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We identify a natural way to embed CP symmetry and its violation in string theory. The CP symmetry 
of the low energy effective theory is broken by the presence of heavy string modes. CP violation is 
the result of an interplay of CP and flavor symmetry. CP violating decays of the heavy modes could 
originate a cosmological matter-antimatter asymmetry.
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1. Introduction

Aspects of CP symmetry and its violation play a crucial role in 
several physics phenomena. This includes the question of CP sym-
metry in strong interactions (the so-called strong CP problem), 
the violation of CP in the Yukawa sector of the standard model 
(SM) (with at least 3 families of quarks and leptons) and the desire 
for a source of CP violation (CPV) in the process of a dynamical 
creation of the cosmological matter-antimatter asymmetry. We are 
thus confronted with the following questions: What is the origin 
of CP symmetry and its violation? Is there a relation to the fla-
vor symmetries in the SM of particle physics? Is there a “theory of 
CP” in the ultraviolet completion of the SM that explains both the 
origin of CP symmetry and its breakdown?

In the present letter we try to address these questions about 
CP and flavor symmetries in the framework of string theory. Our 
approach to a “theory of CP” is based on orbifold compactifica-
tions of heterotic string theory (the so-called MiniLandscape [1–4]) 
but should be valid qualitatively for a wide range of string theory 
constructions. From our exploration of these models the following 
general picture emerges:

• we find CP candidates strongly connected to flavor symme-
tries, specifically CP as an outer automorphism of the flavor 
group;

• the light (“massless”) string spectrum results in a low-energy 
effective field theory with a well-defined CP transformation, 
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which can be conserved only in the absence of couplings to 
the heavy modes;

• the presence of heavy modes (here the winding modes of 
string theory) initiates a breakdown of CP (similar to the pic-
ture of “explicit geometrical CP violation”);

• CP violating decays of the heavy (winding) modes could in-
duce the cosmological matter-antimatter asymmetry. Other 
possible CPV effects can be induced through couplings of light 
fields to the heavy modes.

This provides us with a picture where the source of CP break-
down is already included within the construction of the symmetry 
itself. It also shows that the breakdown of CP requires a certain 
amount of complexity of the theory (reminiscent of the need of 
three families in the CKM case).

The origin of CP violation in the context of string theory and 
extra dimensions has been discussed in many regards, see [5] for 
a review and references therein. Our approach is new in the fol-
lowing sense: While it has been known that extra dimensions 
provide an origin of discrete (flavor) symmetries [6–8], a more re-
cent insight, based on the original idea of “explicit geometrical CP
violation” [9], is that a large class of discrete groups is generally in-
compatible with CP [10]. This comes about because these groups 
do not allow for complex conjugation outer automorphisms which, 
however, correspond to physical CP transformations in the most 
general sense [11,12]. In these cases, CP is explicitly violated by 
phases which are discrete and calculable because they originate 
from the complex Clebsch–Gordan coefficients of the respective 
flavor group. The main progress in this letter is to demonstrate 
that such a situation arises naturally in string theory.

As a specific example we consider a Z3 orbifold with flavor 
group �(54) that appears naturally in the MiniLandscape construc-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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tions [6]. In this case, CP should be a subgroup of S4, the group of 
outer automorphisms of �(54); thus flavor group and CP are in-
timately related. The irreducible representations of �(54) include 
singlets, doublets, triplets and anti-triplets. The massless spectrum 
of the theory, however, contains only singlets and triplets (as well 
as anti-triplets) of �(54). This allows for a CP symmetric low-
energy effective field theory of the massless states. The presence 
of the heavy winding modes that transform as doublets of �(54)

leads to an obstruction for the definition of CP symmetry thereby 
realizing the mechanism of “explicit geometrical CP violation”. All 
CP violating effects originate through couplings of the light states 
to at least three non-trivial doublets. CP violating decays of the 
heavy doublets are a generic property of the scheme. Combined 
with baryon- and/or lepton-number violation this could lead to a 
cosmological baryon- and/or lepton asymmetry.

