
Merging Position and Orientation Motion Primitives

Matteo Saveriano1, Felix Franzel2, and Dongheui Lee1,2

Abstract— In this paper, we focus on generating complex
robotic trajectories by merging sequential motion primitives. A
robotic trajectory is a time series of positions and orientations
ending at a desired target. Hence, we first discuss the generation
of converging pose trajectories via dynamical systems, providing
a rigorous stability analysis. Then, we present approaches to
merge motion primitives which represent both the position
and the orientation part of the motion. Developed approaches
preserve the shape of each learned movement and allow for
continuous transitions among succeeding motion primitives.
Presented methodologies are theoretically described and exper-
imentally evaluated, showing that it is possible to generate a
smooth pose trajectory out of multiple motion primitives.

I. INTRODUCTION

Robots operating in everyday environments will execute a
multitude of tasks ranging from simple motions to complex
activities consisting of several actions performed on different
objects. Hand programming of all these tasks is not feasible.
Hence, researchers have investigated how to acquire novel
tasks in an intuitive manner [1], [2]. A possible solution is
to demonstrate the task to execute, for example by physically
guiding the robot towards the task completion [3], [4].
Collected data are then used for motion planning.

Motion planning with dynamical systems has gained at-
tention in the robot learning community and researchers have
developed several approaches to represent demonstrations as
dynamical systems [5]–[16]. Dynamical systems are used to
plan in joint or Cartesian space, and, in Cartesian space, to
encode both position and orientation [13]–[16]. Moreover,
robots driven by stable systems are able to reproduce com-
plex paths [7]–[10], to incrementally update a predefined skill
[11], [12], and to avoid possible collisions [17]–[21].

Complex robotic tasks, consisting of several actions, can
be obtained by sequencing multiple motion primitives [22]–
[26]. As in [24]–[26], this work represents the motion
primitives as Dynamic Movement Primitives (DMP) [5], but
other choices are possible [22], [23]. Given a set of DMPs,
the problem arises of how the DMPs can be merged to
generate a unique and smooth trajectory without stopping at
the end of each motion primitive. Pastor et al. [27] address
this problem by activating the succeeding motion primitive
when the velocity of the current primitive is smaller than
a threshold. The succeeding primitive is initialized with the
state reached by the previous one at the switching point.
This avoids jumps in the velocity but it may cause jumps

1Institute of Robotics and Mechatronics, German Aerospace Center
(DLR), Weßling, Germany matteo.saveriano@dlr.de.

2Human-Centered Assistive Robotics, Technical University of Munich,
Munich, Germany felix.franzel@tum.de, dhlee@tum.de.

This work has been supported by Helmholtz Association.

Fig. 1. Motion primitives are merged to generate a smooth robot trajectory.

in the acceleration. To avoid jumps in acceleration, [28]
augments the DMP with a low-pass filter. Nevertheless, when
positions and velocities of the consecutive primitives at the
switching point are significantly different, the trajectory has
to be filtered a lot introducing a delay with consequent large
deviations from the demonstration. The approach in [29]
has been proposed to learn hitting motions in table tennis,
but it can be used to merge motion primitives. In [29], the
DMP is augmented with a moving target and final velocity.
Hence, each DMP reaches a certain position with a given
velocity (different from zero) which are used to initialize
the succeeding DMP. Instead of switching the DMPs, the
approach in [30] creates a unique DMP by overlapping
sequential movements. The unique DMP preserves the shape
of each overlapped motion.

Aforementioned approaches are effective when the dynam-
ical system is used to represent Cartesian positions or joint
angles. However, they do not consider the orientation part of
the motion. DMP formulations capable of encoding Cartesian
orientation have been proposed in [14], [15], but without
considering the problem of merging multiple movements. In
this work, we first describe how DMP and unit quaternions
are used to encode orientation trajectories and present a
rigorous stability analysis that is missing in the related
literature [14], [15]. We then extend the approaches in [27],
[29], and [30] to merge sequential DMP representing both
position and orientation (see Fig. 1). We use unit quaternions
to represent the orientation and rely on quaternion algebra
to define all the mathematical operations needed to merge
the learned motions. Finally, we compare the presented
approaches on simulated and real data in order to underline
advantages and drawbacks of each approach.

II. CARTESIAN POSE MOTION PRIMITIVES

In this section, we describe how Cartesian poses are
represented in the dynamic movement primitives (DMP)
framework [5] and provide a stability analysis.

