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Abstract

Sparse data models have been proven very valuable for various tasks in signal processing.
Basically, these models aim to represent the signal with only a few nonzero coefficients. Es-
pecially the field of image processing has been influenced in a large extent. This is mainly
due to the reason that the sparse image code provides a more efficient representation with
regard to frequent tasks, e.g. storage and transmission, structural analysis or inverse prob-
lem regularization. Commonly, analytically given transformations are used because they
are efficient to apply and they can be deployed in a distributed manner. However, this
comes at the cost of not being well adapted to the particular image class of interest. This
issue motivates the research branch of learning sparse data models to better capture the
structural information of the image data. In this thesis, I attempt to combine the best from
both worlds, i.e., efficient computations and adaptability to the underlying structure. To
that end, a separability constraint is imposed on the model in order to address both require-
ments. Moreover, the structural constraint allows to efficiently handle multidimensional
data which is often intractable with classical learning approaches. Instead of focusing on
the well established sparse synthesis model, I concentrate on the co-sparse analysis model,
where it is assumed that the multiplication of the analysis operator with the present signal
leads to a sparse representation.

First, an algorithm that is able to learn a separable co-sparse analysis operator from clean
training signals is provided. The proposed Stochastic Gradient Descent on manifolds ap-
proach efficiently accounts for the geometrical structure of the operators. Furthermore, the
sequential processing of the samples avoids the problem of determining a training set of
suitable size in advance. Robustness of the algorithm with respect to parameter changes
makes the presented learning scheme easily applicable. Finally, the competitive perfor-
mance compared to state-of-the-art algorithms further motivates the presented approach.

In the second part, the sample complexity of the algorithm along with the generalization
behavior of the learned model is explored empirically. An operator recovery experiment
based on synthetic data is used to verify that separable operators can be reliably learned
from less training samples compared to non-structured ones. In order to assess the gen-
eralization, the estimated divergence between the distribution of the training signals and
the distribution of samples where the learned operator serves as a generative model is an-
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alyzed. This strategy renders the process of evaluating the suitability of the learned model
entirely task independent.

An extension of the learning algorithm such that it can cope with corrupted or under-
sampled measurements is addressed in the third part of this thesis. The formulation as a
blind learning problem where the operator and the image are recovered simultaneously al-
lows the model to adapt to the image content. Especially the extension to multidimensional
data reveals the strength of the separable model to easily take into account the available
information from all dimensions.

Finally, the last contribution in this thesis concerns Sparse Auto-Encoders. I explore
how to integrate the co-sparse analysis model assumption into the encoder function, such
that the Sparse Auto-Encoder framework can be leveraged to learn meaningful analysis
operators. It is shown that simple weight normalization constraints are sufficient to permit
the algorithm to learn useful encoder matrices, which is verified by means of the same
experimental setup that is used to assess the performance of the conventional learning
scheme.
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Chapter 1.
Introduction

The most natural representation of a digitally sampled signal is the sum of Dirac delta func-
tions in time or space domain. While very convenient for purposes like visual inspection
of the waveform, this representation might be useless for automatic processing or analysis
tasks, e.g. classification or recognition. Even storage or transmission might be impractical
due to the high redundancy present in the sampled signal. Consequently, transforming the
signal content in a more useful representation that captures all the necessary information
is highly desired. The core assumption for tackling the aforementioned problems is that
structured signals can be represented concisely with respect to a convenient basis [20].
The Discrete Fourier Transformation (DFT) for example can be considered as one of the
most important transformations in signal processing. Discrete and periodic signals are
represented by a series of complex exponentials, or equivalently, as a weighted sum of
sines and cosines. Given a signal described in the canonical basis, expanding the signal
in the Fourier basis reveals its frequency information. Mathematically speaking, a signal
s € RY is a linear combination of the basis elements of the orthonormal Fourier basis

(Y, e

1=

s=) cithi, (1.1)

i=1
where c is the Fourier coefficient sequence of s obtained via ¢; = (s,);), where (-, -) de-
notes the inner product. Let & = [41,...,%N] € CN*N be the matrix composed of the

Fourier basis elements as its columns, we have s = Wc. Figure 1.1 exemplary illustrates
the applicability of the Fourier representation for the aforementioned tasks. The left fig-
ure shows a smooth target signal s € R!°? in the time domain that is composed of four
sinusoids with varying frequencies. In the same plot, a shifted version of the same signal
is given. On the right side, the corresponding absolute values of the Fourier coefficient
sequences are plotted for each input signal. First, consider the problem of assessing the
similarity of both signal curves. Naively comparing the samples in the time domain seems
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Figure 1.1.: The representation of a smooth signal that is composed of sinusoids.

very cumbersome to tackle the problem. However, a comparison of the significant entries
in the Fourier coefficient sequence immediately reveals that the waveforms of both signals
are essentially equal. Regarding the compression problem, Figure 1.1 also depicts a solu-
tion. We can directly deduce that only the position and the values of the prominent Fourier
coefficients have to be stored or transmitted instead of the 1000 samples that constitute the
signal in the time domain. The only assumption is that the decoder knows in which ba-
sis we have represented our signal. In [138] Rubinstein et al. describe this behavior of the
linear transformation as compaction, i.e., the ability to express the signal with only a few co-
efficients. To conclude, the given example has shown that for smooth signals, the Fourier
basis is well suited to represent this class of signals. On the other hand, if we know that our
signal at hand is a member of this class, i.e., signals that reside in a low dimensional sub-
space spanned by only a few Fourier basis elements, then this representation constitutes a
signal or data model - a way to mathematically characterize the signal [46].

The right choice of the data model is crucial for the success of the intended application.
In [46] Elad describes an evolution of models over the last decades from simple ¢, based
methods like Thikonov Regularization [158], over Anisotropic Diffusion [166] and Total
Variation [144] to sparsity promoting models [138].




Data models are also indispensable to stabilize the solution of inverse problems. In fact,
many signal reconstruction tasks can be formulated as an inverse problem where the orig-
inal signal s € RY has to be inferred from corrupted and possibly incomplete observed
measurements y € RM. Assuming linear measurements, the process of observing (mea-
suring) a signal can be modeled via

y=®Ps+e, (1.2)

where & € RM*N describes a linear measuring process. Additive measuring noise is re-
flected by the vector e € RM.

Intuitively, one seeks for a solution s* that best explains the observations y, which from
a Bayesian perspective corresponds to the Maximum Likelihood Estimation (MLE) ap-
proach. In the case of Additive Gaussian White Noise (AWGN)), i.e., the entries of the
vector e follow an i.i.d. standard normal Gaussian distribution N (0, I), it can be shown
easily that maximizing the likelihood is equal to solving the problem

s* € arg min 1 ||y — &s|3. 1.3
g min 11y — 5|3 13)

Now, if for example the number of measurements equals the dimension of the signal, i.e.,
we have M = N, and if we set the matrix # € RM*N o be the identity Iy, Eq. (1.3)
reduces to a classical Denoising problem. However, following the MLE approach, without
further knowledge about the structure of the signal s there is no hope to disentangle the
true signal from the noise since the optimal solution to problem (1.3) is the noisy signal y
itself. Another problem arises if we have more unknowns that observations, i.e., if M < N.
In this scenario, infinitely many solutions exist that explain the measurements.

As a consequence, what we need is an adequate regularizer that models the a priori
distribution of the signal and thus stabilizes the solution. With prior knowledge about the
signal structure at hand, we can obtain the Maximum A Posteriori (MAP) estimate of the
signal. To illustrate this approach, recall the example given in Figure 1.1. If s = Ycisa
signal that can be compactly represented in the Fourier basis ¥, only a small amount of
the Fourier coefficients are non-zero. Indeed, the compaction described in this example
can be considered as a sparse representation model. According to [160], the sparse data
model enjoys great popularity since many fundamental questions in electrical engineering,
statistics and applied mathematics can be posed as sparse approximation problems.

A signal is said to be Lg-sparse if at most L; samples are non-zero, i.e., ||c||o < Ls, where
the function || - ||o : RN — R counts the number of non-zero components. Thus, a natural
approach to regularize the solution of problem (1.3) is to penalize the number of non-zero
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entries in the signal’s Fourier coefficient sequence, which ends up in the problem

c* € argmin 1|ly — ¥c|3 st |clo < Ls. (1.4)
ceCN

After solving (1.4), the desired signal can be easily obtained via s* = ¥c¢*. A survey on
practical algorithms to solve the sparse approximation problem can be found in [160].

In practice most of the signals tend to be only approximately sparse or compressible.
Compressible signals exhibit the property that the magnitude of the sorted entries decays
rapidly such that only a few samples are significant while the rest is close to zero. From
a probability theory perspective, the coefficient sequence c follows a Laplace distribution,
i.e., ¢ ~ Laplace(0,b) and small or zero values appear with high probability. The prob-
ability density function reads L(c;|0,b) = 5 exp ( — %‘) This prior knowledge can be
also exploited in the MAP recovery approach. After applying Bayes theorem, and taking
the logarithm of the probability distributions, fidelity to the Gaussian distributed mea-
surements and adherence to the assumption of Laplacian distributed coefficients can be
achieved via minimizing the problem

c* € arg min 1|ly — ®¥c|3 + Al |1, (1.5)
ceCN

where || - ||; denotes the ¢1-norm. This problem is also known as LASSO [157, 63] or Basis
Pursuit [27]. The convexity of (1.5) has led to many theoretical investigations of the prob-
lem in the noiseless as well as noisy setting. The interested reader is referred to e.g. [54],
[18] and references in [160]. Eventually, the theory of Compressed Sensing (CS) [42, 19, 121]
which covers sparse approximation results for the case where the number of measurements
is significantly smaller than the signal dimension, i.e., ¢ € RM*N with M < N, further
popularized the ¢; regularized problem (1.5) [22].

Usually, the sparsifying basis ¥ is an orthogonal matrix that allows for a fast compu-
tation of the coefficient sequence via ¢ = ¥ s. With this property at hand, the recovery
process can be equivalently stated in its analysis form that reads

s* € arg min J|ly — Ps|3 + AP " 5] (1.6)
sERN

Analogous to the synthesis sparse approximation problem, there exist various algo-
rithms that tackle the signal recovery problem following the analysis model framework.
For an in-depth discussion and investigation on the uniqueness properties of these re-
covery algorithms in the context of image reconstruction, the reader is referred to e.g.
[55, 58, 57,101, 108].




Both (1.5) and (1.6) encourage solutions that on the one hand have a sparse representation
with only a small amount of significant non-zero coefficients, and on the other hand fit to
the measurements. Yet, we have assumed that the measurements are corrupted by AWGN.
While this assumption is widely used in practice and various algorithms have been de-
veloped to tackle this problem, there are applications where the noise follows a different
distribution. For instance Poisson noise appears in low-light photography, medical imag-
ing and microscopy [56]. Rayleigh or Gamma distributed noise that is multiplied rather
than added to the signal can be observed in synthetic aperture radar, sonar, ultrasound
and laser imaging [8]. The presence of impulsive or salt-and-pepper noise is considered in
[23]. To account for these different noise distributions, let d(s) : RY — R denote a general
fidelity measure that, in contrast to the ¢, data fitting term introduced in (1.3), does not
necessarily need to be a function of the difference ¢s — y but only of the signal s. Besides
a general formulation of the data fidelity, in [48] the general prior distribution of the signal
representation is modeled as a Gibbs-like distribution

s ~ const. - el*8(s)], (1.7)

with g(s) : RN — R being a function that takes low values if the signal representation
of s corresponds to the distribution and high values if not. Besides the convex ¢;-norm,
typical choices for g(s) include the £,-norm with 0 < p < 1, or the Huber loss [72]. With
these two functions at hand, the general perhaps non-convex sparsity based reconstruction
problem can be formulated as

s* € arg min d(s) + Ag(s), (1.8)
seRN

where the parameter A weights between the noise dependent data fidelity term d(s) and
the sparsity inducing function g(s).

In the recent years, sparse data models have attracted high attention. On the one hand,
sparsity allows for a simple interpretation of the model. In an era where data collection
and storage is widespread and can be carried out easily and cheap, a signal representa-
tion that directly discovers the underlying features/predictors that explain the data is of
highest interest. On the other hand, sparsity as a versatile tool to regularize the solution of
many signal processing applications has been proven very useful. Even before the theory
of Compressed Sensing has evolved, Donoho has shown in [43] that reconstruction from
sub-Nyquist ! sampled data is feasible with a sparsity constraint. A simple approach for

IThe Nyquist Theorem states that for exact reconstruction, the sampling rate has to be more than twice the
maximum frequency present in the signal.
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denoising a signal has been encouraged by Donoho & Johnstone in [44], who proposed to
simply threshold the wavelet representation of a noisy signal such that its expansion be-
comes sparse. Wavelet thresholding is also applied in a deconvolution setting in [153]. The
combination of Principal Component Analysis (PCA) and sparsity is introduced in [182].
Again, the additional sparsity constraint on the loadings is used to make the model more
interpretive. Revealing the structure of multivariate data collected by multi-channel sen-
sors is another example where sparsity can improve the accessibility. This problem is also
referred to as Blind Source Separation (BSS) where the data is separated into sources and
their corresponding mixing factors. Sparsity in the context of BSS was first introduced by
[181], while more recent results can be found in [9, 62].

The success of sparse representation modeling can be also attributed to its impact in the
field of image processing. The observations that the receptive fields of simple cells in the
mammalian primary visual cortex are localized, oriented and bandpass have strongly in-
fluenced the evolution of sparse image representations. According to Daugman [35] and
Marcelja [96], these properties of the cells are well described by the basis functions of the
Gabor-Wavelet transform. Indeed, filtering an image with these functions results in a co-
efficient sequence whose entries are sparsely distributed which also gives evidence that
natural images may be described as a collection of localized and oriented structural primi-
tives like edges, lines or other elementary features [51, 52, 84]. Eventually, the seminal work
of Olshausen & Field [104, 105] shows that a sparse linear coding of images containing nat-
ural scenes results in learned basis functions that resemble the structure of Gabor-Wavelet
like functions which further supports this particular image model assumption.

The sparse or compressible representation of images has also paved the way for efficient
coding strategies. In 1992, the Joint Photographic Experts Group presented a lossy image
compression algorithm called JPEG [163]. The core of this scheme is a decomposition of
small non-overlapping 8 x 8 image patches into the basis signals of the two dimensional
Discrete Cosine Transform (DCT) basis. Thus, the resulting coefficients encode the 2D spa-
tial frequencies present in the patch. Since most of the energy is concentrated in the low
frequency parts, the near-zero coefficients that represent the high frequency information
can be neglected without any substantial loss in image quality. The compression frame-
work has been developed further resulting in the JPEG2000 standard [156] that is based on
the Discrete Wavelet Transformation (DWT). Figure 1.2 depicts the two-level DWT repre-
sentation of an image along with a plot of the magnitude of the coefficients in descending
order. The compressibility of the image in the DWT domain can be observed by the fact
that the reconstruction of the image from only ~ 11% of the most significant coefficients,
as shown in Figure 1.2¢, is close to the input image and artifacts are hardly noticeable.

Sparse image representations have also been extensively used to regularize the solution




(a) Input Image (b) Two-level Wavelet (c) Reconstructed Image
Decomposition

Figure 1.2.: Discrete Wavelet Transform (DWT) of an image. (a) Input image. (b) The multi resolution decom-
position where the image is decomposed into two different scales. Only significant coefficients are shown. (c)
Reconstruction of the image with only ~ 11% of the most significant coefficients as indicated in (b).

of many common image processing tasks that can be formulated as linear inverse prob-
lems. Depending on the specific application, the matrix & € RM*N given in equation (1.2)
represents the underlying measurement operation. Classical image applications include
Denoising [41, 98, 53], Deblurring [16], Super-Resolution [176], Inpainting [50] or Image
Separation [151].

As already mentioned above, the analysis of the general and very interesting recovery
task where the dimension of the measurements is significantly smaller than the signal di-
mension has been investigated under the term Compressed Sensing. Especially medical
imaging has profited from the theory which led Compressed Sensing become a highly ac-
tive research area in recent years. In Magnetic Resonance Imaging (MRI) the formulation
of the image recovery problem as a sparse approximation problem can lead to a significant
reduction in scanning time [87, 86]. In Computed Tomogrpahy (CT) imaging the same
principle can be used to lower the radiation dose the patient is exposed to cf. [26,29, 177].
Eventually, much research has been conducted to further introduce CS into different med-
ical imaging modalities. In [112], the reconstruction of Photo-Acoustic Tomography (PAT)
from a reduced set of measurements is investigated. Ultrasound (US) images are consid-
ered in [118].

While sparse representations have been primarily used for image reconstruction and re-
covery, applications of these techniques can be also found in the field of computer vision.
In this context, the main focus lies on the extraction of semantic information. The work
reported in [171] addresses the problem of automatic face recognition. For this purpose,
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vectorized face images from different subjects under varying illumination conditions con-
stitute the columns of the dictionary ¥. It is assumed that images of the same face lie on
a low-dimensional so-called face subspace. Thus the significant coefficients of the sparse
representation of some query image are likely to be present at indices that belong to pro-
totype faces from the same subject. As a result, classification or validation can be simply
done via thresholding. Further references can be found in [170].

All of the aforementioned problems indicate the versatility of sparse representation mod-
eling, especially for image processing tasks. However, while the concepts of sparsity are
easily applicable to a vast amount of different problems, the critical role of choosing a suit-
able basis or dictionary has been left aside so far. The next sections address this issue with
the focus on learning sparse data models.

1.1. Background on Learning Sparse Data Models

In the simplest case, the signal of interest is a linear combination of basis vectors from an
orthogonal basis. The example given in Eq. (1.1) shows the expansion of the signal in
the orthogonal Fourier basis. Figure 1.2 illustrates another famous transform, namely the
wavelet decomposition [94]. The wavelet basis is constructed based on the repeated trans-
lation and scaling of a pair of localized functions. This pair is referred to as the low fre-
quency scaling and the high frequency wavelet function. Both approaches share the impor-
tant advantage that the desired representation can be computed efficiently even without
forming and applying the matrix ¥. However, efficiency is achieved at the cost of loosing
adaptivity. While the Fourier basis is suitable to sparsely represent smooth signals without
sharp discontinuities, the wavelet basis is efficient in describing piecewise smooth signals.
To account for these drawbacks, the literature offers a wide variety of other signal trans-
forms. Candes and Donoho [21] proposed the curvelet transform which is efficient in rep-
resenting smooth curves. The original description as a continuous transform was further
extended to the discrete case in [152]. To directly account for the discrete two-dimensional
nature of images, the contourlet transform has been introduced by Do and Vetterli [37].
Compared to the curvelet approach, the discrete formulation of contourlets reduces the
complexity and redundancy. The non-adaptivity of the aforementioned transforms was
addressed by Le Pennec and Mallat, who introduced the bandelet transform [109]. This
signal adaptive transform is able to directly exploit the existing geometric structures, e.g.
edges in an image. Further references on analytic transforms can be found in [138].
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1.1.1. Sparse Synthesis Model

The quest for better adapted transforms has led to the emergence of so-called dictionaries.
A dictionary D = [dy,...,dx] € RN*K is a matrix whose columns {d;}X | represent the
basic elements also known as prototypes or atoms. Analogous to the expansion in a basis,
a signal can be represented as a linear combination of the columns of D, i.e., we have

s = Dz, «xissparse. (1.9)

In other words, the signal is synthesized from the basic elements provided by the dictio-
nary. That is why in the literature, this model is known as the sparse synthesis model. The
geometric interpretation of this model is straightforward. Notice that the coefficient vector
x is assumed to be sparse, thus only a subset of the possible L; columns out of D is selected
to describe the signal and consequently, the subspace the signal lies in is determined by the
non-zero entries in x.

The index set that contains the locations of the significant coefficients is denoted as the
support Y, i.e., wehave Y(x) = {i|x; # 0} with cardinality |Y(x)| = L;s. Depending on the
sparsity level L, the number of possible subspaces also varies. If we denote the subspace
spanned by the columns of Dy by Ay := span(d;,i € Y), the sparse synthesis model
comprises the union of all possible ( fs ) subspaces (Union-of-Subspaces (UoS) model [85]):

se U . (1.10)
Y:|Y|=Ls

Beginning with the work of Mallat and Zhang [95], especially overcomplete dictionaries
or frames, where K > N, have gained a lot of attention in the research community. The
terminology of dictionaries provides a significant difference to bases in the sense that the
signal representation is no longer unique meaning that dictionaries exhibit some sort of
redundancy. The easiest way to realize an overcomplete dictionary is a concatenation of
two different bases, i.e., D = [¥;, ¥,] € RN*2N which is closely related to the signal sepa-
ration approach where different representations are used to encode different content types.
Evidently, with two bases at hand the expressiveness of the dictionary is significantly in-
creased.

So far, the design of a suitable dictionary solely relies on a mathematical model of the data.
This strategy implies that the characteristics of the signals are known a priori and that the
sought signals indeed have a sparse representation with respect to the chosen dictionary.
An even better approach is to learn a representation that directly adapts to the particular
signal class. The resulting dictionary should provide more accurate signal approximations
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with higher sparsity rates (less significant coefficients) and thus a better performance in
signal processing applications. However, the advantage of trained dictionaries comes at
the cost of two serious drawbacks. First, the decomposition requires additional algorithms
that determine the sparse code. Second, to tackle the dictionary learning problem only
small sized signals can be considered. As a consequence, in the context of image process-
ing most of the classical approaches follow a patch-based approach where the image is
decomposed in (non-)overlapping patches of small size.

The classical dictionary learning problem amounts to minimizing a cost function that
is composed of two global objectives, namely the error between the input signal and its
approximation with respect to the learned dictionary and second, a function that measures
the activity of the coefficient sequence. If we let S € R"*T denote the matrix which holds
T vectorized image patches of size \/n x /n as its columns, the classical learning problem
can be stated as

{D*, X"} carg min ||S—DX|} +Ag(X). (1.11)
XeRnT

Section 1.2.1 briefly summarizes the major dictionary learning methods presented in the

literature.

1.1.2. Co-Sparse Analysis Model

The sparse synthesis model, while well established in the research community and often
used in practice, has a closely related counterpart called the co-sparse analysis model, whose
impact in sparse data modeling has been left unconsidered a very long time. As the name
already suggests, instead of synthesizing the signal content the analysis model draws its
representational power from an operator that analyzes the signal. To put things formally,
the analysis operator £2 = [wy,...,wk|" € RN is applied to the signal s € RN which
results in the co-sparse outcome a € RK, ie.,

f2s = a, aisco-sparse. (1.12)

In contrary to the synthesis dictionary, the rows {w; }X | of the analysis operator constitute
the basic elements that describe the structure of the data. The rows of §2 are also often
referred to as filters, where the filter response indicates if the signal belongs to the model.
The term co-sparsity originates from the fact that in the analysis model the essential infor-
mation of the subspace the signal lies in is encoded in the zero elements, which is in sharp
contrast to the synthesis model. Formally, the co-sparsity is defined as the number of zeros

10
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in £2s,i.e.,
co-sparsity : L, := K — ||£2s]|o. (1.13)

Hence, a signal is considered co-sparse when L, is large meaning that many coefficients
are close to zero. Analogously to the synthesis model, the index set of the zero elements
in £2s is denoted as the co-support A(s) = {i|{w;, s) = 0} with |A(s)| = L,. From a
geometrical perspective, a signal that is exactly L,-co-sparse lies in the orthogonal com-
plement of the rows of 2 indexed by A, ie., f2ys = 0. Consequently, if we denote
B, = span(w;,i € A)- = Null(£2,), we have that for the analysis model the signals
reside in the union of all possible ( é ) subspaces

se |J Ba (1.14)
A:|A|=L,

each with dimension N — L,. Figure 1.3 schematically illustrates the subspace identifica-
tion in the analysis model based on signals that reside in R3. As pointed out above, the
signal is characterized by the zero entries in L,, which in the given example are associated
to the colored filters in £2. Assuming that s, w; # Oy, a zero filter response is achieved if w;
is orthogonal to the signal. Thus, each of the rows can be considered as normal vectors, de-
scribing hyperplanes the signal resides in (illustrated by the colored planes in Figure 1.3).
Eventually, the signal lies in the hyperplane identified by the collection of normal vectors
that lead to zero analysis coefficients. Regarding the R® example in Figure 1.3, the sig-
nals originate from a one-dimensional subspace, where the different subspaces are clearly
determined through the colored filters in 2.

Although the analysis and synthesis approach look similar, the seminal work of Elad et
al. [48] has shed light on the properties of both models, revealing the strong difference be-
tween them. The authors first show that in the square non-singular case, i.e., the operator
2 € RN*N has full rank, both models are equivalent in the sense that 2 = D~!. Even
for the undercomplete non-singular case where K < N, when s is in the column span of
D equivalence is achieved when 2 = D*, where D' denotes the Pseudo-Inverse of D.
The most interesting case however, are overcomplete representations where K > N. Here,
the increased expressiveness achieved through the redundancy of the atoms/filters allows
to better reflect the true underlying structure of the signals. Assuming a fixed number
of atoms/filters the authors in [101] vividly describe the strong difference between both
models in the overcomplete scenario. While the synthesis model includes few low dimen-
sional subspaces and an increasing number of high dimensional subspaces, the analysis
model behaves contrary, i.e., the number of low dimensional subspaces representable by

11
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Figure 1.3.: Analysis Union-of-Subspace (UoS) Model. (a) Subspace #1. (b) Subspace #2.

the operator 2 clearly exceeds the number of high dimensional ones. Finally, simulations
showing the potential superiority of the analysis model compared to its synthesis coun-
terpart can be found in [48, 101], where numerical results on various image processing
applications are given in e.g. [64, 122, 168].

Typical choices for analytically given operators are on the one hand the finite difference op-
erator, that calculates the difference between neighboring pixels. This approach is closely
related to the Total Variation (TV) norm minimization [144] which enjoys great popular-
ity in image processing applications. The shift invariant wavelet transform on the other
hand is another representative of this group [101]. However, just like for the synthesis
model, learning the co-sparse analysis model is a field of active research. Again, typically
a patch-based approach is the method of choice to keep the number of free parameters in
an acceptable range. With S € R"*T being the same matrix as defined in (1.11) the general
analysis operator learning problem reads

2" € arg nré\]l%%ng(QS), (1.15)

with g(-) denoting again the sparsity inducing function. Various approaches to tackle prob-
lem (1.15) are described in the following section.

12



1.2. State-of-the-Art Learning Algorithms

1.2. State-of-the-Art Learning Algorithms

1.2.1. Dictionary Learning

One of the first dictionary learning approaches is the work presented by Olshausen and
Field [104], who tackle the problem in a two stage fashion. First, the coefficients X are de-
termined by minimizing (1.11) with fixed atoms D which can be done for each vectorized
patch separately. In the second stage, the current residuals between the input and the ap-
proximation are used to globally update the columns in D via iterative gradient descent.
The scale ambiguity between the product DX, however, causes the norm of d; to grow to
infinity while the sparse coefficients in X approach zero. That is why an additional con-
straint has to be imposed on the norm of d; which is usually set to ||d;|| = 1. Although
being a relatively simple algorithm, the authors could impressively show that it is possible
to learn localized, oriented and bandpass prototype signals from examples that resemble
the behavior of cell receptive fields in the mammalian primary visual cortex [104, 105].

The Method of Optimal Directions (MOD) is an algorithm proposed by Engan et al. [49].
The MOD differs from [104] in terms of a more efficient update of the sparse codes and a
modified update of the dictionary elements. To be precise, assuming the coefficients X (!
to be known, the next iteration of the dictionary is obtained via

AT

pU+l) — SX(i)(X(i)X(I) )—1_ (1.16)

This update rule can be easily derived by considering the derivative of the residual error
| S — DX ||* with respect to D.

A dictionary learning algorithm named K-SVD was developed by Aharon et al. [2]. The
proposed method is inspired by the vector quantization framework which can be consid-
ered as the extreme case where the columns of X are taken from the canonical basis, i.e., all
x; are one-sparse with x; = e;. If also the codebook D is updated additionally, the whole
procedure is known as K-means which gave rise to the name K-SVD. The second part of
the name originates from the update scheme. To be precise, the objective of the method
reads

{D*, X*} € arg _min, |S—DX|F st |mllo < LsVi,||djll2 =1V, (1.17)

X cRkxT

where L; denotes a fixed upper limit on the number of active coefficients in each sparse
code representation. Analogous to the aforementioned methods, the algorithm alternates
between two steps. In the sparse coding stage, the coefficients are usually determined
by applying suitable pursuit algorithms, e.g. Orthogonal Matching Pursuit (OMP). The
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second stage comprises a simultaneous dictionary and active coefficients update. For this
purpose, the error induced by the k-th atom is considered, which can be calculated via

2
= || By — dp XV |3 (1.18)

|S —DX|% = H (s — Zdjxf°W> — di XV
F

7k

Here, X;°% denotes the k-th row of the matrix X. The aim of the second stage is to find an
update of d and X[°¥ such that the error || Ex — djX[°%||? is minimized. This amounts to
finding the closest rank-1 approximation of Ej which can be derived easily by means of the
Singular Value Decomposition (SVD). However, naively updating both the atom and the
selected sparse coefficients, will result in a new row vector X;°" that is non-sparse. That
is why the SVD of the reduced matrix Ej, that only contains the columns indexed by the
active non-zero entries in X;°%, is calculated. Eventually, the decomposition E,=UxV'
is utilized to determine the new iterate of the atom dy = u; and the simultaneous update
of the sparse coefficients X OV = 0(1,1)U1T .

