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Abstract: To improve sustainability of agriculture, high yielding crop varieties with improved
water use efficiency (WUE) are needed. Despite the feasibility of assessing WUE using different
measurement techniques, breeding for WUE and high yield is a major challenge. Factors influencing
the trait under field conditions are complex, including different scenarios of water availability.
Plants with C3 photosynthesis are able to moderately increase WUE by restricting transpiration,
resulting in higher intrinsic WUE (iWUE) at the leaf level. However, reduced CO2 uptake negatively
influences photosynthesis and possibly growth and yield as well. The negative correlation of growth
and WUE could be partly disconnected in model plant species with implications for crops. In this
paper, we discuss recent insights obtained for Arabidopsis thaliana (L.) and the potential to translate
the findings to C3 and C4 crops. Our data on Zea mays (L.) lines subjected to progressive drought
show that there is potential for improvements in WUE of the maize line B73 at the whole plant
level (WUEplant). However, changes in iWUE of B73 and Arabidopsis reduced the assimilation rate
relatively more in maize. The trade-off observed in the C4 crop possibly limits the effectiveness of
approaches aimed at improving iWUE but not necessarily efforts to improve WUEplant.
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1. Introduction

Green Revolution technologies and significant expansion in the use of land, water, and other
natural resources for agricultural purposes have led to a tripling in agricultural production between
1960 and 2015 [1]. Despite this success, the high costs to the natural environment that accompany
elevated productivity and changes in the food supply chain threaten the sustainability of food
production [1]. Global food security is further challenged by climate change, with a predicted increase
in frequency of droughts [2,3]. Globally, agriculture accounts for at least 70% of withdrawals from
freshwater resources, with large effects on ecosystems [4,5]. Despite this high water deployment,
major yield losses due to water deficits are experienced in crops [6]. At the same time, global population
growth increases the demand for food, feed, and fuel, which intensifies the pressure to improve water
use efficiency (WUE) of crops [7,8]. While better crop and water management practices provide
an immediate opportunity to increase crop water productivity, breeding for superior varieties can
achieve a medium- and long-term increase [9,10].
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Physiologically, water use efficiency can be defined at different scales [11–13]. At the plot level,
it represents the ratio of grain or biomass yield to water received or evapotranspired. At the single
plant level (WUEplant), it is the ratio of biomass to transpiration. The increase in biomass and amount
of water transpired over time can be assessed gravimetrically [14]. However, this is destructive and
laborious on a long-term basis, especially regarding large crops like maize and sorghum. Therefore,
analyses of intrinsic water use efficiency (iWUE) and carbon isotope discrimination (∆13C) are used
as surrogates when evaluating WUE [11,15]. The iWUE is assessed at the leaf level as the ratio
of net CO2 assimilation (An) to stomatal conductance (gs) and can be measured noninvasively
with portable gas exchange equipment [16]. As transpiration rate (E) is influenced not only by
gs but also by the leaf-to-air vapor pressure deficit (VPD) of the air [17], iWUE usually differs
from transpiration efficiency (An/E). In addition, VPD affects the stomatal aperture and therefore
gs [17,18]. Extrapolation of gas exchange data from single-leaf to whole plant is error-prone due to
differences in photosynthesis and transpiration among leaves [19]. Prediction of long-term biomass
accumulation and water consumption, WUEplant, based on iWUE is even more uncertain given the
possible differences in VPD and additional physiological processes such as dark respiration and
photorespiration influencing the resulting biomass increase [19]. Despite these limitations, analysis
of iWUE provides a convenient measure for the water efficiency of carbon capture. The throughput
of iWUE analyses is quite low as only single, time-consuming measurements per plant can be taken,
which impedes large-scale phenotyping.

