
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Design of a Throughput Oriented Network
Transport Layer Based on MPI for the Data
Acquisition System of the CMS Detector at

CERN

Michael Lettrich

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Design of a Throughput Oriented Network
Transport Layer Based on MPI for the Data
Acquisition System of the CMS Detector at

CERN

Entwicklung einer durchsatzorientierten
Netzwerktransportschicht auf Basis von
MPI für das Datenerfassungssystem des

CMS Detektors des CERN

Author: Michael Lettrich
Supervisor: Prof. Dr. Michael Bader
Advisor: Steffen Seckler (TUM), Luciano Orsini (CERN)
Submission Date: 15.07.2018

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.07.2018 Michael Lettrich

Acknowledgments

This thesis represents part of the results from a 14 month work placement as a Techni-
cal Student at the TriDAS Group of the CMS experiment at the European Organization
for Nuclear Research (CERN). I am grateful to Frans Meijers (CERN) and Prof. Michael
Bader (TUM) who officially supported my efforts to turn parts of the placement into a
thesis topic. I would also like to express my deepest gratitude towards my advisors
Steffen Seckler and Luciano Orsini (CERN). With their experience and level of expertise
they set me up on the right path and helped me to overcome difficult obstacles along
the way.

Furthermore I would like to thank my colleagues Emilio Meschi, Remigius Mommsen
and André Holzner for their explanations on the current CMS Systems. Without a team
of committed system administrators and DAQ on-calls who supported me in creating
and running an environment where I can benchmark my applications, none of the
graphs and studies would have been possible. Further I would like to thank Andrea
Petrucci who helped me with many organizational issues and helped me to refocus
the project after unsuccessful attempts. Finally I would like to thank friends, flatmates
and family for their tremendous support as well as all of those diverse encounters with
people from so many different countries I made through CERN that helped me to grow
professionally and as a person.

Abstract

The Large Hadron Collider (LHC) at CERN allows observation of unstable sub-atomic
particles by colliding two opposed particle beams with up to 14TeV in predefined
interaction points. As one of four LHC experiments, the Compact Muon Solenoid
(CMS) experiment registers them in its set of different sub-detectors. With collisions
producing 1MB of data at a rate of 40MHz, the data rate must be reduced by the data
acquisition system (DAQ) before sent to mass storage. After reduction by hardware
filtering to 100kHz, a second, high level software filter reduces the rate even more.
Between these steps, an event-building cluster merges data from the same collision
at 100kHz using an Infiniband FDR RDMA interconnect programmed at driver level.
This thesis investigates how the Message Passing Interface (MPI), mostly used in high
performance computing, can be leveraged to implement an efficient, scalable and
portable network transport that can handle the high bandwidths required for the CMS
Event-Builder.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Outline . 2

2 Work Environment 3
2.1 The Large Hadron Collider at CERN . 3
2.2 The CMS Experiment and its Data Acquisition System 4

2.2.1 The CMS TriDAS System . 6
2.2.2 Data Flow inside the CMS DAQ 7
2.2.3 The Event Builder Protocol . 8

2.3 The CMS DAQ software . 9
2.3.1 System Architecture . 9
2.3.2 Data Transmission . 10

3 Background on Used Technologies 12
3.1 High-Throughput RDMA networks . 12

3.1.1 Connecting Processes with Channels 13
3.1.2 Channel I/O . 14

3.2 The Message Passing Interface Standard Specification and its Implemen-
tations . 15
3.2.1 Inter-Process Communication in MPI 16
3.2.2 Implementation of the Standard in Open MPI 16
3.2.3 Open MPI Transport over Open Fabrics Devices 18

4 Requirements Analysis 21

5 Designing a Throughput-Oriented Messaging Service on Top of MPI 23
5.1 Design Study: MPI Calls for Event Building Traffic 23
5.2 Defining a Messaging Service on Top of MPI 26

5.2.1 Queuing and Multithreading using a Pipes and Filters Architecture 27

v

Contents

5.2.2 Reusability and Reduction of Complexity by Layering 28
5.3 Deliverables . 29

6 Implementation 30
6.1 Memory Pools for Efficient Memory Handling 30
6.2 Queue Pairs and Completion Queues for Request and Event Handling . 31
6.3 Work Requests and Completion Events 31
6.4 Duplex Transport Based on MPI Point-to-Point Communication 32

6.4.1 Processing of Requests . 32
6.4.2 Buffering Behavior of MPI Send Modes 35
6.4.3 Polling Strategies . 35

6.5 Benchmark Applications . 39
6.6 A XDAQ Peer-Transport: ptmpi . 40

7 Test Environment and Methodology 41
7.1 Hardware . 41

7.1.1 cDAQ Production System . 41
7.1.2 DAQ2VAL Development System 42

7.2 Measurement Strategy . 42

8 Performance Analysis and Tuning 43
8.1 Upper Bandwidth Bounds on Infiniband FDR using Microbenchmarks 43
8.2 Study of Open MPI Transmission Algorithms 44
8.3 Study of Thread and Memory Affinity . 46
8.4 Performance Analysis of mpila . 46

8.4.1 Measuring Queuing Overhead . 48
8.4.2 Optimizing the Memory Pool . 50
8.4.3 Multiple Memory Buffers . 50
8.4.4 Benchmarking Polling Strategies 50
8.4.5 Sensitivity of Polling Strategies Towards Pipelining 53

8.5 Performance at Scale . 53
8.5.1 Interpretation of Measurement Results 56
8.5.2 Comparison with VERBS . 58

9 Conclusion and Outlook 60

List of Figures 62

List of Tables 64

vi

Contents

Bibliography 65

vii

1 Introduction

The question how the world around us came to be and what it is made of, has probably
been one of the oldest questions of mankind. Throughout the centuries, scholars and
scientists have improved our knowledge, giving us more precise models and theories
on how our universe and the matter it consists of came to be. With the rise of particle
physics, complex collider experiments have helped us to build models of matter on
the scale of subatomic particles. The largest and most powerful of them, the Large
Hadron Collider at CERN is the latest effort of particle physicists to observe sub-atomic
particles in a controlled environment and trying to find answers to open questions in
our current models.

Capturing particle collisions at a nanosecond rate, the detectors are forced to reject
interactions that are not relevant for current studies using multi-stage distributed
filtering systems based on electronics and software. At the accumulated data rates of
an order of a hundred Gigabytes per second between electronics and software filter,
efficient use of network resources is required.

The cluster system connected by a high-performance RDMA network used for
gathering data of the same particle collision from various subsystems is interacting
with network equipment on driver level, following design paradigms of real-time
systems and distributed applications. These kind of clusters are also the backbone of
High-Performance Computing (HPC) with the difference that in HPC problems are
usually driven by compute intensive tasks instead of network throughput.

Over the years, the HPC community put significant efforts into development of
tools, programming frameworks and libraries that simplify the creation, tuning and
debugging applications. One of them is the Message Passing Interface (MPI) library, that
simplifies the creation of distributed applications and enables processes to communicate
with each other through high-performance networks. Following the logic, that the
hardware used by data acquisition systems for high-energy physics experiment are
the same as HPC clusters, we can now ask the question if data acquisition can also be
reinterpreted as a HPC task and benefit from HPC technology such as MPI.

As there are no known published investigations of MPI in DAQ systems, we will
study the Event Builder at the CMS detector, a distributed application driven by network
throughput. Our goal is to understand if MPI is suitable for solving these kind of tasks
and evaluate if MPI is capable of exploiting network hardware in an adequate way.

1

1 Introduction

1.1 Outline

The thesis is structured as follows. The first part will provide a brief introduction to
CERN and its current flagship project, the Large Hadron Collider. It is followed by the
description on why and how observed collisions of accelerated particles are filtered in
the CMS experiment by a two stage triggering and data acquisition system. We will
then describe the process of event building in broader depth, detailing both the Event
Builder Protocol and the software system used to run the large distributed system.

We will then change our focus to the key concepts of RDMA network technologies
used to handle the high-bandwidths of the CMS Event Builder and how the Message
Passing Interface (MPI) uses those technologies efficiently.

Having provided the necessary background, we will formulate the problem statement
of designing a messaging service on top of MPI for the CMS Event Builder and name
the requirements a solution should obey to. We then will present a system design
based on a layered architecture and the Pipes and Filters architectural patterns that
proposes a solution to the problem aligned with the requirements. We will then detail
the lgorithmic and implementation details of that solution before evaluating different
aspects of out messaging service through a series of benchmarks.

2

2 Work Environment

This chapter provides the necessary context about the technical aspects of the en-
vironment this thesis was created in. It particularly gives an overview of the data
acquisition process at the CMS detector on the LHC ring and explains the necessity for
high-throughput networking in the CMS Event Builder.

2.1 The Large Hadron Collider at CERN

The Conseil Européen pour la Recherche Nucléaire (CERN) or European Council for Nuclear
Research was formed in 1952 with the mandate to establish a European physics labo-
ratory [1]. It resulted in the European Organization for Nuclear Research, that was
founded in 1954 as an "organization, [that] shall provide for collaboration among
European States in nuclear research of a pure scientific and fundamental character,
and in research essentially related thereto" [2] by 12 European member states. It was
decided to locate its facilities in Meyrin on the Franco-Swiss boarder close to Geneva,
Switzerland.

Over the past decades, CERN attracted new member states and formed collaborations
with research institutes around the world. New experimental facilities in the form of
particle accelerators and detectors were built in order to investigate the fundamental
constituents of matter and the forces acting between them [3] [4].

According to Einstein, mass and energy are equivalent and can be converted into
each other. This is exploited by particle accelerators, where the impulse of particles
colliding is converted into energy and back into mass, giving a glimpse of unstable
sub-atomic particles. Higher beam energies and intensities increase the chances to
observe heavier sub-atomic particles [5].

Today, CERN is home to the Large Hadron Collider (LHC) [6], the world’s largest and
most powerful particle accelerator. Passing through smaller accelerators, two beams of
protons or lead ions traveling in opposite directions are injected into the 27km circuit
of the LHC where the beams reach full energy of around 6.5TeV. The beams, chopped
up in 2808 bunches, containing about 1.15 × 1011 particles each are then brought into
collision in predefined locations at center of mass collision energies up to 13TeV.

The four LHC experiments ATLAS, CMS, ALICE and LHCb are located around
these interaction points, where the beams cross and particles collide, registering the

3

2 Work Environment

Figure 2.1: Aerial view of the underground CERN accelerator complex and the four
experiments located on the LHC ring. (Photo: CERN)

collision and the generated sub-atomic particles through direct or indirect measurement
methods by specialized detectors.

2.2 The CMS Experiment and its Data Acquisition System

The Compact Muon Solenoid (CMS) [7] detector is one of the four detectors on the
LHC ring, installed around 100 meters underground on French territory between
Lake Geneva and the Jura mountains. It is a general-purpose detector, consisting of
different sub-detectors designed to measure all relevant parameters required to study
phenomena at the high energy domains the LHC opens.

The technological challenges that had to be overcome to build and reliably operate
this detector are manifold. After the particle bunches have reached full energy, they
cross at a rate of 40MHz (or 25ns time intervals), leading to an order of 109 collision
events a second that are registered in the detector. At a total data rate in the order of
1MB per event, it is impossible to store all events. However, protons are composite
objects that consist of quarks and gluons transmitting the forces that holds them
together. A hard collision of quarks or gluons is statistically rare with other, soft
collisions occurring much more frequently. As these soft events are of limited scientific

4

2 Work Environment

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic�
Calorimeter

Hadronic
Calorimeter

Preshower

Muon�
Detectors

Superconducting Solenoid

Figure 2.2: A schematic of the CMS detector showing the subsystems that allow the
detection of different types of particles (Graphic: CERN, for the benefit of
the CMS Collaboration)

Figure 2.3: Front view of the CMS detector during its assembly in its experimental
cavern in Cessy, France. (Photo: CERN, for the benefit of the CMS Collabo-
ration)

5

2 Work Environment

LV1

HLT

μs

sec

Detectors

Digitizers

Front end pipelines

Readout buffers

Switching networks

Processor farms

Figure 2.4: Dataflow in the CMS Trigger/DAQ system. Detector data is filtered in a
two stage process by a hardware Level-1-Trigger and a software High Level
Trigger. Graphic: [9]

interests, a trigger system has to distinguish between events that are worth storing and
those that are not.

2.2.1 The CMS TriDAS System

The CMS Trigger and Data Acquisition System (TriDAS) [8], is designed to perform this
distinction and reduce the data rate to an order of 100MB/s for archiving a later analysis.
In order to achieve this rejection rate, the system is divided into a Level-1 Trigger and a
High-Level-Trigger (HLT). The Level-1 Trigger is a custom-built hardware-based system,
which reduces the event rate to 100kHz. The HLT on the other hand is a software
system operating on a farm built from commodity of the shelf hardware and performs
the last rejection step to an order of 1kHz.

Operating on a file basis, the HLT takes its rejection decisions based on the full
information of the event. Therefore, all read-out information from the subsystems
that make up the CMS detector need to be merged into a single file. This is the main
purpose of the Event-Builder [9], a distributed system, that is the link between the
hardware-based readout buffers of the detector and the software-based HLT.

