t .
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Applying the Taylor series expansion to system (5) yields

d
dt

x̃(t) =
d
dt

(x(t)− x?(t)) =
d
dt

x(t)− d
dt

x?(t)

= f (?)︸︷︷︸
= d

dt x?

+
∂ f (x, v, d)

∂x

∣∣∣∣
?︸ ︷︷ ︸

=:A?

x̃(t) +
∂ f (x, v, d)

∂v

∣∣∣∣
?︸ ︷︷ ︸

=:b

ṽ(t) +
∂ f (x, v, d)

∂d

∣∣∣∣
?︸ ︷︷ ︸

=:E?

d̃(t) + δ(t)− d
dt

x?(t) (6)

with initial values x̃0 = x̃(0), A? := A(ω?
m, v?w, β?

t ) and E? := E(ω?
m, v?w, β?

t ). The term δ(t) :=
δ(x̃(t), ṽ(t), d̃(t), ?) characterizes the higher order terms of the Taylor series. Imposing the following

Assumption 1. The higher order terms of the Taylor series are neglected, i.e., δ(t) = 0

Allows to approximate the nonlinear system (5) by its small signal (linearized) dynamics

d
dt

x̃(t) = A? x̃(t) + bṽ(t) + E?d̃(t), x̃0 = x̃(0) and ỹ(t) = c> x̃(t) (7)

where system matrix A?, input vector b and disturbance matrix E? are given by

A? =

 Ω?
ωm − 1

θ 0

− kpVcl
Tcl

− 1
Tcl

kiVcl
Tcl

−1 0 0

 , b =

 0
kpVcl

Tcl

1

 and E? =

Ω?
vw Ω?

βt

0 0
0 0

 (8)

and the following definition holds: Ω?
α := Ωα(ω?

m, v?w, β?
t ) := ∂ fωm (ωm ,mm ,vw ,βt)

∂α

∣∣∣
?
, α∈{ωm, vw, βt}.

4. Stability Analysis

In this section, based on the linearization above, a local stability analysis is performed. One
obtains the following stability condition:

Condition 1. The linearized closed-loop system (7), (8) of the machine speed control is stable, if and only if the
following holds:

(i) Ω?
ωm <

1
Tcl

∧ (ii) kp < − θ

Vcl
Ω?

ωm +
ki

1
Tcl
−Ω?

ωm

∧ (iii) ki < 0 .

Proof of Condition 1. The characteristic polynomial χA? of the system matrix A? of system (7), (8) is
given by

χA? (λ, ?)
(8)
= det (λI3 − A?) = det

λ−Ω?
ωm

1
θ 0

kpVcl
Tcl

λ + 1
Tcl
− kiVcl

Tcl

1 0 λ


= λ3 + λ2

(
1

Tcl
−Ω?

ωm

)
︸ ︷︷ ︸

=:a2(ω
?
m ,v?w ,β?t )=:a?2

+λ1
(
−Ω?

ωm

Tcl
− kpVcl

θTcl

)
︸ ︷︷ ︸
=:a1(ω

?
m ,v?w ,β?t )=:a?1

+λ0
(
− kiVcl

θTcl

)
︸ ︷︷ ︸

=:a0

. (9)

In view of Hurwitz’s theorem (see e.g., ([18], Chapter 8), ([19], Chapter 1)), system (7), (8) is stable,
if and only if (a) a?2 > 0∧ a?1 > 0∧ a0 > 0 and (b) a?2 a?1 − a0 > 0 hold. Clearly, because of θ > 0, Vcl > 0
and Tcl > 0, the inequalities a?2 > 0 and a0 > 0 result in (i) and (iii) of Condition 1. a?1 > 0 necessitates
the condition kp < − θ

Vcl
Ω?

ωm which is already satisfied if (ii) holds, since

kp
(ii)
< − θ

Vcl
Ω?

ωm +
ki

1
Tcl
−Ω?

ωm

(i),(iii)
< − θ

Vcl
Ω?