Analysis of stable carbon isotope discrimination (∆13C) offers a suitable alternative in C3 plants
by providing a read-out for transpiration efficiency integrated over time. Discrimination of the heavier
isotope is mainly caused by differences in diffusion rates of the isotopes and enzymatic discrimination
during carboxylation reactions [20]. Therefore, ∆13C has been used as an indirect trait to select cultivars
with improved WUE [21–24]. By combining the analysis with oxygen isotope enrichment ∆18O,
an estimation for transpiration rate [25–27], contributions of water loss, and CO2 assimilation on iWUE
could be disentangled [28–30]. Stable isotope compositions of leaves or grains, however, represent
integrated measures of many processes over a period of plant growth and therefore correlation
with iWUE can be limited [31]. In C4 plants, CO2 prefixation, for instance, by phosphoenolpyruvat
carboxylase and bundle sheath leakiness restrict the responsiveness of ∆13C to changes in WUE [20,32]
and make the relationship between ∆13C, gs and WUE in C4 species less predictable compared to C3

plants [13].
Improving WUE of crops is considered beneficial in very dry climates and in very severe and

terminal drought conditions, while growth maintenance traits are advantageous under milder drought
conditions [33–35]. For crops experiencing water deficit early in their development, traits found
to be positive for improving WUE are negative for yield [36]. Enhanced water uptake through
investments in the root system can result in reduced plant size and water expenditure for growth
maintenance can result in increased drought stress experiences if plants are growing at very low soil
water availability [33,34,36,37]. Hence, water-conserving traits as imposed by higher WUE would be
beneficial, provided growth and yield are not negatively affected.

2. Disconnecting Improved WUE and Growth Trade-Offs

Being a ratio, iWUE can be improved by reducing gs per amount of CO2 assimilated or
by enhancing the assimilation rate at a given gs. Both cases result in lowered intercellular CO2

concentration (Ci) and consequently in an increased stomatal CO2 gradient (Ca − Ci, with external
CO2 concentration Ca), which is directly proportional to the ratio of An to gs according to Fick’s
law applied to carbon assimilation in leaves, An = gs (Ca − Ci) [16,38,39]. Increased iWUE has been
observed in several C3 species under water deficit conditions when plants reduce gs [11,15,40–42],
although a decrease in gs caused by drought was found to be overridden by heat stress [43]. However,
closing stomatal pores to reduce transpiration often results in a reduction of An [41,44]. Lowering gs

impinges on Ci and unless this change in Ci is counteracted by an elevated mesophyll conductance
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(gm), the CO2 concentration at the site of Rubisco-dependent carboxylation (Cc, CO2 concentration
in chloroplasts) will be reduced [39,45,46]. A reduction of Cc affects the carboxylation efficiency of
Rubisco and favors photorespiration [47,48]. Sustaining net photosynthesis under these conditions
might require a higher electron transfer rate (ETR) and/or reduced nonphotochemical quenching to
support enhanced carboxylation by Rubisco for compensation of enhanced photorespiration [49–52].
There are reports that water deficit results in increased gm; however, in most analyses, no change or
a reduced gm was observed under drought [44,53–58].

Gains in WUE are often associated with growth trade-offs [59,60]. As pointed out by Blum [61],
crops with high CO2 assimilation and high biomass accumulation per unit land area require high
stomatal conductance. This is supported by the observation of a constant WUE on the field level over
a broad range of yields [8]. Nevertheless, there might be ways to achieve elevated WUE and high
photosynthesis, namely by exploring CO2 concentrating mechanisms, increased gm, and increased
CO2 specificity of Rubisco [10].

Interestingly, several reports of C3 plants have shown enhanced iWUE without the expected
negative impact on An or growth [11,15,62–64], as postulated by plant physiologists [4]. In these
studies with transgenic tomato and Arabidopsis plants, gs was moderately reduced by enhancing the
biosynthesis or the responsiveness to the phytohormone abscisic acid (ABA) or by reducing the size and
density of leaf stomata [15,63–65]. Plants overexpressing distinct ABA receptors—termed ABA-Binding
Regulatory Component (RCAR)/Pyrabactin Resistance 1-(like) (PYR1/PYL)—caused increases of 40%
in iWUE, integrated WUE based on ∆13C of biomass and cellulose fractions, and WUEplant [15]. Growth
rates and biomass accumulation were not significantly different from wild type [15]. Hence, the ABA
receptor lines revealed higher water productivity, i.e., WUE per time, both under well-watered growth
conditions and under water deficit. Net carbon assimilation was comparable to the wild type, however,
at lowered Ci levels and without detectable changes in gm. This report and other studies show that
improving WUE is possible without growth trade-offs. The underlying physiological mechanisms are
largely unknown and might involve the root system, as grafting experiments have suggested [15], and
enzymes of the C4 metabolism, such as PEP carboxylase and its regulatory protein kinase PEPC kinase,
which are both upregulated in C3 plants at low CO2 availability [65].