6

2 Work Environment

Figure 2.5: Full schematic of the CMS DAQ2 system depicting the technical infrastruc-
ture and subsystems involved in the DAQ process. Graphic: [10]

2.2.2 Data Flow inside the CMS DAQ

The full TriDAS System in its current shape is depicted in Figure 2.5. The processing
starts at about 740 custom-made Front-End Drivers (FEDs). The FEDs deliver for each L1
trigger their event fragments of 0.1-0.8kB to Front-End Readout Optical Links (FEROLs)
to which they are connected over point-to-point links using a custom protocol. The 576
custom-designed FEROL boards translate the custom protocols to TCP/IP and send
data from each connected FED as a TCP stream over 10GBit Ethernet to a predefined
Readout Unit (RU) computer. On the way, up to 18 streams are concentrated by Ethernet
switches from 10GBit Ethernet to 40GBit Ethernet, connecting the 576 FEROLs to the
108 RUs.

The RUs decode streams, checksum the data and match fragments belonging to the
same event into a super fragment. These super fragments then are sent to Builder Unit
(BU) computers, where the full event is put together and cached. RUs and BUs are
connected by a high-throughput Infiniband FDR network at a rated of 56Gbit/s and
arranged in a balanced, Folded Clos network topology consisting of 12 leaf- and 6 spine

7

2 Work Environment

RU1

FEROL

RU2

BU1 BU2

Event
Request Super-

fragment

Assign event
to BU1

Fragment

Event

1

Fragment Fragment

2

3
Super-

fragment

3
3

Super-
fragment

4

EVM

Figure 2.6: Visualization of the CMS event
building protocol. BUs with
available resources subscribe to
the EVM (1). After choosing
a BU all RUs then are notified
by the EVM to send their super
fragments for the assigned BU
(2). Once all super fragments ar-
rive at the same BU (3) the event
can be built (4). Graphic: [9]

switches, providing 216 ports and 12Tbit/s bi-sectional bandwidth.
Filter Units (FUs) from the HLT farm then pick up the cached files from the BUs to

perform the final selection step, that decide which events are sent to mass storage for
later data analysis.

In the near future the end of life for most commercial equipment will be reached and
replacements will be needed. A jump in CPU and network technology could allow RU
and BU to be merged into a RUBU system, saving a significant amount of nodes in the
Event Builder as well as expensive switch ports while using available network links in
both directions compared to the unidirectional traffic of the current system.

2.2.3 The Event Builder Protocol

The Event Builder is a distributed system involving three types of actors: RUs, BUs
and the Event Manager (EVM). RUs decode streams from multiple FEDs, extract event
fragments and assemble those belonging to same event into a super fragment. BUs
perform the assembly of a full event from all super fragments belonging to the same
event. This means a reduction of all super fragments belonging the same event needs to
take place from all RUs into a single BU. Furthermore, the BUs cache their assembled
events on a RAM disk and make them available to the HLT farm. The EVM is a special
kind of RU, receiving additional information from the Level-1-Trigger Control System
and managing the interplay between RUs and BUs, acting as a load balancer.

Since each event has a different size, the time till the full event is built differs. Fur-
thermore, these differently sized events result in differing processing times on the HLT.
Without the presence of load balancing in the system, BUs that both build and serve

8

2 Work Environment

completed events can easily get overwhelmed. As a result, the event builder protocol
(Figure 2.6) between RUs, BUs and EVM loosely resembles a publisher subscriber
pattern allowing load-balancing and a certain degree of fault tolerance.

BUs subscribe to the EVM (1), asking for events to build. The EVM then notifies
the RUs about which super fragments for which events to send to which BU (2). If a
BU either has no resources or experiences a hardware or software failure, it no longer
asks the EVM for jobs and the Event Builder can continue without interruption. On
the other hand, a failure of a RU or the EVM will cause the event builder to enter a
erroneous state and block further data taking . To lower communication overhead,
BUs will request a block of events to build which allows RUs to pack multiple super
fragments and send larger messages over the Infiniband network.

2.3 The CMS DAQ software

Writing software that powers the data acquisition system of a high-energy physics
experiment like CMS is a non-trivial task. High data rates force us to distribute the
task to a cluster of machines, establish efficient and reliable communication between
different actors and allow real time monitoring of the system. Furthermore, interaction
with custom built hardware, upgrades of the detector, and changes in research interests
create a dynamic environment with changing requirements and require a flexible
software solution that will adapt to the environment.

XDAQ [8], [11]–[13] (pronounced cross-DAQ) developed at CMS reflects these re-
quirements by providing a highly modular software framework of run time pluggable
components for building a distributed data acquisition system for high-energy physics
experiments.

2.3.1 System Architecture

XDAQ follows the layered middleware architecture pattern for distributed systems.
An XDAQ application consists of a basic executable, launched on all processes that is
configured and extended at run time using dynamic libraries specified in configuration
files (see Figure 2.7). Around a middleware executable, core and application plugins extend
the system. While application plug-ins provide application logic, core plugins manage
system and hardware related functionalities like memory, inter-process communica-
tion and block device access. Application- and core interfaces provide middleware
functionality to the plugins.

This strict separation of application logic from hardware and system specific tasks as
well as the preferential usage of industry standard protocols allow portable application
code and quick adaptation to new hardware.

9

2 Work Environment

Core
plugin

Core
interfaces

Application
interfaces

Application
plugin

Middleware
executable

Figure 2.7: Illustration of the plugin-based architecture of XDAQ.Graphic: [8]

Amongst others, the middleware executable manages data transmission, address
resolution and information dispatching to applications. Applications use these services
to communicate on the basis of a peer-to-peer message passing model with an event
driven processing scheme using user-supplied callback functions.

2.3.2 Data Transmission

Data transmissions in XDAQ are performed by application components referred to
as Peer Transports. A Peer Transport registers itself with the executable declaring it
can resolve addresses and exchanging data. Application plug-ins use the messaging
services provided by the middleware executable which re-directs messages to a suitable
peer-transport. This again promotes portability of applications and the integration
of new communication technologies and protocols without changing applications.
Furthermore it allows simultaneous use of different communication protocols e.g.
TCP/IP over Ethernet for monitoring traffic and Infiniband RDMA messaging for Event
Building traffic without having to use different APIs.

10

2 Work Environment

Middleware
executable 1

Middleware
executable 3

Peer Transport
type: Infiniband

Peer Transport
type: TCP/IP

Middleware
executable 2

Figure 2.8: Communication of applications using Peer Transports. Graphic: [8]

11

3 Background on Used Technologies

With the high network throughput required for event building at 100KHz special-
ized RDMA interconnects such as Infiniband are an alternative to classical sockets
programming. In this chapter we will therefore explain the fundamentals of RDMA
network technology. Afterwards we briefly introduce the message passing interface
standard MPI and one of its implementations named Open MPI, designed as a frame-
work to simplify messaging in the context of distributed memory applications across
various interconnects. The rest of the thesis will then build upon this technology stack
investigating where and how MPI can be used in the CMS event builder.

3.1 High-Throughput RDMA networks

Network controllers, as an I/O device are a shared resource. As such they are usually
owned by the operating system which manages resource and communication with the
device. Network I/O functionality is exposed as a service of the operating system.
Thus the communication between applications over a network will happen indirectly
through the mediating layer of the operating system on the sender and receiver side
[14].

While this approach provides ease of use as well as hardware and operating system
independence, involvement of the OS is a source of inefficiency caused by frequent
context switches and may involve multiple memory copies of buffers on their way from
source to destination as it is the case in TCP socket programming [15].

An alternative to this system-centric view is an application-centric view. Instead
of seeing the network mainly as an operating system resource, it can be seen as a
mean to move data from the address space of one application to the address space of
another application. The main benefit of this view is that it does not actively involve the
operating system. Instead messaging systems can be made available to the application
directly. An application centric view and operating system bypassing are the common
denominators of Remote Direct Memory Access (RDMA) hardware [16].

While there are several vendors of RDMA hardware, they are members of the
OpenFabrics Alliance [17], that provides open source tools and drivers in the OpenFabrics
Enterprise Distribution (OFED). The purpose of the alliance is a common, low level
programming interface for RDMA enabled applications to promote sales of RDMA

12

3 Background on Used Technologies

User Space Application

Kernel

Sockets

TCP/IP

Driver

Hardware

(a) TCP sockets approach

VERBS

Hardware

User Space Application

(b) Kernel bypassing of RDMA

Figure 3.1: Comparing the Kernel bypassing technology of RDMA to sockets program-
ming

hardware by ensuring interoperability of applications. Currently all commodity of-the-
shelf RDMA network technologies like Infiniband, RoCE, iWARP and Omnipath are
part of the OpenFabrics Alliance.

We will describe the main concepts behind RDMA networks at the examples of
Infiniband, as it is the most popular on amongst the RDMA networks on clusters of
this scale [18] and currently is in active use at the CMS Event Builder Network.

3.1.1 Connecting Processes with Channels

Since processes live on disjoint address spaces, a pipe in the shape o a communication
channel needs to be established [16]. On each end of the channel sits a Queues Pair
(QP)containing a Send Queue (SQ) and a Receive Queue (RQ). These Queue Pairs are
directly exposed to the the user application to avoid involvement of the OS. If communi-
cation with multiple applications is desired, a separate channel needs to be established
to each of them. Thus applications will have a Queue Pair per communication partner.
Furthermore, channels opened by different applications on the same network controller
need to be isolated from each other.

To achieve both security and performance, a transparent multi layer architecture is
used with both kernel and userspace drivers. Tasks associated with the management of
the network interface adapter as a system wide shared resource, e.g. establishing of
isolated, secured channels is managed by the kernel space drivers. Once resources are
assigned, performance critical operations are handed over to userspace drivers that

13

3 Background on Used Technologies

Queue Pair
Send Recv

Completion Queue

Transport

User Application

Figure 3.2: Interaction of user code with network hardware through a a queueing model
in OFED VERBS.

directly access the underlying hardware without having to go through kernel space
drivers.

3.1.2 Channel I/O

Once a channel is established, data can be transfered from sender to receiver using
SEND/RECEIVE semantics. The sender application requests the transmission of a memory
segment to a receiver who expects a message and pre-posts an adequate memory
segment for receiving data. Both sending and receiving is initiated by submitting
a Work Request to the Send Queue or Receive Queue of the respective Queue Pair.
Memory segments from the sender are transmitted as messages directly into the
indicated memory segment on the receivers side. Therefore a send needs to be expected
by the receiving side. This is the only way a true zero-copy transmission without
buffering can be ensured.

Another type of supported operations are RDMA READ/ RDMA WRITE. Instead of active
involvement of both sender and receiver in the transmission process, one side, the
initiator accesses a remote memory location on the target to read or write data. The
benefit of RDMA READ/ WRITE is that the target application and CPU are not involved and
the transmission is completely managed by the network interface adapters. However,
the initiator needs to be made aware of the remote addresses to access and the target
will need to be manually informed about completed RDMA operation by the initiator.
This programming model can be a better choice if a sender cannot ensure the existence
of a matching pre-posted buffer to receive into or if frequent memory transfers into

14

3 Background on Used Technologies

fixed, predefined buffers occur.
In case of Infiniband, Mellanox claims close to equal performance of both RDMA

READ/WRITE and SEND/RECEIVE semantics [19], thus developers are free to choose the
approach which maps most naturally onto the problem.

Once a Work Request is posted into one of the Send - or Receive Queues the task
is offloaded to the network hardware. On completion of an operation, an Event is
pushed to a Completion Queue, indicating to the application that the network hardware
finished processing the Work Request. Meanwhile the application was able to use CPU
resources for different tasks. Nevertheless, Completion Queues need to be checked
periodically for new Events, i.e. polled. Only after the reception of an Completion
Event can the application safely reuse memory segments used for sending or assert
that data was fully received.

The necessary functionality to establish channels, interact with Send/Receive and
Completion queues is possible through the VERBS API that is used to interact with
OFED devices. It represents the lowest level layer an application can use to interact with
the messaging services provided by RDMA hardware. The VERBS API provides high
flexibility and allows building of complex and high throughput, low latency distributed
memory applications portable across all OFED devices at the cost of programming
complexity [20]. For a set of problems a higher level network API that uses VERBS
internally may largely reduce implementation complexity for users at an acceptable
performance penalty.

3.2 The Message Passing Interface Standard Specification and
its Implementations

The rise of distributed memory computing entailed the creation of different frameworks
following a message-passing parallel model where parallel processes communicate by
moving data from the address space of one process to the address space of another
process through cooperative operations on each process [21, p. 1]. In 1992, a consortium
of research institutes, universities, vendors and industry began standardization efforts
leading to a message-passing library interface specification called Message Passing Interface
(MPI) [21]. The goal was to design a language independent application programming
Interface (API), that allows efficient communication of processes in a heterogeneous
environment and can be implemented on many vendors platforms.

Over the years the standard was extended to include different types of communica-
tion, datatypes, dynamic creation and management of processes and parallel file I/O.
The API is suitable for developing applications where multiple-processes operate asyn-
chronously on different sets of data. This paradigm is referred to as multiple instruction,

15

3 Background on Used Technologies

multiple data abbreviated MIMD [22]. Today, MPI is mainly used for programming
applications on large clusters and super computers. The predominant type of parallel
applications used on these kind of machines is a single program being launched on
multiple processes operating on a subset of a large problem for work sharing to obtain
results faster. This approach is called single program, multiple data (SPMD), a more
restricted subset of MIMD.

3.2.1 Inter-Process Communication in MPI

MPI is centered around communication of parallel processes. These can either be
located on the same system or on a remote machine connected via a network. Each
processes is assigned an integer in ascending order, called rank by which they are
addressed. One or multiple processes can be organized in a group called communicator,
with the default communicator containing all processes available at startup time.

