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Zusammenfassung

Diese Arbeit untersucht drei verschiedene Anwendungen von Informationstheorie und graphis-
chen Modellen im Bereich des maschinelles Lernen. Im ersten Teil entwickeln wir allge-
meine informationstheoretisch Kostenfunktion fiir Markov Aggregation. Dann zeigen wir,
wie man diese Kostenfunktion fiir Co-Clustering anwenden kann. Wir schalgen auch eine
heuristische Optimierung mit niedriger Komplexitat vor. Die Stéarken und die Schwéchen
dieser Kostenfunktion werden in unterschiedlichen Szenarien und fiir unterschiedliche Pa-
rameterwerte auf synthetischen und realen Datenséatzen illustriert.

Im zweiten Teil benutzen wir Factor Graphen und den Max-Product Algorithmus als
mathematische Werkzeuge, um einen neuen Clustering-Algorithmus, Extended Affinity
Propagation zu entwickeln. Extended Affinity Propagation ist sowohl in der Lage, globale
Struckturen zu entdecken, als auch wertvolle lokale Information iiber individuelle Cluster
herauszufinden. Wir beleuchten diese Charakteristika von Extended Affinity Propagation
sowohl fiir synthetische als auch fiir reale Datensétze.

Der Schwerpunkt des dritten Teils ist eine genaue Untersuchung eines neuen Ansatzes:
Trainieren der tiefer neuronaler Netzen mit dem Information Bottleneck Prinzip. Wir
zeigen zwei wichtige Probleme auf, die entstehen, wenn man das Information Bottleneck
Functional fiir diesen Zweck verwendet: Berechenbarkeit/Optimierbarkeit und das Ver-
sagen die gewiinschte Eigenschaften anzutrainieren. Wir schlagen verschiedene Methoden
vor, um diese Probleme zu verhindern. Wir diskutieren kurz, welche Auswirkungen unsere
Resultate auf die Analyse von Feed-Forward tiefen neuronalen Netzen mit dem Information
Bottleneck Prinzip haben.
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Abstract

This thesis explores three different applications of tools from information theory and graph-
ical models to problems in machine learning. In the first part we develop a generalized
information-theoretic cost function for Markov aggregation. We then show how to trans-
form this parameterized cost function for application to co-clustering. We also propose a
low complexity optimization heuristic for the cost function. The strengths and weaknesses
of the generalized cost function in different scenarios and for different parameter values
are illustrated using synthetic datasets and real world datasets.

In the second part we employ the mathematical framework of factor graphs and Max-
Product algorithm to propose a new clustering algorithm, Extended Affinity Propagation.
Extended Affinity Propagation is not only effective in discovering the global structure in
data but also provides useful local information about individual clusters. We highlight
these features of Extended Affinity Propagation for both synthetic datasets and real world
datasets.

The third part of this thesis focuses on a deeper investigation of a recently proposed idea
to train deep neural networks using the Information Bottleneck principle. We highlight two
major issues when using the Information Bottleneck functional for training feed-forward
deep neural networks: computability /optimizability and failure to instill desired properties.
We propose various ways to repair the Information Bottleneck functional to remedy these
issues. We also briefly highlight the impact of our investigation on the analysis of feed-
forward deep neural networks using the Information Bottleneck principle.



Introduction

Machine learning techniques have enjoyed significant attention in recent years. They are
being used to replace classical signal processing methods in various supervised learning
scenarios, such as classification and regression tasks. This is especially true for the prob-
lems where the input signal comes from a natural source, e.g., natural images or text, in
contrast to the problems where the input signal may have artificially imposed structure,
e.g., channel codes. Besides, unsupervised learning techniques are now being widely used
for exploratory data analysis. Exploratory data analysis can, for example, be used to ana-
lyze large amounts of customer data to assist in making business decisions, or it can serve
as a preprocessing step before applying supervised learning techniques.

Information theory and graphical models have played a key role in the development of
telecommunication technologies. They have provided the right tools to suitably formulate
and analyze problems to gain deeper understanding. They have also given guidelines
for how to develop practical algorithms and systems, satisfying different requirements
such as performance guarantees and complexity constraints. Inspired by this success for
communication problems, researchers are investigating whether these tools can be used to
gain deeper understanding and insights into machine learning problems and algorithms.
This thesis contributes to this direction. We consider three different problems.

The first task is concerned with information-theoretic Markov aggregation and co-
clustering. Markov aggregation is the process of approximating a Markov chain over a
large state space with a Markov chain over a much smaller state space. Markov aggrega-
tion finds its applications in, e.g., computation chemistry [1], natural language processing,
and the simulation and control of large systems. Information-theoretic cost functions mo-
tivated by different properties, e.g., predictability and lumpability, were introduced for
deterministic Markov aggregation in [2-5]. In Chap. 2, we start by defining the two oper-
ational goals that we want to achieve for Markov aggregation: Markovity and preserving
temporal dependence. We then devise a parameterized information-theoretic cost function
to achieve these operational goals. We discuss how this new cost function, for different val-



2 Chapter 1. Introduction

ues of a parameter 3, subsumes the cost functions for Markov aggregation proposed in [2]
and [4] as well as the Information Bottleneck problem, hence giving rise to a generalized
information-theoretic Markov aggregation framework. We also propose an optimization
heuristic and verify our insights into the cost function by applying it to synthetic Markov
chains and to a natural language processing example. Parts of the work in Chap. 2 are
published in [6].

In Chap. 3 we transform the Markov aggregation framework from Chap. 2 and apply it
to the co-clustering problem. The parameterized cost function obtained this way includes
various key information-theoretic cost functions for co-clustering as special cases, in partic-
ular the cost functions in [7-11]. This allows us to study these cost functions jointly using
a common framework. We discuss insights gained via this joint framework by applying the
new cost function to both synthetic and real world datasets. Parts of the work in Chap. 3
have been published in [12,13].

The second part of this thesis proposes a new pairwise similarities based clustering algo-
rithm. Cluster analysis has widespread applications in industry as a tool for exploratory
data analysis. Due to the wide range of applications, many famous clustering algorithms
have been proposed over the past decades [14-16]. These techniques are, however, suc-
cessful either in recognizing the global structure of data, i.e., meaningful clusters, or in
providing a useful local view, e.g., local representatives, but not both. In Chap. 4 we use
Affinity Propagation [16] as our starting point. We develop a new algorithm, Extended
Affinity Propagation, by exploiting the underlying framework of factor graphs and mes-
sage passing algorithms. We discuss how this algorithm is not only effective in recognizing
global structure but also provides useful local information about individual clusters. We
illustrate these features on synthetic and real world datasets. Parts of the work in Chap. 4
are published in [17].

In the last part of this thesis, we investigate the use of the information bottleneck
principle to train feed-forward deep neural networks for classification tasks. Deep neural
networks attained excellent performance for various complex classification tasks such as
image segmentation and text classification [18]. The authors of [19] recently proposed
using the Information Bottleneck functional as a cost function for training, where the
information-theoretic compression term should enforce regularization. In Chap. 5 we point
out two problems with Information Bottleneck functional as a cost function for training
deep neural networks. The first issue relates to the computability and optimizability of the
cost function whereas the second issue relates to a failure to instill desirable properties in
a deep neural network based classifier. We discuss various remedies that, at least partly,
alleviate these issues. We relate our findings to representation learning and regularization
of latent representations, a domain of future research that we believe holds great promise.
In [20], the authors discuss how the Information Bottleneck functional can be used for
experimental analysis of deep neural networks. We briefly review how the discussion in
this chapter sheds new light in this respect. Most of the work in Chap. 5 has been published
in [21].



Part 1.

Markov Aggregation and
Co-Clustering






Information-Theoretic Cost
Functions for Markov Aggregation

In this chapter we develop an information-theoretic framework for Markov aggregation.

Markov aggregation is the task of representing a Markov chain with a large alphabet
by a Markov chain with a smaller alphabet, thus reducing model complexity while at the
same time retaining the computationally and analytically desirable Markov property. Such
a model reduction is necessary if the original Markov chain is defined on an alphabet that
is too large to admit simulation, estimating model parameters from data, or control (in the
case of Markov decision processes). These situations occur often in computational chem-
istry (where aggregation is called coarse-graining, e.g., [1]), natural language processing,
and the simulation and control of large systems (giving rise to the notion of bisimulation,
e.g., [22]). Information-theoretic cost functions were proposed for Markov aggregation
in [2-5]. Specifically, the authors of [2] proposed a cost function linked to the predictability
of the aggregated Markov chain. Such an approach is justified if the original model is nearly
completely decomposable, i.e., if there is a partition of the alphabet such that transitions
within each element of the partition occur quickly and randomly, while transitions between
elements of the partition occur only rarely. Building on this work, the authors of [4] pro-
posed a cost function linked to lumpability, i.e., to the phenomenon where a function of a
Markov chain is Markov. Such an approach is justified whenever there are groups of states
with similar probabilistic properties (in a well-defined sense). Both [2] and [4] focus on
deterministic aggregations, i.e., every state of the original alphabet is mapped to exactly
one state of the reduced alphabet. Moreover, the authors of both references arrive at their
cost functions by lifting the aggregated Markov chain to the original alphabet. The au-
thors of [3] present an information-theoretic cost function for stochastic aggregations, but
they do not justify their choice by an operational characterization (such as predictability
or lumpability). Instead, they arrive at their cost function via the composite of the original
and the aggregated Markov chain.
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In this chapter, we extend the works [2-5] as follows: We follow a two-step approach to
Markov aggregation (Sec. 2.3): Observing the original Markov chain through a (stochastic
or deterministic) channel, and then approximating this (typically non-Markov) projected
process via a Markov chain. This approach has already been taken by [4], albeit only for
deterministic aggregations. Using this two-step approach, we propose a parameterized,
information-theoretic cost function for Markov aggregation (Sec. 2.4). We arrive at this
cost function neither via lifting nor via the composite model, but via requiring specific oper-
ational qualities of the projected process: It should be close to a Markov chain and it should
retain the temporal dependence structure of the original Markov chain. We show that our
cost function contains the cost functions of [2-5] as special cases (Sec. 2.4.4). This allows
to jointly investigate these previously proposed cost functions for better understanding.
We then propose a simple, low-complexity heuristic to minimize our generalized cost func-
tion for deterministic aggregations along with an effective initialization procedure based
on graduated optimization (Sec. 2.5). The initialization procedure enables us to avoid bad
local optima for a range of parameter values. We illustrate the proposed cost function
and heuristic for various examples (Sec. 2.6). Specifically, we investigate the aggregation
of synthetic quasi-lumpable and nearly completely decomposable Markov chains, and we
look at a toy example from natural language processing. In this work we do not deal with
the important issue of choosing/determining the appropriate number of aggregated states.
We assume that we know the desired number of aggregated states as this allows us to focus
purely on the influence of the cost function independent of the heuristics used to determine
the number of aggregated states.

The research presented in this chapter was conducted in close collaboration with Dr.
Bernhard Geiger and Clemens Blochl.
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2.1. Preliminaries

In this chapter we deal exclusively with first-order stationary, irreducible and aperiodic
Markov chains defined over finite alphabets unless otherwise stated, which we will refer
to simply as Markov chains. Lemma. 2.1 relates Markovity of a stochastic process to it’s
entropy rate, where entropy rate of a process is denoted by H(-).

Lemma 2.1 ( [23, Prop. 3]). Let Z be a stationary stochastic process. Then Z is a Markov

H(-) denotes the entropy rate of a process. If Z is a stationary process on Z (not neces-
sarily Markov), then one can approximate this process by a Markov chain Z ~ Mar(Z,P):

Lemma 2.2 ( [24, Cor. 10.4]). Let Z be a stationary process on Z and let P specify the
transition probability matrix from Z,_; to Z,. Define

P* £ arg min D(Z||Z’) (2.1a)
]P/

where the optimization is over Markov chains Z' ~ Mar(Z,P’). It turns out that
P =P (2.1b)

Furthermore, for Z ~ Mar(Z,P*), we have

D(ZI|Z) = H(2:\2:) — H(Z) (2.10)

where D(:||-) denotes the Kullback-Leibler Divergence Rate (KLDR) between two pro-
cesses.

By Lemma 2.1 we know that right-hand side of (2.1c) is 0 iff Z is Markov. Hence, one
can view D(Z||Z) as a measure of how close a process Z is to a Markov chain.

2.2. Related Work

Information-theoretic cost functions for Markov aggregation had been proposed in, e.g., [2—
4]. More generally, aggregations of dynamical systems that are not necessarily Markov were
discussed in [25]. In contrast to [2-4], the cost functions proposed by [25] are task-specific
in the sense that they aim to predict an observation based on Z; from the aggregated
process.

The topic of lumpability is closely related to Markov aggregation, i.e., the question
whether a non-injective function of a Markov chain is Markov. Initial research in this
area was performed by Kemeny and Snell (strong and weak lumpability, [26, Sec. 6.3-
6.4]), Rosenblatt (lumpability of continuous-valued Markov processes [27]), and Buchholz
(exact lumpability [28]). Gurvits and Ledoux discovered linear-algebraic conditions on
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Z ~ Mar(Z,P)

% ’ N
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7 <------------ - Z ~ Mar(Z,Q)

Figure 2.1.: Illustration of the aggregation problem: A stationary first-order Markov chain
Z is given. We are interested in finding a conditional distribution Pz, and an
aggregation of Z, i.e., a Markov chain Z on Z. The conditional distribution
Pg‘ ,, defines a stationary process Z, a noisy observation of Z. Z might not be

Markov of any order, but can be approximated by a Markov chain Z.

the transition probability matrix of {Z;: t = 1,2,...} and the aggregation function for
weak and strong lumpability [29]. An equivalent characterization of strong lumpability in
information-theoretic terms has been presented by Geiger and Temmel and Pfante et al.
in [23] and [30], respectively. This information-theoretic characterization was used in a
cost function for Markov aggregation in [4].

2.3. Problem Statement

Definition 2.1 (Markov Aggregation Problem). Consider a Markov process Z ~ Mar(Z,P),
a set Z, and a cost function C(+,-). The Markov aggregation problem concerns finding a
minimizer of

min C(Z,Z) (2.2)

where the optimization is over Markov chains Z on Z.

We address the Markov aggregation problem using the following two-step approach
depicted in Fig 2.1.

(S1) The first step is to use a (possibly stochastic) mapping from Z to Z. Applying this
mapping to Z on a symbol by symbol basis leads to a stationary process Z (i.e.,
Z; = Pz ,(Z;)) which may not be Markov (in fact, Z is a hidden Markov process).

We call Z the projected process.

(S2) In the second step we look for the optimal approximation Z of Z in the sense of
Lemma 2.2. Z is the final aggregated Markov chain.
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This two-step approach is a popular method of Markov aggregation and has been employed
in various works including [2,4,5]. In these references, the mapping in the first step was
restricted to be deterministic whereas in this work we allow it to be stochastic. In other
words, while these references looked for a partition of Z induced by a function ¢g: Z — Z,
in this work we permit stochastic mappings induced by a conditional distribution Pz 4.
We represent Pz, as a row stochastic matrix W, where W(z,%z) = Pz ,(2|2).

With this notation, the following corollary to Lemma 2.2 solves the second of the two
steps in our approach, i.e., it characterizes the optimal approximation Z of the projected
process Z for a specific W:

Corollary 2.3. Let Z ~ Mar(Z,P) and let W denote a conditional distribution from Z
to Z. Let Z be the hidden Markov process obtained by observing Z through W, and let
Z ~ Mar(Z,Q) be its best Markov approximation in the sense of minimizing D(Z||Z) (cf.
Lemma 2.2). Then,

Q = UPW (2.3)

where U := diag(v) " 'W” diag(p) with 7 := pTW being the marginal distribution of Z.

Note that this corollary extends [4, Lem. 3| from deterministic to stochastic mappings.
With the second step solved, the two-step approach to the optimization problem stated
in Definition 2.1 boils down to optimizing over the mapping W. We can thus restate the
Markov aggregation problem as follows:

Definition 2.2 (Markov Aggregation Problem Restated). Consider a Markov process
Z ~ Mar(Z,P), a set Z, and a cost function C(-,-). Let

C(Z, W) =C(Z,Z) (2.4)

where Z is the best Markov approximation of Z in the sense of Lemma 2.2. The Markov
aggregation problem using the two-step approach concerns finding a minimizer of

mvivn C(Z,W) (2.5)

where the optimization is over stochastic mappings from Z to Z. If the optimization is
restricted over deterministic mappings g, we abuse notation and write C(Z, g) for the cost.

Note that Definition 2.1 and Definition 2.2 are not equivalent in general, i.e., the optimal
aggregated chain Z obtained by solving (2.2) is not the same as the optimal aggregated
chain Z obtained by solving (2.5). The two formulations only become equivalent when we
restrict the optimization in (2.2) to aggregated Markov chains which can be obtained as a
result of the aforementioned two-step approach.

2.4. Cost Function

The next step in defining the problem is to specify the cost function C(Z, W). Our design
of the cost function is guided by the following two operational goals:
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(O1) We want W to make the projected process Z as Markov as possible. The closer Z is
to a Markov process, the smaller the approximation loss.

(O2) The temporal dependence structure of a Markov process is one of the most important
characteristic of a Markov process. As a second objective, we want to preserve the
temporal dependence structure of the original Markov process Z after aggregation,

i.e., Z should exhibit similar coarse-grained temporal structure as observed in Z.

In the following, we will first explore suitable cost functions for the two goals separately.
Subsequently we will combine them to obtain our final cost function, from which we can
trade-off between the two goals as we desire.

2.4.1. Markov Aggregation via Lumpability

To achieve the first goal (O1), as a consequence of Lemma 2.2, we can use the following
cost function

C(Z,Z) = D(Z||Z). (2.6)

From Lemma 2.2 we know that minw D(Z||Z) = 0 if the projected process Z is already a
Markov process. D(Z||Z) can be thought of as an information-theoretic metric that spec-
ifies how close Z is to being a Markov chain. Closeness between Z and its approximation
Z implies that data obtained by simulating the aggregated model Z differs not too much
from data obtained by simulating the original model in conjunction with the stochastic
mapping, i.c., data obtained from Z.

The cost function (2.6) suffers from two shortcomings. First, since (2.6) focuses only
on satisfying O1 (i.e., the loss approximation loss incurred in the second step of our ap-
proach), it lead to solutions that are trivial in the sense of O2: If W makes the conditional
distribution independent of the conditioning event, i.e., P7| , = Pz, or W =1a” for some

probability vector c, then Z is independent and identically distributed (i.i.d.) and hence
Markov. Indeed, in this case H(Z) = H(Z,|Z,) = H(Z), and D(Z||Z) = 0. Hence the
cost function needs to be appropriately regularized to use it for Markov aggregation. The
second shortcoming is that D(Z||Z) requires, by (2.1c), the computation of the entropy
rate H(Z) of a hidden Markov process. This problem is inherently difficult [31], and ana-
lytic expressions do not exist even for simple cases (cf. [32]). In the following, we discuss
two relaxations of the Markov aggregation problem for C(Z,Z) = D(Z||Z).
The authors of [4] addressed the second shortcoming by relaxing the cost via

CL(Z,W) = H(Z.|Z)) — H(Z,|Z,) > D(Z||Z). (2.7)

This cost does not require computing H (Z) and is linked to the phenomenon of lumpability,
namely that a function of a Markov chain has the Markov property [23, Thm. 9]: If
CL(Z,W) =0, then Z is a Markov chain.

We now show that, at least for deterministic mappings, this cost function also has a
justification in approximate probabilistic bisimulations, or e-bisimulations. More specifi-
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cally, the authors of [33] discussed bisimilarity of Markov processes and showed that two
Markov chains are bisimilar if one can be described as a function of the other (see discus-
sion after [33, Def. 5.2]). In other words, if Z ~ Mar(Z,P) is a Markov chain, g: Z — Z a
surjective function, and Z ~ Mar(Z, Q) satisfies Z, = g(Z},), then Z and Z are bisimilar.
Since this is equivalent to lumpability, bisimilarity is implied by C.(Z, g) = 0.

Extending this line of reasoning, we justify the cost function Cr(Z,g) in terms of e-
bisimulation of pairs of Markov chains, even if Z is not lumpable w.r.t. g. To this end, we
adapt [34, Def. 4 & 5] for our purposes.

Definition 2.3 (e-Bisimulation). Consider two finite Markov chains Z ~ Mar(Z,P) and
Z ~ Mar(Z,Q) and assume w.l.o.g. that Z and Z are disjoint. We say that Z and Z are
e-bisimilar if there exists a relation R. C (ZU Z) x (£ U Z) such that for all z € Z and
y € Z for which (z,2) € R., and all T C Z U Z we have

Z IED(Z’Z/) > Z QE%E’ — € (28>

2’ €R(T)NZ y€ETNZ
where R.(T) :={ss € ZUZ: s, € T, (s1,52) € R}

The definitions of e-bisimulations are typically given for labeled [34, Def. 4 & 5] or
controlled [22, Def. 4.4] Markov processes with general alphabets and thus contain more
restrictive conditions than our Definition 2.3. Our definition is equivalent if the alphabets
are finite and if the set of labels is empty.

Proposition 2.4. Let Z ~ Mar(Z,P) and the surjective function g: Z — Z be given. Let
Q be as in Corollary 2.3, where W(z,%) iff 7 = g(z). Let Z ~ Mar(Z,Q). Then, Z and Z

are e-bisimilar with

e= |R@C:(Zg) (2.9)
21in g,

Proof: See Appendix A.1. [
Despite this justification, the cost function Cr(Z, W) is mainly of theoretical interest.
The reason is that Cp(Z, W) inherits the trivial solutions of D(Z||Z) in terms of O2, for
example W = 1a” leads to Cp(Z, W) = 0, regardless of & and P. Even restricting W
to be a deterministic partition, as considered in [4], does not solve this problem: the
combinatorial search over all partitions may have its global optimum at a partition that
makes Z close to an i.i.d. process. Indeed, if the cardinality of Z is not constrained (or if

g is not required to be surjective), then the constant function g yields Cp(Z, g) = 0.

2.4.2. Markov Aggregation via Predictability

Temporal dependence in a process Z can be captured by redundancy rate R(Z), which for a
Markov chain Z equals R(Z) = I(Z1; Z). Since 7, is a (stochastic) mapping of Z,,, any two
samples Z, and Z,,, ¢ < n are conditionally independent given the sequence Z;'. Therefore,
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the temporal dependence in Z can only originate from the temporal dependence in Z.
Preserving the temporal dependence structure of Z is thus captured well by maximizing
the redundancy rate of Z, i.e., by choosing a minimizer of

min R(Z) — R(Z). (2.10)

However, the cost function suffers from two shortcomings. First, we need to compute
H(Z) to evaluate the cost function. Secondly, while (2.10) is a suitable loss for the first
step, it ignores the temporal information loss incurred by the second step in our method.
Hence for the overall goal of Markov aggregation it needs to be adapted. We know that
both Z and Z share the conditional distribution Q that defines the dependence of the
current symbol and the previous symbol for both the projected process and the aggregated
process. For Z, the current symbol may further depend on the past beyond the last symbol,
but Z ignores the rest of the temporal information contained in Z. Hence the following

cost function captures the temporal dependence in Z, the aggregated process.

We know by the data processing inequality:

R(Z) — R(Z) < Cp(Z,W). (2.12)

Definition (2.11) doesn’t require computation of H(Z) and hence it resolves both short-
comings of (2.10). This cost function has been proposed earlier in [2] for determinis-
tic partitions. Since Cp(Z, W) aims to preserve temporal dependence it does not suf-
fer from the same trivial solutions as Cp(Z, W) and D(Z||Z): A constant function g
or a soft partition W = 1la’ render Z; and Z, independent, hence the cost is maxi-
mized at Cp(Z, W) = I(Z;;Z5). Unfortunately, as was shown in [4, Thm. 1], we have
Cp(Z, W) > CL(Z,W), i.e., (2.11) does not capture the Markovity of Z as well as the
relaxation proposed by [4].

The goal of preserving temporal dependence information is justified in scenarios in which
Z is quasi-static, i.e., runs on different time scales: The process Z moves quickly and ran-
domly within a group of states, but moves only slowly from one group of states to another.
Since all other information contained in Z is not necessarily preserved by minimizing
Cp(Z,W), this cost function can also lead to undesired solutions. For example, if Z is
ii.d. and does not contain any temporal dependence structure, then [(Z;; Z;) = 0 and
Cp(Z,W) = 0 for every mapping W.

A third objective for optimization may be worth mentioning. The information contained
in Z splits into a part describing its temporal dependence structure (measured by its
redundancy rate I(Z;; Zs)) and a part describing the new information generated in each
time step (measured by its entropy rate H(Z)). Indeed, we have

H(X) = H(Z) + I(Z1; Z»). (2.13)
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While in this work we focus on preserving Markovity via Cr(Z, W) and the temporal de-
pendence structure via Cp(Z, W), the authors of [23] investigated conditions such that the
newly generated information (measured by H(Z)) is preserved. Developing a Markov ag-
gregation framework that balances three different goals — Markovity, temporal dependence,
generated information — is the object of future work.

2.4.3. Regularized Markov Aggregation Cost Function

In order to achieve both goals mentioned earlier we can combine the cost functions above
to get the following regularized Markov aggregation cost function:

min (1 9)D(Z||Z) + B(R(Z) - R(Z)) (2.14)

=:05(Z,W)

where 0 < § < 1. We know that KLDR is a non-negative quantity and the data processing
inequality ensures that R(Z) > R(Z), hence the cost (2.14) is non-negative. We moreover
have the following property

Lemma 2.5. d3(Z, W) is non-decreasing in /3.

Proof: See Appendix A.2. [
Due to the aforementioned issues we can replace the two components of the cost function
with their upper bounds to get the following cost function

55(2, W) < (1 — B)CL(Z, W) + BCp(Z, W). (2.15)
We then propose a final change to the cost function as follows
Co(2Z, W) := (1 — 28)C1(Z, W) + HCp(Z, W). (2.16)

where again 5 € [0,1]. One can justify going from (2.15) to (2.16) by noticing that for
every 0 < g < 1 for (2.15), one can find a 0 < < 0.5 for (2.16) such that the two
optimization problems are equivalent, i.e., they have the same optimizer W. Furthermore,
for B = 1, the cost function in (2.16) corresponds to information bottleneck problem, a
case that is not covered by (2.15). Hence, not only is Cg a strict generalization of dg but
also has the information bottleneck problem as an interesting extreme case. Cg can be
expressed purely in terms of mutual information quantities as follows:

L5(C) 1= BI(Z1; Z) + (1 = 20)[(Z1; %) — (1 — B)I(Z1: 7). (2.17)
In the following we summarize some of the properties of Cg.
Lemma 2.6. For Cg and 0 < 8 <1 we have:

1. C4(Z, W) >0
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2. 005(Z, W) = Co5(Z,W) = 1Cp(Z,W)
3. C\(Z,W) = Cig(Z, W) := [(Zy; Za| Z5)
4 For § < L, BCp(Z, W) < 65(Z, W) < Co(Z, W)
5. For > 1, Ca(Z,W) < 65(Z, W) < 5Cp(Z, W)
6. If Z is reversible, then Cg(Z, W) is non-decreasing in /3
Proof: See Appendix A.3. [ |

2.4.4. Special Cases of C3(Z, W)

We now show that specific settings of 5 lead to cost functions that have been proposed
previously in the literature. We list these approaches together with the algorithms that
were proposed to solve the respective Markov aggregation problem.

> For 8 = £, optimizing (2.16) is equivalent to optimizing Cp(Z, W). The authors of [2]
proposed this cost function for deterministic aggregations, i.e., they proposed opti-
mizing Cp(Z, g). In [13] we show that this restriction to deterministic aggregations is
suboptimal: For example consider the following reversible, three-state Markov chain
for which the optimal aggregation to |Z| = 2 states is stochastic.

Example 2.1. Let N = 3 and

0.1 0.1 0.175
P=] 01 015 0.075 |. (2.18)
0.175 0.075 0.05

We wish to cluster Z; and Z; pairwise to M = 2 clusters, hence we are looking
for a W € M3y, that maximizes the mutual information between Z; and Z,. We
parametrize W as

p 1l—p
W=|q 1—g¢q (2.19)
r 1—r

and, in simulations, sweep all three parameters p, ¢, and r between 0 and 1 in steps
of 0.025. The parameters maximizing the mutual information are p = 1, ¢ = 0.65,
and r = 0, giving a mutual information of 0.0316. In comparison, the mutual infor-
mation obtained by the three (nontrivial) deterministic pairwise clusterings evaluate
to 0.0281 forp = ¢ =1—r =1, 0.0288 for p = 1 —q¢ = r = 0, and 0.0222 for
p=1—q=1—r=1.

In [13] we also discuss scenarios where we can show or have experimental evidence
that deterministic aggregations are optimal. For the bi-partition problem, i.e., for
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|Z| = 2, the authors of [2] propose a relaxation to a spectral, i.e., eigenvector-
based optimization problem, the solution of which has a computational complexity
of O(|Z]*). In general, this relaxation leads to a further loss of optimality, even
among the search over all deterministic bi-partitions. For a general Z, [2] suggests
to solve the problem by repeated bi-partitioning, i.e., splitting sets of states until the
desired cardinality is achieved.

> For 3 = 1, the problem becomes equivalent to maximizing I(Z;; Z,). This is exactly
the information bottleneck problem [35] for a Lagrangian parameter v — o0o:

1(Z2; Z2) — v1(Z1; Zo). (2.20)

Algorithmic approaches to solving this optimization problem are introduced in [36].
Note that in this case the optimal aggregation will be deterministic, a result that
was shown in [13, Th. 1] and [37, Lem. 1].

> For 8 = 0, the authors of [4] relaxed their cost function Cy(Z,g) = Cr(Z,g) as

Co(Z,9) = H(72|71) - H(72|Z1) = 1(72; Zl|71)

and proposed using the agglomerative information bottleneck method [38] with the
roles of Z; and Z, in (2.20) exchanged to solve this relaxed optimization problem.
The method has a computational complexity of O(|Z]*) [36, Sec. 3.4]. While the
mapping minimizing Cz(Z, W) may be stochastic, the mapping minimizing (2.21)
is deterministic; hence, with this relaxation in mind, the restriction to deterministic
aggregations made in [4] comes without an additional loss of optimality compared to
what is lost in the relaxation.

> The authors of [3] proposed minimizing

They suggested using a deterministic annealing approach, reducing = successively
until v = 0. In the limiting case, the cost function then coincides with (2.21) and
the optimal aggregation is again deterministic. Note that, for reversible Markov
chains, we have I(Zy; Z4) = [(Zs; Z1), hence both (2.21) and (2.22) (for v = 0) are
equivalent to C;(Z, W). Analyzing [3, Sec. IIL.B] shows that in each annealing step
the quantity

PZ VA (Z/|Z)
D (Pzg\zlzzHPz2|§1:z) = %:ZPZQ|21(Z/|Z) logp;:zl(;;/p) (2.23)

has to be computed for every = and y. Hence, the computational complexity of this
approach is O(Z - | Z|?) in each annealing step.



16 Chapter 2. ...Markov Aggregation

2.5. Optimization Heuristic

In this section we focus on deterministic aggregations. We can thus replace Cg(Z, W) by
Cs(Z, g) for some g: Z — Z. In general, the computational complexity of finding the
deterministic aggregation with minimum Cg(Z, g) is exponential in |Z|. We now propose
a low complexity iterative method to optimize (2.16) over deterministic aggregations for
any given . The method consists of a sequential optimization algorithm (Algorithm 2.1)
and an annealing procedure for 5 (Algorithm 2.2) that prevents getting stuck in local
optima. Our algorithm has a computational complexity of O(|Z] - |Z|*) per iteration.
Note, however, that the restriction to deterministic aggregation functions comes, at least
for some values of 3, with a loss of optimality, as also discussed in Sec. 2.4.4 and [13].

2.5.1. Sequential Algorithm (sGITMA)

We briefly illustrate an iteration of Algorithm 2.1: Suppose z € Z is mapped to the
aggregate state Z € Z, i.e., g(z) = z. We remove z from z. We then assign z to every
aggregate state 7', 7 € Z, while keeping the rest of the mapping ¢ the same, and evaluate
the cost function. Finally, we assign z to the aggregate state that minimized the cost
function (breaking ties, if necessary). This procedure is repeated for every z € Z.

Algorithm 2.1 Sequential Generalized Information-Theoretic Markov Aggregation.

1: function g = sGITMA(P, 3, |Z|, #iter,,,., optional: initial aggregation function
Ginit)

2: if gini¢ is empty then
3: g < Random Aggregation Function
4: else
o: g < Ginit
6: end if
7 #iter < 0
8: while #iter < #iter .. do
9: for all elements z € Z do > Optimizing g
10: for all aggregate states Z € Z do
/ /
11: =) = {g(z) S > Assign z to aggregate state Z
z 2=z
12: Cy. = C3(Z, g2)
13: end for
14: g = argmin Cy_
15: end for "
16: #Hiter «— #iter + 1

17: end while
18: end function
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One can verify that the cost function is reduced in each step of Algorithm 2.1, as a
state is assigned to a different aggregate state only if the cost function is reduced. Hence,
the algorithm modifies g in each iteration to reduce the cost until it either reaches the
maximum number of iterations or until the cost converges.