2. �(54)�(54)�(54) flavor symmetry from string theory and the light 
spectrum

In order to understand the origin of �(54) from strings it is suf-
ficient to concentrate on the compactification of two extra dimen-
sions on a T2/Z3 orbifold. For a full string model this T2/Z3 can 
easily be extended to a six-dimensional orbifold, e.g. T6/Z3 ×Z3.

Geometrically, a T2/Z3 orbifold can be defined in two steps: 
(i) one defines a torus T2 by specifying a lattice � = {n1e1 +
n2e2 | ni ∈ Z}, spanned by the vectors e1 and e2. We choose |e1| =
|e2| and the angle between e1 and e2 is set to 120◦ . (ii) one identi-
fies points on T2 that differ by a 120◦ rotation generated by θ . The 
resulting orbifold has the shape of a triangular pillow, see Fig. 1
and 2.

Closed strings on the T2/Z3 orbifold come in three classes: (i) 
trivially closed strings, which are closed even in uncompactified 
space, (ii) winding strings with winding numbers n1 and n2 in the 
torus directions e1 and e2, respectively, and (iii) twisted strings, 
which are closed only up to a θk rotation for k = 1, 2. For k = 1 or 
k = 2 they belong to the so-called first or second twisted sector, 
respectively. On the other hand, trivially closed strings and wind-
ing strings belong to the so-called untwisted sector and live in the 
bulk of the orbifold. In contrast, twisted strings are localized at 
the three corners (fixed points) of the T2/Z3 orbifold. For k = 1, 2, 
they are created by twisted vertex operators which we label as

Fig. 1. T2/Z3 orbifold with fixed points X , Y , Z . The fundamental domain is shaded 
in dark gray.
χ(31) ∼
⎛
⎝ X

Y
Z

⎞
⎠ , and ψ(3̄1) ∼

⎛
⎝ X̄

Ȳ
Z̄

⎞
⎠ , (1)

respectively (compared to Ref. [13] we set X = σ+
0 , Y = σ+

1 , Z =
σ+

2 and X̄ = σ−
0 , Ȳ = σ−

1 , Z̄ = σ−
2 ).

Interactions of strings on orbifolds are restricted by selection 
rules. In the case of T2/Z3 the point group (PG) and space group 
(SG) selection rules result in a ZPG

3 ×Z
SG
3 symmetry [14]. Massless 

untwisted strings transform trivially, while twisted strings trans-
form as

χ(31)
Z

PG
3�−−−→ diag(ω,ω,ω) χ(31) , (2a)

χ(31)
Z

SG
3�−−−→ diag(1,ω,ω2) χ(31) , (2b)

ψ(3̄1)
Z

PG
3�−−−→ diag(ω2,ω2,ω2) ψ(3̄1) , (2c)

ψ(3̄1)
Z

SG
3�−−−→ diag(1,ω2,ω) ψ(3̄1) , (2d)

where ω := e2π i/3. In the absence of non-trivial backgrounds on 
T

2/Z3 there is in addition an S3 symmetry corresponding to all 
permutations of the three twisted strings. Combining this symme-
try with the PG and SG symmetries, one obtains a �(54) flavor 
symmetry, see Appendix A. Massless untwisted strings transform 
as trivial singlets 10, while the twisted strings χ(31) and ψ(3̄1)

transform as 31 and 3̄1 of �(54), respectively [6,8].

3. �(54)�(54)�(54) and explicit geometrical CPCPCP violation

Let us discuss some details of �(54) and how this group can 
lead to the phenomenon of explicit geometrical CP violation. The 
non-trivial irreps of �(54) are the real 11, a quadruplet of real 
doublets 2k=1,2,3,4 as well as the faithful complex triplets 31, 32

and their respective complex conjugates 3̄1 and 3̄2. Tensor prod-
ucts relevant to this work are

3i ⊗ 3̄i = 10 ⊕ 21 ⊕ 22 ⊕ 23 ⊕ 24 , (3a)

2k ⊗ 2k = 10 ⊕ 11 ⊕ 2k . (3b)

The outer automorphism group (Out) of �(54) is

Out [�(54)] ∼= S4 , (4)

the permutation group of four elements. On the four doublets, S4
acts as all possible permutations. On the triplets, odd permuta-
tions in S4 act as complex conjugation, while even permutations 
in S4 map the triplets to themselves [12]. In addition, all these 
transformations are typically endowed with matrices that act on 
the representations internally.