The MPI standard specification further defines a set of communication operations
suitable for a large variety of use cases. In general, these communication operations
can be subdivided in three different groups:

Point-to-Point Communication allows exchanging data between two ranks using ex-
plicit send and receive operations. It is the most basic type of communication in
the MPI standard, see [21, p. 23ff].

Collective Communication procedures involving all ranks in a communicator simplify-
ing frequent communication patterns like broadcasting data to all other ranks in a
communicator or gathering computation results from all ranks in a communicator
to a single rank. All collective communication routines can be written entirely
using MPI point-to-point procedures. For an in depth overview see [21, p. 141ff].

One Sided Communication also referred to as Remote Memory Access (RMA) allows
an origin process to directly operate on remote buffers previously advertised by
another process (target) without any communication calls being issued by the
target. This differs from point-to-point communication, where both sides actively
need to participate. See [21, p. 401ff].

3.2.2 Implementation of the Standard in Open MPI

MPI is a message-passing library interface specification where all parts of the definition are
significant [21, p. 1]. The existence of multiple implementations desired and necessary
to meet the different requirements of the community. One of these implementations is
Open MPI [23]. It is an open-source implementation of the standard, backed by vendors,
research institutes and universities with the goal of a high-performance, scalable,

16

3 Background on Used Technologies

O
penM

PI

User Application

MPI API

Modular Component Architecture (MCA)
Framework

M
odule

FrameworkFramework Framework

M
odule

M
odule

M
odule

M
odule

M
odule

M
odule

M
odule

M
odule

M
odule

M
odule

M
odule

Figure 3.3: A plugin high-level view of Open MPI showing the Modular Component
Architecture

production-quality MPI implementation [24]. Open MPI does not only provide an
implementation of the MPI standard in a library with C and Fortran bindings but also
a compiler wrapper that sets up the environment to compile MPI applications as well
as tools to efficiently launch distributed applications with a built-in system to manage
hardware locality.

The MPI standard defines the MPI procedures and their expected behavior. It is up
to the implementations to decide which hardware to support and how to implement
the functionality as long as they adhere to the definitions in the standard. For maximal
flexibility Open MPI is designed around a Modular Component Architecture (MCA) [24].
The architecture has three main building blocks:

MCA : The MCA serves as a backbone component that sets up ,connects, manages
all component frameworks. This includes forwarding runtime parameters from the
environment.

Component Frameworks : Major Functional areas are divided into component frame-
works (e.g. network transport or memory management) which house and manage
modules. Each framework has different rules about how many modules can be
simultaneously loaded and how they interact internally.

Modules : software units exporting well defined interfaces that can be deployed and
composed with other modules at run-time, adhering to the interfaces prescribed
by the component frameworks.

17

3 Background on Used Technologies

This architecture provides a large flexibility as it allows the addition and removal
of components or even whole component frameworks isolated from other parts of the
software, while maintaining a stable API towards the user. To further increase flexibility,
most modules expose a large set of parameters that can be configured at run time
towards the users needs. Open MPI thus often acts as a basis for vendor customized
MPI implementations. Specific modules targeted at users of the vendor hardware are
supplied without having to provide a full implementation of the MPI standard.

3.2.3 Open MPI Transport over Open Fabrics Devices

As discussed in Chapter 3.1, all todays commercial off-the-shelf RDMA capable inter-
connects are programmable using the OFED software stack. They share the concepts of
bypassing the OS kernel and Channel I/O.

Since over the past years, Infiniband has been the predominant RDMA technology,
most resources about RDMA and Open MPI are centered around Infiniband but are
equally relevant to all other Open Fabrics RDMA devices.

Memory Registration for RDMA

In order to establish which memory segment should be transfered over over the network,
a common ground between the RDMA hardware and the user application needs to be
established. This is achieved by communicating the physical memory addresses of the
segment in question. To prevent the operating system of interfering by page swapping,
the concerning virtual memory page must be stay mapped to the same physical location
during communication. This operation is called memory registration. Once the segment
is no longer needed for communication between the network interface and the user
application, it can be unregistered.

The registration and unregistrarion processes are slow since they involve the operat-
ing system and context switches. Open MPI thus caches memory once registered in the
hope to amortize for the registration costs, as long as the memory is not returned to the
operating system. Therefore Open MPI needs to both remember registered memory
and introduce hooks to deregister deallocated memory [25].

Since the MPI Standard abstracts from interconnects to be more universal, all of these
processes are transparent for users of the MPI API, but behavior can be adjusted using
the Open MPI module parameters at run-time.

Communication Algorithms for RDMA Architectures

One of the goals of the MPI standard is to allow high-performance communication.
Performance in a network can be characterized in different ways. Two important

18

3 Background on Used Technologies

EagerProtocolinteraction

sender receiver

1 : Eager Message

(a) Eager Protocol

RendezVousinteraction

sender receiver

1 : RndvControl

2 : RDMA READ

3 : Response

4 : FIN

(b) RDMA Protocol

Figure 3.4: Structure of eager and rendez-vous protocols in MPI implementations .

parameters are:

Throughput the amount of messages that were successfully transfered over the network
in a fixed amount of time, often measured in bits or packages per second.

Latency the time required to transfer a fixed amount of data from source to destination,
measured in seconds.

Where an optimal system has high throughput and low latency. However often
it is difficult to achieve both goals at the same time and depending on the tasks,
requirements are different.

The assumptions made in Open MPI is that for small messages that may occur e.g.
when broadcasting a single integer to a set of nodes, low latency will be more important
than throughput, whereas in cases where many large messages are transfered between
nodes, the available network bandwidth has to be used efficiently.

As discussed in Chapter 3.1.2 on RDMA principles, the receiving side always must
provide buffers for incoming messages, an unexpected message at the receiver is
erroneous and will require a resend from the sender side. For the case of small messages
Open MPI uses eager sending semantics, where the whole message is transmitted from
sender to the receiver without prior announcement, expecting the receiver to provide a
buffer and taking the risk of a resend see Figure 3.4a. For the case of large messages, a
rendez-vous protocol is used (Figure 3.4b). First the initiator sends a setup message
communicating the location of its data. The target side then fetches the data using an
RDMA READ to its destination buffer once it is available and acknowledges the end of

19

3 Background on Used Technologies

transmission to the initiator [26]. If additionally memory registration of the send buffer
is required, more complex pipelining system is used in order to hide latency of the
registration process [27].

For small to medium sized messages furthermore, the overhead of registering a
memory segment takes very long compared to transmission size. For these cases,some
vendor optimized modules perform copies of a memory segment that should be
transmitted into a preregistered bounce buffer [28]. While this behavior will perform
well for small to medium sized messages, the scalability of buffered copies is limited
by system resources.

Vendor Implementations

The current RDMA hardware for the EVB network is an Infiniband FDR system by
Mellanox. With their involvement in Open MPI, Mellanox offer a vendor optimized
version of Open MPI [29] containing custom modules optimized for their hardware
and OFED driver version.

Currently Mellanox proposes the use of these modules for optimized transport over
Infiniband build on top of the OFED VERBS stack:

mxm [30] is a vendor proprietary implementation of a communication library by
Mellanox for Infiniband hardware.

ucx [31], [32], is a new, open source development backed by a consortium of industry
and research - including Mellanox - with the goal to form a communication
middleware supporting various interconnects and is suitable for MPI and other
distributed memory approaches such as openSHMEM.

Configured properly, both libraries performed nearly identical in benchmarks and
applications.

20

4 Requirements Analysis

The main purpose of this thesis will be to study if and how MPI can be used for Event
Building at CMS instead of OFED VERBs. One of the major concerns of the responsibles
is to understand how much a high level framework like MPI will affect the maximal
bandwidth of the system. Furthermore our investigations should answer the question
how well the procedures defined by the MPI standard map onto the throughput driven
task of event building and if possible trade-offs in performance can be compensated by
a more programmer friendly API.

As the whole EVB system is too complex to consider for such an investigation, simple
and reproducible benchmark applications that depict the communication patterns of
the current, two-stage RU to BU Event Builder as well as a possible, future single-stage
Event Builder with RUBUs should be created:

nton_MPIstreamIO simulates the communication pattern of the two-stage Event
Builder on a fully balanced system with an equal amount of RUs and BUs where
BU needs to gather fragments from all RUs, see Figure 4.1a

nxn_MPIstreamIO simulates the communication pattern of the single-stage Event
Builder where each RUBU needs to gather fragments from all other RUBUs, see
Figure 4.1b

Both benchmarks should provide an upper bound for throughput for both commu-
nication patterns in a simplistic and reproducible manner. Therefore the following
simplifications are made:

1. Senders never run out of fragments.

2. No scheduling is required.

3. There is no notion of events nor any distinction of fragments and super-fragments.

4. Receivers discard buffers instantly without having to wait for all remaining data
belonging to the same event.

5. All fragments have the same size.

21

4 Requirements Analysis

RU0

BU0 BU1

RU1

(a) Two stage EVB: A BU gathers frag-
ments of the same event from all
RUs.

RUBU0 RUBU1 RUBU2

(b) Single stage EVB: A RUBU gathers fragments of the
same event from all other RUBUs.

Figure 4.1: Communication Patterns for different styles of event builders

While the benchmarks applications are an idealization, the transport algorithms should
be fully functional and able to act as a drop in replacement for other transports inside
XDAQ applications. Therefore the following requirements apply:

1. Both benchmark applications nton_MPIstreamIO and nxn_MPIstreamIO should
scale to the size of the current CMS DAQ2 event builder system of ~180 nodes.

2. The MPI transport has to cope with slightly varying fragment sizes during
runtime. Neither the fragments within one event nor the fragments generated by
the same subsytems over time can be assumed to have constant sizes.

3. The transport algorithm should be versatile, handling both unidirectional and
bi-directional traffic for benchmarking applications and suitable as a drop in
replacement for an XDAQ transport.

4. Transport algorithms should not have any predetermination on the network
structure.

5. There is no target buffer size. The MPI transport therefore should show per-
formance close to OFED VERBs for any super-fragment size larger than the
Infiniband MTU size of 4kB.

22

5 Designing a Throughput-Oriented
Messaging Service on Top of MPI

With requirements, technology stack and context in place, we can start analyzing our
requirements and propose a solution to the posed problem.

5.1 Design Study: MPI Calls for Event Building Traffic

Over the different versions of the MPI standard specification [21] a significant amount
of functionality has been added. Today, it defines a large set of communication
operations suitable for a large variety of use cases. As discussed in see Chapter 3.2.1,
these communication operations can be subdivided in three different groups: Point-to-
point communication, collectives and one-sided communication. Each group contains
procedures adhering to the same design concepts. As the choice of communication
strategy is at the core of our task, thorough investigation is required.

MPI Collectives

When we look at the communication patters of the two-stage event builder and the
single stage event-builder, we quickly find suitable MPI collectives that match the tasks
well.

In the two stage event-builder, each bu BU gathers event fragments belonging to the
same event from all RUs. This maps onto the different variations of gather collective
procedures in MPI, where buffers from a group of ranks are concatenated into a buffer
at a single rank, referred to as the root [21, p. 149ff and p. 200ff]. The pattern is
illustrated in Figure 5.1.

In the single stage event builder, a RUBU receives fragments from all other RUBUs
including itself for the events it was scheduled to build. All other fragments are sent to
the respective RUBUs. While again, this can be modeled by a set of gather procedures,
the MPI standard specifies separate procedures for complete exchange [21, p. 168ff and
p. 206ff] that fits the task very well. The pattern is illustrated in Figure 5.2.

If all communication for event building traffic could be covered by a single MPI
collective procedure, this could largely simplify the transport layers of an event builder.

23

5 Designing a Throughput-Oriented Messaging Service on Top of MPI

F00

F01

F02

F03

processes

fragments

F00 F01 F02 F03

Gather

Figure 5.1: Visualization of the MPI gather collective pattern. Buffers from different
processes are gathered into the memory of a single process

F00 F10 F20 F30

F01 F11 F21 F31

F02 F12 F22 F32

F03 F13 F23 F33

processes
fragments

F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F32

F30 F31 F32 F33

complete

exchange

Figure 5.2: Visualization of the MPI complete exchange collective pattern. Buffers are
scattered and gathered at the same time amongst all participants. The effect
is similar to that of a matrix transposition.

24

5 Designing a Throughput-Oriented Messaging Service on Top of MPI

On top of that, the BU in charge of the event assembly knows upon completion of the
collective operation, that all data belonging to the same event has been successfully
received. Unfortunately the MPI standard for gather procedures is very restrictive
demanding that " the amount of data sent must be equal to the amount of data received,
pairwise between each process and the root." [21, p. 150 and p. 152]. This means
that either fragment sizes must be fixed or fragment sizes have to be communicated
explicitly to the root before the gather procedure is initiated. Fixed fragment sizes
collide with requirement 2 from 4. The problem could be resolved by padding bytes to
achieve constant sizes, however this option is not acceptable since there is no predefined
message or fragment sizes. This could lead to absurd cases where more padding than
data is sent. The communication of variable sizes increases latency by preceding each
gather procedure with another one communicating the send sizes to the root process.
The same holds for complete exchange procedures [21, p. 169 and p. 171ff]. Further it
is not possible to cancel an ongoing collective operation in case of failure, e.g. when
fragments for subsystems do not arrive at a RU because of a hardware fault upstream.
All these considerations lead us to believe that it is neither safe nor efficient to use
collective procedures for event building.

