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Abstract A block-structured model for the reconstruction of directed and weighted financial networks,
spanning multiple countries, is developed. In a first step, link-probability matrices are derived via
a fitness model that is calibrated to reproduce a desired density and reciprocity for each block (i.e.
country and cross-border sub-matrix). The resulting probability matrix allows for fast simulation through
bivariate Bernoulli trials. In a second step, weights are allocated to a sampled adjacency matrix via
an exponential random graph model (ERGM), which fulfills the row, column, and block weights. This
model is analytically tractable, calibrated only on scarce publicly available data, and closely reconstructs
known network characteristics of financial markets. In addition, an algorithm for the parameter estima-
tion of the ERGM is presented. Furthermore, calibrating our model to the EU interbank market, we are
able to assess the systemic risk within the European banking network by applying various contagion models.
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1. Introduction

The global financial crisis of 2007–2008 highlighted the need for a deeper understanding of our financial
markets and an accurate assessment of systemic risk [40]. In 2010, the Basel Committee on Banking
Supervision [39] identified the interconnectedness of financial institutions as a significant source of
systemic risk and an important cause for a further amplification of the crisis. Moreover, at the time of the
crisis, authorities’ stress tests failed to adequately model interlinkages in the banking sector, which in turn
led to a dramatic underestimation of the vulnerability of financial systems [40].

Since then, the literature on systemic risk measuring has gained great attention. Early research includes
work by Allen and Gale (2000) [2], who construct market equilibria between banks and consumers and
analyze the contagion of liquidity shocks to the system. Based on examples of networks containing
only four banks, forming either a completely connected graph or a circle, they conclude that completely
connected graphs are less fragile than circles. Eisenberg and Noe (2001) [22] developed a clearing
mechanism that is very popular today, i.e. they constructed a payment vector for the nodes of a financial
system that is based on a proportional propagation of losses among counterparties. While Eisenberg and
Noe reallocate the initial loss of a defaulting bank (i.e. the total resulting loss has always the exact same
size as the initial loss), Cifuentes et al. (2005) [14] add losses in equity caused by price drops of illiquid
assets. Based on simulations of networks of ten homogeneous banks, the authors conclude that systemic
resilience and bank interconnections are not linearly related and that in particular circumstances more
interconnected networks may be riskier (which is not in line with the results of Allen and Gale (2000) [2]).
Recently, contagion mechanisms and systemic risk measures have been further extended and new ideas
have been suggested. For example, Rogers and Veraart (2013) [43] generalized the model of Eisenberg
and Noe by introducing default costs. Battiston et al. (2012) [11, 9] proposed the so-called DebtRank as
a measure of systemic impact, that is based on the idea of feedback-centrality. Cont et al. (2013) [17]
developed a simulation-based approach named the Contagion Index that quantifies the expected loss in
capital generated by an institutions default in the light of a recovery rate of zero.

For a detailed survey on systemic risk models, the interested reader is referred to De Bandt and
Hartmann (2000) [20] and Hüser (2015) [31]. While this strand of literature keeps growing, the problem
of constructing realistic models of financial networks remains open. This is a challenging task, because
information on bilateral interbank-activities is classified confidential and thus mostly not available. For
a detailed discussion on the sparsity of consistent bank-level data, see Cerutti at al. (2011) [13]. The
relevance of this issue has also been acknowledged by authorities, who in response launched several
initiatives to fill essential data gaps, see, e.g., the G20 Data Gaps Initiative (DGI)3 and the EU-wide
transparency exercise by the European Banking Authority (EBA)4. Nonetheless, until today only few data
on aggregated levels have been published.

Because of the lack of publicly available information on interbank lending, academics often turn to
random graphs or toy networks to apply their developed tools. This allows to derive theoretical results
on systemic risk for very specific and well controlled network structures. For a better understanding of
the complex topology of actual financial markets, however, and its mechanism to propagate shocks, more
realistic network models are needed. The formulation of tractable network models that (a) cover multiple
countries, (b) allow for fast simulation of sample scenarios, (c) can be calibrated to available information,
and thus generate realistic financial markets, and (d) offer the flexibility to easily change particular network
characteristics for a detailed analysis, still remains an open challenge.

To fill this gap, we present an analytically tractable network reconstruction methodology, comprising
each of the listed features (a) – (d) at least to some extend. Our model is based on earlier work [24]
regarding the reconstruction of the topology of interbank networks of single countries. In the present work,
we extend this model to cover multiple countries by using a block structure of weighted networks. More
precisely, in a first step we use an extended fitness model to reconstruct the adjacency matrix of the under-
lying financial network, calibrated to a desired density and reciprocity. This results in a link-probability

3For more information see e.g. http://www.imf.org/external/np/seminars/eng/dgi/.
4For more information see

http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-transparency-exercise.

http://www.imf.org/external/np/seminars/eng/dgi/
http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-transparency-exercise
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matrix from which we can easily sample adjacency matrices through bivariate Bernoulli trials. In a second
step, the sampled adjacency matrices are weighted, such that interbank assets and liabilities, which are
known from the banks’ balance sheets, as well as the total weight circulating within and across countries,
is met. This is achieved via an exponential random graph model (ERGM), conditioned on the row and
column sums as well as on the block weights. Since this model allows to analytically derive the expected
weight of each link of a given adjacency matrix, the conditions are fulfilled exactly by the resulting network.

Our network reconstruction model enables the application of the proposed contagion mechanisms and
systemic risk measures to more realistic and international financial networks. We expect the outcomes to
shed new light on systemic risk and its monitoring. Furthermore, this analysis can also pave the way for
further improvements on contagion models and systemic risk measures, as well as support the ultimate aim
of policy-makers to stabilize financial markets.

This paper is structured as follows. Section 2 surveys existing network reconstruction methods, while
Section 3 presents our extension. Since model calibration is a non-trivia task, Section 4 introduces an
algorithm for parameter estimation in the present setup. In Section 5 we calibrate our model to the EU
interbank market and characterize the resulting topology. Afterwards, in Section 6 we assess systemic risk
in the EU interbank market by applying five of the most popular contagion mechanisms. The final Section 7
concludes and highlights open questions for further research.

2. Literature review on network reconstruction methods

An overview of the most prominent methods that have been suggested for recovering network structures
from scarce data is presented in the following. A comparison of various models has been conducted by
the Basel Committee on Banking Supervision [41], Mazzarisi and Lillo [35], and Anand et al. [5], gener-
ally concluding that the performance of each approach depends heavily on the underlying network structure.

As interbank assets and liabilities are publicly available through the banks’ balance sheets, the primary
problem for financial network reconstruction concerns the generation of matrices with zero-diagonal,
i.e. excluding self-loops, that match the given row and column sums. One of the first approaches to
tackle this issue was provided by Upper and Worms [51], who suggested a maximum entropy (ME)
model. Because of the lack of further information, they propose to distribute the weights as uniform
as possible. This is done by minimizing the Kullback–Leibler divergence w.r.t. the uniform distri-
bution, while ensuring a zero diagonal as well as the desired row and column sums. A drawback of
this approach is that the resulting network is completely connected, which contradicts most real-world
financial networks that are typically sparse. Moreover, in some cases the ME model has been shown
to underestimate systemic risk [36]. To reduce the density of the generated networks, changes on
the uniform prior have been suggested. For example, Drehmann et al. [21] fix a random set of elements
of the prior matrix to zero, and Baral and Fique [6] propose a Gumbel copula fitted to the marginals as prior.

Building on the ME approach, so called ‘exponential random graph models’ (ERGMs) or ‘configuration
models,’ have been developed, which are able to incorporate further network characteristics, see for
example [42, 48]. The idea is to construct a probability distribution over a set of graphs, again by mini-
mizing the Kullback–Leibler divergence to the uniform distribution, while constraining the optimization
problem on the expected value of certain desired network statistics. An advantage of these models is that
constraints allowing for dyad independence, such as a desired density, degree sequence, reciprocity, in- and
out-strength, etc., render the optimization problem analytically solvable. The flexibility in the constraints
and the considered set of graphs gives rise to a number of different models. For example, Mastrandrea et al.
[33] use an ERGM constrained on the degree and strength sequence to reconstruct a number of networks
from different fields.

In contrast to the ME model, Anand et al. [4] address the opposed problem of creating networks with
a minimum number of links, such that given row and column sums are met. In addition, they provide an
extension for generating disassortative networks as well as a heuristic procedure for sampling. As they
report, their model tends to overestimate systemic risk.
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Another strand of literature concerns fitness models. Here, connections are generated according to a
link probability function that depends on hidden variables of the respective nodes. For example, Cimini
et al. [16] suggest to use available economic factors as hidden variables, such as the nodes’ strengths, and
a link probability function coming from an ERGM constrained on the in- and out-degree sequence. By
introducing a scalar factor, multiplied with the hidden variables, the density of the resulting networks can
be controlled. Sampling unweighted networks is fast and easy by drawing independent Bernoulli trails.
Subsequently, weights are allocated via a gravity model.

A similar approach is presented by Gandy and Veraart [25, 26], who consider the same fitness model
for the generation of the adjacency matrix as Cimini et al. [16], but suggest a Gibbs sampler for weight
allocation. The MCMC sampler creates a sequence of weighted networks that all match the row and
column sums exactly, and that converges to an exponential distribution w.r.t. the weights. Moreover,
Gandy and Veraart also consider the reverse case of randomly distributed fitness variables and fitting a link
probability function such that a power law degree distribution is achieved.

Hałaj and Kok [29], on the other hand, make use of additional information disclosed by the EBA’s
EU-wide stress test (see http://www.eba.europa.eu), comprising country level exposures of 89 banks.
Based on this data, they derive the relative distribution of interbank exposures, aggregated on country level,
which then serves as a link probability map. In an iterative procedure links are drawn at random and kept
according to the derived probability map. Weights are allocated to sampled links by a uniformly distributed
random fraction of unallocated weight. Once the total weight is assigned, the procedure terminates.

Our approach combines several aspects of the discussed methodologies. First, we use a fitness model
to construct adjacency matrices, i.e. unweighted directed graphs. In the spirit of Cimini et al. [16] and
Gandy and Veraart [26], our fitness model accounts for the nodes’ heterogeneity and can be calibrated
to a desired density. In addition, we incorporate degree reciprocity, i.e. the generated link probability
matrix will match a desired number of reciprocal links. Similar to Hałaj and Kok [29] we make use of the
EBA’s EU-wide tranparency excercise (see http://www.eba.europa.eu) to estimate the distribution of
interbank assets within countries and across borders. Since the data published by the EBA is incomplete,
we use the estimated distribution as a prior in an ERGM, i.e. missing interbank assets are distributed
as homogeneously as possible, while fulfilling the margins. In a last step, we use an ERGM with
constraints on the row sums, column sums, and cross border weights to allocate weights to a sampled ad-
jacency matrix. This ERGM differs from existing ERMGs in its constraints and the set of considered graphs.

3. Method

This section derives a block-structured probabilistic model for the reconstruction of international financial
networks. We start with a precise description of the problem and of the desired model characteristics.

3.1. Problem of financial network reconstruction

In the following, we consider a network consisting of n financial institutions that are located in N coun-
tries, which are denoted by C1,C2, . . . ,CN ; |C j| denoting the number of banks in country j ∈ {1, . . . ,N}.
This creates a chessboard with N2 blocks. The corresponding network can be visualized in form of a matrix
w, as illustrated in Fig. 1. The element wi j equals the nominal value of loans that bank i lends to bank j.
Consequently, the row sum s(out)

i (resp. column sum s(in)
i ) denotes the total interbank assets (resp. deposits)

of bank i.

http://www.eba.europa.eu
http://www.eba.europa.eu
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w =

C1 C2 . . . CN

b1 b2 . . . b|C1 | b|C1 |+1 . . . . . . b|C1 |+|C2 | . . . . . . . . . b1+
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j=1 |C j |
. . . bn
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2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s(in)
n

(1)

Figure 1: Illustration of an international financial network comprising n financial institutions b1, . . . , bn, grouped by their country of
origin C1, . . . ,CN . The variables s(out)

i and s(in)
i denote the i-th row and column sum, respectively.

As pointed out in the discussion above, the fundamental problem of reconstructing financial networks is
the limited data availability. In fact, regarding interbank networks, the only information which is regularly
available to the public are interbank assets s(out) and interbank liabilities s(in) of each bank. However,
considering all networks which fulfill the given row and column sums as possible financial networks is
misleading, since financial networks are, for example, known to be sparse, see, e.g., Craig and Peter [19].
Hence, densely connected networks should be excluded on the grounds of not being realistic. Moreover,
financial networks are known to be disassortative, to exhibit a core-periphery structure, to feature short
paths, degrees and strength are highly correlated, etc., see, e.g., Craig and Peter [19], Roukny et al. [45],
Bargigli et al. [8]. But precise, regular, and complete information on theses characteristics are not publicly
available. Thus, to construct realistic networks, a trade-off has to be made on incorporating available data
and accuracy of the reconstructed network topology. Furthermore, we aim at a tractable model which also
includes the flexibility to change particular network statistics, in order to allow for a detailed assessment
of systemic risk and an analyses of potentially more stable network structures. Therefore, we choose to
base our model on the following characteristics (i) - (iv) for two reasons. First, the necessary information is
either publicly available or can be approximated from publicly available data, as demonstrated in Section 5.1
w.r.t. the EU interbank network. This allows the construction of realistic interbank networks. Second, these
characteristics can be incorporated in an analytically tractable model. Hence, these characteristics can
easily be twisted and network ensembles with different structures can be generated. This creates a flexible
playground for a detailed analysis on systemic risk and possible new regulations, which is a key objective
of this work. We assume the following information to be given:

(i) The density for each block, or equivalently the number of links L→kl for all blocks k, l = 1, . . . ,N, i.e.

L→ ∈ �N×N
0 ; (2)

(ii) The (degree-) reciprocity for each pair of transposed blocks, or equivalently the number of mutual
links L↔kl = L↔lk for all blocks k, l = 1, . . . ,N, i.e.

L↔ ∈ �N×N
0 , and L↔ symmetric; (3)

(iii) Interbank assets s(out)
i and liabilities s(in)

i for each bank i = 1, . . . , n in the network, i.e.

s(in) ∈ �n
0 and s(out) ∈ �n

0; (4)
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(iv) The total weight for each block, i.e.
s(block) ∈ �N×N

0 . (5)

The row and columns sums, as well as the block weights, are restricted to the set of natural numbers, as
this considerably simplifies the required calculations, see Section 3.3.

Following the notation of Gandy and Veraart [25], let w ∈ �n×n
0 denote an interbank matrix, where the

element wi j denotes the nominal value of interbank loans granted from bank i to bank j. Some stakeholders,
such as financial institutions, central banks, or regulators might have partial knowledge on the interbank
network, i.e. they might know the true value of some elements of w. Therefore, we define w∗ ∈ W :=(
{∗} ∪ �0

)n×n, where w∗i j = ∗ denotes an unknown matrix element. We are interested in the set of all
interbank matrices fulfilling the desired characteristics (i) – (iv), as well as matching all known bilateral
interbank elements. Constructing this set of matrices in a tractable and computationally feasible way is a
non-trivial task, and to the best of our knowledge such a model is currently not yet available. To provide
a solution, we relax the problem and consider instead a probability space that generates interbank matrices
which satisfy the desired characteristics in expectation.

Definition 3.1 (Admissible probability space for interbank networks)
Let Ω :=

{
w ∈ �n×n

0

}
be a set of weighted and directed graphs and let P : P (Ω) → [0, 1] be a probability

measure defined on the power set P (Ω) of Ω . The probability space (Ω,P (Ω) , P) is called admissible
w.r.t. L→ ∈ �N×N

0 , L↔ ∈ �N×N
0 symmetric, s(in) ∈ �n

0, s(out) ∈ �n
0, s(block) ∈ �N×N

0 , and w∗ if the following
conditions are met:

(i) ∑
w∈Ω

P (w)

 ∑
i∈Ck , j∈Cl

1{wi j>0}

 = L→kl , ∀k, l = 1, . . . ,N, (directed links)

(ii) ∑
w∈Ω

P (w)

 ∑
i∈Ck , j∈Cl

1{wi j>0}1{w ji>0}

 = L↔kl , ∀k, l = 1, . . . ,N, (reciprocal links)

(iii) ∑
w∈Ω

P (w)

 n∑
j=1

wi j

 = s(out)
i , ∀i = 1, . . . , n, (assets)

(iv) ∑
w∈Ω

P (w)

 n∑
i=1

wi j

 = s(in)
j , ∀ j = 1, . . . , n, (liabilities)

(v) ∑
w∈Ω

P (w)

 ∑
i∈Ck , j∈Cl

wi j

 = s(block)
kl , ∀k, l = 1, . . . ,N, (block weights)

(vi)
wi j = w∗i j, ∀w ∈ Ω and w∗i j , ∗. (known links)

In the following, we present a model for generating such admissible ensembles of interbank matrices.

3.2. Reconstructing unweighted directed graphs via an extended fitness model
Fitness models have been studied in detail by, e.g., Caldarelli et al. [12], Servedio et al. [46], Musemci

et al. [37], and Gandy and Veraart [25]. We only summarize the particular fitness model that we use for our
purposes.

Fitness models are based on the assumption that the link probability is controlled by underlying node
specific hidden variables. While one strand of literature randomizes the hidden variables and derives link
probability functions, such that some desired characteristics are fulfilled, another strand uses given eco-
nomic factors as hidden variables. We adopt the latter methodology. More precisely, we take the link
probability function as given by an ERGM conditioned on the in- and out-degree sequences and the number
of reciprocal links. For a derivation of this ERGM, see, e.g., Engel et al. [24] and the references therein.
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The parameters of the ERGM can be estimated for a given in- and out-degree sequence and a given number
of reciprocal links. For most blocks, however, no information on the in- and out-degrees is publicly avail-
able. For this reason, we resort to the idea of fitness models and consider the unknown parameters (i.e. the
exponential function of the negative Lagrange multipliers) as hidden variables. More precisely, the hidden
variables controlling the link probabilities are specified by the banks’ interbank assets s(out)

i and interbank
liabilities s(in)

i , multiplied by a block specific parameter z ∈ �N×N
≥0 that controls for the network density of

each block. This leads to the following link probabilities: Let A ∈ {0, 1}n×n denote the random adjacency
matrix, and to simplify notation let zi j denote the z parameter of the corresponding block, then for i , j,

P
(
Ai j = 1 ∧ A ji = 1

)
=

r2
i jzi jz jis

(out)
i s(in)

j s(out)
j s(in)

i

1 + zi js
(out)
i s(in)

j + z jis
(out)
j s(in)

i + r2
i jzi jz jis

(out)
i s(in)

j s(out)
j s(in)

i

, (6)

P
(
Ai j = 1 ∧ A ji = 0

)
=

zi js
(out)
i s(in)

j

1 + zi js
(out)
i s(in)

j + z jis
(out)
j s(in)

i + r2
i jzi jz jis

(out)
i s(in)

j s(out)
j s(in)

i

, (7)

P
(
Ai j = 0 ∧ A ji = 0

)
=

1

1 + zi js
(out)
i s(in)

j + z jis
(out)
j s(in)

i + r2
i jzi jz jis

(out)
i s(in)

j s(out)
j s(in)

i

, (8)

where r ∈ �N×N
>0 with rkl = rlk is a block specific parameter controlling for the number of reciprocal links.

Again to simplify notation, ri j denotes the r parameter of the corresponding block. Furthermore, since
financial networks do not exhibit self-loops, we set Aii = 0 for all i = 1, . . . , n.

The parameter r comes from the term exp (−λr) of the discussed ERGM, with λr being the Lagrange
multiplier of the constraint on the reciprocal links. Setting this Lagrange multiplier to zero λr = 0, or
equivalently r = 1, and assuming pairwise independence for all links, results in the classical fitness model.
This model has been studied in detail and it has been shown to yield good results, see for example Cimini
et al. [16] and Gandy and Veraart [26]. Our model extends the classical fitness model by additionally
incorporating the number of reciprocal links and therefore introducing a dependence structure between the
dyads

(
Ai j, A ji

)
. We decided to include the reciprocity in our model, since it has been shown to constitute

an important network characteristic, that regarding most networks does not come as a natural consequence
of the degree sequence, see for example Garlaschelli and Loffredo [27] and Bargigli et al. [8], and because
it introduces only one additional parameter. As can be seen from the link probabilities, Eqs. (6) to (8), this
setting correlates the number of links of a node to its weight, i.e. the higher the total incoming and outgoing
weight of a node, the higher the number of incoming and outgoing links of a node. This is an essential
characteristic that one would expect from financial networks, and which has been shown to hold in many
empirical works, e.g. [45], [8].

Incorporating available information on the existence of certain links is straight forward. Let a∗ ∈
{∗, 0, 1}n×n, where ai j = ∗ denotes an unknown link. The link probability matrix A is extended as follows,

Ai j = a∗i j, ∀a∗i j , ∗. (9)

In case only one of two reciprocal links is known, i.e. a∗i j , ∗ and a∗ji = ∗, the probability distribution of the
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unknown link is given by

P
(
A ji = 0|a∗i j = 0

)
=

P
(
A ji = 0, A∗i j = 0

)
P

(
Ai j = 0

) =
1

1 + z jis
(out)
j s(in)

i

, (10)

P
(
A ji = 0|a∗i j = 1

)
=

P
(
A ji = 0, A∗i j = 1

)
P

(
Ai j = 1

) =
zi js

(out)
i s(in)

j

zi js
(out)
i s(in)

j + r2
i jzi jz jis

(out)
i s(in)

j s(out)
j s(in)

i

, (11)

P
(
A ji = 1|a∗i j = 0

)
=

P
(
A ji = 1, A∗i j = 0

)
P

(
Ai j = 0

) =
z jis

(out)
j s(in)

i

1 + z jis
(out)
j s(in)

i

, (12)

P
(
A ji = 1|a∗i j = 1

)
=

P
(
A ji = 1, A∗i j = 1

)
P

(
Ai j = 1

) =
r2

i jzi jz jis
(out)
i s(in)

j s(out)
j s(in)

i

zi js
(out)
i s(in)

j + r2
i jzi jz jis

(out)
i s(in)

j s(out)
j s(in)

i

. (13)

The unknown parameters z and r can be calibrated such that a desired number of links L→ and a desired
number of reciprocal links L↔ is met in expectation. The following three equations are used to calibrate the
three parameters for each pair of transposed blocks k, l = 1, . . . ,N,

E

 ∑
i∈Ck , j∈Cl

Ai j

 = L→kl , (directed links) (14)

E

 ∑
i∈Cl, j∈Ck

Ai j

 = L→lk , (directed links) (15)

and

E

 ∑
i∈Ck , j∈Cl

Ai jA ji

 = E

 ∑
i∈Cl, j∈Ck

Ai jA ji

 = L↔kl . (reciprocal links) (16)

There are many options to solve Eqs. (14) to (16), for example Matlab’s nonlinear least-squares solver. For
the blocks on the diagonal, i.e. for k = l (representing domestic interbank markets), Eq. (14) and Eq. (15)
are identical, hence there are only two equations to be solved. Once the two parameters are calibrated, sam-
pling adjacency matrices, i.e. unweighted directed graphs, is easy and fast through bivariate Bernoulli trials.

If the desired number of links and reciprocal links are set to feasible numbers there always exists a
solution, as the following theorem shows. Since the parameters z and r are independent for all pairs of
submatrices

(
A(kl), A(lk)

)
, it suffices to show the existence of a solution for one pair

(
A(kl), A(lk)

)
.

Theorem 3.1 (Existence of a solution for the extended fitness model)
Consider four vectors s(out,k), s(in,k) ∈ �

nk
>0, and s(out,l), s(in,l) ∈ �

nl
>0. Let the random matrices A(kl) ∈ {0, 1}nk×nl

and A(lk) ∈ {0, 1}nl×nk be defined by the probability function P as given by Eqs. (6) to (8). For any feasible
number of

(i) reciprocal links L↔kl ∈ [0, nknl),
(ii) and links L̃→kl := L→kl − L↔kl and L̃→lk := L→lk − L↔kl with

(
L̃→kl + L̃→lk

)
∈

(
0, nknl − L↔kl

)
,

there exist zkl, zlk, rkl ∈ �≥0, such that Eqs. (14) to (16) are fulfilled.

Proof of Theorem 3.1
For the proof see Appendix A.

The special case of L↔kl = nknl implies that L̃→kl = 0 and L̃→lk = 0, and hence, all links in the adjacency
matrices A(kl) and A(lk) are set to 1. In the special case of L→kl = 0, it follows that zkl = 0 and L↔kl = 0, and we
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simply have to find a zkl such that

L̃→lk =
∑

i∈Ck , j∈Cl

zkls
(out)
i s(in)

j

1 + zlk s(out)
j s(in)

i

, (17)

is satisfied. The existence of a solution to Eq. (17) follows from the intermediate value theorem. In the
special case of L→kl = nknl, it follows that L↔kl = L→lk . All links in A(kl) are set to 1 and for the random matrix
A(lk), we consider the simplified problem of identifying zlk, such that

L→lk =
∑

i∈Ck , j∈Cl

zkls
(out)
i s(in)

j

1 + zlk s(out)
j s(in)

i

, (18)

holds. Again, the existence of a solution to Eq. (18) follows from the intermediate value theorem.

To prove whether the solution of the extended fitness model is unique is non-trivial. However, we can
show that the solution is unique w.r.t. the expected in- and out-degree sequences and the expected number
of reciprocal links created by the solution.

Theorem 3.2 (Uniqueness of a solution for the extended fitness model)
A solution zkl, zlk, rkl of the extended fitness model, as described in Theorem 3.1, yields the following partic-
ular sequences of expected in- and out-degrees,

d(in,kl)
j =

∑
i∈Ck

P
(
A(kl)

i j = 1
)
, for all j ∈ Cl (19)

d(out,kl)
i =

∑
j∈Cl

P
(
A(kl)

i j = 1
)
, for all i ∈ Ck (20)

d(in,lk)
j =

∑
i∈Cl

P
(
A(lk)

i j = 1
)
, for all j ∈ Ck (21)

d(out,lk)
i =

∑
j∈Ck

P
(
A(lk)

i j = 1
)
, for all i ∈ Cl, (22)

as well as the expected number of reciprocal links L↔kl . The solution zkl, zlk, rkl is unique in the sense that it is
the only parameter combination which generates the specific expected values d(in,kl)

j , d(out,kl)
i , d(in,lk)

j , d(out,lk)
i ,

and L↔kl .

Proof of Theorem 3.2
For the proof see Appendix A.

3.3. Allocation of weights via an ERGM

In a second step, we allocate weights to an adjacency matrix, sampled from the fitness model discussed in
Section 3.2, through an exponential random graph model. The idea of ERGMs is to construct a probability
distribution over a set of possible graphs by distributing the probability mass as uniformly as possible,
while satisfying desired network statistics in expectation. For a detailed introduction to ERGMs and an
overview over different existing classes of ERGMs, i.e. differences in the set of considered graphs and the
constraints, see [42, 47, 28, 38, 32].

Let a ∈ {0, 1}n×n denote a realization of the random adjacency matrix A, as specified in the previous
section. We define a set of possible weighted graphs Ga consistent with a, as the set of all graphs that assign
weights in �0 to existing links of a and 0 weight to non-existing links of a:

Ga =

{
w ∈ �n×n

0 | wi j = 0,∀ai j = 0 and wi j ∈ �0,∀ai j = 1
}
. (23)

Remark 3.1
We could further restrict the set of considered graphs, as the maximum weight that a link can carry is given
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by the minimum of the corresponding row, column, and block weight, i.e.

G̃a =

{
w ∈ �n×n

0 | wi j = 0,∀ai j = 0 and wi j ∈
{
1, 2, . . . ,min

{
s(out)

i , s(in)
j , s(block)

i j

}}
,∀ai j = 1

}
. (24)

The analytical derivation of this model works analogously to the one consideringGa. However, the resulting
expected link weights take a slightly more complex form, which renders parameter estimation more difficult.
Since all expected weights, in the setting of Ga, lie in the interval

(
0,min

{
s(out)

i , s(in)
j , s(block)

i j

}]
, in this paper

we consider the simpler setting of Ga.

Remark 3.2 (Partial knowledge of certain weights)
Incorporating available information on the weight of certain links is straight forward. Let w∗ ∈ W :=(
{∗} ∪�0

)n×n, where w∗i j = ∗ denotes an unknown matrix element. In this case we simply consider the set
of graphs

Ga,w∗ =

{
w ∈ �n×n

0 | wi j = w∗i j,∀w∗i j , ∗ and wi j = 0,∀ai j = 0 and wi j ∈ �0,∀ai j = 1,w∗i j = ∗

}
. (25)

The analytical derivation of this model works analogously to the one considering Ga.

Further, let P := {p : Ga → (0, 1)} denote the set of all probability measures defined on Ga. The most
unbiased probability measure p ∈ P, is the one with the minimum Kullback–Leibler divergence w.r.t.
the uniform distribution, or equivalently with maximum Shannon entropy, and which fulfills the desired
row sums, column sums, and block weights in expectation. This translates to the following constrained
optimization problem,

max
p∈P
−

∑
w∈Ga

p(w) ln
(
p(w)

)
(26)

subject to

∑
w∈Ga

p(w)

 n∑
j=1

wi j

 = s(out)
i , ∀i = 1, . . . , n, (assets)

∑
w∈Ga

p(w)

 n∑
i=1

wi j

 = s(in)
j , ∀ j = 1, . . . , n, (liabilities)

∑
w∈Ga

p(w)

 ∑
i∈Ck , j∈Cl

wi j

 = s(block)
kl , ∀k, l = 1, . . . ,N, (block weights)∑

w∈Ga

p(w) = 1.

(27)

This optimization problem can be solved with the method of Lagrange multipliers, by following the
common steps in the context of ERGMs. The relevant calculations are summarized in the following. The
graph Hamiltonian H : Ga → � is given by

H (w) =

n∑
i, j=1

(
θ(out)

i + θ(in)
j + θ(block)

i j

)
wi j, (28)

where θ(out), θ(in) ∈ �n, and θ(block) ∈ �N×N denote the corresponding Lagrange multipliers. To simplify the
notation, let θ(block)

i j denote the Lagrange multiplier of the corresponding block. Next, we derive the partition
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function Z. For further clarity we abbreviate θi j :=
(
θ(out)

i + θ(in)
j + θ(block)

i j

)
. W.l.o.g. let a12 = 1

Z =
∑
w∈Ga

e−H(w) =
∑
w∈Ga

∏
i, j

exp
(
−θi jwi j

)
=

∑
w∈Ga

e−θ12w12
∏
i, j

(i j)<{(12)}

e−θi jwi j

=


∑

w∈Ga |w12=0

e−θ12w12
∏
i, j

(i j)<{(12)}

e−θi jwi j

 +


∑

w∈Ga |w12=1

e−θ12w12
∏
i, j

(i j)<{(12)}

e−θi jwi j

 + . . .

=

 ∞∑
w̃12=0

e−θ12w̃12




∑
w∈Ga |w12=w̃12

∏
i, j

(i j)<{(12)}

e−θi jwi j

︸                          ︷︷                          ︸
constant for all w̃12

(?)
=

∏
(i, j)|ai j=1

 ∞∑
wi j=0

e−θi jwi j

 =
∏

(i, j)|ai j=1

1
1 − e−θi j

, by the geometric series,

(29)

where the same algebraic steps are applied to all elements in (?) as we applied exemplary to the first element
w12. Note that

e−θi j < 1 (30)

has to hold for all (i, j) for which ai j = 1, since otherwise the value of the partition function Z is infinity,
which implies that p is not a solving probability measure.

From the general theory of ERGMs we known that taking partial derivatives of F := − ln (Z) w.r.t.
the Lagrange multipliers yields the expected value of the corresponding constraint, see for example [24].
Thus, we get the following

(
2n + N2

)
-dimensional system of equations, which can serve for calibrating the

Lagrange multipliers,

∂F

∂θ(out)
i

=
∑

j|ai j=1

exp
(
−θi j

)
1 − exp

(
−θi j

) = s(out)
i , ∀i = 1, . . . , n, (31)

∂F

∂θ(in)
j

=
∑

i|ai j=1

exp
(
−θi j

)
1 − exp

(
−θi j

) = s(in)
j , ∀ j = 1, . . . , n, (32)

∂F

∂θ(block)
kl

=
∑

i∈Ck , j∈Cl |ai j=1

exp
(
−θi j

)
1 − exp

(
−θi j

) = s(block)
kl , ∀k, l = 1, . . . ,N. (33)

Equivalently, taking the partial derivative F w.r.t. θi j yields the expected link weight, i.e.

E

[
wi j | ai j = 1

]
=

exp
(
−θi j

)
1 − exp

(
−θi j

) , ∀i, j = 1, . . . , n,

E

[
wi j | ai j = 0

]
= 0, ∀i, j = 1, . . . , n.

The question whether a solution for an ERGM exists is non-trivial and to the best of our knowledge still
constitutes an open problem in the wider realm of the theory of ERMGs. Regarding the empirical analysis
of the EU interbank market, conducted in Section 5, our algorithm for parameter estimation, see Section 4,
was always able to quickly find a solution with minimal error. From the general theory of ERMGs, we
know that if the set of solving distributions is non-empty, then all Lagrange parameters are unique up to
possible equivalence classes.

Theorem 3.3 (Uniqueness of a solution for the ERGM)
If the set of probability measures p ∈ P that satisfy all constraints of Eq. (27) is non-empty, then the
solving distribution function of the ERGM is unique up to certain equivalence classes. More precisely, the
sum θi j =

(
θ(out)

i + θ(in)
j + θ(block)

i j

)
is unique for all i, j = 1, . . . , n where ai j = 1. Any set θ(out), θ(in), θ(block)
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that matches the unique sums, defines the same solving probability measure and constitutes an equivalence
class.

Proof of Theorem 3.3
For the proof see Appendix A.

4. Model calibration

Calibrating the Lagrange multipliers of the ERGM presented in Section 3.3 is demanding, since the sys-
tem of equations is nonlinear, the number of parameters is (in most cases) very big, and because of the upper
bound constraints of certain sums of the Lagrange multipliers (see Eq. (30)). For example, the reconstruc-
tion of the EU interbank network, conducted in Section 5, comprises

(
2n + N2

)
=

(
2 · 3, 469 + 292

)
= 7, 779

Lagrange multipliers. To solve this problem, we make use of the structural characteristics of the expected
link weights and the system of equations.

We rewrite the problem in terms of x(out)
i := exp

(
−θ(out)

i

)
, x(in)

j := exp
(
−θ(in)

j

)
, and x(block)

i j :=

exp
(
−θ(block)

i j

)
, for all i, j = 1, . . . , n. From the previous section we know that the matrix of expected link

weights takes the following form, see Section 3.3, for a ∈ {0, 1}n×n a given adjacency matrix,

E [w | a] =

 x(out)
i x(in)

j x(block)
i j

1 − x(out)
i x(in)

j x(block)
i j

ai j


i, j=1,...,n

. (34)

The system of equations is essentially given by requiring the row sums, the column sums, and the block
weights of E [w | a] to equal the desired weights s(out), s(in), and s(block), respectively. Moreover, the
condition of Eq. (30) can be rewritten to x(out)

i x(in)
j x(block)

i j < 1 for all (i, j) with ai j = 1.

Next, we note that for given admissible parameters x(in) ∈ �n
>0 and x(block) ∈ �N×N

>0 , the equations of
the row sums simplify to n independent, univariate non-linear functions. In addition, these functions are
on the admissible support continuously differentiable and strictly monotonically increasing. Hence, this
subproblem can easily be tackled for example by the univariate Newton’s method. The same holds true
when considering only the subset of column (block) parameters and column (block) equations. Therefore,
we implement an iterative algorithm updating either the row, or the column, or the block parameters in
each iteration w.r.t. the row, column, or block equations, respectively.

More precisely, in each iteration we compute three sums of the absolute errors consisting of the row
constraints, the column constraints and the block constraints. The subset (row, column or block) with
the highest error is selected for updating the respective subset of parameters by one step of the Newton’s
method. The Newton’s method is scaled by a global stepsize parameter, that helps to control the impact
on the disregarded equations, and that can be decreased as the algorithm moves towards a minimum. To
ensure that the bounds of Eq. (30) are satisfied, we adjust a parameter update that would violate the lower
(resp. upper) bound, by setting the concerned parameter to smallest (resp. largest) admissible value. The
algorithm terminates, once an acceptable remaining error is reached.

As can be seen from Eq. (34), big desired weights s(out), s(in), and s(block), and thus big expected link
weights, mean that the product of the parameters x(out)

i x(in)
j x(block)

i j gets pushed closer to 1. Hence, the
bigger the desired weights s(out), s(in), and s(block), the more difficult the parameter calibration. Therefore,
we consider the relative weights instead, i.e. all row, column, and block weights are divided by the total
weight. Furthermore, as starting parameters we choose x = s/(1 + s) which in our experiments works well,
but any other starting values can be used likewise.

The pseudo-code of the algorithm is presented in Algorithm 1. Regarding the reconstruction of the EU
interbank market, conducted in Section 5, the proposed algorithm is reasonably fast, compare Table 2.
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Function calibrate_ERGM(function: expectedWeights, vector: s(out), vector: s(in), matrix: s(block),
matrix: a)

for i← 1 to n // set starting parameters

do
x(out)

i ← s(out)
i /

(
s(out)

i + 1
)

x(in)
i ← s(in)

i /
(
s(in)

i + 1
)

end
for k ← 1 to N do

for l← 1 to N do
x(block)

kl ← s(block)
kl /

(
max

{
s(block)

})
end

end
w← expectedWeights(x(out), x(in), x(block)) // compute expected link weights

errorRows←
(∑
| rowSums(w) − s(out) |

)
/
(∑

s(out)
)

// get errors

errorColumns←
(∑
| colSums(w) − s(in) |

)
/
(∑

s(in)
)

errorBlocks←
(∑
| blockSums(w) − s(block) |

)
/
(∑

s(block)
)

error ← max {errorRows, errorColumns, errorBlocks} // choose subset with highest error

errorAccept ← 1% // set acceptable error threshold

count ← 0 // initialize parameters

errorVec← [errorRows, errorColumns, errorBlocks]
stepsize← 0.1
stepAd j← 100



4. Model calibration 13

while error > errorAccept and count < 106 do
switch max {errorRows, errorColumns, errorBlocks} do

case errorRows // update all x(out)
i

for i← 1 to n do

primeRowSumi ←
∂

∂x(out)
i

(∑n
j=1

x(out)
i x(in)

j x(block)
i j

1−x(out)
i x(in)

j x(block)
i j

1{ai j=1} − s(out)
i

)
x(out)

i ← x(out)
i − stepsize ·

(
rowSums(w)i − s(out)

i

)
/primeRowSumi

if x(out)
i > admissible support then
x(out)

i ← max
{
admissible support

}
end
else if x(out)

i < admissible support then
x(out)

i ← min
{
admissible support

}
end

end
end
case errorColumns // update all x(in)

i

analogously
end
case errorBlocks // update all x(block)

i

analogously
end

end

w← expectedWeights(x(out), x(in), x(block)) // compute expected link weights

errorRows←
(∑
| rowSums(w) − s(out) |

)
/
(∑

s(out)
)

// get errors

errorColumns←
(∑
| colSums(w) − s(in) |

)
/
(∑

s(in)
)

errorBlocks←
(∑
| blockSums(w) − s(block) |

)
/
(∑

s(block)
)

error ← max {errorRows, errorColumns, errorBlocks} // choose subset with highest

error

errorVec← [errorVec, [errorRows, errorColumns, errorBlocks]]
count ← count + 1

if length(errorVec) > stepAd j // adjust stepsize parameter

then
if mean(errorVec(end-stepAdj:end-stepAdj/2)) − mean(errorVec(end-stepAdj/2:end)) ≤ 1e − 4
then

stepsize← stepsize/1.2
errorVec← min {errorVec}
x(in) ← best(x(in)) // restart at best solution found so far

x(out) ← best(x(out))
x(block) ← best(x(block))

end
end

end

return (x(out), x(in), x(block))

Algorithm 1: Parameter calibration of the ERGM discussed in Section 3.3.
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5. Empirical case study: Reconstructing the EU interbank network

In this section, we demonstrate how our model performs in reconstructing the EU interbank market.
First, we discuss how the input variables can be estimated from publicly available data, and subsequently
we present the simulation results. The simulated networks allow a detailed assessment of systemic risk, to
which we make a first step in Section 6.

5.1. Data
The network characteristics that can be chosen in our model, compare Section 3, are
(i) interbank assets s(out)

i and liabilities s(in)
i for each bank i in the network;

(ii) the network density of each block, i.e. the number of links L→ ∈ �N×N ;
(iii) the reciprocity of each block, i.e. the number of reciprocal links L↔ ∈ �N×N symmetric;
(iv) and the weight s(block)

kl of each block, k, l = 1, . . . ,N.

Even though the aggregated data of (ii) - (iv) do not reveal any individual bilateral lending information,
these statistics are not explicitly available. Therefore, we show how this data can be approximated based
on publicly available information. Total interbank assets and liabilities, on the other hand, are published
in the banks’ balance sheet. We obtain this data from the Bankscope (now Orbis Bank Focus) database of
Bureau Van Dijk.

Roukny et al. [45] and Bargigli et al. [8] are granted access to real data from the German and Italian
central bank and provide a detailed empirical analysis of the respective interbank markets. To the best of
our knowledge, their works constitute the most extensive descriptions on the topology of financial networks
of EU member states. Without further publicly available information, we propose to approximate the
network densities within countries based on the information of the German and Italian interbank market.
More precisely, for a country with |C j| banks we suggest a density equal to the average density found in
the subgraphs of the German and Italian interbank market, consisting of the |C j| banks with the highest
degree. This idea is motivated by the assumption that the difference in the number of banks in a country is
mainly due to the number of small and local banks, while the need for a well connected core of big banks is
universal. Hence, we assume that at least the density of the core of the interbank network is similar across
countries. In case more information on interbank markets becomes available, the chosen density can easily
be adjusted.

The density of the German and Italian interbank market, reduced to a number of best connected banks, can
be derived via our earlier work [24] on the reconstruction of the unweighted German and Italian interbank
market. Fig. 2 presents the average densities over 100 simulated German and Italian interbank networks,
reduced to subgraphs of banks with the highest degree. Since the degree of a bank highly correlates with its
weight, the subgraphs can also be interpreted to contain the biggest banks.

Figure 2: Average density over subgraphs of 100 German and 100 Italian simulated interbank networks, as well as the average over
both countries. The size of the subgraphs is indicated on the x-Axis, and the selection is based on the (descending) degree of the banks.
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To every country we assign a network density according to its number of banks and the average density
over the German and Italian interbank networks, as presented by the dashed line in Fig. 2. A summary
over all EU countries, their number of banks and allocated densities, is given in Table 1. The densities
range from 93% for Malta, a country with only 5 banks, to 1% for Germany, a country with 1415 banks. It
seems reasonable that countries comprising only a small number of banks are very well connected, while
interbank networks of countries containing a large number of banks are rather sparse.

Table 1: Estimated network density for each country (data from 2016).

Country AT BE BG CY CZ DE DK EE ES FI FR GR HR HU

number of banks 527 33 14 22 19 1415 45 4 98 13 247 5 23 12
density 3% 65% 85% 77% 80% 1% 53% 93% 26% 86% 8% 93% 75% 87%

Country IE IT LT LU LV MT NL PL PT RO SE SI SK UK

number of banks 16 518 6 42 13 5 18 25 108 20 65 12 14 129
density 83% 3% 92% 56% 86% 93% 81% 73% 23% 79% 39% 87% 85% 19%

Next, we discuss the input factor of the block reciprocity. Degree reciprocity ρr is defined as the cor-
relation coefficient between the symmetric entries of the adjacency matrix A of a directed graph, i.e. the
tendency of nodes to form mutual links,

ρr :=

∑
i, j

(
ai j − ā

) (
a ji − ā

)
∑

i, j

(
ai j − ā

)2 , (35)

where ā denotes the network density. The ‘neutral’ case ρr = 0 indicates that the network has exactly as
many reciprocal links as expected in a random graph with the same number of vertices and links. Moreover,
ρr > 0 (resp. ρr < 0 ) signifies that there are more (resp. less) reciprocal links than expected by chance. For
a detailed discussion on reciprocity see Garlaschelli and Loffredo [27]. Roukny et al. [45] and Bargigli et
al. [8] report a reciprocity of 0.31 for the German and 0.45 for the Italian interbank market. Without any
further information on the reciprocity of other interbank markets, we decided to set the reciprocity of all
blocks to the average of the two available values, i.e. to 0.38.

The estimation of the block weights is non-trivial, since there is no complete and consistent data set on
cross border exposures publicly available. In an attempt to fill this gap and “thus contributing to market dis-
cipline and financial stability in the EU”5 the European Banking Authority (EBA) conducts a transparency
exercise since 2013. As part of this exercise, the EBA discloses interbank credit exposure of 131 (in 2016)
European banks disaggregated on country level. We propose to use this data set to construct a prior distri-
bution of credit exposure aggregated on country level. Subsequently, we derive the distribution of the block
weights which is as close as possible to the prior distribution, i.e. the EBA data, while fulfilling the given
marginals of total interbank assets and liabilities for each country, as given by the Bankscope database. As
a distance function the Kullback–Leibler divergence can be used, which means we have to solve a simple
maximum entropy problem. Furthermore, for the derivation of the block weights, we differentiate between
cross-border active banks and domestic banks. As an approximation, we consider those banks as cross-
border active which are marked as significant by the ECB6 or which are classified as global systemically
important banks (G-SIBs)7. The derivation of this distribution of the block weights is explained step by
step in the following.

(1) For those countries for which the EBA data set includes at least one bank with a detailed country level
distribution of its interbank credit exposures, we derive the relative distribution of credit exposure,
aggregated over all listed banks in a country. The relative distribution is split to all EU countries, the
rest of the world, and unallocated, which denotes the difference between total credit exposure and the
sum over all listed country exposures.

5See https://www.eba.europa.eu/-/eba-transparency-exercise.
6See https://www.bankingsupervision.europa.eu/banking/list/criteria/html/index.en.html
7See http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/

global-systemically-important-financial-institutions-g-sifis/

https://www.eba.europa.eu/-/eba-transparency-exercise
https://www.bankingsupervision.europa.eu/banking/list/criteria/html/index.en.html
http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/global-systemically-important-financial-institutions-g-sifis/
http://www.fsb.org/what-we-do/policy-development/systematically-important-financial-institutions-sifis/global-systemically-important-financial-institutions-g-sifis/
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(2) Countries for which we have a relative exposure distribution from the EBA and which comprise cross-
border active banks: We derive block weights by distributing interbank assets of cross-border active
banks according to the relative distribution from the EBA data set, and adding interbank assets of the
domestic banks to the home country. For 2016 these countries are: AT, BE, CY, DE, ES, FI, FR, GR,
IE, IT, LU, LV, MT, NL, PT, SE, SI, UK.

(3) Countries for which we have a relative exposure distribution from the EBA but are missing information
on which banks are cross-border active: We approximate the relative amount of interbank assets of
cross-border active banks by the mean over all countries with EBA and cross-border active information.
This amount is then distributed according to the EBA data, while the corresponding amount of interbank
assets of domestic banks is allocated to the home country. For 2016 these countries are: BG, DK, HU.

(4) Countries for which the cross-border active banks are known, but data of the EBA is missing: We
approximate the amount of interbank assets of cross-border active banks that is allocated within the
home country by the mean over all other domestic distributions of cross-border active banks that are
allocated so far. The amount of interbank assets of domestic banks is also allocated to the home country.
For 2016 these countries are: CZ, EE, LT, SK.

(5) Countries that are not comprised in the EBA data set and for which information on cross-border active
banks is missing: A home bias is added by allocating the mean over all assigned home biases multiplied
by total interbank assets of the respective countries. For 2016 these countries are: HR, PL, RO.

(6) Next, we compute how much of the countries interbank assets and liabilities, as given by Bankscope,
are still unallocated. For countries for which we have already allocated a higher amount than available
according to Bankscope, the value of the unallocated amount is set to zero.

(7) To distribute the unallocated interbank assets to the EU and to the rest of the world in a reasonable
way, we allocate an amount of the sum of unallocated interbank assets to the rest of the world, that is
proportional to the amount of weight that has been allocated to the rest of the world so far.

(8) The amount of interbank assets which is now still unallocated is spread over all EU blocks according
to the unallocated marginals.

(9) In a last step we solve the optimization problem of minimizing the Kullback–Leibler divergence to the
thus constructed prior distribution of block weights, subject to the marginal country constraints as given
by Bankscope, i.e. total interbank assets and liabilities of each country have to be fulfilled.

The resulting distribution is presented in Fig. 3. For most countries, we can identify a clear home
bias, visualized by the dark blue colors on the (anti-) diagonal. Furthermore, some countries allocate a
substantial amount of their interbank assets to France, the rest of the world, Italy, Spain, UK, and Germany.
Regarding interbank liabilities, a substantial amount comes from countries outside of the EU, as well as
France and Italy.

Figure 3: Distribution of interbank assets and liabilities, based on the EBA transparency exercise of 2016. The plot on the left shows
how each country distributes its interbank assets, i.e. each row sums up to one. The plot on the right shows where the interbank
liabilities of each country come from, i.e. each column sums up to one. ‘RoW’ denotes the ‘Rest of the World’.

The last input factor that we need to discuss is the density of cross-border blocks. Since at this point, we
have already derived the density of each country and the block weights, we can compute the average weight



5. Empirical case study: Reconstructing the EU interbank network 17

per link within each country. Without further information on cross-border interbank markets, we propose
to take the minimum weight per link of two countries as a proxy for the weight per link of the cross-border
block between both countries. This means the number of links in the cross-border matrix of countries k and
l is approximated by

L→kl =

min

 s(block)
kk

L→kk
,

s(block)
ll

L→ll


−1

· s(block)
kl . (36)

This section illustrated one approach to estimate the model input factors based on scarce publicly avail-
able information. Moreover, these factors only serve for calibration and do not impact the methodological
part of the model. Also, in case further aggregated data on financial networks, such as the density, degree
distribution, block weights, or reciprocity become available in the future, our model can easily incorporate
this information. Actually, policy-makers might already have access to some additional, not publicly
available data, that they can use to calibrate the model more accurately.

5.2. Simulation results

The model derived in Section 4 together with the data discussed in Section 5.1 allows us to reconstruct
the EU interbank network. In the following, the results are presented.

The case study is based on data of 2016, for which Bankscope lists 3,468 unconsolidated EU banks
with positive interbank assets and liabilities. Adding a Rest-of-the-World node leads to a network of 3,469
nodes and 29 regions (28 EU countries + Rest-of-the-World), i.e. 292 = 841 blocks. There are two sources
of errors that should be differentiated. First, an adjacency matrix might be drawn that has no links in some
rows, columns, and blocks, and hence no weight can be allocated. Second, the weight allocation found by
Algorithm 1 yields a remaining error. Table 2 summarizes the runtime and the error of both parts of the
model. The relative error of the row sums (column sums/ block weights) refers to the sum of absolute errors
over all rows (columns/ blocks) divided by the sum of all row (column/ block) weights.

Table 2: Runtime and error of the Fitness model and the ERGM, w.r.t. 100 simulated interbank networks (including the Rest-of-the-
World node) and with an acceptable error threshold of 1% in Algorithm 1.

Fitness Model ERGM
adjacency matrix weight allocation

mean std mean std

runtime 36 seconds NA 2.5 min/ network NA
relative error row sums 3.86e-04 3.40e-05 9.81e-03 1.42e-04
relative error column sums 3.22e-04 3.05e-05 9.83e-03 1.34e-04
relative error block weights 1.00e-02 1.40e-05 9.85e-03 1.10e-04

To gain some insight into the topology of the simulated networks, Table 3 reports the most prominent
network statistics. Unfortunately, we do not have access to data on the actual EU interbank market and
hence, cannot conduct a detailed assessment of the goodness-of-fit. However, our model seems to success-
fully reproduce some commonly reported characteristics of financial networks, such as sparsity, a positive
reciprocity, disassortativity, and short paths.
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Table 3: Mean, standard deviation, and 95% confidence interval of different network statistics, w.r.t. 100 simulated networks (exclud-
ing the Rest-of-the-World node).

mean std 95% confidence interval

total number of links 69,451 223 [69,408; 69,495]

number of reciprocal links 26,995 163 [26,964; 27,027 ]

in-degree assortativity -0.23 0.0026 [-0.23; -0.23]
out-degree assortativity -0.19 0.0017 [-0.19; -0.19]

directed clustering coefficient 0.66 0.0036 [0.66; 0.66]
undirected clustering coefficient 0.72 0.0032 [0.72; 0.72]

shortest directed path 2.92 0.0079 [2.92; 2.92]
shortest undirected path 2.95 0.0092 [2.94; 2.95]

number of isolated nodes 81 8 [80; 83]

largest strongly connected component 2,828 17 [2,824; 2,831]
largest weakly connected component 3,387 8 [3,385; 3,388]

Since the simulated networks serve as basis for an assessment of systemic risk, the network similarity
within the drawn sample is also of interest. If the location of the links and their weight does not change much
across the sample, systemic risk results will be very stable as well. With increasing variation in the sampled
networks, however, we expect an increasing variance and uncertainty in the quantification of systemic risk.
Therefore, we now analyze the similarity of the sampled adjacency matrices and the allocated weights. The
similarity between two realizations a and ã of the link probability matrix A ∼ Bin

(
1, (pi j, p ji)

)n×n
can be

derived analytically. The expected number of links that exist in both adjacency matrices is given by

E

∑
i, j

1{ai j=1∧ãi j=1}


= E

[∑
i< j

1{ai j=1∧a ji=0∧ãi j=1∧ã ji=0} + 1{ai j=1∧a ji=0∧ãi j=1∧ã ji=1}

+ 1{ai j=0∧a ji=1∧ãi j=0∧ã ji=1} + 1{ai j=0∧a ji=1∧ãi j=1∧ã ji=1}

+ 21{ai j=1∧ãi j=1∧a ji=1∧ã ji=1} + 1{ai j=1∧ãi j=1∧a ji=1∧ã ji=0} + 1{ai j=1∧ãi j=1∧a ji=0∧ã ji=1}

]
=

∑
i< j

P

(
ai j = 1 ∧ a ji = 0 ∧ ãi j = 1 ∧ ã ji = 0

)
+ . . . + 2P

(
ai j = 1 ∧ ãi j = 1 ∧ a ji = 1 ∧ ã ji = 1

)
=

∑
i< j

p(1,0)
i j

(
p(1,0)

i j + p(1,1)
i j

)
+ p(0,1)

i j

(
p(0,1)

i j + p(1,1)
i j

)
+ p(1,1)

i j

(
2p(1,1)

i j + p(1,0)
i j + p(0,1)

i j

)
.

(37)

The expected numbers of links that differs and that is absent in a and ã can be computed analogously.
Table 4 summarizes the expected similarity and dissimilarity between two sampled adjacency matrices of
the reconstructed EU interbank market. In expectation, almost half of the sampled links in the network will
be identical in both realizations, and half of the sampled links will change location. Regarding the sampled
zeros in the adjacency matrices, i.e. non-existing links, on average 99.7% of the zeros will be identical in
two realizations.

Table 4: Expected similarities and dissimilarities in the sampled adjacency matrices modeling the EU interbank market (excluding
the Rest-of-the-World node) if two independent simulation runs are drawn.

fraction of existing links fraction of existing links fraction of absent links
that is identical in two runs that differs in two runs that is identical in two runs

E

[∑
i, j 1{ai j=1∧ãi j=1}

]
E[∑i, j ai j] = 48.81%

E

[∑
i, j 1{ai j=1∧ãi j=0}

]
E[∑i, j ai j] = 51.19%

E

[∑
i, j 1{ai j=0∧ãi j=0}

]
E[∑i, j 1−ai j] = 99.70%

Next, we analyze the similarity between the allocated weights. Since the parameters of the ERGM are



6. Assessing systemic risk in the EU interbank market 19

recalibrated for every realization of the adjacency matrix, the similarity between the weights cannot be
derived analytically. Therefore, we compute two empirical similarity measures: the relative difference
and the cosine similarity. Let w and w̃ denote two realizations of the EU interbank market. The relative
difference between w and w̃ is given by ∑

i j|wi j − w̃i j|∑
i j wi j +

∑
i j w̃i j

.

Comparing all 100 simulated networks pairwise yields an average relative difference of 0.18 and a standard
deviation of 0.002. The cosine similarity is defined as∑

i, j wi jw̃i j√∑
i, j w2

i j

√∑
i, j w̃2

i j

. (38)

Interpreting both networks as n2-dimensional vectors, the cosine similarity gives the cosine of the angle
between the two vectors. Since all weights are non-negative, the cosine similarity is bounded by [0, 1]
with 1 (resp. 0) signifying the strongest (resp. least) possible similarity. Comparing the sampled networks
pairwise, gives an average cosine similarity of 0.98 and a standard deviation of 0.002.

The high cosine similarity together with the high number of changing links and a substantial difference
in weight allocation, suggest that links with high weights, connecting big banks, stay quite constant over
the set of sampled networks, while links with small weights, involving at least one small bank, vary notably
(in existence and weight). This assumption can be verified by plotting the elements of sampled network
matrices against each other, see Fig. 4.

Figure 4: Scatterplot of link weights wi j and w̃i j, comparing 10 simulated networks pairwise (i.e. network 1 vs. network 2, network 2
vs. network 3, ..., network 9 vs. network 10). Links that do not exist in neither of the two respectively considered networks are omitted.
The figure on the right is in log-log scale.

6. Assessing systemic risk in the EU interbank market

Our network reconstruction model enables the application of various contagion mechanisms and
systemic risk measures to realistic, international financial networks. To demonstrate this, we conduct
a systemic risk analysis on a sample of reconstructed EU interbank networks. The following results
are computed by the ‘FINEXUS Leverage Network Framework for Stress-testing’ software of Gabriele
Visentin, Marco D’Errico, and Stefano Battiston [9, 52], which integrates five of the most popular financial
contagion models, namely: the ‘clearing vector’ by Eisenberg and Noe (EN) [22], the ‘extended clearing
vector’ incorporating default costs by Rogers and Veraart (RV) [43], the ‘default cascades model’ (DC)
by Battiston et al. [10], the ‘acyclic DebtRank’ (aDR) by Battiston et al. [11], and the ‘cyclic DebtRank’
(cDR) by Battiston et al. [7].
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Furthermore, following [9, 52] we differentiate between two risk dimensions. First, there is the risk that a
bank under stress triggers waves of contagious losses throughout the entire system. Second, there is the risk
that a bank is vulnerable to other banks in the network being under stress. More precisely, we distinguish:

• Global Vulnerability = relative loss in equity that a shock scenario causes to the entire system;

• Individual Vulnerability = relative loss in equity that a bank suffers from a shock scenario.

To keep individual vulnerability comparable across banks, in the following we consider instead the absolute
loss in equity suffered by each bank.

There are many interesting questions regarding systemic risk that can now be analyzed. Here, we focus
on the following four aspects. First, we give a general overview over the network fragility for various
shock sizes and according to the different contagion models, see Section 6.1. Subsequently, Section 6.2
describes the correlation of node characteristics and systemic risk. In Section 6.3 we compare the official
list of G-SIBs in the EU, provided by the Basel Committee on Banking Supervision, with our results. Last,
in Section 6.4, we analyze the question how network density, an indicator of diversification in interbank
lending, affects financial stability and compare our findings with the literature.

Throughout this section, a recovery rate of 40% is used for all banks.8 The contagion model of Rogers
and Veraart (RV) additionally considers a recovery rate for external assets, which is fixed to 50%, the
default value of the ‘FINEXUS Leverage Network Framework for Stress-testing’ software. Moreover,
‘first Round’ effects refer to initial losses, caused solely by external shocks on the banks, disregarding
propagation. ‘Second Round’ effects, computed by the different contagion models, report additional losses
due to contagion, excluding first round losses.

6.1. Systemic risk for different shock sizes
We start the assessment of systemic risk by shocking all banks equally with various shock sizes and by

propagating the shocks according to five different contagion models. Figures 5 and 6 present the resulting
loss in equity and the fraction of defaulted banks. Comparing our results to those of Visentin et al. [52],
who analyze systemic risk in reconstructed networks of the 50 largest banks in the EU, we find that our
networks are more stable, but the structure of the curves is very similar. Interestingly however, we observe
a slightly different partial ordering for the global vulnerability H:

HEN ≤ HRV ≤ HDC ≤ HaDR ≤ HcDR. (39)

In all simulations analyzed by Visentin et al. [52], the authors find the following partial ordering:

HEN ≤ HDC ≤ HRV ≤ HaDR ≤ HcDR. (40)

Whether the DC or the RV model yields higher global losses depends on the shock size and on the
recovery rates. In both the DC and the RV model banks spread losses only in case of their default. Within
the DC model, a defaulted bank triggers distress to its interbank creditors proportionally to the nominal
liabilities times one minus the recovery rate, as soon as the losses suffered reach the bank’s equity. In the
RV model, in contrast, only the amount of a bank’s obligations (external plus interbank liabilities) that
exceeds its assets (external plus interbank assets) is spread proportionally to all creditors (external plus
interbank creditors) times one minus the recovery rate. Hence, if a bank suffers a shock equal to the size
of its equity, in the DC model it will propagate the maximum loss that it can spread, while in the RV
model, it will simply absorb this shock and no propagation takes place. Moreover, in the RV model part of
the distress flows out of the interbank network, since losses are also propagated to external creditors (via
external liabilities). However, in the RV model a bank can suffer shocks higher than its equity. Therefore,
with increasing shock sizes the losses spreading through the RV model will increase. The DC model, on
the other hand, saturates at shock levels equal to the size of the banks’ equity. Another important parameter
that determines losses in the RV model is the recovery rate on external assets (which is set to 50% in all
considered examples).9

8See, for example, www.cdsmodel.com and [3].
9For more details on the contagion models see e.g. Visentin et al. [52] and references therein.

www.cdsmodel.com


6. Assessing systemic risk in the EU interbank market 21

Figure 5: Global vulnerability caused by shocking all banks equally with various shock sizes and for different contagion models.
Reported values are averages over 100 simulated networks (excluding the Rest-of-the-World node).

Figure 6: Fraction of defaulted banks caused by shocking all banks equally with various shock sizes and for different contagion
models. Reported values are averages over 100 simulated networks (excluding the Rest-of-the-World node).

6.2. Correlation of node characteristics and systemic risk
In this paragraph we investigate:

1) Which network statistics make a node systemically important, in the sense that its default causes a severe
shock on the entire banking network?

2) Which network statistics make a node vulnerable towards the default of other banks in the system?

We analyze both questions empirically in our set of reconstructed EU interbank networks, by letting one
bank default at a time and computing the impact on the entire system as well as towards each of the other
banks individually. As network statistics we consider the nodes’ degree and strength and their centrality
w.r.t. the (un-) directed and (un-) weighted network. In the framework of DC, aDR, and cDR a bank
defaults as soon as the loss suffered reaches the value of its equity. At this point the defaulted bank triggers
the maximum loss spread that it can cause (which equals the sum of its outstanding interbank liabilities
multiplied by one minus its recovery rate). Even if the loss suffered exceeds the bank’s equity level, the
triggered loss spread does not increase further. Therefore, in the following, we initiate a bank’s default by
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a shock on its external assets in the size of its equity. However, the EN and RV model assume that losses
up to the size of a bank’s equity can be absorbed by the bank and only losses exceeding the equity level are
spread to the system. Hence, shocking a single bank by a loss equal to the size of its equity causes only
the respective bank to default and no further losses occur. So, in this setting, global vulnerability in the EN
and RV model equals simply the relative value of the defaulted bank’s equity w.r.t. the total equity in the
network. Analogously, individual vulnerability (i.e. losses suffered by a bank upon the default of another
bank) equals zero in the EN and RV model.

Table 5 reports the rank correlation, measured by Kendall’s tau, between different network statistics of
the nodes and the relative loss in equity on the entire system caused by the nodes’ default. Since shocks
propagate backwards, from a node to its creditors, we can observe a high correlation between a node’s
number of incoming links as well as the weight carried by these links and global vulnerability. Regarding
the centrality measures, interestingly closeness centrality seems to be the most relevant. Closeness centrality
is defined as the inverse of the average distance from a node to the other nodes in the network. Hence, the
shorter the paths between a bank and the other banks in the network, the higher its systemic impact, which
is exactly what one would expect.

The correlation of nodes characteristics and individual vulnerability is presented in Table 6. Overall, we
observe a high positive correlation between the number of outgoing links as well as their carried weight
and individual vulnerability. Again, in most cases, closeness centrality turns out to be the most relevant
centrality measure.

Table 5: Kendall’s tau for different node characteristics and global vulnerability caused by the default of the respective node. Values
of the EN and RV model essentially report the correlation with the banks’ equity, since in the considered shock setting no propagation
is triggered. All values are statistically highly significant with p-values smaller than 1e-200.

EN RV DC aDR cDR

in-degree 0.57 0.57 0.65 0.63 0.68

in-strength 0.61 0.61 0.72 0.84 0.79

closeness undirected unweighted 0.61 0.61 0.67 0.72 0.62
in-closeness unweighted 0.58 0.58 0.67 0.75 0.72
closeness undirected weighted 0.67 0.67 0.75 0.79 0.68
in-closeness weighted 0.58 0.58 0.69 0.85 0.77

betweenness undirected unweighted 0.56 0.56 0.59 0.52 0.51
betweenness directed unweighted 0.55 0.55 0.58 0.53 0.54
betweenness undirected weighted 0.52 0.52 0.51 0.50 0.50
betweenness directed weighted 0.48 0.48 0.54 0.54 0.49

eigenvector centrality undirected unweighted 0.60 0.60 0.65 0.69 0.55
eigenvector centrality undirected weighted 0.45 0.45 0.51 0.61 0.45
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Table 6: Kendall’s tau for different node characteristics and individual vulnerability suffered by the respective node and caused by
the default of other nodes. Values for the EN and RV model are not available, since in the considered shock setting no propagation is
triggered. All values are statistically highly significant with p-values smaller than 1e-14.

EN RV DC aDR cDR

out-degree NA NA 0.68 0.63 0.57

out-strength NA NA 0.95 0.89 0.82

closeness undirected unweighted NA NA 0.55 0.58 0.60
out-closeness unweighted NA NA 0.72 0.74 0.76
closeness undirected weighted NA NA 0.62 0.65 0.65
out-closeness weighted NA NA 0.85 0.83 0.78

betweenness undirected unweighted NA NA 0.59 0.56 0.53
betweenness directed unweighted NA NA 0.61 0.58 0.55
betweenness undirected weighted NA NA 0.50 0.51 0.51
betweenness directed weighted NA NA 0.55 0.55 0.55

eigenvector centrality undirected unweighted NA NA 0.46 0.49 0.49
eigenvector centrality undirected weighted NA NA 0.34 0.38 0.40

6.3. Global Systemically Important Banks (G-SIBs)

One methodology for identifying global systemically important banks (G-SIBs) was proposed by the
Basel Committee on Banking Supervision (BCBS). It is essentially a weighted sum over a number of
normalized financial positions. The BCBS states: “The Committee is of the view that global systemic
importance should be measured in terms of the impact that a bank’s failure can have on the global financial
system and wider economy, rather than the risk that a failure could occur. This can be thought of as a
global, system-wide, loss-given-default (LGD) concept rather than a probability of default (PD) concept.",
(see https://www.bis.org/publ/bcbs255.pdf).

As our model allows to directly simulate the failure of a single bank and, hence, to compute the LGD
in the interbank market, naturally the question arises whether the ranking in terms of global vulnerability
is aligned to the one derived by the BCBS methodology. Differences in the two approaches that should be
kept in mind are listed in Table 7.

Table 7: Differences in the assessment of G-SIBs.

BCBS
Model presented in
Sections 3 to 5

coverage worldwide EU
aggregation level of banks consolidated unconsolidated
LGD w.r.t. global economy interbank market

Figure 7 compares the scores of the BCBS against global vulnerability caused by the single default of
each bank. The default of a bank is again initiated by a shock on external assets in the size of the bank’s
equity. Hence, in the EN and RV model global vulnerability equals the relative value of the bank’s equity
w.r.t. the total equity in the network. We observe that the ranking of the banks differs substantially across
the contagion models. A low but significant rank correlation between the BCBS methodology and global
vulnerability can only be identified for the EN and the RV model, see Table 8. Thus, the BCBS ranking is
more aligned with the equity of the banks, than with the systemic risk computed by the DC, aDR, and cDR
in our reconstructed EU interbank networks.

https://www.bis.org/publ/bcbs255.pdf
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Figure 7: Comparison of G-SIBs in the EU as classified by the BCBS’ methodology (scores on the x-axis in log scale) and global
vulnerability (on the y-axis). The secondary y-axis (right) refers to global vulnerability computed by the cDR. Global vulnerability
values are averages over 100 simulated networks (excluding the Rest-of-the-World node). Note that the y-axis denotes the relative loss
in equity while the scale of the x-axis is difficult to interpret.

Table 8: Kendall’s tau of the ranking of the G-SIBs in the EU between the BCBS’ classification and global vulnerability. Significance
at the level of 5% is marked by ‘*’.

EN, RV DC aDR cDR

Kendall’s tau 0.46∗ 0.41 0.38 0.28
p-value 0.03 0.06 0.08 0.20

In addition to the computation of a LGD, our model also allows for a detailed analysis of the conse-
quences of one of the G-SIBs being under stress. For example, we can simulate a shock of arbitrary size
to a G-SIBs and compute the resulting network-wide loss. Figure 8 illustrates these shock scenarios exem-
plary for the Deutsche Bank AG and w.r.t. all five contagion models.10 The point on the x-axis at which a
function turns into a constant marks the shock size at which the bank defaults, i.e. the point at which the
absolute value of the shock equals the bank’s equity. In the DC, aDR, and cDR this triggers the maximum
loss spread that a bank can propagate (which equals the total amount of its outstanding interbank liabilities
adjusted by the recovery rate). We observe that the amount of total losses depends heavily on the chosen
contagion model.

10Equivalent plots for the other G-SIBs in the EU are included in Fig. 10.
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Figure 8: Global vulnerability (left) and number of defaults (right) caused by shocking the Deutsche Bank AG with shock sizes
ranging from 1% to 10% of external assets, computed by the contagion models: EN, RV, DC, aDR, and cDR. Reported values are
averages over 100 simulated networks (excluding the Rest-of-the-World node).

In summary, our model enables a detailed systemic risk analysis. The BCBS’s methodology, on the other
hand, allows for a fast calculation and incorporates indicators covering the global economy. Table 9 gives
an overview over advantages and disadvantages of both methodologies.

Table 9: Advantages and disadvantages of the BCBS’s methodology and our model

BCBS methodology Model presented in Sections 3 to 5

Advantages

• fast calculation • resulting score has a monetary interpretation
• covers the global economy • analysis of arbitrary shock sizes (< default) is possible

• analysis of simultaneously shocking several banks is possible
• distribution of shock impact can be estimated
• new regulations can be tested
• impact of network statistics on systemic risk can be analyzed

Disadvantages

• scale of scores • some input parameters are not known explicitly,
has no interpretation i.e. need to be estimated

• data availability limits the scope of the model,
i.e. determines which countries can be included

• systemic risk values are not deterministic across different simulated networks,
but seem to have a very low standard deviation

• covers only the EU interbank market

6.4. Network density and stability

Another question is how the network density, an indicator of diversification in interbank lending,
influences financial stability. This aspect has already been analyzed in several papers. Recently, Roncoroni
et at. (2018) [44] confirmed earlier results of Acemoglu et al. (2015) [1] that densely connected networks
are more stable regarding small shocks, but more fragile regarding big shocks. [1] base their analysis on
artificial networks and focus mostly on regular networks (= total claims and liabilities of all banks are
equal). [44], on the other hand, analyze a unique dataset of the European Central Bank, consisting of 26
large EU banks.

Are these results confirmed within our sample of reconstructed EU interbank networks, comprising
3,468 banks?

To answer this question, we construct a second network ensemble, where the density of each block
was increased to d(new) = d(old)+(1−d(old))/2. The density matrix is presented in form of a heatmap in Fig. 9.
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Figure 9: Heatmap of original densities (left) and increased densities (right).

First, we analyze the effect of the increased network density on the G-SIBs. Figure 10 presents the
results of shocking the G-SIBs banks separately in the more densely connected networks in comparison to
the originally sparse networks, computed by the EN, RV, DC, aDR, and cDR contagion model. In almost
all considered cases, global vulnerability and the number of defaulting banks is smaller in the densely
connected networks. The magnitude of the difference depends heavily on the applied contagion model.
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(a) EN

(b) RV

(c) DC

(d) aDR

(e) cDR
Figure 10: Global vulnerability (left) and number of defaults (right) caused by shocking the G-SIBs separately with shock sizes
ranging from 1% to 10% of external assets. Values of the networks with the original densities are pictured in dashed lines. Reported
values are averages over 100 simulated networks (excluding the Rest-of-the-World node). Legends are ordered according to the
respective global vulnerability at a shock size of 10%.
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Next, we analyze shock scenarios where all banks are shocked equally with various shock sizes on ex-
ternal assets. The results are presented in Fig. 11 in comparison to the results of the same shock scenarios
applied to the originally sparse networks. Interestingly, for the considered shock scenarios, global vulner-
ability does barley differ between the sparse and densly connected networks. However, we can observe an
increase in the number of defaulting banks for networks with higher densities. This means that losses are
distributed differently in both network sets. In the more densely connected networks contagion seems to
flow across a bigger number of small nodes that at some point default and propagate their losses back to big
nodes.

Figure 11: Global vulnerability (left) and number of defaults (right) caused by shocking all banks equally with shock sizes ranging
from 1% to 10% of external assets. Values of the networks with the original densities are pictured in dashed lines. Reported values
are averages over 100 simulated networks (excluding the Rest-of-the-World node).

7. Conclusion and outlook

Realistic models of inter-banking networks are necessary for an adequate and flexible assessment
of systemic risk. Their construction, however, remains challenging, because of the very limited data
availability. In this paper we contribute to this research topic by presenting a block-structured model
that reconstructs inter-banking networks across multiple countries. The advantages of our model are
the following. First of all, our model allows to incorporate structural differences in financial networks
across countries and offers great flexibility via the block-structure. The density and the reciprocity can
be chosen separately for every block. Likewise the constraints on the weights, i.e. row sums, column
sums, and block-weights can be set separately. This allows users, like central banks or policy-makers,
who might have partial access to additional information to calibrate the model more accurately. Also, in
case further information on aggregated level becomes available in the future, it can easily be incorporated
in our model. As a trade-off on accuracy of network reconstruction and data availability, our model is
calibrated on a small number of input factors, that are able to induce important network characteristics.
As shown in Section 5.2 the model correctly reproduces known aggregated characteristics of financial
networks like sparsity, positive reciprocity, disassortativity, and short paths using only a small set of input
factors. Moreover, we show how block-density, block-reciprocity, and block-weights, which might not be
available explicitly, can be approximated. Since the calibration of the model is non trivial, we also present
an algorithm to handle this task.

Finally, the simulated networks enable the application of a battery of contagion mechanisms and
systemic risk measures. To demonstrate the potential of the model we conduct a systemic risk analysis
on the reconstructed European interbank market. The results highlight the differences in systemic risk
measures along five of the most prominent contagion models. Furthermore, the correlation between node
characteristics and systemic risk caused by a bank’s default as well the vulnerability suffered from the
default of other banks is analyzed. We find that the loss that a bank’s default causes on the interbank
network is highly correlated with the number of its creditors (in-degree) as well as the amount borrowed
(in-strength). Likewise, the vulnerability of a bank is highly correlated with the number of its debtors
(out-degree) and the amount lend (out-strength). Among centrality measures, closeness centrality turns
out to be the most significant for indicating systemic importance. In addition, the results on systemic risk
are compared with the BCBS’s ranking of global systemically important banks, which again turns out to
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depend heavily on the applied contagion model. Lastly, we can confirm earlier conclusions on the effect of
the network density on systemic risk. Densely connected networks are more stable regarding small shocks
and more fragile regarding big shocks when measured by the number of defaulting banks. The total loss
in equity caused by big shocks, on the other hand, is not affected by the density of the network. These
outcomes shed new light on systemic risk and its monitoring and can support policy-makers in their aim to
stabilize the EU interbank market.

Appendix A.

Proof to Theorem 3.1 (Existence of a solution for the extended fitness model)
The detailed proof of Theorem 3.1 takes several pages and can be found in the supplementary information
to this manuscrip, which is available from the corresponding author. Here we outline the main steps.

First, we substitute y := r2
klzklzlk. Second, we split the proof in two cases, depending on the values of

L↔kl , L̃
→
kl , and L̃→lk . Case 1:

L↔kl ≤
∑

i∈Ck , j∈Cl

s(out)
i s(in)

j s(out)
j s(in)

i

s(out)
i s(in)

j + s(out)
j s(in)

i + s(out)
i s(in)

j s(out)
j s(in)

i

,

L̃→kl ≤
∑

i∈Ck , j∈Cl

s(out)
i s(in)

j

s(out)
i s(in)

j + s(out)
j s(in)

i + s(out)
i s(in)

j s(out)
j s(in)

i

,

L̃→lk ≤
∑

i∈Ck , j∈Cl

s(out)
j s(in)

i

s(out)
i s(in)

j + s(out)
j s(in)

i + s(out)
i s(in)

j s(out)
j s(in)

i

.

(A.1)

For Case 1, the existence of a solution is straight forward to prove with the Bolzano–Poincaré–Miranda
theorem11, where we define the parameter support by (y, zkl, zlk) ∈

[
m−1,m

]3
, for m ∈ �>0 big enough.

Case 2: If the conditions of Case 1 are not satisfied, i.e. Eq. (A.1), choose α, β, γ ∈ �>0 such that

L↔kl ≤
∑

i∈Ck , j∈Cl

γs(out)
i s(in)

j s(out)
j s(in)

i

αs(out)
i s(in)

j + βs(out)
j s(in)

i + γs(out)
i s(in)

j s(out)
j s(in)

i

,

L̃→kl ≤
∑

i∈Ck , j∈Cl

αs(out)
i s(in)

j

αs(out)
i s(in)

j + βs(out)
j s(in)

i + γs(out)
i s(in)

j s(out)
j s(in)

i

,

L̃→lk ≤
∑

i∈Ck , j∈Cl

βs(out)
j s(in)

i

αs(out)
i s(in)

j + βs(out)
j s(in)

i + γs(out)
i s(in)

j s(out)
j s(in)

i

,

(A.2)

holds. Analogously to Case 1, it follows from the Bolzano–Poincaré–Miranda theorem that there exists
a solution

(
y∗, z∗kl, z

∗
lk

)
∈

[
m−1,m

]3
, and hence,

(
z∗klα

)
,
(
z∗lkβ

)
, and (y∗γ) constitutes a solution w.r.t. the

original equations. The existence of α, β, γ ∈ �>0 from Eq. (A.2) can be proved in several steps using the
intermediate value theorem and the implicit function theorem.

Proof of Theorem 3.2 (Uniqueness of a solution for the extended fitness model)
Consider the ERGM defined by maximizing the Shannon entropy such that the expected particular degree
sequences of Eqs. (19) to (22) and the expected number of reciprocal links L↔kl are satisfied. A solution to

11See for example [49], Theorem 2, and [34], and the references therein.
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this ERGM is given by

e−λ
(out,k)
i :=

√
zkls

(out,k)
i , for all i ∈ Ck (A.3)

e−λ
(in,k)
i :=

√
zkls

(in,l)
i , for all i ∈ Cl (A.4)

e−λ
(out,l)
i :=

√
zlk s(out,l)

i , for all i ∈ Cl (A.5)

e−λ
(in,l)
i :=

√
zlk s(in,k)

i , for all i ∈ Ck (A.6)

e−λr := r, (A.7)

where the λ’s denote the corresponding Lagrange multipliers. From the general theory of maximum
entropy problems, we know that the solving probability distribution is unique, see for example [18]. This
means that all link probabilities, as given by Eqs. (6) to (8), are unique, see [24]. From this it obviously
follows that zkl, zlk, and r are unique.

Proof of Theorem 3.3 (Uniqueness of a solution for the ERGM)
From the general theory of maximum entropy problems, we know that the solving probability measure is
unique, see for example [18]. Let’s assume there exists a second set of parameters θ̃ solving the ERGM, i.e.
defining the same probability measure. This especially means that pθ(w) = pθ̃(w) for all w ∈ Ga. Let w(0)

denote the graph where all w(0)
i j = 0, then we get

pθ(w(0)) = pθ̃(w
(0))

⇔ Z−1
θ e−Hθ(w(0))︸   ︷︷   ︸

=1

= Z−1
θ̃

e−Hθ̃(w
(0))︸   ︷︷   ︸

=1

⇔ Zθ = Zθ̃.

Let w(a,b) denote the graph where all elements are 0 and w(a,b)
ab = 1, then we get

pθ(w(a,b)) = pθ̃(w
(a,b))

⇔ Z−1
θ e−Hθ(w(0))︸   ︷︷   ︸

=exp(−θab)

= Z−1
θ̃

e−Hθ̃(w
(0))︸   ︷︷   ︸

=exp(−θ̃ab)

⇔ θab = θ̃ab.

Hence, it follows that all sums θi j =
(
θ(out)

i + θ(in)
j + θ(block)

i j

)
are unique for all i, j = 1, . . . , n where ai j = 1.
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