A physical CP transformation maps all fields of a theory in 
some irreps r to their respective complex conjugate fields, which 
transform in r∗ [12]. Therefore, a physical CP transformation 
Fig. 2. Illustration of the geometrical winding strings. For example, (a), (b), and (c) depict the winding modes from XȲ , Y Z̄ , and Z X̄ which all have winding number N = 2.
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should be an outer automorphism of �(54) which maps all oc-
curring irreps to their respective complex conjugates [10,11]. How-
ever, depending on the specific group, such outer automorphisms 
do not need to exist, and groups which do not have them are 
called “type I” [10].

It turns out that �(54) is a group of type I. This becomes man-
ifest by the fact that in the presence of triplets it is only possible 
to find a physical CP transformation as subset of Out [�(54)], if
a given theory contains fields in no more than two distinct doublet 
representations. By contrast, if a given theory with triplets con-
tains more than two doublets, physical CP is violated by complex 
Clebsch–Gordan coefficients of �(54) and this is called explicit ge-
ometrical CP violation.

Coming back to our model, we recall that the light (from 
a string perspective massless) spectrum consists only of �(54)

triplets and singlets. Consequently, there exist outer automor-
phisms of �(54) which correspond to physical CP transformations 
for the light spectrum. One may thus be led to the conclusion that 
CP can be conserved in this model even though �(54) is a group 
of type I. However, this conclusion is premature because it disre-
gards heavy string modes. We will take them into account in the 
next section.

4. �(54)�(54)�(54) doublets from heavy winding states

An untwisted string on T2/Z3 is generally massless only if it 
does not wind around the torus T2 and does not carry Kaluza–
Klein (KK) momentum. For this reason, winding strings often have 
been ignored in the literature. In this respect, one of our main re-
sults is that general untwisted strings on T2/Z3 can transform as 
doublets of �(54), as we show in the following.

A general untwisted string with vertex operator V p,w is char-
acterized by its winding on the lattice, w ∈ �, and momentum 
on the dual lattice, p ∈ �∗ . It can be constructed by joining two 
strings: one string from the first twisted sector X , Y , Z combines 
with another string from the second twisted sector X̄ , Ȳ , Z̄ . Such 
processes are described by the corresponding operator product ex-
pansions (OPEs), which are given explicitly for T2/Z3 in Ref. [13]. 
Solving these OPEs for the untwisted strings we get

10 : V (00) = 1

3

(
X X̄ + Y Ȳ + Z Z̄

)
, (5a)

21 :
(

V (02)

V (01)

)
= 1

3

(
Y Z̄ + Z X̄ + XȲ
Z Ȳ + X Z̄ + Y X̄

)
, (5b)

22 :
(

V (10)

V (20)

)
= 1

3

(
X X̄ + ω Y Ȳ + ω2 Z Z̄
X X̄ + ω2 Y Ȳ + ω Z Z̄

)
, (5c)

23 :
(

V (12)

V (21)

)
= 1

3

(
Y Z̄ + ω Z X̄ + ω2 XȲ
Z Ȳ + ω2 X Z̄ + ω Y X̄

)
, (5d)

24 :
(

V (11)

V (22)

)
= 1

3

(
Z Ȳ + ω X Z̄ + ω2 Y X̄
Y Z̄ + ω2 Z X̄ + ω XȲ

)
. (5e)

Here we have introduced classes of untwisted strings

V (MN) :=
∑

p∈�∗
M

w∈�N

C p,w V p,w for M, N = 0,1,2 , (6)

where �N is a sublattice of � with winding number N := n1 + n2
mod 3 and �∗

M the sublattice of �∗ with KK number M := −m1 +
m2 mod 3 (note the difference to [13] due to a basis change of 
the torus lattice �). Furthermore, the coefficients C p,w are defined 
in Ref. [13] and they tend to zero, C p,w → 0, for several limits: 
for higher windings |w| → ∞, for higher momenta |p| → ∞ or, 
keeping p and w fixed, for larger torus radii |e1| = |e2| → ∞.
Comparing Eqs. (5) to the �(54) tensor product 31 ⊗ 3̄1, we 
identify the multiplets of winding strings as 10, 21, 22, 23 and 
24, respectively, see Eq. (3a) and Eq. (A.3). The �(54) doublets 2k
of winding strings are generally massive (where the mass terms 
are �(54) invariant, see Eq. (3b)) and their masses are in general 
different.