Further references on the topic include the works of Mairal et al. [91, 90, 89] as well as
the survey papers [15] and [159].

1.2.2. Analysis Operator Learning

The work of Roth & Black [137] can be considered one of the first attempts that address
the problem of learning analysis priors that capture the statistics of natural images. Their
approach, named Fields-of-Experts, aims at modeling the probability density distribution
of the whole image content as the product of several experts distributions, which are much
easier to retrieve. For this purpose, a set of filters is learned whose response to a neighbor-
hood of image patches follows a Student-t probability distribution.

In [106], Ophir et al. propose a simple analysis operator learning scheme that sequen-
tially updates the filters by identifying directions that are orthogonal to a subset of the
training data. Denoting S; as a randomly chosen subset of the training samples the core
step of the presented algorithm consists in finding a vector w; that is nearly orthogonal to
the set S;. This vector can be easily determined in closed from by taking the eigenvector
associated with the smallest eigenvalue of the matrix S;S," . While being optimal with re-
gard to the orthogonality property, sequentially finding the rows of {2 in this manner is
prone to produce repetitions and linear combinations. That is why the authors propose
to prune atoms that do not differ in a certain extent from previously found ones. These
heuristics, however, may result in tedious pruning steps which in the worst case end up in
deadlock situations.

A successor of the K-SVD algorithm transferred to the analysis model is presented by Ru-
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binstein et al. [140, 141]. Comparable to its synthesis counterpart, the proposed approach
alternates between updating the columns of the signal matrix S - which emphasizes the
algorithm’s property to handle noise contaminated measurements - and a sequential up-
date of the filters in £2. After projecting the signals S onto the orthogonal complement of a
subset of rows from §2 in the first step, a filter update rule similar to [106] is pursued:

w] € argmin lw/ Yili5 st [wjll2=1. (1.19)

While Y denotes the matrix of noisy observations as its columns, the index set | identifies
the subset of the columns of S that are orthogonal to w;. The singular vector corresponding
to the smallest singular value of Y} constitutes the solution. In this way, only those samples
Y] contribute to the update w; that are most orthogonal to it (deviations are only due to
noise). As a drawback, to resolve deadlock situations, after each update step the rows of
£2 which are too close to each other or that have too few associated samples are replaced
by random vectors. Furthermore, although being able to simultaneously denoise the input
while learning the analysis operator, the presented approach remains completely patch-
based without any global data fidelity term. Hence, the resulting denoised image must be
obtained via simple patch averaging.

Analogous to the task-driven synthesis based approach of Mairal et al. [89], Peyré & Fadili
[110] propose a learning algorithm that aims at finding a suitable analysis operator for a
given task, e.g. Denoising. To achieve this goal, pairs of clean and noisy signal samples
(sk, yx) serve as an input for a bi-level programming optimization problem. This frame-
work optimizes the lower level operator learning problem, whose solution simultaneously
minimizes the higher level Denoising problem, i.e.,

e . 1 2

minim >|1s(42, - , 1.20
inimize 1 41(2, ) — ol (120
where s(£2,y,) = argmin 1||s — y[|3 + g(£2s), (1.21)

with ¢(+) denoting the sparsity measure. However, since the desired operator takes the
form of a circular convolution, the learning part consists in determining only one filter *y
whose shifted versions constitute the rows of £2.

A similar approach is followed by Chen et al. [28]. Instead of reconstructing individual
image patches that are combined via averaging to form the final image, the authors extend
the bi-level programming framework such that it provides global image support. One
of the main advantages of the bi-level learning problem is the avoidance of any further
constraints on §2. This is because although the trivial solution 2 = 0y, minimizes the
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lower level problem (1.21), the resulting solution s(42,yx) = vy is not a minimizer of the
higher level Denoising problem, which forces the algorithm to learn meaningful filters.
However, the applicability of the algorithm is rather limited due to its extensive training
time. The authors mention a training time of 20 days even for moderate filter sizes of 9 x 9.

While the aforementioned algorithms avoid trivial solutions either based on heuristics,
e.g. pruning or replacement of certain rows in §2, or by means of a bi-level programming
approach, there is a third category that directly imposes constraints on the operator it-
self. In the work of Yaghoobi et al. [173, 174, 175] constrained analysis operator learning
is expressed as an optimization problem that is able to cope with noisy observations Y.
Formally, the proposed patch based approach reads

A
{275} carg min 28+ 5[V - S|E st Q€¢, (1.22)
Qerkxn
SernxT

with the Lagrangian multiplier A and some constraint set € to avoid trivial or meaningless
solutions. The authors propose a Uniform Normalized Tight Frame (UNTF) constraint
¢ =1{N c R™" : 272 = I,.,||willz = cVi}, which results in a full rank operator
whose rows w; exhibit norm c. Equation (1.22) is minimized in an alternating fashion that
optimizes for one variable while keeping the other fixed. To fulfill the constraint, at each
gradient descent step the operator is projected onto the intersection of the Tight Frames
(TF) manifold and the manifold of frames that are Uniform Normalized (UN).

Hawe et al. [64] present an analysis operator learning scheme that utilizes weighted
penalty functions to relax the strict UNTF constraint. The suggested constraint set includes
full rank matrices with normalized rows, i.e., € = {§2 € R*" : rk(£2) = n, (2027); = 1}.
Since in the overcomplete case, the full rank constraint alone does not prevent the algo-
rithm to learn identical filters, a log barrier function r(§2) that penalizes the pairwise mu-
tual coherence of the filters has been included, resulting in the optimization problem

2" € arg Qté\ﬂ%%n 9(02S) +«h(02)+ur(2) st €, (1.23)

where g(-) denotes the £,-norm sparsity inducing function, and i(-) serves as a penalty on
the singular values of §2 to enforce full rank matrices. The constraint set admits a manifold
structure known as the oblique manifold. This property has been directly utilized in the
optimization strategy, resulting in an efficient conjugate gradient on manifolds approach.
Thus, at each iteration the algorithm updates the whole operator at once without any addi-
tional projection step as required in [175]. The authors present state-of-the-art results when
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applying the learned analysis operator as a regularizer in various inverse problems. How-
ever, the presented learning framework only handles vectorized noise free image patches.

1.2.3. Transform Operator Learning

Recently, a closely related concept termed transform operator learning has evolved. In this
model, a signal s is assumed to be approximately sparse in the transform domain, i.e.,
W's = b+ e, with W denoting the transform operator, b is the sparse representation, and
e denotes the representation error in the transform domain that is assumed to be small.
In contrary to the classical analysis model, the co-sparse representation in the transform
model is not restricted to lie in the range space of W. The transform operator learning
problem reads

{W*,B*} € arg _min WS —B|%2 st |bllo <L,V (1.24)

BeRkXT

where again S and B hold the signals and the transform sparse representations as their
columns, respectively. When optimizing for the sparse code B while keeping W fixed,
a significant advantage of this formulation consists in the fact that a solution B* can be
analytically obtained via hard thresholding the product WS such that in each column
only the L, largest entries remain. This motivates an alternating optimization strategy to
solve the problem as given in Eq. (1.24). In the following, various approaches that address
the transform operator learning problem including the avoidance of trivial solutions are
discussed.

Similar to the work of Hawe et al. [64], optimization on the unit sphere to fulfill the row-
norm constraint ||w;||, = 1Viis also pursued in the work of Dong et al. [38, 39]. However,
the authors neglect any possible rank deficiency of the learned operator.

To avoid rank deficient solutions, Ravishankar et al. [123, 126] propose to add a weighted
negative log-determinant penalty —A log(det(W)) to the cost (1.24). To control the scale
ambiguity in W, an additional squared Frobenius norm penalty on W is inserted in the
cost, resulting in the problem

{W*,B*} € arg min [|[WS - B|j? — Alog(det(W)) + u|[W |7 st ||billo < L, Vi.
W eRkX"1
BeRkxT

(1.25)

The authors observe that penalizing the Frobenius norm results in superior transforms
compared to restricting each of the rows to unit norm. Additionally, the penalties allow to
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control the condition number of W. Denoting the largest and smallest singular value of W
as Omax and omin, respectively, the condition number is defined as cond(W') = 0max/ Tmin-
Especially for signal denoising, the authors argue that a low condition number of the op-
erator is beneficial.

Obviously, the minimization problem (1.25) is only applicable to learn square sparsify-
ing transforms of the form W € R"*". In [125] the learning problem is modified such that
it can cope with overcomplete operators. For this purpose, the log-penalty is changed to
—Alog(det(W TW)) to ensure full column rank of W. Furthermore, an additional inco-
herence penalty }-; |{(wj, wi) | promotes non-repeating rows. In the work of Wen et al.
[168], overcompleteness is modeled as a union of square matrices, i.e., the algorithm learns
a collection of K well-conditioned square transforms {W;}X |. This is due to the fact that
the solution of the transform update sub problem can be derived in closed form if W is
square. The union of transforms model requires a clustering step, that assigns each sample
to the transform W; that provides the smallest sparsification error compared to all existing
transforms. Extensions of the sparsifying transform learning approach to mini-batch, or
one-sample online learning are given in [130, 131, 128].

1.3. Formulation of the Research Problem

Nowadays, the collection and storage of large multidimensional data sets can be achieved
at very low costs. On the other hand, processing the data and extracting useful informa-
tion becomes more elaborate especially in terms of memory storage resources and com-
putation load. Since the number of data entries grows exponentially with the number of
dimensions, applying standard representation learning approaches that require vectorized
samples are no longer suitable from a computational point of view. Not only learning
the model, but also applying the model to the data at hand rapidly becomes prohibitive.
Moreover, these vectorization approaches neglect the intrinsic structure of multidimen-
sional patterns frequently present especially in image data.

Many analytically defined sparse transformations like DFT, DCT, and DWT enjoy great
popularity in the image processing community because they offer fast implementations.
This can be attributed to the fact that multidimensional transformations can be easily calcu-
lated by sequentially computing one-dimensional transformations along each dimension
separately. This separability property significantly reduces the computational complexity.
Consequently, imposing a separability constraint on the model is of highest interest to com-
bine the best of both worlds, i.e., fast computations and accelerated learning schemes on
the one hand, and a better adaption to the signal class on the other hand.
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In this thesis, I will focus on the analysis model. The following challenges and problems
regarding the task of learning a structured co-sparse data model for multidimensional sig-
nals are addressed in this work:

Computational Complexity. In order to reduce the computational complexity during
learning and to handle multidimensional signals, the structural constraint has to be di-
rectly integrated into the learning process. The aim is to obtain a separable analysis op-
erator that shares the same beneficial properties that have already be shown useful in the
literature of non-structured learning approaches.

The computational effort for iterative gradient descent learning approaches is also
strongly influenced by the size of the training set. Redundant samples will unnecessar-
ily slow down the learning process due to expensive calculations of the objective function
and the gradient. In addition, theoretical considerations show that restricting the set of
feasible solutions will have a direct impact on the number of samples needed for a reliable
estimate of the model. Hence, the learning algorithm has to be adjusted accordingly.

Although being efficiently learnable, it remains unclear if the separable analysis model
provides compatible results when applied as a regularizer in common inverse problems in
imaging. That is why the potential tradeoff between the reduced computational complex-
ity on the one hand, and the achievable performance on the other hand has to be explored.

Applicability. One of the most important aspects concerning learning algorithms is the
determination of suitable parameters. A universally applicable algorithm is characterized
by the fact that the parameters do not have to be fine-tuned with respect to the task at hand.
Moreover, the utilized optimization framework should easily adapt to varying settings
without the need for a tedious parameter search.

Usually, the usefulness of a particular parameter set is assessed based on the perfor-
mance of the learned model with respect to some particular problem, e.g. Denoising, which
further decelerates the evaluation process. This motivates to examine the generalization
behavior of the learned co-sparse analysis model from a task independent perspective. By
implication, an operator that generalizes well should also provide good performance if it
is used in a sparsity prior to regularize inverse problems.

Mapping the input signal to a sparse representation is also the key in the Sparse Auto-
Encoder framework. That is why I want to explore the required ingredients to leverage this
concept to regularize the learning process such that a meaningful Co-sparse Auto-Encoder
whose encoder part follows the co-sparse analysis model is attained.
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Blind Learning. In many scenarios, noise-free training signals are difficult to acquire or
even simply not available. Besides, the underlying measurement process often demands
global image support which prohibits to tackle the model learning problem in a purely
patch-based manner. For that reason, the learning framework has to be extended in order
to meet these requirements.

1.4. Contributions

In the first part of this thesis, I introduce a separable analysis operator learning algorithm
that allows to efficiently learn filters for multidimensional training data. An example of
a learned separable operator, that is applicable to 2D signals is shown in Figure 1.4. The
applied cost function is motivated by the work of Hawe et al. [64] who use log-barrier
penalty functions to regularize the solution. I show that the separability constraint can
be straightforwardly integrated into the learning framework by restricting the single filter
matrices, which are applied to each signal dimension separately, to the constraint set. To
avoid the normalization of the filters after each update step, the optimization algorithm
directly utilizes the product of spheres manifold structure. As opposed to [64], I propose a
geometric Stochastic Gradient Descent (SGD) implementation that processes the training
samples in a mini-batch fashion. This approach avoids the determination of a fixed training
set with appropriate size beforehand which also renders the algorithm ready for online
learning scenarios. Together with an Armijo based line search technique adapted to the
SGD setting, the algorithm converges quickly without the need for manually adjusting
the step size. Furthermore, numerical results show that the performance of the separable
analysis model, when it is used as a prior in a Denoising problem, is on par compared to
various non-separable approaches, which highlights the benefit of the proposed approach.

The sequential processing of the samples in the SGD implementation is also advanta-
geous with regard to the sample complexity. In the second part, I show empirically that
a separable ground truth operator can be retrieved from far fewer training samples if the
structural constraint is directly exploited in the optimization. This result confirms the as-
sumption that reducing the number of the model parameters goes hand in hand with a
significant reduction in the amount of samples needed in the learning task.

In order to assess the generalization behavior of the learned model, I utilize the Esti-
mated Kullback-Leibler divergence between the distribution of the original training data
and the distribution of signals that are generated with respect to the learned operator. It
can be observed that this measure correlates with the performance of the model in inverse
problem regularization, which eventually enables a task independent evaluation of the
applicability.

20



1.5. Thesis Outline
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Figure 1.4.: Example of a Separable Analysis Operator. For visualization purposes, the obtained separable
filters are as shown as 2D kernels. Gray pixel values correspond to zero filter entries.

Within this thesis, I also present a combined learning and reconstruction approach. Ex-
periments on different image reconstruction tasks show that the framework is able to adap-
tively learn the analysis model even from undersampled and corrupted measurements.
The applied Conjugate Gradient (CG) optimization scheme allows to flexibly exchange the
data fidelity term such that it accounts for varying noise distributions, e.g. additive, im-
pulsive or multiplicative noise. This feature renders the presented approach a powerful
universal learning framework for various scenarios in imaging, which is not restricted to
clean image data or specific measurement matrices.

The last part of the thesis considers learning a separable analysis operator from a Sparse
Auto-Encoder (SAE) perspective. Interestingly, by restricting the norm of the weights in
the decoder, the condition number of the encoder matrix can be controlled, which has
been proven beneficial if the operator is utilized to regularize inverse problems in imaging.
Analogously to the experiments conducted before, the learned encoder matrix is used in a
co-sparsity prior to regularize the solution of a Compressed Sensing and Denoising prob-
lem. The numerical results show that the SAE learned analysis operator indeed provides
stable reconstruction performance comparable to operators obtained with the conventional
learning setting, however, without the need for additional penalty functions.

5. Thesis Outline

The thesis continues with an introduction to multidimensional signals, separability, and
optimization on manifolds in Chapter 2. This chapter is intended to explain the basic con-
cepts used throughout the thesis. Afterwards, Chapter 3 summarizes the related work on
learning sparse data models with separable structures. Additionally, the prior art on adap-
tive learning strategies and approaches to combine artificial neural networks and sparse
data models are considered. In Chapter 4, the proposed separable analysis operator learn-
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ing algorithm is introduced and evaluated. Chapter 5 presents an empirical evaluation
of the sample complexity in relation to the standard non-separable case. Furthermore,
the model generalization is addressed. The simultaneous learning and reconstruction ap-
proach is outlined in Chapter 6. The chapter includes various experiments on solving
inverse problems with varying noise distributions. In Chapter 7, the learning problem is
examined from the Sparse Auto-Encoder perspective. The thesis concludes with a sum-
mary in Chapter 8.
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Chapter 2.
Mathematical Preliminaries

In order to provide a self-contained work, this chapter introduces some important concepts
that will be used throughout the entire thesis. In the first part, the structure of multidimen-
sional signals as well as the separability of matrices is explained. Afterwards, the key
components of a geometric gradient descent on manifolds along with an extension to the
conjugate gradient method are presented.

2.1. Multidimensional Signals and Separability

Multidimensional signals are referred to as tensors, where the order of a tensor is the num-
ber of dimensions, also known as ways or modes. Following this notation, vectors can be
considered as tensors of order one, while matrices represent tensors of order two. Tensors,
whose modes are all the same size are called cubical.

A typical representative of multidimensional signals in image processing could be for
example a hyperspectral image, where I; and I, describe the spatial resolution of the im-
age with I3 indicating the spectral resolution, i.e., the number of acquired wavelengths as
shown in Figure 2.1a. As another example, think of a 3D Magnetic Resonance Image of
the knee as illustrated in Figure 2.1b. Here, all three dimensions I, I, and I3 encode the
spatial information with the same physical meaning in all dimensions.

Multiway component analysis addresses the demand of (i) retaining the multidimen-
sional structure of the data and (ii) providing tools that scale well with the number of
dimensions, i.e., being computationally tractable. As a result, various tensor decomposi-
tion techniques have been proposed in the literature, where the reader is referred to the
work of Cichocki et al. [30] who provide a comprehensive introduction into this topic. A
survey of general methods to decompose a tensor into low dimensional components can
be found in the work of Kolda & Bader [76]. For ease of notation, in this work I will
stick to the n-mode (matrix) product which denotes the multiplication of an arbitrary tensor
U € RixlxxIv with a matrix Q € R/*!" along the n-th dimension by U x,, Q. The result
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(a) Hyperspectral image (b) Volumetric MRI scan

Figure 2.1.: Example of image data that has a tensor structure. (a) Hyperspectral image with several wave-
length subbands. (b) Volumetric MRI scan of the human knee.

isofsize [} X --- X I, 1 X | X [;11 X ... x Iy and can be obtained elementwise via

Ly
[U Xn Q]i1"'in—1jin+1"'iv = Z Uiiy--iy E]]‘Z'n. (2.1)

ip=1

To offer a better understanding of this concept, the n-mode product for a three dimensional
tensor is illustrated in Figure 2.2, where the tensor U/ € R1*12%5 js multiplied by the three
matrices {Q;}?_, along each dimension which results in the output W.

The n-mode product W = U x1 Q1 X2 Q2 ... Xy Qv can be rewritten as a matrix-vector
product using the Kronecker product ! ® and the vec-operator? such that

vee((W) = (@12Q2®---®@Qv) -vec(U). (2.2)

IThe Kronecker product A ® B of the matrices A € R’/ and B € RX*! yields a matrix of size (IK) x (JL)
defined by

tlllB alzB s IZUB

a1 B apB --- 4B
A®B= L :

anB apB --- ayB

2The vec-operator rearranges the entries of a tensor // € RI*2XXIv into the column vector vec(U) €
RI] IZ“'IV
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Figure 2.2.: The n-mode product W = U x1 Q1 X2 Q2 X3 Q3 with tensors W, U and matrices Q;, i = 1,2, 3.

In addition to the n-mode product, many authors make use of the so-called n-mode matrix
unfolding that enables to map a given tensor to a matrix of appropriate size and to apply
simple matrix-matrix operations. The matrix unfolding along the V' dimension of the
tensor U € RI*ExxIv js denoted by unf(U, V) € RV*Tlizv1)  With the help of this
concept, equation (2.2) can be rewritten as

unfOWV, V) = Qu -unf(U, V) - (@1 @ --- @ Qy_1) . (2.3)
In Figure 2.3, the unfolding of the third order tensor U/ € R1*12%5 ig jllustrated.

In this context, the matrix Q = (Q1 ® Q; ® --- ® Qy) € RIL/*XILli js referred to as a
separable matrix, that can be fully described by the small matrices {Q;}_;. To enhance the
readability, in the subsequent chapters I will frequently make use of the mapping

. RAxh Lxh , ... JvxIy T ixILi L
1R x R X x R — R
(Q1,Q2,...,Qv) » Q1®Q2® - ®Qy. (2.4)

In this manner, the construction of a separable matrix Q = Q; ® Q2 ® - - - ® Qv can be
compactly writtenas Q =1 (Q1,Q2, ..., Qv).

Synthesis Model

In the case of a separable dictionary, equivalence to the model presented in (1.9) is achieved
by means of the Kronecker product of the dictionaries {D; € RN>*K}Y . Denoting
vec(S) € RNMN2Mv and vec(X') € RKiK2Kv a5 the vectorized versions of the input data
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LI

Figure 2.3.: The 3-mode matrix unfolding of a 3-tensor.

and the sparse code, respectively, (3.1) can be rewritten as

vec(S) = (D1 ® Dy ® - - - ® Dy) vec(X). (2.5)

Analysis Model

Analogously to (2.5), the co-sparse analysis representation can be obtained in vectorized
form via

vec(A) = (2102 ® - @ N2y) vec(S), (2.6)

where {£2; € RX*Ni}V | denote the analysis operators for each of the V dimensions.

2.2. Geometric Optimization

The ultimate goal of analysis operator learning is to find an operator £2 € RF*" that
provides co-sparse representations of the input signals. Referring to the learning prob-
lem (1.15), minimizing the sparsity measure g(£2S) will result in the zero matrix, i.e.,
£2* = 0kx,. Obviously, this solution does not provide any useful information about the
analyzed signals. Hence, to avoid this trivial solution, it is common practice to restrict the
norm of the rows w; € R" of the operator to unit value, i.e., we have ||w;|], = 1Vi.
Interestingly, with the unit norm constraint at hand, the transpose 27 admits a well
defined manifold structure. The set of matrices = whose columns have unit #,-norm is
known as the Oblique Manifold (OB) denoted as OB(n, k) = {Z € R™*: (ET&2); =1,
i=1,...,k}. Since each column in = resides in $" ! = {¢ € R" : €| = 1}, geometri-
cally, the same manifold can be described by the product of k spheres identified via S(n, k).
Throughout this work, both definitions OB(n, k) and S(n, k) are used interchangeably.
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In this work, I will focus on iterative methods to find the optimizer of the learning problem.
In general, given the function f(Z) : R™* — R, line search methods aim at iteratively
finding an update of the matrix = in the search direction H € R"*¥ such that the function
value decreases, i.e., f(E(*1)) < f(E")). The standard line search method applied in the
ambient Euclidean space reads

St = 5 4 40 g®) (2.7)

where a(t) denotes the step size that leads to a sufficient decrease of the cost function.
Eventually, with the choice of HY) = —V 2 f(£®") equation (2.7) gives rise to the Gradient
Descent (GD) or Steepest Descent method for optimizing the function f(Z).

Following this optimization strategy, the probably easiest way to fulfill the requirement
of normalized columns is to project the update Z(+1) back to the product of spheres man-
ifold via normalizing the columns to unit norm after each update step. However, since in
the considered setting where the geometry of the manifold is known, another promising
strategy consists in directly optimizing on the unit sphere. This approach avoids the pro-
jection step introduced above, which potentially result in a reduced number of iterations
required until convergence.

In the following, necessary ingredients for an optimization strategy that utilizes the ge-
ometric structure are outlined. Besides a simple gradient descent algorithm, I will also
present the adaptation of the CG method to the manifold setting. For more general in-
sights into optimization on manifolds, the reader is referred to [1] and [10].

2.2.1. Optimization on the Sphere

To derive the elements of the proposed geometric optimization framework, the concept of
tangent spaces has to be introduced first. Formally, the set T¢S" ! = {v € R" : v ¢ = 0}
denotes the tangent space at the point £, with v being a tangent vector. In order to calculate
distances and lengths, the tangent space is endowed with an inner product which in the
considered case is simply given by the Euclidean metric v ¢ for v, ¢ € T¢S" . Equipped
with this metric, the manifold is called Riemannian manifold.

The element in the tangent space T¢5" ! that points in the direction of steepest ascent of
some cost function f defined on a Riemannian manifold is denoted as the Riemannian gra-
dient. Starting from the Euclidean gradient, the Riemannian gradient at £ can be computed
via the orthogonal projection of the Euclidean gradient onto the tangent space T¢S" L. The
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orthogonal projection of a vector g € R" onto the tangent space T¢S" ! is obtained via

Ip,5-1(q) = <In - EéT) q. (2.8)

Eventually, the Riemannian gradient for the j-th column &; of the matrix = is denoted as

6(&) = My s (Ve f(21)), (2.9)

which will serve as a suitable choice for the search direction. However, searching along the
line —G(§;) still neglects the spherical structure of the set of feasible solutions. That is why
in the geometric optimization framework, the line search is performed along geodesics,
which can be considered the generalization of a straight line on the manifold. Regarding
the given product of spheres setting, the geodesics reduce to great circles on the sphere
that allow for a computationally feasible parametrization. The geodesic from &; along the
direction h; € Tg/.S”*1 is denoted as ’y(é’]-, hj, 1), where I denotes the arc length. Thus, the
parametrization of the great circle reads

3% if||hjl]2 =0

sin ; 210
g cos(||hyl2) + h2nUInlR) (2.10)

chil) =
7(&j Ry 1) IR otherwise.

All the aforementioned concepts can be straightforwardly extended to the product of
spheres manifold via applying (2.9) and (2.10) to all columns of = consecutively.

To conclude, regarding the geodesics for all columns in =, the generalization of the up-
date formula (2.7) for an update step on the product of spheres manifold can be compactly
written as

st (g0, 7O, 21), (2.11)

where T'(Z, H,«) denotes the set of geodesics for each of the j = 1,...,k columns of =.
Finally, setting H") = —G(Z") results in a Gradient Descent step on the manifold.

2.2.2. Conjugate Gradient on Manifold

»S" 1 is a linear combination of the cur-

(t=1)
j ]

the current gradient and the previous search direction do not lie in the same tangent

In CG methods, the search direction h](.t) eET ¢l
j

rent gradient at iteration (¢) and the previous search direction h €T €(_H)S”_l. Since
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space, linearly combining them only makes sense after mapping h](tfl) onto T 6]@8”*1. The
identification of different tangent spaces is done by the so-called parallel transport which
is denoted by pg) = p(v, £;t_1),h](-t_1),l ), which transports a tangent vector v along a
geodesic 'y(Ey_l),h](t_l),l ) ](t_l)
»S"~ 1. The transport along a great circle on the unit sphere reads

emanating from (-1 in the direction h to the tangent
g i &

space T

§

v h; .
p(’U,E]', h],l) = vV — th”; (E]Hh‘]HZ Sll’l(th]'Hz) + h]'(l — COS(thsz))) . (2.12)

Again, the generalization to all the columns of Z(~1 is denoted by Pgﬁ) =

P(Y, =1, H-1,1). With the concept of parallel transport at hand, the new search
direction H*) in the CG update can be obtained via

HO = —g(50) + p0OpY), (2.13)

with the CG-update parameter B{*). Typical choices for (") that can be found in the liter-
ature are the Hestenes-Stiefel (HS), Polak-Ribiere (PR), and Fletcher-Reeves (FR) update
formulae [103]. Exemplarily, with the shorthand notations G(*) := @(={")), as well as

ult) =gl — P((;t(g_n, the manifold adaption of the Hestenes-Stiefel formula reads

il — (2.14)

where (U, V) := tr(U"V) denotes the Riemannian metric on OB(n, k) induced by the
Euclidean metric of the embedding space R™*X.
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Chapter 3.
Related Work

3.1. Separable Dictionary and Analysis Operator Learning

In the subsequent part, sparsity-inspired learning approaches that address the multiway
structure of the data are considered. Compared to the vectorization approaches, these
methods provide crucial advantages. First, compared to non-structured approaches, fewer
parameters have to be estimated in the learning stage. Second, the separable structure
allows for an efficient application of the model.