C4 and C3 plants differ in WUE [66–68]. At a given gs, C4 plants show higher net carbon
assimilation rates and higher WUE [66]. The CO2 concentrating mechanism involving PEP carboxylase
results in saturation of C4 photosynthesis at relatively low Ci [69,70]; therefore, lower gs and a steeper
CO2 gradient (Ca − Ci) are realized in C4 plants compared to C3 plants [66,70]. C3 plants have Ci

values in the range of 300 ± 60 µmol mol−1, while the Ci of the C4 plants is around 150 ± 40 µmol
mol−1 [71–73] at ambient CO2 of 370–400 µmol mol−1 in well-watered conditions. Under optimal
growth conditions, maize and sorghum with C4 metabolism therefore have higher yields per water
transpired than the C3 crop wheat [9].

3. Comparative Analysis of Maize and Arabidopsis

The question arises as to whether it is possible to transfer the finding of improved iWUE
without having the negative impact on growth to crops. The data on gs-modified tomato plants
suggests that it might work for C3 plants [63], but the lower Ci level of C4 plants could preclude such
an accomplishment in maize.

To explore the relevance of these findings of uncoupling WUE improvement and yield decreases
for the C4 crop maize (Zea mays L.), we analyzed gas exchange data obtained from the maize inbred
line B73 and compared them to findings in Arabidopsis. In addition, we analyzed the WUEplant of
maize lines subjected to drought. B73 is an inbred line that is commonly used in breeding programs,
but is known to be drought-sensitive [74]. B73 was included in a progressive drought stress experiment
adapted from Yang et al. [15] in which biomass production with a given amount of water was analyzed
and WUEplant was determined. In this experiment, B73 showed the lowest WUEplant (Figure 1a)
compared to the maize inbred Mo17 and lines derived from an introgression library described by
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Gresset et al. [75]. In Figure 1, data are shown of the recurrent parent (RP) of the introgression library as
well as two introgression lines differing from RP by reduced (IL-05) or elevated kernel ∆13C (IL-81) [75].
A significantly reduced WUEplant compared with the recurrent parent for IL-05 shows the potential of
genetic improvement for this trait. However, the largest difference in WUEplant was observed between
B73 and Mo17, with an increase of ~27% (Figure 1a). Our data is in accordance with a previous drought
stress experiment conducted on seedlings of maize inbred lines, where Mo17 ranked top in yield per
plant [76]. The results indicate genetic variation in the efficiencies of water use among maize lines and
a potential for genetic improvement of the WUEplant for B73.
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Figure 1. Water use efficiency and water consumption of maize lines under progressive drought.
(a) Water use efficiency (WUEplant) and (b) whole plant water consumption were assessed over the
course of a progressive drought stress experiment adapted from Reference [15]. In the greenhouse,
23 maize genotypes were grown in a randomized complete block design, including the two maize
inbred lines Mo17 and B73 and introgression lines described by Gresset et al. [75]. The maize inbred
line RP and introgression lines derived therefrom (IL-81, IL-05) were kindly provided KWS Saat SE
(Einbeck, Germany). Inbred lines B73 and Mo17 were kindly provided by the Chair of Genetics,
Technical University of Munich, Freising, Germany. Prior to the experiment, maize seedlings were
established in small pots in the growth chamber (16 h day at 25 ◦C, 650 µE m−2 s−1 photosynthetically
active radiation [PAR], 8 h night at 20 ◦C; 75% relative humidity [RH]) for two weeks after germination
under well-watered conditions. Plants of RP harvested at this age had an aboveground dry matter
of 0.62 g ± 0.27 g, and plants of an introgression line derived from IL-05 weighed 0.62 g ± 0.26 g.
The influence of initial biomass on the biomass at the end of the experiment (28.74 g ± 2.22 g and
25.5 g ± 2.39 g, respectively) was approximately 2%. The plants were transplanted into 10 L pots
containing 8 L water-saturated soil (85% v/v soil water content; CL ED73, Einheitserdewerke Patzer,
Germany, particle diameter <15 mm). A cover of polyethylene foil was used to prevent evaporation,
and the progressive drought experiment was initiated by no further watering. The experiment was
conducted in the greenhouse (Gewächshauslaborzentrum Dürnast in Freising, Germany) in Oct–Nov
2017 at full sunlight plus supplemental light at 25–33 ◦C, 19–20 ◦C day/night, 400 µmol m−2 s−1 PAR,
40% RH. Soil water content declined progressively during the course of the experiment until the plants
used all available water. The water consumed was determined gravimetrically (means ± SE of n ≥ 4
biological replicates). WUEplant was calculated as final aboveground biomass per water consumed
(means ± SE of n ≥ 4 biological replicates). The increase in WUE in Mo17 compared to B73 is indicated
with an arrow. Student’s paired t-tests of the maize lines were adjusted for multiple comparisons with
the Bonferroni method and lines, which did not differ significantly (p < 0.01), and are marked with
common letters.
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Maize lines showed a difference in water consumption over the five weeks of the experiment
(ANOVA, p < 0.001, Figure 1b). However, differences in water consumption cannot explain the
differences observed in WUEplant and towards the end of the progressive drought, all genotypes
included in the experiment had consumed an equal amount of water (5.8 kg ± 0.02 kg, mean ± SE).