ωm (10)
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The term a?2 a?1 − a0 is given by

0 < a?2 a?1 − a0
(9)
=

1
Tcl

(Ω?
ωm)

2 −
(

1
T2

cl
− kpVcl

θTcl

)
Ω?

ωm −
kpVcl

θT2
cl

+
kiVcl
θTcl

. (11)

Multiplying (11) by θTcl
Vcl

> 0 yields

θ

Vcl
(Ω?

ωm)
2 −

(
θ

TclVcl
− kp

)
Ω?

ωm −
kp

Tcl
+ ki

(11)
> 0 , (12)

which results in (ii), since rearranging (12) leads to

kp <
− θ

Vcl
(Ω?

ωm)
2 + θ

Vcl Tcl
Ω?

ωm − ki

Ω?
ωm − 1

Tcl

= − θ

Vcl
Ω?

ωm +
ki

1
Tcl
−Ω?

ωm

. (13)

�

Remark 1. A physical interpretation of Condition 1 is the following: (iii) must hold, since the integral gain
xi has to act with correct sign. Moreover, the underlying machine torque control loop has to be faster than the
outer control loop of the machine speed. This results in (i) where the time constant Tcl of the torque control loop
leads to an upper bound on 1

Tcl
for Ω?

ωm . (ii) characterizes the impact of integral ki and proportional kp gain on
closed-loop stability.

Sub-conditions (i) and (ii) depend on Ω?
ωm and, consequently, on the operation point (ω?

m, v?w, β?
t ).

Since it is necessary that (i) and (ii) are fulfilled for all possible operation points (ω?
m, v?w, β?

t ), the most
critical operation point (ωcr

m , vcr
w , βcr

t ) needs to be considered for the design of the controller parameters
kp and ki (worst-case analysis). Figure 2a illustrates the sector of all feasible kp and ki which yield a
(locally) stable closed-loop system (7), (8).

(0, 0)
kp

ki

stable
sector

− θ
Vcl

Ωcr
ωm1

1
Tcl

−Ωcr
ωm

1

(a) Illustration of Hurwitz criterion (Condition 1) (ii).

ωm

ωmax
m

ωmin
m

vwvmin
w vmax

w

βt
(0, 0, βopt

t )

O
∂O+

∂O−

isolines of λt

λmax
t

λmin
t

(b) Sets of operation and isolines of tip speed ratio λt.

Figure 2. Stability analysis and interpretation of the closed-loop system (7).

Condition 2. For the critical operation point the following holds:

Ωcr
ωm := max

(ω?
m ,v?w ,β?t )

Ωωm(ω
?
m, v?w, β?

t ) ⇔ (ωcr
m , vcr

w , βcr
t ) := arg max

(ω?
m ,v?w ,β?t )

Ωωm(ω
?
m, v?w, β?

t ) (14)

Thus, the maximal value Ωcr
ωm of all possible Ω?

ωm is the most critical one.

Proof of Condition 2. The calculation of the derivative of the right term of (ii) with respect to
Ω?

ωm yields
∂

∂Ω?
ωm

(
− θ

Vcl
Ω?

ωm +
ki

1
Tcl
−Ω?

ωm

)
= − θ

Vcl
+

ki(
1

Tcl
−Ω?

ωm

)2

(iii)
< − θ

Vcl
< 0 (15)
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Thus, the derivative in (15) is strictly negative and, accordingly, the greater Ω?
ωm the smaller is

the right term of (ii). Hence, for the most critical choice of Ωcr
ωm , the inequalities kp < − θ

Vcl
Ωcr

ωm +

ki
1

Tcl
−Ωcr

ωm
< − θ

Vcl
Ω?

ωm + ki
1

Tcl
−Ω?

ωm
and Ω?