Note that the algorithm is random in the sense that it is started with a random aggre-
gation function g. Depending on the specific application, though, a tailored initialization
procedure may improve performance.

Finally, it is worth mentioning that for § = 1 our Algorithm 2.1 is equivalent to the
sequential information bottleneck algorithm proposed in [36, Sec. 3.4].

2.5.2. Annealing Procedure for

Although Algorithm 2.1 is guaranteed to converge (with proper tiebreaking), convergence
to a global optimum is not ensured. The algorithm may get stuck in poor local minima.
This happens often for small values of 3, as our experiments in Section 2.6.2 show. The
reason is that, for small 3, Cg(Z, W) has many poor local minima and, randomly initialized,
the algorithm is more likely to get stuck in one of them. In contrast, our results suggest
that for larger values of [ the cost function has only few poor local minima, and the
algorithm converges to a good local or a global minimum for a significant portion of
random initializations.

A solution for small 5 would thus be to choose an initialization that is close to a “good”
local optimum. A simple idea is thus to re-use the function g obtained for a large value of
[ as initial aggregation for smaller values of 3. We thus propose the following annealing
algorithm: We initialize § = 1 to obtain g. Then, in each iteration of the annealing
procedure, [ is reduced and the aggregation function is updated, starting from the result
of the previous iteration. The procedure stops when 3 reaches the desired value, Biarget-
The p-annealing algorithm is sketched as Algorithm 2.2. As is clear from the description,
the [-annealing algorithm closely follows graduated optimization [39]. The results for
synthetic datasets with and without S-annealing are discussed in Section 2.6.2, which show
that without restarts one keeps getting stuck in bad local optima for small 5, while with -
annealing one can avoid them. Our intuition that S-annealing provides good initialization
for the subsequent lower values of 3 is also empirically confirmed, as for our experiments
in Sec. 2.6, we need fewer iterations on average to converge to a local minimum when we
initialize based of S-annealing as compared to when we initialize randomly. Furthermore,
in our experiments we have observed that with S-annealing included, our heuristic achieves
good results for random initializations for § = 1, hence tailoring initialization procedures
is not necessary, at least for the scenarios we considered. Many of the additional steps in
choosing the right initialization, or in the optimization heuristics proposed in the literature,
effectively change the optimization problem and hence obfuscate the effect of the cost
function itself.

Note that the f-annealing algorithm admits producing results for a series of values of
[ at once: Keeping all intermediate aggregation functions, one obtains aggregations for
all values of 5 in the set {1,1 — A1 —2A,...,1— Af%} , Brarget }- The aggregations
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Algorithm 2.2 g-Annealing Information-Theoretic Markov Aggregation

1: function g = ANNITMA (P, Biarget, | 2], #iter ., A)
2 b+ 1

3 g = sGITMA(P, 3, | Z|, #iter ,..)

4 while 3 > Biareer do

5: B < max{fB — A, Brarget }

6: g = sGITMA(P, 3, |Z|, #iter, ., 9)

7 end while

8: end function

one obtains are exactly those one would obtain from restarting ANNITMA for each value
in this set, each time with the same random initial partition. We used this fact in our
experiments: If we were interested in results for Biareet ranging between 0 and 1 in steps of
0.05, rather than restarting ANNITMA for each value in this set, we started ANNITMA
for Biarget = 0 and A = 0.05 once, keeping all intermediate results.

2.5.3. Computational Complexity

Note that the asymptotic computational complexity of Algorithm 2.2 is the same as that
of Algorithm 2.1, since the former simply calls the latter [(1 — Siarget)/A] + 1 times. We
thus only evaluate only the complexity of Algorithm 2.1. From (2.17), we can express
Cgs(Z, g) in terms of three mutual information terms:

Co(Z,g) = BI(Z1; Z2) + (1 = 28)1(Z1; 9(Z2)) — (1 = B)1(9(£1); 9(22)). (2.24)

The first term [(Z;; Zs) is constant regardless of the aggregation, hence the computation
of Cs(Z, g) depends upon the computation of the other two terms.

In each iteration of the main loop, we evaluate Cg(Z,g,) in line 12 for each z € Z
and 7 € Z. Note that gs differs from the current g only for one element as defined in
line 11. Thus, the joint PMF Py, (7, differs from Pz () in only two rows and hence
can be computed from Py, 4z, in O(|Z]) computations. Moreover, I(Z;; gz(Z5)) can be
computed from [(Zy;g(Z2)) in O(|Z]) computations, cf. [38, Prop. 1]. This is because we
can write [40, eq. (2.28)]

I(Zl;gy(Z2)) = 1(Z1;9(Z3))

+ Z PZlagy(ZQ)(x17y2) log

( le,gy(ZQ)(fL‘lny) >

Pz, (21) Py, (2,) (y2)
r1EX 1 gy(Z2
e (v (o)} (2.25)
Py (zZ )(33173/2)
- Pz 4z (xl,y2)10g< o :
EX valze) Pz, (21) Py(z,) (y2)

y2€{y,9(x)}
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The term 1(g,(Z1);9,(Z2)) can be computed from I(g(Z1);9(Z2)) in O(|Z]) computa-
tions, but requires the updated joint PMF Py_(z,) g-(z,). This PMF can be computed from
Pyz1).9z,) in O(|Z|) computations. Line 12 is executed once for each aggregate state

in Z and once for each state in Z in every iteration, so we get that optimizing ¢ has a
computational complexity of O(|Z| - |Z|?) per iteration.

2.6. Experiments and Examples

Now we look at examples and experiments to study the behaviour of the proposed cost
function Cg(Z, W) and the optimization heuristic.

2.6.1. A Non-Reversible Markov Chain

The last property of Lemma 2.6 cannot be generalized to non-reversible Markov chains.
Specifically, as the proof of Lemma 2.6 shows, Cg is non-decreasing in g iff Cp > 2Cy.
Since one can find also non-reversible Markov chains for which this holds, reversibility is
sufficient but not necessary for Cg to be non-decreasing in 3. We next consider a non-
reversible Markov chain Z ~ Mar({1, 2, 3},[P) with

04 03 03
P=|025 03 045 (2.26)
0.15 0.425 0.425

and let g be such that g(1) = 1 and ¢g(2) = ¢(3) = 2. Then, C;, = 0.0086 and Cp = 0.0135,
i.e., Cp < 2Cg. In this case, Cp is decreasing with increasing f.

2.6.2. Quasi-Lumpable and Nearly Completely Decomposable
Markov Chains
Suppose we have a partition {Z;}, i = 1,..., M, of Z with |Z;| = N;. Then for any

A’ and IP’;]- that are M x M and N; x N; row stochastic matrices, respectively, define
A =la;]=(1—-a)A"+al, aec|0,1], and let

/ / /
anlPyy  aplPly o aPy,
/ / /
, anlPy  anlPy - aamPyy,
P = ' ' ' . (2.27)
/ / /
ayiPy a2y o anmPhyy

Suppose further that Z ~ Mar(Z,P’). If g induces the partition { Z;}, then it can be shown
that Z is Markov with transition probability matrix A, i.e., Z = Z, and Cy(Z,Z) = 0. The
Markov chain Z is lumpable w.r.t. the partition g. The matrix P’ is block stochastic and
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permuted

Figure 2.2.: (a)-(c): Colorplots of the transition probability matrices P for different values
of @ and . For large « the block diagonal structure becomes more dominant.
(d): A random permutation of the rows and columns of (c) hides the block
structure.

the parameter « specifies how dominant the diagonal blocks are. Specifically, if a = 1,
then P’ is block diagonal and we call Z completely decomposable. Such a Markov chain is
not irreducible. We hence look at Markov chains Z ~ Mar(Z,P) with

P=(1-¢)P +<E (2.28)

where € € [0,1] and where E (which can be interpreted as noise) is row stochastic and
irreducible. For small values of ¢ we call Z nearly completely decomposable (NCD) if « is
close to one, otherwise we call it quasi-lumpable.

The structure of the final Markov process Z ~ Mar(Z,P) to be aggregated can be de-
scribed as follows: The elements of A basically define the transition probability among
different subgroups, « specifies (approximately) the likelihood of staying within the sub-
group, IP’;]. defines the transition probabilities from the elements subgroup ¢ to subgroup j
and e specifies the strength of noise in comparison to the block structure imposed by P’.

We now perform experiments with these types of Markov chains. We set M = 3,
Ny = Ny = 25, and N3 = 50, and chose the parameters from « € {0,0.5,0.95} and
e € {0,0.4,0.8}. For each pair (a,¢), we generated 250 random matrices A" and IPj;. A
selection of the corresponding matrices PP is shown in Fig. 2.2(a) to Fig. 2.2(c). The darker
an element is in the figures, the closer is the matrix entry to 0.

Note that in practice the states of even a completely decomposable Markov chain Z are
rarely ordered such that the transition probability matrix is block diagonal. Rather, the
state labeling must be assumed to be random. In this case, P is obtained by a random
permutation of the rows and columns of a block diagonal matrix (see Fig. 2.2(d), which is
a permuted version of Fig. 2.2(c)), which prevents the optimal aggregation function being
“read oft” simply by looking at P. That [P has a block structure in our case provides us with
a plausible “ground truth” to compare the outcome of our heuristic to. It is important to
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note that the block structure does not affect the performance of our algorithms, since they
1) are unaware of this structure and 2) are initialized randomly. Hence the performance of
our algorithm will be independent of whether it is presented with P depicted in Fig. 2.2(c)
or in Fig. 2.2(d).

We applied our aggregation algorithm both with and without the annealing procedure
for g € {0,0.1,...,0.9,1} and compared the results to the partition {Z;}. We measure
the success, i.e., the degree to which the function g obtained from the algorithm agrees
with the partition {Z;}, using the adjusted Rand index (ARI). An ARI of one indicates
that the two partitions are equivalent. We always assume that the number M of sets in
the partition {Z;} is known.

The results are shown in Fig. 2.3. Specifically, Fig. 2.3(b) shows that the cost for
the aggregation found by our algorithm with [-annealing decreases monotonically with
decreasing 3: We obtain a partition for a given value of . This partition has, assuming
Cp > 2Cp, an even lower cost for a smaller value of 5. Further optimization for this
smaller value of 3 reduces the cost, leading to the depicted phenomenon. In contrast, the
sequential Algorithm 2.1 without the annealing procedure fails for values of 3 less than 0.5.
This is apparent both in the cost in Fig. 2.3(a) (which has a sharp jump around g = 0.5)
and in the ARI in Fig. 2.3(c) (which drops to zero). Apparently, the algorithm gets stuck
in a bad local optimum.

Figs. 2.3(e) to 2.3(f) show the ARI of the aggregations obtained by our algorithm with (-
annealing. It can be seen that performance improves with increasing «, since the dominant
block structure makes discovering the correct partition easier. Moreover, it can be seen
that for a = 0 the optimum g lies at smaller values, typically smaller than 0.5. The
position of this optimum increases with increasing noise: while in the noiseless case the
correct partition is typically obtained for [ close to zero, in the high noise case of ¢ = 0.8
we require 8 ~ 0.4 to achieve good results. The reason may be that the higher noise leads
to more partitions being quasi-lumpable by leading to an i.i.d. Z, hence for small values
of / one may get drawn into these “false solutions” more easily. In contrast, for NCD
Markov chains (i.e., for @ = 0.95) sometimes noise helps to discover the correct partition.
Comparing Figs. 2.3(e) and 2.3(d), we see that a noise of ¢ = 0.4 allows us to perfectly
discover the partition. We believe that a small amount of noise helps in escaping bad local
minima.

Observe that the [ for which the highest ARI is achieved not necessarily falls together
with the values 0, 0.5, or 1. This indicates that our generalized aggregation framework has
the potential to strictly outperform aggregation cost functions and algorithms that have
been previously proposed (cf. Section 2.4.4).



22 Chapter 2. ...Markov Aggregation

0.2

1 1 —_—
I N
= 0.5 =05
< <
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
B 8
(c¢) ARI without S-annealing, ¢ = 0.4 (d) ARI with S-annealing, e = 0.4
1 1 ‘ \ ;

0‘57 | N / \

ARI
ARI

=0 (lumpable) S
— =0.5 - L
0 s 0 =0.95 (NCD) | 0k e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
& 8
(e) ARI with S-annealing, e =0 (f) ARI with S-annealing, ¢ = 0.8

Figure 2.3.: (a) and (b): Curves showing the cost function Cg with and without S-annealing
for e = 0.4. (c) and (d): Curves showing the adjusted Rand index (ARI) with
and without f-annealing for € = 0.4. (d)-(f): Curves showing ARI obtained
via f-annealing for different settings of € and . Mean values (solid lines) are
shown together with the standard deviation (shaded areas).



2.6. Experiments and Examples 23

2.6.3. A Natural Language Processing Experiment

Consider the letter bi-gram model from [41] which was obtained by analyzing the co-
occurrence of letters in F. Scott Fitzgerald’s book “The Great Gatsby” The text was
modified by removing chapter headings, line breaks, underscores, and by replacing é by e.
With the remaining symbols, we obtained a Markov chain with an alphabet size of N = 76
(upper and lower case letters, numbers, punctuation, etc.).

We applied Algorithm 2.2 for |Z| € {2,...,7} and 8 € {0,0.1,...,0.9,1}. To get
consistent results, we restarted the algorithm 20 times for 5 = 1 and chose the aggregation g
that minimized C;(Z, g); we used this aggregation g as an initialization for the S-annealing
procedure. Looking at the results for |Z| = 4 in Table 2.1, one can observe that the
results for § = 0.8 appear to be most meaningful when compared to other values of
such as f = 1 (information bottleneck), 8 = 0.5 (as proposed in [2]), and § = 0 (as
proposed in [4]). Specifically, for § = 0 not even the annealing procedure was able to
achieve meaningful results. This conclusion is supported by calculating the ARI of these
aggregations for a plausible reference aggregation of the alphabet into upper case vowels,
upper case consonants, lower case vowels, lower case consonants, numbers, punctuation,
and the blank space as shown in the first row of the Table 2.1. The absolute ARI values
are not a good performance indicator in this case since we are comparing to a reference
partition with seven sets whereas |Z| = 4.

In Table 2.2 the same experiment is repeated for |Z| € {2,7}. We again observe that
£ = 0.8 leads to the most meaningful results which is also supported by ARI values.

B Value | ARI | Partitions, shown for |Y| =4

Ref. — W A{1"$°0,-.:;70[1},{aeiou},{0123456789},{AEIOU}, {BCDFGHJKLMNPQRSTVWYZ},{bcdfghjklmnpqrstvwxyz}
5=1 0.43 | {u!’),-.0:;71},{aeioy},{"$(123456789ABCDEFGHI JKLMNOPQRSTUVWY [h}, {Zbcdfgjklmnpgrstuvwxz}
B=0.81046 | {,!?),-.:;7Z]1},{aeiouy},{"$(0123456789ABCDEFGHI JKLMNOPQRSTUVWY [h}, {bcdfgjklmnpqrstvwxz}

B8=0.5 1035 {,!372},{’2456789A0Uaeiou}, {"$ (~01BCDEFGHI JKLMNPQRSTVWY [bhjqw},{), . : ;] cdfgklmnprstvxyz}
B =0 |0.12 | {,-2CEFMPSTcfgopst},{"’456789A0UZaeiu}, {!$1?BDGHILNQRVW [bhjklmqrvwz},{(),.03:;IKY]dnxy}

Table 2.1.: Aggregating a letter bi-gram model. The partitions are shown together with
the ARI ARl w.r.t. the reference partition (first row) for [Z| = 4

f Value | ARI | Partitions, shown for [Y| € {2,7}

Ref. = {1 O,-. 15701}, {aeiou}, {0123456789} , {AEIOU} , {BCDFGHIKLMNPQRSTVWYZ} , {bcdf gh jklmnpqrstvuxyz}
b= 0.2 | {,!"),-.01235689: ; 7KU] aehioy}, {$ (47ABCDEFGHI JLMNOPQRSTVWYZ [bcdf g jklmnpqrstuvwxz}

034 | £01°),-.1;71}, {faeioy}, {"$(0123456789ABCDEFGHI JLMNOPQRSTVWY [}, {bef jmpgstw}, {dgx}, {KUh}, {Zklnruvz}
f=081024|{,!"),-.01235689: ; 7EU] aehiouy}, {$ (47ABCDFGHIJKLMNOPQRSTVWYZ [bcdfg jklmnpqrstvwxz}

0.35 | {u!?),-.:;71},{aeioy}, {$" (0123456789ABCDEFGHI JLMNOPQRSTUVWYZ [}, {Kh}, {bcf jkmpgstw}, {dg}, {1nruvxz}
f=0510.15 | {,!’-123687E00Zaeiou},{"$(),.04579: ; ABCDFGHI JKLMNPQRSTVWY [Jbcdfghjklmnpqrstvwxyz}

0.31 | {341, . :;71dy}, {aeiou}, {"$ (~0123589ACEIMOPRSTUWZ]} , {BDFGHIKLNQVYhj}, {7 [betgkupgstu}, {461nrvxz}
f=0 1001 {,!'$(-01245787ABCFHLMNOPRSTUVWaceglnostuwxz},{"”), .369: ;DEGIJKQYZ [1bdfhi jkmpqrvy}

0.02 | {_4689a0},{$’AKOiux},{! ?HVZhjkmvz},{" (-25CEFLMNRUWY [egnprs},{37BPQbl},{1:;STctw},{), .0DGIJ]dfy}

Table 2.2.: Aggregating a letter bi-gram model. The partitions are shown together with
ARI w.r.t. the reference partition (first row) for |Z| € {2, 7}






Co-Clustering via
Information-Theoretic Markov
Aggregation

In this chapter we discuss how to transform the information-theoretic framework for
Markov aggregation, developed in Chap. 2, to apply it to the co-clustering problem.

Co-clustering is the task of the simultaneous clustering of two sets, typically represented
by rows and columns of a data matrix, based on the relationships between the elements of
two sets. Aside from being a clustering problem in its own right, co-clustering is also applied
for clustering only one dimension of the data matrix. In these scenarios, co-clustering is
an implicit method for feature clustering and provides an alternative to feature selection
with, purportedly, increased robustness to noisy data [7,9,11].

A popular approach to co-clustering employs information-theoretic cost functions and is
based on transforming the data matrix into a probabilistic description of the two sets and
their relationship. For example, if the entries in the data matrix are all nonnegative, one
can normalize the data matrix to obtain a joint probability distribution of two random
variables taking values in the two sets. This approach has been taken by, e.g., Slonim
et al. [7], Bekkerman et al. [10], El-Yaniv and Souroujon [42], and Dhillon et al. [9]. A
different approach to co-clustering is to identify the data matrix with the weight matrix
of a bipartite graph and subsequently apply graph partitioning methods to cluster the
rows and columns of the data matrix. This approach has been taken by, e.g., Dhillon [43],
Labiod and Nadif [44], and Ailem et al. [45]. Other popular approaches are model-based
(e.g., latent block models as in [46] and the references therein) or based on nonnegative
matrix factorization (e.g., [47, Sec. 4.4]).

Our Markov aggregation framework from Chap. 2 allows us to combine ideas from the
graph-based and the information-theoretic approaches. Specifically, we use the data matrix
to define a simple random walk on a bipartite graph, i.e., a first-order, stationary Markov
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chain. Clustering this bipartite graph (i.e., co-clustering) thus becomes equivalent to
clustering the state space of a Markov chain (i.e., Markov aggregation). This, in turn,
allows us to transfer the information-theoretic cost function from the latter problem to
the former. The resulting cost function, parameterized by a single parameter (3, derives
its justification from the corresponding Markov aggregation problem. This justification
also applies to other information-theoretic cost functions in the literature [7-11], which we
obtain as special cases for appropriate choices of f3.

In several examples we discuss weaknesses inherent in the cost function for certain values
(or value ranges) of 3. We adapt the optimization heuristic from Sec. 2.5 for co-clustering
and analyze the influence of the choice of # on the co-clustering performance. For the
synthetic data sets, we confirm that co-clustering outperforms one-sided clustering if the
data matrix is noisy or if there is strong intra-cluster coupling. We then analyze the perfor-
mance on real-world datasets. For the Newsgroup20 dataset we observed that performance
is insensitive to [ as long as the number of word clusters is sufficiently large. Performance
drops for a few word clusters, a fact for which we provide a theoretical explanation. The
parameter § has a somewhat stronger influence on the performance on the MovieLens100k
dataset, for which we obtained movie clusters largely consistent with genres. Finally, for
the Southern Women Event Participation dataset, our results are remarkably similar to
the reference co-clusterings from [48,49].

Our contribution in the domain of information-theoretic co-clustering can be summarized
as follows: We provide a generalized framework for information-theoretic co-clustering by
connecting it with Markov aggregation (Sec. 3.4). The cost function, parameterized with a
single parameter and connected with the information bottleneck formalism, is justified by
well-defined operational goals of the Markov aggregation problem.Our generalized frame-
work contains previously proposed information-theoretic cost functions as special cases
(Sec. 3.6). Since the parameter of our cost function has an intuitive meaning, our frame-
work leads to a deeper understanding of the previously proposed approaches. This under-
standing is further developed by considering the strengths and limitations of information-
theoretic cost functions for co-clustering with the help of examples and experiments on
synthetic datasets (Section 3.7). We also discuss the influence of the single parameter
on the co-clustering results and present general guidelines for setting this parameter de-
pending on the characteristics of the dataset (Sec. 3.8). We then turn to experiments
with real-world datasets (Sec. 3.9). Our cost function contains previously proposed cost
functions for co-clustering as special cases which allows us to compare them fairly, i.e.,
with the same initialization steps and the same optimization heuristic. For example, the
insensitivity to  in our experiments with the Newsgroup20 datasets provides a new per-
spective on the differences reported in [7,9-11], suggesting that they are due to differences
in optimization heuristics, preprocessing steps, or choice of data subsets rather than the
differences in the cost function. We do not deal with the important issue of determining
the number of clusters We assume that we know the desired number of clusters as this
allows us to focus on the influence of the cost function independent of the heuristics used
to determine the number of clusters.

This work was done in collaboration with Dr. Bernhard Geiger and Clemens Blochl.
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3.1. Co-Clustering

Suppose we have two disjoint finite sets X and ) and a |X| x || matrix D containing,
e.g., similarities, the number of co-occurrences, or correlations between elements of these
two sets. As an example, if X is a set of documents and ) a set of words, then the
(i, 7)-th entry of D could be the number of times the word j appeared in document i.
Co-clustering is concerned with grouping elements of X and Y separately into |X| and
|| clusters (document clusters and word clusters in this example), sacrificing information
about the individual data elements to make the group characteristics more prominent and
accessible. The original alphabets X and Y are not important in clustering problems so we
can make the assumption w.l.o.g. that X and ) are disjoint. In case of soft clustering these
groupings are indicated by the stochastic mappings Py y = Wy and Py, = W,. Incase of

hard clusters we will represent the clustering functions by ® : X — X and ¥ : ) — ).

3.2. Preliminaries

In the spirit of the IB formalism, mutual information can be used to measure relevance.
Relevant information loss measures the information about some relevant RV S that is lost
by observing a statistically related RV Z via a stochastic mapping W. The quantity was
introduced by Plumbley in the context of unsupervised neural networks [50].

Definition 3.1 (Relevant Information Loss). Let S and Z be RVs with finite alphabet,
and let Z be obtained by applying a stochastic mapping Pz, =Wto Z, ie., Z = P7|Z(Z).
Then, the relevant information loss w.r.t. S that is induced by W is

Ls(Z — Z) = 1(S;2) — I(S; Z) = I(S; Z|Z) > 0. (3.1)

With this definition, we can rewrite the cost function for Markov aggregation in terms
of relevant information loss:

Lemma 3.1. Let Z be the Markov process that we want to aggregate and Z be the
alphabet of the aggregated process, then (2.16) can be rewritten in terms of relevant
information loss as follows:

Cg(Z,W) = BLZI (22 — 72) —+ (]_ — 6)[/72(21 — 71) (32)

3.3. Related Work

Information-theoretic approaches to co-clustering require a probability distribution over
the sets to be clustered. For example, if the data matrix D is nonnegative, then one can
normalize it such that its entries sum to one. One can thus define RVs X and Y over the
sets X and ) that have a joint distribution Pxy oc D.
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An early information-theoretic approach to co-clustering was proposed by Slonim and
Tishby [7] and is based on the IB method [35]. There, the authors proposed first finding
the clustering function ® maximizing I(®(X);Y), and then, after fixing ®, finding the
clustering function ¥ that maximizes I(®(X); U(Y)). Their approach was improved later
by El-Yaniv and Souroujon, who suggested iterating this procedure multiple times [42].
Also based on the IB method is the work of Wang et al. [11]. They used a multivariate
extension of mutual information to compress “input information” — captured by the mu-
tual information terms I(X;Y"), I(X;®(X)), and I(Y; ¥(Y')) — while preserving relevant
information — captured by the information shared between the clusters, I(®(X); ¥(Y)),
and the predictive power of the clusters, [(®(X);Y) and I(X;¥(Y)).

In 2003, Dhillon et al. proposed a co-clustering algorithm simultaneously determining
clustering functions ® and ¥ with the goal to maximize I(®(X); ¥(Y)) [9]. They showed
that the problem is equivalent to a constrained nonnegative matrix tri-factorization prob-
lem [9, Lemma 2.1] with Kullback-Leibler divergence as cost function. (An iterative update
rule for the entries of the three matrices is provided in [47, Sec. 4.4].) The work in [9] was
generalized into various directions. On the one hand, Bekkerman et al. investigated si-
multaneous clustering of more than two sets in [10]. Rather than maximizing one of the
multivariate extensions of mutual information, the authors suggested maximizing the sum
of mutual information terms between pairs of clusters; the pairs of clusters considered in
the sum are determined by an undirected graph that must be provided by the user. On the
other hand, Banerjee et al. viewed co-clustering as a matrix approximation problem [51], of
which the nonnegative matrix tri-factorization problem of [9, Lemma 2.1] is a special case.
Their generalized framework admits any Bregman divergence (e.g., Kullback-Leibler di-
vergence or squared Euclidean distance) as cost function and several co-clustering schemes
characterized by the type of summary statistic used to approximate the matrix.

Finally, Laclau et al. formulate the co-clustering problem as an optimal transport prob-
lem with entropic regularization [52]. Their formulation turns into a probability matrix
approximation problem with Kullback-Leibler divergence as cost function, but 1) the order
of original and approximate distribution is swapped compared to [9, Lemma 2.1}, and 2) the
approximate distribution is obtained differently. They proposed solving the co-clustering
problem with the Sinkhorn-Knopp algorithm and suggested a heuristic to determine the
number of clusters.

3.4. Tranforming Cs for Co-clustering

We now apply the Markov aggregation framework from Chap. 2 to the co-clustering prob-
lem. For this purpose we have to first transform the matrix ID to define a Markov process.
If D is nonnegative, we can interpret it as the weight matrix of an undirected, weighted,
bipartite graph, cf. [43]. Throughout this work we will assume that W is such that the
bipartite graph is irreducible. On this graph, one can then define a simple random walk,
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i.e., a Markov chain Z with alphabet X U ) and state transition matrix

.t

DT 0o (3.3)
where M is a diagonal matrix collecting sums of all connected edge weights of respective
nodes. The matrix M normalizes each row of A to make it a probability distribution. Since
the graph is bipartite and undirected, the Markov chain {Z;} is 2-periodic and reversible.
In the case when D contains negative elements one can do appropriate transformation
to obtain a weight matrix to define the weighted bipartite graph in a way that one can
hopefully preserve the original structures present in the data.

To apply the Markov aggregation framework to co-clustering, we have to further add
the constraint that the aggregation mapping W maps X and ) to disjoint “fan-out” sets,
i.e., for some finite and disjoint sets X and ) with X < X and Y < ), we have stochastic
mappings W; = Py‘ v and Wy = P7|Y such that

. . . Pxix(jli), jeX
VieX: W(i,j) = Py ,(jli) = { X,'X(l) (3.4)
0,j€)y
and B
. L. . Py jZ ) .] € y
Vi€V W(i,j) = Pgu(jli) = { Y!Y(L> (3.5)
0,7 X

The following proposition then transfers the cost function from Cg to the co-clustering
setting:

Proposition 3.2. Consider two disjoint finite sets X and ) and a nonnegative |X| x |V|
matrix D containing similarities between elements of these two sets are given. Define
two discrete RVs X and Y over these sets, where the joint distribution Px y is obtained
by normalizing . Let Z be a stationary Markov chain with alphabet X U ) and state
transition matrix A given in (3.3). Let 8 € [0,1] and suppose the disjoint sets X and Y
are given.

For every stochastic mapping W satisfying the mutual exclusivity constraint ((3.4) and
(3.5)), we have

2-Cy(2, W) = B|Lx(Y = V) + Ly (X — X)]
+(1=8) [Lx(Y = V) + Ly(X — X)| = Ls(W1, W,) (3.6)

where X := Pg(X) and Y := Py (Y).

Proof: Suppose p = [u;] is the invariant distribution of A, i.e., u” = u?A. It follows
that diag(p) oc M. The marginal distributions for X and Y are Px = - cy Pxy (-, y) oc D1
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and P} =3, cx Pxy(z,-) oc 17D, respectively. The 2-periodicity of {Z;} thus implies
1 |Px(i), ieXx
pi =5 N (3.7)
Py (i), ie).
Now assume that the Markov chain Z is stationary, i.e., the distribution of Z; coincides
with the invariant distribution p. Let U be a RV that indicates whether Z; was drawn
from X or ), i.e.,

(3.8)

1, Z1eXx
0, Zyel.

Note that U is a function not only of Z; but, by periodicity, of Z; for every t. The RV U
thus connects Py, with Px or Py; e.g., if U = 1, then Py, = Px. It follows from (3.7) that
Pr(U=1)=Pr(U=0) = 1.

Finally, suppose that W satisfies the mutual exclusivity constraint (3.4) and (3.5); then
U =1 if and only if Z; € X.

We now investigate [(Z}; Z}), where Z! is either Z; or Z;. We get

12 20 Y 1(2,,U: 2b)

Y12y 24|U) + 1(U; Z)

o 1 1
D2 24U = 1) + 123 Z4JU = 0) + H(U) (3.9)

where (a) is because U is a function of Z; and Z1, (b) is the chain rule of mutual information,
and (c) follows because U is also a function of Zy and Z, and from the definition of
conditional mutual information.

Now suppose Z; = Z; and Z) = Z,. If U = 1, then Z; € X and Z, € Y, and the
joint distribution Pz , equals the joint distribution Pgy. With similar considerations
for U = 0 we hence get

_ 1. — 1 —
_ ;I(X; Y)+ ;I(X; V) + H(U). (3.10b)

Along the same lines we obtain

[(Z1: Zs) = [(X;Y) + H(U), (3.10¢)
[(Z1:Z,) = [(X;Y) + H(U), (3.10d)
[(20:7,) = ;ux; V) + ;I(X; Y) + H(U). (3.10¢)

Inserting these in the cost function in Lemma 3.1 and applying the definition of relevant
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information loss in Definition 3.1 completes the proof. [ |
We now present the transformed cost function for information-theoretic co-clustering:

Definition 3.2 (Generalized Information-Theoretic Co-Clustering). The generalized information-
theoretic co-clustering problem is

i A1
gnin Lo(W1, W) (3.11)
where the minimization is over all stochastic mappings Wy = Pgy, Wy = P, and where
Ls(Wy, W) is as in the setting of Proposition 3.2.

The cost function £ admits an intuitive explanation for the effect of the parameter 5: In
the context of the words/documents co-clustering example above, minimizing Ly (Y — Y)
means that we are looking for word clusters that tell us much about documents. In contrast,
minimizing L+(Y — Y) means that we are looking for word and document clusters such
that the word clusters tell us much about the document clusters. The parameter 5 thus
determines how strongly the two clusterings should be coupled. We show in Sec. 3.7 and
Sec. 3.9 that the choice of § can have a large on the clustering performance.

3.5. Adapting the Optimization Heuristic

In this and the next sections we will focus on hard clusters, i.e., deterministic mappings ®
and W. The restriction is motivated by various reasons: First, as we show later, for some of
the more widely used values of 3, such as 0.5 and 1, one of the minimizers of (3.11) is hard
clustering. Hence in these cases restricting to hard clusters does not lead to suboptimality.
Secondly, the previous literature for information-theoretic co-clustering mainly focuses on
hard clusters. Focusing on hard clusters allows us to compare our results to the ones
in literature. Finally, finding a low complexity heuristic to search over all the stochastic
mappings which provides “good” results in different settings and for different values of
is a hard problem. Our initial attempts to develop such heuristics were unfruitful and led
to worse results even for hard clustering when compared to the heuristic proposed in the
following.