The way in which the change in soil water content (SWC) during the progressive drought
experiment affected photosynthesis and iWUE was analyzed by gas exchange measurements. The An

of leaves was fairly constant for maize B73 plants exposed to high SWC levels up to 40%, then the An

dropped steadily approaching zero at approximately 20% SWC (Figure 2a). In parallel, gs changed
moderately between 70% and 40% SWC and declined to zero at 20% SWC (Figure 2b). The Ci values
were in the range of 80–100 µmol CO2 per mol between 40–60% SWC. They were somewhat higher in
plants from water-saturated soil and were lowered to a minimum of approximately 40 µmol mol−1 at
25% SWC (Figure 2c). Further reduction of the water content in the soil resulted in the steep rise of
Ci values, indicating collapsing photosynthesis at very low gs of plants experiencing severe drought
stress. As the ambient CO2 concentration (Ca) surrounding the leaf was maintained at 400 µmol mol−1,
the CO2 gradient (Ca – Ci) at the stomatal pores increased from approximately 250 µmol mol−1

(Ci of 150 µmol mol−1) at soil water saturation to approximately 360 µmol mol−1 (Ci of 40 µmol mol−1)
at the brink of terminal drought. The SWC also influenced iWUE (Figure 2d). Values increased from
well-watered conditions to a maximum at 25% SWC, with a plateau around 170 µmol CO2 per mol
H2O between 40–60% SWC. Under mild water deficit between 40–60% SWC, there was little variation
in An, and gs and, consequently, the iWUE values.

The results for maize B73 differed from data gained by similar analyses of Arabidopsis plants
(Figure 3a–d; Reference [15]). The An remained constant between 30–70% SWC, which might be caused
by light-limited, but not water-limited, photosynthesis. However, gs and Ci steadily decreased with
decreasing SWC and, concomitantly, the iWUE increased by twofold from approximately 35 to 70 µmol
mol−1 at 30% SWC. The CO2 gradient at stomata increased more than twofold from approximately
80 µmol mol−1 at soil water saturation to approximately 170 µmol mol−1 at 30%. The data were
obtained at light conditions that did not saturate photosynthesis, but analysis at saturating light
confirmed the capacity of Arabidopsis to lower Ci and maintain photosynthetic rates unchanged [15].
The improvement in iWUE by limiting gs without major trade-offs in An (Figure 3) was observed for
the C3 plants Arabidopsis [15,24] and tomato [63]. A twofold enhancement in iWUE has been reported
in different C3 species under drought [11,15,77–79]. Besides, considerable differences in WUE in the
absence of drought stress have been observed among natural variants [80,81].
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Figure 2. Changes in intrinsic water use efficiency of maize exposed to a progressive depletion of soil
water content. (a) Net carbon assimilation rate (An), (b) stomatal conductance (gs), (c) intercellular CO2