ωm < Ωcr
ωm

(i)
< 1

Tcl
hold for any operation point. �

In regime II.5—where the PI-controller is used—the pitch angle βt is controlled to its optimal (but
constant) value, i.e., β?

t = β
opt
t = βcr

t . Consequently, in regime II.5, the following holds: (ω?
m, v?w, β?

t ) ∈
O = [ωmin

m , ωmax
m ]× [vmin

w , vmax
w ]× {βopt

t }. By defining the boundary ∂O := ∂O+ ∨ ∂O− with ∂O+ :=
{ωmax

m }× [vmin
w , vmax

w ]×{βopt
t } ∨ [ωmin

m , ωmax
m ]×{vmax

w }× {βopt
t } and ∂O− := {ωmin

m }× [vmin
w , vmax

w )×
{βopt

t } ∨ [ωmin
m , ωmax

m )× {vmin
w } × {βopt

t }, as illustrated in Figure 2b, the following holds:

Condition 3. The set—where the critical operation point (ωcr
m , vcr

w , βcr
t ) is located in—is given by

(ωcr
m , vcr

w , βcr
t ) ∈

{
∂O+ , if ∃(ω?

m, v?w, β?
t ) ∈ O such that Ω?

ωm≥ 0

∂O− , if Ω?
ωm< 0 ∀(ω?

m, v?w, β?
t ) ∈ O

(16)

Proof of Condition 3. In regime II.5, the set Λ of all possible operation points of the tip speed ratio

λ?
t := λt(ω?

m, v?w) results in Λ = [λmin
t , λmax

t ] with λmin
t := rtω

min
m

gbvmax
w

and λmax
t := rtω

max
m

gbvmin
w

. Hence, both ∂O+
and ∂O− cover all λ?

t ∈ Λ (see Figure 2b). By taking β?
t = β

opt
t and λcr

t := rtω
cr
m

gbvcr
w
∈ Λ into account, Ω?

ωm

is finally given by

Ω?
ωm

(3)
= v?w

=:Fvw (λ?
t )︷ ︸︸ ︷

ρwr4
t π

2g2
bθ

λ?
t

∂cp

(
λ?

t ,βopt
t

)
∂λ?

t
− cp (λ?

t , β?
t )

(λ?
t )

2 = ω?
m

=:Fωm (λ?
t )︷ ︸︸ ︷

ρwr5
t π

2g3
bθ

λ?
t

∂cp

(
λ?

t ,βopt
t

)
∂λ?

t
− cp (λ?

t , β?
t )

(λ?
t )

3

≤



vmax
w Fvw(λ

cr
t ) , if Fvw(λ

cr
t ) ≥ 0∧ λcr

t ∈ [λmin
t , rtω

max
m

gbvmax
w

]

ωmax
m Fωm(λ

cr
t ) , if Fωm(λ

cr
t ) ≥ 0∧ λcr

t ∈ ( rtω
max
m

gbvmax
w

, λmax
t ]

}
≡ line 1 in (16)

vmin
w Fvw(λ

cr
t ) , if Fvw(λ

cr
t ) < 0∧ λcr

t ∈ [ rtω
min
m

gbvmin
w

, λmax
t ]

ωmin
m Fωm(λ

cr
t ) , if Fωm(λ

cr
t ) < 0∧ λcr

t ∈ [λmin
t , rtω

min
m

gbvmin
w

)

 ≡ line 2 in (16).

(17)

Consequently, (17) is equivalent to (Condition 3). �

5. Controller Design

In this section, the stability condition is translated into a simple tuning rule for the
PI-controller parameters.

5.1. Controller Parameter Tuning

The following tuning rule for the parameters kp and ki of the PI-controller is based on pole
placement. The closed-loop poles of the (linearized) system (7), (8) are specified by some desired (real
and negative) poles λ1 ≤ λ2 ≤ λ3 < 0 which leads to the desired polynomial

χdes(λ) :=(λ−λ1)(λ−λ2)(λ−λ3) = λ3 − λ2 (λ1+λ2+λ3) + λ(λ1λ2+λ1λ3+λ2λ3)− λ1λ2λ3. (18)

Note that the closed-loop poles of (7), (8) can not be chosen independently; since, comparing the
coefficients of the characteristic χA? and desired χdes polynomial (see (9) and (18)) yields the following
overdetermined equation system with three equations but only two free design parameters kp and ki:

−λ1 − λ2 − λ3 = 1
Tcl
−Ωcr

ωm

λ1λ2 + λ1λ3 + λ2λ3 = −Ωcr
ωm

Tcl
− kpVcl

θTcl

−λ1λ2λ3 = − kiVcl
θTcl

 . (19)
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To guarantee (local) stability for all possible operation points, the comparison of the coefficients
in (19) is accomplished for the critical operation point (ωcr

m , vcr
w , βcr

t ). For the tuning of the parameters
kp and ki, λ1 ≤ λ2 ≤ λ3 < 0 and (19) have to be fulfilled. Therefore, the following tuning rule

kp = − (1− κ)
(

3
4 κ + 1

4

)
θTcl
Vcl

(
1

Tcl
−Ωcr

ωm

)2
− θΩcr

ωm
Vcl

ki = − 1
4 κ (1− κ)2 θTcl

Vcl

(
1

Tcl
−Ωcr

ωm

)3

with κ ∈ (0, 1) . (20)

for kp and ki is proposed, where κ ∈ (0, 1) is a single free design parameter which assures local stability
and can be adjusted to achieve good tracking performance.

Remark 2. The choice of the control parameters kp and ki as in (20) gives the closed-loop poles λ1 =

−κ
(

1
Tcl
−Ωcr

ωm

) (i)
< 0 and λ2 = λ3 = − 1

2 (1− κ)
(

1
Tcl
−Ωcr

ωm

) (i)
< 0, which are clearly negative.

Proof of Remark 2. Inserting the closed-loop poles of (Remark 2) into (19) yields

−λ1 − λ2 − λ3 =
(

κ + 1
2 (1− κ) + 1

2 (1− κ)
) (

1
Tcl
−Ωcr

ωm

)
= 1

Tcl
−Ωcr

ωm

λ1λ2 + λ1λ3 + λ2λ3 =
(

κ 1
2 (1−κ) + κ 1

2 (1−κ) + 1
4 (1−κ)2

) (
1

Tcl
−Ωcr

ωm

)2
= −Ωcr

ωm
Tcl
− kpVcl

θTcl

−λ1λ2λ3 = κ 1
4 (1− κ)2

(
1

Tcl
−Ωcr

ωm

)3
= − kiVcl

θTcl

 . (21)

The first equation of (21) is automatically fulfilled. The second and third equation of (21) result in

(1− κ)
(

3
4 κ + 1

4

) (
1

Tcl
−Ωcr

ωm

)2 !
= −Ωcr

ωm
Tcl
− kpVcl

θTcl
and 1

4 κ (1− κ)2
(

1
Tcl
−Ωcr

ωm

)3 !
= − kiVcl

θTcl
, respectively.

This leads to the choice of kp and ki as in (20) with which (local) stability of system (7), (8) is guaranteed.
�

5.2. Anti-Wind Up and Saturation

To enhance the PI-controller control performance, it is augmented by an additional anti-wind up
(AWU) and saturation (SAT) block as shown in Figure 3, where the following holds (the idea of (22) is
taken from [20], Chapter 14):

(AWU) d
dt xi = αi(t) (ωm,ref(t)−ωm(t)) with αi(t) =

{
0 , if mm,ref(t) /∈ [mmin

m , mmax
m ]

1 , if mm,ref(t) ∈ [mmin
m , mmax

m ]

(SAT) msat
m,ref(t) = max

(
mmin

m , min (mm,ref(t), mmax
m )

)
 (22)

where mmin
m /mmax

m (in N m) are the minimal/maximal machine torque available in regime II.5. (AWU)
and (SAT) take the saturated (available) machine torque in regime II.5 into account in order to avoid
(i) unfeasible torques and (ii) windup effects (which would deteriorate the tracking performance,
see [20], Chapter 14).

torque/
current
control

AWU
(22)

DC-link

VSI

PWM

machine gear box

turbine

Approximation
via (3) and (4)