In general, finding a minimizer of our cost function (3.11) when limiting ourselves to hard
clustering functions ® and V¥ is a combinatorial problem with exponential computational
complexity in |X'| and |)| . Since our cost function is derived from the Markov aggregation
problem, we can adapt the optimization heuristic proposed in Sec. 2.5 to account for the
mutual exclusivity constraint to obtain good sub-optimal co-clustering solutions. The
pseudocodes for the adapted sequential heuristic, SGITCC, and the annealing heuristic,
ANNITCC, are given in Algorithms 3.1 and 3.2, respectively. The annealing procedure
helps in the same way as it did for Markov aggregation, assisting in escaping the bad local
minima for smaller values of 8. It can be shown along the same lines as in Sec. 2.5 that,
by storing intermediate results, the computational complexity of computing L£z(®, ¥,) and
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Lz(P;, V) can be brought down to O(|X|) and O(|)Y|), respectively. Thus, one iteration
of Algorithm 3.1 has computational complexity of O(|X| - | V|- max{|Y|, |X|}).

Algorithm 3.1 Sequential Generalized Information-Theoretic Co-Clustering (SGITCC)
1: function (®, V) = sSGITCC(Pxy, 3, |X|, | Y|, #iter
ing (Pinit; Vinit))

tol, optional: initial cluster-

max’

2: if (Pinit, Yinit) is empty then

3: (®, V) - Random Clustering

4: else

5: ((I)a \Ij) A <(I)init7 \Ijinit)

6: end if

7 #iter < 0

8: while #iter < #iter, . A d > tol do

9: Cold < Eﬁ(@, \I/)

10: for all elements ¢ € X do > Optimizing ®

11: for all clusters j € X do

12: Q;i(x) = {?(x) v 7& '
J r=1

13: end for

14: (i) = argmin Lz(P;, V)

15: end for !

16: for all elements k € ) do > Optimizing ¥

17: for all clusters ¢ € Y do
\J

N Byly) = { (y)  Vy#k
l y==k

19: end for

20: U(k) = argmin Lg(P, V)

21: end for ‘

22: 0+ Cuag — ﬁg(q}, \I’)

23: #iter < #iter + 1

24: end while
25: end function

The alternative optimization of ¥ and ® in SGITCC may introduce further subopti-
mality as compared to SGITMA for Markov aggregation where there is only one function
to optimize over. The following example shows how SGITCC can get stuck in a poor local
optimum for 5 = % The same example is unproblematic for 5 = 1. Since one can certainly
find heuristics that perform optimally in this example even for § = %, matching the heuris-
tic to the cost function seems to be an important issue. We will see further evidence for
the impact of heuristics on performance in our experiments with the Newsgroup20 dataset

in Section 3.9.1.
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Algorithm 3.2 $-Annealing Information-Theoretic Co-Clustering (ANNITCC)

1: function (®,¥) = ANNITCC(Pxy, 3, |X|, |V|, #iter .., tol, A)
2 a1

3 (@, V) = sGITCC(Pxy, 8, | X],|V|, #iter ., tol)

4 while a > 3 do

5: a + max{a — A, 3}

6 (@, ¥) = sGITCC(Pxy, a, |X|, |V, #iter,,.., tol, (&, ¥))

7 end while

8: end function

Example 3.1. Consider the following 3 x 4 matrix describing the joint probability distri-
bution between X and Y:
025] 0 0 0
Pxy = 0 [025] O 0
0 0 1025 0.25

We are interested in two row clusters and two column clusters, i.e., | X| = |Y| = 2. Suppose
that during some iteration, the clustering functions ® and ¥ induce the partition indicated
by the thin black lines in the matrix Py y. At this stage, for § = % the sequential algorithm
will terminate since this ® is the optimal choice for ¥ fixed, and this ¥ is the optimal choice
for ¢ fixed. In other words, changing either clustering function alone increases the cost
Ly =1 (X;Y) — I(X;Y). Nevertheless, it is clear from looking at Py y that the cost is

minimized (7(X;Y) is maximized) for the partition indicated by the thick black lines. The
algorithm thus gets stuck for g = % because the cost function in this case depends only
on the clustered variables, and because it updates the clustering functions subsequently
rather than jointly. For larger values of 3, the coupling between the clustering functions is
weaker. In particular, for § = 1, the clustering functions can be optimized independent of
each other, and the algorithm hence terminates at a partition consistent with the vertical
thick line, even if it was started at the partition indicated by the thin lines.

3.6. Special Cases of L3(D, V)

We next show that our cost function Lz contains, for appropriate settings of the parameter
B, previously proposed cost functions for co-clustering as special cases. For example, for
£ =1, we obtain

L1(D,0)=Lx(Y —=Y)+ Ly(X — X). (3.12)

This cost function consists of two IB functionals: The first term considers clustering Y
with X as the relevant variable, while the second term considers clustering X with Y as
the relevant variable. This approach rewards clustering solutions for X and Y that are
completely decoupled. In [13], we showed that hard co-clusters minimize Lz, hence the
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restriction to hard co-clusters in SGITCC is optimal for § = 1. To minimize £;, one
can use the fixed-point equations derived in [35] or the agglomerative IB method (alB)
that merges clusters until the desired cardinality is reached [38]. Finally, a sequential IB
method (sIB) has been proposed that iteratively moves an element from its current cluster
to the cluster that minimizes the cost until a local minimum is reached [8].

A simple corollary of the observation that £; is minimized by hard co-clusters is obtained
by setting P = diag u?: If one wants to restrict the alphabet of a RV while preserving
most of its information, i.e., if one is looking for a W € My, ps, that maximizes I(X5;Y3),
then our results in [13] shows that hard clustering is optimal.

More interestingly, we can rewrite the cost function that Dhillon et al. proposed in [9]
for information-theoretic co-clustering (ITCC) and obtain

Litce(®,0) = I1(X;Y) = I(X;Y) = Li(D,]). (3.13)

3
Thus, ITCC is a special case of Lg for § = % The authors of [9] proposed a sequential algo-
rithm, similar to sIB, alternating between optimizing ® and ¥. Furthermore, Lircc (P, ¥)
can be optimized via non-negative matrix tri-factorization [9, Lemma 2.1] and thus yields
a generative model as a result. We are not aware if a similar connection to generative
models holds for other values of 5.

In [10], the cost function £ 1 is generalized to pairwise interactions of multiple variables
(the two-dimensional case is equivalent to co-clustering). The authors introduce a multi-
level heuristic that schedules the splitting of clusters, merges clusters following the ideas
of alB [7], and optimizes intermediate results sequentially with sIB.

The authors of [7] proposed applying alB twice to obtain the co-clustering. In the first
step, in which the set X is clustered, they treat Y as the relevant variable; in the second
step, in which the set ) is clustered, they treat the clustered variable X as relevant. In
essence, the authors of [7] thus minimize the functional

£IB—double(<I>7 \I/) = Ly(X — Y) + Ly(y — Y) =L ((I), \If) (314)

3
in a greedy manner: They first optimize over ® to minimize only the first term and then
optimize over ¥ to minimize the second term. Comparing (3.13) and (3.14) reveals that [7]
and [9] optimize the same cost function; the different performance results reported in [7]
and [9] can only be explained by differences in the optimization heuristic and (possibly)
preprocessing steps. We will elaborate on this topic in our experiments with the News-
group20 dataset in Section 3.9.1.

For g = %, we also showed in [13] that hard co-clusters are optimal. This also implies
that, for 8 = 1 and 8 = 12, L3 is not a suitable choice for a cost function if one aims to
look for soft co-clustering.

Another approach related to IB, called information bottleneck co-clustering (IBCC), was
proposed in [11]. The functional being maximized by IBCC is

Lipec(®, V) = I(X;Y) + I(X;Y) + I(X;Y) (3.15)
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= 3I(X;Y) — 2L2(D, D). (3.16)

Hence, optimizing IBCC is equivalent to optimizing £ 3. The authors of [11] propose two
algorithms: One is agglomerative, i.e., a greedy merging algorithm, the other is an iterative
update of fixed-point equations in the spirit of [35].

Finally, for 5 = 0 we obtain the functional

Lo(®, V) = Le(Y = V) + Lg(X — X). (3.17)

As previously mentioned, for Markov aggregation and 5 = 0 the cost function is linked to
the phenomenon of lumpability. In the co-clustering framework, lumpability means that
the two clustering solutions are coupled. More precisely, we have Lo(®, ¥) = 0 if the rows
X and columns Y do not share more information with the column clusters Y and row
clusters X, respectively, than the row clusters and column clusters share with each other.
Unfortunately, we also have Lo(®, ¥) = 0 if X and Y are independent, which suggests an
inherent drawback of Ly for co-clustering (despite its justification in Markov aggregation
as discussed in Sec. 2.4). This leads to £y (and, in general, Lz for small 3) having multiple
bad local optima in which any heuristic tends to get stuck.

3.7. Strengths and Limitations of Generalized
Information-Theoretic Co-Clustering

In this section we use examples and experiments on synthetic datasets to highlight different
aspects of using Lz and our proposed optimization heuristic for co-clustering. Specifically,
we will point at limitations and strengths of co-clustering in comparison with one-sided
clustering (# = 1), which leads to guiding principles for the choosing 8 depending on
characteristics of the considered dataset.

3.7.1. Examples

In the previous section we mentioned that an inherent shortcoming of L is that it leads to
co-clusterings with (near-)independent cluster RVs. In this subsection, we point at further
limitations of information-theoretic cost functions for co-clustering. These shortcomings
are independent of the employed optimization heuristic, but rather reflect that in some
scenarios not even the global optimum of the cost function coincides with the ground
truth (or an otherwise desired co-clustering solution). Sometimes this is simply because
that the cost function does not fit the underlying model — e.g., if W is generated according
to a Poisson latent block model, then maximizing the likelihood of the co-clustering is
equivalent to minimizing £ 1 only if the clusters have all the same cardinality [46, Sec. 2.2].
In contrast, the following two scenarios make no assumptions about an underlying model
but illustrate shortcomings inherent to the considered information-theoretic cost functions.
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Largely Different [X| and |)|:

An advantage of information-theoretic co-clustering approaches over, e.g., spectral [43,45]
or certain block model-based approaches [46] is that the former admit different cardinali-
ties for the clustered sets [X| and |))|. If, however, these cardinalities differ greatly, then
minimizing £ becomes problematic especially for small values of 3. Suppose w.l.o.g.
that |Y| < |X|. Then, the optimization term Ly(X — X) is limited by the information
contained in Y rather than by the information loss induced by clustering X to X; many
functions ® may bring Ly(X — X) close to zero simply because Y itself already contains
little information. Similarly, the term L+(Y — Y') may be large for many choices of @, be-
cause, again, the limiting factor is the coarse clustering from Y to Y. These terms in (3.11)
get more important if § is small. In other words, coupled co-clustering fails because the
clustered variables contain little information. We illustrate this with a particular example,
in which the joint probability distribution between X and Y is

[0.125 0 0 0
0125 0 0 0
0 0125] © 0
0 0125] 0 0
Pxy =
0 0 0125 0O
0 0 0125 0
0 0 0 0.125
0 0 0 0125 |

Our aim is to obtain a co-clustering with |)| = 2 and |X| = 4. In Py y, the thick vertical
line indicates one possibility for ¥ (a plausible ground truth). The horizontal lines indicate
two possible options, ®; (thick lines) and ®, (thin lines) for the row clustering, where ®;
corresponds to a plausible ground truth.

For § = 1, (®1,¥) has a lower cost than (®,, V), as desired. Furthermore, one can
show that (®;, ¥) minimizes the cost function; £ has its global minimum at the ground
truth. For 8 = 1, by evaluating I(X;Y’) we see that both (@1, ¥) and (®,, ¥') have the same
cost. In fact, any row clustering function ® that shares the cluster boundary with the thick
horizontal line in the middle has the same I(X;Y) for the given column clustering function
U: In this case, X determines Y, hence we achieve the maximum I(X;Y) = H(Y) = 1;
the cost function has multiple global minima, only one of which lies at the ground truth.
Finally, for § = 0, (®1, ¥) has a higher cost than (P, ). This implies that even if we
initialize our algorithm at the ground truth (this could be the case if we do f-annealing)
we move away from this clustering solution when we optimize the cost function for smaller
values of f3.
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Figure 3.1.: Trading entropy for conditional entropy. (a) and (c) show joint distributions
Pxy together with two possible co-clusterings, while (b) and (d) show the
corresponding values of the cost function for different values of 3. Blue and
red curves in (b) and (d) correspond to co-clusterings indicated by blue and
red lines in (a) and (c).

Trading Entropy for Conditional Entropy:

Consider the joint distribution in Fig. 3.1(a) that describes a dataset with a well-separated
co-cluster structure for |X| = |Y| = 2 (based on zeros and indicated by blue lines, denoted
by (®°, ¥*)). We evaluate our cost function for different values of 3, both for (®°*, U'*) and
for an alternative co-clustering indicated by red lines, denoted by (®,¥). It can be seen
in Fig. 3.1(b) that, for 5 € [0.65, 1], we have Lz(P*, ¥*) > Lz(P, V), i.e., the “incorrect”
solution has a lower cost than the ground truth. While in this case, e.g., ITCC [9] would
probably terminate with (®°®, W*®), it is easy to construct an example where ITCC fails.
Changing our example only slightly leads to generalized information-theoretic co-clustering
preferring (®, ¥) over (®°*, W*) for all 8 in [0.15, 1] (see Figs. 3.1(c) and 3.1(d)).

These examples show that even for datasets with a well-separated co-cluster structure,
for a range of § there can be (local and global) minima having a lower cost £z than the
ground truth. This is because optimizing the cost function for a given value of § boils
down to maximizing/minimizing a combination of several mutual information terms. For
example, for # = 1 we aim to maximize (cf. (3.13))

I(X;Y) = H(X) - HX|Y). (3.18)
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This leads to two competing goals: entropy maximization (preferring clusters with roughly
equal probabilities) and conditional entropy minimization (e.g., preferring row clusters that
determine column clusters, and vice-versa). For the range of § where L5(®®, U*®) is not
the global minimum, the first goal outweighs the second.

For joint distributions with a well-separated co-cluster structure we have Lq(®®, ¥*) =0
since I(X;Y) = I(X;Y) = I(X;Y). Nevertheless, due to the shortcoming discussed in
Section 3.6, this global optimum may not be found because many other co-clusterings lead
to Lo(P, V) ~ 0.

3.7.2. Synthetic Datasets

Next, we perform experiments with two different synthetic datasets to explore further the
relation between suitable choices of § and the characteristics of the dataset. Since our focus
is on providing a better understanding of information-theoretic co-clustering, we assume
that the true numbers of clusters and the true clustering functions ®* and ¥* are known.
As an accuracy measure, we employ the micro-averaged precision.

Yiex |27 () N @ (m(5))]
X

MAP(®, ¢°) := max (3.19)

where the maximization is over all permutations 7 of the set X. MAP (¥, U*) is computed
along the same lines. Note that MAP(-,-) requires that the clustering solution found by
the algorithm has the same number of clusters as are present in the ground truth. Since
we assume the true number of clusters to be known, this is unproblematic. If the number
of clusters is unknown, one can resort to more sophisticated measures such as the adjusted
Rand index or normalized mutual information. In the present case, all of these measures
will lead to similar qualitative results.

Unless noted otherwise, we set tol = 0, #iter, ., = 20, and A = 0.1 and ran ANNITCC
for values of 8 between 0 and 1 in steps of 0.1. The simulation code for these and the
real-world experiments in Section 3.9 is publicly accessible.!

The first experiment looks at the clustering performance in the presence of noise. We
generated a joint probability distribution T’x y with 80 rows and 50 columns, i.e., |X| = 80
and |Y| = 50, and planted co-clusters such that Ty is constant within each co-cluster.
A colorplot of Ty y is shown in Fig. 3.2(a). The figure also shows the ground truth ®*
(|X| = 5) and ¥* (]| = 3). We moreover constructed a random probability distribution
N and defined

PX,Y = (1 — 5)TX,Y +eN (320)

where ¢ € {0,0.5,0.7,0.8}. Colorplots of Pxy are shown in Fig. 3.2(b) and 3.2(c) for
e = 0.5 and € = 0.8, respectively. We repeated the procedure for 500 different probability

matrices N. The MAP values, averaged over these 500 runs, are reported in Fig. 3.2(d)
and 3.2(e) (solid lines).

'hitbucket.org/bernhard__geiger/coclustering_markovaggregation
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Figure 3.2.: (a)-(c): Colorplots of Pxy for different noise levels €. It can be seen that
the true cluster structure becomes less obvious with increasing noise levels.
(d), (e): Micro-averaged precision curves show the average over 500 random
experiments (center line) and the standard deviation (shaded area). Solid
curves correspond to ANNITCC, dashed curves to SGITCC. See text for
details.

The results show that, even in the noiseless case, the clusters are not always identified
correctly. Since we identified the correct clusters in over 90% of the simulation runs, we
believe that this effect can be explained by the algorithm getting stuck in a local optimum.

Second, one can observe the expected effect that large noise levels lead to lower MAP
values — interestingly, though, co-clustering seems to be robust to noise, as the MAP values
in this experiment seem to decrease significantly only for € > 0.5, i.e., when noise starts to
dominate the data matrix. Finally, for large noise levels, it turns out that the intermediate
values of g perform better. The performance drop for larger values of § is not due to
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the optimization heuristic getting stuck in bad local optima: we found that the cost of
the co-clustering solution found by ANNITCC for large § is lower than the cost of the
ground truth. Rather, the reason is that for 5 = 1 the clustering solutions are uncoupled,
i.e., the relevant RV for clustering rows is the noisy column RV. For a certain amount of
coupling, i.e., for intermediate values of 3, the relevant RV for clustering rows is more
strongly related to the column clusters, in which noise is reduced due to the averaging
effect of clustering. Performance drops again when decreasing  further; the reason is the
inherent shortcoming of L£,(®, V) which is discussed at the end of Section 3.6.

The second experiment investigates the effect of intra-cluster coupling between X and
Y. We choose |X| = |Y| = 90 and |X| = |Y| = 3, to avoid the effects discussed in the
examples presented earlier in this section and generate a joint probability distribution

C 0 0
Pxy=]0 C 0 (3.21)

0 0 C
where C is a 30 x 30 circulant matrix, the first row of which consists of 30 — k zeros followed
by k entries equal to ﬁ Each subsequent row of C is obtained by a circular shift of the

previous row. Fig. 3.3(a) and Fig. 3.3(b) show Pxy for k = 3 and k = 15, respectively.
The ground truth co-clustering is given by the block structure of Px y .

As k decreases, the intra-cluster coupling between X and Y increases. To see this note
that, for £k = 30, X does not contain more information about Y than the ground truth
cluster X does, whereas for k = 1, X specifies Y uniquely. Fig. 3.3(c) shows the average
MAP values obtained by running ANNITCC 500 times with random initializations. Since
the experimental setup is symmetric we show the results only for ®. First, we observe that
with decreasing k the performance deteriorates. This is intuitive considering that with
decreasing k the clustering structure becomes less obvious. For & = 30, Px y is uniform in
the the blocks whereas for £ = 1, the colums of Pxy can be reordered such that Pxy is a
diagonal matrix with no clear co-clustering structure. Second, 5 = 1 does not lead to the
best results for increased coupling, despite the fact that the global optimum of £; coincides
with the ground truth. Apparently, the optimization heuristic tends to terminate in poor
local optima more often for § = 1 than for smaller values of 5. This is because for g =1
the two clustering solutions are decoupled, i.e., ® and ¥ are determined independent of
each other, while smaller 3 explicitly assumes coupled clusterings. We thus conclude that
smaller values of 3 detect intra-cluster coupled co-clusters more robustly.

Finally, for both synthetic datasets, the MAP curves are relatively flat in many scenarios.
One may think that this is due to ANNITCC getting stuck in a local optimum for a certain
[, which it is not able to escape from for the subsequent lower [ values. This is not the
case: Figs. 3.3(c) and 3.2(d) show that the results obtained by running SGITCC (dotted
lines) are almost identical to those obtained from ANNITCC for larger values of 8 until
both of them reach the peak performance. Subsequently, for smaller values of 3, the
performance of SGITCC dropped significantly due to the reasons outlined at the end of
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Figure 3.3.: (a)-(c), (f)-(g): Colorplots of Pxy for different noise levels ¢ and different
parameters k. The true cluster structure becomes less obvious with increasing
noise levels. (d), (e), (h): Micro-averaged precision curves show the average
over 500 random experiments (center line) and the standard deviation (shaded
area). Solid curves correspond to ANNITCC, dashed curves to SGITCC. See
text for details.

Section 3.6, justifying using ANNITCC for these values of 5.

3.8. Guiding Principles for Choosing (3

Although we do not propose a heuristic to find the suitable value (or range) of 5 for a
given dataset, the examples and experiments discussed in Sec. 3.7 provide the following
guiding principles:

> For large differences between target cardinalities |X'| and ||, larger values of 3 may
lead to better results due to the increasingly decoupled nature of the cost function
for increasing [.

> For datasets with highly imbalanced (co-)clusters, smaller values of S are more suit-
able (but only when one can manage to avoid optimization issues linked to smaller
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values of f3).

> In general, co-clustering using Lz and S-annealing seems to be robust to noise. For
large noise levels, however, intermediate values of g tend to perform better due to
noise averaging.

> In the presence of intra-cluster coupling, local optima of Lz are more prominent for
B close to 1. The correct co-clusterings are found more robustly for intermediate
values of [.

3.9. Real World Experiments

3.9.1. Document Classification by Co-Clustering of Words and
Documents - Newsgroup20 Data Set

Dataset, Preprocessing, and Simulation Settings

The Newsgroup20 (NG20) dataset? consists of approximately 18800 documents containing
50000 different words. In this section, we evaluate co-clustering performance only via
document clusters since there is no ground truth for word clusters. Nevertheless, word
clustering was claimed to improve the document clustering performance, cf. [7,9].

We refer to the RV over words as X, the set of words as X, the RV over the docu-
ments as Y, and the set of documents as ). The respective clustered RVs and sets are
denoted by an overline. The joint distribution of X and Y is obtained by normalizing
the contingency table (counting the number of times a word appears in a document) to a
probability distribution. During preprocessing, we removed newsgroup-identifying headers
and lowered upper-case letters. We moreover reduced X to the 2000 words with the high-
est contribution to I(X;Y'), which is consistent with the preprocessing in [7-9]. Finally,
we constructed various subsets of the NG20 dataset by randomly selecting 500 documents
evenly distributed among the document classes. An overview of the used document classes
used for each experiment is given in Table 3.9.1. Note that there are significant differences
in the preprocessing steps performed in previous studies. For example, [8] included the
newsgroup-identifying header, which may improve clustering performance. We ran AN-
NITCC with tol = 1073, A = 0.05 and #itery., = 20. For initialization, we slightly
changed line 3 in Algorithm 3.2: Instead of running SGITCC with § = 1, which is
equivalent to the completely decoupled case, we run sIB for both the word and document
clusterings separately, where 25 restarts are performed and the best result w.r.t. the cost
function is taken. Since there is no ground truth available for the word clusters, we exe-
cuted ANNITCC for [W] € {2,4,8,16,32,64,128}. This is consistent with the simulation
settings described in [9], for example.

For a fair comparison of different values of 3, we do not apply further heuristics to
improve the performance of ANNITCC. In contrast, the authors of [9] initialize their

2qwone.com/~jason/20Newsgroups
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| Dataset || Discussion Groups | &= D] |

Binary talk.politics.mideast, 250 | 500
talk.politics.misc

Multib rec.motorcycles, 100 | 500

comp.graphics, sci.space,
rec.sport.basketball,
talk.politics.mideast
Multil0 comp.sys.mac.hardware, 50 | 500
misc.forsale, rec.autos,
talks.politics.gun, sci.med,
alt.atheism, sci.crypt,
sci.space, sci.electronics,
rec.sport.hockey

Table 3.1.: Overview of the different subsets drawn from NG20

co-clustering algorithm for |[W| word clusters with the result obtained for [W|/2 word
clusters, where each word cluster is split randomly. In [10], the authors introduce an
additional correction parameter which leads to clusters of approximately the same size
(which matches the evenly distributed classes in the NG20 dataset). Therefore, even for
those values of 8 for which we obtain the same cost functions, our results need not be
equal to those reported in the literature.

Results and Comparison

The results obtained by ANNITCC - averaged over 20 runs - for the different subsets of
NG20 are visualized in Fig. 3.4. As can be seen, ANNITCC can discover the true document
labels with high accuracy. For the Binary dataset, ANNITCC was able to achieve a micro-
averaged precision of approximately 90%, for the Multi5 dataset 60% and for the Multil0
dataset approximately 60 — 65%. In comparison, experiments with SGITCC confirm the
observations made in Sec. 3.6 and Sec. 3.7 that small 5 € [0,0.4] lead to meaningless
results in the range of random clustering, while high 8 € [0.6, 1] produce results in the
range of Fig. 3.4. Fig. 3.4 further shows that the stronger the word and document clustering
solutions are coupled, the worse are the results for small numbers of word clusters. This
is most obvious for the Multil0 dataset for W € {2,4, 8} word clusters, where the MAP
values increase sharply if § increases from 0.4 to 0.6 (see Fig. 3.4(c)). For small 3, the
document clusters are obtained from the word clusters and, e.g., two word clusters do not
contain sufficient information to distinguish between ten document clusters. This agrees
with our discussion in Section 3.7.1. However, for very large |W|, there were no further
improvements. This suggests that there exists a number of word clusters that suffice to
achieve the same (or better, see below) performance as document clustering based on
words.
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Figure 3.4.: Micro-averaged precision for different NG20 subsets and ANNITCC.Different
curves in a plot are for different numbers of word clusters, [W| =
{2,4,8,16,32,64,128} (black for fewest, blue to green to red increasing num-
ber of clusters). For comparison, we added results reported in the literature.
(%): Taken from [9, Table 5]; |W)| is unclear. (+,0): Taken from [7, Table 3];
the best results for each dataset are displayed. These results were obtained by
applying alB for different numbers of word clusters, |[W| = {10, 20, 30, 40, 50} ;
the displayed MAP values are averages of the individual MAP values. We
were not able to compare our results to those of [11] because they used dif-
ferent classes of the NG20 dataset. Since the cost functions from the litera-
ture are the same as ours for the respective values of 3, the difference in the
performance can only be attributed to preprocessing steps, the optimization
heuristics, and/or the choice of favorable data subsets.

One major issue observed from Fig. 3.4 is that for the Binary and Multi5 data, the
results are almost independent of 3 (for sufficiently many word clusters). Only for Multil0
there was a mild increase in performance for intermediate values of 5. This confirms the
observations from Section 3.7.2: clustering words removes noise, hence document clustering
based on word clusters may be slightly more robust than document clustering based on
words. Nevertheless, since the effect is small for Multil0 (and not present for Binary and
Multi5), we doubt that co-clustering of words and documents is significantly superior to
one-sided document clustering w.r.t. the classification results. The classification results
from [10] point to similar conclusions, since also there sIB performed very well compared to
the respective co-clustering methods. Still, the authors of [7,9,11] claim that their proposed
algorithms and/or cost functions for co-clustering outperform one-sided clustering. We
instead suggest that, for this dataset, the choice of the cost function has less effect on
the performance reported in literature than algorithmic details, preprocessing steps, and
additional heuristics for, e.g., initialization.
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3.9.2. MovieLens100k

Dataset, Preprocessing, and Simulation Settings

The MovieLens100k dataset® consists of 100000 ratings of 1682 movies by 943 users [53].
The user ratings take integer values 1 (worst) to 5 (best). We construct a user-movie
matrix R := [R;;] where R;; is the rating user i gave to the movie j (R;; = 0 if user ¢ did
not rate movie 7). Note that R is a sparse matrix with only 100000 out of approximately
1.59 million entries being nonzero.

We refer to the RV over the users as X, the set of users as X, the RV over movies as
Y, and the set of movies as ). The respective clustered RVs and sets are denoted by
an overline. The joint distribution between X and Y is obtained by normalizing R to a
probability distribution.

For initializing ANNITCC we ran SGITCC 25 times with random initializations for
B =1 with tol = 1073 and #itery., = 20. We chose the best co-clustering (®, ¥') among
these 25 restarts w.r.t. the cost and used this as the initialization for ANNITCC. We ran
ANNITCC with tol = 1073, A = 0.1 and #iteryax = 20. We defined 10 user clusters,
i.e., [U] = 10, as was done in [51,52]. Furthermore, we defined |M| = 19 since the
MovieLens100k dataset categorizes the movies into 19 different genres.

Evaluation Metrics

Evaluating co-clustering performance for the MovieLens100k dataset is difficult. The au-
thors of [52] proposed to assess co-clustering performance based on recommendations, i.e.,
a portion of the dataset is used for co-clustering, based on which the “taste” (i.e., if a user
will rate a movie above 3 or not) of the users is predicted. The remaining portion of the
dataset (i.e., the validation set) is used to assess this prediction. We believe that such an
approach is not effective. Indeed, the available ratings in R are skewed in the sense that
approximately 82.5% of the ratings are above 3. Hence, a naive recommendation system
suggesting a positive rating for every user-movie pair in the validation set matches the
user’s taste with approximately 82.5%. In comparison, the authors of [52] claim a match
of 89% for their approach.

A second option is to compare the co-clustering results to a plausible ground truth. For
the users, demographic information is available which theoretically admits constructing
such a ground truth; we nevertheless refrain from doing so, since no choice can be justified
without evoking critique. For the movies, genre information is available which lends itself
to evaluating movie clusters. However, not every movie is assigned to a unique genre,
but may belong to multiple genres. The ground truth W* is therefore not a function, but
a distribution over the set of genres ). This is problematic for (3.19), which is why we

3grouplens.org/datasets/movielens,/100k
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Figure 3.5.: ANNITCC performance for movie genre matching
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For each movie cluster, we look for the genre with which this cluster has the greatest
overlap. Unlike for MAP, two different clusters can now be mapped to same movie genre
in MAP’. Hence, MAP’, sometimes referred to as purity, is essentially the average of the
fraction of movies in each cluster that belong to the same genre. As a side result, MAP’
gets rid of the maximum over all permutations 7, which is intractable for large numbers
of genres.

Results

The results are shown in Fig. 3.5. First, note that the MAP’ value for randomly generated
clusters is remarkably high. This is because the number of movies in different genres varies
greatly; for example, 725 movies are assigned to genre “Drama” and 505 to genre “Com-
edy”, whereas only 24 movies belong to the genre “Film-Noir”. Noting this, quantitative
results based on movie genres are useful to observe trends and general behavior, but the
numbers should be taken with a grain of salt. The maximum value for MAP’ in Fig. 3.5 is
significantly smaller than 1. This is reasonable since co-clustering is based on a sparse ma-
trix of user-movie rating pairs: While some users are genre-addicts, rating movies mainly
based on their genre, other users may rate movies based on aspects unrelated to genre.
Hence, one cannot expect a value MAP’ = 1 for co-clustering based on user-movie rating
pairs.

We observe that MAP’ generally decreases with decreasing 5 and the maximum value
is at 8 = 0.9, albeit only slightly larger than for § = 1. This shows that our algorithm
is capable of outperforming ITCC (8 = 3), IBCC (8 = 2), and (albeit only slightly) IB-
based (6 = 1) movie clustering. For § close to 0, we obtain results which are very close to
what we obtain for randomly generated movie clusters. A closer analysis revealed that the
solution found for § = 0 has a lower cost than the solution found for g = 1, which means
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that [-annealing was successful in escaping bad local optima, but that the genre-based
“ground truth” does not coincide with the global optimum of the cost function for g = 0.
We believe that, in this particular example, this phenomenon is linked to the user-movie
rating matrix R being sparse.

We finally complement this quantitative evaluation by a qualitative evaluation of the
movie clusters. Again, we observe meaningful results for higher values of § when compared
to smaller values of 3. For example, looking at movie clusters for § = 0.9, we notice that
many classics are clustered into one group, including Gone With The Wind, Breakfast
at Tiffany’s (1961), 12 Angry Men, The Graduate, The Bridge on River Kwai, Citizen
Kane, Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb, Vertigo,
Casablanca, His Girl Friday (1940), A Street Car Named Desire, It Happened One Night,
The Great Dictator, The Great Escape, Philadelphia Story. Similarly, many animated/kids
movies have been assigned to a cluster, including The Lion King, Alladin, Snow White and
the Seven Dwarfs, Homeward Bound, Pinocchio, Turbo: A Power Rangers Mowvie, Mighty
Morphin Power Rangers: The Mowvie, Cinderella, Alice in Wonderland (1951), Dumbo
(1941), Beauty and the Beast, Winnie the Pooh and the Blustery Day, The Jungle Book,
The Fox and the Hound, Parent Trap, Jumanji, Casper, etc. Furthermore, our approach
clustered various sequences of movies, e.g., 6 out of 8 Star Trek movies and all 7 Amityville
movies have been assigned to one cluster each. In contrast, the results for § = 0 did not
yield clusters one would consider meaningful.