3.1.1. Synthesis Model

One straightforward application of tensor decompositions with regard to sparse multidi-
mensional data representations is proposed by Caiafa & Cichocki [17]. If the input samples
are given as V-dimensional tensors S € R"1*"2**"_the sparse data model reads

S=Xx1Dy xyD;,...xy Dy, X issparse. (3.1)

Here, the dictionaries D, € R™*% with v = 1,...,V are two dimensional matrices ap-
plied to the V distinct dimensions of the sparse multidimensional tensor X' € RF1>k2x--xkv,
Since the authors in [17] use analytically given dictionaries, their main concern is about ef-
ficient sparse coding schemes to compute the representation X" without the explicit storage
of the dictionary D = (D, ..., Dy). This can be achieved by sequentially choosing the
corresponding mode atoms that are most correlated with the residual. Solving for the
sparse code can be subsequently done via solving a least squares problem that involves
the Khatri-Rao product [76] of the determined atoms. The complexity is further reduced
by imposing a block sparsity assumption on X. This is motivated by the observation that
non-zero entries are not evenly distributed but occur grouped into blocks [17]. Thus, only
a subset of atoms is used in the decomposition, which can be quickly identified by their
proposed V-way Block OMP algorithm.
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Extending dictionary learning algorithms that are originally designed for the non-
separable case, e.g. MOD [49] or K-SVD [2], to the multidimensional setting is proposed by
Roemer et al. in [136]. The alternating sparse code and dictionary update fashion, however,
is left untouched which renders the method rather limited to low-dimensional scenarios.
This is mostly due to a standard OMP in the sparse recovery step, that relies on the Kro-
necker dictionary D = ((Dy, ..., Dy). Additionally, the MOD dictionary update involves
laborious tensor unfolding and Kronecker products, which renders this approach rather
expensive. Moreover, the proposed Higher-Order SVD used to compute the rank-1 tensor
approximation in the multidimensional K-SVD implementation is computationally more
expensive than the standard two dimensional SVD update from [2].

In [116], Qi et al. also focus on the 2D separable dictionary learning problem, that is
solved in the same alternating manner. Opposed to the aforementioned approach, the
authors utilize a 2D-OMP which maintains the two dimensional structure of the data sam-
ples. While the outcome is equivalent to the ordinary OMP, the recovery complexity and
memory usage is reduced. A generalization of the model to multidimensional data is pro-
posed in the follow-up work [113]. However, the presented approach has a severe draw-
back as the sparse coding problem is converted into a standard 1D problem that involves
vectorization of the multidimensional data along with building the Kronecker dictionary
D = (Dy,...,Dy). Depending on the sparsity penalty, the solution is found via classi-
cal OMP or BP. The subsequent dictionary update is performed in a K-SVD type manner
where each row of D,, v = 1,...,V is updated sequentially. A modified approach that
considers the inherent structure of the multidimensional data is presented by part of the
same authors in [115]. Here, the sparse coding problem is tackled via an Tensor-based
Iterative Shrinkage Thresholding Algorithm (TISTA) that avoids building the Kronecker
product of all dictionaries prior to solving the sparse coding problem. Instead, computing
the gradient with respect to the sparse code simply involves the n-mode product between
the data and the dictionaries, which can be performed efficiently. Depending on the em-
ployed sparsity penalty, i.e., || X'||1 or || X'||o, the next iterate is easily determined by soft- or
hard-thresholding, respectively. Comparable to [116] and [113], the dictionaries {D,}"_,
are updated sequentially by solving a least squares problem for each mode via Newton’s
method or conjugate gradients. For each D,, this strategy implies calculating and unfold-
ing the n-mode product X=X X1 D1 Xy Dy...Xy_1 Dy_1 Xy11 Dyy1... Xy Dy for each
mode separately, such that S ~ X x, D,. To summarize, the aforementioned approaches
still largely rely on standard methods during optimization without explicitly utilizing the
multidimensional structure of the data.

In contrary to the alternating sparse coding and sequential dictionary update frame-
works above, Hawe et al. [65] propose to learn a set of dictionaries {D,}’_, while jointly
optimizing over the dictionaries and the sparse code X. To be precise, since each of the
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columns of D,, v = 1,...,V is restricted to unit norm to avoid the scale ambiguity, the
resulting matrices admit a manifold structure, namely the product of spheres S(n,, k).
This property is directly exploited in the optimization procedure through updates along
geodesics on the unit sphere. Thus, each D, is updated as a whole without violating the
unit norm constraint. The desired moderate coherence between the columns of D, is en-
forced via differentiable log-barrier penalties r(D,) that are incorporated in the cost func-
tion. Finally, the objective for the investigated problem of learning a sparse model for two
dimensional signals reads

{&”, D1, D3} €

T
arg min 5r ) [ID1X;Dy = Sjlf + 78(X) + mr(Dy) + xar(Da), (3.2)
’ ’ j:l

where T denotes the number of two-dimensional training samples. Analogous to [64], the
employed conjugate gradient approach permits the usage of any smooth sparsity induc-
ing function, resulting in g(X) = ¥ ;log(1 + vx?), with v controlling the slope of the log-
function. Eventually, the product manifold structure allows to jointly update (X, Dy, D)
at each iteration step. The presented approach allows to learn a separable dictionary even
from noisy samples, however it is restricted to the AWGN assumption and it does not
provide global image support.

Zhang et al. [179] take the same line of penalizing the incoherence and exploiting the
manifold structure to update the dictionaries as in [65]. They further include the full-rank
log barrier function mentioned in [64], however without proper motivation. Indeed en-
forcing the full rank in the synthesis model seems counterintuitive and ineffective in the
case when the signals reside in a low dimensional space. Like most of the other algorithms,
the proposed optimization is based on an alternating approach: (1) Sparse coding via Sep-
arable Fast Iterative Shrinkage-Thresholding algorithm (SFISTA), (2) Conjugate Gradient
update on the oblique manifold as suggested in [65]. An extension can be found in [180],
however with 2D-OMP in the sparse coding stage.

Another interesting strategy to learn separable filter banks is proposed by Rigamonti
et al. [134] and Sironi et al. [149] who adopt a convolutional approach that replaces the
matrix-vector (tensor) product by a convolution. Sticking to the two dimensional case, if
we let S; € RN*N denote an entire 2D image, a set of K two dimensional kernels {D]-}]K:l
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along with their corresponding sparse feature maps { X j,i}]1'<:1 can be retrieved via solving

K K
{D} Y AX]iH) € arg min )3 (HSZ'_X;Dj*Xj,i||%+AZ;||Xj,i||l> /
= =

{{Dj }Jl(:l'{Xj,i}]I'il} i
(3.3)

with A weighting the sparsity penalty against the data fidelity term. Stochastic Gradient
Descent and soft-thresholding are used to alternatingly optimize over both, the kernels
and the sparse feature maps, respectively. In the second step, the non-separable learned
kernels {D]-}]K:1 are approximated by means of a linear combination of a smaller set of
separable ones. Despite their first approach in [134] that relies on minimizing the nuclear
norm, in [149] a strategy based on tensor decompositions is utilized to decompose { D; }]K:l
as the weighted sum of separable kernels. For this purpose, the K matrices D; € RN*N
are arranged as a 3-dimensional tensor D € RN*N*K_ Now, representing each of the D;
kernels as linear combinations of rank-1 matrices is equivalent to writing the tensor D as a
linear combination of rank-1 tensors, also known as the Canonical Polyadic Decompostion
(CPD) [76] that reads

M
D~ Y dodid™ 0wy (3.4)

m=1

The symbol o denotes the tensor or outer product of the one dimensional vectors d59! €
RY, d% € RY, and w,, € RX. Finally, the approximation of the matrices {D]-}]KZ1 as a
weighted sum of M separable tensors can be estimated via minimizing

2

, (3.5)

M
(521, wi } 4, € arg_min HD—zd;dod;s%wm
F

{5 di™ w

m=1

which is also easily extendable to higher dimensional data. Empirically, the authors
have shown in [149] that small values of M suffice to well approximate the original non-
separable kernels without significantly degrading the representation accuracy. For the pur-
pose of pixel classification, like vessel detection in biomedical image data, an additional
linear classifier is learned given the feature maps of training images. With separable ker-
nels at hand, correlating the matrices with query images (volumes) to obtain the feature
maps can be performed much faster than with conventional non-separable ones. How-
ever, while reducing the computational complexity when the kernels are applied to the
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signal, the proposed learning scheme still remains extensive because the step involving
(3.3) ignores the separable structure imposed later in (3.5).

In [34], Dantas et al. propose a scheme similar to [134]. The learned two dimensional dic-
tionary is built as the sum taken over M separable matrices, where each term is composed
of the Kronecker product of two sub-dictionaries D and D5, i.e.,

M
D =) D, ®Dyy. (3.6)

m=1

Consequently, the separable dictionary as proposed in [65] is a special case with m = 1.
Instead of directly enforcing the structure given in (3.6), the objective function involves a
rearrangement R(-) of the entries in D such that

R(D) = % R(D,,) = ﬁ vec(Dy ) vec(Dy ). (3.7)
m=1 m=1

An additional nuclear norm rank penalty ||R(D)||. is added to the cost of the sparse coding
problem to enforce the desired degree of separability via soft thresholding the singular
values of R(D).

3.1.2. Analysis Model

Recently, exploiting the inherent structure of multidimensional data has also been pur-
sued regarding the analysis model. Again, given the V-dimensional input signals
S € RM>mXX1v the analysis co-sparse data model assumes

A=8 %182 X282 ... xy 2y Ais co-sparse, (3.8)

with the analysis operators §2, € Rk>"0 with v = 1,...,V and the multidimensional co-
sparse representation A € Rk1xkz>x.xky,

Ongoing from their synthesis approach presented in [116], some of the authors pro-
pose a separable two dimensional analysis sparse model in [114] which is extended
to the multidimensional case in [113]. Given T multidimensional noisy observations
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Y € Rmxmx-xmyxT thejr learning objective reads

T
{2y S/} ) ear min 1S; = Yill3,
! 1= g{nv}gzl'{sj}fﬂ ]:Zl ! 1

s.t. HS] X180 X282 ... Xy QVHO < L,
[woill2 =1 Vo,i (3.9)

where L, is some pre-defined co-sparsity and the vector w;,; denotes the i-th row of £2,.
As within the synthesis scenario, the optimization is performed in an alternating fashion.
Retrieving an estimate of the multiway signal S; is done via the Backward-Greedy algo-
rithm as described in [141]. However, this method employs the vectorization approach
(2.6) which neglects the separable structure of the operators. Clearly, the construction of
the Kronecker operator £2 = ((§2y,...,£2y) and the formulation as a 1D analysis sparse
coding problem does not reduce the computational complexity at all which is a severe
drawback of the proposed approach. After the sparse code estimation, the update of the
analysis operators is executed sequentially with respect to both, the modes of the tensors
and the rows of each §2;, respectively. For this purpose, the authors utilize a modifica-
tion of the update formula already given in (1.19). First, define the auxiliary matrices
Qv = [Qv,l/ lez, ceey Qv,T] and Wv = [Wv,lr erz, ey WU,T]/ with Qv,]' = unf(S]-, U)(.QV ®
@821 @82, 1@ 821),and W,,; = unf(V;,0) (v @ - @ 2p11 @ 2y 1 ® - )
which involve unfolded versions of the signals along dimension v. Sequentially updating
the rows of the n-mode operator £2, amounts to solving the problem

wy; € argmin [lwy;Wo 3 st [lwylla =1. (3.10)

Analogous to (1.19), the index set | identifies the disjoint set of columns in @Q, that are
orthogonal to w,;. Although the number of parameters that have to be estimated is re-
duced due to the separable structure, the calculation of the auxiliary matrices and the SVD
computation for each row of each mode remains a computationally demanding task.

3.1.3. Transform Model

The literature of sparse transform learning lacks any work that focuses on separability of
the transform. In Wen et al. [167] the authors propose to learn sparsifying transforms for
spatio-temporal video data. However, in their algorithm they maintain the strategy of
vectorizing the 3D video cubes. This procedure allows to use standard algorithms that are
designated to learn square transform matrices.
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3.1.4. Further Approaches

The aforementioned related work on separable sparse data models indicates that impos-
ing a structural constraint on the dictionary or the analysis operator has several advan-
tages. Besides separability, another interesting approach called double sparsity has been
proposed for the synthesis and transform sparse representation model to alleviate the lim-
itations of unstructured models.

These methods usually utilize a fixed simple mathematical model of the data that allows
to efficiently compute the representation. Since this comes at the cost of loosing adaptiv-
ity to the signal class of interest, a sparse mixing matrix B that linearly combines a few
weighted atoms/filters of the analytically given base dictionary/transform is learned to
alleviate the drawback of non-adaptivity. The main appeal of these methods is that the
sparsity of B allows to efficiently compute the forward and adjoint operators. Simulta-
neously, this approach facilitates the use of larger dictionaries and thus to handle higher-
dimensional data. Even more, a compact explicit matrix representation of the analytical
base dictionary ¥ is ensured by choosing separable dictionaries like DCT, overcomplete
DCT, or Wavelet dictionaries. Eventually, following [142], the double sparse data model
for the T signals in S € R"*T can be found via solving the optimization problem

{X*,B*} cargmin ||S — PBX|?

st |lmillo < LoVi
1bjllo < p, Y] =1 V. (3.11)

Yaghoobi et al. [172] follow a similar approach called Compressible Dictionary Learning
(CDL) where the dictionary is decomposed into the base dictionary ¥ and a sparse (or
compressible, hence CDL) matrix B. Opposed to [142], who enforce fixed sparsity for each
column b; separately via ¢y constraints, CDL utilizes an ¢;-sparsity measures for both X
and B to induce sparsity over the whole matrices which is more flexible.

The work of Ophir et al. [107] is also closely related to [142] and [172], however they
utilize the multi-scale structure of the Wavelet transform in their learning process. Fur-
thermore, instead of expressing the data in the image domain with linear combinations
from atoms of the Wavelet synthesis operator, the authors propose to model the sparsity in
the Wavelet analysis domain.

Another algorithm that is capable of handling high dimensional signals is proposed by
Sulam et al. called Trainlets [155]. Primarily, the work follows the idea of a double sparse
dictionary as already proposed in [142]. The main difference consists in the choice of the
analytically given base dictionary ¥, which is represented by a cropped separable Wavelet
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transform that resolves the border issues which is a serious limitation of the traditional
Wavelet transform.

Sparsely coding the image in the Wavelet analysis domain as in [107] naturally leads one
to think of the sparse transform model. Indeed, double sparsity for the transform learning
approach is proposed by Ravishankar & Bresler in [124]. Analogously to the synthesis
model of [142] and [172], the authors impose a similar structural constraint on their square
transform matrix W such that it is the product of a sparse matrix C and an analytical
transform ¥, i.e., W = CW.

Instead of factorizing the dictionary D = ¥ B into a fixed analytically given transform ¥
and a sparse matrix B, Magoarou & Gribonval [88] propose to dlrectly factorize a given
dense dictionary D in multiple sparse factors D], such that D = H D The approach
allows to use any input D which might have been learned with some Class1cal dictionary
learning algorithm like K-SVD [2]. The corresponding optimization problem reads

_ ] ;o
(D}}]_, =argmin D~ ] DI} + Y. g(D) (3.12)
j j=1 j=1

where ¢(+) denotes a sparsity inducing function. The presented optimization strategy bor-
rows some ideas from the pre-learning of the layers of a deep neural network. Instead
of finding all the sparse factors simultaneously, the proposed hierarchical algorithm iter-
atively factorizes the current input dictionary into two factors. To be precise, at the first
iteration the decomposition reads D = T} D, with Ty = H}:z ﬁj and the sparse factor D;.
At the subsequent | = 2,..., | iterations this process is repeated by means of factorizing
the matrix T;_; again into two factors. Thus, the number of non-zero coefficients in T is
continuously decreased until the desired number | of sparse factors is attained. After solv-
ing (3.12), the reduced number of parameters beneficially influences the storage cost and
the computational effort when applying the dictionary. However, although being flexible
with regard to the input dictionary D, the proposed structure is imposed after the learning
stage. Hence, the computational complexity during learning remains unchanged.

Finally, an approach related to convolutional sparse coding is presented in [24]. To obtain
an estimate of the signal s, the sparse code x is sequentially convolved withk = 1,...,K
sparse kernels d. such that the error ||s — x * dy % - % JKH% is minimized. The proposed
convolution based strategy results in numerical efficient dictionaries - the matrix-vector
multiplications with D and its adjoint are replaced with convolutions involving kernels
with sparse support - that additionally permits to learn large atoms.
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3.2. Adaptive or Blind Learning

From image denoising it is known that the reconstruction accuracy can be improved when
the dictionary or operator is not only learned based on some general and representative
clean training signals, but also directly on the specific signal s € IR" that has to be recon-
structed [47, 141, 175, 90, 168, 126]. Typically, all these approaches assume measurements
generated viay = #s+e € R", withm = n, & = I, and e ~ N(0,1,). In general,
however, we often only have access to possibly undersampled measurements, generated
from a non-diagonal, usually dense system matrix & € R"*" with m < n. The scenario
of reconstructing s from undersampled measurements y, while simultaneously learning a
(co-)sparse data model can be attributed to the theory of Blind Compressed Sensing (BCS)
[59, 148]. In contrast to the classical CS scenario, where the sparsity inducing matrix is
known a priori, BCS is based on the assumption that the signal is sparse under some un-
known representation that has to be determined during signal recovery. In the following,
related approaches that follow the BCS framework are discussed.

The work of Gleichman & Eldar [59] investigates the blind recovery problem from a the-
oretical perspective with the aim to derive basic conditions that allow to reconstruct the
signal from compressed measurements. Following the sparse synthesis approach, the ob-
servations can be modeled via y = @#Dx + e. Intuitively, any signal s is perfectly sparse
with respect to some representation D that contains the signal itself. Thus, the theory
either requires a set of signals, each being sparse under the same representation, or addi-
tional constraints on the sparsity inducing dictionary D. For example, one of the analyzed
constraints is directly related to the double sparsity approach discussed above, where the
sought atoms are assumed to be a sparse weighted linear combination of some elements
from the given dictionary ¥. Finally, for each of the applied constraints the authors provide
conditions to guarantee the uniqueness of the solution.

While the authors in [59] are only interested in the product DX itself, the work pre-
sented in [148] directly tackles the problem of estimating both, the dictionary D along
with the sparse code x. In their work, the authors derive an algorithm that performs dic-
tionary learning and signal recovery simultaneously. Besides, numerical results regarding
an image inpainting problem are given. The same question how to learn the sparse synthe-
sis model from compressed measurements is addressed in [154]. The presented approach
utilizes the alternating optimization strategy as proposed in the K-SVD learning algorithm
[2].

An application oriented view on the BCS framework is presented by Ravishankar &
Bresler. In [122], they propose to adaptively learn a dictionary from undersampled k-space
data, which describes the data space in Magnetic Resonance Image acquisition. Samples
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in the k-space correspond to Fourier coefficients of the imaged object. Opposed to a purely
patch-based adaptive learning scheme, like it is usually deployed in Denoising scenarios,
the authors combine the patch-based sparse synthesis model with a global image fidelity
term which leads to the following optimization problem:

{s*,D*, X*} € arg Srr[1)1r)1( Y || Rijs — Dz;i|5+ Al|[Fus — yll3 st |lzijllo < Ls Vi, j.
7 ’ l'j
(3.13)

Here, the dictionary D € R"*¥ is learned from patches that are extracted from the vec-
torized image s € RN via the operator R;; € R"*N. Consequently, x;; denotes the sparse
code for the patch at position i, j stacked as column vectors into the matrix X. The ma-
trix F, € CMxN represents the undersampled Fourier encoding matrix, i.e., M < N, that
models the MRI sampling process such that the Fourier representation of the reconstructed
signal s can be compared to the acquired measurements y € CM. Finally, problem (3.13) is
solved using an alternating minimization procedure.

In the follow-up work [132], the same idea of reconstructing MR images is tackled via
a blind sparse transform learning approach. The extension of the model outlined in Sec-
tion 1.2.3 to the blind setting reads

{s",W*, B} €arg min Y | W Rys — byl3 + A| Fus — y — v (log(det(W)) — 3| W)
’ 7 l']
s.t. HbZJHO S Lu Vi,j, ||S||2 S c, (314)

where W € R"*" denotes a square sparsifying transform matrix. To better capture the
diversity of MRI features, in [129] the same authors propose to learn a union of sparsifying
transforms. The core idea behind this approach is to cluster image patches into distinct
classes. Each image patch is assumed to correspond to only one of the square transforms
that best sparsifies the particular patch. Consequently, the transform update step is carried
out for each class separately involving only those patches assigned to the current cluster.
While being very efficient in the update (closed form solution) this strategy does not pre-
vent the algorithm from learning repetitive filters across the clusters.

An adaptive sparsifying transform regularizer to sparsely represent CT images is pre-
sented in [111].
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3.3. Sparse Data Models and Neural Networks

Instead of solving the sparse approximation problem (1.4) via classical pursuit methods,
there has been several attempts in the literature that try to approximately solve the sparse
coding step by means of learning a direct mapping from the input to its sparse representa-
tion. Formally, this process can be described as an encoding h = f,(s), where h is assumed
to be sparse. If this representation is intended for signal reconstruction, the decoding
amounts to finding the function f;(h) ~ s. Combining both steps, we have s ~ f;(f.(s)),
which in the machine learning community is well known as an Auto-Encoder or Auto-
Associator framework [14, 67]. A detailed investigation of this approach concerning the
co-sparse analysis perspective in shown in Chapter 7. In the remainder of this section, the
related work following the introduced paradigm is summarized.

Ongoing from their previous work [120], Ranzato et al. propose an algorithm named
Sparse Encoding Symmetric Machine (SESM) that aims at predicting the sparse code via a
simple feed-forward propagation through the encoder. To this end, they define the sparse
approximator as the mapping f.(s;, ©,b.) = ©'s; + b, = h;, with © € R"*k denot-
ing the encoder matrix that maps the input to its feature representation. With the decoder
fa(hi, ®,bq) = Oc(h;) + bg athand, with o (-) denoting a point-wise logistic non-linearity,
the following loss including some additional weights a, s , is minimized

{7, X7, b, by} €
T

arg {@,?%T,bd} l; [“e“wi — fe(81,0,be) |5+ ||si — fa(hi, ©,bq) |3 + asg (i) + “r||@“1} ,

(3.15)

where the function g(-) measures the sparsity of x;. To avoid the scaling ambiguity be-
tween the encoder and the decoder, the authors use weight sharing (or tied weights) to
achieve automatic scaling of filters. The same idea is pursued in the work of Kavukcuoglu
et al. [75]. Instead of a logistic non-linearity that provides sparse outcomes if most of the
entries in the latent code exhibit negative entries, they utilize the Tanh activation func-
tion which requires the latent representation to be sparse as well. The encoder reads
fo(8i,0e,b,G) = Gtanh(O] s; + b), where the matrix G € R¥** denotes an additional
diagonal matrix that compensates for the input scaling when dealing with normalized de-
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coder weights. The joint optimization framework reads
{D*,X*,0;,b",G*} €

arg  min

{D,X,0.bG} |

T
[llsi = Dyl + Mail[y + all: — fo(si,©e,b,G) 3], (3.16)
=1
which allows the mapping function f, to approximate the sparse code. Clearly, both ap-
proaches follow the synthesis framework where the encoder replaces the sparse coding
algorithm, usually used to determine the sparse representation, and the decoder serves as
a generative model to reconstruct the signals. This circumstance also motivates the term
Predictive Sparse Decomposition (PSD).

A closely related approach inspired by Wavelet-based thresholding [44] is presented by
Rubinstein et al. [139] termed analysis-synthesis thresholding. Instead of relying on a fixed
wavelet basis, the analysis and the synthesis is decoupled by means of two distinct matri-
ces that are learned simultaneously. Given the original signals S € R"*T and the corre-
sponding corrupted versions Y € R"*7, the analysis-synthesis thresholding process reads

T
{D*,0;, X} carg min Y |si— Dfe(O yi)rllz st [6cll2 =1V, (3.17)
{D®A} 5

where f,(©, y;)x is a thresholding function with the thresholding values for each weight
vector defined by A = (Ay,...,Af). To account for the scaling ambiguity, the norm of
the encoding weight vectors 0, ;, j = 1,...,k is constrained to be one. Although looking
similar to a combination of the analysis and synthesis model, the introduced thresholding
function ensures a sparse representation which in turn does not imply @, s; to be co-sparse
as required in the analysis model. Especially the hard thresholding operator that nullifies
every entry O(Ijsi < A; and that is used in the proposed work neglects the true co-sparsity

assumption szsi = 0. A similar idea is presented in [93] where the sparse code is obtained
via hard thresholding the hidden representations.

Another strategy to approximate the sparse code via a non-linear deep feed forward
predictor is presented in [60]. Analogously to the method introduced in [75], the proposed
scheme directly considers the sparse representations, however without any reconstruction
step that allows to measure the reconstruction error in the image space. To be precise, given
a fixed dictionary D € R"*¥, the optimal sparse codes X* € R¥*T with respect to the input
signals § € R"*T are obtained first based on existing sparse code inference algorithms,
namely Iterative Shrinking and Thresholding Algorithm (FISTA) and Coordinate Descent.
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Afterwards, the approximator f, (@, s;) is learned via minimizing
O; c arg _ mm Z |zX — f.(O] 5|3, (3.18)

which measures the deviation between the optimal sparse code ;" and its approximation.
Instead of using the Tanh non-linearity like in [75], the authors choose a sparsity promoting
function like the shrinkage (soft-thresholding) function, i.e., fe(z;) = sign(z;)(|zi| — A)+-
Since the pre-activation coefficients a;; = ngsi are mapped to zero depending on the
threshold parameter A, the co-sparse analysis model assumption is relaxed due to the fact
that a weight vector 6,; does not have to be strictly orthogonal to the signal to achieve
co-sparsity.
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Chapter 4.
Separable Analysis Operator Learning

Sparse signal representations have been proven very useful to extract and recover the un-
derlying structure of the signal of interest. In contrary to the well-known and extensively
studied synthesis model, which relies on a computationally expensive sparse coding step
to decompose the signal into its sparse coefficient sequence, the co-sparse analysis model
provides a much simpler approach. A set of filters is correlated with the signal yielding
sparse filter responses for signals that belong to the model. As such, it may serve as a prior
in inverse problems or as an efficient model for structural analysis of the signal content.
Evidently, the more the model is adapted to the signal class, the more reliable it is for these
purposes which renders the analysis operator learning task a crucial problem. The previ-
ous chapters clearly indicate the recent progress in analysis operator learning that has led
to state-of-the-art results in many image processing applications.

However, the steady increase in image resolution or the wide range of possible appli-
cation scenarios where the signals exhibit multiple dimensions impose another important
demand on the model, namely to obtain the filter responses in a timely manner. This can
be efficiently achieved by filters with a separable structure.

In this chapter, I will present an algorithm to learn analysis operators with separable struc-
tures. The following contributions are addressed in the subsequent sections:

¢ After discussing the computational complexity related to separable operators, a suit-
able smooth objective function that allows to easily incorporate the separability con-
straint is established. To minimize the cost, a geometric stochastic gradient descent
scheme with a new variable step size selection that is based on the Armijo condition
is introduced afterwards. Various numerical experiments concerning the parameter
selection are carried out, that on the one hand illustrate the beneficial impact of the
adaptive step size selection and on the other hand, demonstrate the robustness of the
learning approach against parameter changes.

¢ Although the separability constraint imposed on the operator severely restricts the
set of possible solutions, an image denoising experiment is conducted that clearly
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shows that analysis operators with separable structures are still very useful as a reg-
ularizer in inverse problems. Even more, the performance in comparison to various
state-of-the-art analysis operators reveals that the observed significant decrease in
training complexity does not impair the reconstruction quality, which strongly em-
phasizes the benefit of the presented approach.

4.1. Computational Complexity

First of all, this section discusses the benefit in terms of computational complexity entailed
with the proposed separable approach. Suppose we are given some signal S € RN *N2xNs
representing a three dimensional tensor. Standard approaches to calculate the sparse code
of S typically rely on a vectorization of the data where each column of S is stacked on one
another to form the signal s = vec(S) € RMMNMN_ Accordingly, the signal is multiplied
with the analysis operator £2 € RK1K2KsxNiN2Ns i order to obtain the sparse code a = £2s.
In contrary, if the analysis operator exhibits a separable structure, i.e., £2 = 1(§21, 25, £23),
the co-sparse representation can be obtained by means of the n-mode product A = S x;
21 X2 §2 x3 §25. Hence, instead of one large matrix 2, this approach relies on a the set of
small operators {£2; € RK*Ni}3

If we now aim to learn the model from training samples, it can be readily seen that the
additional structure directly influences the complexity of the learning task. To be precise,
the number of filter coefficients that have to be estimated during learning drastically re-
duces from [];(K; - N;) in the case of learning the unstructured operator 2, to Yi(Ki - Nj)
in favor of the separable approach represented by 2 = 1(42y, £2,, £23).