There is a simple geometric intuition for these findings, reveal-
ing a remarkable difference between the winding modes in irreps 
21,3,4, as compared to the modes in 22 and 10. The classes of un-
twisted strings V (MN) form �(54) covariant combinations of cer-
tain “geometric” winding modes, e.g. XȲ . For 21,3,4 these modes 
wind once around one fixed point and in a different orientation 
around another, see Fig. 2a–2c. The two different components of 
the doublets wind in opposing directions. By contrast, the doublet 
22 is formed by a geometrical winding mode that has net zero 
winding number around all fixed points, see Fig. 2d.

5. CPCPCP violation from heavy winding modes

The effective operators in the holomorphic superpotential are 
given by �(54) invariants. For example, the simplest direct cou-
plings between representations 31 and 3̄1, from the first and sec-
ond twisted sector, respectively, to heavy winding modes in repre-
sentations 2k are given by contractions of the form

W ⊃
∑

k

(ck)
mab φ

(2k)
m χ

(31)
a ψ

(3̄1)

b . (7)

Here we have introduced exemplary fields φ(2k) ≡ φk , χ(31) , and 
ψ(3̄1) in the according representations. The sum over the internal 
�(54) doublet and triplet components, denoted by a, b = 1, 2, 3
and m = 1, 2, is implicit. The coupling tensors to different wind-
ing modes (ck)

mab (k = 1, 2, 3, 4) are fixed by the requirement of 
�(54) invariance up to a global normalization |ck|, correspond-
ing to the overall coupling strength which is determined by the T
modulus (e.g. by the size of the T2/Z3 orbifold). The explicit form 
of the coupling tensors ck is obtained from the Clebsch–Gordan 
coefficients (cf. Eq. (A.3) in Appendix A) in a straightforward way. 
The presence of these couplings, i.e. ck = 0 ∀k, is inconsistent with 
any physical CP transformation

φk �→ Ukφ
∗
k , χ �→ Uχχ∗ , and ψ �→ Uψψ∗ , (8)

where we have allowed for the most general form of this trans-
formation with arbitrary unitary matrices Uk,χ,ψ while we have 
suppressed the transformation of the space–time argument. There-
fore, CP is explicitly violated by the couplings Eq. (7).

As argued in Section 3, this can readily be understood directly 
from group theory. One may also check here that there is no ba-
sis in which all coupling tensors ck=1,2,3,4 are simultaneously real 
(which, however, is not sufficient to claim CPV, as complex cou-
plings can co-exist with CP conservation if there are conserved 
higher order CP transformations [10]1).

Finally, it is always possible to state physical CP violation in 
a basis independent way. CP-odd basis invariants can readily be 
constructed by contracting coupling tensors in such a way that 
(unitary) basis transformations cancel amongst the various index 
contractions. To produce a complex-valued (thus, CP-odd) basis 

1 Other examples of higher order CP transformations with irreducible complex 
coupling coefficients exist in the context of multi-Higgs doublet models [24] and in 
the context of extra dimensions [25,26] (we have to stress, however, that our notion 
of geometrical CPV is substantially different from the same-named phenomenon in 
the latter references).
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Fig. 3. The lowest-order complex (CP-odd) basis invariant that can be formed out 
of the �(54) invariant coupling tensors ck=1,3,4 of Eq. (7). Dashed lines correspond 
to �(54) doublets φ , thin solid lines correspond to the �(54) triplets χ and thick 
solid lines correspond to the �(54) anti-triplets ψ . Arrows here denote the �(54)

charge flow. The dotted gray line denotes a cut that gives rise to the diagrams in 
Fig. 4.