PI-controller

SAT &
AWU

msat
m,ref

ωm

−

vw

βt

ωm,ref

mm,ref

αi

kp

ki

mmax
m

mmin
m

Figure 3. Block diagram of implementation: PI-controller, SAT & AWU and physical system.
A well-designed PI-controller with proportional gain kp and integral gain ki is essential to guarantee
closed-loop stability (see Sections 4 and 5).
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6. Simulation Results

In this section, the theoretical findings are illustrated by simulation results for four
different scenarios:

• Scenario 1: Control performance for a constant but maximal speed reference to illustrate stability
and set-point tracking control performance.

• Scenario 2: Control performance for an arbitrarily time-varying speed reference to illustrate stability
and reference tracking control performance at different operation points.

• Scenario 3: Control performance for a constant but maximal speed reference for three different
controller tunings to illustrate the effect of tuning on stability and set-point tracking control
performance.

• Scenario 4: Control performance for an arbitrarily time-varying speed reference for three different
controller tunings to illustrate the effect of tuning on stability and reference tracking control
performance at different operation points.

All scenarios are fed by the same realistic wind speed profile. The control performance of all four
scenarios is evaluated by the integral absolute error (IAE) performance measure. The IAE performance
measure is computed by [20]

IAE(e(·)) :=
∫ tend

tstart
|e(τ)|dτ =

∫ 100 s

0 s
|ωm,ref(τ)−ωm(τ)|dτ. (23)

Figure 3 shows the implementation block diagram of controller and physical system in
Matlab/Simulink. Simulation data is collected in Table 1. The power factor cp of the WTS is
approximated by (for details see [21])

cp (λt(ωm, vw), βt) = c1
(
c2h (λt(ωm, vw), βt)− c3βt − c4βc7

t − c5
)

exp (−c6h (λt(ωm, vw), βt)) (24)

with c1, ..., c6 > 0, c7 ≥ 0 and h (λt(ωm, vw), βt) as in Table 1. Figure 4 depicts the power factor cp

and additionally Ω?
ωm . For the critical operation point of the considered system, the following holds:

(ωcr
m , vcr

w , βcr
t ) = (0.55 rad

s , 6.5 m
s , 0◦) ∈ ∂O+.

Table 1. System, implementation and controller data.

Description Symbols & Values with Unit

Matlab/Simulink solver (fixed step): ode4, sampling time = 5× 10−5 s for model
sampling time = 1× 10−3 s for (discretized) controller implementation

WTS parameter rt = 40 m, gb = 1, ρw = 1.293 kg
m3 , θ = 8.6× 106 kg m2, Vcl = 1, Tcl = 0.5× 10−3 s

Power factor c1 = 0.73, c2 = 151, c3 = 0.58, c4 = 0.002, c5 = 13.2, c6 = 18.4, c7 = 2.14
h(λt(ωm, vw), βt) =

1
λt(ωm ,vw)−0.02 −

0.003
β3

t+1 , βt = β
opt
t = 0◦

Controller vmin
w =4.5 m

s , vmax
w =6.5 m

s , ωmin
m =0.35 rad

s , ωmax
m =0.75 rad

s , mmin
m =0 N m,

parameter mmax
m =1× 106 N m, κ=0.5⇒ kp =−5.38× 109 N m s

rad , ki =−1.25× 105 N m
rad , Ωcr

ωm
=0.107 1

s

0510 02040

0
0.2
0.4

λt (in 1) βt (in ◦)

c p
(i

n
1)

0.4 0.656
−0.1

0
0.1

ωm (in rad
s )vw (in m

s )

Ω
? ω

m
(i

n
1 s

)

4 6 5
6−0.1

0
0.1

λt (in 1) vw (in m
s )

Ω
? ω
m

(i
n

1 s
)

Figure 4. Illustration of power coefficient cp (left), the dependence of Ω?
ωm

on wind speed vw and
machine speed ωm (middle) and on wind speed vw and tip speed ratio λt (right).
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Table 2. Simulation results—Control performance evaluation with IAE performance measure.