Besides the reduced number of free parameters, the differences in the computational com-
plexity between both approaches can be additionally assessed by means of the number of
floating-point operations (FLOPs) necessary to calculate the matrix-vector or the n-mode
product. One FLOP unit represents a multiplication or a summation, i.e., the inner product
u'v, withu,v € RV, requires N multiplications and N — 1 summations. Accordingly, the
matrix-matrix product UV, with U € RX*N and V' € RN*M can be calculated with KNM
multiplications and KM(N — 1) summations, resulting in 2KNM — KM FLOPs.

Suppose we are now given a 3D tensor S, the matrix {2 and the operators {£2;}>_; as
defined above. For simplicity let us assume that S is a cubic tensor with equal side length
across all three dimensions, i.e., Ny = N, = Nj3. Furthermore, the number of filters K; in §2;
equals the signal dimension N;, thus we have K = N. The number of FLOPs required to
calculate £2s amounts to 2 - (N?) - N® — N3 while the n-mode product S x1 §21 X5 £25 X3 23
only needs 2 - (3N) - N3 — 3 - N® operations.

Consequently, the computational complexity is reduced from O(NV) to O(V - N) with
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Figure 4.1.: Number of FLOPs required to calculate the n-mode product (blue lines) compared to the standard
vectorization approach (red lines). The abscissa denotes the dimension N; of the signal in each mode i which
at the same time equals the number of filters K. The FLOP count is given in logarithmic scale. The solid lines

represents the FLOP count for the 3D case, while the dotted lines indicates the number of FLOPs in a 2D signal
setting.

V denoting the number of modes. Figure 4.1 illustrates the reduction in complexity for
different choices of N. The number of FLOPs in logarithmic scale is plotted against the
dimension N for a 2D image patch and a 3D tensor.

4.2. Algorithm Design

Separable analysis operator learning aims at finding a set of operators {2; € R}V
that provide co-sparse representations when applied to signals from a particular signal
class. In image processing, different types of image data, e.g. natural, medical or astronom-
ical images, can be considered individual signal classes. Let {S; € R™*"*"v }].T:1 denote a
set of T representative training signals extracted from some arbitrary class. Typically, these
training sets comprise patches or tensors extracted from the image data. Eventually, the
optimal set of analysis operators with regard to the training data is obtained via solving
the optimization problem

{2}V, carg  min

1
QT 0B(mk) T Z 8(8jx1 821+ - xv Ny), 4.1)

T
j=1

where g(-) denotes a function that measures the co-sparsity and restricting £2, to OB(n;, k;)
as defined in Section 2.2 avoids the trivial solution £2; = 0y, which is a global but useless
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minimizer of problem (4.1). In the following, the individual components of the learning
approach are further motivated and specified.

4.2.1. Sparsity Measure

Ideally, the co-sparsity is measured by means of the /p-norm that counts the number of
non-zero entries in A; = §; X1 £21 - -+ Xy £2y. Minimizing the fp-norm, however, results
in a combinatorial problem that is NP hard to solve [3]. That is why usually the {p-norm
is relaxed to the f;-norm, which represents the closest convex surrogate function to the
fp-norm. A convex problem is often desired since it ensures that a local minimizer is also
the global minimizer. However, the property of the /;-norm to be a convex function comes
at the cost of only roughly approximating the £yp-norm.

Regarding the given setting, restricting the operators 2 to the oblique manifold ren-
ders (4.1) a non-convex problem anyways. Fortunately, the pursued geometric optimiza-
tion framework allows to use any sparsity measure that is smooth. The function

1

with | denoting the index over all elements in .4, complies with these conditions while
simultaneously being a good approximation of the ideal fp-norm due to the additional
parameter v that controls the slope of the function. Figure 4.2 illustrates this behavior in
comparison to standard sparsity measures like the {p-norm and the ¢/;-norm. The good
performance as a sparsity promoting function has also been shown in the literature, see
e.g. [104, 28].

The geometric optimization on the product of unit spheres naturally avoids the trivial so-
lutions £2; = 0y,,. However, solely controlling the norm of the filters does not suffice to
obtain a meaningful model. To motivate the necessary constraints along with their result-
ing impacts on the learned analysis operator I will follow the explanations of Yaghoobi et
al. as presented in [175].

4.2.2. Full Rank Constraint

Although the trivial solution is already excluded, minimizing (4.1) will result in operators
£2; that exhibit repeated rows. The reason for this phenomenon is straightforward. Let
us focus on §2; that acts on the first mode of all the signals S;. If we denote V' € R™*T
as the matrix that holds in its columns the 7;-dimensional first modes of all signals, we
can easily find a filter w} that minimizes g(w; V). The optimum for §2; is obtained by
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Figure 4.2.: Comparison of different sparsity measures. {y-norm, ¢;-norm, and proposed sparsity measure
(4.2) with parameter v = 1000.

simply repeating wj exactly kj times, resulting in a rank-1 matrix. Obviously, utilizing rank
deficient analysis operators §2; as a regularizer in an inverse problem is useless because
infinitely many solutions exist that fulfill the model assumption. Thus, in order to find a
meaningful solution, the operators £2; should have full rank.

Solely enforcing a full rank, however, will cause the rows in £2; to only slightly deviate
from its optimum w; which does not alleviate the problem of £2; being close to singular
and thus useless as a regularizer. That is why an additional penalty r(£2;) is added to
problem (4.1) that on the one hand enforces full rank of 2; and simultaneously controls
the condition number of §2;. The smooth log-barrier function

r($2)) = log det (¢ £2," 2;) (4.3)

- n; log(ni)

fulfills these requirements. In [64], Hawe et al. show that the condition 0 < det( kl’ QZT 7)<
(1/m;)" holds for matrices £2; that have full rank. Equality on the right side is achieved
when all eigenvalues of 2. £2; are equal which is tantamount of having cond(§2;) = 1.
As a result, the regularizer defined in Eq. (4.3) can be added to the learning objective as
a penalty to control the condition number of the analysis operator, while the minimizer of
the function constitutes a tight frame.

The desired property of an analysis operator to have a moderate condition number
has also been exploited in related works. Besides [64], especially the Transform Opera-
tor Learning literature, e.g. [126, 131, 168], points out the importance of controlling the
condition number to attain a suitable model. These approaches, however, all focus on the
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non-separable case. The question that arises is how does the penalty on the individual
operators §2; relate to enforcing a low condition number on ((£2;, ..., £2y)? To answer the
question, I make use of the following relation

cond (L(Ql,...,ﬂv)) = IZICOHd(Qi). (44)
i=1

Thus, enforcing the condition number property on all the £2; individually has a direct im-
pact on the condition number of the analysis operator in standard notation and thus to
the ones learned in [64] or [126]. Regarding the cost function, the following property of
the penalty is exploited. Let £2; € R¥*" Vi = 1,...,V be operators with possibly varying
number of filters that are applied to cubical tensors, i.e., the size n is constant across all the
V modes that can be considered the standard setting. In this case, the following relation
holds true

— log det (ﬁt(ﬂl, 208, .QV))

n(V-1) <logdet(%91T-Q1) + ... +logdet(%(2;9v)>

|4
=nV-1. Z —log det(%ﬂ?ﬂi). (4.5)
i=1

Consequently, to control the condition number of the separable analysis operator
((£21,...,02y), the sum of the penalties applied to each of the individual operators is
added to the objective function.

4.2.3. Coherence Penalty

Imposing the penalty (4.3) on §2; is sufficient if k; = n;. For overcomplete operators that
have more rows than columns, however, we still face the problem of possibly obtaining re-
peated rows w; with j > n;. The similarity between the normalized filters can be measured
in terms of the mutual coherence, which reads

H($2i) = max jw/ wi| (4.6)

with w; and w; denoting the j-th and I/-th normalized row of £2;. From a practical point
of view, the max operator in (4.6) is unsuited for gradient based optimization strategies.
That is why another smooth coherence penalty is used in the presented learning algorithm
that naturally avoids trivially linear dependent filters. The proposed log-barrier function
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added to the cost introduced in (4.1) reads

h($2) = =3 ) log(1 = (wj wi)?). (47)
j#l
The same penalty has been already successfully used in [64] and [65] to control the mutual

coherence of the learned analysis and synthesis model, respectively.
It is shown in [65] that

h(£2;) > —log(1 — pu(£2:)*) > %h(82), (4.8)

with N denoting the number of individual summands in (4.7). Analogously to the rank
constraint introduced in the preceding subsection, the coherence of a separable operator
1(£21,...,02y) is related to the coherence of the individual operators £2; via

(82, ..., 902v)) = max{u(21), u(2),..., u(2v)}. (4.9)

Combining (4.8) and (4.9) finally results in

max{h(£2y),...,h(2y)} > —log(1 — u(1(£2y,...,2v))?)
> max{N%h(Ql),...,Nivh(Qv)}. (4.10)

A more thorough investigation of these properties can be found in [65].

As a result, keeping max{h(42;),...,h(£2y)} small implicitly controls the mutual coher-
ence of ((§21,...,£2y). On the other hand, the expression max{h(2;),...,h($2y)} is small
if all the elements of the set are small which motivates to apply the coherence penalty to
all the individual operators. Eventually, the individual penalty function values are added
up analogously to the condition number penalty introduced above.
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4.2.4. Derivation of the Cost Function

Finally, an overall cost function for separable analysis operators learning involving the
introduced penalties reads

1 T
2, ..., 2% €ar min — 2,...,2v,S;
{021 v} g.Q,.TeOB(ni,ki) T].Z; fle v, Sj)
|4 \4
with f(.Ql,...,.Qv,S]‘):g(S]'X1.Ql"-Xv.Qv)—FKZT(Qi)—I—’)/Zh(Qi),
i=1 i=1

(4.11)

where x and <y are two additional parameters that weight the condition number penalty
and the coherence penalty against the sparsity promoting function.

In order to enable a fair comparison between the separable and the non-separable ap-
proach, a slightly modified objective is additionally used. For two dimensional signals
{S; e Rm>m }]-T:1 the objective reads

1
27,5} €ar min —
{02, 025} gnfeos(n,l T

with f(.Ql, 2, S]) = g(S] X1 82) Xo .Qz) + KT’(L(.Ql, Qz)) + ’)/h(l(.Ql, .Qz)) (4.12)

T
Z Ql/ QZ/
j=1

This formulation allows to use the same weighting parameters for structured as well as
unstructured analysis operator learning, since the size of the considered operators is equal.
In particular the evaluation of the sample complexity that will be presented in Chapter 5
benefits from this approach.

In the following, the geometric stochastic gradient descent algorithm that is used to op-
timize the objective function is introduced.

4.3. Stochastic Gradient Descent

SGD type optimization methods have attracted attention to solve large-scale machine
learning problems [13, 92], where the earliest contributions in this direction made by Rob-
bins & Monro [135] date back to the early 1950’s. In contrast to full gradient methods that
in each iteration require the computation of the gradient with respect to all the T training

samples {Sj}]rzl, in SGD the gradient computation at each iteration only involves a ran-
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domly drawn small mini-batch or even a single sample to find a suitable search direction’.
The motivation for this approach is rather intuitive. Frequently, the training set {Sj}jT:l
contains samples that show approximately the same structures. Especially in natural im-
age processing, this property is very pronounced due to the repetitive patterns that can be
found in many real world images. Computing the gradient with respect to these redun-
dant samples quickly becomes inefficient, since they do not provide further information
about the structure of the data. The random selection of a small amount of samples, how-
ever, drastically reduces the computational effort at each iteration while the drawn batch
of samples still provides a good approximation of the whole training set. Accordingly, the
cost of each iteration is independent of T (assuming the cost of accessing each sample is
independent of T).

In the following, I will use the notation Sy;(;)) to denote a mini-batch of cardinality
|b(t)|, where b(t) represents an index set randomly drawn from {1,2,..., T} at iteration
t. Accordingly, the function value corresponding to the mini-batch Sy;(4), is denoted as
f(.(ll, e, 82y, S{b(t)})

In order to account for the constraint set QIT € OB(n;, k;), a geometric SGD optimization
scheme is proposed that relies on the concepts introduced in Chapter 2. The Riemannian
gradient for the i-th operator §2; computed based on the mini-batch Sy ()} is denoted as

(21 [Spy] =z, 0B(nk) (Vn; f(82,.. -/QV/S{b(t)})) : (4.13)

With (4.13) and the concept of geodesics at hand, an update step at the t-th iteration of the
geometric SGD reads

1 1

The choice of an adequate step size a is investigated in Section 4.3.2. Eventually, the whole
SGD algorithm to learn separable analysis operators with a fixed step size a is summarized
in Algorithm 4.1.

4.3.1. Stopping Criterion

To terminate the optimization, a suitable stopping criterion has to be defined. In standard
Gradient Descent where at each iteration the gradient with respect to the full training set is

Note that in the SGD related literature and contrary to the presented work, computing the gradient with
respect to all samples is sometimes also referred to as batch gradient descent. To avoid confusions, I will
use the term "full" gradient to indicate the gradient with respect to all samples, while a (mini-)batch of
samples is only considered in the SGD setting.
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Algorithm 4.1 SGD Fixed Step Size

Require: 20 >0, .Qi(o) i=1,...,V
Set: o — a0t 1
while Stopping criterion not reached do
choose {b(t)}
calculate G(£2,7)[Sgpiy]i=1,...,V
update 2"V = (02", c;(nl.T NS o], a)-
update t <t +1
end while
Output: 2Fi=1,...,V

~

available, the execution can be stopped for instance when the gradient vanishes, i.e., when
a local minimum is reached. Even simpler, a predefined maximum number of iterations
can cause the termination of the algorithm. Since in the SGD framework a small mini-batch
of varying training signals is processed, the gradient fluctuates at each iteration which
renders the vanishing gradient criterion unsuitable. The determination of a fixed number
of iterations is difficult since too few iterations prevent the algorithm to capture the entire
structure of the samples. On the other hand, too many iterations can result in an overfitting
to the training set, i.e., although the learned model is well suited to explain the training
samples, it is less descriptive with respect to the underlying signal class.

A common strategy to avoid the aforementioned problems is to use a validation dataset
that contains a fixed set of samples from the same signal class. Monitoring some perfor-
mance measure on the validation set can reveal useful information about when to stop the
training process. To be precise, the proposed separable operator learning algorithm stops
when the relative change of the average sparsity measure over previous iterations is be-
low some predefined threshold. First, let Syaidate represent a fixed set of Ty,jidate training
signals sampled from the same distribution as the samples Sy;(;)) present at iteration t.
Accordingly, the overall sparsity attained on the validation set reads

Z = Z g ces ‘Q\(/t)/ Svalidate)/ (4.15)

Talidate
Vahdate

which can be evaluated at each iteration or in periodical intervals. With this measure at
hand, the average over the previous ! iterations can be calculated via z(*) = : 25-21 z(t0),
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The optimization terminates if the relative variation of z(*), determined via

V=, (4.16)

falls below a certain threshold é. The actual parameters for [ and ¢ are determined in the
experiment section.

4.3.2. Step Size Selection

A crucial factor that influences the convergence rate in SGD optimization is the selection
of a suitable step size a*) (often also referred to as learning rate). For convex problems, the
step size is typically based on the Lipschitz continuity property. If the Lipschitz constant
is not known in advance, an appropriate learning rate is often chosen by using approxi-
mation techniques. Bottou [12] suggests to define a sequence of step sizes that decrease
monotonically. However, in the same reference the author mentions that decreasing the
learning rate too slowly will also cause the variance of the sought parameter §2; to decrease
equally slowly. On the other hand, when the step size decreases too quickly, the algorithm
takes a very long time or even fails to reach the optimum. To alleviate these weaknesses,
Bottou propose a predefined heuristic to iteratively shrink the step size. The update of
the learning rate reads a!) = a(%)(1 4+ a(®At)~1 which has the disadvantage of requiring
the estimation of the additional hyper-parameter A and the initial step a(?). A straightfor-
ward strategy consists in determining a good constant step size empirically. According to
[36], the frequent use of a constant step size in practice is due to the following advantages.
First, only a single parameter has to be determined, and second, the performance is usually
sufficient in practice.

In [81], the authors propose a basic line search that sequentially halves the step size if
the current estimate does not minimize the cost. More precisely, «*) is halfed whenever
the inequality

FRED, Sn)) < F(29, Spin) — 501627 ) S0y I} 4.17)

is not satisfied. The results reported in [81] clearly indicate the good performance of the
simple line search approach. In this thesis, a more variable approach based on a variation
of the backtracking line search algorithm adapted to SGD optimization is proposed.
Recall that instead of computing the gradient with respect to the full training set, the
SGD framework only approximates the true gradient by means of a small signal batch or
even a single signal sample. However, it is assumed that on average the SGD updates ap-
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proach the minimum of the optimization problem stated in (4.11), i.e., the empirical mean
over all training samples. This proposition is utilized to automatically find an appropriate
step size such that for the next iterate an averaging Armijo condition is fulfilled. Let H l.(t)
denote the search direction for the i-th operator at iteration t as defined in Section 2.2. Fur-
thermore, let us assume that H i(t) is estimated with respect to the full training set available
to find an optimizer of the problem given in (4.11). The classical Armijo condition that
ensures sufficient decrease in the cost function reads

Fre O Y, T, T(2)Y, 7Y, a7, s)

<
(1) (1) )\ /el T (1)
f(82y7,...,92,,8) + 1 Z(G(Q. )[S), H;”) (4.18)

which resembles the inequality given in (4.17) for the case H Z-(t) = —G(.Ql-T (t))[S] and
c; = 0.5. Backtracking line search now consists of successively shrinking the current
step size a(*) with the factor ¢, € (0,1) until the next iterate fulfills the Armijo condition.
When transferring the backtracking line search with Armijo condition to the SGD setting,
one has to face the circumstance that at every iteration t only a noisy estimate of the true
cost function is available. As already outlined above, SGD optimization is based on the
assumption that the cost decreases on average. That is why in the proposed line search,
the function value in (4.18) is replaced with the average over previous iterations. This can

be easily achieved via a recursive sliding window implementation that reads

Fe2l, .20, Spmy) 2 t=j+1) ...,Q(Vf‘f“),s{b(t_j)}) (4.19)
:1

where the summand on the right hand side denotes the function values obtained after
applying the updated operators to the signal mini-batch Sy;(; ), and w corresponds to the
window length. With this notation at hand, the new condition reads

FrE2 Y, —a(2] ) [Spu) <f>>i-..,r<n$<”, —a(0 T<”>[s{b<t>}],a<f>>is{w)}) <

fle?,.. (V),S{b ) — c1a ZHG S{b Il (4.20)

If (4.20) is not fulfilled, i.e., if the function value for the updated operators is not at least as
low as the previous average, the step size a*) goes to zero. To avoid needless line search
iterations the execution is stopped after a predefined number of trials #]** and proceeds
with the next sample with resetting a1 to its initial value (). Furthermore, after each
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Algorithm 4.2 SGD Backtracking Line Search

Require: () > 0,0 <¢; <1,0<c <1, 8% =20, 2" i=1,...,V
Set: o — a0t 1
while Stopping criterion not reached do
choose {b(t)}
calculate G(QiT(t))[S{b(t)}] i=1,...,V
set o) < (X(t), ts < 1
while f(T(82] ¥, ~6(2] ) [Spanl o), T(20 ", —6(25 ") Sy ) i) T Spy) >
A, 2, Sny) — ) S 62T ) SpnIE A
be < £ do
Qi < Qs+ C2
ts <t + 1
end while
update 2"V =12, —6(2" ) [Spp], a)
if ;, = £/ then
a(t+1) 4 (0)
else
a1 oy
end if
t—t+4+1
end while
Output: 25i=1,...,V

iteration t, the step size a(*) is multiplied by the factor c, > which slightly increases the step
size for the next iteration and thus enables a potential faster decay of the cost function at
suitable regions. The complete step size selection approach is summarized in Algorithm
4.2.

4.4. Parameter Selection

In this section, numerical experiments to evaluate the separable analysis operator learn-
ing algorithm are provided. First, the proposed step size selection for the SGD approach
is considered. In the following, experiments regarding the robustness against parameter
changes are discussed, while at the end, the performance is compared to various learning
algorithms from the literature.
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Figure 4.4.: Validation Images.

4.4.1. Impact of the Line Search

In the following, the impact of the proposed line search method that takes into account
the average over previous iterations is discussed. For this purpose, a set of 20000 struc-
tured non-flat 2D image patches, each of size 7 x 7, is extracted from five natural images
shown in Figure 4.3. All the patches are centered and normalized to unit length. These
signals serve as the training set. Analogously, another equally sized and preprocessed set
is extracted from the images shown in Figure 4.4. These patches constitute the validation
set. Now, the separable analysis operator learning algorithm including the proposed line
search approach is compared to a setting with a fixed step size. The performance is evalu-
ated by means of the average co-sparsity, measured via g(-) as introduced in (4.2), that the
separable operator 02(f) = L(Qp, .Qét)) € R84 achieves on the validation data set at each
iteration. The parameters in the backtracking line search algorithm 4.2 are set to ¢c; = 1073,
c2 = 0.9 and #]!** = 20. Both algorithms start with the same initial step size.

Figure 4.5 shows the progress of the validation set co-sparsity for both methods. The
blue curve denotes the backtracking line search as introduced in Section 4.3.2 while the red
one indicates the sparsity achieved with a fixed step size. In both settings the mini-batch
size used to calculate the gradient is set to |b(t)| € {5,50}. From left to right, the initial
step sizes read «(®) € {0.001,0.01,0.5}.

The results from Figure 4.5 show that a fixed step size is a reasonable strategy to find a min-
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Figure 4.5.: Progress of the average co-sparsity achieved with the current separable operator that is applied to
the validation set. First row: Mini-batch size |b(t)| = 5, Average window size w = 1; Second row: Mini-batch
size |b(t)| = 5, Average window size w = 25; Third row: Mini-batch size |b(t)| = 50, Average window size
w = 25. Backtracking line search in blue, fixed step size in red.

imizer of the operator learning problem (cf. Second column, Figures 4.5b, 4.5¢, and 4.5h).
However, this strategy necessitates a tedious and careful search for the best initialization of
«(©). A change in the parameter setting could require another choice of () that enables a
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Figure 4.6.: Progress of the average co-sparsity achieved with the current separable operator that is applied to
the validation set. Initial step size #(°) = 10~2, Mini-batch size |b(t)| = 50, Average window size w = 25;
Backtracking line search in blue, fixed step size in red.

suitable decrease in the cost function. In contrast, the proposed line search technique offers
several beneficial properties summarized below.

a) Compared to a fixed step size, the backtracking line search approach is able to adjust
the step size and thus to handle initial step sizes that do not perfectly match the
given setting. If a9 is set too small (cf. First column, Figures 4.5a, 4.5d, and 4.5g),
the lifting factor ¢, ? in conjunction with the average over previous iterations allows
for a faster convergence. Especially the comparison of Figures 4.5a and 4.5d, where
the mini-batch size is kept fixed, reveals the benefit in considering the average cost
over some small window w.

b) If a9 is chosen too big (cf. Figures 4.5¢, 4.5f, and 4.5i), algorithm 4.2 decreases the
learning rate until the function value decreases. In this scenario, a fixed step size
leads to oscillating values for the average co-sparsity on the validation set.

c) A small initial step size in conjunction with a moderate batch size leads to a smooth
progress of the validation sparsity (cf. Figures 4.5a, 4.5d, and 4.5g). Especially in this
setting, the proposed approach results in a faster convergence of the sparsity.

d) For iterations where the averaged Armijo condition is not fulfilled, the current op-
erator is only marginally updated since the step size &;s is small after #]}%* itera-
tions. Thus, for moderate step sizes, strong oscillations in the validation sparsity
are avoided.

Figure 4.6 additionally illustrates that although a fixed step size might be suitable for a
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Figure 4.7.: Test Images. From left to right: Piecewise-Constant (PWC), Barbara, Boats, Lena, Peppers.

particular choice of parameters, the non-adaptivity comes at the cost of potentially subop-
timal convergence if a different set of parameters is used. While the figure on the left in-
dicates approximately equivalent progress in the average co-sparsity for both approaches,
the behavior has changed in the middle and right figures, where the parameter v in the
sparsity measure (4.2) has been changed while the initial step size is kept fixed.

4.4.2. Robustness to Parameter Changes

The next experiment is intended to evaluate the robustness of the learning algorithm to the
different parameters that have to be determined. Besides the size of the filters, especially
the weighting coefficients x and <y that control the condition number and the coherence of
the operator play an important role in finding a suitable model. Also the proposed stop-
ping criterion will be justified in the following. Since the regularization of inverse prob-
lems represents the primary field of application, the performance with different parameter
settings is evaluated by means of an image denoising problem.

The training set is composed of 50000 centered and normalized 2D image patches ex-
tracted from the images in Figure 4.3. The patch size is set to 7 x 7, while the parameter of
the sparsity measure is set to v = 1000. According to the results from the previous section,
the line search parameters are set to c; = 1073, ¢; = 0.9 and tet* = 20 with an initial
step size of #(?) = 1073, a batch size of |b(t)] = 50 and a window size w = 25 to cal-
culate the average over the previous iterations. This setting corresponds to the validation
error shown in Figure 4.5g. Unless otherwise stated, these parameters are used in all of the
following experiments.

In the first experiment, the influence of the weighting parameters x and < is con-
sidered. In this setting, the learning algorithm runs a predefined number of itera-
tions, which is set to f,x = 2000. The penalty r(-) that avoids a rank deficiency of
the operator while simultaneously enforcing a low condition number is weighted with
x € {2.0,10.0,25.0,50.0,100.0,250.0}. The weights of the incoherence penalty %(-) read

61



Chapter 4. Separable Analysis Operator Learning

2.0 : : ‘ : 328 3
£}
326 2
5 251
10 32.4 €
2 2
% 32.2 s ar
2 05¢ 1 =
2 2
= \ % 815t
e =
i 31.8 =
§ 0.25 B 1
2 4t
o =
3 31.6 3 ° !
c
0.1 1 31.4 g 05k 4
<
o
0.05 : : : 0
2.0 10.0 25.0 50.0 100.0 250.0 Inner loop: Increased Coherence Weighting
Condition Weighting Outer loop: Increased Condition Weighting
(a) Average Denoising Performance in decibels (dB) (b) Mutual coherence and Condition number

Figure 4.8.: Performance and properties of 36 learned separable operators. (a) Average Denoising Performance
in decibels (dB) with respect to the weighting parameters. (b) Coherence and condition number of the learned
separable operators.

v € {0.05,0.1,0.25,0.5,1.0,2.0}. After the training on noise free samples, the learned sepa-
rable operator 2% = (82}, £25) € R¥ "% serves as a regularizer in the Denoising problem.
For this purpose, the NESTA algorithm [7] is utilized, which solves the analysis-based un-
constrained inverse problem

s* € argmin 7|[2*(s)|1 + 1]y — sli3, (4.21)
seRN

where s represents a vectorized image, y are the noisy measurements, and 7 is a weighting
factor. £2*(s) denotes the operation of applying the learned operator £2* to all overlapping
patches of the image s via convolving each of the learned filters with the image. For all
different operators, the sparsity weighting factor is set to T = 0.125. The AWGN added to
the original signal has a standard deviation of ¢yise = 10 (assuming the image range be-
tween [0,255]). To evaluate the denoising ability, the performance on five different images
shown in Figure 4.7 is tested in terms of the recovery Peak Signal to Noise Ratio (PSNR).
The PSNR is calculated via

PSNR = 20-logy, | — i ‘ , (4.22)
ﬁHp’ec _ IorngF

where [ denotes the original image, I"*° depicts the processed image, I8 is the maxi-
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Table 4.1.: Average Denoising performance on 5 different test images. The average PSNR in (dB) as well as
the standard deviation is given for ten different trials, where the operators have been learned from different

initializations.