invariant it follows from our previous discussion that at least three 
different types of doublets (e.g. take 21,3,4) must be involved in such 
a contraction. This is confirmed by a scan over all possible basis in-
variant contractions of coupling tensors. The lowest order CP-odd 
invariants arise at the four-loop level, with an example being dis-
played in Fig. 3. Explicitly, this basis invariant is given by

I1 = (c1)
mab(c∗

4

)ncb
(c3)

pcd(c∗
1

)med
(c4)

nef (c∗
3

)paf

= 1 + 3 e4π i/3

36
|c1|2 |c3|2 |c4|2 . (9)

Here the summation over repeated indices is understood and we 
have used |ck|2 to denote the moduli of the coupling tensors. The 
fixed complex phase of the invariant is a group theoretically pre-
dicted parameter-independent CP violating (weak) phase. Another 
CP-odd invariant of the same order can be obtained from I1 by 
hermitean conjugation [or changing the order of indices of the 
coupling tensors according to (143) → (134)]. Analogous invariants 
exist for all other sets of three distinct doublets. Further CP -odd 
invariants exist for couplings of the type 2k ⊗ 3 ⊗ 3 ⊗ 3, where 
again, at least three different doublets have to be involved in a 
given invariant in order to generate CP-odd contributions.

Diagrams corresponding to CP violating physical processes 
such as oscillations and/or decays can be obtained from invariants 
such as the one in Fig. 3 by cutting edges appropriately. For exam-
ple, the cut indicated by the dotted gray line in Fig. 3 gives rise to 
the pair of diagrams in Fig. 4 whose interference generates a CP
asymmetry in a decay 21 → 3̄13124.2

The discussion becomes exceedingly model dependent at this 
point. For example, the questions of whether a given decay is 
(kinematically) allowed, whether or not significant CP asymmetry 
is generated (individual amplitudes can vanish or cancel against 
one another), or whether or not other quantum numbers such as 
lepton and/or baryon number are violated can only be answered 
in a concrete model. In existing, semi-realistic string theory mod-
els with �(54) flavor symmetry, SM quarks and leptons as well as 
flavons transform as �(54) triplets and anti-triplets [15,16]. For in-
stance, inspecting Tab. 1 of [15] one finds right-handed neutrinos 
in 3̄1 as well as SM neutral flavons in 31. The CP and lepton num-
ber violating decay of a heavy doublet to final states which include 
these modes, hence, could generate a lepton asymmetry.3 This il-

2 For this decay to be effective it is required that m21 > m23 , m24 . Similar decays 
exist for all possible mass orderings of the doublets.

3 The decay in Fig. 4 does not allow to generate a lepton number asymmetry 
among the final-state triplets. However, other cuts of the invariant I1 and of the 
other CP-odd invariants allow for such processes.
Fig. 4. Example tree-level and one-loop diagrams whose interference can give rise 
to CP violation in a decay 21 → 3̄13124.

lustrates how baryon and/or lepton number asymmetries can be 
generated by our mechanism. We do not further detail this discus-
sion for the scope of the present letter since we have achieved to 
establish our main point which is the general existence of group 
theoretical CP violation in string theory.

6. Discussion

We have seen that the mechanism of explicit geometrical CP
violation has a natural embedding in string theory. CP violation 
here is for a symmetry reason, enforced by a discrete (flavor) sym-
metry of “type I” which prohibits any physical CP transformation 
and dictates discrete CP violating phases.

In our example, the low-energy effective theory allows for a CP
transformation, but CP is broken in the presence of heavy string 
modes. A generic property of this scheme is the CP violating decay 
of heavy modes that could originate a cosmological baryon/lepton 
asymmetry. The discussion of other CP violating effects such as 
θQCD and the CKM phases is strongly model dependent. As explicit 
model building is very complicated in string theory, one would 
be encouraged to tackle these more refined questions in bottom-
up constructions of the scheme in detail. This could then help to 
identify those models that are of phenomenological interest, small 
θQCD and realistic CKM phases. One would hope to reproduce these 
models in a top-down construction and understand these specific 
properties from the geometry of extra dimensions and the geo-
graphical location of strings in compactified space. The complexity 
of CP violation in the standard model (with 3 families of quarks 
and leptons) could then be related to the complexity to the spec-
trum and couplings of heavy string states (here at least 3 doublets 
of string winding modes).