Point-to-Point Communication

All collective operations can be written entirely using MPI point-to-point procedures.
Thus a gather collective can be broken down into the RUs each sending a buffer and
the BU as the root of the gather calling a matching number of receives. For the single
stage event builder, A gather operation executed by each RUBU then has the same
effect as a complete exchange.

At first glance this approach seems to be inferior to the collective operation. Not only
does it drastically increase implementation and testing efforts during development but
we also have to explicitly implement functionality to verify that all fragments arrived at
their destination and the BU can proceed building the full event. However the use of
point-to-point communication removes severe limitations of collective operations. While
the standard requires collective procedures to pairwise match send size and receive size
at the root, receiving of messages in point-to-point communication much less restrictive.
The only explicit restriction by the standard is that "the length of the received message
must be less than or equal to the length of the receive buffer. An overflow error occurs
if all incoming data does not fit, without truncation, into the receive buffer" [21, p. 29].
This allows us to receive variable sized messages into sufficiently large buffers without
knowing the exact size of the data we receive in advance. Furthermore the standard
allows cancellation of receive operations, increasing fault tolerance .

We therefore can conclude that the point-to-point communication capabilities of MPI

25

5 Designing a Throughput-Oriented Messaging Service on Top of MPI

offer the required flexibility to design and implement a transport that is aligned with
the requirements specified in chapter 4 at the cost of a more complicated system design
and higher implementation efforts.

MPI One Sided Communication

One sided communication semantics is among the more recent extensions of MPI
standard definition. It is based on the idea of Remote Memory Access (RMA) where
processes - called origin - can operate on memory made accessible by another process
- referred to as target - without intervention of the latter. While Message-passing
communication achieves both communication of data from sender to receiver and
synchronization of sender with receiver, RMA design separates these two functions
[21, p. 401]. This results in communication that is separated into phases. In an
initialization phase, buffers are declared by the targets which should be made accessible
to remote hosts. Synchronization calls open up and close a so called access epoch.
During an epoch zero or more RMA calls to targets can be issued. This amortized
the synchronization costs with multiple data transfers allowing the implementation of
complex communication patterns and is especially useful in applications with distinct
communication and computation phases.

With a more real time natured style of our application where communication does
not happen in phases but in a constant stream, one-sided procedures do not map
well onto the concept of the CMS event builder and therefore should not be further
considered. Instead we recommend an implementation of the EVB communication
patterns using point-to-point procedures.

5.2 Defining a Messaging Service on Top of MPI

Our findings from the analysis of MPI procedures conclude that the only efficient
way to mapping the communication patterns of the CMS Event Builder to MPI while
adhering to the requirements is point-to-point communication. The cost of not being
able to use collective MPI operations is that the BU has to manually understand when
all super-fragments belonging to the same event have arrived so that the event can be
built.

On the other hand, the use of traditional message passing semantics allows us to
clearly separate the network transport from the actual task of event building and design
a throughput-oriented messaging service on top of MPI for multiple destination. In a
resulting distributed application, processes can communicate with each other based on
the specific task without having to use MPI directly.

26

5 Designing a Throughput-Oriented Messaging Service on Top of MPI

MPI Transportinteraction

«filter»
transport

«filter»
eventHandler

«filter»
sender/receiver

«pipe»
memoryPool

«pipe»
queuePair

«pipe»
completionQueue

1 : requestBuffer

2 : buffer

3 : push(sendRequest)

4 : poll

5 : Request

6 : processRequest

7 : completionEvent

8 : poll
9 : Request

10 : returnBuffer

Figure 5.3: Pipes and Filters architectural style for a messaging service based on MPI
that allows flexible replacements of components and enables functional
parallelism

5.2.1 Queuing and Multithreading using a Pipes and Filters Architecture

At the high frequency the detector readouts provide data to the Event Builder we can
eventually interpret the problem as a stream processing problem. A highly flexible
architectural pattern that is suitable for systems processing streams of data is Pipes and
Filters [33, p. 53ff]. It breaks down the stream processing task into subtasks (filters),
connected by objects (pipes) that buffer and transport data between two filters. With a
filter being only dependent on the products of its preceding filter, the pattern allows
filters to be swapped out easily and with pipes acting as buffers, each filter can be its
own process or thread. Furthermore this architectural style is aligned with the concepts
of low level RDMA network programming.

We therefore propose the architecture depicted in Figure 5.3. It is based on three
filters and connected by three pipes.

Memory Pool is a pipe that provides memory buffers for sending and receiving.

Sender is a filter requesting memory buffers from the pool into which the event
fragment to be transfered is put. Based on its destination, the buffer then is
passed to the appropriate Queue Pair pipe.

Receiver drop in replacement for the sender. A filter requesting memory buffers from

27

5 Designing a Throughput-Oriented Messaging Service on Top of MPI

U
ser

Application
m

pila
M

PI

Memory
Pool

Sender/
Receiver

Event
Handler

Queue Pairs Completion
Queues

Transport
Algorithm

Communication Procedures

Figure 5.4: Layers view of mpila.

the pool into which fragments will be received. It also leaves a callback to be
executed upon completion of the receive operation.

Queue Pair For each possible destination there is a Queue Pair. A queue pair holds
both requests to send and requests to receive buffers in separate queues.

Transport The transport filters picks up send and receive requests from all Queue Pairs
pipes and performs the transmission over the network fabric. Upon completion
of a request an event is generated and passed to the Completion Queue pipe.

Completion Queue pipe that holds events for all completed send and receive request.

Event Handler filter picks up completion events executes callbacks if required before
returning buffers back to the resource pool.

5.2.2 Reusability and Reduction of Complexity by Layering

The architecture proposed above includes pipes and filters that will be reusable in
any application using this transport. On the other hand, the Sender, Receiver and
Event Handler filter will differ in each application.This allows us to package the
reusable components into a library usable by other applications which we call mpila.
As a mediator between user applications and MPI, mpila can be seen as a classical
representative of a layered architecture style.

The layered architecture style [33, p. 31–51] has been widely applied in the design of
network protocols such as the OSI-model [34]. The pattern structures subtasks based on
their level of abstraction with higher level operations relying on services provided by

28

5 Designing a Throughput-Oriented Messaging Service on Top of MPI

lower layers (see Figure 5.4). Communication usually traverses layers from high to low
as requests with notifications about events traveling in the opposite direction. As each
individual layer shields all lower layers from direct access by higher ones, the coupling
between layers is very loose promoting reusability, exchangeability and portability at
the cost of overhead being generated by each individual layer.

This design has multiple benefits. The clean separation of the application domain
from the networking domain makes mpila a reusable library for our various benchmark-
ing programs or for third parties that need the flexibility of an MPI based transport for
existing applications inside the XDAQ environment without any knowledge of MPI or
changes in their user code. Finally, the request oriented API of the library allows us to
keep a stable interface towards user applications, while components inside mpila could
be swapped out. This was especially helpful for evaluating different communication
strategies during development while ensuring that all algorithms are benchmarked
under the same conditions aiding reproducibility and comparability of results.

5.3 Deliverables

In accord with the requirements specified in 4 the following deliverables will be
supplied:

mpila communication library based on MPI providing all reusable elements of a
network transport for event builder traffic.

nton_MPIstreamIO executable benchmark application to simulate the communication
pattern of the two stage event builder.

nxn_MPIstreamIO executable benchmark application simulating the communication
pattern of the single stage event builder.

ptmpi library as a prototype usable as a peer transport for the XDAQ framework.

29

6 Implementation

This chapter discusses the particularities of implementing the individual components
in the system architecture. The first part discusses the transport library mpila, while
the second part puts it’s focus how mpila is used inside the benchmarking applications.

6.1 Memory Pools for Efficient Memory Handling

The task of a memory pool is to manage buffers used for sending and receiving.
Efficient handling of memory buffers is one of the corner stones in a high performance
RDMA transport. As discussed in 3.2.3, memory buffers that should be used by
RDMA hardware require prior registration with the operating system to preserve the
virtual/ physical mapping of the memory page the buffer is located on. Since memory
registration and deregistration is a slow process involving context switches and requires
MPI to do bookkeeping, it is desirable to reduce these operations to a bare minimum.
This can be achieved by using a resource pool that holds a predefined amount of
memory buffers which will be registered with the operating system by MPI upon first
use and reused in subsequent operations.

Another benefit of a resource pool is flow control: If there is an imbalance between
sender and receiver where the receiving side is overwhelmed by the sender, limited
resources inside the pool are used up and no new receive operations can be initiated
until memory is returned. As each send operation requires a matching receive, the
sender is thus automatically restrained.

A simple yet efficient implementation of a pool is to internally enqueue references to
memory buffers in a bounded FIFO-queue. If a buffer is requested, it is removed from
the front of the queue, while returned buffers will be enqueued at the back. In case
of an empty queue, resources are depleted. If multiple threads are accessing the same
memory pool, the FIFO queue needs to be thread safe.

30

6 Implementation

6.2 Queue Pairs and Completion Queues for Request and
Event Handling

Another crucial part of the architecture are the pipes that forward requests to the
transports and buffer the events generated upon completion of a request. Taking
inspiration directly from the design concepts behind Infiniband – see 3.1.2 for more
details – we propose a queuing model. The idea is to introduce a pair of bounded FIFO-
queues per MPI rank, one for requests to send data, another one to receive data. The
separation is sensible for several reasons. The design study in 5.1 yielded that the most
suitable way to employ MPI for our use case is to use point-to-point communication
routines consisting of data exchange via explicit sends and receive procedures. This
makes subdivision into separate send and receive queues a logical choice. Another
important aspect is the enforcement of fairness between (possibly threaded) senders/
receivers and different ranks. By granting each rank the same, limited resources we
can assert using a petri net that the system will remain deadlock free if the transport
algorithm performs a fair scheduling, that avoids starvation. By bounding the queues
we again introduce flow control, preventing a sender or receiver from flooding the
transport with requests at a rate they cannot be processed.

Once the transport processed these requests, it pushes a notification about event
completion into the FIFIO Completion Queue referenced by the Queue Pair. This gives
end user applications the flexibility to use one or multiple completion queues for
different event types or destinations. As the network hardware causes all our sends
and receives to be inherently serialized with one send and one receive operation at a
time, a single, large Completion Queue for all queue-pairs should be adequate, if the
filter that processes the completion events has a sufficient throughput.

6.3 Work Requests and Completion Events

As a logical follow-up the Request and Event structure should be described. Requests
no matter if used for sending or receiving require a quasi identical set of parameters:

Target rank is the rank that should be sent to or received from. This information is
implicitly given by the Queue Pair the request was submitted to.

Pointer to a buffer the buffer to be sent from or received into by the interface adapter.

Buffer size in bytes. For the sender it indicates the size of the buffer to be sent, for the
receiver it indicates the maximal size of the receive buffer.

Tag optional for matching sends and receives belonging to the same event fragment.

31

6 Implementation

Memory Pool reference to the Memory Pool the buffer was taken from, in order to
return the buffer to the correct Memory Pool.

Context an optional pointer to a callback that should be executed once the request is
completed.

These parameters can be put into a structure that is submitted to the Queue Pair.
Once a request has been completed by the transport filter, status information about

the completion of the request will will have to be appended, providing feedback
whether the operation was completed successfully or if communication was erroneous.
Furthermore, in case of a receive operation, the size should be updated such that
the amount of bytes received is correctly communicated to an Event Handler. Other
information such a reference to the memory pool and a potential callback function are
forwarded appropriately from the Request.

6.4 Duplex Transport Based on MPI Point-to-Point
Communication

The Transport filter is the core component of mpila. Processing Request that have
been posted to the Queue Pairs it performs the sending and receiving of data over the
network using MPI point-to-point procedures. Based on its architectural specification
in Chapter 5 resulting from the requirements in Chapter 4 the following components
can be identified :

• Polling of all Queue Pairs for Requests

• Sending to all other destinations.

• Receiving from all other senders.

• Notifying event handlers of finished operations by generating a Completion
Event

All of theses components need to be arranged such that they provide a correct and
efficient transport algorithm.

6.4.1 Processing of Requests

Our design foresees Queue Pairs as the endpoint of individual channels established
with every other process in our distributed application. Without any predetermination
on a communication pattern or network layout, the transport algorithm has to treat

32

6 Implementation

requests from all queue pairs equally. In our primary use-case of EVB communication
this assumption is ideal, since the amount of requests to all communication partners
will be uniformly distributed. A simple, yet effective solutions to fair processing of
requests is a round-robin algorithm that iterates over all Qeue Pairs processing an
equal amount of requests at a time, skipping a Queue Pair if no requests are present.
We now have to map our multi-destination, bidirectional network protocol with a
round-robin scheduling strategy onto MPI procedures.

MPI point-to-point communication can be conceptually divided into two blocks:
blocking and non-blocking communication procedures [21, p. 47ff]. Both types consider
a send operation complete, if the send buffer can be reused and a receive operation as
complete, if the receive buffer contains the data of its matching send operation. The
difference is that a blocking procedure will block program execution until the operation
is completed. A non-blocking procedure on the other hand will return immediately
with a handle to a MPI_Request object, completing the operation in the background.
The application then can use this object to either test for completion or issue a blocking
wait at a later point in time. Both blocking and non-blocking procedures can be mixed
in an application.