Figure 5 Figure 6 Figure 7 Figure 8

ωm,ref Constant Varying Constant Varying

(a) (b) (c) (a) (b) (c)

kp (in N m s
rad ) −5.38× 109 −5.38× 109 −5× 106 −5× 102 −5× 106 −5× 106 −5× 102 −5× 106

ki (in N m
rad ) −1.25× 105 −1.25× 105 −1.25× 105 −1.25× 105 1.25× 105 −1.25× 105 −1.25× 105 1.25× 105

IAE (in rad) 0.001 0.290 0.618 9.967 5.173 1.425 17.791 5.196

v w
(i
n
m
/
s)

4.5

5.5

6.5 vminw vmaxw vw

ω
m
(i
n
ra
d
/
s)

0.69

0.7

0.71
ωm,ref ωm

time t (in s)

m
m
/
m

t
(i
n
M
N
m
)

0 20 40 60 80 100

0.15

0.25

0.35 mm,ref mm mt

p
w
/
p
t
(i
n
M
W

)

0

0.5

1 pw pt

λ
t
(i
n
1
)

4.5

5.5

6.5
λ
opt
t λt

time t (in s)

c p
(i
n
1
)

0 20 40 60 80 100

0.2

0.3

0.4
coptp

cp

Figure 5. Simulation results for Scenario 1—set-point tracking control performance in regime II.5: Wind
speed vw, machine speed ωm, machine mm and turbine mt torque, wind pw and turbine pt power, tip
speed ratio λt and power factor cp.

Scenario 1: Figure 5 shows the simulation result for Scenario 1, where the machine speed ωm is
controlled to its maximal value, i.e., ωm,ref = ωmax

m . To point out the impact of variations of the wind
speed vw, real wind data (The authors are deeply grateful to the FINO-Project (BMU, PTJ, BSH, DEWI
GmbH) for providing the wind data.) is used. The simulation illustrates the stable and good control
performance of the controller design as in (20), since the control performance is characterized by an
accurate tracking of the machine speed reference ωm,ref. The IAE value of 0.001 rad verifies the accurate
reference tracking (see Table 2). The right hand-side of Figure 5 shows the wind pw and turbine pt

power (with pt = cp pw = mt
ωm
gb

), the tip speed ratio λt and the power factor cp. As expected for

regime II.5, the WTS operates below the optimal tip speed ratio λ
opt
t and consequently does not reach

the optimal power factor copt
p .

Scenario 2: Figure 6 illustrates the control performance under a time-varying machine speed
reference ωm,ref, where significant changes in ωm,ref are allowed. Again, the control performance
achieves an accurate and fast tracking of the machine speed reference ωm,ref with an IAE value of
0.290 rad. The IAE value of this scenario is also small but larger than the IAE value of Scenario 1 due
to the rapidly changing reference and the actuator constraint (SAT) which activates the anti-windup
strategy as in (22). The machine torque reference mm,ref is upper and lower bounded by mmax

m and
mmin

m , respectively. Clearly, the jumps in the machine speed reference mm,ref cause rapid changes in the
machine torque mm and accordingly strong loads on the mechanical components. Since the normal
operation in regime II.5 is characterized by a fixed (constant) machine speed reference ωm,ref = ωmax

m ,
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the peaks in the machine torque mm in Figure 6 at t = 25 s and 85 s would not occur and stress the
mechanical components (as shown in Figure 5).

v w
(i
n
m
/
s)

4.5

5.5

6.5 vminw vmaxw vw

ω
m
(i
n
ra
d
/
s)

0.65

0.7

0.75
ωm,ref ωm

time t (in s)

m
m
/
m

t
(i
n
M
N
m
)

0 20 40 60 80 100
0

0.5

1 mm,ref mm mt

p
w
/
p
t
(i
n
M
W

)

0

0.5

1 pw pt

λ
t
(i
n
1
)

4.5

5.5

6.5
λ
opt
t λt

time t (in s)

c p
(i
n
1
)