From the more theoretical (top-down) point of view there re-
main a few questions that have to be analyzed in detail. The work 
of Ref. [13,17] [that lead to the selection rules in Eq. (5)] studied 
the role of T-duality in the framework of compactified string the-
ory. In a UV-complete picture one now would have to understand 
the connection between the flavor group [�(54) in our example] 
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and T-duality. Especially, whether this does lead to a symmetry en-
hancement of the flavor group and how T-duality correlates with 
the outer automorphisms of �(54) (and thus CP ).

Among other things this would then allow us to decide whether 
CP violation in the UV-complete theory is explicit or spontaneous, 
and whether CP should be interpreted as a discrete gauge symme-
try [18,19]. Our discussion up to now did not address this ques-
tion as we have only considered the low-energy effective theory 
where the appearing flavor symmetry is incompatible with CP , 
which hence appears to be violated explicitly. Nevertheless, the 
fact that CP violation of this type can originate spontaneously, 
even though in a subtle manner, has been previously demonstrated 
[20]. We would have to consider a UV-complete theory with ad-
ditional symmetries (like T-duality) before we could hope for a 
definite answer here. A UV-complete theory might as well give fur-
ther insight into the phenomenological properties of the scheme, 
as e.g. the suppression of θQCD or how the remaining flavor sym-
metry is ultimately broken to a realistic pattern. We hope to report 
on progress towards the UV-complete picture in the near future.

As a final remark, we stress that many phenomenologically vi-
able string compactifications feature discrete groups of type I, see 
e.g. [16,21]. If all possible irreducible representations of these sym-
metry groups actually appear in the spectrum (fulfilling some kind 
of stringy “completeness conjecture”) all these models have the 
presented mechanism of CP violation built in.
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Appendix A. Conventions for �(54)�(54)�(54)

We follow the conventions of Ref. [12] where more details 
about �(54) can be found (cf. also [22,23] but mind the differ-
ent notational conventions). A minimal generating set of matrices 
for the three-dimensional representation 31 of �(54) is

A =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ , B =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , C =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ . (A.1)

The Z3 PG and SG symmetries acting in Eq. (2) are the subgroups 
generated by A2 B2 AB and B , respectively. The two-dimensional 
representations 21, 22, 23 and 24 are generated by the matrices

12 =
(

1 0
0 1

)
, �2 =

(
ω2 0
0 ω

)
, S2 =

(
0 1
1 0

)
, (A.2)

according to the assignments in Table 1. In this basis the Clebsch–
Gordan coefficients relevant to this work are given by

(
x2i ⊗ y2i

)
10

= 1√
2

(x1 y2 + x2 y1) , (A.3a)

(
x3i ⊗ y3̄i

)
10

= 1√
3

(x1 ȳ1 + x2 ȳ2 + x3 ȳ3) , (A.3b)
Table 1
Explicit matrices for the doublet representations of �(54), see (A.2) for a definition 
of the matrices �2 and S2 .

21 22 23 24

A2i 12 �2 �2 �2
B2i �2 12 �2 �∗

2
C2i S2 S2 S2 S2

(
x3i ⊗ y3̄i

)
21

= 1√
3

(
x1 ȳ2 + x3 ȳ1 + x2 ȳ3
x2 ȳ1 + x1 ȳ3 + x3 ȳ2

)
, (A.3c)

(
x3i ⊗ y3̄i

)
22

= 1√
3

(
x1 ȳ1 + ω x2 ȳ2 + ω2 x3 ȳ3

x1 ȳ1 + ω2 x2 ȳ2 + ω x3 ȳ3

)
, (A.3d)

(
x3i ⊗ y3̄i

)
23

= 1√
3

(
x2 ȳ3 + ω x3 ȳ1 + ω2 x1 ȳ2

ω x2 ȳ1 + x3 ȳ2 + ω2 x1 ȳ3

)
, (A.3e)

(
x3i ⊗ y3̄i

)
24

= 1√
3

(
ω2 x2 ȳ1 + x3 ȳ2 + ω x1 ȳ3

x2 ȳ3 + ω2 x3 ȳ1 + ω x1 ȳ2

)
. (A.3f)
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