The use of blocking operations is disqualified by the inability to flexibly start bidi-
rectional communication in parallel. Additionally the transport algorithm would have
to ensure that two processes never open a blocking send operation to each other at
the same time. This would cause a deadlock as both processes in the absence of a
matching receive operation would block infinitely, waiting for the opposite side to start
the necessary receive. The same holds for the case of blocking receives.

Algorithm 1 describes our solution to a bi-directional MPI transport. It is based
on non-blocking point-to-point send/ receive procedures and a polling mechanism,
that will check for completion of pending MPI operations. For each destination, we
allow multiple sends and receives to be opened at a time forming a pipeline to ensure
that the MPI library is kept busy processing requests. The length of this pipeline,
which will be restricted in size will be referred to as pipeline-depth. The Work Requests
and the MPI_Request of pending operations have to be remembered, since they are
needed to post a Completion Event. We therefore introduce a look-aside structure for
each Send Queue and each Receive Queue. We then check if any of the pending Send
Requests/Receive Requests were completed by MPI. To avoid deadlocks, we perform a
non-blocking test for completion, instead of a blocking wait. Completed requests are
removed from the look-aside structure and pushed to the respective Completion Queue.
Then we proceed to the next Queue Pair.

33

6 Implementation

while true do
foreach Queue Pair do

while Pipeline not full do
if Recv Queue not empty then

non blocking recv;
remember Request as pending recv;
pop from Recv Queue;

end
if Send Queue not empty then

non blocking send;
remember Request as pending send;
pop from Recv Queue;

end
end
poll pending recvs;
foreach finished recv do

pop from look asside structure push to Completion Queue;
end
poll pending sends;
foreach finished send do

pop from pending list push to Completion Queue;
end

end
end

Algorithm 1: A high level description of the mpila full duplex transport algorithm.

34

6 Implementation

6.4.2 Buffering Behavior of MPI Send Modes

An MPI send operation has completed once the send buffer can be reused. This kind of
behavior helps to decouple send and receive operations, since data from a send buffer
can be copied into an intermediate buffer provided by MPI. Transmission over the
network is then performed once a matching receive has been posted by the receiver
[21, p. 37ff]. The MPI_Isend procedure, which executes a non-blocking send decides
internally if the message should be buffered. As for the algorithm we propose, buffering
is not desired.

Our entire system architecture works on the concept of back pressure. If a consumer
of requests is slower than the producer, bounded queues between theses objects will
implicitly synchronize the two components. If the coupling between sender and receiver
is broken and sends are deferred, there is no mechanism to propagate the back pressure
produced by an overwhelmed receiver back to the sender resulting in an ever growing
pile-up of deferred sends that at some point will cause the process to run out of physical
memory. In earlier implementations of our algorithm using MPI_Isend, we have been
able to reconstruct this exact behavior.

Fortunately the standard defines a set of send procedures, that refrain from deferred
sending and buffering [21, p. 37ff]. Ready sends perform eager sending of data
assuming that a matching receive has already been posted at the destination. Otherwise
the operation is erroneous and results in undefined behavior. Since we cannot assert
availability of preposted receives in all cases, we have to fall back to synchronous sends
via MPI_Issend which on completion will not only will guarantee that the send buffer
can be reused but also that a matching receive has been posted and started receiving
the sent data.

6.4.3 Polling Strategies

As described in Algorithm 1, we submit multiple MPI send/receives in a non-blocking
way per queue pair, which allows us to pipeline multiple sends. In modern MPI
implementations, non-blocking point-to-point procedures are completed by threads in
the MPI library, such that progress is made in the background. Pending operations
are remembered in separate look-aside data structures for each Send Queue/ Receive
Queue within a Queue Pair. The completion status of these pending operations has to
be checked without a blocking wait operation. The MPI standard [21, p. 52ff and 57ff]
defines four procedures out of which three are of interest for us:

MPI_Test checks for the completion of a single MPI_Request object returned by a
non-blocking send/ receive operation. A boolean informs about the completion

35

6 Implementation

status of the posted operation. In case of completion a MPI_Status structure
contains information about the completed send/ receive.

MPI_TestSome checks an array of MPI_Request objects for completion, returning
the amount of completed operations, their indices in the array of requests and
MPI_Status objects of completed operations.

MPI_TestAll also checks an array of MPI_Request objects for completion returning
true only if all requests have been completed. In that case, an array of MPI_Status
objects provides more information about the completed operations.

During the implementation phase it was unclear on which procedure would yield the
highest throughput polling algorithm, thus algorithms for each procedure have been
implemented and will be evaluated in Chapter 8. Each of the procedures has slightly
different semantics and input parameters. As we expect polling to occur more frequently
then posting of sends/ receives from the Queue Pairs or the creation of Completion
Events we have to ensure the highest execution efficiency in this component of the
transport algorithm. An important aspect will be an implementation of a look aside
data structure that maps to the individual MPI testing procedures without additional
copies or transformations.

MPI_Test

One of the premises of MPI point-to-point communication is the ordered, non-overta-
king nature of messages. The standard demands that "if a sender sends two messages
in succession to the same destination, and both match the same receive, then this
operation cannot receive the second message if the first one is still pending " [21, p. 41].
Together with the guarantees of a synchronous send mode (see 6.4.2) this ensures
completions of sends in a FIFO order. The very same holds for receive operations. We
therefore can use a bounded FIFO queue with the length of our pipeline as a look
aside data structure, containing the work request removed from the Queue Pair and
the MPI_Request returned by the non-blocking MPI send/ receive operation. Since
MPI_Test checks for the completion of a single MPI_Request at a time we always operate
on the first pending request in the FIFO queue, and dequeue it in case of completion.
In the case MPI_Test finds a pending, incomplete request, the ordering properties allow
us to skip the verification of all remaining requests that may follow.

A schematic overview of the polling algorithm is depicted in Figure 6.1.To facilitate
communication between the send/ receive, polling and completion components in the
transport module, a system of two queues is used. Before the first send is issued, the
Free Requests Queue holds references to Pending Request Structures. The sender

36

6 Implementation

«structured»
LookAsideStructue

«queue»
Send Queue

«queue»
Urgent Requests

«queue»
Completion Queue

Sender

aquire Resources

Poll

still pending

«queue»
Free Requests

Completion

completed

generate event

return
post

Figure 6.1: Polling strategy using MPI_Test.

needs to obtain both a Pending Request Structure from the Free Requests Queue
and a Work Request from the Send Queue before an send can be submitted to MPI.
Thereafter the send is considered pending and a filled Pending Request Structure
is pushed to the Urgent Requests Queue which is checked by the polling mechanism.
Once a pending request is completed, a Completion Event is pushed to the associ-
ated Completion Queue and the Pending Request Structure is returned to the Free
Requests Queue. The same applies to receiving.

MPI_Testall

MPI_Testall operates on an array of MPI_Requests which allows us to check mul-
tiple pending operations for completion. This however requires us to arrange the
MPI_Request objects in an array structure. We thus have to change the data layout of
our look-aside data structures.

A schematic of the algorithm can be found in Figure 6.2. Again we can use a double
queue system with a Free Requests Queue and an Urgent Requests Queue to limit
the pipeline depth and remember pending Work Requests. The MPI_Requests however
which are generated from the non-blocking MPI send/recv operations, will be arranged
in an array, that is kept in sync with the position of the corresponding work request in

37

6 Implementation

«structured»
LookAsideStructue

«queue»
Send Queue

«queue»
Completion Queue

Sender

aquire Resources

Poll

«queue»
Free Requests

Completion

generate event

«queue»
Urgent Requests

«array»
MPI Requests

post

still pending

test

return

completed

remove

Figure 6.2: Polling strategy using MPI_Testall.

the Urgent Requests Queue.
This allows us to use MPI_Testall on all currently pipelined MPI_Request objects

in the pipeline. We then can use the fact that MPI_Testall will only return true if all
requests in an array are completed and clear out the entire pipeline at once, which
keeps MPI_Requests and Work Requests in sync. Again completed Requests will be
returned to the Free Requests Queue after a Completion Event has been emitted.

MPI_Testsome

Like MPI_Testall, MPI_Testsome operates on an array of MPI_Requests. Out of a set of
MPI_Requests, the indices of those that are completed are returned in an array, while
those that are not are kept pending. The effect is therefore exactly the same as looping
over an array of request with MPI_Test.

When adapting the look-aside structures use with MPI_Testsome, we could rely
implicitly on the ordered, non-overtaking properties of message passing in MPI. How-
ever the MPI standard does not specify any ordering for the indices returned by
MPI_Testsome indicating which requests completed. We therefore have to find a more
universal solution for the look-aside structure.

Our solution is outlined in Figure 6.3. Both Work Requests and MPI_Requests, are
stored in their own array sized according to the maximal pipeline depth. Their positions

38

6 Implementation

«structured»
LookAsideStructue

«queue»
Send Queue

«queue»
Completion Queue

Sender

aquire Resources

Poll

Completion

generate event

«array»
MPI Requests

post

still pending

test

completed

«queue»
Free Indices

return

«array»
Work Requests

remove

Figure 6.3: Polling strategy using MPI_Testsome.

are kept in sync. A FIFO queue contains the indices of currently inactive spots in those
arrays, so that new Work Requests can be inserted without overwriting pending Work
Requests.
MPI_Testsome has to always check the full array of MPI_Requests. If the array

contains inactive MPI_Requests (i.e. those without any associated send or receive
operation), they will be skipped. If the array contains no active handles, the amount of
requests completed returns MPI_UNDEFINED, distinguishing it from the case where
no MPI_Request has been completed yet.

6.5 Benchmark Applications

As described in Chapter 4 our primary goal is the implementation of benchmarking ap-
plications for simulating the communication patterns of the single-stage and two-stage
event builder. Both applications will use the mpila library as their backbone, imple-
menting only the Sender/ Receiver and Event Handler components (see Figure 5.4)
which are individual to the specific user applications. The processing of Requests will
follow the data flow described in Chapter 5.2.1.

Both applications nton_mpistreamio and nxn_mpistreamio will have the same basic
structure. Each process creates a Queue Pair for all other MPI ranks. Each Send

39

6 Implementation

Queue and Receive Queue within a Queue Pair is fed from a separate Memory Pool.
All Events about terminated operations from all Queue Pairs will be pushed into
the same Completion Queue. At the beginning, all receiver processes will prefill their
Receive Queues with requests. Then individual threads for Sender, Event Handler
and Transport are created. If the process is a sender, the Sender component will iterate
over all Queue Pairs, trying to push new Work Requests in a round-robin way. The
Transport will process them as described in Chapter 6.4. Finally the Event Handler
treats Completion Events submitted to the Completion Queue returning Send Buffers
to the appropriate Memory Pool and replacing closed Receive Requests by new ones
in the corresponding Receive Queues of the Queue Pair. Additionally a separate
Sampler thread is responsible for calculating the bandwidth out of the number and size
of processed buffers, see Chapter 7.2.

6.6 A XDAQ Peer-Transport: ptmpi

XDAQ applications use Peer-Transport plugins to provide address resolution and mes-
saging services, see Chapter 2.3.2. In order to include mpila into XDAQ, the respective
Interfaces of a Peer Transport had to be implemented accordingly. Furthermore the
buffers circulated by mpila Work Requests are no longer provided by the mpila Memory
Pool but by XDAQ. The resulting XDAQ application plugin is called ptmpi.

In order to launch an XDAQ application with ptmpi, the Peer Transport has to be
registered to the Middleware Executable using the XDAQ XML configuration files
so that it can be loaded dynamically at application startup. To pass the necessary
initialization information to the MPI library, the distributed XDAQ application is
launched using mpirun.

40

7 Test Environment and Methodology

Before we can start analyzing the performance of our implementation and compare it to
the current VERBS based system, we need to introduce our measurement environment.

7.1 Hardware

For the benchmarks, two kinds of systems have been used, DAQ2VAL and cDAQ.
DAQ2VAL is the development and testing system, whereas cDAQ runs the CMS event
builder. As the cDAQ system is only available for short periods of time during technical
stops of the LHC, we have been taking most data on the development system and only
performed scaling tests on cDAQ.

7.1.1 cDAQ Production System

The cDAQ system is the production cluster running the CMS event builder. It consists
of 106 RUs and 73 BUs. Appart from BUs having significantly more RAM and a slightly
adapted OS configuration the systems are identical:

• Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

• RAM : 32 GB for RUs, 297GB for BUs

• Mellanox Infiniband MT27500 Connect-X3 (FDR: 56 Gb/s)

• Mellanox OpenMPI 1.10.5a1 with Mellanox MXM

• GCC 4.8.5

• Centos 7.3.1611

The nodes are connected via an Infiniband FDR switched fabric (56 Gb/s) in a fat
tree configuration. It consists of 18 switches with 36 ports, out of which 12 are the leafs
and 6 are spines. To each leaf switch 15 nodes are attached, while 18 switch ports are
used as uplinks to the spine switches. This results in each leaf switch being connected
to each spine switch by 3 links.

41

7 Test Environment and Methodology

Figure 7.1: Topology of the cDAQ system.

7.1.2 DAQ2VAL Development System

DAQ2VAL is a system used for development and testing purposes. It consists of 4
RUs, 4 BUs and 15 dvRUBUs on a single Infiniband FDR switch. The main system
specifications of the dvRUBUs correspond to the one of the RUs as listed above, however
built by a different vendor and thus show slight differences to the production system
in the firmware used. Development and all two node benchmarks have been run on
the dvRUBU systems.