3.9.3. Community Detection in Bipartite Graphs

Community detection is a common problem in social network analysis and is usually con-
cerned with (random) unipartite graphs, see [54]. In this section, we look at the related
problem for bipartite graphs. There, the two sets of vertices could be the characters and
the scenes of a play, and the goal could be to group characters in a meaningful way.

We apply our algorithm to the Southern Women Event Participation Dataset [48,54].
The dataset consists of 18 women (|X| = 18) and 14 events (|| = 14), and the weight
matrix W contains a one if the corresponding woman participated in the corresponding
event and a zero otherwise. We restarted ANNITCC 50 times for § = 1 to obtain a good
initial co-clustering for the annealing process. To get results comparable to those in the
literature, we chose |X| = 2,|)Y| = 3 and |X| = |Y| = 4. The results are displayed in
Fig. 3.6 for g = 0.7.

The two women communities we obtained match with those communities reported in
the literature [49,54]. The authors of [49] also clustered the events into three clusters:
The events are clustered into a group in which only women of the first women community
participated, a group in which only women of the second women community participated,
and a group in which women from both communities participated. Our result in Fig. 3.6(a)
is remarkably similar to theirs, with the exception that the event with label 6 is put in
a different group. Note, however, that in this event only one woman of the opposite
community participated. Remarkably, we obtained the same co-clustering for all values of

3.
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Figure 3.6.: Community Structure of the Southern Women Event Participation Dataset.
The separation between nodes indicates the clustering obtained from AN-
NITCC with 8 = 0.7, the color of the nodes is taken from reference clusterings
from the literature.

For four women communities and four event clusters, we compared our results with
those of Barber [48], who employed a modularity-based approach. Our event clusters in
Fig. 3.6(b) are identical to those of [48], and our women communities are largely consistent.
We found in a separate set of experiments that the women communities show a greater
agreement for § = 1, and less agreement for § = %; the MAP values for the chosen value
of B = 0.7 lie in between. Thus, community detection via [ITCC can be outperformed by
our algorithm for larger values of j.
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Cluster Analysis with Simultaneous
Global and Local View of Data

In this chapter we propose a new clustering algorithm which utilizes the mathematical
framework of factor graphs. We show the efficacy of this algorithm in discovering global
structure in data as well as in providing useful local information about clusters.

Cluster analysis, also known as clustering, is one of the most important tools in ex-
ploratory data analysis and unsupervised learning. It refers to the task of grouping data
points so that the points belonging to the same group are more similar to one another than
to the points belonging to other groups. The data points in cluster analysis can represent
a wide variety of objects depending upon the application. For example each data point
may represent a document (in document clustering) or a customer (in market research) or
a gene (in genomics). Beyond this notion there are no universally accepted definitions of
what a “cluster” means. The “goodness” of obtained results is determined by the human
analyst’s interpretation and the effective application of these results for further decision
making. Furthermore there is no standard format of providing input information to the
clustering algorithms about the data points. Due to these two reasons there is a plethora
of clustering algorithms that accept input information in different formats and generate
outputs conforming to different notions of what a cluster should be.

Clustering has wide spread applications. In business intelligence and market research it
has been used, among other purposes, for market segmentation [55]. In biology it has been
used to group similar genes [56]. In social sciences cluster analysis has been applied to
discover community structures [57] and for detecting crime hotspots [58]. There are many
more domains where cluster analysis has been successfully applied. Furthermore, even in
many supervised machine learning tasks, cluster analysis is used as a preprocessing step.

In this chapter we focus on pairwise similarities between data points as the input in-
formation to the clustering algorithm. Note that graph clustering is a special case of this
scenario as one can interpret the weights on the edges between the nodes (aka data points)
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Algorithm Optimization Aspects Global View Local View
Requires Complexity || Global Outlier Exemplars | Local
No of Structure Detection Structure
Clusters Discovery
Desired No Low Yes Yes Yes Yes
PAM Yes O(1X]?) No No Yes No
AP No O(1X]?) No Yes Yes No
MCL No O(|x%) Yes Yes No No
DBSCAN No O(1X]?) ~ ~ No No
Spectral Yes o(|x %) ~ No No No
Heirarchical|| No O(X2log|X|) || ~ ~ No ~
EAP No o(|x*) Yes Yes Yes Yes

Table 4.1.: Qualitative comparison of famous pairwise similarity based clustering algo-
rithms w.r.t. various desired characteristics. |X’| denotes the cardinality of the
dataset and ~ implies that the algorithm is not too good but also not bad for
the desired trait.

as a specification of the pairwise similarity between the nodes. Furthermore, we focus
mainly on hard clustering, i.e., we assign each data point to only one cluster rather than
providing a vector with probabilities of a data point belonging to different clusters, as is
the case in soft clustering. We do, however, show how our proposed algorithm can effi-
ciently indicate the confidence level for each data point about joining different discovered
clusters. This information can be used to transform the proposed algorithm into a soft
clustering technique, but we do not explore this topic further in this work.

Table 4.1 outlines the properties that we believe are desired in a clustering algorithm from
the perspective of an analyst. We will discuss these and other desired traits in more detail
in Sec. 4.2. In Table 4.1 we also provide a qualitative analysis of the well known pairwise
similarity based algorithms w.r.t. to these traits. Different algorithms have different
strengths and shortcomings. Markov Clustering (MCL) [14] can recognize clusters, but it
suffers from high computational complexity. On the other hand DBSCAN [15] has only
quadratic complexity and can also identify clusters of various shapes, but it suffers from
the possibility of not allocating many data points to any cluster. MCL and DBSCAN also
do not provide any local view of the data. Affinity Propagation (AP) has been proposed
as an alternative to K-medoids (PAM) which does not require the number of clusters as
an explicit input. Like K-Medoids (PAM), AP also provides exemplars for clusters which
reveal meaningful information about the typical characteristics of the data points in a
cluster. However, as is the case for PAM, AP is restricted to discovering only globular
clusters, which severely limits its applicability.

In this work we modify AP to develop a new clustering technique that incorporates the
desired features mentioned in Table 4.1. We choose AP as our starting point due the
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following two reasons:

> AP already possesses many desirable properties such as no need for a (hard) speci-
fication of the number of clusters, no initialization issues and low complexity.

> The mathematical framework of factor graphs and message passing, on which AP
is based, is very flexible and provides a natural way to incorporate new information
and requirements into the framework.

We start the chapter by formulating the clustering problem in Sec. 4.1. In Sec. 4.2
we present some characteristic that, we believe, are desired in a clustering algorithm. In
Sec. 4.4 we introduce the original Affinity propagation algorithm (AP). Sec. 4.5 briefly
discusses other extensions to AP. In Sec. 4.6 we propose the new algorithm called Extened
Affinity Propagation (EAP) and in Sec. 4.7 we discuss it’s different characteristics in detail.
Sec. 4.8 elaborates on the hyperparameters involved in EAP and how they can be efficiently
tuned for a given dataset. Sec. 4.9 and Sec. 4.10 conclude the chapter by discussing the
effective application of EAP to synthetic and real datasets, respectively.

This work was done in close collaboration with Rayyan Ahmad Khan.
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4.1. Problem Formulation

We are given a set of data points, denoted by X = {w1,22,...,2x} and a pairwise
similarity matrix S where S(7,j) € R denotes the similarity of point z; to point x;. We
use the shorthand notation s;; = S(i,j) for convenience. Note that we do not require S
to be symmetric or impose any other constraints on S beyond the obvious assumption
that a data point exhibits higher pairwise similarity to another “closer” data point when
compared to a data point that is further away. The range of values s;; is allowed to take
depends on the particular clustering algorithm that processes S.

Cluster analysis deals with the problem of finding a suitable mapping ¢ : X — X where
|X| < |X]. The actual alphabet X is not important for clustering, only |X| is important.
Depending upon the clustering algorithm |X| may need to be explicitly specified by the
user or it may be automatically estimated by the clustering algorithm. We define ¢; =
{(x;) to denote the cluster to which the data point x; belongs to. Hence ¢; € X for
all i € {1,2,...,]|X]|}. Clustering algorithms normally solve the problem by defining a
suitable cost function C, involving pairwise similarities s;; and cluster assignments ¢;, and
then optimizing the cost function w.r.t. the cluster assignment:

("] = arg{ix]laXC ([¢],S) (4.1)

where the notation [c] represents the set of variables ¢; for all i € {1,...,|X|}. For
most suitable cost functions used in cluster analysis, the optimization defined in (4.1) is
computationally too complex. Hence, often the clustering algorithm consists of a heuristic
trying to find a “good” sub-optimal solution to the optimization problem with acceptable
computational complexity.

Graph clustering [59], namely the task of clustering the nodes of a (directed) graph
based on the weighted edge based interactions between pairs of nodes, can be considered
an equivalent formulation of the pairwise clustering problem described above where data
points are replaced by nodes and pairwise similarities are replaced by weighted edges
between node pairs in the graph. Hence a clustering technique developed for the problem
stated above is automatically applicable to graph clustering problems and vice versa.

The choice of how pairwise similarities are computed between data points is one of the
most important factors that influences the effectiveness of the clustering results and this
is true for any clustering algorithm. However this choice is highly application specific. It
depends on the type of data encountered as well as on the ultimate goal of the cluster
analysis. On the other hand a good clustering algorithm should be able to discover the
hidden structure in S regardless of how the pairwise similarities were computed. Hence
we separate the task of designing a suitable application specific pairwise similarity metric
from the task of designing an effective clustering algorithm which should be application
agnostic. In this chapter we assume that we are provided with a suitable S which captures
the structure in the underlying dataset and our aim is to design an algorithm that can
discover this hidden structure in S.
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4.2. Desired Traits in a Clustering Algorithm

In this section we elaborate on the desired properties that we are interested to see in
a clustering algorithm, some of which were mentioned in Table. 4.1. These properties
are mainly related to three different aspects: the ability to discover global structure of
the dataset, the ability to provide useful local information for each cluster and the ease
and complexity of optimization. The following characterization of desired traits is by no
means a universally accepted list. Furthermore, depending on the use case some of these
characteristics may not be important whereas some other characteristics not discussed here
may be of interest.

4.2.1. Global View

Global Structure Discovery: The main task of cluster analysis, as discussed in Sec. 4.1,
is to discover global structure in the provided dataset. Hence it is important that a clus-
tering algorithm can discover clusters of a wide variety of “shapes”. Algorithms such as
K-means, K-medoids (PAM) and AP lack this property as they only discover globular clus-
ters. On the other end of the spectrum, MCL is normally good at discovering clusters of a
wide variety of shapes. We use globular cluster to refer to clusters having shapes analogous
to spherical clusters in euclidean space and star shaped graph components (when the edges
of the graph have lengths that are inversely proportional to pairwise similarities).

Outlier Detection and Robustness to Noise: Another useful characteristic in a
clustering algorithm is the ability to identify outliers, i.e., data points that clearly do not
belong to any cluster. Furthermore, the algorithm should minimize the effect of the outliers
on the rest of the clustering results. Similarly, the clustering algorithm should be able to
handle noisy datasets with possibly blurry separation between clusters in small subregions
of the clusters.

4.2.2. Local view

These traits relate to the information captured by a clustering algorithm about the internal
structure of each discovered cluster.

Local Exemplars and Subclusters: Exemplars constitute a subset of the dataset,
where each exemplar represents the typical characteristics of a (sub)cluster. Both K-
medoids (PAM) and AP provide such exemplars, one for each cluster. Since AP and PAM
are restricted to discovering globular clusters, one exemplar per cluster may be enough
to represent the typical characteristics of the cluster, but in the case of more complicated
cluster structures, multiple exemplars may be needed per cluster where each exemplar
represents the typical characteristics of only a surrounding subregion of the cluster. In
this case we call them local exemplars. The subregion associated to any local exemplar
can be thought of as a subcluster.
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Local Structure of Each Cluster: Besides local exemplars and associated subclusters,
the algorithm may also provide other useful information about the internal structure of
each cluster. Some examples of such information are an indicator of relative densities of
different clusters or how strongly neighbouring subregions of a cluster are connected with
one another.

Indication of Potential Inconsistencies: An important aspect of local information,
which can also be used to improve the global structure discovery, is the ability of an
algorithm to indicate the data points or subregions for which the algorithm is not confident
about the cluster assignment. If the number of such points is small enough, these can be
dealt with manually by an analyst. Such inconsistencies can also be studied further to
recognize if they are caused by the way pairwise similarity is computed or if they are
caused by the algorithm and the gained insights can be used to improve either. It is also
possible that these inconsistencies are due to inherent uncertainty and noise in the dataset.

4.2.3. Algorithmic and Optimization Aspects

Number of Clusters: In most practical scenarios we are a priori unaware of the number
of clusters present in a dataset and may only have a vague estimate. Hence it is beneficial
if the clustering algorithm does not require the exact number of clusters as an input, but
only a soft estimate to provide initial guidance to the algorithm.

Hyperparameter Tuning: Every clustering algorithm requires hyperparameters that
need to be provided and tuned by an analyst or another heuristic. For example DBSCAN
requires two parameters, minimum number of neighbourhood points and the neighbour-
hood size. AP requires the self preference parameter which is a soft indicator of the number
of clusters. For a good clustering algorithm it is important that the hyperparameters can
be tuned relatively easily to fit to a wide range of datasets and discover suitable results.

Low Complexity: One of the most important aspects of a clustering algorithm is that
it has an acceptable computational complexity. We use the Big O notation [60] to present
asymptotic complexity results.

Flexibility: An often ignored, but highly useful, property in practical applications is
the flexibility to easily incorporate additional a priori information and constraints in the
existing algorithm.

The characterization of most of these traits is vague. This is because, as mentioned earlier,
cluster analysis itself is not a precisely defined problem. Different algorithms may strive
to fulfill these traits in different ways. The main aim of this section was to define a broad
characterization of the desired characteristics so that the readers can understand, in a
broader sense, what these traits mean when they are referred to in the following sections.
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4.3. Preliminaries

We encourage the readers to check out the brief refreshers on factor graphs and Max-
Product algorithm (MP) in Appendix B.1 and B.2 before moving to the next sections.
These appendices introduce the appropriate notation and important concepts needed in
the following sections.

4.4. Affinity Propagation

In this section we review AP before proposing our modifications in Sec. 4.6. AP was
introduced in [16]. It can be seen as an alternative optimization procedure to PAM [61] for
solving the K-medoids exemplar based clustering problem. In K-medoids based clustering,
each cluster is represented using an exemplar. The exemplar itself is a data point belonging
to the respective cluster. AP has some clear advantages over PAM as we will see later.
Given the dataset X and the pairwise similarity matrix S, the aim is to find exemplars and
cluster assignments such that the product of pairwise similarities between the data points
and the exemplars associated with the respective clusters assigned to the data points is
maximized:

arg[r?aXHsiyci st ¢, =¢; V) (4.2)

c i

Hence the cost function in this case is
C([d.9) = [Isie (4.3)

Instead of dealing with the product in (4.2) we convert the optimization problem into log
domain to deal with the sum:

argmax (H si,ci) = argmaxz Sie; St Co;=0¢5 V] (4.4)

[] i [d]

where 5, ., = logs;., and ¢; refers to the exemplar selected by the data point x;, which
also determines the cluster that the data point belongs to since each cluster has only one
exemplar. Note that the s;; need to be positive for (4.2) to be well behaved and (4.4) to be
well defined, therefore leading to 5;; being any real number. Beyond this we do not impose
any constraints on the pairwise similarities s;; for ¢ # j. s;; represents the preference
of data point z; to become an exemplar. It is not computed the same way as the other
similarity values s;; for ¢ # j, rather it is considered a hyperparameter that needs to be
specified by the analyst. In case of no additional a priori information s;; is assigned the
same value p for all points where p is a parameter of the algorithm. p then represents the
initial desire of each point to become an exemplar. Hence in AP, initially each datapoint
is treated as a potential exemplar and there are no initialization issues like the ones faced
in PAM, K-means and other exemplar (or centroid) based algorithms. In the absence of
any additional information p is normally set to the median of S [16]. One has to be careful
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Figure 4.1.: Factor graph of (4.6) [63].

not to set p to a too high value, for example if p > s;; for all ¢ # j, then (4.2) leads to a
trivial solution of every point declaring itself as an exemplar and forming a single point
cluster.

The constraint c., = ¢;, known as the consistency constraint, forces that if a data point
x; is chosen as exemplar by some other point(s), it must choose itself as it’s exemplar
too, hence promoting compact clusters. In the absence of this constraint, it is possible
for every data point to choose any other data point as it’s representative ¢; and therefore
every point will end up choosing the neighbour with the highest pairwise similarity as
it’s representative. The resulting solution will not be a good clustering solution and it
will not lead to exemplars, each of which represents the typical characteristics of a subset
of the dataset. Hence this consistency constraint is important to obtain a meaningful
clustering result. Unlike conventional K-medoids optimization, we do not need to specify
the number of clusters |X| before solving the optimization problem. The self preference p
in conjunction with the self consistency constraint, which motivates compact clusters, acts
as a soft initial guidance for AP to determine the number of clusters needed for the given
dataset.

(4.2) is an NP-Hard combinatorial optimization problem [62]. AP solves it sub-optimally
in O(]X]?) computations using MS. For this purpose we present the reformulated version
of AP, described in [63], involving binary optimization variables: Let us define a matrix
B € {0, 1}**I¥1 of binary variables b;; = B(i, j), where b;; = 1 <= ¢; = j. If we define
B(z,:) to represent the ith row of B then B(i,:) can be considered as a one hot encoding
of ¢;. Similarly we use B(:,7) to represent the ith column in B. Since every data point can
choose only one exemplar, the objective function in (4.4) can be written as:
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Figure 4.2.: Message passing in factor graph of Fig. 4.1 [63].

Ybij=1 Vi
argmax ( si'bi') s.t. Q7 (4.5)
B % 7 bjj = max bij V]

We can reformulate (4.5) as the following unconstrained optimization problem:
argana (3530 + 3 i(B(i, ) + 3 by (BG. ) ) (4.6)
1] i J

where

J

9:(B(i,:)) = , (4.7)
—00 otherwise

hi(B(:, 5)) = { v (4.8)
—00 otherwise

where h; and g¢; correspond to indicator functions for the optimization problem in the
product domain. AP solves (4.6) by mapping it to the factor graph shown in Fig. 4.1
where the factor nodes gij correspond to 5;;b;;. It involves two steps: message passing and
decision mechanism.

4.4.1. Message Passing

We can find a sub-optimal solution of (4.6) by applying Max-Sum algorithm (MS) to the
factor graph in Fig. 4.1. The messages exchanged between the variable node b;; and the
factor nodes g; and h; are shown in Fig. 4.2, where we have used the following shorthand
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notation for convenience:

Bij = Hby;—g,(1) = 11—, (0) (4.9)
Nij = Vgioby; (1) = Vgm0, (0) (4.10)
Pij = Mbs;—h; (1) = iy, —sn; (0) (4.11)
Qij = Uity (1) = Vi, (0) (4.12)

For efficiency, we only exchange a scalar instead of a vector, constituting the difference of
the message values for b;; = 1 and b;; = 0. This is sufficient for clustering problem, as we
are only interested in determining the maximizer. This difference represents the relative
gain to the overall cost function according to a given variable or factor node for choosing
b;j = 1 instead of b;; = 0, based on the current information available to the node. The
final equations used for computing these difference messages are:

Bij = gij + Oéij (413)
pij = 5ij + 1ij (4.14)
- — — max §; 4.15
Tij k#).( Bik (4.15)

k;mal"(omkj) i=]
;= {7 o (4.16)
! min0, p;; + > max(0, p;)]  F J
kg {i.j}

Since g; and h; represent constraints in the original optimization problem, we also refer
to the corresponding factor nodes sometimes as constraint nodes.

The detailed derivations of (4.16) and (4.15) are given in [62]. 7;; and a;; lend themselves
to intuitive meanings and insights into the inner workings of AP. g; constraint focuses on
satisfying the mutually exclusive assignment of ¢ to only one exemplar. This can be seen
by looking at 7;;, which corresponds to the maximum penalty that would be incurred by
one of the other b;, being switched to 0 so that b;; could be switched to 1, i.e., the penalty
of assigning the point 7 to exemplar j instead of exemplar k.

For a;; we have two cases. For ¢ = j, ay; basically represents the motivation provided by
the local neighbourhood to the data point z; to become an exemplar. We only consider the
positive motivation provided by the local neighbourhood since we are interested in checking
how many points are interested in declaring x; as their exemplar but we do not care about
how far are the other points which do not want to connect to x; and are interested in
declaring some other data point as their exemplar. For ¢ # 7 we basically pass to point x;,
how motivated x; is to become an exemplar. If z; is already motivated to be an exemplar
because of other points in it’s local neighbourood, z; is free to choose z; as a local exemplar,
indicated by 0 penalty where as if z; is not so motivated to be an exemplar, then z; is

discouraged to declare z; as it’s exemplar by the penalty p;; + > max(0, pg;) < 0.
#{i.j}
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4.4.2. Decision Phase

During the iterations, we can approximate the difference of the corresponding max-marginals
(in the log domain) for the two values of b;; via accumulated belief a;; given by the sum

of all incoming messages to b;;, i.e., a;; = s;; + 7;; + ;. This sum corresponds to the

evaluation of (B.19) and then taking the difference for the two values of b;;. Current cost

maximizing value of b;; is decided by thresholding a;; at 0, i.e., b;; = 1 if a;; > 0 and

b;j = 0 otherwise. Let A be the matrix of accumulated beliefs a;;. Convergence is achieved

in AP if the values of diagonal elements of A do not change over a specified number of

iterations. Once message passing converges, we choose the set of exemplars as follows:

E = {k | axr > 0}. Each non exemplar point is then assigned to the exemplar most similar

to it [62]

¢; = argmax S Vi E. (4.17)
kee

4.5. Related Work

Since it was first published in [16], AP has been modified in different ways. Hierarchical
Affinity Propagation(HAP), introduced in [64], proposes a layered structure where the
exemplars of previous optimization layer are considered as the data points for the next
layer. HAP tries to cluster the data hierarchically without making hard decisions at each
hierarchical layer. Although the local exemplars obtained so are more meaningful than AP,
the clusters obtained by HAP are still globular at each layer and there is limited information
about the local structure of the clusters beyond local exemplars. Multi-Exemplar Affinity
Propagation (MEAP) [65] is another approach, closely related to HAP with two layers,
where the authors propose the use of exemplars and super-exemplars. Exemplars can select
super-exemplars as representatives but super-exemplars are forced to select themselves.
MEAP has similar drawbacks as HAP.

Soft-Constraint Affinity Propagation(SCAP) [66] is another relevant extension. Unlike
other variants, SCAP allows exemplars to select other exemplars as their representative
by relaxing the consistency constraint. As a result SCAP can discover a wider variety of
cluster shapes. On the other hand since SCAP tries to identify global structure based on
the pairwise similarities between exemplars, this corresponds to expanding a cluster by
establishing direct links between the local exemplars. Hence it often leads to sub-optimal
clustering. Furthermore, the only local information available is the local exemplars and
direct connections between them.

A more natural approach to identify arbitrarily shaped clusters is to combine subclusters
corresponding to each local exemplar by exploring the connections between subcluster
boundaries. This is the approach we will take in this work. It not only has better and
more robust clustering results but also provides us with additional information about
relative cluster densities and strength along with the local exemplars.
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4.6. Extended Affinity Propagation (EAP)

AP possesses many of the desired traits mentioned in Sec. 4.2. It does not require any
cluster initializations, hence making it impervious to initialization issues suffered by many
other clustering algorithms. It only requires a soft estimate of the number of clusters
fed as an input in the form of self preference p. The computational complexity of AP is
O(]X]?). Furthermore it provides some local information about each cluster in the form
of an exemplar.

Unfortunately AP also suffers from the following issues: It can only discover globular
clusters which seriously limits it’s applicability. Besides the only local information it
provides about each of these globular clusters is an exemplar.

In this section we will modify AP to develop a new algorithm which inherits the positive
aspects of AP while alleviating its’ shortcomings. The fact that AP is developed based on
the flexible framework of factor graphs and the aforementioned positive aspects make it a
suitable candidate to modify and develop a new algorithm.

In order to include all the desired characteristics discussed in Sec. 4.2, we need to modify
the cost function (consequently also the message passing phase) and the decision mecha-
nism for AP. The basic principle driving our approach is to allow multiple local exemplars
in a cluster and to permit a data point to connect to multiple local exemplars if it is close
enough to them. These data points that form “boundary” connections between local exem-
plars by connecting to multiple local exemplars then enable the decision mechanism, which
looks for connected components in a graph, to discover the wide variety global structures.
Moreover, the local exemplars together with these boundary connections between them
provide meaningful insights into the internal structure of a cluster as we will see in the
later sections. We call our proposed algorithm Extended Affinity Propagation (EAP).

4.6.1. Modified Cost Function and Message Passing

Improved Global View: The g;(.) constraint in standard AP forces each data point to
choose only one exemplar. Combined with this, the decision process described in Sec. 4.4.2
forces globular clusters. For better global structure discovery we allow each data point to
connect to possibly multiple local exemplars and hence form boundary connections between
local exemplars. This is achieved by modifying g;(-) as follows:

J (4.18)
—00 otherwise

where

uw(B(i,:)) == Zbijq (4.19)
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where ¢ is a new hyperparameter denoting the penalty incurred when a data point connects
to a new exemplar. This leads to the following unconstrained optimization

argmax (Zbij (sij + q) + Z h;(B(:, 7)) + Ei:log <1<Zb’j > 1))) : (4.20)

Y]
Our choice of u(.) is motivated by the following two reasons:

> It can be seen from (4.18) and (4.20) that a data point x; is motivated to connect to
a potential local exemplar z; only if it has a strong enough pairwise similarity with
it. g,(.) penalizes the global cost function linearly with a penalty ¢ for each potential
local exemplar that z; chooses to connect to. However ¢ does not affect the selection
of the first exemplar as this is still a hard requirement of g,;(.). Every data point is
bound to select at least one potential local exemplar. So the new objective function
is bound to have a minimum penalty of ¢ x |X|. This addition of a constant will
not affect our calculation of argmax but allows for a bit simpler message derivations
with the same final outcome.

> The computations to determine all the outgoing messages from factor node g,(+) still
have O(N) complexity, same as the factor node g;(.) in AP. The complexity of the
algorithm thus stays O(]X|?). Unless chosen wisely, an arbitrary choice of u(-) may
lead to message computations with exponential complexity in |X| [67]. Even for
an u(-) that is a non-linear function depending only on the number of exemplars
x; has chosen, i.e., 3 b;;, the complexity of messages can increase to O(|X|log |X),

j
resulting in the overall algorithm complexity of O(N?log(N)).

The outgoing messages from the new constraint node g,(.) are
Mij = max <— max Bim CI) : (4.21)
m#j

The derivation of (4.21) is given in Appendix B.3. From (4.21) it can be seen that the
complexity of computing all the outgoing messages simultaneously remains the same as in
the case of AP. We can also look at (4.21) from an intuitive perspective by comparing it
with (4.15). As discussed in Sec. 4.4.1, for AP n;; corresponds to the maximum penalty
due to other potential local exemplars for data point x;. In (4.21) this penalty is limited
by g. Thus the negative effect of other potential local exemplars for ¢ on b;; being 1 is
limited. This allows a point to connect to more than one potential local exemplar if it is
“close” enough to them. We can recover the 7;; of AP by setting ¢ = —oo (and ignoring the
q X |X| factor in optimization in order to avoid the optimization problem being ill-posed).

Improved Local View: The new relaxed constraint g,(-) along with the new decision
mechanism that we will explain in Sec. 4.6.2 solves the problem of global structure discov-
ery by allowing the subclusters to be merged together using the “boundary” connections.
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Figure 4.3.: Messages passed between a diagonal variable node b; and it’s adjacent con-
straint nodes in EAP.

However, the relaxed constraint g,(-) obscures the local information. To understand why,
suppose a dataset that lies in a metric space and the pairwise similarities depend inversely
on the pairwise distances in the sense that an increase in the pairwise distance leads to a
reduced pairwise similarity. In AP, if a point x; is selected as an exemplar, the points close
to x; also have a high motivation of becoming an exemplar, during the message passing
phase, as they also experience incoming messages from the local neighbourhood that are
similar to incoming messages for x;. However g;(-) forces only one exemplar to appear and
suppresses others. When g; is relaxed to g;, the points close to a local exemplar also tend
to become local exemplars. This leads to many local exemplars appearing very close by in
dense regions of the dataset, which may obscure the local information. This phenomenon
of close by local exemplars is shown in Fig. 4.4(a) where data points belonging to one
cluster are marked with the same colour, circles show local exemplars and the remaining
points are shown by the marker 'x’. In order to obtain well separated local exemplars again
while retaining global structure discovery as well as O(|X'|?) computational complexity, we
introduce a new set of constraints on the diagonal elements of B, i.e., the elements sig-
nifying potential local exemplars. For every data point z;, let N; = {j} U{k|s;x > A},
i.e., the A-neighborhood around x;. Well separated exemplars can be obtained by enforc-
ing a maximum of one exemplar in each neighbourhood N by introducing the following
constraint in (4.20) for each z;.

0 if > b <1
keN;

ri(Nj) = (4.22)

—00 otherwise.

Since a point z; can belong to A-neighbourhood of multiple points, each b;; can have
multiple adjacent r4(-) constraints. M; = {k|j € N} denotes the set of all points whose
A-neighbourhoods contain z;. If z; is a local exemplar then all the points in N; UM,
should not be local exemplars. Fig. 4.3 shows the messages exchanged between the diagonal
variable nodes and the factor nodes for EAP where we defined the following shorthand
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(a) Without neighbourhood constraint 7, (b) With neighbourhood constraints r;

Figure 4.4.: The figures show the impact of neighbourhood constraints, defined in (4.22),
on the discovered local exemplars. It is also clear from the figure that the global
structure discovery has not been impacted by the neighbourhood constraints.
The two figures have been generated for the same p = 0.6 and ¢ = —0.97,
whereas the figure on the right has an A = 0.99.

notation:

(bi]' = /’Lbii‘)’r‘j<]‘) — by —r; (0) (4.23)
,QZ}U = VTj—ﬂh'z‘(l) - Vrj%bii(o)' (424)

The final equation to compute v;; is:

Y;; = — max(0, 1;22/)5 o). (4.25)
I#i

The derivation of (4.25) is given in Appendix B.4. The complexity of computing all the
outgoing messages 1;; from r; is O(]X|), hence the overall complexity of the algorithm still
stays O(]X|?). (4.25) provides an intuitive insight into the effect of constraint r;(-). If we
have more than one strong contenders for being a local exemplar in a neighborhood N, they
will all try to suppress one another. In such a scenario most of the potential local exemplars
in the neighbourhood will get suppressed, leading to well separated local exemplars in
the associated subregion. Fig. 4.4(b) shows impact of introducing the neighbourhood
constraints when compared to Fig. 4.4(a).

The messages exchanged between the variable and the factor nodes for the new factor
graph corresponding to EAP can be summarized as follows:

Bij = sij+ay +1(i=7) Y vu (4.26)
keM;
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Nij = Mmax (_ max [y ,Q> (4.27)
k#j

Gij = Si + Qg + My + Z (0 (4.28)

keM;\j

Yy = — max(0, max ¢y;) (4.29)
I#i

pij = sy + i+ 1 =7) Y by (4.30)

keM;
%&:.max((), Pkj) i=7
ajj =77 . 4.31
I \minl0, o+ 3 max(0py)] £ 431)
kg{ig}

4.6.2. Decision Mechanism

Even with the modified cost function and messages, the decision mechanism specified in
Sec. 4.4.2 will lead to globular clusters. The reason is because that (4.17) does not utilize
the “boundary” connections, where some data points want to connect to more than one
local exemplar. Rather it connects each data point only to the closest local exemplar only
and considers the globular subcluster associated with each local exemplar as a separate
cluster. Basically it ignores the information provided by the off diagonal elements of A.
Hence we need to modify the decision mechanism to better utilize the information present
in the new A. Like AP,after every iteration we check for the sum of all incoming messages
to by, i.e., ay; = Sy + i+ oy + . ZM 1 to check for convergence. The decision phase that
HEM;
follows convergence of these messages is described in Alg. 4.1. Clusters are discovered by
extracting connected components of the graph for adjacency matrix B, the symmetrized
version of B [68]. &£, B and £, now contain local information about the clusters. The

complexity of the decision phase is also upper bounded by O(|X|?).