0 20 40 60 80 100

0.2

0.3

0.4
coptp

cp

Figure 6. Simulation results for Scenario 2—reference tracking control performance in regime II.5 (ωm,ref

is arbitrarily time-varying): Wind speed vw, machine speed ωm, machine mm and turbine mt torque,
wind pw and turbine pt power, tip speed ratio λt and power factor cp.

v w
(i
n
m
/
s)

4.5

5.5

6.5 vminw vmaxw vw

ω
m
(i
n
ra
d
/
s)

0.55

0.7

0.85

ωm,ref ωm

time t (in s)

m
m
/
m

t
(i
n
M
N
m
)

0 20 40 60 80 100
0

0.3

0.6

mm mt

p
w
/
p
t
(i
n
M
W

)

0

0.5

1 pw pt

λ
t
(i
n
1
)

4.5

5.5

6.5
λ
opt
t λt

time t (in s)

c p
(i
n
1
)

0 20 40 60 80 100

0.2

0.3

0.4

coptp
cp

Figure 7. Simulation results for Scenario 3—set-point tracking control performance in regime
II.5 for three different controller tunings (a) — stable but slow tuning with kp = −5× 106 N m s

rad and
ki = −1.25× 105 N m

rad , (b) - - - unstable tuning with kp = −5× 102 N m s
rad and ki = −1.25× 105 N m

rad ⇒��(ii),
(c) · · · unstable tuning with kp = −5× 106 N m s

rad and ki = 1.25× 105 N m
rad ⇒ ��(iii): Wind speed vw,

machine speed ωm, machine mm and turbine mt torque, wind pw and turbine pt power, tip speed ratio
λt and power factor cp.

Scenario 3: To illustrate the impact of badly tuned controller parameters kp and ki on stability and
set-point tracking control performance, Scenario 1 is repeated for three different controller tunings; see
controller tunings (a), (b) & (c) in Table 2. The simulation results for Scenario 3 are shown in Figure 7:
(a) — shows a stable but slow control performance. Even for the constant machine speed reference
ωm,ref, the controller is not able to compensate for the changes in the wind speed vw and turbine torque
mt. The IAE value of 0.618 rad is much greater than the value 0.001 rad of Scenario 1. The selected
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parameters of tuning (b) - - - violate sub-condition (ii) of the stability condition (Condition 1) whereas
the selected parameters of tuning (c) · · · violate sub-condition (iii) of (Condition 1). Hence, for the
cases (b) and (c), the closed-loop systems are unstable and their IAE values of 9.967 rad and 5.173 rad
are extremely large (see Table 2).

Scenario 4: Scenario 4 is similar to Scenario 2 and uses a time-varying speed reference to illustrate
the reference tracking control performance for different operation points. The simulation results are
shown in Figure 8. The impact of the badly tuned controller parameters (a) —, (b) - - - and (c) · · · is
obvious. The control performance of the stable but slow tuning (a) results in an IAE value of 1.425 rad,
which is not acceptable and even worse than that in Figure 7 (Scenario 3). Moreover, the tunings (b) - - -
and (c) · · · yield again an unstable closed-loop system with extremely high IAE values of 17.791 rad
and 5.196 rad, respectively.

v w
(i
n
m
/
s)

4.5

5.5

6.5 vminw vmaxw vw

ω
m
(i
n
ra
d
/
s)

0.55

0.7

0.85

ωm,ref ωm

time t (in s)

m
m
/
m

t
(i
n
M
N
m
)

0 20 40 60 80 100
0

0.3

0.6

mm mt

p
w
/
p
t
(i
n
M
W

)
0

0.5

1 pw pt

λ
t
(i
n
1
)

4.5

5.5

6.5
λ
opt
t λt

time t (in s)

c p
(i
n
1
)

0 20 40 60 80 100

0.2

0.3

0.4

coptp
cp

Figure 8. Simulation results for Scenario 4—reference tracking control performance in regime II.5
for three different controller tunings (a) — stable but slow tuning with kp = −5× 106 N m s

rad and ki =

−1.25× 105 N m
rad , (b) - - - unstable tuning with kp = −5× 102 N m s

rad and ki = −1.25× 105 N m
rad ⇒��(ii),

(c) · · · unstable tuning with kp = −5× 106 N m s
rad and ki = 1.25× 105 N m

rad ⇒ ��(iii): Wind speed vw,
machine speed ωm, machine mm and turbine mt torque, wind pw and turbine pt power, tip speed ratio
λt and power factor cp.