PWC | Barbara | Boats Lena | Peppers
Avg. PSNR (dB) 32.01 32.27 33.10 34.56 33.54
Std. Dev. 0.06 0.03 0.02 0.03 0.02

mum value in the noise-free image and N denotes the number of pixels in the image. Fig-
ure 4.8a illustrates the average PSNR in decibels achieved over the five test images with
regard to the weighting parameters. Figure 4.8b additionally shows the properties of the
learned operators in terms of the mutual coherence as defined in (4.6) and the condition
number. It can be clearly seen that a stronger weighting of the coherence penalty leads to
a decrease of the mutual coherence of the operator. Analogously, increasing the weighting
parameter x decreases the condition number of §2. Thus, the proposed penalties indeed
allow to control the coherence as well as the condition number. Furthermore, the results
in Figure 4.8a reveal that a moderate condition number is beneficial for the Denoising task
at hand. It can be also observed that within a large range of parameter choices, the perfor-
mance remains almost constant. This behavior clearly indicates that the algorithm is robust
against changes in the weighting parameters which is extremely helpful with regard to the
applicability. In the following, the weighting parameters are set to x = 25.0 and v = 0.5.

4.4.3. Robustness to Model Initializations

The robustness of the learning algorithm with respect to different operator initializations
is evaluated by means of the same denoising problem as given in (4.21). For this purpose,
ten different realizations of random analysis operator initializations are used as an input
of the learning algorithm. After the separable operators have been successfully learned,
the average denoising performance on the five different test images shown in Figure 4.7 is
utilized to assess the robustness. AWGN with ypise = 10 has been added to the images,
hence the sparsity weighting factor in (4.21) is set to T = 0.125 again. Table 4.1 presents
the average PSNR as well as the standard deviation with regard to the regularization with
the ten different separable operators previously learned from the training data. The low
standard deviation clearly shows that the performance is consistent over different analysis
operators which highlights the robustness of the presented learning algorithm against the
initialization of the model.
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4.4.4. Operator Size and Stopping Criterion

The following experiment concerns the size of the filters and the stopping criterion. For
this purpose, the weighting parameters are fixed to the values stated above while the size
of the separable operator is varied. The filter sizes read 1y = n, € {3,5,7,9,11}, while
the number of filters k; scales with ky = k» € {5,7,9,11,13}. The operators are learned
from noise free 2D patches extracted from the same training set as before. The number
of iterations is fixed to t,.x = 5000. Afterwards, the five test images from Figure 4.7
are contaminated with AWGN with standard deviation opngise = 10. Figure 4.9 depicts
the Denoising performance achieved with the NESTA algorithm. For each operator, the
weighting parameter T is chosen that leads to the best average PSNR over the five test
images.

Regarding the stopping criterion introduced in 4.3.1, Figure 4.9 also shows the perfor-
mance of the operators that are returned by the learning algorithm once the stopping cri-
terion is fulfilled. In the proposed SGD implementation, the average in Eq. (4.16) is calcu-
lated over the last I = 500 iterations. The execution of the algorithm stops if the relative
variation of the validation set sparsity falls below the threshold § = 107%. As can be seen
from the results, even a moderately sized operator achieves good denoising performance.
Further increasing the patch or operator size does not improve the recovery accuracy. Also
the stopping criterion appears to be a reasonable choice since the current estimate of the
operator achieves almost the same performance as the one obtained after a fixed number
of t,.y iterations.

4.5. Performance Evaluation Compared to Related Work

In order to relate the performance of an analysis operator with separable structures to
other approaches from the literature the same Denoising experiment as already described
in Section 4.4.2 is conducted. All the learned operators are intended to serve as a sparsity
prior to regularize the solution in the Denoising task. To allow for a fair comparison, the
operator dimension has been adjusted to be twice overcomplete, i.e., §2 & R100%49 £
patches of size 7 x 7, which is a common choice in the sparse modeling literature. The
weighting parameters regarding problem (4.11) have been slightly changed, namely they
now read x = 35.0 and y = 0.5.

The evaluation involves the comparison to models that have been learned by means of
various analysis operator learning algorithms presented in the literature. To be precise, the
presented separable approach (SEP) is compared to the Analysis K-SVD method (AKSVD)
[141], the Constrained Analysis Operator Learning framework (CAOL) [175], the Over-
complete Sparsifying Transform Operator Learning algorithm (OTOL) [125], the Geomet-
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Figure 4.9.: (a) Average Denoising performance (PSNR in decibels) achieved with operators of various size.
The size of the operator is shown on the abscissa. The solid line indicates the PSNR after ¢,y iterations, while
the dotted line represents the performance of the operators returned after reaching the stopping criterion. The
iteration count is given accordingly. (b) Learned separable operator shown as 2D filters.

ric Analysis Operator Learning approach (GOAL) [64], and the Analysis SimCO (ASCO)
algorithm [38]. In order to directly assess the impact of the separability constraint, two
additional analysis operators obtained with respect to Eq. (4.12) are considered. While the
operator learned with the proposed SGD framework but without separable structures is
denoted as (NSEP), the separable operator is labeled as (SEPjy,). In both scenarios, the
weighting parameters in Eq. (4.12) are set to x = 100.0 and v = 0.02. All other parame-
ters concerning the SGD optimization remain unchanged.

The training data for each learning method constitute a set of 50 000 noise free patches
extracted from the images shown in Figure 4.3. According to the respective algorithm
design, the patches have been centered and/or normalized. The number of iterations in
the learning algorithms is set to the value suggested by the authors. Table 4.2 shows the
execution time of the algorithms measured on a standard desktop computer.

After the learning phase, the operators are utilized in the sparsity regularizer of the De-
noising problem given in (4.21), where the co-sparsity is measured with respect to centered
patches. Again, the NESTA algorithm [7] is used to optimize the objective and to find a de-
noised version of the input signal. The five test images already shown in Figure 4.7 have
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Table 4.2.: Algorithm execution time in seconds

Algorithm SEP NSEP | AKSVD | CAOL OTOL GOAL | ASCO
Time (sec) 37,2 561,1 21.038,4 | 7.744,6 99,2 141,2 2.333,9

been artificially corrupted via adding AWGN with standard deviation ;, € {10,20,30}.
For each noise level, different choices of the parameter 7 in (4.21), that weights the sparsity
penalty against the data fidelity term, have been tested. Table 4.3 summarizes the De-
noising performance in terms of PSNR (in decibels) as defined in (4.22). For each analysis
operator, the parameter T that leads to the best average PSNR has been chosen.

In the image processing literature it is also common to assess the reconstruction quality
in terms of the Structural Similarity (SSIM) introduced in [165], which is also a full reference
metric, i.e., the performance is evaluated with regard to the original clean image. The SSIM
takes into account the degradation of structural information, a property that the human
visual perception is highly adapted to. Contrary to the PSNR measure, the calculation of
the structural similarity is performed locally within small windows, which are moved over
the entire image. For each window w, in the reconstructed image I"*, the similarity to its
corresponding window w, in the original image I°"8 is computed via

(2prpo + C1) (207 + Co)

IM =
SSIM (wy, w, ) (M2 + 12+ Cy) (024 02+ )’

(4.23)

where y, 2 and o,, denote the mean, the variance and the covariance for the particular
windows, and C;, C; represent constants to avoid instabilities. Eventually, the Mean Struc-
tural Similarity (MSSIM) between the two images 1" and | "8 reads

r
Mi

M=

MSSIM (I"*¢, [°"'8) = SSIM (w;.;, w,;), (4.24)

Il
—_

which allows to assess the overall image quality. Table 4.3 also lists the MSSIM quality
metric.

The presented results in table 4.3 indicate that using separable filters does not reduce
the image restoration performance and that separable filters are competitive with non-
separable ones. On the one hand, the performance of the three approaches SEP, SEP,,
and NSEP is almost identical. It can be concluded that first, the proposed penalty weight-
ings for Eq. (4.11) and Eq. (4.12) lead to similar operators. Second, the direct compari-
son between SEPy,,, and NSEP reveals that the impact of the structural constraint on the
achieved denoising results is negligible. On the other hand, the competitive performance
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of separable operators is highlighted by means of the last column of the table that presents
the average PSNR and MSSIM across all images. While the bold face number corresponds
to the best performance, the underlined value shows the reconstruction quality achieved
with a separable operator. For all different noise realizations, the deviation in PSNR is at
most only 0.07dB. Regarding the MSSIM, the performance is slightly worse compared to
the best competitor, but still on par to the quality achieved with the operator without the
separability constraint (NSEP).

Having these results in mind, the benefit of separable operators gets even more pro-
nounced with regard to the computational effort during the learning phase. Table 4.2 il-
lustrates that the SGD implementation with separability constraint (SEP) requires much
less time, and therefore less iterations and fewer samples, to reach the dropout criterion
compared to the SGD algorithm without enforcing a separable structure of the learned op-
erator (NSEP). Moreover, the SGD approach for separable analysis operator learning is the
fastest learning scheme among the listed algorithms.

4.6. Summary

In this chapter, an analysis operator learning algorithm that imposes an additional separa-
bility constraint onto the model is introduced. Separable operators are especially useful for
multidimensional data since the computational burden in learning and applying the filters
is significantly reduced. The derivation of the cost function revealed that the separability
constraint is easy to integrate into the objective while the properties of the operator can be
still adjusted flexibly via the used penalty functions. In accordance to the results from the
literature, a well-conditioned separable analysis operator turned out to be very useful.

In order to address an online learning scenario where the samples are acquired sequen-
tially in time, a SGD algorithm on manifolds is presented to tackle the optimization prob-
lem. Empirical results indicate that the proposed variable step size selection makes the
algorithm self-adapting to different parameter settings without a tedious search for an op-
timal learning rate. Furthermore, extensive numerical experiments have shown that the
learning algorithm is robust against parameter changes and different initializations.

Last but not least, the separable structure of the analysis operator only marginally influ-
ences the performance of the model when it is used as a regularizer in inverse problems.
Even more, almost the same accuracy is achieved although the effort in the learning phase
is significantly reduced compared to various state-of-the-art algorithms.

In sum, separability has been proven a very valuable property, which can be easily in-
corporated into the objective function, significantly reduces the training complexity, and
still leads to competitive performance in image processing tasks.
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Table 4.3.: Denoising experiment for five different test images corrupted by three noise levels. For each model
the achieved PSNR in decibels (dB) is shown on the left, while the MSSIM is given on the right.

oq | Algo. H PWC Barbara Boats Lena Peppers Avg.

10 | SEP 31.78 0.929 | 32.12 0914 | 33.18 0.878 | 35.04 0.908 | 33.51 0.914 | 33.13 0.909
SEPyron || 31.85 0.930 | 32.12 0.914 | 33.16 0.877 | 35.04 0.908 | 33.53 0.914 | 33.13 0.909
NSEP || 31.68 0.929 | 32.15 0.915 | 33.12 0.878 | 35.16 0.911 | 33.50 0.916 | 33.12 0.909
AKSVD|| 30.99 0.869 | 30.49 0.860 | 30.78 0.819 | 32.08 0.829 | 31.17 0.849 | 31.10 0.845
CAOL || 31.85 0.933 | 32.08 0.915 | 32.82 0.874 | 34.89 0.911 | 33.32 0.915 | 32.99 0.910
OTOL || 30.86 0.900 | 32.23 0.907 | 32.95 0.868 | 34.75 0.893 | 33.15 0.899 | 32.79 0.893
GOAL || 31.76 0.927 | 32.32 0.916 | 33.20 0.878 | 35.16 0.908 | 33.56 0.914 | 33.20 0.909
ASCO || 29.86 0.869 | 31.25 0.884 | 32.46 0.853 | 33.99 0.866 | 32.58 0.881 | 32.03 0.871

20 | SEP 27.66 0.837 | 28.13 0.823 | 29.92 0.798 | 31.54 0.835 | 29.88 0.840 | 29.43 0.827
SEPiron || 27.71 0.838 | 28.13 0.823 | 29.91 0.796 | 31.56 0.835 | 29.89 0.839 | 29.44 0.826
NSEP || 27.61 0.838 | 28.19 0.828 | 29.89 0.798 | 31.70 0.840 | 29.94 0.844 | 29.47 0.830
AKSVD|| 26.09 0.767 | 26.02 0.733 | 26.59 0.675 | 28.24 0.736 | 26.77 0.740 | 26.74 0.730
CAOL || 27.66 0.849 | 28.18 0.832 | 29.55 0.792 | 31.54 0.850 | 29.72 0.847 | 29.33 0.834
OTOL || 26.94 0.846 | 28.07 0.831 | 29.76 0.798 | 31.85 0.855 | 29.83 0.851 | 29.29 0.836
GOAL || 27.33 0.865 | 28.02 0.832 | 29.92 0.805 | 32.03 0.863 | 30.04 0.862 | 29.47 0.845
ASCO || 26.20 0.747 | 26.78 0.756 | 28.91 0.747 | 30.11 0.748 | 28.86 0.776 | 28.17 0.755

30| SEP 25.55 0.778 | 25.98 0.749 | 28.10 0.741 | 29.70 0.789 | 27.94 0.790 | 27.45 0.769
SEPyon || 25.59 0.780 | 25.98 0.749 | 28.10 0.740 | 29.74 0.790 | 27.95 0.789 | 27.47 0.769
NSEP || 25.52 0.781 | 26.03 0.756 | 28.08 0.742 | 29.88 0.797 | 28.02 0.796 | 27.50 0.774
AKSVD|| 23.51 0.678 | 23.82 0.636 | 24.53 0.586 | 26.25 0.669 | 24.41 0.658 | 24.50 0.645
CAOL || 25.32 0.825 | 25.88 0.766 | 27.59 0.734 | 29.76 0.829 | 27.74 0.821 | 27.27 0.795
OTOL || 25.23 0.778 | 26.07 0.759 | 27.99 0.739 | 29.93 0.804 | 27.91 0.793 | 27.43 0.775
GOAL || 25.20 0.819 | 25.66 0.753 | 28.06 0.751 | 30.21 0.831 | 28.13 0.824 | 27.45 0.795
ASCO || 24.46 0.694 | 24.39 0.661 | 27.17 0.689 | 28.47 0.704 | 27.13 0.729 | 26.33 0.695
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Chapter 5.

Empirical Investigation of the Sample
Complexity and the Model Generalization

The task of learning the underlying structure from training samples immediately raises
one of the fundamental questions in machine learning theory, namely does the model gen-
eralize to unseen data? Ideally, after learning, the model is representative for all signals
from the same signal class. Simultaneously, the model should have the capability to ex-
clude unwanted samples that do not belong to the same distribution, e.g. noisy samples.
These two properties are highly desirable in signal reconstruction tasks where the learned
model serves as a prior.

Intuitively, generalization will be achieved if all possible variations of the signal class are
presented to the learning algorithm. Full knowledge about the data distribution however,
renders the learning task meaningless. Since in real world scenarios the exact distribution
of the samples is generally unknown, we are interested in a uniform generalization bound
that enables to answer the following question: How many samples do we need for a re-
liable estimate of the model? This analysis is also referred to as the sample complexity
with examples given in [97, 161, 61]. Specifically, [61] provides a broad overview of sample
complexity results for various matrix factorizations. In our work [147], we investigate the
sample complexity of the separable analysis operator learning problem whose main results
are outlined in this section. The following contributions are addressed.

¢ The denoising results from the last chapter indicate that the separability constraint,
that is imposed on the analysis operator, significantly reduces the necessary training
time. Nevertheless, the algorithm still provides a reliable estimate of the model. Be-
sides this task oriented evaluation, in this chapter, both theoretical and empirical re-
sults are given confirming that in the separable case less training signals are required
in the learning process compared to an unstructured operator learning approach.

¢ In order to provide a task independent criterion to assess the generalization ability
of the learned model, the Estimated Kullback-Leibler divergence between the distri-
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bution of the training signals and the distribution of signals that strictly follow the
analysis UoS model is considered. As expected, compared to analytically given spar-
sifying transforms, the presented learning approach clearly provides a better adapt-
ability of the model to the underlying signal distribution. Moreover, the same eval-
uation framework additionally encourages the choice of the previously determined
weighting parameters.

5.1. Sample Complexity

Let S = [vec(Sy),...,vec(St)] = [s1,...,87], 8 € X denote a set of training samples, with
each sample drawn according to an underlying distribution IP over X!. To avoid trivial
solutions, e.g. the zero matrix or rank deficient matrices, the sought operator £2 € RK*N is
an element of the constraint set €. A separable structure is enforced by further restricting
the constraint set to the subset {27 € OB(N,K) : £2 = 1(§2y,...,82y), 22| € OB(n; k;)}
with the appropriate dimensions N = [];n; and K = [[;k;. Now, let f: € x X — R
denote the learning objective as defined in (4.11). All the possible realizations of £2 can be
summarized as the family of functions F = {f(£2,-) : 2 € ¢} that map the sample space
X to R. The ultimate goal of the learning process consists in finding the function f € F for
which the expected value

E[f] := Eswp[f(£2, 5)] (G.1)

over all possible inputs s ~ [P is minimal. The minimizer f* = arg rfm]r; E| f ] thus can be
c

considered as the ideal function, i.e., the function that generalizes best to the underlying
distribution IP. Unfortunately, since the true distribution is unknown, the best we can do
is to find a minimizer of the empirical mean over some representative training set S, which
is defined as

T
Es(f]:= 1) f(£2,s)). (5.2)

It is hoped that (5.2) behaves like minimizing the expectation (5.1) despite the noise intro-
duced by the simplified procedure. Analogously, let fg = arg rfm;l Eg[f] denote the best
S

function for the training set S.

!Note that for ease of notation, vectorized samples are used in the subsequent part of this chapter. Neverthe-
less, the separable operators are sill learned on non-vectorized two-dimensional signals.
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The goal of the sample complexity analysis is now to upper bound the difference be-
tween the expected error E[f] and the approximate solution Eg[f] over all possible func-
tions f € F and all training sets S with samples independently drawn from the distribu-
tion IP. Following the analysis outlined in [147], this upper bound reads as follows.

Theorem 1. (Theorem 9 in [147]). Let S = [s1, ..., st| be a set of samples independently drawn
according to a distribution within the unit (y-ball in RN. Let f(£2,s) = ¢(92,3) + r(£2) +
h($2) as previously defined where the sparsity promoting function g is A-Lipschitz. Finally, let the
function family F be defined as F = {f(£2,-) : 27 € &}, where € is either OB(N, K) for the
non-separable case or the subset {27 € OB(N,K) : 2 = ((§2,...,92y), £2 € OB(n;,k;)}
for the separable case. Then we have

ACe . [2A%KIn(2/5)
<Vor == \f —

with probability at least 1 — &, where Cg is a constant that depends on the constraint set. In the
non-separable case the constant is defined as Ce = K+/N, whereas in the separable case it is given
as C@ = Zi kz\/I’TZ

In order to link the sample complexity results to the proposed SGD optimization ap-
proach, Bottou [11, 12] provides some helpful insights that are discussed in the following.
Additional to f* and fg defined above, let fs denote the solution found by the employed
optimization algorithm. Clearly, fs depends on the chosen parameters like for example
the step size or the initialization. Now in his work, Bottou considers the excess error

— E[fs] — E[f*], which describes the difference between the ideal solution and the so-
lution found by the optimization algorithm. The excess error can be further split into the
SUm € = €qpt + €est- The optimization error eqpt = IE[fS] — E[f§] indicates how well the
found solution resembles the ideal solution that could be found by minimizing the em-
pirical mean. It clearly depends on the design of the optimization algorithm. The second
term, the estimation error et = E[f§] — E[f*], measures the deviation between the ideal
solution obtained through minimizing the expected value and the optimal solution with
respect to the empirical average. Figure 5.1 schematically illustrates these concepts.

Having in mind the result from Theorem 1, the estimation error & is closely connected
to the sample complexity result from above. Based on the proof given in [147], the estima-
tion error can be upper bounded via

E[f] - Es[f] (5.3)

2A2] In(2
Eest < 22T /:%+6 “f;(/‘s) (5.4)

with probability at least 1 — 4.
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Figure 5.1.: Schematic illustration of the excess error.

From the observations above one can draw two important conclusions. First, do not waste
energy on optimization. Even with an optimal optimization algorithm, the best one can
reach is [E[f§] which might be still far away from the ideal solution. Second, to make E[f]
approach [E[f*] one has to keep the estimation error eest small. On the one hand, this can be
achieved via increasing the size of the training set. Since the number of samples T occurs
in the denominator, Eq. (5.4) confirms this intuition. On the other hand, the estimation
error bound depends on the constant C¢. Note that for the non-separable case we have
Ce = Kv/N, while for the separable case it reads C¢ =} k;y/n;. Consequently, the
estimation error for learning separable operators has a lower bound compared to learning
without this structural constraint. These theoretical results will be evaluated empirically
in the remainder of this chapter.

5.2. Model Generalization

After the learning phase, we say that a model generalizes if it performs equally well on
previously unseen data from the same distribution like the training data. In this work,
the generalizability is evaluated in two different ways. Both approaches are intended to
overcome the problem of not knowing the true distribution of the training signals. Since in
the introduced learning framework we aim at minimizing the sparsity, the utilized sparsity
measure is considered first to assess the generalization behavior of the learned model.
The second attempt is based on a divergence criterion which is intended to show that the
learned model is descriptive for the distribution of the training data.
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As already outlined above, generalization implies that the difference between the em-
pirical loss evaluated on the training set S and the expectation over the true distribution
P is minimal. Since in general we do not have access to the expectation with respect to
the distribution, the generalization is often assessed based on the difference between the
training and validation error. For this purpose, the whole set of samples S is split into the
two sets Siain ~ P and the 'held out” validation set Sy, ~ IP. If the model generalizes
well, the following relation should be fulfilled

‘]Estrain [fStrain] - IE:Sval [fstrain]

~0, (5.5)

where fg__is the output of the optimization algorithm evaluated on Siin.

Besides generalization, another important aspect is the discrimination ability, i.e., the
learned model should only generalize to signals from the same distribution the training
signals originate from. Signals from any other distribution should not be well described
by the learned model. Given the signal set S, with signals sampled from a different
distribution PP, for a model that only generalizes to signals from IP we additionally expect

‘I/E\:Strain [fstrain] - I/E\'g\,al [fstrain] > 5 Z 0’ (56)

to ensure that the learned model prefers signals from IP over P.

Divergence Criterion

During the learning process, the model captures the underlying structure of the training
signals Sirain in the sense that these signals exhibit an (approximately) co-sparse represen-
tation. Consequently, the distribution of some signals Sy,s that strictly follow the analysis
Union-of-Subspace model described by the learned analysis operator, should be as close
as possible to the distribution of the training signals. Formally, this assumption can be
summarized as follows

Assumption 1. A suitable analysis operator that adequately captures the structure of the training
signals can be considered a generative model such that the divergence between the distribution of
the generated signals and the distribution of the given training signals is as low as possible.

As such the learned analysis operator may serves as a prior in inverse problems.

Since in real world scenarios the true distribution of both signal sets is unknown, the
divergence is estimated by means of the Estimated Kullback-Leibler (EKL) divergence as
introduced in [164]. Formally, let us assume that we are given two sets S; and S, that
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contain n-dimensional signals drawn i.i.d. from IP and Q, respectively. Furthermore, let
pk(i) denote the Euclidean distance between s;; and its k-Nearest Neighbor (k-NN) in
{s1,}j#i and let v (i) represent the distance to the k-NN in S,. The divergence according
to [164] is estimated via

T

n V(i T
Dexr(P || Q) = T lelogplligl; +log T, i 1/ (5.7)

with T denoting the number of samples in the respective set.

5.3. Evaluation

In the subsequent part of this chapter, numerical results concerning the superior sample
complexity in favor of the separable approach are given. Furthermore, the suitability of
the Estimated Kullback-Leibler divergence as a task independent criterion to assess the
generalization ability is analyzed. As already mentioned in Section 4.2.4, in this chapter the
objective given in Eq. (4.12) is used in order to evaluate the problem of learning structured
and non-structured analysis operators.

5.3.1. Sample Complexity Evaluation

The sample complexity bound presented in Section 5.1 indicates that a reliable estimate of a
separable operator can be learned from less training samples compared to a non-structured
one. The following numerical experiments are intended to confirm these results by means
of empirical verifications. For this purpose, synthetically generated sampled are used to
control the experimental setup and to enable the assessment of the reliability of the current
model. Given the ground truth separable operator 2t the synthetic data set is generated
via projecting signals onto the orthogonal complement of the subspace identified by se-
lected rows of the operator. Let A; denote the set of indices as defined in Section 1.1.2, the
projection is realized via s}oro} = (I, — .QXJ, (024, .QX], )~192,,)s;. After the projection step, the
signals strictly follow the analysis Union-of-Subspace model introduced in Section 1.1.2,
i.e., for each signal, |A;| rows of {2 are orthogonal to the signal such that 2 s; = 0. The
ground truth analysis operator £2gr € R8*# has been learned from normalized and cen-
tered patches S; € R7*7 extracted from natural images. The full set of samples has the size
T = 100000. The co-sparsity, i.e., the number of zero filter responses, is fixed to 25. Given
the artificially generated training data, separable as well as non-separable analysis opera-
tors are learned. A reliable estimate of the model is assumed if the current iterate §2jcarmed 1S
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close to the generative operator £2ct. More precisely, the deviation of the individual filters
to the ground truth is utilized as a measure. However, one has to bear in mind that there
is an inherent sign and permutation ambiguity in the learned filters. Hence, the absolute
values of the correlation of the filters over all possible permutations is considered.

Let @; denote the i-th row of £2¢meq and let w; correspond to the j-th row of £2gr. Both
filters are represented as column vectors. Now, the deviation of these filters from each
other is defined as ¢;; = 1 — @ wj|. A standard procedure to measure the overall distance
of 2iearned to £2cT is to correlate one ground truth filter by a time to all the rows given in
$earned and subsequently summing up the minimum deviations obtained at each iteration.
This strategy has the drawback that each filter in 2jc;;meq may be selected several times
which can lead to false detections. For example if £2c7 exhibits highly correlated rows,
these filters might be all mapped to only one filter in 2jc;meq resulting in a close overall
distance. To alleviate this problem, the following approach is pursued. First the deviations
cij for all possible combinations of i and j are computed which results in the confusion
matrix C, where the i, j-entry Cj; is 0 if @; is equal to w;. Building the confusion matrix
accounts for the permutation ambiguity between £2gt and §2j¢amed- Next, the Hungarian-
method [78] is utilized to determine the path through the confusion matrix C' with the
lowest accumulated cost under the constraint that each row and each column is visited
only once. In the end, the coefficients along the path are accumulated and this sum serves
as the error measure denoted as H(C'). This strategy has the advantage that different
retrieved filters @; are not matched to the same filter w;.

In order to evaluate the sample complexity, i.e., the number of training samples necessary
to recover the original model, the mini-batch size in the SGD implementation is varied.
The employed mini-batch sizes read |b(k)| € {1,2,5,10,20,50,100,200,500,1000}, while
the performance of the operator retrieval is evaluated over five trials, i.e., five different
synthetic sets are generated in advance. Figure 5.2 summarizes the results for the sample
complexity experiment. For each mini-batch size, the error over all five trials is illustrated.
The left box corresponds to the non-separable approach and accordingly the right box de-
notes the error for separable filters. While the horizontal dash inside the boxes indicates
the median over all five trials the boxes themselves represent the mid-50%. The dotted
dashes above and below the boxes indicate the maximum and minimum error obtained,
where crosses belong to outliers. The distance between the estimated operator §2jearneq and
2t obtained after executing t € {100,1000, 10000} iterations is given. In the first exper-
iment shown in the left column of Figure 5.2, the recovery of the ground truth operator
starts from a fixed initialization of the analysis operator, where the entries are drawn from
the normal distribution with a subsequent normalization of the rows to unit length. In the
second experiment, the setting is slightly changed. In each trial the recovery starts from
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different initializations of the separable operator. Furthermore, AWGN with standard de-
viation 0.05 is added to each synthetically generated signal sample. The results are shown
in the right column of Figure 5.2.

From both experiments, it is evident that the error decreases significantly faster in the case
when an analysis operator with separable structures is learned. For example, in the noise-
free scenario, the deviation between the current iterate of the separable operator and the
ground truth operator approaches zero even for small mini-batch sizes. Since in the SGD
framework, the number of iterations reflects to the number of samples visited so far, the
deviation error is directly connected to the sample complexity. The same general trend can
be observed in the second experiment, where random operator initializations and noise
contaminated samples are used.

To conclude, the presented results confirm the theoretical sample complexity results and
indicate that imposing a separable structure on the analysis operator significantly reduces
the amount of samples needed in order to provide a reliable estimate of the model.
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Figure 5.2.: Distance between the estimated operator §2je,meq and 2t obtained after executing different num-
bers of iterations. From first to third row: Error after # = 100,1000, and 10000 iterations. H(C) indicates the
distance error obtained after applying the Hungarian method on the confusion matrix. First column: In each
trial, a fixed initialization of $2je;meq is used. The artificially generated signals are noise free. Second column:
In each trial, £2caneq i initialized randomly and learned from noise corrupted samples.
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5.3.2. Generalization Evaluation

As already pointed out in Section 5.2, the resulting analysis operators should generalize
well on previously unseen data from the same signal class. To evaluate this behavior, let
Strain ~ P denote a set of T n-dimensional samples, i.e., Syain € R"™T, used for train-
ing. Analogous to the previous experiments, the signals are patches extracted from the
images shown in Figure 4.3. The test set Siest ~ IP is comprised of samples from the same
distribution, i.e., they are sampled from the same images.