4.6.3. Complexity

In Sec. 4.6.1 and Sec. 4.6.2, we have discussed the associated computational complexity
with each modification. The complexity of none of the modifications exceeds O(|X|?).
Hence the complexity of the overall algorithm also stays O(|X|?). Since we have not
imposed any structural restrictions on the pairwise similarity matrix S (such as symmetry
or sparsity etc), O(]X|?) is the best one can achieve. Like AP, for many problems the factor
graph can be sparsified by reducing the number of variables involved in g and h constraints.
g can be sparsified by considering that a data point will only consider to connect with
potential local exemplars that are close enough, hence the corresponding g; constraint may
involve only other data points which are in a small enough neighbourhood of data point ¢
based on the pairwise similarities. Similarly h; constraints can be sparsified by considering
that only those points that are near enough to the data point z; would potentially consider
to make x; their local exemplar. For sparsifying neighbourhood constraints, we can check
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Algorithm 4.1 EAP Decision Mechanism

1: function EAPDECISION(A)

2 B <+ 1(A > 0) > Element-wise thresholding of A
3 E+—{k| b =1} > Set of local exemplars
4: for j ¢ £ do > Ensure local consistency constraint
9: B(:,j) +~—0

6 end for

7 for i < 1to N do

8 L; + {klk € £ and hy =1} > Local exemplars connected to x;
9: if £; == () then > Isolated points
10: L; <+ {i}

11: bn +—1

12: end if

13: end for

14: B, + B AB” > Symmetrize B
15: ((-) < ConnectedComponents(By) > Discover connected components [68]

16: return £, B, L, /
17: end function

that if a pair of data points ; and z; is involved in one neighbourhood constraint r;, then
we do not need to involved the same pair in another neighbourhood constraint.

Since we relax one set of hard constraints involved in AP, i.e., the g; constraint, in
practice this means that our algorithm requires less number of message iterations for the
diagonal messages to converge because the decoupling in g; avoids the equally strong cyclic
negative messages that are exchanged in AP between two (or more) equally well suited
potential exemplars for a data point.

4.7. Global and Local View of EAP

In this section we will highlight some important features of EAP. Many of these features
are not present in AP, hence this also highlights the improvements EAP offers. Some of
these features can also be associated with AP but are not handled as well by AP as EAP
does. Furthermore, there are other features such as flexibility, reasonable complexity and
the need for only a soft estimate of the number of clusters which are directly inherited
from AP or the underlying framework of factor graphs and message passing algorithms.
Hence they will not be discussed here.

4.7.1. Global Structure Discovery

One of the primary goals of modifying AP, as mentioned in Sec. 4.6, was to allow the dis-
covery of clusters with widely varying characteristics such as various shapes and varying
densities within the same dataset. In Sec. 4.9 we use synthetic datasets to show that EAP
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is able to achieve this goal very effectively. In Sec. 4.10 we observe similar behaviour on real
world datasets. Furthermore, as discussed in more detail in Sec. 4.8, we do not perform
parameter sweeps over the hyperparameters of EAP to find these results (which would
be in most practical cases computationally impractical and we will need some external
information to choose the hyperparameters corresponding to the “best” results). Instead,
the results presented from here onwards are obtained via successive tuning heuristic pro-
posed in Sec. 4.8 unless stated otherwise. Therefore, one can expect to obtain similar
performance in other practical applications of EAP to cluster other datasets without any
additional knowledge beyond pairwise similarities. It is also interesting to note that for the
datasets tested in Sec. 4.9 and Sec. 4.10, the values of the hyperparameters obtained via
successive tuning, which correspond to the results shown lie in a narrow range for all the
datasets. This implies that for a large variety of datasets we can find suitable hyperpara-
maters by tuning them in a narrow range, at least when using similar pairwise similarity
metrics.

4.7.2. Local Exemplars

As opposed to AP, EAP provides multiple local exemplars per cluster. As explained in
Sec. 4.6, r; constraints lead to well separated local exemplars, each exemplar representing
the typical characteristics of a subcluster. In Sec. 4.9 we will see how local exemplars are
distributed among the dataset for different datasets whereas in Sec. 4.10 we will look at
an example of what these local exemplars may represent for real world datasets.

The obtained local exemplars can be used to efficiently adapt the clustering results for
evolving datasets. For example, they can be used to efficiently cluster a new data point
Tnew after you have already clustered the original dataset X using EAP. We can compare
Tnew to the already found local exemplars (£) and assign it to the cluster which contains
the closest local exemplar. This usually lowers the complexity by orders of magnitude when
compared to assigning a cluster by finding the closest neighbour in the already clustered
dataset, as would be the case for algorithms that do not provide any local information,
and also provides further information as follows: If there are two or more local exemplars
belonging to the same cluster which are almost equally close to the data point ., we can
connect Ty, to all of them. If there are two exemplars belonging to different clusters that
are almost equally close to x,ey, then this new data point can be passed on to a human
analyst as a potential inconsistency that needs to resolved by expert opinion. If the new
data point has low enough similarity to all of the local exemplars, it can be treated as an
outlier. We can apply this procedure to more than one new data points as well. In that
case we should just be more careful that if we notice a sufficiently large number of new data
points being declared as outliers this may be an indication of a new cluster being formed
which was not present in the original clustering of X by EAP. Also if we notice enough
data points having close enough similarities to two exemplars from different clusters, they
may form a strong enough bridge between the two clusters to merge them to one. In these
cases it is a good idea to either recluster whole dataset or a partial subset of the dataset.
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Figure 4.5.: Half-moons dataset with outliers. These results are obtained using the same
parameters as Fig. 4.4(b), i.e., p = 0.6, ¢ = —0.97 and A = 0.99.

4.7.3. Outliers and Noisy Data

EAP starts by considering all data points as potential local exemplars and then explores
the neighbourhood of each data point to later decide if a data point should become a local
exemplar or not. This provides EAP the ability to discover outliers as they do not tend
to connect to other local exemplars that belong to well formed bigger far away clusters.
This is depicted in Fig. 4.5, where we again have the half-moons dataset with 2 clusters
and we have now added some outliers to it. Specifically, we have a lone outlier on the top
right side of the figure and a small cluster of three outliers on the bottom left of the figure.
EAP recognizes the lone outlier as a single point cluster, represented by purple colour.
Similarly, EAP also put together the three outliers on the lower left corner as one small
cluster, designated by blue colour. It is also important to note that the presence of these
outliers does not impact the clustering of the two well formed bigger clusters. This can be
observed by comparing Fig. 4.5 to Fig. 4.4(b), we we have the same dataset but without
the outliers.

In Sec. 4.9 we will see that EAP is also able to handle noisy data with partially blurry
boundaries between clusters.

4.7.4. Confidence

We can also easily and efficiently provide confidence values about EAP’s decision to put a
specific data point x; into the assigned cluster ¢; by using the local information provided by
EAP. This can be done by defining a metric based on the comparison of the x;’s similarity
to the nearest local exemplar in the assigned cluster ¢; and it’s similarity to the nearest
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(a) Confidence via closest local exemplars (b) Confidence via closest data points.

Figure 4.6.: The figures depict the confidence values for data points in the half-moons
dataset, obtained by (a) using (4.32), (b) using (4.33). The clustering results
used in either case are the same and correspond to the results in Fig. 4.4(b),
only the confidence metric used is different. Note that we have used the same
colour gradient scale in both figures for comparison.

local exemplar among all other clusters. For example, the metric

w(z) =log| max sp— max s (4.32)
o) =E(w:) (a;)A0)

uses a logarithmic measure to evaluate the confidence. (4.32) is just an example, one can
use any other way suitable way to compare the two pairwise similarity values. Fig. 4.6(a)
shows the confidence of decision for each data point. As desired, the confidence is low for
the points which lie on a boundary of the assigned cluster which is close to elements of
another cluster. Such a confidence measure is computationally less expensive and more
robust to noisy data than a confidence measure obtained by the comparison of similarity
to the closest point in the assigned cluster vs the similarity to the closest point among
other clusters. A confidence measure analogous to (4.32) but based on closest data points
is

w(z;) = log max sk~ IMax s | (4.33)
Uzp)=t(z:) U(zj) 70 (xi)

The results using (4.33) are shown in Fig. 4.6(b). We can clearly notice a sharper gradient
of colour, representing the change in confidence values, in Fig. 4.6(a) vs Fig. 4.6(b). In
Fig. 4.6(b), many of the data points which constitute the noisy boundary have similar
confidence values to the data points which lie inside the cluster.
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Figure 4.7.: The figure demonstrates how LEC histogram can be used to identify different
relative densities of the clusters when the r; constraints are inactive. These
results were obtained for p = 0.6, ¢ = 0.95 and A > 1.

The confidence measure can be utilized to highlight a small set of points for which an
analyst can try to decide which cluster they belong to.

4.7.5. Local Exemplars Connnected to a Data Point

When a data point is connected to multiple local exemplars that are well separated, this
implies it is relatively close to all of these local exemplars and shares a mix of their
properties. We will show examples of such mix of properties in Sec. 4.10 for real world
datasets. The local exemplars connected to a data point x; are given in £; which can
be computed in O(|€|). Hence we can find the number of local exemplars connected to
each data point in O(|€||X|). This information can be visualized using a histogram where
the x-axis represents the number of local exemplars and the height of each bar represents
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(a) Clustering results (b) IES histogram

Figure 4.8.: The figures depict the clustering results for half-moons dataset with a weakly
connected region in one cluster and the corresponding IES histogram.

the number of data points connected to these many local exemplars. Note that for two
different points in the same histogram bar, the local exemplars that they are connected
to may differ but the number of local exemplars they are connected to is the same. We
call this the LEC histogram. We will see in Sec. 4.8 how LEC histogram can help in
hyperparameter tuning.

In our development of EAP in Sec. 4.6, we introduced r; constraints to obtain well
separated local exemplars. As we mentioned in Sec. 4.6 and discussed in Sec. 4.8, inclusion
of these constraints often does not impact the global structure discovery (with proper
tuning of ¢) but it allows for a cleaner internal look of the clusters. However, looking at
the clustering results and LEC histogram when A > 1, i.e., r; constraints are inactive, also
leads to interesting insight into the dataset. It lets us recognize the relative densities of
different clusters. For example, in Fig. 4.7(b) (the LEC histogram for equal density blobs
shown in Fig. 4.7(a)) the bars for the two clusters are co-located whereas in Fig. 4.7(d)
(the LEC histogram for unequal density blobs shown in Fig. 4.7(c)) bars for red cluster
are more to the right clearly indicating a higher density of red cluster relative to the green
cluster. This is because now that we have no neighbourhood constraint on local exemplars,
more local exemplars appear in dense regions and lead to more local exemplar connections
per data point in that region.

However, these density results should be considered with a grain of salt as LEC histogram
only indicates the relative densities and for more complicated clusters with density varying
significantly inside a cluster, one may no longer be able to draw conclusions about relative
densities so easily. Note that for normal usage of EAP, the recommended setting is to have
active r; constraints to avoid very crowded and ultimately not so useful local information.



4.8. Parameter Tuning and Sensitivity 73

4.7.6. Inter Exemplar Connection Strength and Pruning

Another aspect of studying the local information is to count the number of data points
that form boundary connections between two local exemplars in the same cluster. This
count can be considered as an indicator of local cluster strength and for neighbouring local
exemplars this can indicate the confidence of EAP to merge the associated regions into
one cluster. This information can then be used to highlight potential inconsistencies where
the algorithm is not too certain about it’s decision to merge the regions into one cluster.
These few cases can then be evaluated by an analyst. We can again form a histogram
from this information where, for each exemplar we can check it’s connection strength to
the closest m local exemplars in the same cluster. Such a histogram is shown in Fig. 4.8(b)
for the clustering results of modified half-moons dataset in Fig. 4.8(a). The half-moons
dataset has been modified in Fig. 4.8(a) to contain a weakly connected region. The x-axis
of the histogram represents the connection strength (i.e., number of shared data points)
and the height of the bar indicates the number of local exemplar pairs with the given
connection strength. We call this the IES histogram. If there is a relatively low fraction of
exemplar pairs in the left-most bars, these left-most bars indicate potential inconsistencies
which may need to be examined by an analyst to decide if the exemplar pairs should be
connected or the links between them should be pruned. For example, in Fig. 4.8(b), there
are only 4 pairs that have a single boundary connection between them. By inspecting these
cases individually, we realize that 3 of them correspond to connections between relatively
distant local exemplars and pruning the boundary connections between them does not have
an impact on the clusters. The 4th boundary connection is highlighted in the Fig. 4.8(a).
This data points provides the only link between the two subregions of the red cluster with
a sparse region between them. An analyst can decide whether this data point and the
corresponding local exemplars pair provide enough merit to connect otherwise two separate
subsets of the dataset into one cluster. The computational complexity of constructing this
histogram is O(|X||€]m). Note that we can also automate this process of pruning. The
connections between all the pairs of local exemplars on the L.H.S. of a threshold, denoted
by n; in the histogram can be pruned before finding the connected components in Alg. 4.1.
n; can either be chosen by an analyst after having a look at the IES histogram or can
be determined automatically, for example, by assigning n; a value such that, for example,
99%, of the local exemplar pairs in the ITES histogram have higher number of boundary
connections connecting them. For our synthetic and realworld experiments in Sec. 4.10
and Sec. 4.9 we use n; = 3 independent of the dataset.

4.8. Parameter Tuning and Sensitivity

EAP involves three hyperparameters: p, ¢ and A. Despite the relatively high number
of hyperparameters, successive tuning of these parameters to obtain desirable results is
intuitive and computationally efficient in the sense that we only need a couple of steps at
most before we reach the desired results. This because of the following two reasons:
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> Due to the way we defined the optimization problem, the three parameters have
intuitive meanings and it is easy to recognize how clustering results will change due
to a change in one of the parameters.

> When we cluster the dataset using some specific values of the hyperparameters, the
local information obtained indicates how the hyperparameters should be changed to
improve the results.

We start by elaborating on the intuitive meaning and the suggested parameter ranges for
the hyperparameters.

Self Preference: The self preference p serves a similar purpose as in AP, i.e., it indicates
the interest of a data point to become a local exemplar, forming a globular subcluster
around it. A higher value of p motivates more points to become local exemplars whereas
a low value works to suppress potential local exemplars. For EAP, p takes normally a
higher value, i.e., often between 55 and 65 percentile of the pairwise similarity values in
S, than AP where p is normally equal to the median of S. This is because we want to
motivate enough local exemplars to be distributed all over the dataset, forming subclusters
which are later merged using Alg. 4.1 based on the boundary connections between the local
exemplars.

Linkage penalty: The linkage penalty ¢ defines the maximum penalty (per extra local
exemplar) that a data point has to pay for connecting to more than one local exemplar. A
higher penalty implies fewer boundary connections being formed between local exemplars.
Since we would like boundary connections to be formed between only very close by local
exemplars so we would like a data point to connect to multiple local exemplars only if it is
close enough to all of them and it helps in global cluster discovery, so we use a quite high
penalty. ¢ is normally chosen to be in the range of negative of 96 to 98 percentile of S.

Separation Radius: The separation radius A basically defines a neighbourhood around
each local exemplar such that there should be no other local exemplar appearing in this
neighbourhood. The lower the value of A, the bigger are the neighbourhoods N since more
datapoints z; have s;; > A and hence the bigger is the separation between “neighbouring”
local exemplars. Since the aim of introducing r; is just to counteract the effect of loosened
g; constraint on the local information by again providing us well separated local exem-
plars, A is normally chosen to be a high value, i.e., in range from 98.5 to 99.5 percentile
of S, hence suppressing other potential local exemplars in a very close by neighbourhood.
However, as discussed in Sec. 4.7.5, a A > 100 percentile of S, i.e., inactive r; constraints
provides us the information about relative densities of the clusters without affecting the
global structure discovery.

We always specify the values of p, ¢ and A in terms of percentiles of S. Hence we de-
fine the following short hand notation: we specify the values of these parameters as real
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numbers in the range [0, 1] where the number represents the percentile divided by 100, for
example p = 0.65 implies that p takes a value equal to 65 percentile of S.

For a given dataset, we normally start with predefined hyperparameter values, for ex-
ample p = 0.6, ¢ = —0.97 and A = 0.99. These predefined values as the typical parameter
ranges specified earlier may depend on the size of the dataset, for example for larger
datasets one may be interested in choosing more negative values of ¢ and higher values
of A. Similarly these typical values are also highly dependent of the pairwise similarity
metric, the ones mentioned here are often suitable for pairwise similarity metric based on
euclidean distance or a probabilistic notion of an edge between two nodes in a graph.

By looking at the local information for the obtained results we can then often successively
tune the three parameters, starting from p, then ¢ and finally A, as follows:

> Too few local exemplars: Assuming that A is in an acceptable range, this implies
that we have set p too low and we should increase it such that we obtain enough
local exemplars that are spread throughout the dataset.

> Boundary connections: Once we have adequate number of local exemplars avail-
able, we focus on building boundary connections between the local exemplars for
global structure discovery. For this we use LEC and IES histograms to tune ¢ as
follows

1. LEC and IES shifted too much to the left: This configuration of his-
tograms implies that the linkage penalty is too high and hence not allowing
sufficient boundary connections to form between the local exemplars. This will
also manifest itself in terms of many more clusters than expected. In this sce-
nario we should increase ¢ to decrease the linkage penalty so that more boundary
connections can appear.

2. LEC and IES shifted too much to the right: This scenario is the oppo-
site of the previous one. Due to the low linkage penalty data points also get
connected to far off local exemplars (which possibly may belong to a different
“ground truth” cluster). This can result in too few clusters than expected and
violates the basic principle of introducing the penalty ¢ that we want to form
only boundary connections between close enough local exemplars to facilitate
global cluster discovery. Allowing points to connect to even far off local exem-
plars rather distorts the global cluster discovery by even merging well separated
clusters. In this scenario we should increase the linkage penalty (decrease q).

> Local information: Finally we can tune A to obtain the desired type of local
information. If we believe that the discovered local exemplars are too close, we can
decrease A, increasing the neighbourhood radius around each local exemplar. This
will results in fewer and farther away local exemplars and a shift of both LEC and
IES towards left but as long as A is not decreased too much the global clusters
discovered remain unaffected, as was also illustrated in Fig. 4.4. The sole purpose of
A should be to adapt the local information, hence normally, as long as one starts the
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(a) LEC histogram (b) IES histogram (¢) Clusters with Exemplars

Figure 4.9.: The figure shows the results obtained in the first step of successive tuning
corresponding to p = 0.6, ¢ = —0.99, A > 1.

tuning process with a reasonable value of A (such as 0.99), there is often no need to
change it later in the successive tuning process.

While tuning for the boundary connections, we have not discussed the scenarios where
LEC is shifted too much to the left and IES is shifted too much to the right or vice versa as
these scenarios are unusual. An LEC towards right means that most points are connected
to many local exemplars hence leading to strong bridges between local exemplars which in
turn implies IES towards right. Similarly, an IES shifted towards right normally implies
that LEC should also be shifted towards right.

The confidence values discussed in Sec. 4.7.4 can also be used to determine if the results
obtained for a specific choice of hyperparameters are satisfactory. If there are too many
data points with low enough confidence, this often implies that the algorithm has not been
able to form boundary connections to merge subclusters where it should have. In this case
we need to reduce the linkage penalty to merge these subclusters. On the other hand,
when there is a relatively small number of points that exhibit a low enough confidence,
these points may also be manually analyzed to see if they should be considered to form a
bridge to connect two currently separate clusters to merge them

We will now present a step by step example of using the above insights to do hyperpa-
rameter tuning for the half-moons dataset earlier used in Fig. 4.4(b). As the first step, we
apply EAP to the dataset for p = 0.6, ¢ = —0.99, A > 1. The results obtained contain
47 clusters. None of these clusters correspond to outliers (i.e., none of them are clusters
consisting of only a couple of points far away from the rest of the dataset), hence all of
them represent regular clusters. The number of detected regular clusters are significantly
higher than expected. This is also evident by looking at the LEC histogram in Fig. 4.9(a),
where almost all the data points are connected to only one local exemplar. It is also clearly
visible in the IES histogram in Fig. 4.9(b), where there are very few local exemplars which
share any boundary connections. These results are similar to what one can expect from
AP (for the same p, AP will lead to even more clusters as it allows no boundary connec-
tions). The resulting clusters along with the local exemplars, many of which form separate
clusters around them due to the lack of boundary connections, are shown in Fig. 4.9(c)
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3000

(a) LEC histogram (b) IES histogram (c) Clusters with Exemplars

Figure 4.10.: The figure shows the results obtained in the second step of successive tuning
corresponding to p = 0.6, ¢ = —0.97, A > 1.

(some colours are reused to represent different clusters due to a limited number of clearly
distinguishable colours in a small figure but in most cases it is clearly from the spatial
locations of different clusters with same colour that they do not belong together). Note
that Fig. 4.9(c) is shown here just for illustration purposes and is not needed to decide the
next step in successive tuning. One can easily infer from the number of obtained clusters,
the LEC histogram and the IES histogram that we need to reduce the linkage penalty. For
the second step we reduce the linkage penalty while keeping the other hyperparameters
same. The new values of the parameters are p = 0.6, ¢ = —0.97 and A > 1. In this case
we discover two clusters and the LEC, shown in Fig. 4.10(a), as well as the IES histogram,
shown in Fig. 4.10(b), is no longer shifted either too much towards left or right (taking
into account that we still have A > 1, hence there are a lot more boundary connections
formed than needed). The resulting clusters along with the local exemplars are shown
in Fig. 4.10(c). All three factors, number of cluster, LEC histogram and IES histogram,
indicate that we have discovered the global structure well enough and now we need to
decrease A if we want to obtain local information corresponding to well separated local
exemplars.

As the final step, we reduce A while keeping the other hyperparameters same as the
previous step. The new values are p = 0.6, ¢ = —0.97 and A = 0.99. We again discover
two clusters as the number of global clusters is not impacted by a reasonable change in
A for appropriately chosen p and q. Now we can also see clearly from the LEC and the
number of local exemplars discovered that we no longer have very close by local exemplars
since the data points otherwise would connect to all the close by exemplars whereas now
the data points only connect to few local exemplars. Similarly, we also notice that whole
IES histogram is now scaled down, signifying that now the local exemplars are not so
close as to share almost all points they are connected to but fewer points that lie on the
boundary between the two well separated local exemplars. The sole purpose of A is to
help in discovering cleaner local information, hence one should not try to manipulate global
results using A and it should be varied in a very narrow range.

Note that at every step we only used the available local information to determine the
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(a) LEC histogram (b) IES histogram (¢) Clusters with Exemplars

Figure 4.11.: The figure shows the results obtained in the final step of successive tuning
corresponding to p = 0.6, ¢ = —0.97, A = 0.99.

next step for hyperparameter tuning. Hyperparameter tuning for EAP normally requires
only a couple of steps before discovering the results with both suitable global clusters as
well as appropriate local information. In the above example we started successive tuning
with such high values of ¢ and A just to illustrate the use of local information for successive
tuning. For normal application, one would start with more reasonable values of ¢ and A,
for example ¢ = —0.97 and A = 0.99. Furthermore, in the example we did not use the
confidence plots in each step but we can also use them to further help us in choosing the
next step.

The results shown in Sec. 4.9 and Sec. 4.10 are all obtained using this successive tun-
ing procedure rather than any kind of parameter sweeps. Hence these results are a good
representation of what one can expect in normal application of the algorithm instead of
the ceiling performance of EAP. Furthermore we also notice that the final results shown in
Sec. 4.9 and Sec. 4.10 correspond to hyperparameter values that are very similar for dif-
ferent datasets although the datasets have very different characteristics. This also implies
the ease of finding suitable hyperparameters for a wide variety of datasets by exploring a
very narrow range of hyperparameter values, atleast for datasets based on similar pairwise
similarity metric.

Finally we look at how global structure discovery is impacted by the variation of indi-
vidual hyperparameters.

> For a fixed ¢ and A, we show how the global structure discovery is relatively robust
to variations in p in Fig. 4.12. In general as long as p is not too low the global cluster
results don’t get impacted. This is unlike AP where variations in p have strong
impact on the number of clusters obtained and the cluster assignments. In the case
of EAP, as long as p is varied in a reasonable range, this only changes the number
of local exemplars appearing in any region but as long as the number is not too
small and they can get connected via boundary connections, the number of globally
discovered clusters does not change. Only when p is too low, we are no longer able to
form bridge connections between the appropriate exemplars and we lose the ability
to discover the global structure. In Fig. 4.12 even for p = 0.1, which is far outside



4.8. Parameter Tuning and Sensitivity 79

(a) p=0.1 (b) p=10.3 (¢c) p=0.6 (d) p=0.8

Figure 4.12.: The figure shows the robustness of the global structure discovery to variations
in p where ¢ = —0.97 and A = 0.99 for all the subfigures.

the range in which we vary p during successive tuning, EAP discovers the correct
global structure.

> For a fixed p and A, we show how the global structure discovery is impacted by the
variation of ¢ in Fig. 4.13. ¢ is arguably the hyperparameter which needs most care
but there is a reasonable range where the global clusters obtained are not affected and
successive tuning is able to discover the a suitable value of ¢ in this range quickly.
When we have a too high linkage penalty, clusters start to break at their weakly
connected regions as seen in Fig. 4.13(d). Note that still in Fig. 4.13(d) there have
not been drastic changes in the results beyond the green cluster being broken where
is was most weakly connected. On the other hand when we have too low linkage
penalty very far off local exemplars also get connected by boundary connections as
shown in Fig. 4.13(a).

> For a fixed p and ¢, the global clusters do not change when we start lowering A
from 1. Too small a value of A can have a similar impact as too small p or too high
g where not enough local exemplars appear in the dataset such that they can be
connected via boundary connections for global structure discovery. This can be seen
in Fig. 4.14(a) which leads to similar results as Fig. 4.13(d) but as we mentioned
earlier, A should only be used to adapt the local information, hence one does not

(a) ¢ = —0.955. (b) ¢ = —0.96 (c) ¢ = —0.97 (d) ¢ =—0.975

Figure 4.13.: The figure shows the variation of the discovered clusters w.r.t. variations in
g where p = 0.6 and A = 0.99 for all the subfigures.
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(a) A =0.985 (b) A =0.986 (c) A =0.99 (d) A>1

Figure 4.14.: The figure shows the variation of local and global clustering results due to
changes in A where p = 0.6 and ¢ = —0.97 for all the subfigures.

need to lower it too much as to change the global results.

4.9. Synthetic Experiments

We will use various synthetic datasets to analyze how EAP performs on them and how it
captures various aspects of the datasets. As all of these datasets lie in R? and the clusters
are distinguishable in a Euclidean sense, we use the following pairwise similarity metric
based on Euclidean distance between the points. For any two data points z;, x; € X, we
have

sy = i — (4.34)

where ||z; — z;|| is the Euclidean distance between the two dimensional vectors z; and z;.

Note that since the aim of EAP is to discover the structure in the given pairwise similarity
matrix, discussing synthetic datasets that are all separable in a Euclidean sense does not
limit the generality of our experiments. The reason is because these datasets lead to
different structures in the pairwise similarity matrix S due to the varied nature of the
clusters in different datasets. If the same pairwise similarity matrix was computed based
on some other pairwise similarity metric for some other dataset (possibly not lying in a
euclidean space), EAP will discover the same structure in the data. Datasets in euclidean
space that are separable in a euclidean sense just allow us to illustrate our observations in
a more lucid way without invoking special domain knowledge to intrepret the results.

For quantitative global performance evaluation we will present the values for Sensitivity
(Sn), Positive Predictive Value (PPV), Accuracy (Acc, goemetric mean of Sn and PPV),
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI). We are using
multiple metrics for quantitative evaluation of the global results due to the following two
reasons:

> Since EAP (as well as AP) does not take the number of desired clusters as a hard
input, it is important to use metrics which can capture the variability introduced

due to potentially different number of clusters in the ground truth and the results
obtained by EAP.
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Dataset Points | GT Params Sn | PPV | Acc | NMI | ARI
clusters
Aggregation 788 7 g = —0.971]0.995 | 0.995 | 0.995 | 0.985 | 0.990
p=0.5
Flame 240 2 g = —0.951]0.983 | 0991 | 0.987 | 0.9 | 0.955
p=20.6
R15 600 15 g = —0.971]0.992 | 0.992 | 0.992 | 0.988 | 0.982
p=0.6
Circles 1500 | 2 qg = —0.97 1 1 1 1 1
p=0.6
Spiral 312 3 g = —0.96 1 1 1 1 1
p=0.6

Table 4.2.: Quantitative global performance evaluation of EAP on synthetic datasets along
with the final hyperparameters obtained via successive tuning.

> We are evaluating performance for a variety of datasets with diverse characteristics.
For example some datasets have nearly equal sized clusters whereas others have
higher imbalance in cluster sizes. Similarly some datasets have all clusters with
similar densities whereas other datasets have clusters with different densities.

Performance evaluation based on one metric cannot capture all these aspects. For example,
Sn tells us how well the ground truth clusters are represented by their best matching EAP
generated clusters and PPV shows how well the EAP generated clusters represent their
best matching ground truth clusters. Consider the following examples to understand the
need for using both metrics. If an algorithm clusters everything into one cluster whereas
the ground truth contains more than one clusters, then we will have an Sn = 1 but PPV
value will be lower. On the other hand, if EAP splits a ground truth cluster into multiple
clusters, then corresponding PPV values for each of these EAP generated clusters will be
1 but the Sn for the ground truth cluster will be low.

For synthetic datasets we do not compare the performance of EAP with other clustering
algorithms mainly due to the following two reasons:

> For the global discovery, EAP obtains nearly perfect results on these synthetic
datasets. Note that these results are obtained by successive tuning procedure de-
scribed in Sec. 4.8, not by hyperparameter sweeps. Hence a comparison with other
algorithms can only reveal their weaknesses in discovering certain global structures
when compared to EAP. These weaknesses are well documented for the well known
algorithms and hence we do not want to reiterate them but rather focus on the
findings of EAP.

> The algorithms that provide local information, such as K-medoids (PAM) and AP
mostly only provide local exemplars. These algorithms also suffer from a lack of
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global structure discovery, rendering them not too effective for clustering in general
unless the dataset only has globular clusters. Therefore comparing them to EAP
in terms of local information when they cannot discover the global structure in the
dataset does not lead to an interesting comparison.

Table 4.2 presents the Sn, PPV, Acc, ARI and NMI results for synthetic datasets, along
with the hyperparameters corresponding to the results, obtained using successive tuning.
Table 4.2 and the figures in the following subsections clearly show that EAP discovers the
global structure easily for all these settings. Furthermore, although we don’t show here
explicitly, adding some outliers similar to how we did in Fig. 4.5 does not impact the global
structure discovery and the algorithm detects the outliers.

Now we will discuss each dataset individually. We will highlight the interesting aspects
of the dataset as well as what EAP discovers. For each dataset, the figures we show
contain results for both a A < 1 discovered via successive tuning and for A > 1, for the
same p and q. The results for A > 1 are shown just to make statements about the relative
densities of different discovered clusters in a dataset. In practice, if one is not interested in
clearly highlighting relative densities, it is never desirable to run EAP for A > 1. It is also
important to note that the scale of colour variation for the confidence plot is automatically
adapted for each dataset based on the variability of the confidence values. Therefore when
looking at the confidence plots, one should also account for the colour scale.

4.9.1. Aggregation

The Aggregation dataset is taken from [69]. The important aspects of the dataset include
the ground truth clusters of varying sizes as well different densities. Some of the ground
truth clusters are also linked by small “noise bridges”. EAP is able to handle all the
three issues. The LEC histogram for A > 1, shown in Fig. 4.15(f), clearly shows that the
blue cluster has higher density when compared to other discovered clusters as the data
points corresponding to the blue clusters dominate the R.H.S. of the LEC histogram. Fur-
thermore, the noise bridges between different clusters clearly get highlighted as potential
inconsistencies with low confidence values in Fig. 4.15(d). Note that we have used p = 0.5
which is a bit removed from what we normally employ for EAP (although as we illustrated
in Sec. 4.8, the results are often not too sensitive to p for the appropriate ¢ and A). This
is because for consistency purposes we wanted use the same p for both A <1 and A > 1.
Otherwise, using p = 0.6, ¢ = 0.97 and A = 0.99 also yields very similar results to the
ones shown in Fig. 4.15 for A < 1.

4.9.2. Flame

The Flame dataset is taken from [70]. The two important aspects of Flame are: First, there
is relatively long noisy boundary between the two non linearly separable unequal sized clus-
ters. Second, it contains two outliers (visible in the upper left corner of Fig. 4.16(a)). EAP
not only discovers the clusters correctly but also highlights the noisy boundary between
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the two clusters as potential inconsistencies in the confidence plot Fig. 4.16(d). EAP also
discovers the outliers and creates a separate cluster for these two nearby outliers (indicated
by red colour in Fig. 4.16(a)). Note that the these two datapoints are considered a part
of the upper cluster in the ground truth (hence not marked as outliers), again reflecting
on the subjective nature of clustering problem, as from a visual perspective they appear
to be outliers.