A. Position DMP
Following the representation introduced by Park et al. [31],

Cartesian positions are generated via the second-order dy-

namical system (time dependency is omitted for simplicity)

τ ṗ = v, (1a)
τ v̇ =Kp [(pd − p)− d

p
0(h) + f

p(h)]−Dpv, (1b)

where p ∈ R3 is the position, ṗ = v ∈ R3 is the linear
velocity, and v̇ ∈ R3 is the linear acceleration. The time
scaling factor τ can be adapted to change the duration of the
movement without changing the path. The positive definite
matrices Kp, Dp ∈ R3×3 are linear stiffness and damping
gains respectively. The scalar h is an exponentially decaying
clock signal, obtained by integrating the so-called canonical
system τ ḣ = −γh, with γ > 0. The clock signal is h = 1 at
the beginning of the motion and it exponentially converges to
zero. The term dp0(h) = (pd−p0)h in (1b) prevents a jump
at the beginning of the motion and it vanishes for h → 0.
The forcing term fp(h) in (1b) is defined as

fp(h) =

∑N
i=1wiψi(h)∑N
i=1 ψi(h)

h, ψi(h) = e−a(h−ci)
2

. (2)

Given the amplitude a and the centers ci, the parameters wi

are learned from demonstration using weighted least square
[5]. From (2), it is clear that fp(h) vanishes for h→ 0.

B. Orientation DMP
Dynamic movement primitives, commonly used to rep-

resent Cartesian or joint position, have been extended to
represent Cartesian orientation [14], [15]. The approaches
in [14] and [15] use a different definition of the orientation
error, as detailed later in this section. In this work, orientation
is represented by a unit quaternion q = [η, ε>]> ∈ S3, where
S3 is the unit sphere in the 3D space. Unit quaternions have
less parameters compared to rotation matrices (4 instead of
9). Compared to other representations, like Euler angles, they
are uniquely defined and have no singularities if rotations
are restricted to one hemisphere of S3 [32]. A DMP for the
orientation is defined as

τ q̇ =
1

2
ω̃ ∗ q, (3a)

τ ω̇ =Kq [eo(qd, q)− d
q
0(h) + f

q(h)]−Dqω, (3b)

where1 q ∈ S3 is the unit quaternion, ω ∈ R3 and ω̇ ∈
R3 are the angular velocity and acceleration respectively,
and τ is a temporal scaling factor. The symbol ∗ indicates
the product of two quaternions defined in (13), eo(·, ·) ∈
R3 is the error between two quaternions, and the quantity
ω̃ is the angular velocity quaternion, i.e. ω̃ = [0,ω>]>.
In other words, ω̃ is a quaternion with zero as scalar part
and the angular velocity as vector part. The positive definite
matrices Kq , Dq ∈ R3×3 are angular stiffness and damping
gains respectively. The clock signal is the same used for the
position (τ ḣ = −γh). The term dq0(h) = eo(qd ∗ q0)h in
(3b) prevents a jump at the beginning of the motion and it
vanishes for h→ 0. The nonlinear forcing term f q(h) in (3b)
is defined as in (2), it is learned from demonstration, and it
vanishes for h → 0. The quaternion rate (3a) is integrated
by means of (17).

There are two key differences between position DMP
in (1a)–(1b) and orientation DMP in (3a)–(3b). First, the
relationship between the time derivative of the quaternion

1The DMP formulation in (3a)–(3b) is also adopted in [14] but using
eo(q, qd) = −eo(qd, q) as orientation error.

q̇ and the angular velocity in (3a) is nonlinear, while the
derivative of the position equals the linear velocity in (1a).
Second, the error between two quaternions eo(·, ·) in (3b) is
a nonlinear function and it has multiple definitions, while the
error between two positions in (1b) is simply their difference.
In robotics and control, the orientation error between quater-
nions q1 and q2 is typically defined as eo = vec(q1 ∗ q2)
[32], [33], where the function vec(q) returns the vector part
of q. This definition of the orientation error is used in [14]
for orientation DMP, while Ude et al. [15] propose to use
the quantity 2 log(q1 ∗ q2) as orientation error, where the
logarithmic map log(·) is defined as in (15).

C. Stability analysis

The stability of the position DMP in (1a)–(1b) is trivially
proved. Indeed, dp0(h) and fp(h) vanish for the time t →
+∞ and (1a)–(1b) become a linear system. Hence, the posi-
tive definiteness of Kp and Dp is sufficient to conclude that
the dynamical system (1a)–(1b) asymptotically converges to
pd with zero velocity. For orientation DMPs, instead, it is
interesting to prove the following stability theorem:

Theorem 1. The orientation DMP in (3a)–(3b), with clock
signal h defined such that h → 0 for t → +∞ and
orientation error defined as eo(q1, q2) = vec(q1 ∗ q2),
globally asymptotically converges to q̂ = qd with ω̂ = 0.