Besides generalization, the learned analysis operator also has to be discriminative for
samples from the distribution IP, i.e., the model should prefer signals from IP over signals
from some other distribution IP. In the context of co-sparsity, this means that the signals
from IP should exhibit a sparser representation compared to samples from PP. For the nu-
merical analysis, these signals are generated in two different ways. On the one hand, the
test samples are artificially corrupted with AWGN resulting in Shoisy ~ P. On the other
hand, Sy ~ IP is composed of patches extracted from the MNIST database?, i.e., the sam-
ples represent sections of short line segments.

To evaluate the generalization as well as discrimination behavior, both type of operators
(separable and non-separable) are trained on T = 10 000 samples Syain. All the samples in
the aforementioned four sets are centered and normalized to unit length. The size of the
operators read £2 € R¥*% i.e., square patches of size 7 x 7 are extracted from the respec-
tive images. In order to evaluate the impact of the penalties, their weighting parameters are
set to x € {0.0,1.0,10.0,100.0,1000.0,10000.0}, and v € {0.0,0.0002,0.002,0.02,0.2,2.0}, re-
spectively. To guarantee convergence for all parameter choices, the batch size in the SGD
framework is set to |b(t)| = 500, while the algorithm terminates after a fixed number of

= 5000 iterations.

After the learning phase, where the structured and non-structured analysis operators
are trained on Siin With varying weighting parameters, the resulting models are applied
sample wise to the above mentioned sets. Figure 5.3 presents the average sparsity per
sample achieved for all four signal sets. While the outer loop indicates the weightings x
of the condition number penalty r(-), the inner loop of ticks depicts the variation in the
parameter -y that controls the influence of the incoherence penalty /(-). The performance
of the initial random operator on the signal sets is illustrated rightmost.

First of all, it can be seen that independent of the choice of parameters, all the learned
models generalize well, i.e., the average sparsity for the training set equals that of the test
set. Furthermore, Figure 5.3a shows that without any additional penalty, zero sparsity is

2The Modified National Institute of Standards and Technology (MNIST) database contains small binary im-
ages of handwritten digits
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Figure 5.3.: Generalization behavior of separable and non-separable analysis operators that have been learned
with varying penalty weightings. The average sparsity per sample is calculated with regard to four different
signal sets.

achieved. This is rather intuitive since geometrically, subtracting the mean of the signals is
equivalent to projecting the signals into the subspace orthogonal to 1, = [1,...,1]". Con-
sequently, without any penalties, the learned operator is composed of repeated rows of the
form +1,/+/n which provide the lowest sparsity possible for centered signals. Regarding
the discrimination ability, especially the results obtained for the separable operator indi-
cate that regardless of the weighting, all operators exhibit higher sparsity when they are
applied to signals sampled from IP. This observation further emphasizes the ability of the
learning algorithm to capture the structure from the training samples and to provide a
suitable prior for data sampled from the distribution IP.

However, since all weightings lead to operators that generalize well while being dis-
criminative simultaneously, it remains unclear whether these results allow conclusions to
be drawn about the actual performance of the model in inverse problem regularization. To
answer this question, two simple inverse problems are considered. In the first experiment,
the normalized signals Stest are corrupted with AWGN with 0pi5e = 0.1. In the second ex-
periment, undersampled measurements are generated via applying an undersampled DCT
sensing matrix ¢ € R"™*" with m < n to the signals. The Noise-aware Greedy Analysis
Pursuit (GAPn) algorithm as proposed in [100] is used to reconstruct the original signals in
both the Denoising and Compressed Sensing setting. Comparable to Matching Pursuit, the
GAPn algorithm iteratively projects the signal estimates onto the orthogonal complement
of rows from the learned operator. The pseudocode is given in Algorithm 5.1
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Algorithm 5.1 Noise-aware Greedy Analysis Pursuit (GAPn) as proposed in [100]
Require: y, &, 12, €
Set: t < 0, A «[1,...,K]
while Stopping criterion not reached do
calculate 3(*) := argmin, [[£2,(s]2 st [ly—Ps|2<e
update A+ = A(t)\{argmax{|ij.§(t)| 1je A}
update t <t +1
end while
Output: §

The recovery results for four different choices of the penalty weightings are summarized
in Figure 5.4. These weightings are a) x = 0.0,y = 0.0 which corresponds to the no penalty
setting; b) x = 1.0, Ysep = 0.0002 / Ynon-sep = 0.002 (moderate weights) that result in penal-
ized separable/non-separable operators with a maximum absolute difference between the
average sparsity on Siain and Spoisy (Maximum according to (5.6)); ¢) x = 100.0,y = 0.02
that is in accordance to the proposed weights used in the image denoising experiment of
Chapter 4; and lastly d) x = 10000.0, v = 2.0 which leads to operators with condition num-
ber close to one, i.e., the analysis operator closely resembles a tight frame. In all plots, the
performance of the initial random operator is also given. Regarding the first experiment,
given the reconstructed signal §; € R", the ground truth original signal s; € R" and the
noise vector e; € R", the individual denoising error as shown in Figure 5.4a and 5.4b is
l|$;—s;lI3

[
For the compressed sensing experiment in Figure 5.4c and 5.4d, the error is calculated via

> ll8 — s;||3. Note that the dimension of the signal is n = 49 so the undersampling rate
decreases along the x-axis.

measured via . That is, a value below one indicates an effective noise reduction.

Regarding the Denoising setting, the presented plot shows that the initial random operator
coincidentally improves or deteriorates the signals. Furthermore, the operators that have
been learned without additional penalties are not able to remove the noise from the signals
since they are insensitive to all mean free signals, including zero mean Gaussian noise.
Adding the penalties to the learning process clearly improves the performance while the
proposed weightings achieve the best results with superior performance compared to the
approximately tight frame weighting. The performance behavior of the different weightings
are confirmed by the results observed for the second Compressed Sensing experiment.

To conclude, although all the learned models generalize well and almost all of them
are sensitive to the presented signal class of natural images, i.e., in terms of average spar-
sity they perform worse on signals from PP, it still remains difficult to establish a relation
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Figure 5.4.: Denoising / Compressed Sensing Experiment

between the results from Figure 5.3 and Figure 5.4. First, lower average sparsity does not
imply better reconstruction quality. While the average sparsity on the test set Stest increases
with stronger penalty weightings, the recovery ability of the resulting operator improves
as shown in Figure 5.4. Second, a large gap between the average sparsity evaluated on
Stest and Spoisy does not necessarily result in a better reconstruction performance. While
the difference in the average sparsity for the moderate setting is bigger than the gap ob-
served for the proposed weighting, the overall performance of the prior obtained with the
proposed weights is superior to the moderate one.
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Figure 5.5.: Estimated KL Divergence (random indices)

5.3.3. Estimated Divergence of Distributions

In order to establish a suitable measure that correlates with the performance of the learned
model as a prior in inverse problems, the generalization ability of the learned operators
is also assessed based on the divergence criterion introduced in Section 5.2. Following the
same procedure introduced in Section 5.3.1, the signals from Siest are individually projected
into different subspaces. After this procedure, the distribution of the projected signals Sk,
is compared to the distribution of the training signals Siyain in terms of the EKL divergence
outlined in Eq. (5.7).

First of all, the estimated initial divergence between the training set Sirain and the test set
Stest With nearest neighbor k = 1 reads Dgg; = 0.0052, which indicates that the measure
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Figure 5.6.: Estimated KL Divergence (Backward Greedy indices)

returns reasonable results, as we expect both signals sets to originate from the same distri-
bution. Furthermore, the low divergence result also justifies the procedure of splitting the
dataset into the training and "held out’ validation set as proposed in Eq. (5.5) to determine
the generalization error.

In order to assess the divergence, two different scenarios are considered. First, the sig-
nals from Siest are projected onto the orthogonal complement of rows, randomly selected
from §2. In this case, the chosen indices are equally distributed. In this scenario, the es-
timated divergence reveals information about how good the entire set of filters describes
the underlying distribution of the training signals. While a low divergence shows that
the representational power is balanced across all the filters, a high value indicates that the
model contains filters that rarely lead to a co-sparse response on the training data and thus
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Figure 5.7.: Estimated KL Divergence compared to analytically given transforms (random indices)

do not encode structural information with regard to the distribution. In order to avoid the
assumption of equally distributed indices of the co-support, in the second scenario, the
columns of Siest are projected such that the rank of QAj exceeds a predefined target value

while simultaneously the distance ||s; — s?roj |2 is minimized. For this purpose, the Rank-

BGP (Backward Greedy Pursuit) as introduced in [141] is used. Eventually, the set Sirs(:j

can be considered as the set of samples that strictly follow the Analysis Union-of-Subspace
model while being closest to the original test set. A low divergence indicates that the filters
sufficiently capture the structure of the training data without being biased by the weight-
ing of the sparsity measure or the penalties. In other words, the penalties and objectives
do not overrule the adaptation of the filters to the structure.

Figures 5.5 and 5.6 present the obtained results for the different penalty weightings intro-
duced in the preceding section. The divergence is plotted against the number |A| of rows
that are selected to identify the orthogonal complement to the subspace the signals should
reside in. Note that due to linear dependencies of the filters, only the minimum co-sparsity
is indicated in the abscissa. For example the rank-1 operator composed of rows +1,,//n,
i.e., the non-separable operator learned without any regularization penalties, exhibits max-
imal co-sparsity as long as the projected signals are elements of 5" ! N 1;-. Since for this
operator, the minimum co-sparsity criterion is fulfilled for different choices of |A| anyway,
the signals are left untouched without any projection into a union of lower dimensional
subspaces. As a consequence, the estimated divergence does not increase which can be ob-
served in the upper part of Figures 5.5 and 5.6. To avoid this phenomenon, a small amount
of noise is added to the learned filters to reduce the effect of linear dependencies. The
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lower part of Figures 5.5 and 5.6 depict the divergence results for this setting. Again, the
signals are projected according to the two scenarios presented above. It can be clearly seen
that this small perturbation severely deteriorates the performance of the rank-1 operator
resulting in an estimated divergence that is even worse than the random initialization. In-
terestingly, the performance of the operators learned with the penalties is consistent under
these perturbations which indicates the robustness achieved due to the penalties. Espe-
cially the results corresponding to the random sampling strategy emphasize the benefit
of the presented strategy of incorporating penalty functions to relax the tight frame con-
straint. Furthermore, for both scenarios it can be observed that the operator learned with
the proposed penalty weightings leads to the slightest increase of the divergence.

In order to show the general capability of a learned model to capture the structure of
the training signals, the performance of the operators learned with the proposed weights
are compared to analytically given transforms. More precisely, Figures 5.7 and 5.8 depict
the estimated divergence of six common sparsity inducing transforms. Assuming a patch
size of 8 x 8, these transforms are: (1) the orthogonal DCT transform , (2) the orthogonal
Haar Wavelet transform , (3) and (4) the overcomplete DCT (ODCT) transform, either in
its non-separable form (1D ODCT) or realized as a separable transform (2D ODCT) , (5)
the operator that calculates the pairwise differences of pixels in the horizontal and vertical
direction TV , and (6) the undecimated Haar Wavelet transform that is translation invari-
ant. Again, both filter selection scenarios as well as the performance achieved with either
clean or noise contaminated filters are considered. Throughout all experiments, the learned
separable and non-separable operators perform best which further highlights the pursued
approach of learning sparse data models.

In sum, the presented divergence criterion reflects the generalization ability of the learned
models in a great extent. As expected, learning the model from training data leads to a
better adaptation to the distribution than analytically given transformation. Regarding
the experiments with different penalty weightings, the generalization behavior of the op-
erators is in accordance to the performance achieved in the Denoising and Compressed
Sensing tasks from Section 5.3. Hence, the Estimated Kullback-Leibler Divergence can be
considered a task independent measure to assess the suitability of the learned model to
serve as a prior in inverse problems.

5.4. Summary

This chapter deals with the sample complexity of analysis operator learning and the gen-
eralization ability of a learned model. The theoretical sample complexity results are con-
firmed empirically, specifically the recovery of a ground truth operator from artificially
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generated samples can be attained from less samples if a separability constraint is imposed
on the operator.

The assessment of the generalization solely based on a training and validation set does
not indicate, which operator to chose for the subsequent task. Neither the overall sparsity
achieved on the training set, nor the difference in the sparsity between signals from the
true distribution and their noisy observations will lead to a precise criterion. As a con-
sequence, the quality of the learned model to serve as a prior is usually determined in
a task oriented way. The numerical experiments regarding the proposed divergence cri-
terion however indicate that this measure correlates with the reliability of the model to
regularize inverse problems in a very high extent. As such, it can be seen as a suitable task
independent measure to at least distinguish useful models which will in turn reduce the
necessary evaluation effort considerably.
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Figure 5.8.: Estimated KL Divergence compared to analytically given transforms (Backward Greedy indices)
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Chapter 6.
Blind Analysis Operator Learning

The algorithm presented and analyzed in the previous chapters has been proven very use-
ful to learn separable analysis operators from noise free samples. After the learning pro-
cess, these operators are universally applicable to various problems in image processing,
e.g. structural analysis or the regularization of inverse problems. This chapter extends the
learning framework while focusing on the following contributions:

* To handle noise contaminated signals, an additional data fidelity term is added to
the learning objective presented in (4.11). This formulation allows to compensate for
various sampling noise models, e.g. Gaussian or impulsive noise, by simply exchang-
ing the data fidelity term. Various experiments demonstrate that this simple strategy
renders the proposed approach a very versatile method to cope with miscellaneous
problems occurring in image processing.

¢ In contrast to the SGD optimization intended to find a suitable operator for the whole
signal class of interest, in this chapter the operator will be adapted to the image at
hand. Moreover, the image recovery and the model learning task is tackled simulta-
neously. A geometric CG method is used to solve the resulting blind reconstruction
problem. Analogous to the SGD setting, this approach takes into account the product
of spheres manifold structure.

¢ In many inverse problems, the provided measurements are a function of the whole
image rather than local patches. Especially the reconstruction from undersampled
measurements has attracted great attention in the sparse modeling literature. In or-
der to handle these cases, the presented framework provides global support during
image reconstruction. One of the major advantages of the analysis model consists in
the fact that the co-sparse representation can be easily obtained via convolving the
learned filters with the image - a strategy that furthermore strongly benefits from the
separable structure of the filters. In this way, an image dependent regularization of
the inverse problem is obtained. It is demonstrated numerically and visually that
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the learned separable models successfully adapts to the image content which signifi-
cantly improves the reconstruction performance.

6.1. Simultaneous Model Learning and Image Reconstruction

A widespread assumption in the sparse data model learning literature is the availability
of clean training signals. In the image processing community, these signals are typically
represented by image patches, which are extracted from diverse natural images. Due to
the very high availability of images from this particular signal class, arbitrary amounts
of training samples are easily accessible. Things change, however, if the acquisition of
clean signals is expensive or even not possible. The recording of infrared images with high
resolution for example is more expensive in comparison to the acquisition of images in the
range of the visible light, due to the higher manufacturing costs for infrared sensors. In
such a scenario, it is advantageous to adaptively learn the model based on the possibly
corrupted or undersampled signals. Eventually, this approach results in a simultaneous
model learning and image reconstruction framework.

Many of the adaptive learning approaches are straightforward extensions of the original
model learning formulation. Especially in image denoising, the following simple and in-
tuitive strategy is frequently pursued. First, the noisy image is decomposed into patches.
After that, a sparse data model is adaptively learned based on the noise contaminated
training samples. Afterwards, the individually reconstructed patches are placed back at
their initial position in the image with an additional averaging step in the case overlap-
ping patches are used. While this procedure usually leads to improved denoising results
compared to the reconstruction with a fixed pre-learned model, this strategy is only ap-
plicable if the measurement process is patch-based itself rather than globally. In general,
however, the measurement procedure is modeled by a system matrix that requires global
image support. Formally, let s € RN denote a vectorized image of size N = wh, with
w being the width and & being the height of the image, respectively, obtained by stack-
ing the columns of the image above each other. Given the system matrix & € RM*N, the
acquisition process can be modeled via

y = (Ps,e). (6.1)

This notation accounts for measurement noise e € RM that can be additive, multiplicative
or impulsive for example. Clearly, in the presence of AWGN (6.1) reduces to (1.2). In
this work, the adaptive learning strategy is employed in various scenarios ranging from
the classical denoising setting with @ = Iy to Compressed Sensing problems where the
number of measurements is smaller than the dimension of the signal, i.e., M < N.
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6.1. Simultaneous Model Learning and Image Reconstruction

6.1.1. Noise Dependent Data Term Formulation

Natural images are typically acquired with a standard digital Charge-Coupled Device
(CCD) or Complementary Metal-Oxide-Semiconductor (CMOS) sensor that is sensitive
to the visual light. The measurement process naturally involves degradations of the orig-
inal image signal which are usually modeled via noise that follows a Gaussian distribu-
tion. Consequently, the data fidelity term that measures the fidelity of the recovered signal
s € RN to the measurements y € RM can be modeled via the /,-norm as

1
dadditive(sr y) = M ||y - QSSH%/ (62)

where & € RM*N models the linear measurement process.

However, there exists a vast amount of various image modalities, e.g. medical or radar
images, whose noise distributions do not follow this AWGN assumption. Thus, to cope
with these differences, the data term has to take the respective noise distribution into ac-
count. In the following, other data fidelity terms that can be used interchangeably in the
blind learning objective are introduced. Note that these fidelity measures are not necessar-
ily functions of the residual of #s — y.

To reconstruct signals in the presence of sparse outliers in the measurements a promising
approach is to measure the data fidelity via

_ 1 1 (B )2
dlmpulswe(sz y) M ; log(l n C) log (1 +c (5153 y)l) ’ (6.3)

where c is a positive constant. This function offers the advantage of being equally sensitive
to both small and large deviations, which is highly desirable in the scenario of observa-
tions degraded by sparse outliers. As already pointed out in Section 4.2.1, the log-sparsity
measure approximates the ideal /p-norm while still being continuously differentiable.
Mathematically, the degradation of the measurements of an image s with some multi-
plicative noise ey, € RM can be stated as y; = (®s); - ¢;. In the following experiments, the
noise is assumed to be Gamma distributed, i.e., the i-th element in the noise vector e, is
assumed to follow a Gamma distribution with probability density function [40, 8]

KX xa K
pdf(e;) = mei ~Lexp(Ke, (6.4)

where K € N* and I'(K) = (K — 1)!. A smaller value of K indicates a higher noise level.
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Accordingly, the data term

Auit(8,y) = % Z (log((sﬁs)i) + (sg;)) , (6.5)

is utilized to reconstruct the clean signal s, as it is done in [5] for example. Note that this
fidelity term is restricted to inverse problems where (@s); is positive, as it is the case in
problems like the classical denoising problem as well as Inpainting, Deblurring or Super-
Resolution. In the case & = Iy, i.e,, if solely denoising is considered, one could directly
optimize for u; = log(s;) [40, 8] which results in the data term

dmult(ul y) = % E (ui + Yi eXP(—Uz‘)) . (66)

This formulation offers the advantage of being strictly convex in all u; [71]. Note that this
approach amounts to optimizing over the log-image.

6.1.2. Algorithm Design

The goal of the blind learning and reconstruction approach is to find a separable analysis
operator £2 € RF¥" simultaneously to the signal s € RN that has to be recovered from the
possibly compressed measurements. Note that the analysis operator has to be applied to
local image patches rather than to the entire image at once. The proposed analysis model
offers the advantage that in the case of fully overlapping patches, applying the operator to
all of these patches is equal to simply convolve the learned filters with the current image
estimate. The separable structure of the filters additionally encourages this strategy.

Eventually, the extension of the cost function (4.11) to the blind separable analysis oper-
ator learning scenario reads

27,...,020,8) car min 2,...,02y,s
{ ! v } g.QlTG OB(Hi,k,‘), SE]RN f( ! v )
v v
with  f($21,...,02v,8) = & 8(£2(s)) + Ad(s,y) +x Y_ r(£2:) + 7Y h(82),
i=1 i=1

6.7)

with the additional noise dependent data term d(s, y) being weighted against the sparsity
measure via the parameter A. The notation £2(s) accounts for the operation of convolving
the whole image with every filter present in §2. The reader is referred to the Appendix A
for a derivation of the respective gradients.

92



6.2. Conjugate Gradient Optimization

6.2. Conjugate Gradient Optimization

In contrast to the SGD optimization framework, that has its strength in the online learn-
ing scenario where the samples from some particular signal class may be acquired suc-
cessively, the blind learning and reconstruction approach focuses on a setting with a con-
crete and fixed set of samples. These samples usually fully cover the image that has to
be inferred from the measurements. For that reason, the optimization problem is tack-
led via a CG approach that at each iteration takes the full set of samples into account.
The CG approach is scalable and converges fast in practice. It is thus well-suited to han-
dle the high dimensional problem of simultaneous image reconstruction and operator
learning. A simultaneous update is achieved via employing the product manifold struc-
ture of OB(n1,k1) x --- x OB(ny, ky) x RN considered as a Riemannian submanifold of
R™>*k ... x R"*kv x RN. To enhance legibility, in the remainder of this section the
oblique manifold is simply denoted by OB.

Recall from Section 2.2.1 that the Riemannian gradient at 2, is given by the orthogonal
projection of the Euclidean gradient onto the tangent space T,7OB. Using the product

structure and denoting the partial derivatives of f(£2y,...,82y,s) by Vo1 f(§21,..., 82y, s)

and V,f($21,..., 82y, s), respectively, the Riemannian gradient of the cost function is de-
noted as

G(QI,...,Q;,S) = (HTQIOB<VQ1Tf(Ql""’QV’S>)""’

HTQJOB(VQ;f(Ql,...,Qv,s)),st(.Ql,...,Qv,s)>. 6.8)

Accordingly, with the notation of the search directions (Hl(t), o H S ), h(t)) € T_erOB X

S X TQJOB x RN at hand, the new iterates regarding the product manifold are deter-
mined via

(_QlT(fH), L Q;(Hl),s(tﬂ)) — (F(QlT(t),Hl(t),tx(t)), . ,F(Q;(t),H‘(,t),a(t)),s(t) + [x(t)h(t)> ,

(6.9)

where a(t) denotes the step size that leads to a sufficient decrease of the cost function and

I’(Q].T(t), H ].(t), uc(t)) represents the geodesic emanating from Q].T(t) along the direction H j(t).

In order to calculate the new search direction for the next iterate, the parallel transport
involving the geodesics in the product manifold is denoted as

P s = <p<t> e h(t_n) _ (6.10)
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In this work, a hybridization of the Hestenes-Stiefel (HS) and the Dai Yuan (DY) for-
mula as motivated in [33] is used to determine the update of the search direction. Let

G](t) = G(.Q].T(t)) and g := ¢(s1"), as well as U](-t) = G](-t) — Pét(z_l) and ult) = glt) — g(t=1),

]
the CG-update parameters in the product of manifolds structure read

g = @U@ UY) 4 (g ul) 611)
(B U)o (B U)o (RO, ul0)
1 14
g e vt @)el) + (g% g) 612)
<P§:[)(t71) Ugt > +eee <P(t)(t 1)7 U$)> + < h(=1) u(t)>
1 V
where (-, -) denotes the Riemannian metric. With the hybrid update formula
y p
Blys = max (0, min(B), Biib) ), 6.13)

the new search directions are given by
(t) () ()Y _ T(t) T(t) (¢ () pt)
(H,",...,H) ,h)) = (—G(Q1 e 82y ’S()HﬁhybPH{”),...,Hy”,h<f1)>' (6.14)

Finally, the new iterate for the separable operator as well as the image signal can be cal-
culated via Eq. (6.9). The complete pseudocode for the blind separable analysis operator
learning algorithm with simultaneous image reconstruction is given in Algorithm 6.1. Sim-
ilar to the SGD implementation, a suitable step size is determined via backtracking.

6.3. Numerical Experiments

In this section, numerical results of various blind image reconstruction experiments are
provided. After defining the stopping criterion, an empirical convergence analysis is pre-
sented, where the achieved reconstruction performance from different random initializa-
tions emphasizes the robustness of the blind learning framework. The presented approach
is further motivated by the ability of the algorithm to cope with different noise models.
Image reconstruction results where the observations are corrupted with noise that follows
various distributions are shown subsequently. These experiments highlight the versatility
of the algorithm, whose general optimization procedure is not limited to selected scenar-
ios like the AWGN assumption or additional constraints on the system matrix. Finally, the
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Algorithm 6.1 CG Backtracking Line Search

Require: a®) > 0,0 <¢; <1,0 < ¢y < 1,8 =200, 2V i =1,...,V, 50
Set: o — a0, t 1
while Stopping criterion not reached do
calculate G(QlT(t), e, Ql(t), st))
if t = 1 then
Hi(t) = —G(Qj(t)), foralli=1,...,V
ht) = —g(st))
else
calculate search direction according to (6.14)
end if
setayg < alt) s 1
while £(T(2] ", HY, a7, T(2)", HY, a{)T,s0) 4+ an®) >
F2, 00 s0) o) Ve D), HY) A
ts <t do
Kls £ Qs+ €2
tis  tis+1
end while
update QZ-T(tH) = F(QiT(t),Hi(t),oqs)
update s+ = s() 4 g R0
a1 oy
t—t+1
end while
Output: 27i=1,...,V and s*

recovery performance in a Compressed Sensing problem where the image data is three-
dimensional is investigated.

Stopping Criterion

Since in the following experiments we are also interested in the reconstructed image, the
algorithm terminates when the image update saturates. To be precise, at each iteration
the norm of the image gradient G(s(")) is evaluated. The image recovery stops when the
Euclidean norm of the current gradient is below some threshold d,qaptive, i.€., when the
condition

%HG(SU))HZ < 5adaptive (6.15)

is fulfilled for 6,daptive € [1077,107°].
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Figure 6.1.: Empirical Convergence based on a Denoising experiment.

6.3.1. Empirical Convergence Analysis

To assess the empirical convergence of the blind learning and reconstruction approach,
a denoising experiment is conducted. For this purpose, the Cameraman image (second
image in Figure 4.4) has been corrupted with different realizations of AWGN noise with
Onoise = 20. Analogously, the separable analysis operators are initialized as random matri-
ces where the entries follow a normal distribution. Different realizations of samples from
the uniform distribution constitute the initial images. The same experiment with differ-
ent initializations is repeated 20 times. To evaluate the convergence, the algorithm runs
a predefined number of iterations. For each run, the iteration count is recorded where
the stopping criterion with the threshold Jdagaptive = 107° is fulfilled. The dotted lines in
Figure 6.1 depict the progress of the PSNR (Fig. 6.1a) and the overall function value (Fig.
6.1b) averaged over all the 20 trials. In both plots, the shaded area indicates the differ-
ence between the minimum and maximum value at each iteration. The average number of
iterations required to reach the stopping criterion is illustrated by the red dot, while the in-
terval boundaries correspond to the minimum and maximum number of iterations across
all trials.

Figure 6.1 clearly shows that the proposed blind separable learning algorithm converges
to almost the same solution from various random initializations. The average PSNR across
all trials at the iteration where the stopping criterion is met reads 29.72 dB with a standard
deviation of just 0.05 dB.

96



6.3. Numerical Experiments

Figure 6.2.: Test Images (cropped to 256 x 256). From left to right: Piecewise-Constant (PWC), Barbara, Boats,
Lena, Peppers.

6.3.2. 2D Blind Learning

In this section, two dimensional image signals are considered. The blind reconstruction in-
volves the recovery of the original image signal from noise contaminated or undersampled
observations while simultaneously learning a separable analysis operator. The images for
testing are illustrated in Figure 6.2 which are all of size 256 x 256. For all the experiments,
the accuracy of the recovery is measured in terms of the PSNR (4.22) and the MSSIM (4.24).
Since the learned filters are only applied to valid pixel positions (there is no artificially
generated border added to the images during filtering), the quality measures are also only
evaluated at pixel positions that are equally involved in the sparsity regularizer. In all the
blind reconstruction experiments, the separable analysis operators are initialized with en-
tries randomly drawn from a normal distribution. Since in most of the experiments the
images are normalized to the range [0, 1], they are initialized as matrices with entries from
a uniform distribution.