concentration (Ci), and (d) intrinsic WUE (iWUE; defined as the ratio of An to gs) of B73 plants
at different soil water content. Gas exchange measurements using the GFS-3000 gas exchange
system (Heinz, Walz GmbH, Effeltrich, Germany) were conducted at a photon flux density of
1000 µmol m−2 s−1, an external CO2 (Ca) of 400 µmol mol−1 CO2, and vapor pressure deficit (VPD)
of 26 Pa kPa−1 ± 2 Pa kPa−1. The first fully expanded leaf counting from the top of the plants was
clamped into an 8 cm2 cuvette for measurements, and plants were subjected to progressive drought
as detailed in Figure 1. Plants were grown in soil (Classic Profi Substrate Einheitserde Werkverband)
as described in Reference [15]. The experiment was conducted in a greenhouse in the Department of
Botany in Freising, Germany from June to August. The maize plants were exposed to full sunlight,
at an average temperature of 27 ◦C, and an average relative humidity of 55% in the experimental
period. (a–d) five biological replicates and each data point represents single measurements with five
technical replicates.
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Figure 3. Changes in intrinsic water use efficiency of Arabidopsis exposed to a progressive depletion
of soil water content (SWC). (a) Net carbon assimilation rate (An), (b) stomatal conductance (gs),
(c) CO2 concentration in intercellular space (Ci) and (d) intrinsic WUE (iWUE) of whole leaf rosettes
of Arabidopsis accession Columbia (Col-0; kindly provided by the Nottingham Arabidopsis Stock
Center, Nottingham, UK). The measurements were performed with the device mentioned in Figure 2 at
a photon flux density of 150 µmol m−2 s−1, an ambient CO2 (Ca) level of 420 µmol mol−1 and vapor
pressure deficit of 13 ± 1 Pa kPa−1. The plants were grown under short day conditions (8 h light/16 h
dark photoperiod) at a photon flux density of 150 µmol m−2 s−1 and 22 ◦C and 50% relative humidity
in the day time and 17 ◦C and 60% relative humidity at night. Data presented in (a–d) consists of three
biological replicates and single measurements for each data point consist of 10 technical replicates.
Data and the correlation between SWC and water potentials are presented in Reference [15].

Comparing the results from the analysis of maize and Arabidopsis, the potential for increasing
iWUE in maize was more limited relative to Arabidopsis. Between 30–60% SWC—reflecting mainly
mild water deficit [15]—Arabidopsis responded to the mounting water deficit by a 70% increase in
iWUE, while maize showed an increase of less than 20%. Based on the iWUE values obtained at
water-saturated soil, the iWUE increase in Arabidopsis and maize was approximately 100% and 40%,
respectively, but water logging might be an issue at these high SWC levels. Between 30% and 60% SWC,
the stomatal CO2 gradient of maize increased from 300 to 350 µmol mol−1, which corresponded to a
17% increase, whereas in Arabidopsis, the gradient was enhanced by 70%, from 100 to 170 µmol mol−1.

To sum up, mild drought stress (30–60% SWC) had a minor effect on An, gs, and iWUE in maize.
However, in Arabidopsis, gs and iWUE changed dynamically, while An was little affected. A reduction
in SWC from 35% to 25% led to a rapid decline of An in maize.
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These results are in accordance with data from C3 and C4 grass species [77,78] but only partly
meet the behavior expected for C3 and C4 plants based on a meta study [82] where decreases in gs

and An under mild drought stress were more pronounced in C3 relative to C4 species. Comparing
the An and gs curves of maize B73 and Arabidopsis Col-0 (Figure 2a,b and Figure 3a,b), a reduction
in stomatal conductance led to an immediate reduction in assimilation rate An for maize but not for
Arabidopsis. However, not all C3 plants show the same flat An/gs curve as Arabidopsis [83,84] and
therefore the data cannot be translated to C3 crops in general. A previous study on maize lines found
differences in gs without trade-offs in An at well-watered conditions [85], and the author noted that Ci

values did not become low enough to limit An as it might in high VPD conditions [85] or as it was
observed here under drought.