7. Conclusions

The paper presented a local stability analysis for a machine speed PI-controller design for
wind turbine systems operated in regime II.5. The proportional gain kp and integral gain ki
of the PI-controller must be chosen properly to guarantee a (locally) stable closed-loop system.
Therefore—based on the derived stability criteria—a tuning rule for the controller parameters via
pole placement was proposed, which can achieve both: a stable closed-loop system and accurate and
fast reference tracking. Four simulation scenarios have been implemented in Matlab/Simulink to
demonstrate the achievable control performance of the proposed controller design and the effect of
badly tuned controller designs on stability and tracking accuracy. The tracking control performance of
all scenarios was compared and evaluated by the integral absolute error (IAE) performance measure.
The simulation results showed that even, if the derived stability criteria is satisfied, a wrong controller
tuning may give a slow and bad control performance leading to high IAEs values. Finally, the
simulation results also demonstrated that, if the stability criteria is violated, then the closed-loop
system becomes (as expected) unstable.



Energies 2018, 11, 1251 12 of 13

Author Contributions: C.D. derived and implemented the model, conducted the simulations, wrote the article
and created the figures and plots; C.D. and C.M.H. analyzed and evaluated the simulation data; C.M.H. gave
valuable advice in the modeling, helped writing the introduction, simulation and conclusion sections and revised
the article.

Funding: This work was supported by the Technical University of Munich (TUM) in the framework of the Open
Access Publishing Program.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbols Description
? , 0 , ˜ operation point, initial value, small signal approximation

pt, mt, rt turbine power, turbine torque and turbine radius
pw, ρw, gb, θ wind power, air density, gear box ratio and total inertia
ωm, ωm,ref, ωmin

m , ωmax
m , ωcr

m machine speed, its reference, minimum, maximum and critical operation point
vw, vmin

w , vmax
w , vcr

w wind speed, its minimum, maximum and critical operation point
vin

w , vout
w bounds the range of wind speeds, where the WTS is in operation

βt, βcr
t , β

opt
t pitch angle, its critical and optimal operation point

mm, mmin
m , mmax

m machine torque, its minimum and maximum
mm,ref, msat

m,ref machine torque reference and its saturated value
λt, λmin

t , λmax
t , λcr

t , λ
opt
t tip speed ratio, its minimum, maximum and critical/optimal operation point

cp, copt
p , c1–c7, h power factor, its optimum, coefficients and function of the power factor curve

Vcl , Tcl gain and time constant of the underlying machine torque controller

xi, kp, ki integral state, proportional gain and integral gain of the PI-controller
κ, αi, δ design parameter and saturation function, higher order terms of Taylor appr.
x, d, v, y state and disturbance vector, reference input and output of the system
A?, E?, b, c system and disturbance matrix, input and output vector of the system
χA? , a0, a?1 , a?2 characteristic polynomial of the linearized system and its coefficients
χdes, λ1, λ2, λ3 desired characteristic polynomial of the controller design and its poles

f := ( fωm , fmm , fxi )
> dynamics of machine speed, machine torque and integral state

Ω?
ωm

, Ω?
vw

, Ω?
βt

derivative of fωm in respect of machine speed, wind speed and pitch angle
Ωcr

ωm
, Fωm , Fvw critical operation point of Ω?

ωm
, functions to characterize Ω?

ωm
Λ, O, ∂O, ∂O−, ∂O+ operation sets of tip speed ratio and regime II.5, (parts of) boundary of O
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