Additive White Gaussian Noise

The first image recovery experiment deals with observations that are corrupted with
AWGN. For this reason, the data fidelity term in the blind learning framework (6.7) is
set to the />-norm which is given in (6.2). The original image is normalized to the range
[0,1], thus the standard deviation of the AWGN reads ¢, = 0.0784 which corresponds to a
deviation of 0, = 20 in the common pixel range of [0,255]. For the penalties 7(-) and h(-)
the same weighting parameters x = 35.0 and v = 0.5 as in the non-blind setting are used
to learn a separable operator £2 = ((£21, £2,) € R'9%%_ The operator is applied to all over-
lapping patches via filtering while the sparsity is measured via the log sparsity measure
introduced in (4.2) with the parameter v = 2000. The weighting of the data term is set to
A = 1800. The blind reconstruction algorithm terminates when the stopping criterion falls
below the threshold dqaptive = 10~°.
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Table 6.1.: Adaptive Denoising experiment for five different test images (256 x 256) corrupted by AWGN with
0 = 20. Achieved PSNR in decibels (dB) and MSSIM.

oy / PSNR | Algorithm H PWC Barbara Boats Lena Peppers
20 /2211 adaptive 30.02 0.895 | 28.55 0.861 | 29.58 0.842 | 29.47 0.829 | 30.46 0.861
fixed 27.60 0.796 | 27.79 0.824 | 29.28 0.824 | 28.94 0.788 | 29.80 0.812

For comparison, the PSNR and MSSIM achieved by running the same algorithm, how-
ever, with a fixed operator is given in Table 6.1. The used operator is the same as in the
denoising experiment stated in Section 4.5 and that was trained on patches from the images
given in Figure 4.3.

From the achieved results it is evident that the blind reconstruction framework is able
to provide higher recovery accuracy than compared to a globally learned operator. This is
due to the ability of the regularizer to adapt the image content at hand. Especially for the
artificially generated Piecewise-Constant (PWC) image, the recovery quality is significantly
higher. This can be attributed to the circumstance that the underlying structure of such an
image is not adequately captured by the fixed operator since these kind of images are un-
derrepresented in the training set. The adaptability can be also visually seen in Figure 6.3
where the filters of the fixed operator are compared to the adaptively learned ones. Each of
the small patches represents a 2D filter kernel. As expected, the filters adaptively learned
on the PWC image resemble the filters from the Total Difference Operator!. Similarly, the
high frequency parts from the Barbara image are represented by the operator shown on the
right panel in Figure 6.3.

Impulsive Noise

If the noise in the measurements is no longer Gaussian distributed, the ¢;-error term intro-
duced in (6.2) might be less effective. Erroneous pixels of an image sensor or missing pixel
information can be modeled as impulsive noise, where the images are severely degraded
by sporadic large amplitude samples. Since these samples typically have values from the
lower or upper limit of the image intensity range, e.g. 0 or 1 in the normalized case, impul-
sive noise is also called salt-and-pepper noise. The left panel of Figure 6.4 shows the image
Boats with 20% of its pixels corrupted by impulsive noise.

To cope with this type of noise, the data fidelity term in (6.7) is set to the function given
in (6.3). The parameter that controls the slope of the function is set to ¢ = 500. Identical

I The Total Difference Operator calculates the differences between adjacent pixels in horizontal and vertical
direction. Utilizing the Total Difference Operator in the sparsity prior is closely related to minimizing the
Total Variation of the image signal.
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(a) Operator learned from training  (b) Operator adaptively learned (c) Operator adaptively learned
images. while reconstructing the while reconstructing the Barbara
Piecewise-Constant (PWC) image. image.
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Figure 6.3.: Adaptively learned separable analysis operators from images corrupted with AWGN.

to the previous experiment, the parameters for the regularizers are again set to x = 35.0
and v = 0.5. The parameter in the sparsity measure reads v = 2000, while the pixel
intensities are again normalized to the range [0,1]. To evaluate the performance of the
blind recovery approach in the presence of impulsive noise, a certain number of pixels
in the test images is artificially set to the extreme values 0 and 1. The ratio of corrupted
pixels reads Peorrupted = 0.2. The weighting A of the fidelity term is set to A = 80.0. The
reconstruction terminates with the threshold set to d,daptive = 10~°.

Table 6.2 lists the PSNR and MSSIM of the blind separable framework compared to the
accuracy achieved after median filtering with different filter sizes. The Median filter is a
nonlinear filtering operation that replaces the current pixel value with the median value
of its neighboring entries. In the first column, the average PSNR over all input images
is given, which indicates the severe degradation with only a small amount of corrupted
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Table 6.2.: Adaptive Denoising experiment for five different test images (256 x 256) corrupted by impulsive
noise. Achieved PSNR in decibels (dB) and MSSIM.

oy / PSNR | Algorithm H PWC Barbara Boats Lena Peppers
20 % / adaptive 20.78 0.789 | 27.38 0.850 | 28.48 0.860 | 29.84 0.875 | 28.55 0.897
11.88 MED 7x7 || 21.44 0.824 | 21.79 0.601 | 23.41 0.657 | 26.06 0.746 | 26.20 0.824
MED 5x5 || 22.75 0.865 | 21.10 0.602 | 25.05 0.739 | 27.79 0.818 | 27.84 0.864
MED 3x3 || 23.74 0.879 | 23.93 0.793 | 26.22 0.813 | 28.23 0.863 | 27.73 0.867

pixels. Figure 6.4 shows the reconstruction of the Boats image, which has been corrupted by
20% impulsive noise. It can be clearly seen, that the proposed approach recovers visually
pleasant results while the median filtered image suffers from the typical blocking artifacts.

While the blind recovery algorithm is able to accurately recover all of the natural images
with superior performance compared to the median filtering, it performs less accurate on
the synthetic Piecewise-Constant image. This can be attributed to the fact that separable op-
erators primarily exhibit filters, which are more sensitive to vertical and horizontal edges.
Since the Piecewise-Constant image is composed of rotated homogeneous rectangles, most
of the edges are aligned diagonally. During the blind reconstruction, the regularizer prefers
horizontal and vertical edges while the data term treats the small deviations from the ideal
diagonal edges as sparse outliers. Figure 6.5 shows the disturbed input as well as the re-
construction with the proposed approach and the median filtered image. Note that while
the blind approach results in fringed edges the median filter operation severely smoothes
the corners of the rectangles.

Multiplicative Noise

The phenomenon of measurement noise that is multiplicative, rather than additive, can
be observed in imaging modalities like synthetic aperture radar (SAR), ultrasound, sonar,
and laser imaging [143, 8]. In this context it is often referred to as speckle noise. The
multiplicative and non-Gaussian nature of the noise on the one hand severely degrades
the original image, while on the other hand renders standard denoising frameworks, which
rely on an AWGN assumptions, ineffective. Hence, specialized algorithms are needed to
cope with this type of Gamma distributed noise.

Analogous to the impulsive noise setting, the proposed blind reconstruction framework
is able to handle multiplicative noise by simply exchanging the data fidelity term. For
this purpose, the data term given in Eq. (6.6) is used to reconstruct the original signal. In
this setting, the log-image is recovered, thus during reconstruction the analysis operator
is simultaneously learned on log(s), where the natural logarithm is applied elementwise.
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(a) Noisy input image. (b) Reconstructed image with (c) Median filtered image with
adaptively learned separable same filter size (7 X 7).
analysis operator.

Figure 6.4.: Reconstruction of the Boats image, which has been corrupted by 20% impulsive noise.
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(a) Noisy input image. (b) Reconstructed image with (c) Median filtered image with
adaptively learned separable same filter size (7 x 7).

analysis operator.

Figure 6.5.: Reconstruction of the Piecewise-Constant image, which has been corrupted by 20% impulsive noise.

To account for the modified dynamic range of the image, the parameters for the penalties
are set to ¥ = 10.0 and y = 0.1, while the parameter that controls the slope of the sparsity
measure reads v = 100. The test images have been corrupted with multiplicative noise,
ie, y = 8O empur, Where ey follows the Gamma distribution introduced in (6.4) with
K = 10. The threshold in the stopping criterion is set to dagaptive = 10702,

Table 6.3 summarizes the reconstruction quality results of the proposed approach in
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Table 6.3.: Adaptive Denoising experiment for five different test images (256 x 256) corrupted by multiplica-
tive noise. Achieved PSNR in decibels (dB) and MSSIM .

K/ PSNR | Algorithm | PwC Barbara Boats Lena Peppers

10 /1496 | adaptive || 2425 0749 | 24.42 0.719 | 2532 0.736 | 24.82 0.666 | 26.26 0.757
AASCO | 25.09 0.817 | 23.16 0.658 | 25.58 0.737 | 26.15 0.733 | 26.80 0.791
MIDAL || 25.78 0.833 | 22.88 0.637 | 2520 0.719 | 26.04 0.721 | 26.70 0.781

terms of PSNR and MSSIM. To assess the performance, the adaptive learning framework
is compared to the MIDAL (Multiplicative Image Denoising by Augmented Lagrangian)
method introduced in [8] and the AASCO algorithm presented in [40]. The objective in
the MIDAL algorithm is composed of the same convex data term (6.6) with an additional
standard isotropic discrete TV-norm regularizer. The authors propose variable splitting
and the application of the ADMM (Alternating Direction Method of Multipliers) method
to solve the optimization problem. Besides the TV regularizer, Dong et al. [40] add an-
other analysis operator based regularizer to the objective that is learned adaptively on the
image that has to be reconstructed. Again, variable splitting and the ADMM algorithm
is used to tackle the constrained optimization problem, while the subproblem of analysis
operator learning is based on the Analysis SimCO algorithm presented by partially the
same authors in [39]. Opposed to MIDAL and the proposed method, the AASCO (Adap-
tive Analysis SimCO) algorithm is purely patch based and thus cannot directly handle any
inverse problem formulation with & # Iy.

The reported performance results indicate that the approaches that utilize a TV-norm
regularizer are already well suited to handle the severe degradation due to the multiplica-
tive noise characteristics. The proposed blind framework shows its strengths in the case
of a more structured image content. Figure 6.6 depicts the reconstruction of the Barbara
image. It can be observed that the high frequency parts of both the scarf and the chair in
the background are better restored by using the presented blind recovery algorithm.

Inpainting

If the indices of the disturbed pixels in the impulsive noise setting are known, the problem
can also be modeled as an Inpainting problem. In this setting, the number M of measure-
ments is significantly smaller than the size of the original signal. The sampling process
can be stated as y = $s, where & € RM*N is a matrix composed of an undersampled set
of canonical basis vectors for RV in its rows. A typical application of this type of inverse
problem is to remove text or scratches from images.

Since in this experiment no sampling noise is assumed, the blind reconstruction objective
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(a) Noisy input image. (b) Reconstructed image with (c) AASCO reconstruction.
adaptively learned separable

analysis operator.

Figure 6.6.: Reconstruction of the Barbara image, which has been corrupted by multiplicative noise with K =
10. The dynamic range has been set to [0, 255] for visual purposes.

(b) Reconstructed image with (0) Bicubic interpolated image.
adaptively learned separable
analysis operator.

(a) Masked input image.

Figure 6.7.: Inpainting mising pixels of the Peppers image, where 80% of the pixels are missing.

(6.7) involves the standard ¢;-norm to measure the fidelity to the measurements. As the
size of the operator is not changed, and the image is normalized to have intensities in the
range [0, 1], the parameters for the full-rank and coherence penalties are reset to x = 35.0
and v = 0.5. Accordingly, the parameter in the sparsity measure reads v = 2000 again.
The measurements are artificially generated by randomly sampling 20% of the pixels, i.e.,
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Table 6.4.: Adaptive Inpainting experiment for five different test images (256 x 256) where 80% of the pixels

are masked out. Achieved PSNR in decibels (dB) and MSSIM.

Miss. pix. | Algorithm H PWC Barbara Boats Lena Peppers
80 % adaptive || 20.31 0.773 | 24.45 0.791 | 27.26 0.837 | 27.90 0.838 | 27.73 0.877
Nearest 20.25 0.777 | 21.19 0.686 | 23.02 0.710 | 24.92 0.766 | 24.25 0.785
Cubic 2218 0.821 | 22.36 0.749 | 25.24 0.785 | 27.55 0.840 | 26.95 0.859

80% of the image content is missing. Since the measurements are noise free, the fidelity
is weighted with A = 2-10* Results are achieved after stopping the execution of the
algorithm with the threshold dagaptive = 10765,

Table 6.4 summarizes the recovery accuracy achieved on the five test images in terms of
PSNR and MSSIM. Except for the Piecewise-Constant image, the adaptive learning approach
outperforms standard reconstruction methods like Nearest-Neighbor or Cubic interpola-
tion. The worse performance on the Piecewise-Constant image can be attributed to the same
effect as observed in the experiment shown in Section 6.3.2. As a reference, Figure 6.7
shows the recovery of the Peppers image from 20% of the pixels. The proposed adaptive
method leads to visually more pleasant results.

6.3.3. 3D Blind Learning

This section focuses on the recovery of volumetric data from undersampled observations
with an adaptively learned separable analysis operator. Besides two dimensional data like
images, many vision based signals are inherently three or even multidimensional. Typi-
cal examples for volumetric data are videos, where multiple sill images are acquired over
time. Hyperspectral volumes are composed of several images that additionally encode the
spectral components of the scene. In medical imaging, volumetric MRI or CT scans allow
to assess the three dimensional structure of body parts. Because of the high correlation
of voxels across all dimensions, processing these multidimensional data at once is highly
desired. However, the exponential growth of the sample points limits the applicability of
standard vectorization approaches. On the contrary, the separable structure of the pro-
posed analysis operator is very well suited to exploit the volumetric structure of the data.
Consequently, instead of reconstructing each slice separately like in standard image recon-
struction, the information along the additional third dimension can be easily incorporated
in the recovery framework.
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3D MRI Compressed Sensing

In recent years, the CS theory has been applied especially in the field of medical imag-
ing where the reduction of measurements has a significant and valuable impact. Ongoing
from the seminal work of Lustig et al. [87] MRI has become a cornerstone to motivate CS
based image reconstruction [25, 117]. MRI is an imaging modality often used in clinical
diagnostics due to its ability to visualize fine anatomical structures. However, the image
acquisition process suffers from the sequential sampling of spatial Fourier coefficients in
k-space, making MRI a rather slow modality. The k-space constitutes the 2D Fourier coef-
ficients of the image, i.e., once the k-space is fully sampled, the resulting MR image can be
easily obtained via an inverse Fourier Transformation. The acquisition of 3D MRI volumes
is usually performed by collecting samples of different 2D slices.

The sequential sampling of k-space entries is a severe limitation that on the one hand re-
duces the throughput of patients in the clinical environment and on the other hand makes
it hard to capture moving body parts like in cardiac MRI for example. Even respiration of
the patient under investigation can cause artifacts in the image. Besides artifacts observ-
able in a single slice, another issue is the acquisition of temporal/volumetric data. In the
case of dynamic MRI, where each slice represents another time instance of a moving body
part, lowering the scanning time that is needed to sample a single slice will automatically
increase the time resolution. Furthermore, volumetric MRI is also used to image whole
body parts like the head, where a plethora of successive slices are mandatory to achieve
reasonable resolution. In this case, reducing the number of measurements via undersam-
pling during acquisition reduces the time the patient has to spend in the scanner. For
this reason, CS based image reconstruction has been proven very useful to alleviate these
drawbacks while providing accurate image quality [122, 127].

Since reducing the number of measurements has a direct impact on the acquisition time,
many different acquisition strategies have been proposed in the literature so far. If the 2D
k-space is sampled line by line on a Cartesian grid, possibly the easiest way of scan time
reduction is to leave out scanning lines. However, the imbalanced undersampling either
along the vertical or horizontal dimension leads to severe artifacts that manifest themselves
in ghost images. That is why in the presented experiments, the sampling is performed
along radial lines that intersect in the origin as shown in Figure 6.8 (The DC component
of the Fourier transform is assumed to be located at the center). This strategy offers the
advantage of consistently distributed samples along all spatial directions. Furthermore,
because of the higher sampling density around the origin, this pattern puts an emphasis on
the important low frequency parts of the image that carry most of the image information.

Two different data sets are considered in the numerical evaluation of the blind re-
construction framework. The first set consists of synthetically generated Head-MRI at-
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lases. The data generation process is described in [31, 32, 79] with the volumes be-
ing publicly available at http://www.bic.mni.mcgill.ca/brainweb/. For the experi-
ments, each of the 2D slices has been cropped to 128 x 128. The second dataset from
http://www.mridata.org/ consists of real Knee-MRI volumes, where each slice has a res-
olution of 200 x 200. In all the experiments, five successive slices are considered resulting
in two datasets of dimensions 128 x 128 x 5 and 200 x 200 x 5. As already pointed out, in
the CS-MRI framework the measurements y constitute undersampled Fourier coefficients,
i.e., wehave y = &s, with® € CM*N M < N, being the undersampled Fourier transform
matrix with M Fourier basis vectors in its rows that correspond to the radial sampling po-
sitions identified by the sampling mask. Here, the approach of successively sampled 2D
slices is followed, i.e., each slice is sampled independently according to a two dimensional
Fourier transform. Thus, the data term can be expressed as a sum over the different slices
s;, resulting in

1 L
dadditive (8, Y) = M Y (yi — ®is) " (yi — Bisi), (6.16)
i=1

where in this case L = 5is the number of slices and M denotes the total amount of measure-
ment samples. In order to account for complex measurements, the Hermitian transpose
()" is used. To evaluate the benefit of the multidimensional reconstruction, two different
sampling schemes are considered. First, the number of radial lines is varied along the addi-
tional third dimension. To be precise, the number of lines per slice read {25,19,17,23,21}
as illustrated in the upper row of Figure 6.8. In the second scheme, the number of lines
has been fixed to 21 but the pattern is rotated around the origin such that after five iter-
ations the pattern periodically repeats itself (cf. Figure 6.9). In both settings, the middle
image out of the five slices is the image of interest that is used to assess the recovery per-
formance in terms of PSNR and MSSIM. While the size of the operators has been set to
02; € R”,i = 1,2,3, which for a vectorization approach would already result in a ma-
trix «( W 02 9(3)) € R3%3x125 the parameters for the penalties still read x = 35.0 and
v = 0.5. The dynamic range of the slices has been set to [0, 1], thus the parameter in the
sparsity measure reads v = 2000 and the weighting of the fidelity term is set to A = 1000
assuming noise free samples. The algorithm terminates when the threshold Oadaptive = 10~7
is reached.

Figures 6.8, 6.9, and 6.10 show the recovered slices along with the utilized sampling pat-
terns. For comparison, the Dictionary Learning MRI (DLMRI) method, introduced in [122],
and the Transform Learning MRI (TLMRI) approach proposed in [132] is used. The DLMRI
algorithm recovers the image from undersampled measurements while adaptively learn-
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6.4. Summary

ing a dictionary based on the sparse synthesis model. Since this algorithm is intended to re-
construct single images, only the middle slice is considered. Assuming a patch size of 5 x 5,
the resulting dictionary has the dimension D € R**%. Various parameter settings have
been tested, while the results are reported for the following setup (DLMRI parameters:
lambda = 300, threshold = 0.025, sparsity = 5, iterations = 150). The TLMRI algorithm is
based on the sparse transform model as introduced Section 1.2.3. Analogous to the DLMRI
method, only the middle slice is considered during the blind reconstruction with the trans-
form matrix W € R**2. Again, after testing different parameter settings, the experiments
are conducted with the setup (TLMRI parameters: lambda = 0.2, nu = 10°/1282, threshold
= 0.1, iterations = 100). For both methods and all experiments, the sampling mask is set to
22 radial lines which results in a point symmetric pattern around the origin (cf. Figure 6.8).
Note that for the 3D case, the average amount of measurements per image is still below
the number of samples used in the 2D based reconstruction of DLMRI and TLMRI.

As can be seen visually and numerically, incorporating the additional dimension into
the reconstruction framework significantly increases the recovery quality. In particular the
first experiment, presented in Figure 6.8, shows an increase of around 3 — 4dB for the 3D
approach compared to its competitors DLMRI and TLMRI, although the image of interest
is reconstructed from only 80% of the measurements (17 radial lines compared to 22 radial
lines). Note that in the 3D case, the Fourier transform is applied to each slice separately,
thus, the performance increase can be attributed to the analysis co-sparsity regularizer that
leverages the additional information from adjacent layers. Also the real Knee-MRI images
exhibit finer anatomical structures in the reconstruction which is highly desired for exact
treatment planning.

6.4. Summary

In this chapter a blind separable analysis operator learning scheme that simultaneously
recovers the original image from possibly corrupted or compressed measurements is con-
sidered. The formulation as a smooth optimization problem allows to easily integrate a
data fidelity term that on the one hand accounts for the assumed noise distribution. On
the other hand, in contrast to purely patch based approaches, the presented framework is
able to handle measurements that require global image support. The resulting product of
manifolds structure of the problem is efficiently tackled by a conjugate gradient on mani-
folds approach. In the numerical experiments it is shown that the blind learning strategy
is able to to adaptively capture the underlying structure of the images, which leads to a
superior reconstruction performance in various inverse problems. Furthermore, the sep-
arable structure of the operator allows to efficiently handle multidimensional signals like
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volumetric MRI data, whereas the standard vectorization approach becomes impractical
because of the exponentially increasing complexity. Finally, the CS results indicate that ex-
ploiting the correlation of the additional dimension of the data via the separable co-sparse
analysis model significantly improves the reconstruction performance.
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(© Reconstructed image with adaptlvely learned 3D separable analysis operator (Mlddle slice, PSNR: 28.86,
MSSIM: 0.892).

(e) Reconstructed image with TLMRI (PSNR: 24.77, MSSIM: 0.757).

Figure 6.8.: Reconstruction of the MRI volume from radial samples with varying density (first sampling
scheme). The percentage of samples for each slice reads {19.6%, 15.2%, 13.7%, 18.4%, 16.6%}
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(c) Reconstructed image with adaptlvely learned 3D separable analysis operator (Middle slice, PSNR. 29.83,
MSSIM: 0.901).

x

Figure 6.9.: Reconstruction of the MRI volume from rotated radial samples (second sampling scheme). The
percentage of samples for each slice reads 16.6%
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(c) Reconstructed image with adaptively learned 3D separable analysis operator (Middle slice, PSNR: 30.82,
SSIM: 0.820).

(e) Reconstructed image with TLMRI (PSNR: 29.62, MSSIM: 0.793).

Figure 6.10.: Reconstruction of the MRI volume from rotated radial samples (second sampling scheme). The
percentage of samples for each image reads 10.9%
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Chapter 7.

Learning Separable Analysis Operators as
Co-sparse Auto-Encoders

In recent years, Artificial Neural Networks (ANNs) have attracted lots of researchers in
the machine learning community. The term 'neural” stems from the fact that earliest ap-
proaches were inspired by the functionality of the biological brain [45]. This strategy is
rather intuitive since transferring these functionalities to artificial systems is motivated by
the inherent capability of the human brain to show intelligent behavior. Hence, the build-
ing blocks of these networks are referred to as neurons that process input information from
their connections to several other neurons analogous to the dendrites in biological nerve
cells.

From another perspective, these networks can be treated as function approximators. In
general, the network maps samples s from input space & to the output space 3 via the
function f: & — 3. Assuming some target function f* with z* = f*(s) and z € 3, learn-
ing the model amounts to finding an approximate function f(s, ©), parametrized by the
learnable parameters @, such that f*(s) ~ f(s, @). The strength of the networks in var-
ious applications originates from the strategy to connect several functions in series, i.e.,
f(s,0) = fi(... f2(fi1(s,01),0,),...),0r) which gives rise to name them Deep Neural
Networks (DNNs) or deep learning models. In its basic form, the network resembles a
directed graph where the samples are simply fed through the network to generate the out-
put, resulting in the terminology of Feedforward Neural Networks (FNNs) or Multilayer
Perceptrons (MLPs). In the literature, various modified architectures specialized for certain
domains like images and speech have been presented. Among others, these architectures
range from Convolutional Neural Networks (CNNs) [82] for image processing, Recurrent
Neural Networks (RNNs) [145] and Long Short-Term Memory Networks (LSTMs) [68] for
sequence modeling, up to Residual Networks (ResNets) [66] that lead to state of the art
results in image classification and object detection.

The parameters © of the network are estimated via minimizing a loss function Leg(-)
that typically measures the deviation between the output of the network to some target
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value. Suppose a classical supervised learning problem, where we are given the labeled
dataset {s;, z;}L; C & x 3. A popular choice of the loss function is the Euclidean distance
that reads Lo (s;, zi) = || f(si,©) — zi||5 and which is commonly used in a regression task.
However, depending on the task at hand, several other choices of the loss function exist,
e.g. in classification tasks where z; represent class labels, the hinge loss or cross entropy
loss is used to measure the prediction accuracy.

A common strategy to tackle the learning problem is the backpropagation algorithm
[169]. For this purpose, after each forward pass where the actual loss based on the current
weightings is calculated, the error compared to the target value is recursively backpropa-
gated through the network to determine the partial derivatives of each parameter matrix
in the respective layer. A simple gradient descent step is then performed to update the
weights such that a new forward pass can be initialized which eventually constitutes the
iterative optimization scheme.

Unsupervised Learning

Many machine learning tasks can be considered an unsupervised learning problem. In-
stead of finding a nonlinear mapping between the inputs and some given labels, as it is
done in the classification scenario, one of the key ideas behind unsupervised learning is to
find a signal representation that reveals the underlying structure of the data [74]. In gen-
eral, it is assumed that the obtained representation is more suitable for the desired task of
interest, e.g. signal compression. In the last decade, Auto-Encoders have been extensively
used to learn patterns from the input data in an unsupervised fashion.

The ultimate goal of an Auto-Encoder is to automatically learn representations from
unlabeled data by means of forcing the target output values to resemble the inputs. This
can be achieved via learning the model @ = {©y, bq, O, be } that minimizes

~ 1

O* ¢ Es[Lo(S)] = =
arg@ {@d bd Oe,be} slLe(S) T =

1

T !

T
Y Ifa(fe(si, O, be), Og,b4) — sill3,  (7.1)

with f;(-, ©4,bq) denoting the decoder and f,(-, O, be) being the encoder function. The
matrices @3 € RF" and @, € R"** represent the weights, while b, € RF and bg € R"
denote the bias vectors. The intermediate or hidden representation h; € R¥ is obtained via

hi = fo(8i,0e¢,be) = 0(a;) = 0(O] s; + be), (7.2)
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with o(-) denoting an elementwise possibly non-linear activation function. In general,
the activation function of the decoder is set to be linear, i.e., fs(h;, ©g,ba) = O h; + bq.
During learning, the Auto-Encoder tries to obtain parameters such that f; o f. = id, i.e., it
tries to achieve zero reconstruction error. At this point, it is important to note that we are
not interested in the composite function f(s, @) = f; o f, since this function will simply
approximate the input without providing any further information about its structure. It is
the encoder that allows to map the signal to a meaningful representation that conveys the
underlying structural information. That is why Auto-Encoders have also been used as a
layerwise pre-learning of deep neural networks [80]. After learning an Auto-Encoder on
the input data, the decoder has been discarded and the hidden representation is used as
the input for the next Auto-Encoder, thus sequentially building the deep architecture that
is eventually fine-tuned in a subsequent learning step.

There exist different strategies to learn useful representations. The most common one is
to impose a structural constraint on the hidden representation, i.e., reducing the dimension
in the hidden layer with k < n. In this setting, the Auto-Encoder tries to find a compressed
version of the signal that retains as much information as possible to reconstruct a good ap-
proximation of the signal in the decoder step. It has been shown that with a linear activa-
tion function and a squared ¢;-error loss term, the Auto-Encoder learns a low-dimensional
embedding similar to PCA [6]. A generalization to non-linear PCA is shown in [77], how-
ever depending on the chosen non-linearity it can happen that a simple scaling cause the
weights to work in the linear regime of the activation function which resembles the linear
PCA approach [14].

Instead of imposing any constraints on the representations, Vincent et al. [162] propose
the concept of Denoising Auto-Encoders. In this framework, the Auto-Encoder tries to
recover the original signal from its noise corrupted input. The goal is to learn a robust
representation of the signal that contains the required information to reconstruct the clean
input while those components that describe the noise are discarded. As already pointed
out above, in [162] the authors also emphasize that they leverage this strategy as a training
criterion to obtain meaningful representations rather than aiming to learn a state-of-the-art
Denoising algorithm.

Another approach that encourages robustness of the hidden representations to small
changes in the input is presented by Rifai et al. [133], which proposes to add a penalty term
to the learning objective comprised of the Frobenius norm of the Jacobian of the encoder
output. For example assuming a Sigmoid activation function, a small value of the Jacobian
is achieved if the activation output lies in the saturated part of the non-linearity. Thus, the
penalty enforces the encoder mapping to be contractive.

In the following, the focus is on another option, that is imposing a sparsity constraint
on the hidden representation to extract the underlying structure of the data. As already
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discussed in the related work, this strategy immediately reminds one of the analysis and
synthesis framework with the encoder weights representing a co-sparse analysis operator.
In contrast to the penalty based learning approach outlined in the previous chapters, I aim
to explore the suitability of the Sparse Auto-Encoder framework to regularize the analysis
operator learning problem. The following contributions are addressed in this chapter:

¢ Sparsity in the hidden representation can be achieved in different ways. Among
others, rescaling the encoder weights or employing adequate activation functions are
the simplest approaches to achieve sparsity. However, they do not permit to interpret
the encoder as a co-sparse analysis model. For this reason, the encoder matrix is
subjected to the same product of spheres manifold as done in the preceding chapters.
Furthermore, a suitable activation function together with a simple ¢;-sparsity penalty
is utilized to learn the Auto-Encoder mapping. This setting will enforce the encoder
to follow the co-sparse analysis model, whose performance and reliability can be
straightforwardly compared to the standard learning approach.

¢ In order to exclude trivial solutions like rank-1 operators, different penalty functions
have been proposed regrading the conventional operator learning paradigm. The
Auto-Encoder architecture naturally prevents the learning algorithm to reach such
a solution, since identical hidden representations do not allow to recover the origi-
nal input signals. Other than additional penalties, a norm constraint on the decoder
weights is used to control the condition number of the encoder matrix. The subse-
quent numerical experiments indicate that the separable encoder matrix estimated
via the proposed Sparse Auto-Encoder framework is on par with the conventionally
learned models.

7.1. Co-sparse Auto-Encoder

In the literature, several approaches are proposed to realize an Auto-Encoder that exhibits
a sparse hidden representation. An investigation of the principles that encourage common
Auto-Encoder architectures like DAEs and CAEs to learn sparse representations can be
found in [4]. One straightforward approach to achieve sparsity in the hidden representa-
tion is to use an appropriate activation function. In [119] the authors use the Rectified Lin-
ear Unit (ReLU) to obtain sparsity in the hidden layer. Other choices include the Sigmoid
function o(a;;) = 1/(1 + exp(—a;;)) or the SoftPlus function ¢(a;;) = In(1 + exp(a;;))
that both asymptotically converge to zero for negative pre-activation coefficients.

The introduction of an additional penalty function is another commonly used technique
in the Sparse Auto-Encoder literature. Nair & Hinton [99] propose to use a cross entropy
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penalty that measures the deviation between the average activation h7 of binary hidden
units and a predefined probability p of being active. The average activation associated
to the j-th weight vector 6; is calculated via h7 = %ZiTzl hij. The applied penalty reads
g(h) = — Z}‘:l [plog(hj) + (1 — p)log(1 — hj)]. Lee et al. [83] follow a similar idea, how-
ever they use the standard squared />-loss to measure the error between the average activa-
tion of the binary hidden units and the predetermined target activation p. A close variant
of the cross entropy penalty is the Kullback-Leibler (KL) divergence which is investigated
in [102, 4] and which is given by:

g(h) = i [P108<;>+(1—P>108<11:5j>]- (7.3)

j=1 i

The KL penalty has its minimum at zero for p = h7 and can be added to the Auto-Encoder
objective stated in Eq. (7.1) together with a hyperparameter y that weights the reconstruc-
tion error against the sparsity penalty. The authors in [4] point out the close relationship
of Eq. (7.3) to the classical sparse coding problem with ¢;-penalty. For p — 0 and small,
positive values of hj, as it is the case in the aforementioned scenarios, the weighted KL
term reduces to —y Z;-‘Zl log(1— hj) ~ ’)/Z;-‘:lhi- = q||hll; = X ||hil1- Note that due
to the binary features, a small value of &; directly implies a sparse activation of the hidden
unit. However, depending on the employed activation function and the encoding bias, the
encoder function does not necessarily follow the co-sparse analysis model, i.e., the weight
vector does not need to be orthogonal to the signal to achieve zero activation. That is why
for a Sparse Auto-Encoder to follow the co-sparse analysis model, we restrict ourselves to
the following constraint

—0 i —9Ts —
]’li’]' =0 iff {/'li’]' = 9] S = 0 (7.4)
hij #0 otherwise.
Thus, the following sections consider a Sparse Auto-Encoder of the form
N . 1 & 2
O carg DN o ; (@4 felsi,©¢) +ba) = sil3 + vl fels:,O) ], (7.5)

that utilizes an activation function o (-) that fulfills the requirements stated in (7.4) like the
Tanh, Softsign, Bent-Identity, or even Linear activation function.
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7.1.1. Model Constraints

While encouraging a sparse hidden representation of the input signals, the objective func-
tion proposed in Eq. (7.5) can still be prone to deliver meaningless or trivial results. On
the one hand, sparsity can be easily achieved if the norm of some of the weights in @ is
shrinked to zero, while the remaining weights are used to reconstruct the signals. On the
other hand, the linear regime of the activation function around zero will cause a scaling of
the encoder and decoder weights. If we consider a constant ¢ > 1 and scale the encoding
weights via é\e = %@e, the reconstruction error is not changed as long as we use the de-
coding weights B4 = cO4. However, the scaling of the encoder will reduce the sparsity
if it is measured in terms of the /;-norm as in Eq. (7.5). Thus, to learn meaningful repre-
sentations in the hidden layer, we have to further restrict the set of admissible solutions.
More precisely, to account for the scaling ambiguity, the norm of the encoder weights is
restricted to |0l = 1forj = 1,...,k, ie., the encoder weight matrix is an element of
OB(n,k).

Restricting the norm of the weights in a neural network is a common strategy to avoid
overfitting. Typically, an additional regularizer that penalizes the ¢, norm of each weight
vector is added to the cost function to prevent the network from fitting the sampling error.
This particular method is referred to as weight decay, which has been shown to improve
the generalization ability [69]. Instead of penalizing the norm, another promising approach
consists of constraining the maximum norm of the weights. Whenever the norm exceeds
some predefined constant, the weight vector is projected back to fulfill the requirements.
Srivastava et al. [150] point out, that while this method is not only very well suited for
their Dropout training scheme, it typically improves the performance of stochastic gradi-
ent descent training in general. Also the fixed unit norm weight constraint as proposed in
this work has been utilized in the literature. Huang et al. [70] propose the projection based
weight normalization (PBWN) scheme. In their work, they show that the additional unit
norm constraint improves the classification accuracy of standard deep learning architec-
tures. They attribute this behavior to the reduction of the ill-conditioning of the Hessian-
matrix caused by the scaling ambiguity introduced above. A normalization scheme that
decouples the lengths of the weight vectors from their directions is presented in [146]. This
behavior is achieved via a reparameterization into a uniform, normalized weight vector
together with an additional scaling parameter. Hence, the optimization is performed with
respect to both the weight vector and its corresponding scaling parameter. Due to the repa-
rameterization, the authors observe an improved conditioning of the optimization problem
and a speed up of the SGD convergence.

Another related and commonly used normalization approach is Batch Normalization
(BN) [73]. In BN, the preactivation is normalized based on the mean and the standard
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deviation of the mini-batch output. Although BN became a very popular regularization
method in the recent literature about deep learning, it has the drawback of being data
dependent. That is, the statistics have to be evaluated for each mini-batch separately, which
constitutes an extra overhead in computation [69].

7.1.2. Implicit Condition Number Regularization

After motivating the choice of the nonlinear activation function as well as the unit norm
constraint on the encoder matrix to avoid the scaling ambiguity problem, in the following
the impact of the decoder is considered. Although the issue that a vanishing norm of the
weights trivially implies sparsity in the hidden representation has been resolved by the
unit norm constraint, the structure of the encoder weights still pose another problem. Re-
call the discussion from Section 4.2.2 that minimum sparsity with regard to the /;-measure
is achieved if we simply repeat the encoder weight 87 that minimizes |6, S||;. Now, in or-
der to allow the Auto-Encoder to reconstruct the signals, the weights of the optimal rank-1
encoder matrix have to be slightly changed such that rk(©,) = n. Since many activation
functions are nearly linear for small values around the origin, the Pseudo-Inverse of the
encoder serves as a suitable decoder matrix in this case, i.e., @q = @Z . However, this
causes the norm of @4 to explode. This observation, in turn, motivates to also restrict the
norm of the decoder to implicitly regularize the condition number of the encoder. In the
remainder of this section, this strategy will be discussed in detail.

In the following, the data fidelity term that measures the deviation between the original
samples and their approximations based on the hidden representations is considered. Let
S € R"™T denote a set of normalized samples with rk(S) = n. Furthermore, the decoder
bias bq is set to zero, and the activation function is chosen to be the identity map, i.e.,
o(a;;) = a;j in order to better illustrate the effect. In this scenario, the loss simply reads

1 T
Lo(S) ==} [640. si —sil3. (7.6)
i=1

Clearly, the optimal solution is achieved for ©4 = Of. Let @, = ULV " denote the SVD
of the encoder weights, by construction we have
T n 1 n
det(@} O)-det(@.0. ) =] []e? =1 (7.7)

1
=19 =1

where 0; denotes the i-th singular value. Note that ®. is assumed to be a full rank matrix
with normalized columns, i.e., we have 0, > 0 and }} ; (71-2 = k. Consequently, for ®. to
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approach a rank-1 matrix composed of nearly identical filters, the product of the singular
values becomes smaller, while the reciprocal becomes bigger. From the relation between
the arithmetic and the geometric mean, which reads /[ [a; < % Y a;, it follows that

n ol 1 1 1 112
[15=u) 5 =ulledlk (7.8)

110 i

Thus, although the norm of the encoder matrix remains constant, the structure of the en-
coder weights will directly influence the norm of the decoder matrix, i.e., the Frobenius
norm will increase.

Based on this observation, the opposite strategy of constraining the norm of the decoder
to affect the behavior of the singular values and eventually, to implicitly control the con-
dition number of the sought encoder matrix @, is pursued. To this end, the norm of the
individual decoder weights is constrained to be smaller than some predefined constant c,
ie., ||04ill2 <c, i=1,...,k where 84; denotes the i-th row of the decoder matrix @4. The
impact of the additional constraint is empirically verified based on the problem introduced
in (7.6). That is, we are given the set § € R**100%0 of normalized samples and a random
initialization of ®, € R*¥**100 with each column normalized to unit length. Furthermore,
the decoder matrix is initialized as @4 = @Z € R10x49 where all rows, whose norm ex-
ceeds the constant ¢, are rescaled to fulfill the constraint. With both initializations at hand,
the loss in Eq. (7.6) is minimized via SGD.

Figure 7.1a illustrates the progress in the loss for different choices of ¢ € {2.0,1.0,0.75,0.5}.
That is, a different amount of rows has to be rescaled to fulfill the constraint right from
the beginning. During optimization, the algorithm tries to reach a solution that offers both
a minimal reconstruction error and compliance to the constraints. At two distinct error
levels, the condition number of the encoder matrix is given. Clearly, a lower value of ¢
forces the encoder to exhibit well-balanced singular values, which finally results in a low

condition number. The condition number of the initialization @S’) reads 18.73, while the
maximum norm of the rows in 930) is 2.33.

In view of these results, the final objective to learn a separable analysis operator within a
Co-sparse Auto-Encoder framework reads

1 T
o carg _min 7Y |84 filsi ) +ba) ~ sl + 71fe(s, O
st. O € OB(1,k), Oc=1(BOe1,Bc2), |0aill2<c, i=1,...,k (7.9)
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Figure 7.1.: Implicit Condition number regularization. (a) The progress of the loss (logarithmic scale) for dif-
ferent choices of the max-norm constant c is depicted. At two distinct error levels, the Condition number of
the encoder matrix is given. (b) Condition number of the encoder matrix, while minimizing problem (7.9) that
includes a sparsity penalty.

In order to demonstrate the usefulness of the learned encoder matrix, some numerical
experiments are conducted in the subsequent part of this chapter.

7.2. Numerical Experiments

The aim of the proposed learning framework is to find a representation of the input signals
that is useful for some particular task. In order to capture structural information of the
samples, the encoder follows the co-sparse analysis model assumption. As a consequence,
the suitability of the learned mapping is assessed by means of the same numerical experi-
ments as conducted in the preceding chapters. For this purpose, T = 10000 centered and
normalized patches from the images shown in Figure 4.3 are used for training. The patch
size reads 7 x 7, while the encoders {@e,j}]z:y with ©,; € R7*1% map the input signals

S; to the (vectorized) hidden representation h; € R!%. The non-linearity is chosen to be
the Softsign function that reads o(a;;) = #AU‘ To optimize the objective, the Adadelta
method [178] is used. This SGD variant utilizes a running average over gradients that is
simultaneously used to determine a suitable step. In all experiments the decoder bias is
initialized as a random vector, the batch size is set to |b(t)| = 50, and the sparsity penalty
weight reads y = 0.05.

For this setting, the impact of the max-norm constraint imposed on the decoder is eval-
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Figure 7.2.: Performance of the separable analysis operator that has been learned in the SAE framework.

uated first. As can be seen from Figure 7.1b, the additional max-norm constraint prevents
the condition number of the encoder matrix @, = (O, 1,O¢2) to explode. Analogous
to the results shown in Figure 7.1a, the regularization can be adjusted depending on the
parameter c. In the following, a fixed value of ¢ = 0.75 is used throughout all experiments.

7.2.1. Inverse Problem Regularization

In the first experiment, the learned encoder matrix is used in a sparsity prior to regularize
the solution of the same inverse problems as already introduced in Section 5.3. That is, on
the one hand, clean signals have to be restored from noisy observations while on the other
hand, the original signals have to inferred from undersampled measurements. For com-
parison, two additional separable analysis operators that have been learned on the same
training signals but with the learning framework outlined in Chapter 4 are considered.
While in the first case, Eq. (4.2) is used as the sparsity measure, resulting in the operator
SEP Log, the second operator SEP L1 is learned based on the standard ¢;-norm to enable a
better comparison to the proposed SAE setting.

Figures 7.2a and 7.2b show the performance of all three approaches. Regarding both
problems, the reconstruction quality based on the SAE-learned operator is on par to the
recovery achieved with the operators that have been learned with the conventional SGD
framework.
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Figure 7.3.: Estimated KL Divergence in the Co-sparse Auto-Encoder setup

7.2.2. Model Generalization

Besides a task oriented evaluation, the reliability of the learned model is also assessed by
means of its generalization behavior. For this purpose, the same experimental setup as in-
troduced in Section 5.3.3 is considered. Accordingly, the general ability of the model to cap-
ture the distribution of the signals is measured via estimating the divergence between the
distributions of the true training signals and signals that have been projected into the or-
thogonal complement of randomly selected weight vectors from @.. Figures 7.3a and 7.3b
illustrate the results for clean and noisy filters. Analogous to the experiments presented in
Section 5.3.3, the Rank-BGP algorithm is used to generate the second set of samples. This
set can be considered as the closest approximation to the original signals, while at the same
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Table 7.1.: Denoising performance evaluated on the test images from Figure 4.7.

T PWC Barbara Boats Lena Peppers Avg.

SPLos 025 (i | osn | omor | s | osi0 | o
SEPLL (025 | e | G | oms | osir | osss | osas
SAE 035 Ui | g2 | o | osas | oss | oss
SAE(lnear) | 035 | 0ot | g | omes | os2s | osw | os

time, all the samples from the set exhibit a co-sparse representation with respect to the gen-
erative operator. The estimated divergence between both signal distributions is shown in
Figures 7.3c and 7.3d.

Interestingly, in the second scenario, where the signals are projected into a UoS that
is closest to the original training signals, the divergence is almost identical to the results
achieved with the conventional learning approach. Thus, the encoder adequately adapts
to the signals at hand even within the Auto-Encoder framework. In contrast to this, the
estimated divergence of the SAE approach, plotted in Figures 7.3a and 7.3b, significantly
deviates from the other results.

7.2.3. Image Denoising

Finally, the encoder matrix as well as the operators are plugged into the sparsity regular-
izer of the denoising problem as given in Eq. (4.21). Again, the performance is evaluated by
means of the PSNR ans MSSIM achieved on the five different test images from Figure 4.7.
For the conventional SGD learning method, the robustness to different initializations has
been already verified (cf. Section 4.4.3). The same strategy is applied to the SAE-based
setting. To that end, ten operators whose learning process starts from different random
initializations of {@e,]-}]zzl and @4 are determined. Afterwards, the average denoising per-
formance achieved with these ten different operators as regularizers is considered. For
comparison, the same experiment but with a linear activation function is performed. Ta-
ble 7.1 summarizes the results. The parameter T that weights the sparsity prior against the
data fidelity term in Eq. (4.21), is set to the value that gives the best results with respect to
applied analysis operator.

First of all, while being equivalent with respect to the PSNR, it can be seen that in terms
of MSSIM, the encoder learned with the Softsign function slightly outperforms the one
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7.2. Numerical Experiments

Figure 7.4.: Additional set of Test Images. From left to right: Butterfly, Girl, Parrot, Parthenon, Raccoon.

Table 7.2.: Denoising performance evaluated on 5 additional test images, shown in Figure 7.4.

T Butterfly Girl Parrot | Parthenon| Raccoon Avg.
SPLog | 025 | (L | oz | osie | osn | oses | osor
SPLL 025 | R0l | 7o | ose | os13 | o7z | osos
SaE 1035 | (R | oz | o | oms | omr | ose

SAE(near) | 035 | 0 | (o3 | osw | os6 | o7es | 08os

obtained with a linear activation function. Referring to the same MSSIM measure, the
SAE-learned separable operator achieves a quality that is equivalent to the performance
of conventionally learned operators. However, the average PSNR performance is slightly
worse. On closer inspection, the SAE-learned model performs better on the synthetically
generated PWC image, while the recovery of highly textured images like Barbara is less
accurate compared to the conventional learning approach.

In order to exclude a potential overfitting of the weighting parameter 7 to the image
set at hand, the same operators as well as the same algorithm with exactly the same pa-
rameter set is applied to another collection of images depicted in Figure 7.4. The recovery
performance is presented in Table 7.2. Again, the same behavior can be observed. While
in terms of PSNR, the linear and Softsign activation function perform equivalently, while
being slightly worse compared to the other two approaches, the SAE-learned model is
competitive with regard to the MSSIM quality.
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7.3. Discussion

In this chapter, the applicability of the Sparse Auto-Encoder framework to regularize the
co-sparse analysis operator learning problem is explored. First, in order to fulfill the anal-
ysis model assumption, the activation function must meet certain requirements. Secondly,
trivial solutions due to the scaling ambiguity have to be excluded by means of a weight
norm constraint which is in accordance to the conventional learning approach. In the pre-
vious chapters it is confirmed that the condition number of the operator plays a crucial
role with regard to its suitability to serve as a reliable signal prior. For that reason, another
max-norm penalty imposed on the decoder matrix is proposed. Numerical experiments
confirm that this strategy actually prevents the condition number to grow unbounded.

The evaluation with respect to the generalization as well as the performance in inverse
problem regularization emphasizes that the SAE framework indeed allows to learn useful
analysis operators. This is confirmed by the results presented in Figures 7.2a and 7.2b as
well as based on the model generalization shown in Figures 7.3c and 7.3d. The average im-
age denoising results are on par, especially in terms of the MSSIM measure. However, the
results presented in Figures 7.3a and 7.3b illustrate that an explicit penalty on the singular
values is beneficial with regard to the generalization of the model. Recall that in this sce-
nario, the chosen indices to identify the orthogonal complement are equally distributed.
Consequently, the learned operator in the SAE framework exhibits filters which provide
responses that are less sparse compared to operators learned with the conventional ap-
proach. However, this is not surprising since the original goal of the Auto-Encoder is to
find representations that allow to reconstruct the signals. Interestingly, the results con-
cerning the inverse problems and the divergence shown in Figures 7.3c and 7.3d indicate
that the filters still provide enough representational power to ensure a reconstruction per-
formance which is close to the one obtained with operators that are learned with explicit
penalty functions.

To conclude, solely based on the reconstruction performance there is no clear evidence
which one of the approaches performs better. At least the estimated divergence with regard
to a randomly selected co-support indicates that the penalty based learning algorithm pro-
vides filters whose contributions to the sparse representation are more balanced. Also the
straightforward extension to the blind scenario renders the concept introduced in the pre-
vious chapters a more versatile approach. On that basis, the conventional learning scheme
is slightly more suited to determine a reliable co-sparse analysis model.

However, the SAE-based learning approach also offers some other benefits. On the one
hand, it was assumed that the Auto-Encoder framework is originally intended to learn sig-
nal representations in an unsupervised way. The proposed architecture essentially helps
to improve the interpretability of the hidden representation, due to the compliance to the
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co-sparse model assumption. During learning, the co-sparse representation could be also
readily used for other purposes like object classification and detection. This approach is
in line with a task-driven perspective, where one is primarily interested in a reasonable
solution for the task at hand, rather than perfect signal reconstruction. Nevertheless, the
interpretability is still guaranteed by the model assumption. On the other hand, utilizing
a max-norm constraint to control the condition number of the encoder matrix avoids the
search for appropriate weighting parameters for additionally required penalty functions.
This might be especially useful for deeper architectures where different layers of represen-
tations are stacked together. Note that multilayer or hierarchical sparse data models have
been already discussed in literature as mentioned in Section 3.1.4.

127






Chapter 8.
Conclusion

In this thesis, the problem of learning co-sparse analysis operators with separable struc-
tures is explored. The benefit of the additional structural constraint is twofold. On the
one hand, the lower number of free parameters significantly reduces the complexity of the
learning problem. On the other hand, separable filters can be efficiently applied to the
signal at hand, which renders the presented approach especially useful for multidimen-
sional data. Regarding the multidimensional scenario, conventional learning algorithms
that are based on a vectorization approach are usually hardly applicable due to the expo-
nential increase in parameters. These observations motivate to analyze structured sparse
data models, and with that the presented work.

It has been shown that the proposed Stochastic Gradient Descent on manifolds is very
well suited to learn separable analysis operators. The new variable step size selection leads
to a fast convergence while being robust to parameter changes as well. Furthermore, the
used penalty functions allow to flexibly control the properties of the operator. Both the-
oretical and numerical experiments confirmed the reduced sample complexity in favor of
the separable approach. In order to evaluate the suitability of the model, a divergence cri-
terion was used that allows to assess the adaptability to the underlying signal distribution
in a task independent manner. It was shown that this measure correlates with the achieved
performance of the model in inverse problem regularization.

The applicability of the proposed approach has been further improved by formulating
the objective as a blind learning problem. In this scenario, the model is learned from noise
corrupted and/or undersampled measurements. This strategy is particularly beneficial if
clean training signals are costly to acquire or even not available. The adaptation of the
model to the simultaneously reconstructed signal further improves the recovery quality.
Furthermore, various noise distributions are easy to handle by simply exchanging the data
term, which further emphasizes the universal applicability of the proposed approach.

Although being a general data model, in this thesis, applications in image processing
are addressed. In particular the reconstruction of image data from noise corrupted and
undersampled measurements is examined. The numerical results indicate that the sepa-
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rable structure does not impair the regularization performance of the analysis model in
a great extent. Regarding multidimensional signals, the separable model allows to eas-
ily incorporate the structural information from all different signal dimensions. Based on
a Compressed Sensing problem, where volumetric Magnetic Resonance images are recov-
ered from severely undersampled measurements, the benefit compared to the conventional
approach of processing each slice individually is clearly demonstrated.

Last but not least, the concept of co-sparse signal representations has been connected to
deep learning approaches, more specifically Sparse Auto-Encoders. To that end, the nec-
essary ingredients and modifications in order to enable the layer-wise mapping to follow
the co-sparse analysis model are investigated. In addition to the required constraints on
the encoder matrix that prevent the optimization algorithm to obtain trivial solutions, the
structure of the decoder matrix is utilized in order to learn a meaningful model. It is shown
that separable co-sparse analysis operators can be successfully learned within the Sparse
Auto-Encoder framework. This conclusion has been derived by means of several signal
recovery experiments as well as based on the model generalization behavior. Besides the
achieved interpretability of the representations, the presented approach without additional
regularization penalties might be especially useful for hierarchical sparse representations,
which constitute one of the key factors that made deep learning successful.
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A.1. Derivation of the Euclidean Gradient

Let R**" be endowed with the scalar product (U, V') = tr(U V'), and let f : R*" — R be
a differential function. Denoting H € R¥*" as an arbitrary direction, the following relation
between the directional derivative and the gradient of the function holds

)

S| F(X+tH) = (H,Vf(X)) = tr (HTVf(X)), (A1)

t=0

where Vf(X) € R denotes the Euclidean gradient with respect to the matrix X.

Sparsity Measure

First, to derive the gradient of the sparsity measure in Eq. (4.2) with respect to each operator
separately, the unfolding introduced in Eq. (2.3) is utilized. Given the tensor data S €
RI1*E2% %Iy the 1-mode unfolding §; € R"*{Ili#v 1) is used to derive the gradient with
respect to §21. Let e; denote the canonical basis vector of appropriate size with its 1 entry
at the j-th position, with ¢ = 5 g(l 7 and 2y = (2 ® - - - ® 2y_1) the sparsity measure
reads

g(21)=)_) c-log (1—|—v (e 2,512 e;) )
i

By computing the directional derivative of g(§2;) in the direction of H as

J 2v - eT.QlSl.Quel

— (£, +tH) c- e HS192 e;

ot t:Og 2; 1+v-(e ]-Tthl!?J e)? u
( 2v - e]T(hSlQEe,'

H - c -Si102jeef |, (A2
ZZ:; 1+V'(6jTQ1S1QEei)2 1 u616]> (A.2)
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we have the gradient of g(2;) with respect to the Euclidean metric as

2v - eyﬂlslﬂgei T T
veleh) = ZZC 1+v- (e 215192/ €)? reje; 2uSy (A.3)
t] ]

The Euclidean gradient with respect to the remaining operators {£2;}, can be derived
analogously.

Regarding the blind learning approach, the gradient of the sparsity measure with respect
to the signal s € RY is required. Although being implemented in a much more efficient
way, the gradient V3¢(£2y,..., 2y, s) := Vg(s) can be easily derived by considering the
single matrix £2 € R2*N that represents the application of all filters to all overlapping
patches in s. Hence, the gradient reads

2v-el N ~
V'S5 e, (A4)

Vg(s):;C'Hv-(eiTﬁs)f

Full Rank Constraint

The function introduced in Section 4.2.2 is applied to each operator separately, which sig-
nificantly simplifies the derivation of the gradient. The penalty for the matrix £2 € RF*"
with k > n is of the form

r(2) = —logdet(2' N).

Again, the directional derivative of r(§2) in the direction H reads

S| e+ =-—u(@T o)\ H (2 ) H 2)
t=0
=-tu(2R(R'2)'H"), (A.5)

which eventually results in the gradient of r(§2) given as

Vr(2) = -202(02"'2)"! (A.6)
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Coherence Penalty

Analogous to the rank penalty, the coherence penalty given in (4.7) is also applied individ-
ually to each operator. With the penalty function

n(2) = —1 Y log(1— (w/ w)?),
7

at hand, the directional derivative is computed as

ToOT
o) e £202' ¢
= h(2+tH) = J (tr(e] HR ¢e)) +tr(e] 2H ¢))
ot |,_, ; 1-— (e]TQQTel)Z ( J J )

e NNTe
j T T T
= tr((eje; +ee )2H'). (A7)
iz l- (e].T.Q.QTel)2 ( At J )

The gradient of /(§2) with respect to the Euclidean metric reads

e]TQQTel
1-— (e]TQQTeZ)2

. (e]-e,T + ele;—)ﬂ. (A.8)

Vh(R) =Y
i
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Gradient of the Data Fidelity Terms

Lastly, the blind reconstruction approach that includes different data terms requires access
to the image gradient Vd(s,y) := Vd(s). In the following, the Euclidean gradients with
regard to the fidelity terms that are used to account for the various noise distributions are
given.

Additive White Gaussian Noise: Given the function daggitive(s,y) = ||y — ®s|3, the
gradient reads

Vd(s) :% &' (Bs—y). (A.9)

Impulsive Noise: In the presence of Salt-and-Pepper noise, the following data term it used
1 1

dimpulsive(8,Y) = 31 Li fog(5c) 108 (1+c- (e (Ps—y))?). Hence, the gradient reads

1 2c-e/ (Ps—y)

_ 1t . BTe
Vd(s) = Mglog(l%—c) 1+c-(e;—(45s—y))2 D e;. (A.10)

Multiplicative Noise: The data term that accounts for multiplicative noise reads
doat(w,y) = 345 (ef u+ey-exp(—e/u)), where the objective is optimized with
respect to the log-image, i.e., e/ u = log(e, s). Consequently, the Euclidean gradient is

given as

Vd(u) = % Z (1 —ely- exp(—e?u)) - €j. (A.11)
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