Proof. Recall that the non-linearities in (3a)–(3b) are smooth
functions and that the time dependancy introduced by h
vanishes for t → +∞. Hence, (3a)–(3b) are an asymptot-
ically autonomous differential system and the stability can
be proved analyzing its asymptotic behavior [34]. In other
words, we have to prove the stability of

q̇ =
1

2
ω̃ ∗ q, ω̇ =Kqvec(qd ∗ q)−D

qω, (4)

where we set τ = 1 without loss of generality. The stability
of the non-linear system (4) is proved with the Lyapunov
method [35], using the Lyapunov candidate

V (x) = (ηd − η)2 + ‖εd − ε‖2 +
1

2
ω>(Kq)−1ω, (5)

where the state x = [q>, ω>]>, q = [η, ε>]>, and
qd = [ηd, ε

>
d]
>. The candidate Lyapunov function in (5)

is positive definite and it vanishes only at the equilibrium
x̂ = [qd

>, 0>]>. The time derivative of V (x) is

V̇ = −2 (ηd − η) η̇ − 2 (εd − ε) ε̇+ ω>(Kq)−1ω̇

= (ηd − η) ε>ω + (εd − ε)> (ηI − S(ε))ω + ω>(Kq)−1ω̇

where we used q̇ in (4) and the quaternion propagation (14).
Considering the definition of ω̇ in (4), we obtain that

V̇ = (ηd − η) ε>ω + (εd − ε) (ηI − S(ε))ω
+ ω>���

��
(Kq)−1Kq vec(qd ∗ q)− ω

>(Kq)−1Dqω

Considering the quaternion product in (13) and that S(a)a =
0 if S(·) is a skew-symmetric matrix, we obtain that

V̇ = −ω>(Kq)−1Dqω +
((((

((((
((((

(
ω> (vec(qd ∗ q)− vec(qd ∗ q))

The matrix (Kq)−1Dq , where (Kq)−1 and Dq are posi-
tive definite matrices, is positive definite iff (Kq)−1Dq =
Dq(Kq)−1. This property can be guaranteed, for example,

0.8

0.2

0.4

0.6

1

0
0 0.2 0.4 0.6 0.8 1 1.2

T

moving target
constant goal

delayed goal

Time [s]

x
[m

]

(a) Position

0.8

0.2

0.4

0.6

0

0 0.2 0.4 0.6 0.8 1 1.2

T

moving target
constant goal

delayed goal

Time [s]

1

(b) Quaternion
Fig. 2. The constant goal, moving target, and delayed goal obtained ob-
tained with p(0) = [0, 0, 0]> m, pd = [1, 0, 0]> m, q(0) = [1, 0, 0, 0]>,
qd = [0, 1, 0, 0]>, vd = [0.3, 0.3, 0.3]> m/s, vd = [0.3, 0.3, 0.3]> m/s,
ωd = [0.2, 0.2, 0.2]> m/s, δt = 0.01 s, and T = 1 s. Only x for the
position and η for the quaternion are shown for a better visualization.

by assuming that Kq and Dq are diagonal matrices. If
(Kq)−1Dq is a positive definite matrix, then V̇ ≤ 0 and
V̇ vanishes iff ω = 0. The LaSalle’s invariance theorem
[35] allows to conclude the stability of (4).

In [15], authors use eo = 2log(g ∗ q) . With this choice,
the stability can be shown using V (x) = (ηd − η)2 + ‖εd−
ε‖2 + 0.5ω>ω as Lyapunov function and selecting Kq =
‖vec(qd∗q)‖

2 arccos(scal(qd∗q))
I as stiffness gain. This non-linear stiffness

gain has a singularity when qd and q are aligned. In this
work, we use the vector-based quaternion error eo = vec(·, ·)
to avoid non-linearity and singularity in the gain matrices.

III. MERGING POSE MOTION PRIMITIVES

Motion primitives can be combined to execute complex
robotics tasks [24]–[26]. In this section, we present three
different approaches to merge pose DMPs. Each of them
follows a different idea on how to smoothly transition
between successive DMPs. We assume that L sequential
pose DMPs are given. Each DMP converges to a certain
position pld and orientation qld for l = 1, . . . , L. In all the
presented approaches the clock signal vanishes for t→ +∞.
As discussed in Sec. II-C, this is sufficient to guarantee the
convergence to the last goal pLd , qLd . Note that blue text is
used in the equations to highlight the differences between
the approaches in this section and the pose DMP in Sec. II.

A. First Approach

The method described in [27] originates from the assump-
tion that any DMP reaches the end position with zero velocity
and zero acceleration. This means that once a motion is fully
executed it will come to a full stop and that, close to the
goal position, the robot moves with a decreasing velocity.
In order to combine L motion primitives, one can stop the
current motion when the norm of the velocity is smaller
than a certain threshold and start the next primitive. The
next primitive is initialized with the state of the previous
one (pne = ppr, vne = vpr) to avoid discontinuities. This
applies to orientation by initializing the state of the next DMP
as qne = qpr, ωne = ωpr. Note that the approach applies
to any second-order dynamical system including DMPs.

B. Second Approach
The approach in [29] allows to cross the goal position of a

DMP with a non-zero velocity. This is achieved by allowing

the DMP to track a position target that moves at a given
velocity. Hence, the linear acceleration in (1b) becomes

τ v̇ =Kp
[
(plm − p)(1− h) + f

p(h)
]
+Dp(vld − v)(1− h),

where vld is the chosen final linear velocity of the l-th DMP
and the moving target plm is defined as plm(t) = plm(0) −
vld

τ ln(h)
γ

, plm(0) = pld−T lvld, where pld is the goal position
and T l is the time duration of the l-th DMP. The moving
target plm is designed to reach the goal position at plm(T l) =
pld (see Fig. 2(a)). This is because the term −τ ln(h)/γ
represents the time if h is defined by the canonical system
τ ḣ = −γh. The initial position of the moving target plm(0) is
computed by moving the goal position pld for T l at constant
velocity −vld. High accelerations at the beginning of the
movement are avoided by the prefactor (1−h), that replaces
the term dp0(h) in (1b).