Still, the limitations in improving WUE in maize B73 could be unique to this inbred line, and
comparable data from other maize lines is needed before implications can be expanded to maize in
general. Additionally, results from maize cannot represent C4 photosynthesis in general because this
pathway evolved independently in 19 angiosperm families [67]. However, other C4 grass species have
also shown a slight increase in iWUE with progressive depletion of water followed by a steep decline
under very severe drought conditions driven by a pronounced decline in An [77,78]. The loss of An

in the C4 grass species under drought could partly be attributed to stomatal limitations, while other
limitations dominate, including photoinhibition, limitations of CO2 fixation due to desiccation, and
decreases in gm [73,77].

It has also been shown that for subspecies of Alloteropsis semialata (R.Br.) Hitchc., An is massively
reduced in C4 subspecies under drought in such a way that C4 photosynthesis totally loses its advantage
over photosynthesis of the C3 subspecies [73]. This conclusion cannot be drawn from our experiments.
However, the observation that C3 plants become more water use efficient during mild and moderate
drought while C4 plants show more stable WUE [86] is in accordance with our data on iWUE.

The less potent improvement in WUE observed in maize under drought might be attributable
to a limitation in increasing the CO2 gradient (Ca − Ci) further. Maize, like other C4 species,
possesses a CO2 concentrating mechanism utilizing precarboxylation of CO2 by PEP carboxylase,
which results in Ci values approximately half compared to C3 species [87]. Such a mechanism results
in advantages in An and WUE under non- or mild-water-deficit conditions [9,66,69,73,77,78]. However,
these advantages cannot be maintained when the drought gets severe, especially for maize and C4

grass species [66,69,73,77,78,86], which is in agreement with our observation for maize B73 at SWC
below 27%. The differences can also translate to the field level, where maize has been found to be more
sensitive to drought than wheat (C3), with yield reductions of 39.3% compared to 20.6%, respectively,
at approximately 40% water reduction [88]. Maize and sorghum are equally or even more sensitive to
water stress than many C3 plants [69,73].

Our results show a potential to increase WUE in maize. The inbred lines displayed a broad
variation in WUEplant under progressive drought, and iWUE—measured under the same conditions
for the least efficient line at whole plant level—still showed a moderate increase in iWUE with
declining SWC. However, the potential of WUE improvement is limited in this C4 plant compared to
Arabidopsis. This limitation is caused by a very high iWUE and low Ci under well-watered conditions,
which provides a minor degree of freedom for further lowering the Ci. The C3 plant is more responsive
concerning increases in iWUE under mild water deficit compared to maize. Hence, screening C3

plants for enhanced iWUE in combination with efficient growth is a suitable approach to identify
crops with improved WUEplant. This approach is less promising for C4 plants. Establishing higher
Ca − Ci gradients in C3 crops at a given soil water potential, e.g., by biotechnical engineering using
ABA receptors, has the potential to increase iWUE at the cost of minor reductions in An. Moderate
reductions in An do not necessarily influence yield. In barley, improvements in iWUE and WUEplant
have been associated with trade-offs in carbon assimilation but without deleterious effects on plant
growth or seed yield [89].
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4. Conclusions

Our results indicate that the improvement in iWUE without trade-offs in carbon assimilation,
as observed for tomato and Arabidopsis [15,63], is less promising for maize and possibly other C4

plants. The large CO2 gradient established by the CO2-concentrating mechanisms of C4 plants limits
the potential for further increases in iWUE compared to C3 plants. However, our data show major
differences in WUEplant for maize inbred lines and therefore potential for genetic improvement of
this trait.

A recent meta-analysis on WUE revealed a tenfold bias in favor of C3 plant studies compared
to analyses on C4 plants [86]. We therefore see an urgent need for more studies on C4 crops to shed
light on the mechanisms of WUE under water deficit in these important but drought-sensitive crops.
Cereals like rice, maize, and wheat contribute largely to global food security [90]; therefore, breeding
for and generating water-efficient and high yielding crops are an urgent task to meet future challenges.
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