7.2 Measurement Strategy

To get more accurate bandwidth measurements, data will be taken using a sampling
based approach. In both nton_mpistreamio and nxn_mpistreamio, the thread polling
and processing the completion queue will increase counters for completed send and
reveive operations. In intervals of 5 seconds, a sampling thread will read out these
counters and calculate the current bandwidth. The measurements will last for multiples
of the sampling interval with the first and the last measurement being discarded and
the remaining measurements being saved to a file for further processing.

For unidirectional measurements, data will be taken at the receiver only, while
bidirectional measurements will measure at all nodes.

All performance measures coming from the unidirectional bandwidth benchmark
nton_mpistreamio and the bidirectional nxn_mpistreamio benchmark are mean values
based on the samples of either all receivers (unidirectional) or all nodes (bidirectional).

42

8 Performance Analysis and Tuning

Having designed and implemented our messaging algorithms, we can now measure
the network bandwidth of our solutions and understand if the bandwidth requirements
of Chapter 4 can be fulfilled.

8.1 Upper Bandwidth Bounds on Infiniband FDR using
Microbenchmarks

As an entry point for performance engineering, reference measurements are required
that mark the upper performance bound on the available hardware. Usually, micro-
benchmarks that measure a well defined set of functionality and are easily reproducible
are suited for that task.

A suite that focuses on measuring the performance of an MPI implementation
on the provided hardware are the OSU Micro-Benchmarks developed by the Ohio
State University. Amongst others, the suit includes both uni- and bidirectional MPI
bandwidth measurement benchmarks , osu_bw and osu_bibw measuring the bandwidth
between two nodes.

Both benchmarks use MPI point-to-point procedures, issuing 64 non-blocking sends
and receives at a time before waiting blockingly for the completion of all operations.
After the receiving side completed, it notifies the sender using a control message.
This triggers another burst of messages. After gathering sufficient statistics, the mean
bandwidth is calculated. The procedure is repeated for all message sizes from 1 Byte to
4MB, doubling the size in each run.

To decouple measurements of network bandwidth from the rest of the system,
both benchmarks use the very same message buffer for all sends and for all receives,
allowing the network adapter to cache message buffers if possible and prevents memory
registration. Thus the benchmarks represent an upper limit for peer-to-peer bandwidth
that can be obtained by two nodes.

Using our test environment on DAQ2VAL, we obtain results for osu_bw, showing the
uni-directinal bandwidth and accumulated bidirectional bandwidth for osu_bibw in
Figure 8.3. Both benchmarks show a smooth curve, saturating close to the line speed
of the Infiniband fabric. Comparing uni- and bidirectional bandwidth we can observe

43

8 Performance Analysis and Tuning

osu_bwinteraction

Rank0 Rank1

sendloop

[64 sends]

recvloop

[64 recv]

1 : MPI_Isend

2 : MPI_Waitall 3 : MPI_Irecv

4 : MPI_Waitall

(a) Pattern of the osu_bw benchmark.

osu_bibwinteraction

Rank0 Rank1

sendloop

[64 sends]

recvloop

[64 recv]

sendseq

[64 send]

recvseq

[64 recv]

1 : MPI_Isend

2 : MPI_Irecv

3 : MPI_Isend

4 : MPI_Waitall
5 : MPI_Irecv

6 : MPI_Waitall

(b) Pattern of the osu_bbiw benchmark.

Figure 8.1: Communication patterns of the OSU bandwidth benchmarks.

that the accumulated bandwidth is not doubled when using both channels.

8.2 Study of Open MPI Transmission Algorithms

The OSU Micro-Benchmarks also lend themselves very well for studying the different
transmission algorithms used by Open MPI. As described in Chapter 3.2.3 MPI uses
both eager and rendez-vous protocols for sending data. Furthermore, as mentioned
in Chapter 3.2.3, RDMA transmission of data requires regions in virtual memory to
be pinned down to a physical address by a registration procedure with the operating
system. For small to medium sized messages this results in a latency hit if not done
beforehand. Thus copies to bounce-buffers pre-registered by the MPI implementation
can increase performance for these messages. With growing message sizes however,
the copy overhead will become larger than registration costs.

Normally, a MPI implementation will switch transport algorithms based on message
size. The thresholds for switching are determined empirically by implementors to
yield reasonable performance for most use cases. This does not necessarily have to
result in the best results for a particular application. Thus implementations give users
the flexibility to manipulate thresholds at runtime. For our experiments we force the

44

8 Performance Analysis and Tuning

100 101 102 103 104 105 106
Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt
h
in
 [M

B/
s]

1to1 Unidirectional MPI Messaging Algorithms
eager bounce-buffer copies
eager zero copy
rendez-vous, zero-copy

100 101 102 103 104 105 106
Buffer Size [Bytes]

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd

wi
dt
h
in
 [M

B/
s]

1x1 Bidirectional MPI Messaging Algorithms
eager bounce-buffer copies
eager zero copy
rendez-vous, zero-copy

Figure 8.2: Testing MPI messaging algorithms using the OSU bandwidth benchmarks.

45

8 Performance Analysis and Tuning

Open MPI transport module to stick with one algorithm for all message sizes. For both
benchmark programs we conducted three measurements:

1. eager protocol with bounce-buffer copies

2. eager protocol with zero-copy semantics

3. rendez-vous protocol with zero copy semantics

The results are depicted in Figure 8.2. For both benchmarks we can see, that each
strategy is optimized for different message sizes. Eager transmission with bounce-
buffer copies will mainly perform for small to medium sized messages. We can also
observe that bounce-buffer copies on this system will reach their performance limits
with bidirectional communication. We are also able to observe the superiority of a
rendez-vous protocol for large messages compared to the eager protocol as the costs of
network retransmissions increase significantly with message size.

8.3 Study of Thread and Memory Affinity

The last run-time specific setting we want to study using the OSU Micro-Benchmarks
is memory and CPU affinity. Both DAQ2VAL and the cDAQ clusters are built from
dual socket machines working on a NUMA principle. Each CPU has its own memory
controller and is directly connected to the slots for a portion of the available expansion
card slots. Components and memory attached to the other CPU can be accessed by a
processor interconnect at the cost of a latency hit and bandwidth limited to that of the
interconnect. With an attached RDMA NIC, we not only have to ensure that all threads
interacting with the same memory buffers are preferably kept on the same CPU, but
also ensure that they are assigned to the CPU that is directly connected to the Infiniband
card. In our case, we use the Open MPI launcher mpirun to pin down processes to the
correct socket and the program numactl to control the memory allocation policy.

We then repeat both osu_bw and osu_bibw with an optimized configuration where
both processes, memory and network adapter are on the same NUMA domain and one,
where we force processes and memory on the other NUMA domain as the NIC. The
measurements depicted in Figure 8.3 show a clear degradation in network bandwidth,
if the interface adapter has to fetch its memory buffers from a remote NUMA domain.

8.4 Performance Analysis of mpila

The previous measurements based on the OSU Micro-Benchmarks the helped us to
understand the hardware and software stack of the systems we are working on and

46

8 Performance Analysis and Tuning

100 101 102 103 104 105 106

Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt
h
in
 [M

B/
s]

1to1 Unidirectional OSU Microbenchmarks
osu_bw
osu_bw bad affinity

100 101 102 103 104 105 106

Buffer Size [Bytes]

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd

wi
dt
h
in
 [M

B/
s]

1x1 Bidirectional OSU Microbenchmarks
osu_bibw
osu_bibw bad affinity

Figure 8.3: OSU bandwidth benchmarks executed with best case and worst case NUMA
pinning.

47

8 Performance Analysis and Tuning

created a point of reference to comprehend the performance of our own application.
Using these points of reference we now conduct our own set of experiments that should
help us understand the performance of the individual components of mpila and identify
where our implementation, design decisions or requirements become performance
limiting factors.

8.4.1 Measuring Queuing Overhead

As a first step we need to ensure that the software layer on top of MPI will not have an
intolerably large impact on performance.

For this purpose we will run MPIstreamIO_nton and MPIstreamIO_nxn on two nodes
and compare results with osu_bw and osu_bibw. To ensure we only measure the
overhead introduced by the architecture, we modify mpila to get as close as possible to
osu_bw and osu_bibw:

• modify the memory pool to assign the same memory buffer to all Work Requests
to allow caching of memory segments inside the interface adapter and reduce
latencies that might be introduced by memory access as in osu_bw and osu_bibw .

• modify the transmission algorithms discussed in Chapter 6.4.1 to resemble the
ones used in both osu_bw and osu_bibw (see Chapter 8.1). The non-blocking
synchronous sends will be replaced by MPI_Isend and the non-blocking polling
polling procedures by a blocking MPI_Waitall. As in the OSU benchmarks, we
pipeline of 64 send and receive operations. The overall structure of Queue Pairs
and Completion Queues is preserved.

The modified applications will be referred to as osu_nton and osu_nxn. All measure-
ments are taken with optimized thread affinity and manually tweaked transition points
between the Open MPI transmission algorithms described in 8.2.

The results are depicted in Figure 8.4. With unidirectional transmission, bandwidth
curves deviate only very slightly, indicating extremely low overhead at buffer sizes
even bellow the MTU size of 4KB. The bidirectional bandwidth measurements cannot
repeat the excellent results of the unidirectional test case. Only for packages above 8KB,
the differences in bandwidth become acceptable reaching amortization after 128KB.
Investigations showed that mainly components that are required for a multi-purpose
messaging service are responsible for the lowered bandwidth. We therefore have to
accept the results as an upper bandwidth limit for the sake of fulfilling the given
requirements of Chapter 4.

48

8 Performance Analysis and Tuning

100 101 102 103 104 105 106

Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt
h
in
 [M

B/
s]

1to1 Unidirectional Overhead Analysis
osu_bw
nton_osu
nton_osu memory

100 101 102 103 104 105 106

Buffer Size [Bytes]

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd

wi
dt

h
in

 [M
B/

s]

1x1 Bidirectional Overhead Analysis
osu_bibw
nxn_bibw
nxn_memory

Figure 8.4: Measuring queuing overhead and the effect of memory handling with
modified versions of nton_mpistreamio and nxn_mpistreamio.

49

8 Performance Analysis and Tuning

8.4.2 Optimizing the Memory Pool

As discussed in 5.2.1, the task of the Memory Pool component is to manage buffers used
for sending and receiving event fragments. It was introduced for flow control and as a
performance optimization to avoid frequent memory registrations.

As described in [25], MPI performs lazy registration of memory buffers. However
the MPI standard defines the MPI_alloc_mem procedure which allows allocation of
special memory that can have performance benefits for specific hardware [21, p. 337].
The kind of memory to be allocated is defined by an MPI_Info object giving all freedom
to the implementors. Open MPI unfortunately does not define any keywords for
requesting registered memory for Infiniband or other RDMA interconnects . Without
any keywords, there was no measurable performance benefit of using MPI_alloc_mem.

Testing different memory layouts, the highest performance was achieved by allocation
of memory in a single, contiguous block, aligned with the page boundary. This block is
then cut into equally sized buffers. Introducing individual pools for the Send Queue
and Receive Queue within a Queue Pair, buffers will circulate in the same order, since
messages to the same destination are always ordered, non-overtaking and events are
built one after another. Infiniband network adapters thus can exploit this data locality
by prefetching.

8.4.3 Multiple Memory Buffers

With an optimized memory pool we can quantify the performance impact of using more
than one, cached memory buffer. We will run osu_nton and osu_nxn with single buffer
and multiple buffers to obtain a realistic upper performance bound for a functional
transport algorithm.

As we can see in Figure 8.4, the addition of memory handling comes at a bandwidth
penalty throughout the whole range of memory buffers. Bounce buffer copies can
compensate it for small to medium sized messages, however as soon as copies become
inefficient, the degradation is clearly visible. Again, bidirectional communication
suffers an additional bandwidth penalty.

8.4.4 Benchmarking Polling Strategies

Until now, we have evaluated the impact of different components on the network
bandwidth of our messaging service pipeline with a simplified transport algorithm
for the sake of comparability with the OSU micro-benchmarks. Using more than two
nodes for an asynchronous network transport however cannot be achieved with an
algorithm using a blocking MPI wait, see Chapter 6.4.1. We therefore have designed

50

8 Performance Analysis and Tuning

100 101 102 103 104 105 106

Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt

h
in

 [M
B/

s]

1to1 Unidirectional Polling Strategies
nton_osu
test
testsome
testall

100 101 102 103 104 105 106

Buffer Size [Bytes]

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd

wi
dt

h
in

 [M
B/

s]

1x1 Bidirectional Polling Strategies
nxn_bibw
test
testsome
testall

Figure 8.5: Benchmark of polling strategies
.

51

8 Performance Analysis and Tuning

and implemented transport algorithms based on different polling strategies based on
MPI test, which we want to evaluate now.

For these results we will use all components as described Chapter 6.4.3, the transport
algorithms based on MPI_Test, MPI_Testsome and MPI_Testall as well as multi buffer
memory pools on two nodes and compare the results to the ones obtained in the last
experiment in Chapter 8.4.3 using two processes. The pipeline-depth of our polling
based transport algorithms has been set to 8 as it generally yielded the best results.