The presented idea is here extended to unit quaternions.
The angular acceleration in (3b) is rewritten as

τ ω̇ =Kq
[
eo(q

l
m, q)(1− h) + f

q(h)
]
+Dq(ωld − ω)(1− h),

where ωl
d is the chosen final angular velocity of the l-th

DMP and eo(qlm, q) = vec(qlm ∗q) as detailed in Sec. II-B.
High angular accelerations at the beginning of the motions
are prevented by the prefactor (1−h) that replaces the term
dq0(h) used in (3b). The moving target qlm is defined as

qlm(t) = exp

(
−τ ln(h)

2γ
ωld

)
∗ qlm(0),

qlm(0) = exp

(
−T

l

2
ωld

)
∗ qld,

(6)

where qld is the goal orientation and T l is the time duration
of the l-th DMP. The initial orientation of the moving target
qlm(0) is computed by moving the goal orientation qld for
T l at constant velocity −ωl

d. Considering the definitions of
the exponential map exp(·) and the quaternion product ∗ in
(16) and (13) respectively, it is straightforward to verify that
qlm reaches the goal quaternion at qlm(T l) = qld (Fig. 2(b)).

Having now the ability to cross each goal after T l with
a non-zero velocity, we can combine multiple motion primi-
tives. Given two consecutive DMPs l and l+1, we run l for
T l seconds and then switch to l+1. To avoid discontinuities,
we initialize the state of l + 1 with the final state of l [27].

C. Third Approach
The approach in [30] merges multiple DMPs into a single,

more complex one. In [30], the canonical system is

ḣ = −αhe
αh
δt

(τT−t)
/[1 + e

αh
δt

(τT−t)
]2, (7)

where αh defines the steepness of the sigmoidal decay
function h centred at the time moment T . The value of h
is h = 1 for t < T − δ, where δ depends on the steepness
αh, and then it decays to h = 0. The linear acceleration in
(1b) becomes

τ v̇ =Kp(plm − p) +K
pfp(h)−Dpv, (8)

while the linear velocity in (1a) is the same. The moving
target plm, called delayed goal function in [30], is defined as

τ ṗlm =

 δt
T l

(pld − pl(0)),
l−1∑
k=1

T k ≤ t ≤
l∑

k=1

T k

[0, 0, 0]>, otherwise
, (9)

where pl(0) and pld are the initial and goal position of the l-th
DMP, T l is the duration of l-th DMP, δt is the sampling rate,
l = 1, . . . , L, and L is the number of movement primitives
to merge. Note that (9) generates a piecewise linear moving
target plm that reaches the goal pld after T l s (see Fig. 2(a)).
Being plm = pl(0), the acceleration (8) is smooth at the
beginning of the motion. For this reason, the term dp0(s)
used in (1b) is not needed in (8). The non-linear forcing
term fp(h) used in (8) slightly differs from the one in (2)

fp(h) =

∑N
i=1wiψi(t)∑N
i=1 ψi(t)

h, ψi(t) = e−(t
τT
−ci)2/2σ2

i , (10)

where σi is the width of the i-th kernel, ci are their centres,
and h is given by (7). The kernels ψi in (10) differ from those
in (2) since the term t/τT replaces the canonical system h.
Note that, for τ = 1, 0 ≤ t/τT ≤ 1 and the kernels are
equally spaced between 0 and 1. The kernel widths σi are
constant and depend on the number of kernels.

Given L DMPs in the described form, one can obtain
a single DMP by combining kernels and weights of the
separately learned DMPs. In particular, the centers, originally
equally spaced between 0 and 1, are replaced by

cli =

T1(i−1)
T (N−1)

, l = 1

T l(i−1)
T (N−1)

+ 1
T

l−1∑
k=1

T k, otherwise
, (11)

where N is the number of kernels of each DMP, i = 1, ..., N ,
l = 1, ..., L, T l is the duration of the l-th DMP, and T =∑L

k=1 T
k is the duration of the joint trajectory. The width

of the kernels is scaled down by T l/T , i.e. σl
l = σl

iT
l/T .

The weights of each DMP wl
i remain unchanged. The N

kernels and N weights of the L DMPs are stacked together
to form a single DMP with NL kernels and NL weights.
The combined kernels of succeeding DMPs now intersect at
the transition points, resulting in smooth transitions.

We extend the described approach to unit quaternions.
The angular acceleration in (3b) is rewritten as τ ω̇ =
Kqeo(q

l
m, q)+K

qfq(h)−Dqω. The quaternion goal function
qlm ranges from ql(0) to qld in T l seconds (see Fig. 2(b)).
Hence, qlm is a geodesic on S3 and it is defined as qlm(t+1) =

exp
(
τωlm

2

)
∗ qlm(t), where

ωlm =

 2
T l

log(qld ∗ ql(0))
l−1∑
k=1

T k ≤ t ≤
l∑

k=1

T k

[0, 0, 0]>, otherwise
. (12)

In (12), qld is the goal and ql(0) is the initial orientation
of the l-th DMP, T l is the time duration of the l-th DMP,
l = 1, . . . , L, and 2 log(qld ∗ ql(0)) is the angular velocity
that rotates ql(0) into qld in a unitary time. The functions
log(·) and exp(·) are defined in (15) and (16) respectively.
Note that the described approach to calculate qlm corresponds
to interpolate ql(0) and qld with the SLERP algorithm [36].
To reach the final orientation qLd , the delayed goal function
firstly reaches q1d, then q2d, and so on until qLd is reached.

IV. EXPERIMENTAL RESULTS

A. Synthetic data
The aim of this experiment is to compare the behaviour of

the proposed approaches when applied to generate an orien-
tation trajectory. To this end, we pre-trained two orientation

DMPs on synthetic data given by two minimum jerk tra-
jectories connecting q(0) = [0.247, 0.178, 0.318,−0.897]>
with q1d = [0.372,−0.499,−0.616, 0.482]> (intermediate
goal) and q1d with q2d = q(0) (final goal). Each trajectory
lasts for T 1 = T 2 = 5 s (black dashed lines in Fig. 3(a)).
Each DMP has N = 15 kernels, τ = 1, and Kq = 10I .
These values are empirically set, while Dq = 2

√
Kp to

have a critically damped system [37]. The sampling time
is δt = 0.01 s. The two orientation DMPs are trained to
reach the respective goals q1d and q2d with zero velocity.
We apply the approaches presented in Sec. III to generate
a smooth quaternion trajectory that starts and ends at q(0)
while passing close to the “intermediate goal” q1d, considered
a via point. The performance of each approach is evaluated
considering deformation, smoothness, and duration of the
generated trajectory, as well as the distance to q1d.

Results obtained with the three approaches are shown in
Fig. 3. For the first approach, we switch to the second DMP
when the distance from the intermediate goal (via point) q1d
is below d1 = 0.01 rad, i.e. after about 4.7 s (Fig. 3(d)).
Alternatively, one can switch the primitives when the velocity
is below a certain threshold as suggested in [27]. For the
second approach, we run the first DMP for T 1 = 5 s and
then switch to the second one. The desired intermediate
velocity is ω1

d = [0.01, 0.01, 0.01]> rad/s. The third approach
does not require a switching rule between the DMPs and
automatically treats q1d as a via point. As expected, all the
generated trajectories converge to q2d (Fig. 3(a), (f), and (k)).

Error plots in Fig. 3(e), (j), and (o) show the deformation
introduced by each approach. The first approach is the most
accurate (maximum tracking error eo,max = 0.012 rad),
followed by the third approach (eo,max = 0.072 rad). The
second approach is the less accurate (eo,max = 0.307 rad).
The second approach partially sacrifices the accuracy to
cross the via point q1d after T 1 s (eo(T 1) = 0.001 rad) with
velocity ω(T 1) ≈ ω1

d (Fig. 3(h)). On the other hand, the
third approach favors the overall accuracy passing 0.025 rad
away from q1d. The trajectory pass “close” to the intermediate
goal, but the distance depends on the weights of the merged
DMPs and cannot be decided a priori. In the first approach,
the distance from intermediate goals is a tunable parameter.

In the first approach, the distance to the goal affects the
time duration of the generated trajectory. With the used
distance d1 = 0.01 rad, the generated trajectory converges
to q2d (distance below 0.001 rad) after 9.5 s. Hence, the
execution is faster than the demonstration (T = 10 s). Bigger
values of d1 result in shorter trajectories and vice versa. The
second approach produces a trajectory that, as the training
data, converges in 10 s. Finally, the third approach generates a
trajectory of 11.7 s, that is 1.7 s longer than the demonstrated
one. In general, the third approach produces a trajectory
that lasts more than the demonstration. This is because
the sigmoidal clock signal in (7)—and the effects of the
forcing term—vanishes after T+δ s, where δ depends on the
steepness αh of the sigmoid (αh = 1 in this case). Bigger
values of αh result in shorter trajectories and vice versa.

All the tested approaches are able to generate smooth ori-

(a) Quaternion (b) Angular velocity (c) Angular velocity (d) Goal switch

0 5 10
Time [s]

0.007

0

0.014

(e) Orientation error

(f) Quaternion (g) Angular velocity (h) Angular velocity (i) Moving target (j) Orientation error
0.8

-0.8

0

0 6 12
Time [s]

(k) Quaternion

2.5

-2.5

0

0 6 12
Time [s]

(l) Angular velocity

0.03

-0.03

0

4.8 5 5.2
Time [s]

(m) Angular velocity (n) Delayed goal

0 6 12
Time [s]

0.04

0

0.08

(o) Orientation error

Fig. 3. Results obtained by applying the first (a)–(e), second (f)–(j), and third (k)–(o) approach to merge two DMPs trained on synthetic data.

entation trajectories with continuous velocities. Nevertheless,
the third approach is the only one capable of generating
continuous accelerations, while the others may create dis-
continuous accelerations around the switching point.

B. Robot experiment

This experiment compares the merging approaches in a
real case where a robot adds sugar into a cup (see Fig. 4).
The task consists of three motion primitives, namely 1) reach
the sugar bowl and fill the spoon, 2) put the sugar into the
cup, and 3) reach a final pose. The task is demonstrated
by kinesthetic teaching and motion primitives are segmented
using zero velocity crossing [38] with a velocity threshold
empirically set to of 5mm/s. The three DMPs are separately
learned to reach the relative goal (last pose in the segment)
with zero velocity. We use the same parameters as in the
previous case. The robot is able to execute the task by
stopping at each intermediate goal, but this takes 24.7 s that
is 5 s longer than the demonstration. Depending on the task at
end, the longer execution time may cause issues. Therefore,
we also consider the accuracy of the executionmovements
and the success of the task to compare the different merging
approaches. For the first approach, we switch the DMP
when the distance to the current intermediate goal is below
0.005m (rad), allowing the robot to successfully execute
the task in 19.4 s. The generated trajectory passes close to
the intermediate goals (distance below 0.005m (rad)) and
accurately represents the demonstration (maximum errors
are ep,max = 0.006m and eo,max = 0.035 rad). For the
second approach, we set the desired crossing velocity to
0.005m/s (rad/s) along each direction. The robot is able to
cross the goals (distance below 0.001m and 0.002 rad) but
it hits the sugar bowl and fails the task (maximum errors are
ep,max = 0.052m and eo,max = 0.073 rad). The reason is

that when the robot reaches the desired z position it is outside
the cup and then it touches the cup while reaching the desired
x-y position (Fig. 4). It is worth noticing that the robot is able
to execute the task if the crossing velocity is reduced, but
this will increase the total execution time. The third approach
allows the robot to successfully execute the task in 21.2 s.
The generated trajectory passes close to the intermediate
goals (0.001m and 0.02 rad from the first goal, 0.002m and
0.015 rad from the second goal) and accurately represents the
demonstration (ep,max = 0.018m and eo,max = 0.05 rad).

C. Discussion

Presented results on synthetic and real data have shown
similarities and differences of the three merging approaches.
Important features of each approach are summarized in Tab.
I. The approach in Sec. III-A generates a trajectory that
converges before the demonstration time. The faster conver-
gence may represent a problem, for instance when multiple
robots are executing a cooperative task. This issue can be
alleviated by increasing the time scaling factor τ to match
the demonstrated time. Among the three approaches, the first
one is the easiest to implement since it does not require any

Time [s]
0 5 10 15 20 250 5 10 15 20 25

1
0.5

0

-1
-0.5

0.5

0

-1

-0.5

Time [s]

Baseline First approach Second approach Third approach

Fig. 4. (Top) Successful execution of the add sugar task. (Bottom) Pose
trajectories executed by the robot.

TABLE I
COMPARISON OF THE PROPOSED APPROACHES FOR MOTION PRIMITIVES MERGING.

Intermediate Desired switch Change Smooth Computational complexity
goal crossing velocity DMP structure motion wrt original DMP

First approach No No No Continuous velocity Same
Second approach Yes Yes Yes Continuous velocity Same
Third approach No No Yes Continuous acceleration Linear with the number of DMPs

change in the DMP structure and in the learning process. On
the other hand, approaches two and three requires a moving
target and, for approach two, a goal velocity. Hence, the first
approach is preferable if standard DMPs were trained and if
the goal of a DMP corresponds to the start of the next one.

The second approach introduces a deformation in the
generated trajectory. Depending on the desired final velocity,
this deformation may not be negligible for the task at hand—
as in the presented experiment where the robot touched the
sugar bowl and failed the task. However, the second approach
is the only capable of crossing the intermediate goals with a
user defined velocity. As shown in Fig. 3(c), (h), and (m), the
second approach is the only one capable of crossing the goal
with a user defined velocity. This is of importance in dynamic
tasks like hitting or batting. According to our analysis, the
second approach is the best suited for such dynamic tasks.

The third approach stacks kernels and weights of L
trained DMPs into one DMP. Assuming that each DMP
has N kernels, the resulting DMP has NL kernels and NL
weights. Therefore, the computational complexity of the third
approach grows linearly with the number of DMPs, while
the other two approaches have the same cost of a single
DMP. From a certain value of L and N , that depends on
the available hardware, the third approach is not able to
generate the motion in real-time—typically 1 to 10 ms. To
alleviate this issue, one can start generating the trajectory
using only the kernels of the first two DMPs. The kernels
overlaps only in a neighborhood of the intermediate goal.
Hence, after passing the intermediate goal, the kernels of first
DMP can be replaced with those of the third one, and so on
until the last primitive is reached. The third approach is the
only one that generates continuous accelerations. Compared
to the first approach (Fig. 3(e)), the third approach slightly
deviates from the demonstrated trajectory (Fig. 3(o)) because
training data are smoothen to generate smooth accelerations.
The third approach outperforms the first one if the velocity of
the successive DMP is different from zero. In this case, the
first approach starts the second DMP with a velocity close to
zero which causes inaccuracies in reproducing the demon-
stration. The third approach, instead, generates a velocity at
the switching point that is closer to the demonstrated one,
resulting in a more accurate trajectory.

V. CONCLUSION

We presented three approaches to combine a set of motion
primitives and generate a smooth trajectory for the robot. The
approaches assume that each motion primitive is represented
via second-order dynamical systems, the so-called dynamic
movement primitives. In contrast to similar work in the field,

we consider the orientation part of the motion. We represent
the orientation via unit quaternions and exploit the mathemat-
ical properties of the quaternion space to rigorously define
all the operations required to merge sequential movements.
Presented approaches are evaluated both on synthetic and
real data, showing that each approach has some distinctive
features which make it well suited for specific tasks. In the
future, we plan to integrate the motion primitives merging
approaches with the symbolic task compression in [39]
allowing a smooth execution of structured tasks.

APPENDIX I

Unit quaternions are elements of S3, the unit sphere in
the 3D space. A unit quaternion has four elements Q ,
{η, ε} ∈ S3, where η is the scalar and ε is the vector part
of the quaternion. The constraint η2 + ‖ε‖2 = 1 relates the
scalar and the vector parts. For implementation reasons, a
quaternion is represented as a 4D vector q , [η, ε>]> =
[η, ε1, ε2, ε3]

>. The product of two quaternions is

q1 ∗ q2 = [η1η2 − ε>1 ε2, (η1ε2 + η2ε1 + S(ε1)ε2)
>]>, (13)

where S(ε) ∈ R3×3 is a skew-symmetric matrix. The
conjugate of a quaternion, i.e. the quaternion q such that
q ∗ q = [1, 0, 0, 0]>, is defined as q , [η, −ε>]> ∈ S3.
The time derivative of a quaternion is related to the angular
velocity by the so-called quaternion propagation

q̇ =
1

2
ω̃ ∗ q → q̇ =

[
η̇
ε̇

]
=

η̇ = −1

2
ε>ω

ε̇ =
1

2
(ηI − S(ε))ω

, (14)

where ω̃ = [0,ω>]> is a quaternion with zero scalar part
and the angular velocity as vector part. The logarithmic map

r = log(q)

{
arccos(η) ε‖ε‖ , ‖ε‖ > 0

[0, 0, 0]>, otherwise
. (15)

transforms a unit quaternion into a rotation vector r ∈
R3. The logarithmic map is uniquely defined and con-
tinuously differentiable if the domain is limited to
S3/{−1, [0, 0, 0]>}. A rotation vector is mapped into a unit
quaternion by the exponential map

exp(r) =

{[
cos(‖r‖), sin(‖r‖) r

>

‖r‖

]>
, ‖r‖ > 0

[1, 0, 0, 0]>, otherwise
. (16)

The exponential map is uniquely defined and continuously
differentiable if the domain is limited to 0 ≤ ‖r‖ < π. The
quaternion derivative (14) is integrated using the formula

q(t+ 1) = exp

(
δt

2
ω(t)

)
∗ q(t), (17)

where δt is the sampling time.

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[2] S. Calinon and D. Lee, “Learning control,” in Humanoid Robotics: a
Reference, P. Vadakkepat and A. Goswami, Eds. Springer, 2019.

[3] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion
primitives using the motion refinement tube,” Autonomous Robots,
vol. 31, no. 2, pp. 115–131, 2011.

[4] M. Saveriano, S. An, and D. Lee, “Incremental kinesthetic teaching
of end-effector and null-space motion primitives,” in International
Conference on Robotics and Automation, 2015, pp. 3570–3575.

[5] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical Movement Primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[6] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[7] C. Blocher, M. Saveriano, and D. Lee, “Learning stable dynamical
systems using contraction theory,” in nternational Conference on
Ubiquitous Robots and Ambient Intelligence, 2017, pp. 124–129.

[8] S. M. Khansari-Zadeh and A. Billard, “Learning control Lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Rob. And Auton. Systems, vol. 62, no. 6, pp. 752–765, 2014.

[9] K. Neumann and J. J. Steil, “Learning robot motions with stable
dynamical systems under diffeomorphic transformations,” Robotics
and Autonomous Systems, vol. 70, pp. 1–15, 2015.

[10] N. Perrin and P. Schlehuber-Caissier, “Fast diffeomorphic matching
to learn globally asymptotically stable nonlinear dynamical systems,”
Systems & Control Letters, vol. 96, pp. 51–59, 2016.

[11] M. Saveriano and D. Lee, “Incremental skill learning of stable dy-
namical systems,” in International Conference on Intelligent Robots
and Systems, 2018, pp. 6574–6581.

[12] K. Kronander, S. M. Khansari Zadeh, and A. Billard, “Incremental
motion learning with locally modulated dynamical systems,” Robotics
and Autonomous Systems, vol. 70, pp. 52–62, 2015.

[13] E. Gribovskaya and A. Billard, “Learning nonlinear multi-variate
motion dynamics for real-time position and orientation control of
robotic manipulators,” in International Conference on Humanoid
Robots, 2009, pp. 472–477.

[14] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,” in In-
ternational Conference on Intelligent Robots and Systems, 2011, pp.
365–371.

[15] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in carte-
sian space dynamic movement primitives,” in International Conference
on Robotics and Automation, 2014, pp. 2997–3004.

[16] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G.
Caldwell, “An approach for imitation learning on Riemannian mani-
folds,” Robotics and Automation Letters, vol. 2, no. 3, pp. 1240–1247,
2017.

[17] S. M. Khansari-Zadeh and A. Billard, “A dynamical system approach
to realtime obstacle avoidance,” Autonomous Robots, vol. 32, no. 4,
pp. 433–454, 2012.

[18] M. Saveriano and D. Lee, “Point cloud based dynamical system
modulation for reactive avoidance of convex and concave obstacles,”
in International Conference on Intelligent Robots and Systems, 2013,
pp. 5380–5387.

[19] ——, “Distance based dynamical system modulation for reactive
avoidance of moving obstacles,” in International Conference on
Robotics and Automation, 2014, pp. 5618–5623.

[20] M. Saveriano, F. Hirt, and D. Lee, “Human-aware motion reshaping
using dynamical systems,” Pattern Recognition Letters, vol. 99, pp.
96–104, 2017.

[21] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in International Con-
ference on Robotics and Automation, 2009, pp. 1534–1539.

[22] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental
learning of full body motion primitives and their sequencing through
human motion observation,” The International Journal of Robotics
Research, vol. 31, no. 3, pp. 330–345, 2012.

[23] M. Mühlig, M. Gienger, and J. J. Steil, “Interactive imitation learning
of object movement skills,” Autonomous Robots, vol. 32, no. 2, pp.
97–114, 2012.

[24] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning move-
ment primitive attractor goals and sequential skills from kinesthetic
demonstrations,” Robotics and Autonomous Systems, vol. 74, pp. 97–
107, 2015.

[25] R. Caccavale, M. Saveriano, G. A. Fontanelli, F. Ficuciello, D. Lee,
and A. Finzi, “Imitation learning and attentional supervision of dual-
arm structured tasks,” in International Conference on Development
and Learning and on Epigenetic Robotics, 2017, pp. 66–71.

[26] R. Caccavale, M. Saveriano, A. Finzi, and D. Lee, “Kinesthetic
teaching and attentional supervision of structured tasks in human–
robot interaction,” Autonomous Robots, 2018.

[27] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation, 2009, pp. 763–
768.

[28] B. Nemec, M. Tamosiunaite, F. Woergoetter, and A. Ude, “Task adap-
tation through exploration and action sequencing,” in International
Conference on Humanoid Robots, 2009, pp. 610–616.

[29] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,”
in International Conference on Robotics and Automation, 2010, pp.
853–858.

[30] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Worgötter, “Joining
movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,” Transactions on
Robotics, vol. 28, no. 1, pp. 145–157, 2012.

[31] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement
reproduction and obstacle avoidance with dynamic movement primi-
tives and potential fields,” in International Conference on Humanoid
Robotics, 2008, pp. 91–98.

[32] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control, 1st ed. Springer, 2008.

[33] J. S. Yuan, “Closed-loop manipulator control using quaternion feed-
back,” Journal on Robotics and Automation, vol. 4, no. 4, pp. 434–440,
1988.

[34] L. Markus, “Asymptotically autonomous differential systems,” in Con-
tributions to the Theory of Nonlinear Oscillations III, S. Lefschetz, Ed.
Princeton University Press, 1956, pp. 17–30.

[35] J. Slotine and W. Li, Applied nonlinear control. Prentice-Hall
Englewood Cliffs, 1991.

[36] K. Shoemake, “Animating rotation with quaternion curves,” in Pro-
ceedings of the 12th Annual Conference on Computer Graphics and
Interactive Techniques, 1985, pp. 245–254.

[37] R. Weitschat, A. Dietrich, and J. Vogel, “Online motion generation
for mirroring human arm motion,” in International Conference on
Robotics and Automation, 2016, pp. 4245–4250.

[38] A. Fod, M. J. Matarić, and O. C. Jenkins, “Automated derivation of
primitives for movement classification,” Autonomous Robots, vol. 12,
no. 1, pp. 39–54, 2002.

[39] M. Saveriano, M. Seegerer, R. Caccavale, A. Finzi, and D. Lee, “Sym-
bolic task compression instructured task learning,” in International
Conference on Robotic Computing, 2019, pp. 171–176.