4.9.3. R15

The R15 dataset is taken from [71]. It consists of spherical clusters of equal size but with
varying separations between the clusters. Since all the clusters are approximately globular,
most of them are adequately representable by a single local exemplar. This is clearly visible
in LEC histogram, shown in Fig. 4.17(b), where most of the points are connected with
only one local exemplar and also in IES, shown in Fig. 4.17(c), where only there are
only two local exemplar pairs that share boundary connections. Hence LEC histogram in
Fig. 4.17(b) and IES histogram in Fig. 4.17(c) indicate the presence of mainly relatively
small globular clusters in the dataset. Looking at the confidence values, we can also infer
that for some clusters (the ones in the outer radius), the “neighbouring” clusters are far
enough as the confidence values for all data points in these clusters are high, whereas for
some other clusters (the ones in the inner radii), the “neighbouring” clusters are much
closer, indicated by the lower confidence values of some of the points in these clusters.

4.9.4. Concentric Circles

The concentric circles dataset consists of two concentric ring shaped equal sized clusters.
Two key aspects of the dataset are that the clusters are non-linearly separable and they
have different densities. EAP discovers the clusters and the LEC histogram for A > 1 in
Fig. 4.18(f) highlights the fact that the green cluster has a higher density.

4.9.5. Spirals

The last synthetic dataset we look at is taken from [72]. The dataset consists of three
intertwined spiraling clusters of almost equal size. Fig. 4.19 shows how EAP neatly used
the distributed local exemplars and the boundary connections between them to form chains
and discovers the global spiral structures. Note that IES shows that some of the local
exemplars are strongly connected. These are the local exemplars near the inner edge of
the spirals where the density is significantly higher than the outer edge. This shows how
[ES can also be used to indicate the varying densities inside a cluster.



.
.
.
°
W . . . . . . Q
0 3
I 0. 00 0@ P 0
w = e 850000595%0 0892538 %50 |in
% S ofsgmpRibes  oitgodids 7
i o026 8950 5P cuporipn 3500 20
S R R LR Soose
— I I ST A B® Bdgosm’ o
a 000,05 8 J0 00, I
Q o L o |
o) 06% 00050 0 ~N
~ o °oS 05, 0 S fodow
ucmwwcu 085800 07 Do
o] m %o 9%P080%S |
r %80 0o 0g20% 000 |R
= ) 3% P N
[4] — B0 RIS oo
e oogebe Y $oos
o
p— m H % 00 STIEF A 00° L1
&, o offopomogodB oo
a 73] P00 o o % o 58 o® o0
o 020%°% 0  foa, © 0 0837 nummcaun
Q < o OOy s S 1ok < X ot
%580, 8BoFHRH% 20 LGN
(@) X 3000008 e0% & ®° 000 19
009 2005,208'G ° 1
—_ Q B e 008, 0%
m 00 00a00 090 afood 8o,
3 S0 9990 £S° oI 855
o o 290 00 000 S
. e el W @
. —~ ! 2o
o] 7
. ~—
. wn o n o n o n 00
a 2 Q ] 4 S
ﬂ
2

o A
- - - - - - 2
8
X, X X xR X X S
o0 5w Xx%e Ko X x
r % xﬂxxxx- A % % 300 X ug 1m ] L
ol &858 KO X P A
et KGR oo 88y L =
X m s g 0B L 8 O <
ol e W xaw % o —
xHXK K Ko Ro@xrax x %
L b umax % T 13 m
5
r FR T o
xS SR o L
R XTa K )
L Ceregne, 1o =
P pt et kY W
e g
&5 L
o, okm e B %k 2]
X BR0B g XX &
t *x xx e =
Yo x x oox X "R g G e K =]
R P e 7
ol X S X S XX X g x xS ] E
X x 8, 8ixgdex s XX x XK b
r e e e X xR xXx 12
XXX XXg XX % o
}&Mix B o 5 XX a0
e go® g s XXX o
e en § 1% X &bl =
< X X X% Xy o= t
L &Oxxx o xxxxx X%ex %% din —
XX XX Q
x e
0
, , , , , , - =
o o i ) n B " E) o
" @ < & = = O o R
<t %
—
0 =3
=

15 20 25 30 35 40

10

(f) LEC histogram for A > 1

(d) Confidence values for A = 0.995

50

40
30
20
10+

40

15 20 25 30

10

Clustering results for A > 1

(e)

Figure 4.15.: EAP results for Aggregation dataset where p = 0.5 and ¢ = 0.97.
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Figure 4.17.: EAP results for R15 dataset where p = 0.6 and ¢ = —0.97
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Figure 4.19.: EAP results for Spirals dataset where p = 0.6 and ¢ = —0.96
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4.10. Real World Datasets

Now we apply EAP to three real datasets, Optdigits [73], MNIST [74] and protein interac-
tions dataset [75]. We will present both the performance obtained via successive tuning as
well as the ceiling performance obtained by sweeping all 3 hyperparameters over a broad
enough range. The comparison between the two depicts the performance gap one may
experience in practice w.r.t. a plausible ground truth and it also signifies the effectiveness
of the successive tuning heuristic discussed in Sec. 4.8. We also compare the global per-
formance of EAP with it’s parent algorithm AP. We provide a comparison for both the
heuristic performance and the ceiling performance of the two algorithms. The heuristic
performance of AP is obtained by setting p = 0.5 [16]. We do not provide comparisons
for other algorithms such as MCL and DBSCAN as they do not provide local information,
hence they do not serve similar purpose. Interested readers can, however, compare our
results for MNIST dataset to the ones discussed in [65]. We have not included their results
here because we have not verified their simulations for all the algorithms that they present
results for and their approach for comparison differs in the sense that they compare the al-
gorithms for fixed number of discovered clusters. Similarly, for protein interactions dataset,
interested readers can compare our results to [76] which provides a detailed comparison
between AP and MCL. The performance comparison between AP and EAP is presented in
Table 4.3 for all three datasets. We have only presented Acc values in the table to present
the results in a compact way for comparison. NMI and ARI paint a very similar picture
in terms of comparison, hence they are not included here for the sake of brevity. We have
also included the number of clusters discovered by AP and EAP for the heuristic results.
Finally, for Optdigits and MNIST, we also show examples of what local exemplars may
represent in real datasets and what does it imply for the data points that are connected
to more than one well separated local exemplars.

4.10.1. Optdigits

Optdigits [73], is a dataset consisting of grey scale 8 x 8 images of handwritten digits. We
only use the test set, consisting of 1797 images, for clustering. We use (4.34) to compute
the pairwise similarities based on euclidean distance. We do recognize that for optical
character recognition applications one can use a better adapted pairwise similarity metric,
such as one based on SIFT features [77] but we want to show what EAP is able to ex-
tract using this crude measure and not rely on the power of a strong metric which already
simplifies the clustering problem significantly for the algorithm. Besides, one can use the
training set to extract the right scaling or other factors for the pairwise similarity metric
but as our focus is not on how to design pairwise similarity metrics, we do not do employ
any such techniques. For the ground truth we separate the dataset into 10 clusters each
corresponding to a different digit. Table 4.3 shows the global performance of AP and EAP
as well the corresponding hyperparameters and number of clusters discovered. We can see
that EAP outperforms AP in both ceiling as well as heuristic performance. Furthermore,
EAP is able to achieve good accuracy and the gap between heuristic and ceiling perfor-
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AP EAP

Dataset H: Acc ‘ H: Clusters ‘ C: Acc || H: Params ‘ H: Acc ‘ H: Clusters ‘ C: Acc

Optdigits|| 0.354 | 137 0.695 p = 06]0.86 26 0.871
qg=—0.98

MNIST 0.339 | 113 0.456 p = 0510562 |53 0.583
qg=—0.98

Proteins || 0.824 | 405 0.875 p = 05]0.864 |473 0.909
qg=—0.97

Table 4.3.: Comparison of both heuristic (denoted by H:) and ceiling (denoted by C:)
performance, in terms of Acc, of AP and EAP on real datasets. For all three
datasets successive tuning results into A = 0.99. For Proteins dataset the
hyperparameter values are mentioned in terms of the percentile of non-zero
values in the pairwise similarity matrix since S is sparse. In case of sparse
matrices, the parameter tuning should be done in terms of the non-zero pairwise
similarities.

mance is not big. Fig. 4.20(a) shows an example of the discussion in Sec. 4.7.5. Each image
represents a data point and the local exemplars are marked with the red boundaries. We
can see that the different local exemplars correspond to different handwriting styles and
that the data points connected to two local exemplars exhibit a mix of the two handwriting
styles.

4.10.2. MINIST

MNIST is also a similar dataset of 28 x 28 gray scale images of handwritten digits. We
choose 1000 images from the dataset at random to define X. We calculate the pairwise
similarities again via (4.34) and the same discussion is valid for MNIST regarding the
computation for better pairwise similarity metrics as for Optdigits. We consider all the
examples of a specific digit as belonging to one ground truth cluster. Table 4.3 shows
the performance. We can again see that EAP provides a significantly better heuristic
performance as compared to AP. The absolute performance itself is not very good but
when one compares it to the performance of other algorithms reported in [65], it is at par
or better than the algorithms reported there. We believe that all these algorithms suffer
in terms of absolute performance due to the crude pairwise similarity metric used. As the
images get bigger in size, there is a higher chance of pixels corresponding to the digits
not being aligned in different images and this leads to a lower pairwise similarity between
different images of same digit as well. This again signifies the importance of finding a
problem dependent suitable method to calculate pairwise similarities. We again notice that
the gap between the heuristic and the ceiling performance of EAP is not big. Fig. 4.20(b)
shows another example of the discussion in Sec. 4.7.5 where different local exemplars in
the same cluster correspond to different handwriting styles and the data points connected
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Figure 4.20.: Examples of some local exemplars, corresponding to different hand writing
styles for the same digit. The figure also shows some data points connected
to two local exemplars, exhibiting a mix of the two hand writing styles.

to two local exemplars show a mix of the properties of both local exemplars.

4.10.3. Proteins Interactions Dataset

Finally, we apply EAP to the protein interactions dataset, taken from [75]. The pairwise
similarity values for this dataset basically represent protein-protein interactions. [78] pro-
poses a probabilistic measure, which takes value between 0 and 1, to specify the pairwise
interactions. We use this to define our pairwise similarity matrix. This dataset is different
from the previously discussed synthetic and real datasets in the sense that the available
ground truth does not necessarily assign each data point to only one ground truth cluster.
Furthermore, some ground truth clusters are a subset of other ground truth clusters. In
order to reduce such overlap in the discovered clusters, we threshold the protein-protein
interactions such that the interactions below 0.4 are set to 0'. Furthermore, we only con-
sider proteins that are common with CYC2008. This leaves us with 1171 proteins (data
points) assigned to 276 ground truth clusters. Table 4.3 shows the global performance.
EAP outperforms AP but only by a small margin, both in terms of heuristic as well as
ceiling performance, since AP already performs well on this dataset. Besides, the heuristic
and ceiling performance of EAP are again close. For this dataset we cannot provide any
insights into the meaning of the obtained local information since we don’t have the domain
knowledge to interpret the results and since most of the discovered clusters consist of only
a couple of proteins.

!This approach has been adopted in previous studies too e.g. [76] and [79], although different thresholds
have been used there.
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Learning Representations for Neural
Network-Based Classification Using
the Information Bottleneck Principle

In this chapter we investigate training Deep Neural Networks (DNNs) for classification via
the Information Bottleneck (IB) principle. We point out two severe issues in this regard
and discuss various ways to remedy them. We also elaborate on representation learning
and regularizing intermediate representations in this context.

Classification is one of the two key categories of supervised learning problems, the other
being regression. Classification tasks arise in various domains, such as image classification,
text classification or speech processing and have widespread applications ranging from
spam detection to medical imaging and logistics. In recent years DNNs have become the
dominant method for dealing with complex classification tasks in many different domains,
especially in computer vision and natural language processing [18]. DNNs have been shown
to achieve human-level or even better performance for various classification tasks and are
therefore rapidly being adapted by various industries for performing different tasks.

One of the main themes in supervised learning problems is to devise and train algorithms
in such a way that they generalize well and avoid overfitting to the training data. Achieving
this is considered especially difficult for modern state-of-the-art deeper architectures [80]
as their flexibility and the sheer number of learnable parameters means that they can
“memorize” the training set [81], especially for smaller datasets. This makes them highly
prone to overfitting. In order to avoid overfitting, DNNs are often trained via cost functions
which not only focus on their accuracy performance, traditionally via cross-entropy loss,
but also introduce a regularization term to avoid overfitting. Some of the traditional
regularization mechanisms focused on explicitly limiting the model complexity whereas
the modern regularization methods, such as Dropout [82], have broadened the concept
significantly and no longer focus on explicitly limiting the model complexity. Besides,
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in recent years additional terms have been introduced in cost functions to incorporate
other desired operational goals, such as fairness [83] and privacy [84], in machine learning
systems. We also refer to this as regularization.

The paper [19] sparked a new area of research by proposing to train DNNs by minimiz-
ing the IB functional. This approach aims at balancing two objectives: maximizing the
information extracted about the class label, which is analogous to accuracy in traditional
cost functions, and minimizing the information preserved about the input, which is anal-
ogous to regularization in traditional cost functions. Hence the IB functional focuses on
preserving all the information about the class label in the input while getting rid of the
rest of the information. Furthermore, it has been suggested that the IB functional has
the potential to directly train latent representations of a DNN instead of influencing them
only via cost functions acting on the output and the network parameters. This connects
the use of IB functional for training to representation learning, where one aims to enforce
and analyze different characteristics of the latent representation of a DNN.

Subsequently, the IB framework has been used to train DNNs for discrete or continuous
inputs [85-89]. These works report remarkable performance in classification tasks (see also
Sec. 5.5), but only after slightly departing from the IB framework by claiming that the
IB functional is hard to compute. As a remedy, they replace mutual information terms
with bounds in order to obtain cost functions that can be computed and optimized using
gradient-based methods.

In this chapter, we present a thorough analysis of using the IB functional for training
DNNs. We start by discussing representation learning in the context of classification, i.e.,
we identify some desired characteristics of a DNN based classifier (Sec. 5.2). We then show
that in deterministic DNNs the IB functional leads to an ill-posed optimization problem
by either being infinite for almost all parameter choices or by being a piecewise constant
function of the parameters (Sec. 5.3.1 and Sec. 5.3.2). Moreover, we show in Sec. 5.3.3 that
the IB functional captures only a small subset of properties desirable for the intermediate
representation L when performing classification, and hence it is not suitable as a cost
function for training deterministic DNNs. In Sec. 5.4 we then show how the utility of IB
can be partly recovered in several ways, e.g., by including a decision rule, replacing the IB
functional with a better behaved cost function, and training stochastic neural networks. To
utilize these considerations, we postpone discussing related work until Sec. 5.5. We argue
that the successes of [85-89] must be attributed to, and provide experimental evidence
for the validity of these steps — replacing the functional, making the DNN stochastic,
data augmentation, including the decision rule — and not on the fact that these works are
based on the IB principle. We then turn our attention in Sec. 5.6 to showing how some
of the remedies proposed in Sec. 5.4, as well some recent works [90-92], point to a new
promising paradigm where one regularizes the learned latent representations to enforce
desired properties.

Finally, we discuss two topics that are not directly related to training DNNs via the
IB principle but are related to our earlier discussion in this chapter. In Sec. 5.7, we
briefly comment, based on our observations in Sec. 5.3, about another related active area
of interest: Analyzing the standard training mechanisms as well as already trained DNNs
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by studying their latent representations in terms of the IB functional. In Sec. 5.8, we
then investigate the relation between the cross-entropy loss and its information-theoretic
analog used in the IB functional. Delving into this topic gives important insights about the
relation between cross-entropy loss and different mutual information terms in the context
of training DNNs. Cross-entropy is very often used to the track accuracy of a DNN during
training for classification tasks and has also been used as a surrogate for the precision term
in the IB functional [85,86].
This research was conducted in close collaboration with Dr. Bernhard Geiger.
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5.1. Preliminaries

Consider two dependent RVs X and Y, where X € R" is the input and Y € ), for some
finite set ), is the class variable. In our analysis, we make the uncommon assumption
that the joint distribution Pxy between the features X and the class Y is known. Py
is a pmf as ) is finite but Px can be discrete, continuous or singular. Assuming that
we know Py y not only admits more rigorous statements, but makes them independent
of the optimization heuristic used for training and corresponds to a best-case scenario for
training. Nevertheless, we make regular comments on how our analysis changes in case
only a finite dataset is available.

A classifier takes X as input and tries to predict the class label Y for the given X. For
example, X may represent an image and the aim of the classifier may be to predict the
object present in the image, from a list of possible objects ). The output of a classifier can
take different forms. For example the classifier may output a hard decision, predicting one
specific y € ) as the predicted class label for a given x € R™. In this case the classifier is a
(possibly stochastic) mapping from R™ to ). Another possible form of classifier output is
a probability vector over ), denoting the estimated likelihoods according to the classifier,
of different y € ) being the class label for a given x € R"™.

In this chapter, we focus on classifiers based on feed-forward DNNs [18, Chap. 6]. Since
we study only feed-forward DNNs, we use the term DNN to refer exclusively to feed-forward
DNNs. The DNN accepts the RV X at the input and responds with the transformed RV
Y (not necessarily defined over ))). This transformed RV Y is then fed to a decision rule
(see [18, Chap. 6.2] for a discussion on decision rules used in conjunction with DNNs for
classification) to produce an estimate of the class label Y. If the DNN has m hidden
layers, then the column vector collecting all neuron outputs in the i-th hidden layer is the
intermediate representation denoted by L;. We call Ly £ X the input and L,, ., = V the
output of the DNN, while for ¢ € {1...m}, we call L; a latent representation. Abusing
notation, |L;| denotes the number of neurons in the i-th layer, e.g., |Lo| = n. Whenever
we refer to intermediate representations of which the layer number is immaterial we write
L instead of L;.

If the DNN is deterministic, then L; and L,,; are related by a function g;: RI%i| — RIZé+1l
that maps the former to the latter and that depends on a set ©; of (weight and bias)
parameters. E.g., if W; is the matrix of weights between the i-th and (i + 1)-th layer, b;
the vector of biases for the (i + 1)-th layer, and o: R — R an activation function, then
©; = {W;, b1} and
where the activation function is applied coordinate-wise. Whether the activation function

is sigmoidal, ReLU, leaky ReLU, tanh, or softplus is immaterial for the results that follow,
unless stated otherwise. We define L;; € R to be the j-th component of the vector

L; € RILI X, = Lo and Yj = Lyy1;. We have L; = fi(X), where f; 2 g; 1 0--- 00
shall be called the encoder for L;. Similarly, Y = hi(L;), where h; & g, o --- o0 g; is called
the decoder of L;. 1f the DNN is stochastic, then g; is a stochastic map parameterized by



5.2. Learning Representations for Classification 99

©;, and the encoder f; and decoder h; are obtained in the same way as for deterministic
DNNs by appropriately concatenating the stochastic maps {g;}. When we discuss an
intermediate representation L, where the layer number is immaterial, we will denote the
corresponding encoder and decoder for L by f and h. Note that this setup subsumes
concepts like convolution layers and skip connections by imposing further restrictions on
the weight matrices W; or the intermediate representations L;.

5.2. Learning Representations for Classification

Training DNNs via the IB functional for supervised learning tasks focuses on learning “suit-
able” intermediate representations {L;}. Hence, in order to critically study IB functional
based training, we first present a subset of properties of an intermediate representation
L desirable for a classification task. These properties are either motivated by a taking a
signal processing perspective of the classifier, or are linked to the primary operational goal
of good accuracy and generalization. Operational goals such as generalization are often
not directly enforcable while training. Desired properties for intermediate representations
provide one mechanism to formulate and to indirectly enforce such operational goals. We
do not accompany these properties with precise mathematical definitions — this is out of
the scope of this work and left for future research. Nevertheless, taken as guiding princi-
ples, these properties suffice to point out the shortcomings of the IB principle for training
DNNs and to discuss ways to remedy them in the later sections. For classification, the
representation L should:

P1 inform about Y. This means that the representation should contain as much
information about the class variable Y as was contained in the input X, i.e., L
should be a sufficient statistic for Y.

P2 be compressed. The representation L should not tell more about X than is neces-
sary to correctly estimate Y, i.e., successive representations in a DNN should attain
higher invariance, in some sense, to nuisance factors which are not relevant to the
class label Y. Compression, and consequently invariance, can, for example, be quan-
tified statistically (e.g., L is a minimal sufficient statistic for V') or geometrically (e.g.,
data points from different classes are mapped to different dense clusters in RI*!). The
minimal sufficient statistic perspective is an information-theoretic approach of look-
ing at L, whereas the geometric perspective is closer to a signal processing view of
the system, taking into account that the layers of a DNN define transformations from
one Euclidean space RI%l to another Euclidean space RIZ#+1.

P3 admit a simple decision function. The successive intermediate representations
should be such that the class Y can be estimated from them by using successively
“simpler” functions. The term “simple” here has to be taken relative to the capa-
bilities of the information sink or the system processing L. E.g., in DNN, decisions
are often made by searching for the output neuron with the maximum activation
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(arg max) or by binary quantization (for |Y| = 2) so the intermediate representation
Y should be such that these simple decision functions suffice to predict the class label
from the RY|-dimensional RV Y. P3 basically caters to a signal processing view of
the DNN, i.e., for a classification task, the aim of the DNN is to process X to not
only extract but also simplify the information about Y available in X. The informa-
tion about Y should be presented in an increasingly simplified manner in successive
deeper intermediate representations so that ultimately at the output of the DNN it
can be effectively utilized by a simple decision mechanism.

P4 be robust. This means that adding a small amount of noise to X or transforming
it with a well-behaved transform (e.g., small deformations that do not impact the
information about the associated class label) should not lead to big differences in
the intermediate representation. E.g., the dense clusters in RI*I corresponding to
different classes should be far apart and the small deformations should not change
the cluster in L that a data point is mapped to.

Historically, the primary goals of training have been to extract information about Y from
the input X such that this simplified extracted information can be effectively used by a
simple decision mechanism to estimate Y (P1 and P3). Traditionally, these goals have been
achieved by using mean-squared error or cross-entropy as a cost function. As these cost
functions are defined based on the output of the DNN or the subsequent decision rule, they
enforce P3 in latent representations only indirectly via the output. P4, i.e., robustness,
has been linked to improved generalization capabilities of learning algorithms [93-95]; reg-
ularization measures such as dropout have been shown to instill robustness and improved
generalization. Reference [19] has additionally introduced the idea of having maximally
compressed intermediate representations (P2). The intuition behind this requirement is
that this should avoid overfitting, and hence improve generalization, by making the network
forget about the specific details of the individual examples and by making the intermediate
representations invariant to nuisances in the input that are not relevant for the classifica-
tion task. In this sense, P2 and P4 may have overlapping nature as noise and deformations
(P4) may also be considered as nuisance factors (P2). The exact nature of overlap depends
on the precise definitions. In this work we differentiate the two on an abstract level as
follows: On the one hand, P2 tries to make intermediate representations invariant to the
changes in the input while moving along a manifold in supp(Px) that belongs to a specific
class label. For example, when classifying MNIST digits [74], one feature that varies while
moving along the manifold is the handwriting style and for digit classification tasks we
would like to be able identify the correct digit in the picture regardless of the handwriting
style. On the other hand, P4 tries to make the intermediate representations invariant to
small deformations or noise that cause the deformed input to most likely no longer lie on
the manifold, to which the original input sample belonged to, but in close vicinity of the
manifold. Again considering the example of classifying MNIST digits, this may correspond
to sensor noise introducing unnatural color or intensity variations, or it may correspond
to a deformation such as stretching the digit so that is still recognizable but unlikely to be
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written so by a human. In order to study robustness (P4), we need to study the behaviour
of DNN outside, but in relatively close neighbourhood, of supp(Px).

In addition to achieving P1 through P4, one may wish that the DNN producing these
intermediate representations is architecturally economical. E.g., the DNN should con-
sist of few hidden layers, few neurons per layer, few convolution filters or sparse weight
matrices {W;}, or the inference process based on the DNN should be computationally
economical. This goal becomes particularly important when deploying these DNNs on em-
bedded devices with limited computational resources and real-time processing constraints.
While currently the network architectures leading to state-of-the-art performance in var-
ious classification tasks are highly over-parameterized, a major portion of the network
parameters can often be pruned without significant deterioration in performance [96-98].
It has also been suggested that the over-parameterization of the network just provides ease
of optimization during training [99]. Hence, one may wish to obtain certain desired char-
acteristics in intermediate representations L that either help in training architecturally or
computationally economical DNNs to achieve state-of-the-art performance, or that admit
significant pruning after training without performance degradation. Besides, for specific
applications it may be of interest that the classifier not only generalizes well but also em-
bodies other operational goals such as fairness. Such goals may be achieved by enforcing
additional desired properties for the learned intermediate representations.

Of course, these goals are not completely independent. For example, if a representation
is robust and compressed, e.g., if the different regions in input domain R corresponding
to different classes are mapped to clusters dense and far apart in the intermediate rep-
resentation domain RI*!, then it may be easier to find a simple decision rule to estimate
Y from L. Such a representation L, however, may require an encoder f with significant
architectural or computational complexity.

Since goals P1-P4 are formulated as properties of the intermediate representation, achiev-
ing them can be accomplished by designing regularizers for L based on, e.g., the joint dis-
tribution between X, Y, and L. Such regularization departs from classical regularization
that depends on the parameters {O;} of the DNN and relates closely to representation
learning. Representation learning is an active field of research and various sets of desired
properties for representations have previously been proposed. These are similar to our
proposal but differ in subtle and key aspects.

In [100], Bengio et al. discussed desired characteristics of representations of the input
in terms of invariant, disentangled and smoothly varying factors whereas our focus is
on learning representations for a specific classification task. Nevertheless, P1-P4 have
similarities to the properties discussed in [100]. For example, the hierarchical organization
of explanatory factors discussed in [100] can lead to more abstract concepts at deeper
layers. This subsequently may imply successively simpler decision functions required to
estimate Y from L (P3). Similarly, [100] discusses invariance and manifold learning mainly
in the context of auto-encoders, focusing primarily on X. Our P2 goes one step further
by including Y in the picture, i.e., it aims to remove all information from L that is not
useful for determining Y. In a geometric understanding of compression this could mean
to collapse the input manifolds corresponding to different class labels to, for example,
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separate dense clusters in RI* (as observed in [86, Fig. 2] and [85, Fig. 2]). This conforms
to our earlier discussion about the relation between P2 and generalization via invariance
to input variations on a manifold. Furthermore, in the context of representation learning,
robustness is often related to denoising and contractive auto-encoders [100]. However, our
P4 aims to learn representations that are robust for the classification task, whereas for
auto-encoders the aim is to learn robust representations to recover the input.

The authors of [101] focused on formulating a similar set of desired properties in terms of
information-theoretic objectives. Their approach involved considering also network param-
eters as RVs, unlike [19,85,86] and our work where only X, Y, and latent representations
(which are transformations of X) are RVs. Their definitions share similar intuitive mean-
ing as ours; e.g., sufficiency is equivalent to P1, minimality and invariance follow the same
spirit as P2, and invariance can also be partially linked to robustness (P4). However, as we
discuss in Sec. 5.3 (at least for the case when only X and Y are RVs, but not the network
parameters), defining P2-P4 in terms of information-theoretic quantities may not imply
characteristics in DNNs that are desired for a classification task.

Both [100] and [101] have introduced an additional desired property of representations
that they call disentanglement. In the context of classification, disentanglement is meant
to complement invariance (P2 and P4 in our case). Invariance is achieved by keeping
the robust features which are relevant to the classification task, whereas disentanglement
requires making the extracted relevant features independent (in the sense of total corre-
lation [101] or some other metric). We have not included this property in our list for the
following reasons: First, disentangling latent representations does not necessarily improve
classification or generalization performance. Disentanglement also does not imply lower
encoder or decoder computational or architectural complexity. Finally in order for dis-
entanglement to lead to features that are more interpretable for humans, it would imply
that the explanatory factors understandable by humans are independent. However, when
dealing with the Py for a specific classification task, features that are understandable
for humans are not necessarily statistically independent (such as, e.g., size and weight of
an object). We believe that more experiments are necessary to determine whether (and
when) disentanglement, separated from other desirable properties, improves performance
or human understandability of the latent representations for classification tasks. However,
for generative models, aiming to fit a probabilistic model to the latent representation with
independent features can be advantageous in terms of the computational ease to generate
samples later from the latent representation.

5.3. Why and How IB Fails for Training
Deterministic DNNs

In this section, we investigate the problem of learning an intermediate representation
L; (which can also be L,,;1 = Y) by a deterministic DNN with a given structure via
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minimizing the IB functional, i.e., we consider!

min  [(X; L;) — BI(Y; Ly). (5.2)
00591

The minimization is only over {©g...©;_1} as these are the only parameters that influ-
ence L; and hence the objective, i.e., only the encoder f; influences the objective, not the
decoder h;. The IB functional applied to DNNs focuses on P1 and P2, defining them via
the mutual information terms I(Y; L) and I(X; L), respectively. Such an approach has
been proposed by [19,20] and, subsequently, the IB framework has been suggested as a pos-
sible design principle for DNNs [19,85-88]. It was claimed that on this basis compressed,
simple, and robust representations can be obtained (see [86, Fig. 2] and [85, Fig. 2]).

Indeed, the intermediate layers of a DNN with good performance are characterized by a
high I(Y'; L). However, they do not need to have small I(X; L). For example, [92] propose
invertible architectures which achieves state of the art performance, indicating that a small
value of the IB functional is not necessary for good classification performance. Further-
more, since the IB framework was introduced to regularize intermediate representations
rather than DNN parameters, a small value of I(X; L) does not imply low architectural
or computational complexity. Finally, small values of I(X; L) do not relate causally to
improved generalization performance, as it has been observed based on empirical evidence
in [102].

In the following discussion, we show that applying the IB framework for training DNNs
in this way suffers from two more major issues: The first issue is that, in many practically
relevant cases, the IB functional is either equal to infinity or a piecewise constant function of
the set of parameters {©;}. This either makes the optimization problem ill-posed or makes
solving it difficult. We investigate these issues in Sec. 5.3.1 and Sec. 5.3.2. The second issue,
which we investigate in Sec. 5.3.3, is connected to the invariance of mutual information
under bijections and shows that focusing on goals P1 and P2 is not sufficient for a good
classification system, at least when capturing P1 and P2 within the IB functional (5.2).
Specifically, we show that minimizing the IB functional (5.2) does not necessarily lead to
classifiers that are robust (P4) or that allow using simple decision functions (P3).

5.3.1. Continuous Features: The IB Functional is Infinite

Solving (5.2) requires that the IB functional can be evaluated for a set of parameters {©;}.
Since Y is a discrete RV with finite support, the precision term I(Y; L) < H(Y') is finite
and can be computed (at least in principle). Suppose now that the distribution of the
features X has an absolutely continuous component. The following theorem shows that,
for almost every non-trivial choice of {©;}, the IB functional is infinite and, hence, its
optimization is ill-posed. The proof is deferred to Appendix C.1.

'If the training is approached in a greedy manner, then Oy to ©;_ are already fixed by training the
previous latent representations. Then the minimization in (5.2) is only over ©;_;. The discussion in
this section is independent of whether the training is based on a greedy approach, a joint approach or
a combination thereof.
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Theorem 5.1. Let X = Ly be an n-dimensional RV, the distribution of which has an
absolutely continuous component with a probability density function px that is continuous
on a compact set X in R". Consider a DNN as in the setup of Sec. 5.1. Suppose that
the activation function o is either bi-Lipschitz or continuously differentiable with strictly
positive derivative. Then, for every i = 1,...,m and almost every choice of weight matrices
Wo, ..., W,;, we have

I(X;Li1q) = 0. (5.3)

In [102, Appendix C] it has been observed that the mutual information between the
continuously distributed input X and an intermediate representation L becomes infinite
if L has a continuous distribution. This assumption is often not satisfied: For example,
the output of a ReLU activation function is, in general, the mixture of a continuous and
a discrete distribution. Also, if the number of neurons |L;| of some layer exceeds the
number of neurons of any preceding layer, or the dimension of the input X, then L; cannot
have a continuous distribution on RI%¢l if the activation functions satisfy the conditions of
Theorem 5.1. Therefore, our Theorem 5.1 is more general than [102, Appendix C] in the
sense that continuity of the distribution L is not required.

Theorem 5.1 shows that the IB functional leads to an ill-posed optimization problem
for, e.g., sigmoidal and tanh activation functions (which are continuously differentiable
with strictly positive derivative) as well as for leaky ReLU activation functions (which
are bi-Lipschitz). The situation is different for ReLU or step activation functions. For
these activation functions, the intermediate representations L may have purely discrete
distributions, from which follows that the IB functional is finite (at least for a non-vanishing
set of parameters). As we discuss in Sec. 5.3.2, in such cases other issues dominate, such
as the IB functional being piecewise constant.

Note that the issue discussed in this section is not that the IB functional is difficult
to compute, as was implied in [85,86]. Indeed, Theorem 5.1 provides us with the correct
value of the IB functional, i.e., infinity, for almost every choice of weight matrices. At
the same time, Theorem 5.1 shows that in such a scenario it is ill-advised to estimate
mutual information from a data sample, as such estimators are valid only if the true
mutual information determined by the assumed underlying distribution is finite. Indeed,
the estimate /(X; L) reveals more about the estimator and the dataset than it does about
the true mutual information, as the latter is always infinite by Theorem 5.1; see also the
discussion in [102, Sec. 2 & Appendix C]
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Figure 5.1.: (a)-(c): The line segment depicts the set [0, 1], from which the feature RV X

takes its values. Red (black) color indicates feature values corresponding to
class Y =0 (Y =1). (a): The one-dimensional feature variable has a discrete
distribution with mass points as indicated by the circles. The size of the
circles is proportional to the probability mass. (b): Training based on a data
set D. Crosses indicate data points. (c¢): The one-dimensional feature variable
has a continuous distribution with support indicated by the thick lines, the
probability masses on each interval are identical to the probability masses
of the points in (a). (d): The function f implemented by a DNN with a one
hidden layer with two neurons, ReLLU activation functions, and a single output
neuron. The parameters leading to this function are Oy = {[1; 1], [—a; —a—b]}
and ©; = {[1,—1],0}. (e)-(g) show the mutual information I(X;L) as a
function of the parameter a, for b = 0.25, evaluated on a grid of a ranging
from 0 to 5 in steps of 0.05. It can be seen that the mutual information
is piecewise constant. The missing values in (g) indicate that the mutual
information is infinite at the respective positions.
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5.3.2. Discrete Features or Learning from Data: The IB
Functional is Piecewise Constant

We next assume that the features have a discrete distribution, i.e., X can take on only
a finite number of different points in X C R". For example, consider a RV X over
black-and-white images with N pixels, in which case the distribution of X is supported
on X = {0,1}". In such a case, the entropy of X is finite and so is the entropy of
every intermediate representation L. More precisely, since the DNN is deterministic, the
distribution of L is discrete as well, from which it follows that I(X; L) = H(L) can assume
only finitely many values. Similarly, since both L and Y are discrete, also I(Y; L) can
assume only finitely many different values. Indeed, I(X; L) and I(Y; L) may change only
when two different x € X’ that were previously mapped to different values of intermediate
representation now get mapped to the same value or vice-versa. As a consequence, the IB
functional is a piecewise constant function of the parameters {©;} and, as such, difficult
to optimize. Specifically, the gradient of the IB functional w.r.t. the parameter values is
zero almost everywhere, and one has to resort to other optimization heuristics that are not
gradient-based.

The problem of piecewise continuity persists if the empirical joint distribution of X and
Y based on a dataset D with finitely many data points is used to optimize the IB objective.
The entropy of X equals log |D|, and the IB functional remains piecewise constant. Indeed,
I(X; L) and I(Y; L) may change only when two different data points that were previously
mapped to different values of intermediate representation now get mapped to the same
value or vice-versa. It was shown empirically in [102, Fig. 15] that I(X;L) = log|D|
throughout training, i.e., for a large selection of weight matrices.

Finally, the IB functional can be piecewise constant also for a continuously distributed
feature RV X if step or ReLLU activation functions are used. This can happen, for example,
if the distribution of X is supported on a disconnected set X C R"™. Such a situation is
depicted in Fig. 5.1 together with the scenarios of a discretely distributed feature RV X
and a dataset D.

5.3.3. Invariance under Bijections: The IB Functional is
Insufficient

Leaving aside the fundamental problems discussed in Sec. 5.3.1 and Sec. 5.3.2, we now
show that the IB functional is insufficient to fully characterize classification problems
using DNNs. Specifically, we show that training a DNN by minimizing (5.2) does not lead
to representations that admit simple decision functions (P3) or are robust to noise, well
behaved transformations or small distortions (P4). To this end, we give several examples
comparing two DNNs whose intermediate representations are equivalent in terms of the
IB functional, but where one of them is clearly a more desirable solution. Since the
IB functional does not give preference to any of the two solutions, we conclude that it
is insufficient to achieve intermediate representations satisfying the requirements stated
in Sec. 5.2. For the sake of argument, we present simple, synthetic examples instead of
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empirical evidence on real-world datasets to illustrate these shortcomings. These examples
not only have all the essential aspects associated with training a DNN for a practical
classification task but also, because of the simplicity of the examples, they lend themselves
to clearly highlighting and explaining different shortcomings in isolation. One can then
easily extrapolate how one may encounter these issues in practical scenarios.

We consider a binary classification problem (i.e., Y € {0,1}) based on two-dimensional
input X shown in Fig 5.2. The input RV (or samples) takes values in the four disjoint
compact sets {S1,Ss,S3,84}, &1 and S3 (marked red) corresponding to Y = 0 and S,
and S, (marked black) corresponding to Y = 1. We also define 7 = S;US:US3 U Sy
Perfect classification is possible in principle, i.e., the distributions of X given different
classes have disjoint support? and I(X;Y) = H(Y). The DNNs required to obtain the
intermediate representations discussed in the examples can be easily implemented using
ReLU activation functions (the examples can be modified to work with other activation
functions). For the sake of simplicity, in this example the class label depends only on one
dimension of the input.

Moreover, in the examples we evaluate the IB functional for the output Y. The consid-
erations are equally valid if the presented functions are encoders for a latent representation
instead of Y. Finally, one can extend the examples where the intermediate representation
has more than one dimension.

We start by presenting examples to study the behaviour of the IB functional w.r.t. P3.
consider the two functions f/,..(-) and fJ,..(-) on the left-hand side (L.H.S.) in Fig. 5.2,
implemented by two DNNs. The corresponding figures on the right-hand side (R.H.S.)
show the support of the distribution of Y, and Y/ . i.e., to which X is mapped by f}..
and f7..., respectively. It is easy to see that the IB functional evaluates to the same value
for both DNNs. Indeed, both DNNs have identical compression terms, i.e., I(X;Y} ) =
I(X:Y}..) and perfect precision, ie., I(Y;Y},,) = I(Y;Y}.) = H(Y). However, while
flee admits a simple decision by thresholding Y7, at 1/2, the representation Y}/ requires
a more elaborate decision rule. This is true regardless of whether the input X has a
continuous or discrete distribution supported on a subset of 7. It is also true if the
computations are done based on a dataset with input samples lying in 7.

The same phenomenon can be observed when we compare the two functions V! =

cont

flo(X1) and Y/ = f/ (X;) in Fig. 5.2, implemented by two DNNs. If the input has

c cont cont

a continuous distribution supported on 7, this leads to the continuous output RVs SA/C’Om

and Y . shown on the R.H.S. Again both DNNs have perfect precision and identical

con N n
compression terms, where I(X;Y. .) and I(X;Y/ .) are both infinite in this case due

cont ’
to a continuously distributed Y., and Y.” ,. However, f/ . admits a simple decision by

by cont cont*
thresholding Y . at 1/2, whereas Y . requires a more elaborate decision rule.

Next we turn to the question of robustness against noisy inputs. This, in general,
cannot be answered by looking at the intermediate representations alone as we show in the

following two examples. To this end, consider first the situation depicted in Fig. 5.3. As it

2We refer the reader to [103] regarding additional issues under which the IB framework suffers in this
scenario.
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\ TRy

S yiI _ fH(X)

Figure 5.3.: Robustness in binary classification: The L.H.S. shows the feature space, with
X, on the horizontal and X5 on the vertical axis. One can see that X is
distributed on [0,1/2] x [0,¢] if Y = 0 and on [0,¢] x [1/2,1] if Y = 1, for
0 < e < 1. The R.H.S. shows the supports of the distributions PY\Y:O and
Pyy_q, obtained by two different DNNs with identical IB functionals. The
blue dot represents a noisy feature or a data point not in the training set. See
the text for details.

can be seen, perfect classification is possible with a single neuron with a ReLLU activation
function. We consider two different DNNs with no hidden layers and single output neuron
with parameterizations ©) = {[1,1],0} and ©}f = {[0,1],0}. Both parameterizations are
equivalent in terms of the IB functional, leading to identical precision and compression
terms. Note, however, that the DNN f!7 parameterized by O is more robust to small
amounts of noise or distortion than f/. This can be seen by the blue dot in Fig. 5.3
indicating a noisy input generated (with high probability) by class label Y = 1. While f!
does not admit distinguishing this point from features generated by class label Y = 0, f!/
does (see R.H.S. of Fig. 5.3). Indeed, thresholding Y/ at 0.5 and Y/ at 0.25 yields the
decision regions indicated by dashed and dotted lines on the left of Fig. 5.3.

As a second example, consider the two DNNs implementing the functions f/,.. and f7’..
in Fig. 5.2. The corresponding RVs Y}, and Y} for the given X are shown on the
R.H.S. respectively. For the given distribution of X, we notice that Y}, = Y/ . ie.,
the two DNNs implement the same function over the support of X. Adding noise to X
or distorting X has the potential to enlarge the support of its distribution, but for small
amounts of noise we still have disjoint support sets given different classes, hence implying
that perfect classification is still possible in principle. In this case, f},,. will be more
robust to such noise and distortions when compared to f7.., due to the sharp transitions

of fi.. on the borders of current support of the distribution of X. This holds true whether
the input X is continuous or discrete with support over a subset of 7. It also holds if
the computations are done based on a dataset with input samples lying in 7. These two
examples show that in order to study an intermediate representation in terms of robustness
we have to study not only the representation itself but also the it’s encoding function and
the behaviour of the encoding function/intermediate representation in the neighbourhood

of the current support of X.
In conclusion, the IB framework may serve to train a DNN whose output is maximally
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compressed (in an information-theoretic sense) and maximally informative about the class.
However, one cannot expect that the DNN output admits taking a decision with a simple
function, or that the DNN is robust against noisy or distorted features. This is true also for
DNNs with discrete-valued features X, such as those discussed in [19], for which the issue
of Sec. 5.3.1 does not appear. Based on the link between robustness and generalization,
this suggests that the IB functional cannot be used to quantify generalization of a DNN
during training, which is in line with the experimental observations in [102].

5.4. How to Use IB-Like Cost Functions for Training
DNNs

The issues we discussed in Sec. 5.3 apply to training deterministic DNNs. In this section
we discuss possible remedies for these problems that can guarantee that the IB functional
is finite and that specific pairs of intermediate representations, related by invertible trans-
forms, are not equivalent anymore, which subsequently implies that these approaches may
be able to capture robustness (P3) and simplicity (P4) better. These approaches are in-
spired either by how such DNN based classification systems are used in practice, and by
our observations in Sec. 5.3. However, some of the proposed approaches lead to the 1B
functional being piecewise constant, similar to the scenario in Sec. 5.3.2.

5.4.1. Including a Hard Decision Rule

One approach to successfully apply the IB framework for DNN training is to include the
hard decision rule, that is used to translate the DNN output Y to a predicted class label,
into the IB functional. Specifically, when applied to the output representation )A/, for
a given hard decision rule, represented by the deterministic function §: RY! — Y and
Y = §(Y), the goal shall be to solve

min [(X;¥) = BI(Y;Y). (5.4)

For example, for binary Y and a single output neuron, i.e., one dimensional 37, one could
set Y = 1[Y > 0.5], where 1[] is the indicator function; for |Y| > 2 output neurons, ¥
could be the index of the output neuron (component of }A/) with the maximum value.
Since Y has a discrete distribution with as many mass points as the class variable,
the compression term I(X; 37) appears useless: compression is enforced by including the
decision rule 4. Similarly, the simplicity of the representation is automatically enforced by
the simplicity of the decision function ¢ when solving (5.4). Moreover, the IB functional
becomes computable for the output layer because we have I(X;Y) < H(Y) < log|)|.
Finally, for the example depicted in Fig. 5.2, assuming that P(X € &;) = 1 for i €
{1,2,3,4} and setting Y, = 1[Y/ , > 0.5 and Y , = L[V , > 0.5] clearly favors the

cont co cont =
first option over the latter: While we still get I(X;Y! )= I1(X;Y/” ,) =1 (finite now due

cont
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to quantization), we have I(Y;Y. )= H(Y) but I(Y;Y/

cont) = 0.

Including the decision rule, however, does not lead to improved robustness. Indeed,
consider Fig. 5.3. Then, the resulting RVs Y7 = 1[Y7 > 0.5] and Y/ = 1[Y7 > 3/8]
are identical (and, thus, so are the IB functionals), with the former suffering from reduced
robustness. The same can be observed by looking at Yy, = 1[Y},. > 0.5] and Y}, =
1[Y”. > 0.5]. Furthermore, this shows that including a decision rule, due to the coarse
quantization of f/, leads to large equivalence classes of DNNs that evaluate to the same
value in (5.4), which is conceptually similar to the IB functional being piecewise constant
(cf. Sec. 5.3.2 and [20, Sec. 3.5]).

To apply this method to train intermediate representations other than L,,,; = }A/,
one possible approach is to feed the latent representation L to an auxiliary decision rule
6: RIH — Y and minimize (5.4) for Y = ¢(L). Auxiliary decision rules have been utilized
in the past, for example in GoogLeNet [104], to assist in training latent layers of very deep

architectures, albeit using traditional cost functions.

5.4.2. Including a Soft Decision Rule

Another option related to Sec. 5.4.1 is to introduce a soft decision rule, that takes V as input
and outputs a probability distribution over ), into the IB functional. The soft decision
rule can be considered as a simple mechanism to generate a variational approximation
QY\Y of the true posterior Py gy QY|Y can then be used to define Y ~ QY|Y7 which is a
discrete RV with alphabet ) that depends stochastically (and not deterministically) on
the feature vector X. For example, in a one-vs-all classification problem with ¥’ generated
by softmax layer with || neurons, the i-th entry of ¥ can be interpreted as the probability
that ¥ = . This Y can then be used to compute (5.4).

Using this approach not only guarantees that the functional in (5.4) is finite but also,
unlike in Sec. 5.4.1, admits applying gradient-based optimization techniques even for finite
datasets. Moreover, using a simple soft decision rule, e.g., the one discussed earlier, makes
the precision term sensitive to simplification, encouraging this property in Y. The precision
term also promotes P2 in a geometric sense. In the above example of softmax output f/,
in the case when Y is a deterministic function of X, the precision term will encourage
|V| dense clusters on the corners of a |)| — 1 probability simplex. These claims can be
verified, for example, by looking at Y7, ., Y/ and Y/”  in Fig. 5.2 (assuming Y/, Y”
and Y, are uniform over their support), and identifying values of ¥ as probabilities that
Y = 1. The role of the compression term [ (X; 57) remains questionable and becomes more
complicated than in Sec. 5.4.1. On the one hand, Y is discrete which automatically enforces
implicit compression. Moreover, I(X;Y) = H(Y)—H(Y|X) = H(Y)— H(Y|Y) is smaller
for Y = Y , than for Y = ¥/ in Fig. 5.2, hence minimizing I(X;Y) now prefers f/
over f . rather than evaluating them equally. I(X; }7) prefers more uniform QY|Y7 hence
less confident predictions just to reduce I(X;Y), even when Y is a deterministic function of
X and the classes are well separated at Y. On the other hand, this inclination towards less

confidence predictions makes I(X;Y) plays a role similar to label smoothing [18, Sec. 7.5],
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which can be beneficial to avoid overfitting in the case of a small dataset if carefully done.
Therefore, if one decides to keep I(X;Y) in (5.4), the choice of 8 and the effect of the
compression term should be carefully monitored.

Note that during training we do need to define and deal with RV Y based on QY|Y/
in order to not only have a finite IB functional, but also to ensure desirable properties
such as simplification. However, during inference we can directly utilize the variational
approximation Qf,‘y as our soft estimate and there is no need for Y.

To apply this method to a latent representation, one possible approach is to feed the

latent representation L to a linear layer of size ) followed by a softmax layer to generate
Y.

5.4.3. Stochastic DNNs

A further approach is to use the IB functional to train stochastic DNNs rather than deter-
ministic ones. A DNN can be made stochastic by, e.g., introducing noise to the intermediate
representation(s). The statistics of the noise can themselves be considered trainable pa-
rameters or adapted to (the statistics of) the intermediate representation(s). The objective
function to be optimized remains (5.2). For I(X; L) to be finite, it suffices to add noise
with an absolutely continuous distribution to L. Depending upon where and what type
of noise is introduced, I(Y’; L) can encourage different notions of robust representations,
for which I(Y; L) does not degrade by introduction of noise or deformations. Similarly
I(Y; L) may also promote an intermediate representation with well separated (sub)regions
corresponding to different labels, which in turn admits simpler decision functions for the
stochastic representations. For example, a small amount of uniform noise added to the
intermediate representation leads to a better IB functional for f! , than f/ . and for f ,
than f/ ., in Fig. 5.2. For stochastic DNNs, the compression term /(X; L) can encourage
more compact representations. For example, again in Fig. 5.2, adding a small amount of
noise N to the output makes I(X; f/,.,(X1)+ N) larger than I(X; f2 .(X;)+ N), making
the latter representation more desirable. Note that in case of stochastic DNNs, the noisy
intermediate representation, such as f/,.,(X1) + N or fZ .(Xi)+ N, is considered L and
fed as input to the next layer of the DNN.

In addition to resolving the issues associated with IB functional mentioned in Sec. 5.3,
training a stochastic DNN in such a way also provides a novel way of data augmentation.
Sampling the intermediate representation L multiple times during training for each input
sample can be viewed as a way of dataset augmentation, which may lead to improved
robustness. Introducing noise in a latent (bottleneck) representation thus presents an
alternative to the data augmentation approach proposed in [105], which requires training
a separate auto-encoder to obtain latent representations to be perturbed by noise.

5.4.4. Replacing the IB Functional

A final approach is to replace the IB functional by a cost function that is more well-behaved,
but motivated by the IB framework. Specifically, by replacing mutual information by (not
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necessarily symmetric) quantities I(-;-) and Ip(+;-), we replace (5.2) by

{{%iif]}[c(XSL) — BIp(Y; L). (5.5)
This approach can be used for training the DNN both as a whole and layer-wise.

We first consider setting Io(X; L) = I(vx(X);vp(L)) and Ip(Y; L) = I(Y; v, (L)), where
vx, v, and v are quantizers, that are adapted according to the statistics of the latent
representation L and w.r.t. one another®. It is important to note that the quantization
is not performed inside the DNN, but only for computing the function in (5.5). This is
the typical approach performed when mutual information is estimated from finite datasets
using histogram-based methods. Unlike [20], we argue that the design of vx, vy, and v}
should not be guided by the goal of estimating the true mutual information (which is
bound to fail according to our analysis in Sec. 5.3.1), but by the aim to instill the desired
properties from Sec. 5.2 into the cost function (5.5).

The effect of quantization is that Io(X; L) becomes finite. Moreover, if 1/, is set appro-
priately, solving (5.5) leads to simpler representations. Considering again Fig 5.2, setting
vp () = 1[- > 0.5] prefers f},,. over fi . (and similarly f! . over fZ .); however, the
finer the quantization v} is, the less sensitive is (5.5) to the simplicity of the intermediate
representation L.

The fact that v, and v}, need not coincide yields an advantage over the solution pro-
posed in Sec. 5.4.1 in the sense that the compression term can become useful now. With
the above choice of v; we see that the precision term is the same for f/ . and f2 .
However, if vy is the identity function and v, a uniform quantizer with four quantization
levels in [0, 1], then f! , leads to a larger compression term than f .. thus favoring f ..
However, as we observed in Sec. 5.4.1, the quantized IB functional partitions DNNs into
large equivalence classes that do not necessarily distinguish according to robustness. Ad-
ditionally, the quantized IB functional is piecewise constant when used for finite datasets.
Finally, choosing appropriate quantizers is not trivial; e.g., the effect of this choice has
been empirically evaluated in [102], with a focus only on the compression term. For the
quantized IB functional, choosing quantizers becomes even more complicated.

Without going into details, we note that computing a noisy IB functional, for example
by setting Io(X;L) = I(X;L + N) and Ip(Y;L) = I(Y;L + N’) for noise variables 7
and 1 that are adapted according to (the statistics of) L and w.r.t. each other?, can lead
to simplified and compact representations. In contrast to the quantized IB functional,
the noisy IB functional can even lead to robust representations and, for appropriately
chosen noise models, is not piecewise constant for finite datasets, hence admitting efficient
optimization using gradient-based methods. Again, we note that noise is not introduced
inside the DNN, but only in the computation of (5.5); hence, the DNN is still deterministic.

Other than quantization and introducing noise in the computation of the mutual infor-

31t is important to adapt the quantizers (or the noise) to (the statistics of) the latent representation L
in order to rule out ways to decrease the cost without fundamentally changing the characteristics of
L, e.g., by simple scaling.
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mation terms, one may go one step further and replace these terms with different quantities.
For example, it is common to replace the precision term by the cross-entropy loss between
the true posterior Py, and a variational approximation. Moreover, also the compression
term can be replaced by terms that are inspired by I(X; L), but differ in essential details.
These changes to the optimization problem often directly enforce goals such as P2-P4, even
though they have not been captured by the original IB functional based optimization.

Finally, when replacing the two terms in (5.2) with different quantities, one may even
choose to select different intermediate representations for the precision term and for the
compression term. For example the compression term can be defined based on a latent rep-
resentation and the precision term can be defined based on V. The compression term can
then enforce desired properties on the latent representation whereas the precision term can
ensure that the output of the DNN V admits simple decisions and predicts Y well enough.
In contrast, evaluating (5.2) only for an internal representation L trains only the encoder,
failing to instill desired properties into Y evaluating (5.2) only for the output Y trains the
whole DNN, but does not necessarily lead to internal representations L with the desirable
properties from Sec. 5.2.

The approaches in this section are not completely independent. For example, on the
one hand, a probabilistic interpretation of the output (Sec. 5.4.2) can be considered to be
a special type of stochastic DNN in which the stochasticity appears only in the output
neurons (or the auxiliary output neurons) and only during training. On the other hand,
evaluating the IB functional for this probabilistic interpretation can be considered as re-
placing the IB functional with a different cost function. This is in line with the reasoning
n [106], illustrating that the same problem may be solved equivalently by adapting the
optimization method, the feasible set, or the cost function.

Although (5.2) and the variants suggested in this section deal with encoders of one
intermediate representation at a time, leading to greedy or semi-greedy (if we do not fix the
previous representations already trained by their IB functionals but let them be fine tuned
by IB functionals of the deeper layers) layer-wise training, but for all of these methods
including the original IB formulation, we can form a weighted sum of IB functionals (or it’s
variants proposed in this section) for different intermediate representations and use this
weighted sum as the training objective to optimize all the layers jointly. Such an approach
of weighted objectives was also employed in [104].

A common theme in our remedies from Secs. 5.4.1 to 5.4.4 is that they encourage latent
representations in which data points from different classes are represented in some geo-
metrically compact manner. In other words, the proposed remedies encourage compression
(P2) in a geometric sense rather than in the sense of a minimal sufficient statistic. This
is intuitive, since representing classes by clusters tight and far apart allows using simple
decision rules for classification (P3). While such clustering does not immediately ensure
robustness (P4), the injection of noise (either directly or only in the computation of the
IB functional, cf. Sec. 5.4.3 and 5.4.4) does.

All this certainly does not imply that measuring P2 in information-theoretic terms is
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inadequate. Rather, it illustrates that measuring P2 in information-theoretic terms is
insufficient to instill desirable properties such as simple decision functions or robustness,
while understanding P2 in geometric terms has the potential to do so. Besides, invariance
and compression (P2) in a geometric sense has also been linked to generalization [94].

5.5. Critical Discussion of and Experimental
Evidence from Related Work

In this section, we not only critically assess and provide insights into the related work in
light of our Sec. 5.3, but we also discuss, where relevant, how some of these works provide
experimental evidence to support the approaches we propose in Sec. 5.4. These works
report successes in terms of different operational goals, such as generalization, adversarial
robustness, and out-of-distribution data detection, that are directly relevant for applying
classifiers in practice. Therefore, this shows that our proposed remedies are not only
successful in instilling desired characteristics in intermediate representations, such as P3
and P4, but are also, via these characteristics of the intermediate representations, able
to successfully achieve various operational goals. Hence, although our approach is mainly
focused on providing analytical understanding via theory and intuitive examples, we also
rely on the experimental evidence from other works to support our claims.

The idea of using the IB framework for DNNs was first introduced in [19]. They proposed
the application of IB functional for both analysis as well as training DNNs. In the context
of training, [19] mentioned that this approach provides information-theoretic optimization
criteria for obtaining optimal DNN representations.

[107] proposed deterministic IB functional which replaces I(X; L) by H(L). Since we
deal with deterministic DNNs in Sec. 5.3, we have I(X;L;) = H(L;). The IB functional
thus coincides with the deterministic IB functional proposed in [107] and the discussion in
Sec. 5.3 is also applicable for deterministic IB.

The authors of [108] studied the latent representations (obtained via training a DNN
using a standard loss function) in the context of I(X;L). They inject Gaussian noise at
the output of every neuron and show that, in this case, a geometric clustering of the latent
representation is captured well by both the compression term [(X; L) and the entropy of
the quantized latent representation, H (v (L)). As we mention at the end of Sec. 5.4, en-
couraging geometric clustering has the potential to directly instill the desirable properties
of simple decision rules (P3) and robustness (P4) into latent representations. The obser-
vations in [108] therefore support our proposal to either use a stochastic DNN (Sec. 5.4.3)
or to replace the cost function (e.g., via quantized entropy) to instill desirable properties
into the latent representations (Sec. 5.4.4).

Reference [109] uses I(X; L) to bound the generalization gap from above, hence estab-
lishing a connection between I(X; L) and one of the most important operational goals
while training DNNs, i.e., generalization. This could provide a strong justification of using
the IB functional for training DNNs but, although theoretically interesting, their bound
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relies on strong assumptions such as X and L being discrete and the use of an “optimal”
decoder for the latent representation L. Furthermore, the upper bound accounts only for
the generalization gap and not the actual performance (which can be bad despite a small
generalization gap). Finally, the upper bound is infinite, and hence not useful, in the
setting of deterministic DNNs with continuous X and L that was discussed in Sec. 5.3.

We next turn to works that train DNNs using cost functions inspired by the IB principle.
The authors of [106] proposed minimizing the IB functional based on parametric distribu-
tions for the (stochastic) encoder and decoder, i.e., combining approaches from Secs. 5.4.3
and 5.4.4. They showed that minimizing the cost function (regularized by total correlation
to encourage disentangled representations) is equivalent to minimizing cross-entropy over
DNNs with multiplicative noise (dubbed information dropout). They also discovered that,
for a certain choice of the parameter  and for the goal of reconstruction, i.e., Y = X, the
regularized cost function is equivalent to the one for variational auto-encoding [110].

Reference [86] trained a stochastic DNN using a variational upper bound on the IB func-
tional and showed that the resulting DNN has state-of-the-art generalization performance,
as well as improved robustness to adversarial examples. They introduce noise at a dedi-
cated bottleneck layer (cf. Sec. 5.4.3), leading to a stochastic DNN with finite IB functional
for the bottleneck and the subsequent layers. The authors then replace the compression
term I(X; L) for the bottleneck layer with a variational upper bound (cf. Sec. 5.4.4) to
make the compression term tractable; the resulting term is no longer invariant under bi-
jections and encourages bottleneck representations that are compact in a geometric sense.
They further replace the precision term I(Y; L) by cross-entropy loss. This can be inter-
preted as two steps applied sequentially, namely first lower bounding I(Y’; L) by I(Y; }A/)
and then lower bounding /(Y f/) by cross-entropy loss with a probabilistic interpretation
of the output ¥ 4 (cf. Sec. 5.4.2). Combining the bounds on compression and precision
terms thus instill desirable properties in both the bottleneck representation L and the
output representation Y (cf. end of Sec. 5.4.4). Unlike I(Y; L) and I(Y:;Y), cross-entropy
applied to a probabilistic interpretation of the output is no longer insensitive to bijections
and, in conjunction with noise introduced at the bottleneck layer, enforces simplicity of
the decision rule and robustness in the trained DNN (see [86, Fig. 2]).

The authors of [85] optimized the IB functional using stochastic DNNs, which is closely
related to training stochastic DNNs using the IB functional. They followed a very similar
approach as the authors of [86], with the main difference that they replace the variational
bound on the compression term by a non-parametric bound. They show that the inter-
mediate representations they obtain form geometrically dense clusters as compared to the
representations of DNNs trained using traditional cost functions (see [85, Fig. 2]).

The authors of [88] used the same technique as in [86] to train stochastic DNNs but they
measure the performance of the DNNs in terms of classification calibration as well as the
DNN’s ability to detect out-of-distribution data. Since the training technique is the same
as in [86], our discussion of [86] also applies here.

[89] also uses a setup similar to [86]. For example, they introduce Gaussian noise at

4See Sec. 5.8 for a detailed discussion of this two step perspective.
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the latent representation (Sec. 5.4.3) and approximate I(X; L) similarly. However, they
replace the precision term 7(Y; L) in the IB functional with a term that quantifies channel
deficiency based on Kullback-Leibler divergence and use a tractable approximation for this
new precision term (cf. Sec 5.4.4).

In summary, the authors of [85, 86, 88, 89] propose cost functions motivated by the
IB framework but depart from it by using a combination of techniques from Sec. 5.4.
Their promising performance in terms of various operational goals is therefore experimental
evidence of the success of our proposed remedies, as it cannot be attributed to the IB
functional itself based on our discussion in Sec. 5.3. Note that these works do not explicitly
mention that the IB functional leads to an ill-posed optimization problem the solution of
which lacks desirable properties such as representational simplicity and robustness. Instead
they introduced the aforementioned modifications to obtain tractable bounds on the IB
functional that can be optimized using gradient based methods.

5.6. Regularizing Intermediate Representations

We believe that the idea of regularization introduced by the IB functional, i.e., to regularize
the intermediate representations L rather than the parameters {©;} of the DNN, has great
potential, as we elaborate in this section®.

The motivation to regularize parameters {©;} of a DNN partially comes from the goal of
introducing a soft limitation on the hypothesis class representable by the DNN. The mo-
tivation to restrict the complexity of the hypothesis class representable by a DNN further
stems from the relation between generalization and traditional complexity measures. These
measures focus on what a DNN can do based on the network architecture while ignoring
the (estimated) data statistics Px y and the actual function implemented by the DNN; i.e.,
the network parameters after training on the actual data. For example, VC dimension [111]
is independent of Pxy and the learned network parameters, and the generalization error
bound based on Rademacher complexity [112], only depend on (estimated) Py, ignoring
Py |x and the learned network parameters. However, these traditional complexity measures
and associated generalization bounds fail to explain why largely over-parameterized DNNs
perform well although they are capable of memorizing the whole dataset [81,94,101]. The
discussion in [113] suggests that a perspective of the DNN, which also involves the (esti-
mated) relation between X and Y as well as the learned network parameters, can lead to
more meaningful insights in terms of its generalization performance; the methods employed
in [92,94,95] for explaining and understanding the success of such networks explicitly or
implicitly focus on the learned representations for the specific task. This hints at the fact

SDropout [82] also regularizes latent representations but it does not directly focus on instilling specific
desired characteristics in the latent representation. Instead, Dropout takes an ensemble approach of
getting redundant and robust latent representations by randomly eliminating neurons in latent repre-
sentations during training. In this chapter we do not delve into such approaches of regularizing latent
representations. We rather focus on methods that directly aim to instill specific desired characteristic(s)
in intermediate representation(s).
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that regularization based on properties of intermediate representations instead of solely
focused on network parameters can be beneficial. The experiments in [108] also support
this claim by arguing that geometric clustering of the latent representations is a valid goal
for training DNNs for classification.

Several regularizers trying to instill desired characteristics directly in an intermediate
representation (without necessarily being motivated by the IB principle) have been pro-
posed in the recent literature. Reference [83] introduces I(C; L), where C' is some nuisance
factor or discriminatory trait, as a regularizer. Minimizing it aims at making the latent
representation L and the performance of the DNN invariant to C'. The authors evalu-
ate this regularization in a variational auto-encoding setup and as an additional term in
the variational IB setup of [86]. Depending upon the relation between X and C', the term
I(C'; L) may also suffer from the issues discussed in Sec. 5.3.1 or Sec. 5.3.2 for deterministic
DNNs. In [114], the authors regularized the final softmax output, interpreted as a prob-
ability distribution over Y (cf. Y in Sec. 5.4.2), by H(Y|X) to penalize overly confident
output estimates. The experiments in [90] suggest that back-propagation of classification
error or a similar loss function from the output does not lead to latent representations
with properties such as discrimination and invariance (which are intuitively similar to P1
and P3 and to P2 and P4 from Sec. 5.2, respectively). They propose a “hint penalty” that
encourages latent representations being similar if they correspond to the same class. Sim-
ilarly, [91] defined the regularization on latent representations as a label-based clustering
objective, which is conceptually similar to defining the goal of compression (P2 in Sec. 5.2)
in a geometric sense. The authors of [91] discuss the performance of such regularizers for
various problems including auto-encoder design, classification, and zero shot learning.

In addition to improved generalization, representation-based regularizers also provide
a flexible way to incorporate additional operational goals and sometimes lead to DNNs
satisfying these goals without explicitly imposing them. For example, [86] demonstrated
enhanced adversarial robustness for such networks, although the networks were not specif-
ically trained to be adversarially robust. Such regularization also provides a more flexible
data augmentation method for training and inference as compared to the fixed transforma-
tions done at the input currently in practice, e.g. rotation, translation etc. For example,
the authors of [85,86] sample the noisy bottleneck representation L multiple times for each
input training example. This data augmentation mechanism also yields an advantage over
the one introduced in [105] by obviating the need to train a separate auto-encoder and
gets automatically adapted to the classification task at hand. Regularizers can also be
used to enforce privacy guarantees or to ensure insensitivity to transformations such as
rotations, translations, etc. which is attributed to be one cause of the superior performance
of DNNs [101].

All of these works and those discussed in Sec. 5.5 provide empirical evidence that regular-
izing latent representation(s) is a promising endeavor, achieving generalization, robustness,
fairness, classification calibration, and data augmentation. The discussion at the end of
Sec. 5.4 and in [108] along with the empirical evidence from [90-92] leads us to believe
that defining a latent representation regularizer in a geometric sense in conjunction with
noise/stochasticity is a promising domain of future research. Such a direct geometric de-
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sign can also ensure compatibility with standard optimization tools used in deep learning,
such as gradient-based training methods. On the other hand, although regularizing latent
representations is a key feature of the IB framework, it fails to instill desired properties in
the latent representations. The success of invertible DNNs, e.g., iRevnet [92], and our anal-
yses suggest that the information-theoretic compression-based regularization term (X L)
either becomes obsolete or has to be replaced. Similarly, although intuitively often attrac-
tive, if one aims to define the latent regularizer via some other information-theoretic cost
(e.g., as in [83]), it is important to mitigate issues including, but not limited to, the ones
discussed in Sec. 5.3.1, Sec. 5.3.2, and Sec. 5.3.3. In contrast, a restriction to a specific prior
distribution and approximations being used to evaluate the information-theoretic cost lead
to a more direct and intuitive geometric interpretation (e.g., as observed in [85,86]) which
can be utilized. Thus, in light of the discussion in this work and in [92,94,108] along with
the empirical evidence in [90,91], we conclude that designing regularizers directly with the
aim of instilling certain properties desirable for the intermediate representation L (such as
discussed in Sec. 5.2) may be a more fruitful approach than trying to repair the problems
inherent in the IB functional (or other information-theoretic cost functions) in the context
of classification.

5.7. Analysing DNNs via IB principle

While the main focus of this chapter is on training DNNs via the IB functional, in this
section we briefly discuss the implications of our findings on another area of research
sparked by [19]: Analyzing DNNs using the IB framework. The authors of [19] proposed
using the IB functional to analyze DNNs in terms of performance as well as architectural
compactness, and that this can be done not only for the output but also for hidden layer
representations of a DNN.

In [20], the authors applied these ideas to analyze DNNs trained using cross-entropy
without regularization. They empirically observed that compression (in the sense of a
small I(X; L)) cannot be linked to architectural simplicity. Furthermore, based on their
empirical observations, they claimed that training includes a compression phase that, they
believe, is causally linked to improved generalization performance of the DNN. The authors
of [102] present empirical evidence contradicting this claim, which initiated a debate that
is still ongoing. Moreover, the authors of [102] discussed analytically and empirically that
the compression phase observed in [20] is an artifact of the quantization strategy used to
approximate the compression term in connection with the activation function used. They
also briefly looked at the computability issues of the compression term in the IB func-
tional [102, Sec. 2 & Appendix C], recognized that this term is infinite if the intermediate
representation is continuous, and suggested to replace the compression term by the mu-
tual information between X and a noisy or quantized version of L (cf. Sec. 5.4.4). Besides,
recently invertible DNN architectures [92,115] have been proposed that achieve state-of-
the-art performance. For such invertible networks /(X; L) stays the same regardless of the
learned network parameters. The success of such networks also casts doubt on the claims
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in [20] that information-theoretic compression can be directly linked to generalization ca-
pabilities.

Our discussion in Sec. 5.3, although done in the context of training DNNs; also applies
to analyzing DNNs using the IB framework. The discussion in Sec. 5.3.3 implies that,
without additional changes such as the ones proposed in Sec. 5.4, a good result in terms
of the IB functional does neither admit statements about the robustness of a deterministic
DNN nor about the simplicity of the required decision function. It further means that the
IB framework cannot be used to make statements about the classification performance or
generalization without introducing additional constraints. Furthermore, the ill-posed or
piecewise constant nature of IB functional for the classification task using deterministic
DNNs (cf. Sec. 5.3.1 and Sec. 5.3.2) further complicates the situation. Hence our ob-
servations regarding generalization and compression observed in [20] are in line with the
observations in [102]. To summarize, unless remedied via additional modifications, these
problems make the IB functional an unfit tool for analysing deterministic DNNs.

5.8. Our Perspective on Bounding /(Y L)

In this section we briefly discuss the relation between I(Y; L) and cross-entropy loss, which
is often used as a measure of accuracy while training DNNs. We provide an alternative
view to the one presented in [85,86] about the cross-entropy loss as a lower bound for
I(Y;L).

We start by restricting ourselves to the setup where, for the latent layer L under consid-
eration, the encoder L = f(X) can be a stochastic map of X but the decoder ¥ = h(L) is
a deterministic map. Note that the scenarios in [85,86] are subsumed in this setup. The
prevalent perspective, also described in [85] and [86], of defining the lower bound is:

I(Y;L)> H(Y)—-H(Y|L) - D (PYILHQYIL) (5.6)
= H(Y) - C (P Qvic) (5.7)

where C (-||-) denotes cross-entropy and Qyj. is any conditional probability distribution
over ) given L (normally referred to as the variational approximation of the true posterior
Py|L) .

For deterministic h, we make the assumption that for all y € Y and ¢ € Rl we have

Qvir(yl) = Qyy (y|h(0)) (5.8)

i.e., Qy|r depends on L only via the deterministic decoder v = h(L). This assumption
defines the role that the deterministic decoder map h plays in the variational approximation
and is valid for the scenarios described in [85,86]. Qyy 1s the variational approximation of

the true posterior Py‘g/ obtained via application of a soft decision rule to % (cf. Sec. 5.4.2).

For example, in [85,86] the output Y of the last softmax layer is interpreted as a probability
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distribution @y over Y (as in Sec. 5.4.2).
On the one hand, for Qy/;, satisfying (5.8), we have

C (Py|L||QY\L> —Ery~p,y <log QY|L(Y|L))
—Eryer,, <log Qy\y(Ylh(L)))
- _EY,YNPY’Y (ELNPLW(-W) (10g QY|Y(Y‘h(L)))>

= _EY/,YNPV,Y (log QYW(Y‘?))

= =

—
~

where (a) is due to (5.8), (b) due to the law of total expectation, and (c) because Y = h(L)
and the inner expectation has a constant argument for a deterministic h.

On the other hand, we have

I(Y;L)=I(Y;Y)+ I(Y;L|Y)

gy

(b)

>HY)-C (Pyp?HQYn?)

© HY)-C (PY|L||QY|L) (5.10)

where (a) follows from the non-negativity of mutual information, (b) is obtained by em-
ploying the same technique as in (5.7) and (c¢) is due to (5.9). Inequalities (a) and (b)
signify our two-step perspective of lower bounding I(Y’; L) using the cross-entropy loss
C (Py|Ll|Qy‘ L). Specifically, (a) defines the relevant information loss [116, Chap. 5] due
to the transformation of L to ¥ via the deterministic decoding map h, while (b) represents
the loss due the variational approximation Qy; = QY\Y obtained by applying the decision
rule to Y. Hence, we have divided the total approximation loss into two parts, one corre-
sponding to the decoding map h and the other corresponding to the decision rule, in the
same way in which Qy/y, is defined based on L in two steps via Y. This also shows that

the cross-entropy loss used in [85,86] is a better surrogate for I(Y;Y’) than I(Y;L).

We now briefly consider a stochastic decoding map h and define
Qv =Eyp, 1 (Quir(ulY) (5.11)

which simplifies to (5.8) in case h is deterministic. For stochastic h and Qy1(y|¢) defined
in (5.11) we have

C(Prell@vir) = —ELyer,, (10% (Efmpm(.m (@yw(y\?))»
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,\
INe

s (g @y (VIY))
C (PryllQvy) (5.12)

where (a) follows from Jensen’s inequality and (b) is due to law of total expectation. This

_EL,Y,YNP

—
=
=

suggests that for stochastic encoders, C (Py| L Qy| L) provides a tighter lower bound for
I(Y; L) than C (Pyg[|Qys)-

The two cross-entropy terms in (5.12) have different operational interpretations in the
case of a stochastic decoding map h. To understand this better, we investigate how they

are estimated in practice. For each available data sample (z,y), we generate multiple
samples of the latent representation L according to the stochastic map f = Ppx. Then,

for every ¢, we generate multiple samples of Y according to the stochastic map h = PYI Iy
On the one hand, to compute C' (Py‘ L@y L), we average QY|Y corresponding to different
samples of Y generated for the same tuple (z,¢,y) to calculate Qy. (i.e., (5.11)). This
is used to calculate the log loss (log Qy|L). On the other hand, for C' (PYD;HQYD;), we

evaluate log loss for each sample of 1% separately (log QY|Y/)- These log losses are then
averaged to calculate the loss corresponding to each tuple (x,,y).



Appendices for Chapter 2

A.1. Proof of Proposition 2.4

Consider the relation R. = {(g(2), 2): z € Z}. It can be shown that

VI CZUZ: RT)=g (TNZ)CZ.

We thus need to show that, for all z and all B C Z,

>, Pz2) =) Qlg(2),2) — ¢

2'e€g—1(B) zZEB

Now let R = PW, i.e., we have

R(z,z)= >  P(z27)

Z'€g1(z)

One can show along the lines of [4, (65)—(68)] that

R(z,z)

CL(Z7W> = Z Hz Z R(sz> logi

= = Q(g(z

)

%)

=:D(R(z,)[|Q(g(2)))
from which we get that, for every z,

D (R(z, )/|Qlg(2), ) < SEEW)

min 4.

(A.4)
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With Pinsker’s inequality [40, Lemma 12.6.1] and [40, (12.137)] we thus get that, for every
z and every B C Z,

Z R(z,f) - @(g(z),f)

zZeB

‘ . J In(2)CL(Z, W) (A6)

2min p1, '
Combining this with (A.3) thus shows that (A.2) holds for

__ J In(2)CL(Z, W) (A7)

2min yi, '

This completes the proof.

A.2. Proof of Lemma 2.5

We show that the derivative of d(Z, W) w.r.t. 8 is positive. Indeed,

ddﬁaﬁ(z, W) = R(Z) — R(Z) — D(Z||Z) (A.8)

=1(Zy;Zy) — H(Z) + H(Z) — H(Z,|Z,) + H(Z). (A.9)

The entropy rate of the reversed process equals the entropy rate of the original process,
ie.,

H(Z) = lim H(Z,|Z;" ") = lim H(Z:|Z3). (A.10)

n—oo n—oo

We can now apply [40, Lem. 4.4.1] to both sides to get H(Z) > H(Z,|Z,) and H(Z) >
H(Z1|Z3). We use this in the derivative to get

d

10 W) 2 12 20) = H(Z) + H(D\| %) — H(Z:|Z)) + H(Z:| 2) (A.11)
=H(Z\|Z) — H(Z\|Zy, Zs) — H(Z5|Zy) + H(Z5|Z}) (A.12)
= [(Z1; 22| 7)) — [(Z1; Z|Z1) > 0 (A.13)
by data processing.
A.3. Proof of Lemma 2.6
The first property follows by recognizing that
Cs(Z, W) = (1 = B)CL(Z,W) + B(Cp(Z, W) — CL(Z,W)) (A.14)

and that Cp(Z, W) > CL(Z,W).



A.3. Proof of Lemma 2.6 125

The second property follows immediately from the definition of dg(Z, W) and Cp(Z, W).
For the third property, note that
Cl(Xaw) = CP(va) - CL(Zuw)
= I(Zl, ZQ) — I(Zl,ZQ) = [(Zl, ZQ|72)

The fourth property is obtained by observing that, if 5 < 0.5

08(2, W) = BI(Z1; Zo) = (1 = B)H(Za]Z1) — (1 = 28)H(Z) — BH(Z)
< (L=P)H(Z:21) = (1 = 2B)H(Z:|2 ) BH(Z)
= (1= 28)H(Zs|Z) — (1 — 2B)H(Zs| Z1) — BI(Z1; Z2)
= (1—28)CL(Z,W) — BI(Z1; Zs).

The inequality is reversed for § > 0.5.
For the fifth property, we repeat the last steps with

—(1=2B)H(Z) < —(1 - 28)H(Z2|Z) (A.15)

noticing that (1 —23) <0 if § > 0.5. Again, the inequality is reversed for g < 0.5.

If Z is reversible, then the PMFs do not change if the order of the indices is reversed.
As a consequence, we have I(Zy; Zo|Zs) = 1(Zo; Z1|Z1) = C1(Z,W). But Cp(Z;W) =
I(Zy; Z,|Z1) < C1(Z,W) by data processing. Thus, the sixth property follows by noting
that, with (A.14), C3(Z, W) = (1 — 5)CL(Z, W) + SC,(Z, W).






Appendices for Chapter 4

B.1. Factor Graphs

Factor graphs [117] are bipartite graphs that graphically represent factorizable functions.
A function f(-) is said to be factorizable if it can be factored into product of “local”
functions g;(-):

f(th??'” 7271) :ng(zj) (Bl)

where the jth factor g;(-) is a function of only a subset Z; of all the variables {z1, 22... 2, }
involved in f(-). The notation g;(Z;) means that g; is a function of the variables in the
set Z;. One can construct a graph of this function where each variable is represented by a
circular node and each factor is represented by a rectangular node. A variable node z; and
a factor node g; are connected by an edge if z; € Z;. We call two nodes in graph adjacent
if they are connected directly via an edge. There are no edges between two variable nodes
or between two factor nodes, hence it is a bipartite graph. This graph is known as the
factor graph of f.
Fig. B.1(a) shows the factor graph of the function in the following equation:

f(21, 20, 23, 24, 25) =g1(21, 22, 23)92(23, 24)g3(24, 25) (B.2)
whereas Fig. B.1(b) shows the factor graph of the following function:
f(21, 22, 23, 24, 25) =01(21, 22, 23)Ga(22, 23, 24)g3(24, 25) (B.3)

The factor graph in Fig. B.1(a) is acyclic while the one in Fig. B.1(b) contains a cycle,
highlighted using thick edges.
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Factor graphs are useful for doing maximization (or maginalization) of factorizable func-
tions involving large number of discrete variables in a computationally tractable way.
Instead of doing the maximization (or marginalization) jointly we can do maximization
(or marginalization) locally for each factor and then combine the results to obtain either
exact or approximate maximum (or marginal) of f. The schedule for doing the local
computations and how to combine the local computations is defined by the message pass-
ing algorithm applied to the factor graph. The message passing algorithm dealing with
marginalization using factor graphs is known as sum-product algorithm and the message
passing algorithm dealing with maximization using factor graphs is known as max-product
algorithm. These algorithms are also sometimes referred to as belief propagation. [117]
provides a detailed survey of factor graphs, belief propagation and their applications.

\gl\ | 92| \gs\ ER 9| |9]

\ \
@@@@ @@X@@

) Factor graph for (B.2) (b) Factor graph for (B.3)

Figure B.1.: Examples of factor graphs with and without cycles.

B.2. Max-Product Algorithm

We are interested in computing max-marginals, hence we will focus on max-product algo-
rithm (MP) [118]. Max marginal w.r.t. variable z; is defined as

() = argmax f(2]) (B.4)
where the ~ 2z; in optimization arguments implies that we are optimizing the objective
function over all variables involved except z;. To explain MP let’s start with the example
in Fig. B.1(a) of an acyclic factor graph. If we want to evaluate f3(z3) we can express it
as follows:

f3(x3) =max f(z1, 22, 23, 24, 25) (B.5)
= (HN1§3X91(21, 22723)> ({133?(92(23,24) (Q«}f 93(24725))> . (B.6)

Define

05(2'4) = IE;ZZX 93(24, Z5) (B?)
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B(23) = max ga(z3, 24) - @(za) (B.8)
7(23) = max g1(z1, 22, 23)- (B.9)

2

N
93]

1

@

Figure B.2.: The figure represents MP applied to compute f5(z3). The factor graph in
Fig. B.1(a) is redrawn with z3 as the root node. The messages shown on the
edges represent the computations in (B.7),(B.8) and (B.9).

Hence
o) =1(z0) - (max (s, z0)a(za) (B.10)
=1(0) - B() (B.11)

where a(+), 5(+) and (+) denote the maximization of individual factors or a subset of factors
over a subset of the involved variables. If we assume z; € Z for a finite alphabet Z then
brute force optimization of (B.5) requires O(|Z|*) computations whereas (B.6) represents
how MP defines an efficient way to do the maximization using O(|Z|?) computations by
utilizing the distributive law. These computations can be visualized in Fig. B.2 where we
have redrawn the factor graph in Fig. B.1(a) as a tree to depict the computations in the
sequence they are done. The root node, in this case z3, is the variable node w.r.t. which
we are computing max-marginal. The computations start at the leaf nodes. Each node
waits until it receives an incoming message from all of it’s children, where each incoming
message corresponds to the aggregated computations for the corresponding subtree, and
then it computes the outgoing message to it’s parent node in the following way:

> Once a variable node z; receives incoming message vectors from all of it’s children
nodes, in order to compute the outgoing message to the parent factor node g; we
evaluate the product of all incoming messages from the children nodes for each value
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of the variable z; € Z:

:uzi%gj (Zl) = H ngﬁzi(zi) (B'12)
gr€Fi\{g;}

where F; represents the set of all local functions that involve variable z;, i.e., all
factor nodes adjacent to z;. The vector p, _, ., which is a concatenation of these
values for all z; € Z, is the message that variable node z; passes on to it’s parent
factor node g;. In the case when the variable node z; is a leaf node it assigns to
P, g, & vector of all 1s, denoted by 1.

> Once a factor node g; receives incoming message vectors from all of it’s children
variable nodes, we compute the max-marginal w.r.t. the parent variable node z; of
the product of the factor g; with the incoming message vectors from the children
variable nodes:

Vo) = max (05(2)) TL oy () (B.13)

2 €Z;5\ {2}

This max-marginal, for all values of the parent variable node z;, then constitutes
the message vector v, ., passed from factor node g; to the parent variable node z;.
In the case when the factor node g; is a leaf node, since it only involves the parent
variable, we assign vy, ., (2) = g;(2i).

Note that the computations performed at the variable nodes do not explicitly depend on
the structure of the local functions but the computations performed at the factor nodes
depend explicitly on the structure of the local functions. The messages passed between the
nodes can be thought of both as a function of single discrete variable as well as a vector of
length |Z|. In our example where we compute R.H.S. of (B.5), the computations defined in
(B.7), (B.8) and (B.9) correspond to the outgoing messages from different nodes as shown
in Fig. B.2.

Finally the root variable node z3 computes the max-marginal described in (B.5) by
taking the element wise product of the incoming message vectors as described in (B.11).
The general form of (B.11) is given as

fiz) = T vasu(2) (B.14)

grEF;

We can similarly compute the max-marginal w.r.t. other variables z; by rearranging
Fig. B.1(a) in a similar way, considering z; as the root node. If we want to evaluate max-
marginals w.r.t. all variables, we can reduce the computations significantly by computing
them simultaneously instead of considering each variable node as the root node and doing
separate computations for each max-marginal. To compute all the max-marginals simul-
taneously we have the following procedure: We no longer have one specific root variable
node. We start computing the outgoing messages from the nodes that are connected to
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Figure B.3.: The figure shows the sequence in which messages are passed among the nodes
for computing all the max-marginals simultaneously in the factor graph of
Fig. B.1(a). The encircled numbers on the R.H.S. of each edge indicates the
step at which the connected variable node sends a message to the connected
factor node whereas the boxed numbers on the L.H.S. of each edge represent
the step at which the connected factor node sends a message to the connected
variable node.

only one other node. Each node now sends an outgoing message vector to all of it’s adjacent
nodes. For the message from a variable node z; to an adjacent factor node g;, z; considers
g;j as it’s parent node and waits until it has received incoming messages from all the other
adjacent factor nodes and then computes p_, g, USINg (B.12). Similarly for the outgoing
message from a factor node g; to an adjacent variable node z;, g; considers z; as it’s parent
node and waits until it has received messages from all the other adjacent variable nodes.
Then it computes vy, _,., using (B.13). MP terminates when two messages have been send
along each edge of the factor graph, one in either direction. The max-marginals are then
computed at each variable node z; using (B.14). For the factor graph in Fig. B.1(a), this
sequence of the messages is shown in Fig. B.3.

In the case of an acyclic factor graph this procedure is guaranteed to compute all the
required messages in a finite number of steps. It also leads to exact max-marginals once
MP terminates after two messages have traversed each edge in the factor graph. However
in the case of a factor graph with cycles this procedure will fail to complete since, at some
point during the computations, the nodes in the cycle will keep waiting for the messages
from one another. In such a case, to start the process every variable node sends a predefined
message to all the the adjacent factor nodes. We also do not stop the message passing
algorithm once two messages have traversed on each edge, rather we continue iterating
by passing messages back and forth between variable nodes and factor nodes alternatively
until the messages converge or a maximum number of iterations is reached. Finally we use
(B.14) to obtain an approximation of the max-marginals.

An important property of the max-marginals is that

argmax f(z1, 29, "+ ,2n) = <argmax fl(zl), argmax fQ(ZQ), -++  argmax fn(zn)> (B.15)
£

[2] 21 Zn

Hence to determine the joint maximizer for f we can determine the individual maximizers
for the max marginals f;(z;).
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MP normally leads to numerical accuracy issues due to the product of a large number
of factors. Since the maximizer of a function is not affected by taking logarithm, we can
transform (B.4) to log domain:

log fi(z) = argmaxlog f(z1, 20, - - , 2)

~Z;

= argmax Z log (9;(Z;)) (B.16)

~Z;
J

The corresponding message passing algorithm, known as max-sum algorithm (MS) to com-
pute the log domain version of (B.4) has the following messages passed between variable
and factor nodes:

Hzi—g; (Z%) = Z ng—>zi<zi) (B17)
gr€Fi\g;}
Vyoos () = max (108 0,(Z) + 30 ooy (20)) (B.18)
¢ ZkEZj\Zi

Note that the only two differences to the MP messages is that we are now using logarithms
of the local functions for computations and the products in (B.13) and (B.12) have been
replaced by sums. Finally we can obtain log f;(z;) as follows

10gfi<zz’) = Z ng%zi(zi) (B.19)

gkEF;

B.3. Derivation of (4.21)

Using max-sum algorithm, we have

~bis I#]

Vyi—)bij(bij> = max (gi(B(i, )) + Z,ub“_)gi(bﬂ)) (B,Q())

We will evaluate (B.20) for b;; = 0 and b;; = 1. Then we will obtain 7;; using (4.10). For
bij = 1, we satisfy the requirement > b;; > 1 regardless of the values of other variables
J

involved. Hence g,(B(7,:)) = > bixq
k

Vg, (1) = max lz b@-mq+zubmi<b¢l>] (B.21)
9 m I#j

@q—l-m?x[

~b;;

> (baa + s, @))] (B.22)

1]
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®) , (b,

=q-+ ; biznelﬁi{l} <bzlq + ,ub“_mi(bzl)> (B23)

= g+ > max {q + pn,5,(1), 15,5, (0) } (B.24)
I#j

D 4+ 3 iz, (0) + X" max {g + B, 0} (B.25)
k#j I#j

where (a) follows by taking the penalty for b;; = 1 outside the maximum. (b) follows from
the observation that each component of the sum depends on only one variable and can be
optimized independently. (c) follows from the definition of 3; in (4.9).

For b;; = 0, we need to have at least one b; = 1 in order to avoid g;(B(i,:)) = —oo. The
rest of the variables involved can be chosen freely.

o — , (b B.2
Vgi%blj(()) rTI;%( q-+ /meagi( )+ {biz}g{l&fl)m} (#{%j} (bzzq + szl*)gi(bll))):| (B.26)

=Max |q+ b5, (1) + Y b5, (0)+ D max{q+ By, 0} (B.27)

mA | ket {im} 1# (i}

where (d) follows by using same techniques as in (b) and (¢)Combining (B.25) and (B.27)
we get

g = =X |11, 53, (1) = 1,43, (0) + max {q + B, 03] (B.28)
= — max [Bim + min {—q — Bim, 0}] (B.29)
= — m;aéx [min {Bim, —q}] (B.30)
= max {— max Bim q} (B.31)

B.4. Derivation of (4.25)

For i € N and b; = 1, we need all the other involved variables to be 0 in order to avoid
r;(Nj) = —oo. Hence
VTj—>biz‘<1) = Z Hbyo—r; (0) (B32)
keN;
ki
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For b; = 0, in order to avoid r;(N;) = —oo we can either choose all other involved variables
to be also 0 or we can allow one of them to be equal to 1. Hence

VTj—>biz'<0) = max Z Hbpee—r; (0)7 IZIGI%[X /vau—Wj(l) + Z Hbge—r; (O) (B33)
kGNj l#i] kej\/j
k#i k#{4,1}
=max{ 0,max ¢y ¢ + > Higsr,; (0) (B.34)
LEN; keN;
I#i ki

Combining (B.32) and (B.34) we obtain

wij = —Imax 0, Ill'é%X ¢lj (B35)
l;éij
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C.1. Proof of Theorem 5.1

Let 2 2 (21,...,2x) € ZV. Moreover, we define the N-dimensional cube with side length
a and bottom-left corner at z € RY as C(z,a) £ [z, 21 +a) X - - - [2n, 2y +a). For example,
the RV [X],, = |mX]/m, where the floor operation is applied element-wise, is obtained
by quantizing X with a quantizer that has quantization bins C(z/m,1/m), z € Z".

Let H(Z) denote the entropy of the discrete RV Z with probability mass function Py

and alphabet Z, and let
Hy(Z) & ~log (Z <Pz<z>>2) | )

z2€Z
denote the Rényi entropy of second order of Z. The correlation dimension of a general RV
X is defined as [119]
Hy([X]m
dy(X) 2 tim F2UX]m)

m—ro0 10gm

(C.2)

provided the limit exists. The information dimension d(X) is defined accordingly, with
Rényi entropy of second order replaced by entropy [120].

Proof of the Theorem: The proof consists of four ingredients. Assuming that the
distribution of X has a continuous PDF supported on a compact set, we first show that
the input X has positive correlation dimension. Then, we show that the correlation di-
mension remains positive throughout the DNN. Afterwards, we show that the output has
positive information dimension, from which follows that /(X; L) = oco. Finally, we relax
the condition that X has a continuous PDF supported on a compact set, but require that
its distribution has at least such a component.

We start by assuming that X has a continuous PDF' that is supported on a compact set
X in RV,
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Lemma C.1. Let X be an N-dimensional RV with a PDF px that is continuous and
supported on a compact set X in RY. Then, do(X) = N.

This result generalizes [119, Th. 3.1.c] to higher-dimensional RVs.
Proof: Since px is continuous, so is its square p%. Since both px and p% are continuous
and supported on a compact set, they are Riemann integrable. Hence, the differential Rényi
entropy of second order,

ha(X) 2 ~log | pi(a)de (C.3)

exists. We can sandwich h?(X) by using the upper and lower Darboux sums, i.e., we can
write

Lh%m
1
A 2
= —log — sup  px(¥)
(ZEZZN m~N z€C(z/m,1/m) X
< ha(X)

e[ e ) S

— 1mn
s m zec(z/m,1/m)

Note further that by the mean value theorem we can find ¢, € C(z/m,1/m) such that

1
P -/ = —px(t.). 4
wneim) = [ pal@)de = () ()
This allows us to write Hy([X],,) as
1
Hy([X]m) = —log ( > mMP%c@)) (C.5)
zeZN

Since p%(t,) lies between the infimum and the supremum px can assume on the cube
C(z/m,1/m), we obtain

LhQ,m < HQ([X]m) - Nlogm < UhQ,m (06)

where, because of Riemann integrability, the outer terms of this inequality become equal
as m tends to infinity. Hence, with (C.2), do(X) = N. ]

Now suppose that L; has a distribution with correlation dimension dy(L;) and compact
support £; C RI%|. Then, we have by [121, Th. 1.1]

dy (W7 L;) = min{|L|, | Lita|, do(Li)} (C.7)

for almost every |L;| X | L; 11| matrix W; (in the sense of the Lebesgue measure on the space
of |L;| x |L;y1| matrices). Since L£; is compact, so is the support L of the distribution
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A

of WI'L; + biy1. Thus, we can find a rectangle £ £ L}, x --- x L] C Rt
that contains L. Suppose the activation function ¢ is continuously differentiable with
strictly positive derivative. Thus, it is strictly monotonically increasing and has a strictly
monotonic inverse that, by the inverse function theorem, is continuously differentiable. Let

711, be the image of £, under o; since L is compact, so is £, ;. It follows that the
function o L} ; — L}, ; is bi-Lipschitz, hence so is the function mapping W} L; + b; 11 to
L;11. Since bi-Lipschitz mappings do not affect correlation dimension (see [122, Th. 2.6)),
we have with (C.7)

da(Liv1) = min{|Ls[, [Lis], d2(Li) }- (C.8)

Furthermore, if the support of the distribution of L; is compact, so is the support of
the distribution of L;; ;. We can thus apply this argument recursively: Indeed, since the
distribution of Ly = X has a compact support on RY, we get with Lemma C.1,

dz(Liv1) = _min L] (C.9)
Correlation dimension bounds information dimension from below (see also [123, p. 257]).

Hence,

d(Lit1) 2 j_poin |L;] (C.10)

i.e., the information dimension of the output of the DNN is positive.

We finally relax the condition that X has a continuous PDF supported on a compact
set. By assumption, the distribution of X has an absolutely continuous component that
has a PDF px that is continuous on a compact set X C RY. The distribution of X
therefore is a mixture of an absolutely continuous distribution supported on X and some
other distribution that may have non-compact support, be discrete, or even singular w.r.t.
the N-dimensional Lebesgue measure. Let X. denote the RV distributed according to the
absolutely continuous component, and let X, denote the RV distributed according to the
remaining component. Let further Y be a binary RV controlling this mixture. In other
words, we have X = X, if Y =0and X = X, if Y = 1. Then, the information dimension
of L;yq satisfies [124, Th. 2]

where P(Y = 0) > 0 by assumption. Since X = X, if Y = 0, we can use (C.10) to show
that d(L;11|Y = 0) > 0. Combining this with P(Y = 0) > 0 yields that d(L;y1) > 0
regardless of the distribution of Xj.

In contrast, since the DNN is deterministic, the conditional distribution of L;,; given
X is discrete. It follows that d(L;y1|X) = 0. Therefore,

d(Lis1) > d(Lisi| X) (C.12)

from which we obtain I(X; L;y1) = oo with [116, Prop. 4.2]. This completes the proof. W






Notation and Abbreviations

Mathematical Notation

SESESER

g: X =Y

Py x

| X

H(X)

1(X;Y)

RTL

X ~ Mar(X,P)

elements of a set or numbers

vectors

random variables

sets.

matrices. Matrices will also be used to represent joint probability
distribution between two random variables or conditional probability
distribution of one random variable given another random variable.
Matrix elements are indexed as X(i, j)

random processes

function from X to Y

probability distribution over X

conditional probability distribution of a random variable over ) given
a random variable over X. Y = Py x(X) implies that Y is obtained
by applying the conditional distribution Py x to X

cardinality of the set X

entropy of the RV X

mutual Information between RV X and Y

n-dimensional space of real numbers

a Markov process over alphabet X and transition probability matrix
P

Indicator function. It assumes value 0 when the condition provided
is false and value 1 when the provided condition is true.
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Abbreviations

RV Random Variable

KLDR Kullback-Leibler Divergence Rate

sGITMA  Sequential Generalized Information-Theoretic Markov Aggregation

AnnITMA  (§-Annealing Information-Theoretic Markov Aggregation

sGITCC Sequential Generalized Information-Theoretic Co-Clustering

AnnITCC  B-Annealing Information-Theoretic Co-Clustering

MCL Markov Clustering

DBSCAN  Density-Based Spatial Clustering of Applications with Noise

AP Affinity Propagation

MP Max-Product algorithm

MS Max-Sum algorithm

EAP Extended Affinity Propagation

DNN Deep Neural Network

ReLU Rectified Linear Unit
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