The results are depicted in Figure 8.5. For all polling based algorithms we can clearly
observe another degradation in network-bandwidth compared to the MPI wait based
algorithms in osu_nton and osu_nxn. It is difficult to explain the exact circumstances
of this performance drop. First of all we want to point out that the pipeline depth
from wait to polling based approaches had to be decreased drastically from 64 to
8, as it yielded better performance. For additional measurements see Chapter 8.4.5.
Furthermore, profiling runs showed that there is an order of 10 times more executions
of polling than actual posting of sends or receives. Increasing the polling intervals using
different strategies decreased network-bandwidth even further as it simply increases
the latency between MPI completing the operation and our application being made
aware of it. Also a mixture of polling and waiting did not show any changes on
network bandwidth. As polling is absolutely necessary for a deadlock free algorithm
that allows communication between more than two processes, we have to again accept
the bandwidth degradation for the sake of designing a an algorithm that is in line with
the requirements of Chapter 4.

Comparing the results for unidirectional and bidirectional messaging, we can see that
the former clearly favors polling based on MPI_Testsome and MPI_Test to MPI_Testall,
while no significant preference of a polling algorithm for the later could be observed.
There are two possibilities to interpret these results:

• The overhead of an additional stream of messages that is processed by the same
thread may reduce the polling frequency such that strategies that performed
better in a unidirectional case are limited to the same baseline. Plausibility of
this will be tested by scaling up unidirectional communication to more than two
processes.

• Processing both send and receive operations simultaneously may saturate either
the MPI library or the network interface adapter to such a level that the full
clear-out of one pipeline occurring after a successful MPI_Testall does not lead
to a penalty where as in the case of unidirectional traffic, both the MPI library and
the interface adapter idle until new communication requests are processed. Since
however the OSU bandwidth benchmarks use blocking MPI_Waitall procedures
that clear out the full pipeline of the preposted 64 sends and receives in the

52

8 Performance Analysis and Tuning

bidirectional case while still outperforming our algorithm this seems unlikely
to us. Nevertheless, it is worth to have a look at the sensitivity of the transport
algorithms towards the pipeline depth.

8.4.5 Sensitivity of Polling Strategies Towards Pipelining

As discussed in Chapter 6.4.3, our transport algorithms keep multiple sends and
receives open at the same time for both Send Queue and Receive Queue, trying to
keep the underlying driver based Queue Pairs busy. How many operations are ideally
enqueued at the same time is a matter of empirical tests, as both underlying hardware
and MPI internal flow control may differ based on the setup.

We therefore conducted a series of measurements ranging from 1 to 64 operation
per queue that can be pending at the same time. As results were similar for all polling
strategies, we picked the polling strategy based on MPI_Testsome as a representative
and plotted them against the memory enabled version of nton_osu resp. nxn_osu for
comparison. The results are depicted in Figure 8.6.

For both unidirectional and bidirectional messaging we observe that pipelining is an
important measure to increase throughput for most message sizes. The second general
trend we can read from the results is that the optimal size of the pipeline depends on
the size of the buffers that are being transmitted. With small messages usually come
high message rates, that quickly can consume the pipelined messages. On the other
side, transmission of large buffers will lower the message rate, requiring less pipelined
sends/receives. Especially in the bidirectional case we can clearly see that increasing
the pipeline depth can result in significant bandwidth hits. Furthermore results mostly
indicate the existence of a bandwidth plateau at message sizes between 16kB and
512kB for unidirectional transport and 64kB to 512kB for bidirectional transport. Large
messages at the size of 1MB and above seem to not be processed as efficiently as the
smaller ones.

To conclude, we have to recommend to adjust the pipeline depth according to
the mean expected message size, since the influence on bandwidth is non-negligible.
Nevertheless, a pipeline depth of 8 seems to be a reasonable preset that will yield good
performance across the entire range of buffer sizes.

8.5 Performance at Scale

So far we have studied properties of mpila throughly on a small scale using two nodes
on the DAQ2VAL system. One of the goals is a messaging service that is capable of
delivering VERBS like bandwidths at scale of the CMS event builder. We therefore
devised another measurement series for both unidirectional and bidirectional traffic on

53

8 Performance Analysis and Tuning

103 104 105 106

Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt

h
in

 [M
B/

s]

1to1 Pipeline Depth Measurement Series
nton_osu memory
pipeline 1
pipeline 2
pipeline 4
pipeline 8
pipeline 16
pipeline 32
pipeline 64

103 104 105 106
Buffer Size [Bytes]

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd

wi
dt
h
in
 [M

B/
s]

1x1 Pipeline Depth Measurement Series
nxn_memory
pipeline 1
pipeline 2
pipeline 4
pipeline 8
pipeline 16
pipeline 32
pipeline 64

Figure 8.6: Sensitivity of polling strategies towards pipelining.

54

8 Performance Analysis and Tuning

103 104 105 106

Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt

h
in

 [M
B/

s]

NtoN Unidirectional Scaling Measurement Series
1to1
2to2
4to4
8to8
16to16
32to32
64to64
89to89

103 104 105 106
Buffer Size [Bytes]

0

2000

4000

6000

8000

10000

12000

14000

Ba
nd
wi
dt
h
in
 [M
B/
s]

NxN Bidirectional Scaling Measurement Series
2
4
8
16
32
64

Figure 8.7: Scaling behavior of mpila

55

8 Performance Analysis and Tuning

Nodes Leaf Switches
2 1
4 1
8 2

16 3
32 6
64 11

128 12
178 12

Table 8.1: Distribution of nodes onto leaf switches for scaling tests

the cDAQ production system increasing scale from 2 nodes 178 nodes, doubling the
amount of nodes each time. Implementing the results from smaller scale measurements
on the DAQ2VAL test system, we decided to use a pipeline depth of 8 and the
MPI_Testsome based polling algorithm for both types of measurements.

As the cDAQ cluster is a production system that is only available for short periods of
time during technical stops of the LHC, we were not able to fine-tune the MPI runtime
to a comparable extent as the test system and refrained from adjusting any parameters
apart from NUMA pinning. Furthermore we doubled the runtime of the tests to obtain
more samples to account for possible larger deviations during the runs.

Unfortunately our measurements were accompanied by technical problems with the
cDAQ cluster with the Infiniband Interface adapters. As a consequence that data could
in most cases only be taken on BUs as they remained stable during our measurements.
This limited data taking to 64 nodes and required us to spread out to multiple switches
starting 8 nodes which measurably lowered the achievable performance. Only in a
second run we have been able to gather at least measurements for 128 and 178 nodes
for the unidirectional case.

8.5.1 Interpretation of Measurement Results

Results of the measurement series are depicted in Figure 8.7. For both unidirectional
and bidirectional traffic we can observe curves where bandwidth is increasing with
buffer sizes until a plateau is reached. With an increasing amount of nodes, the plateau
is reached at smaller buffer sizes, as the link at the receivers can be saturated faster.
Furthermore we can see that increasing the amount of nodes will decrease the maximal
bandwidth observed at the plateau.

This can be partially explained by bandwidth bottlenecks created by the uplink
of switches. The more nodes are in use, the higher the probability of having to

56

8 Performance Analysis and Tuning

103 104
Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt
h
in
 [M

B/
s]

NtoN Unidirectional VERBS vs MPI for 16 and 32 Nodes
VERBS 7to7
VERBS 16to16
MPI 8to8
MPI 16to16

103 104
Buffer Size [Bytes]

0

1000

2000

3000

4000

5000

6000

7000

Ba
nd

wi
dt
h
in
 [M

B/
s]

NtoN Unidirectional VERBS vs MPI for 64 and 128 Nodes
VERBS 32to32
VERBS 63to63
MPI 32to32
MPI 64to64

Figure 8.8: Comparing performance of MPI and VERBS algorithms for unidirectional
messaging.

57

8 Performance Analysis and Tuning

communicate over an uplink that has to be shared by multiple nodes. Looking at
Table 8.1, it is easy to observe the bandwidth restrictions imposed by the switches.
Especially the unidirectional results for 64,128 and 178 nodes saturate at very similar
bandwidths having to use 11 respectively 12 leaf switches.

In the unidirectional case, unexpectedly low values can be observed for two mea-
surement points at 2kB for the 2to2 and at 8kB for the 4to4 measurements. These
can be explained by inadequate switching from eager bounce-buffer copies to eager
zero-copy communication algorithms prematurely by Open MPI. The same holds for
the bandwidth drop at 16kB for the bidirectional case where eager zero-copy was
wrongly switched to a rendez-vous zero-copy transmission algorithm.

8.5.2 Comparison with VERBS

Our nton_mpistreamio benchmark follows the same schematic as mstreamio, a XDAQ
benchmarking application used for measuring the bandwidth of peer transports in the
XDAQ framework. This allows us to compare the measurement series performed by
us with a similar series performed by the TriDAS group for the VERBS peer transport
during its development. The comparisons are depicted in 8.8.

The bandwidth results are obtained in the same way by sampling and averaging,
however the VERBS based data has been recored in a higher buffer size resolution. In
the upper plot of Figure 8.8, both the VERBS peer transport and mpila show a very
comparable level of performance. We seem to even outperform VERBS with 15 nodes
on a single switch with 16 nodes spanning over 3 switches. As node count doubles , the
VERBS implementation takes the lead, however we are still confident that our results
could be on pair with VERBS, if we did not have to use twice the amount of switches.

If we double the amount of nodes again, we can see that VERBS now outperforms
our MPI implementation significantly by up to 1GB/s, while starting to show slight
fluctuations in bandwidth. Again a certain performance penalty of the MPI implemen-
tation can be explained by having to only use half the switches for 64 nodes, however at
128 nodes, both benchmarks use a comparable amount of switches and the performance
differences remain the same.

We believe that the major bandwidth differences between MPI and VERBS in this
case can be explained by the additional overhead that is being generated by MPI. With
the VERBS implementation, the VERBS SEND/RECEIVE point-to-point communication
semantics are used and with full control over all driver level queues, the VERBS
implementation can ensure that there is always a sufficiently large amount of preposted
buffers in the receive queue awaiting new sends. With MPI we switch to a rendez-vous
protocol (see Chapter 3.2.3) that largely increases the amount of messages that need to
be send back and forth between sender and receiver putting more stress on the interface

58

8 Performance Analysis and Tuning

adapter and possibly congesting the network with control messages instead of sending
payload.

Since there is no equivalent bidirectional version of mstreamio, we are unfortunately
not able to do a comparison with VERBS.

Since MPI implementations are built on top of VERBS in their transport modules, we
cannot hope to outperform VERBS in all cases. On the other hand we are happy to see
that on smaller sized systems our implementation is able to outperform VERBS and
still remains competitive for large scales.

59

9 Conclusion and Outlook

Throughout this thesis we designed, implemented and evaluated a throughput-oriented
transport layer based on MPI for the data acquisition system of the CMS experiment at
CERN. After an initial evaluation of MPI procedures, we argued why point-to-point
communication is the only messaging paradigm suitable for the high-throughput,
fault-tolerant and real-time requirements of Event Building. With a sufficient back-
ground on low level RDMA concepts we then proposed a system architecture for a
messaging library based on MPI point-to-point procedures that works hand in hand
with the queue based model of OFA based RDMA devices. The design was followed
by outlining a messaging algorithm and proposing different implementations based
on non-blocking point-to-point MPI procedures and a non-blocking polling strategy.
The proposed solutions then have been analytically evaluated against MPI bandwidth
benchmarks,trying to individually isolate the factors that separate an MPI bandwidth
benchmark from a throughput driven messaging service, which can be used universally
in MPI applications. Finally we evaluated the MPI implementation against the existing
solution on VERBS identifying that our proposed MPI based solution is competitive
against VERBS on a smaller scale, capable of outperforming the current messaging
service. With increasing scale, the additional overhead of MPI algorithms is no longer
able to keep up with a purpose made low level implementation based on VERBS while
still maintaining reasonable performance for a high level library.

Furthermore a prototype implementation of a XDAQ peer-transport using our mes-
saging service was implemented. It was able to launch XDAQ applications with an
MPI launcher integrating flawlessly into the design principles behind XDAQ.

This experiments proved that MPI in general is capable of high-performance through-
put oriented messaging, sufficient for the highly demanding task of event building.
With the integration into XDAQ we were also capable of demonstrating the enormous
flexibility of XDAQ to adapt to changes in requirements and the ability of MPI to be
integrated into different types of applications.

However we have also seen the limitations of MPI. A standard that defines an API and
leaves its implementation to other interest groups is able to support a large variety of
hardware and optimize really well for those platforms. On the other hand this leads to
lack of control from users who will have to not only understand the MPI standard, but
also the behavior of the implementation which in many cases is sparsely documented

60

9 Conclusion and Outlook

as well. Furthermore the tuning of hundreds of more or less documented runtime
options of the MPI implementations and understanding which ones are meaningful
for your case can be very time consuming if an application fails to perform well with
standard parameters.

The large community around MPI and the profiling tools developed analyze perfor-
mance of MPI applications were not very helpful when it came to analyze inefficiencies
of our library. However parallel MPI debuggers largely contributed to finding errors
faster.

In the end we can conclude that while it is possible to build a throughput-oriented
messaging service on top of MPI for the event-builder of CMS that performs well
enough to be brought to production usage, we always had the feeling to be working
against the goals of MPI to provide an easy to use messaging library for distributed
programming by constantly trying to get as close as possible to driver level control
within our application. If the goal is to design a communication library without having
to reach down to driver level, other libraries as open ucx [31] seem to be a better
alternative.

On the other hand we feel that the proposed architecture for a messaging library can
be a beneficial approach for the growing community around hybrid MPI+X applications
relying on both MPI and threading libraries such as OpenMP. By allowing users to
exchange data across processes in a multi-threaded environment efficiently via a simple
interface without having to access MPI directly, but being able to use its powerful and
well grown environment we believe to directly address one of the core issues of hybrid
applications.

61

List of Figures

2.1 Aerial view of the CERN accelerator complex 4
2.2 Schematic of the CMS detector. 5
2.3 Photograph of the CMS detector. 5
2.4 Dataflow in the CMS Trigger/DAQ system. 6
2.5 Schematic view of the full CMS DAQ2. 7
2.6 Visualization of the CMS event building protocol. 8
2.7 XDAQ plugin infrastructure. 10
2.8 Communication of applications using Peer Transports. 11

3.1 Kernel bypassing of RDMA . 13
3.2 Queue based I/O of RDMA hardware . 14
3.3 Open MPI Modular Component Architecture 17
3.4 Structure of eager and rendez-vous protocols in MPI implementations . 19

4.1 Communication Patterns for different styles of event builders 22

5.1 Visualization of the MPI gather collective pattern. 24
5.2 Visualization of the MPI complete exchange collective pattern. 24
5.3 Pipes and Filters architecture . 27
5.4 Layers view of mpila. 28

6.1 Polling strategy using MPI_Test. 37
6.2 Polling strategy using MPI_Testall. 38
6.3 Polling strategy using MPI_Testsome. 39

7.1 Topology of the cDAQ system. 42

8.1 Communication patterns of the OSU bandwidth benchmarks. 44
8.2 Testing MPI messaging algorithms. 45
8.3 NUMA sensitivity of RDMA. 47
8.4 Measurment of queueing overhaed. 49
8.5 Evaluation of polling strategies . 51
8.6 Effects of Pipelining on the Transport. 54
8.7 Scaling behavior of mpila . 55

62

List of Figures

8.8 Comparing performance of MPI and VERBS algorithms for unidirectional
messaging. 57

63

List of Tables

8.1 Distribution of nodes onto leaf switches for scaling tests 56

64

Bibliography

[1] A. Hermann, L. Belloni, J. Krige, and E. O. for Nuclear Research, History of CERN:
Launching the European Organization for Nuclear Research, ser. History of CERN.
North-Holland Physics Pub., 1987, isbn: 9780444870377.

[2] Convention for the establishment of a European organization for nuclear research: Paris,
1st July, 1953 : as amended. Convention pour l’établissement d’une Organisation eu-
ropéenne pour la Recherche nucléaire. Paris, le 1er juillet 1953 : telle qu’elle a été modi-
fiée. Geneva: CERN, 1971.

[3] (Jan. 2012). About CERN, [Online]. Available: http://cds.cern.ch/record/
1997225.

[4] M. Krause, CERN: How We Found the Higgs Boson. World Scientific, 2014, isbn:
9789814623469.

[5] L. Evans, “Particle accelerators at cern: From the early days to the lhc and
beyond,” Technological Forecasting and Social Change, vol. 112, pp. 4–12, 2016, issn:
0040-1625. doi: https://doi.org/10.1016/j.techfore.2016.07.028.

[6] O. S. Bruening, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock,
LHC Design Report, ser. CERN Yellow Reports: Monographs. Geneva: CERN, 2004.

[7] S. Chatrchyan, G. Hmayakyan, V. Khachatryan, et al., “The CMS experiment at
the CERN LHC. The Compact Muon Solenoid experiment,” JINST, vol. 3, S08004.
361 p, 2008, Also published by CERN Geneva in 2010.

[8] S. Cittolin, A. Rácz, and P. Sphicas, CMS The TriDAS Project: Technical Design
Report, Volume 2: Data Acquisition and High-Level Trigger. CMS trigger and data-
acquisition project, ser. Technical Design Report CMS. Geneva: CERN, 2002.

[9] J.-M. O. Andre, U. Behrens, J. Branson, P. M. Brummer, O. Chaze, S. Cittolin,
C. Contescu, B. G. Craigs, G. L. Darlea, C. Deldicque, Z. Demiragli, M. Dobson,
N. Doualot, S. Erhan, J. R. Fulcher, D. Gigi, M. S. Gladki, F. Glege, G. Gomez
Ceballos, J. G. Hegeman, A. G. Holzner, M. Janulis, R. Jimenez Estupinan, L.
Masetti, F. Meijers, E. Meschi, R. Mommsen, S. Morovic, V. O’Dell, L. Orsini,
C. M. E. Paus, P. Petrova, M. Pieri, A. Racz, T. Reis, H. Sakulin, C. Schwick,
D. Simelevicius, and P. Zejdl, “Performance of the CMS Event Builder,” CERN,
Geneva, Tech. Rep. CMS-CR-2017-034. 3, Feb. 2017.

65

http://cds.cern.ch/record/1997225
http://cds.cern.ch/record/1997225
https://doi.org/https://doi.org/10.1016/j.techfore.2016.07.028

BIBLIOGRAPHY

[10] T. Bawej, U. Behrens, J. Branson, O. Chaze, S. Cittolin, G. L. Darlea, C. Deldicque,
M. Dobson, A. Dupont, S. Erhan, A. Forrest, D. Gigi, F. Glege, G. Gomez-Ceballos,
R. Gomez-Reino, J. Hegeman, A. Holzner, L. Masetti, F. Meijers, E. Meschi, R. K.
Mommsen, S. Morovic, C. Nunez-Barranco-Fernandez, V. O’Dell, L. Orsini, C.
Paus, A. Petrucci, M. Pieri, A. Racz, H. Sakul, C. Schwick, B. Stieger, K. Sumorok,
J. Veverka, and P. Zejdl, “The new cms daq system for run-2 of the lhc,” in 2014
19th IEEE-NPSS Real Time Conference, May 2014, pp. 1–1. doi: 10.1109/RTC.2014.
7097437.

[11] (Jun. 2018). CMS Online Software project page, [Online]. Available: https://
xdaq.web.cern.ch/.

[12] J. Gutleber, S. Murray, and L. Orsini, “Towards a homogeneous architecture for
high-energy physics data acquisition systems,” Computer Physics Communications,
vol. 153, no. 2, pp. 155–163, 2003, issn: 0010-4655. doi: https://doi.org/10.
1016/S0010-4655(03)00161-9.

[13] J. Gutleber and L. Orsini, “Software architecture for processing clusters based on
i2o,” Cluster Computing, vol. 5, no. 1, pp. 55–64, Jan. 2002, issn: 1573-7543. doi:
10.1023/A:1012744721976.

[14] A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th. Upper Saddle River,
NJ, USA: Prentice Hall Press, 2014, isbn: 9780133591620.

[15] A. Tanenbaum, Computer Networks, 4th. Prentice Hall Professional Technical
Reference, 2002, isbn: 0130661023.

[16] P. Grun, “Introduction to infiniband for end users,” White paper, InfiniBand Trade
Association, 2010.

[17] (Jun. 2018). OpenFabrics Alliance project page, [Online]. Available: https://www.
openfabrics.org/.

[18] M. Feldman. (Dec. 2017). TOP500 Meanderings: InfiniBand Fends Off Supercom-
puting Challengers, [Online]. Available: https://www.top500.org/news/top500-
meanderings-infiniband-fends-off-supercomputing-challengers/.

[19] M. T. Inc, “Why compromise? - a discussion on rdma versus send/receive and the
difference between interconnect and application semantics,” White paper, 2006.

[20] G. Kerr, “Dissecting a small infiniband application using the verbs API,” CoRR,
vol. abs/1105.1827, 2011. arXiv: 1105.1827.

[21] MPI: A Message-Passing Interface Standard, Version 3.1. High Performance Com-
puting Center Stuttgart (HLRS), 2015.

66

https://doi.org/10.1109/RTC.2014.7097437
https://doi.org/10.1109/RTC.2014.7097437
https://xdaq.web.cern.ch/
https://xdaq.web.cern.ch/
https://doi.org/https://doi.org/10.1016/S0010-4655(03)00161-9
https://doi.org/https://doi.org/10.1016/S0010-4655(03)00161-9
https://doi.org/10.1023/A:1012744721976
https://www.openfabrics.org/
https://www.openfabrics.org/
https://www.top500.org/news/top500-meanderings-infiniband-fends-off-supercomputing-challengers/
https://www.top500.org/news/top500-meanderings-infiniband-fends-off-supercomputing-challengers/
http://arxiv.org/abs/1105.1827

BIBLIOGRAPHY

[22] M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Trans-
actions on Computers, vol. C-21, no. 9, pp. 948–960, Sep. 1972, issn: 0018-9340. doi:
10.1109/TC.1972.5009071.

[23] (Jul. 2018). Open mpi web presence, [Online]. Available: www.open-mpi.org.

[24] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V.
Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L.
Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, Sep. 2004, pp. 97–104.

[25] J. Squyres. (Jul. 2011). Registered Memory (RMA / RDMA) and MPI implementa-
tions, [Online]. Available: https://blogs.cisco.com/performance/registered-
memory-rma-rdma-and-mpi-implementations.

[26] (Feb. 2017). Understanding Tag Matching for Developers, [Online]. Available:
https://community.mellanox.com/docs/DOC-2781.

[27] “High performance RDMA protocols in HPC,” in Proceedings, 13th European
PVM/MPI Users’ Group Meeting, ser. Lecture Notes in Computer Science, Bonn,
Germany: Springer-Verlag, Sep. 2006.

[28] Unified Communication X (UCX) - API Standard, 1.4, UCF Consortium, Jun. 2018.

[29] (Jul. 2018). Mellanox HPC-X Software Toolkit, [Online]. Available: www.mellanox.
com/products/hpcx/.

[30] (Jul. 2018). Messaging Accelerator (MXM), [Online]. Available: www.mellanox.
com/products/mxm/.

[31] (Jul. 2018). Unified communication x - an open-source production grade commu-
nication framework for data centric and high-performance applications, [Online].
Available: http://www.openucx.org/.

[32] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez, Y. Itigin,
M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar, S. Potluri, D. Rossetti,
D. Becker, D. Poole, C. Lamb, S. Kumar, C. Stunkel, G. Bosilca, and A. Bouteiller,
“UCX: An open source framework for HPC network APIs and beyond,” in 2015
IEEE 23rd Annual Symposium on High-Performance Interconnects, 2015, pp. 40–43.
doi: 10.1109/HOTI.2015.13.

[33] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture - A System of Patterns. John Wiley & Sons Ltd., 1996,
vol. 1.

67

https://doi.org/10.1109/TC.1972.5009071
www.open-mpi.org
https://blogs.cisco.com/performance/registered-memory-rma-rdma-and-mpi-implementations
https://blogs.cisco.com/performance/registered-memory-rma-rdma-and-mpi-implementations
https://community.mellanox.com/docs/DOC-2781
www.mellanox.com/products/hpcx/
www.mellanox.com/products/hpcx/
www.mellanox.com/products/mxm/
www.mellanox.com/products/mxm/
http://www.openucx.org/
https://doi.org/10.1109/HOTI.2015.13

BIBLIOGRAPHY

[34] H. Zimmermann, “Osi reference model - the iso model of architecture for open
systems interconnection,” IEEE Transactions on Communications, vol. 28, no. 4,
pp. 425–432, Apr. 1980, issn: 0090-6778. doi: 10.1109/TCOM.1980.1094702.

68

https://doi.org/10.1109/TCOM.1980.1094702

	Acknowledgments
	Abstract
	Contents
	Introduction
	Outline

	Work Environment
	The Large Hadron Collider at CERN
	The CMS Experiment and its Data Acquisition System
	The CMS TriDAS System
	Data Flow inside the CMS DAQ
	The Event Builder Protocol

	The CMS DAQ software
	System Architecture
	Data Transmission

	Background on Used Technologies
	High-Throughput RDMA networks
	Connecting Processes with Channels
	Channel I/O

	The Message Passing Interface Standard Specification and its Implementations
	Inter-Process Communication in MPI
	Implementation of the Standard in Open MPI
	Open MPI Transport over Open Fabrics Devices

	Requirements Analysis
	Designing a Throughput-Oriented Messaging Service on Top of MPI
	Design Study: MPI Calls for Event Building Traffic
	Defining a Messaging Service on Top of MPI
	Queuing and Multithreading using a Pipes and Filters Architecture
	Reusability and Reduction of Complexity by Layering

	Deliverables

	Implementation
	Memory Pools for Efficient Memory Handling
	Queue Pairs and Completion Queues for Request and Event Handling
	Work Requests and Completion Events
	Duplex Transport Based on MPI Point-to-Point Communication
	Processing of Requests
	Buffering Behavior of MPI Send Modes
	Polling Strategies

	Benchmark Applications
	A XDAQ Peer-Transport: ptmpi

	Test Environment and Methodology
	Hardware
	cDAQ Production System
	DAQ2VAL Development System

	Measurement Strategy

	Performance Analysis and Tuning
	Upper Bandwidth Bounds on Infiniband FDR using Microbenchmarks
	Study of Open MPI Transmission Algorithms
	Study of Thread and Memory Affinity
	Performance Analysis of mpila
	Measuring Queuing Overhead
	Optimizing the Memory Pool
	Multiple Memory Buffers
	Benchmarking Polling Strategies
	Sensitivity of Polling Strategies Towards Pipelining

	Performance at Scale
	Interpretation of Measurement Results
	Comparison with VERBS

	Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography

