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ABSTRACT
Age-of-Information (AoI) is a recently introduced metric for net-

work operation with sensor applications which quantifies the fresh-

ness of data. In the context of networked control systems (NCSs),

we compare the worth of data freshness with the value of informa-

tion (VoI) for reducing the uncertainty in stochastic processes. First,

we show that the uncertainty propagates non-linearly over time

depending on system dynamics. Next, we define the value of a new

update of the process of interest as a function of AoI and system

parameters. We use the aggregated update value as a utility for

the centralized scheduling problem in a cellular NCS composed of

multiple heterogeneous control loops. By conducting a simulative

analysis, we show that prioritizing transmissions with higher VoI

decreases the total uncertainty compared with providing fair data

freshness to all sub-systems equally.

KEYWORDS
Networked Control Systems, Cyber-Physical Systems, Cyber-Physical

Networking, Value-of-Information

1 INTRODUCTION
Industrial applications form a major driving use case for 5G wire-

less research. Connectivity within industrial facilities is expected

to enable a multitude of novel applications, including remote mon-

itoring, control, and tele-robotics. Most considered scenarios fall

into the framework of networked control systems (NCSs), where an
underlying control loop is closed over a communication medium.

Due to the different performance metrics of NCSs compared with

traditional network systems, the networking policies need to be

adapted not to degrade performance. The wireless communication

medium is particularly constrained in spectrum and prone to inter-

ference effects, which motivates the problem of prioritization and

efficient scheduling of NCSs.
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5G cellular networks are envisioned to support machine-type

communications (MTC) or machine-to-machine communications

(M2M) [21]. They refer to a wide spectrum of applications where

data communications occur between two or more mobile devices.

Process automation, energy grids, healthcare and smart houses

are some prominent use cases of M2M / MTC in 5G cellular net-

works. It is obvious that each of these applications requires different

treatment from the communication system point of view due to its

distinct features and requirements. Thus, tailoring the communica-

tion solutions to the underlying MTC applications can lead to more

efficient and reliable services.

Scheduling for NCSs has raised significant interest from a control

perspective, where it has been related to time-triggered and event-

triggered control. Here, commonly constraints on the available

resources (e.g., data rates) are considered in expectation and opti-

mization metrics target the steady-state behavior of an NCS [16, 17].

While providing optimal stationary policies under certain assump-

tions, network behavior is often assumed control-agnostic and is

abstracted. However, the varying nature of wireless channels, ne-

cessity of trade-offs among different loops and the coexistence of

multiple traffic types in network in general motivate that gains

can be achieved by considering control metrics for network design.

In NCS scenarios, it has been shown beneficial to use additional

cross-layer metrics for scheduling [5, 13, 24]. In particular, two

performance metrics raise our interest. Age-of-Information (AoI)

is a recently introduced metric for network operation with sensor

applications [7]. It is a measure of information freshness from the

application layer perspective and is applicable for any NCS scenario

where there is an uncertainty in the information of interest such

as industrial automation or a smart building. Value-of-Information

(VoI) quantifies the amount of reduction in the uncertainty of a

stochastic process at the recipient. It stems from information the-

ory, originated by Claude E. Shannon in the late 1940s [20]. While

VoI deals with the content of a new update independently of its

timeliness, AoI deals with the timeliness independent of its content.

Therefore, age does not guarantee to be a standalone metric when

it comes to monitoring and control of heterogeneous applications

sharing the same network. Hence, comparing age and value, we

ask the question which of these is more suitable to use in an NCS

context.
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Figure 1: Scenario: Cellular networked control system with
N sub-systems. BS receives the data from sensors via uplink
(UL), and forwards it to the respective controllers via down-
link (DL). The scheduler for both UL and DL hops is central-
ized and located at the BS.

1.1 Contributions and Outline
In this paper, we investigate the worth of the AoI and VoI metric

for NCSs. We consider a scenario where multiple heterogeneous

stochastic control systems are closed over a resource constrained

two-hop communication network. Medium access is coordinated

by a centralized scheduler that determines which subset of loops

are allowed to communicate their new information. In this set-

up, we are able to show that VoI can be interpreted as a function

of the AoI. By designing one scheduler for AoI and one for VoI

and conducting a simulative analysis, we show that prioritizing

more valuable information leads to lower uncertainty in the control

systems than keeping the information at the recipient fresh.

The remainder of the paper is organized as follows. In Section 2,

we introduce the considered scenario and present models for net-

working and control. Next, we define AoI and VoI in terms of system

parameters. Section 3 presents two scheduling algorithms employ-

ing AoI and VoI of each loop as a decision metric. In Section 4, we

illustrate and discuss the results of our simulative study. Section 5

reviews the related work and Section 6 concludes the paper.

1.2 Notations
Throughout this paper vT and MT

stand for the transpose of a

vector v and a matrix M , respectively. tr(.) is the trace operator.
The expected value of a random variableX is denoted by E [X ]. ∥v ∥

indicates the euclidean norm of vector v with ∥v ∥ =
√
vTv . The

normal distribution with mean µ and standard deviation σ is de-

noted byN(µ,σ 2). Additionally,U (a,b) is the uniform distribution

with minimum and maximum values a and b.

2 SCENARIO AND PROBLEM STATEMENT
Consider a networked control system shared by N independent, lin-

ear time invariant (LTI) control sub-systems with periodic sampling

(see Figure 1). Each individual sub-system i consists of a plant Pi , a
sensorSi , and a controller Ci . We assume each controller-plant pair

to be co-located and hence connected through an ideal controller-

to-plant link while the sensor is operating remotely. This is a typical

scenario for applications like industrial tele-robotics, smart grids or

automated highways systems [9, 19], where the controller observes

the plant via remotely deployed sensors or cameras.

2.1 Network Model
We assume a cellular network in which every sensor Si and con-

troller Ci are connected to the same base station (BS). Every Si
transmits observed state information in form of packets in the up-

link (UL) direction towards the BS, from which it is forwarded in

the downlink (DL) direction to the corresponding controller Ci ,

as shown in Figure 1. The smallest time unit in the system is a

transmission slot of unit length, which is indexed by t ∈ N in the

following.

Information packets are generated periodically at each sensor,

which stores the latest generated packet until it is allowed to trans-

mit. If a newer packet is generated while the previous has not

yet been transmitted, the sensor replaces older packet with the

newer one [2]. A centralized dynamic scheduler located at the BS,

schedules transmissions on UL, stores the received packets and

forwards them on the DL. Again, the BS drops outdated packets

and replaces them with newer ones, if received. The scheduling

decision vectors on the UL and DL for each time slot are denoted by

πUL(t), πDL(t) ∈ {0, 1}N , where a value of πUL/DL

i (t) = 1 indicates

that a packet of sub-system i is transmitted over the respective

link. We assume that when scheduled, transmissions are received

without packet loss at the end of the transmission slot.

As illustrated in Figure 2, uplink and downlink transmissions

take place within a time-frequency resource grid. The sets of uplink

and downlink resources,RUL
andRUL

are separated in a Frequency-

Division-Duplexing (FDD) manner. Formally, RUL ∩ RDL = ∅, and

finite, i.e.,

��RUL

�� = RUL < ∞,

��RDL

�� = RDL < ∞. Therefore, the

maximum number of simultaneous uplink and downlink transmis-

sions is limited. Throughout the paper, it is assumed that each UL

and DL transmission consumes one resource.

2.2 Control Model
We consider the behavior of the i-th sub-system is represented by

the following (LTI) model in discrete time:

xi [ki + 1] = Aixi [ki ] + Biui [ki ] +wi [ki ] (1)

with time-step ki , system state xi ∈ R
ni
, state matrix Ai ∈ R

ni×ni
,

input matrix Bi ∈ R
ni×mi

and control input ui ∈ R
mi

. The noise

sequencewi ∈ R
ni

is considered to be independent and identically

distributed (i.i.d) according to a zero-mean Gaussian distribution

with diagonal covariance matrixWi . The system state xi [ki ] with
xi [0] = wi [0] is measurable by Si . Each sub-system i generates
packets periodically every T si transmission slots with T si ∈ N+,
where the initial generation happens at slot T oi ∼ U (0,T si ), which
is a uniformly distributed random variable. As a consequence, the

sub-systems may operate in an asynchronous fashion, as well as

on different orders of magnitude. However, we assume that they do

not operate faster than the network. The mapping of transmission

slots t to sub-system steps ki becomes:

ki (t) =

⌊
t −T oi
T si

⌋
. (2)

We introduce a variable δi [ki ] ∈ {0, 1} as an indicator of packet

reception by the controller. I.e., δi [ki ] = 1 if xi [ki ] is received by
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Figure 2: Illustration of the resource grid with communica-
tion and control timelines, and with exemplary procedure
for sub-system i (red) and j (green). Packet generated by sub-
system i is received by the BS at time (t + 1), and received by
its controller at time (t + 3). The packet arrives within the
sampling period of the sub-system T si , therefore, it is not
delayed from the perspective of the sub-system (case 1 in
Eqn. (11)). On the contrary, the packet of sub-system j is ex-
periencing delay larger that T sj , therefore, the packet is con-
sidered delayed (case 2 in Eqn. (11)).

Ci and δi [ki ] = 0 if xi [ki ] is drop or still waits for transmission

at the sensor or BS. The state of a sub-system, as observed by the

controller Ci , is given by:

zi [ki ] =

{
xi [ki ] , if δi [ki ] = 1

∅ , if δi [ki ] = 0.
(3)

Note that due to resource constraints on the downlink, observation

of state xi [ki ] can occur as recent as multiple sampling periods

after its generation. Thus, Ci knows the current state of the process

only if δi [ki (t)] = 1.

In order to compensate for packet drops or delays caused by the

network, each controller Ci employs a Kalman-like state estima-

tor as in [11, 22]. The state estimation is based on the following

assumptions:

Assumption 1. The controller Ci is aware of the system parameters
Ai , Bi andWi .

Assumption 2. T oi and T si and t are known by the controller.

Assumption 1 is motivated by the time invariant nature of sub-

systems’ dynamics. Combined with periodic arrival of samples,

Assumption 2 implies that Ci is able to map any t to ki by using

Eqn. (2). Hence, the estimated state x̂[ki ] on the controller side is:

x̂i [ki ] = E
[
xi [ki ]

�� Ii [ki ]] (4)

with the information set Ii [k] available at Ci as follows:

Ii [ki ] = {ki , zi [0], . . . , zi [ki ], ui [0], . . . , ui [ki − 1]} (5)

Since we are dealing with LTI systems, we assume a stationary

control law for each loop:

ui [ki ] = −Li x̂i [ki ] (6)

where Li ∈ R
mi×ni

is the state-feedback gain matrix. The scheduler

is assumed to be control-aware based on the following assumptions:

Assumption 3. The scheduler at the BS observes the content of any
packet it receives on the UL.

Assumption 4. The scheduler is aware of system parameters Ai ,
Wi , Bi , Li , T si , T

o
i ∀i .

Assumptions 3 and 4 together enable the scheduler to retain an

information set IB
i [ki ] as:

IB
i [ki ] = {ki , z

B
i [0], . . . , z

B
i [ki ], ui [0], . . . , ui [ki − 1]} (7)

with zBi [ki ] depending on a reception variable δBi [ki ] defined ana-

log to zi [ki ] and δi [ki ]. Because the BS receives data before the

controller does, δBi [ki ] ≥ δi [ki ], leading to IB
i [ki ] ⊇ Ii [ki ] ∀i,ki .

The estimation at the BS follows analog to that at the controller as:

x̂Bi [ki ] = E
[
xi [ki ]

�� IB
i [ki ]

]
. (8)

2.3 Age-of-Information
If we denote the most recent received observation by zi [si ], with
si [ki ] = sup{s ∈ N : s ≤ ki , zi [s] , ∅} the latest control step from

which a state has been received, the Age of Information ∆i [ki ] at
the controller Ci follows as:

∆i [ki ] = ki − si [ki ] (9)

As can be seen, the AoI denotes the number of elapsed control

steps since the acquisition of the latest received system state. In

contrast to existing literature on AoI, in the given case ∆i [ki ] does
not increase linearly with t due to the step-wise mapping of t to ki
given in (2). On the other hand, we argue that AoI evolves linearly

with respect to ki from control perspective. In any case, after each

successful DL reception, si is increased and the information set

Ii [ki ] is extended by zi [si ].
Similarly, if we denote the most recent non-empty observation

by zBi [mi ] withmi [ki ] = sup{m ∈ N :m ≤ ki , z
B
i [m] , ∅}, the age

of the set IB
i [ki ], that is ∆

B
i [ki ], follows as:

∆Bi [ki ] = ki −mi [ki ] (10)

It is important to emphasize that ∆Bi [ki ] ≤ ∆i [ki ]. In case of equal-

ity, i.e., Ii [ki ] = IB
i [ki ], then ∆Bi [ki ] = ∆i [ki ] holds. To avoid

visual clutter, we avoid defining further equations twice both for

the BS and Ci . The superscript (·)
B
assumes an analogue definition

for the BS of a new introduced variable. In other words, one has to

replace ∆i , x̂i , zi , with ∆B , x̂Bi , z
B
i , respectively.
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2.4 Value-of-Information
Because AoI is a variable defined in the units of control steps, we

can use it to express control variables.

Lemma1. Given the information setIi [ki ] and the age-of-information
∆i [ki ], the estimated plant state is determined by:

x̂i [ki ] =

{
xi [ki ] , if ∆i [ki ] = 0

f (∆i [ki ], Ii [ki ]) , if ∆i [ki ] > 0

(11)

with:

f (∆i [ki ], Ii [ki ]) ≜ A
∆i [ki ]
i zi [si ] +

∆i [ki ]∑
q=1

A
q−1
i Biui [ki − q] (12)

Proof. The proof is given in Appendix A. □

If ∆i [ki ] is zero, it means that the controller has been provided

the latest plant state. Otherwise, the current state estimate x̂i [k] is
recursively calculated from the most recent information received by

the controller which is zi [si ] as stated above. Thus, the estimation

error induced by the network is defined as the difference between

the true and estimated states as:

ei [ki ] = xi [ki ] − x̂i [ki ] =

∆i [ki ]∑
q=1

A
q−1
i wi [ki − q]

Lemma 2. Given the age-of-information ∆i [ki ], noise covariance
matrixWi , and system matrix Ai , the quadratic error norm can be
estimated as follows:

E
[
∥ei [ki ]∥

2
]
=

{
0 , if ∆i [ki ] = 0

д (∆i [ki ]) , if ∆i [ki ] > 0

, (13)

with:

д(∆i [ki ]) ≜
∆i [ki ]−1∑
r=0

tr
(
(ATi )

rAriWi

)
. (14)

Proof. The proof is given in Appendix B. □

Note that д : N → R is strictly increasing for any invertible

Ai and positive-definite noise covariance matrixWi . Analogously,

for ∆Bi [ki ] > 0, we define the BS counterparts of x̂i [ki ], ei [ki ] and

E
[
∥ei [ki ]∥

2
]
as follows:

eBi [ki ] = xi [ki ] − x̂Bi [ki ] (15)

x̂Bi [ki ] = f (∆Bi [ki ], I
B
i [ki ]) (16)

E

[


eBi [ki ]


2] = д(∆Bi [ki ]). (17)

Figure 3 shows the behavior of expected quadratic error norm, i.e.,

E
[
∥ei [ki ]∥

2
]
, as a functional of age. To that end, we have selected

4 type of scalar plants with A1 = 0.75, A2 = 1.0, A3 = 1.25 and

A4 = 1.5 and kept the noise covariance matrix constant atW = 1

for all of them. The black curve labeled with AoI corresponds the

∆i [ki ] which is a line with slope 1. An interesting aspect is that

for A1 = 0.75, which is a stable system, the error converges to a

finite value for infinitely large AoI. It can easily be shown by letting

∆i → ∞ and applying convergence condition of power series on

д (∆i ) from Eqn. (14).
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Figure 3: VoI defined as expectation of a quadratic esti-
mation error norm a function of AoI for an individual
sub-system i with different types of plants dynamic Ai ∈

{0.75, 1, 1.25, 1.50} (scalar system assumed for illustrative pur-
poses). Subfigure (b) zooms-in on an interval ∆i [ki ] ∈ [0, 4].

As a result, we define the value-of-information vUL/DLi in a link-

based manner. VoI is defined as a measure of uncertainty reduction

from the information set of the receiver in case of a successful

transmission. In case of an uplink packet, VoI is defined as:

vULi (t) = E

[


eBi [ki ] − eSi [ki ]



2]

= E

[


eBi [ki ]


2] (18)

with ki = ki (t) as in 2 and eSi [ki ] = 0 as the measurement error on

the sensor side which is assumed to be zero throughout this paper.
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Similarly for a DL packet:

vDLi (t) = E

[


ei [ki ] − eBi [ki ]



2]

=




x̂Bi [ki ] − x̂i [ki ]



2 (19)

Note that, vDLi (t) does not contain any non-determinism due to

Assumption 3 and Assumption 4.

3 JOINT SCHEDULING DESIGN
Due to resource constraints on both hops, centralized scheduler at

the BS prioritizes sub-systems based on performance metrics. We

define two schedulers utilizing AoI and VoI as metrics. They follow

a joint design for uplink and downlink.

The fact that we assume equal channel qualities among loops

allows us to distinguish between two cases: (i) Uplink is the bot-

tleneck of the network, i.e., RUL ≤ RDL and (ii) Downlink is the

bottleneck, i.e., RDL ≤ RUL. In the first case, all uplink transmis-

sions received by BS are forwarded as soon as the data reception is

completed. Hence, the DL/UL scheduling problem can be reduced

to a single-hop problem, where BS and the Ci nodes are logically

merged together. In the second case, downlink hop is limiting the

network throughput, therefore, joint scheduling problem for both

links must be considered.

Remark 1. We implicitly assume that every scheduled transmission
is successful. To ensure this, cellular networks typically employ re-
transmission techniques, e.g., hybrid automatic repeat request. We
note that (heterogeneous) packet loss probability can be readily ac-
commodated into the scheduler design by weighting respective AoI or
VoI metrics by the expected packet success probability.

3.1 Age-of-Information Scheduler
As the name suggests, AoI scheduler aims to prevents staleness

of information sets at the controller side. The targeted problem is

formalized as:

min

πUL(t ),πDL(t )
lim sup

T→∞

1

T

T−1∑
t=0

N∑
i=1

∆i (t) (20a)

subject to

N∑
i=1

πUL

i (t) ≤ RUL, (20b)

N∑
i=1

πDL

i (t) ≤ RDL (20c)

To solve the above problem, we can leverage results for single-

hop AoI optimization [6], according to which greedy scheduling

is in fact age-optimal if all uplink transmissions have the same

success probability. As this is true under our assumptions, where

all transmissions are always successful, we can make use of the

results to extend towards the two-hop case, which we do in the

following Lemma:

Lemma 3. Assume that RUL < RDL and that the sequence of uplink
schedules {πU L(1),πU L(2), ...} is age-optimal for the uplink hop.
Then, by creating a sequence of downlink schedules as πUL(t) =
πUL(t − 1) ∀t ≥ 2, the combination of uplink and downlink sequence

is age-optimal for the two-hop case. Further, assuming RUL ≥ RDL

and that the sequence of downlink schedules {πDL(2), πDL(3), ...} is
age-optimal for the downlink hop, we can create a sequence of uplink
schedules as πUL(t) = πDL(t + 1) such that the combination of both
sequences is age-optimal.

Proof. Consider the case of RDL < RUL and observe that if

πUL(t) satisfies (20b), it also satisfies (20c). Consider the case that

πDL(t) , πUL(t − 1). By replacing it with π̃DL(t) := πUL(t − 1)

we achieve that δi [ki (t − 1)] = 1 ∀i : πUL

i (t − 1) = 1. Hence, the

information set
˜Ii [ki (t)] ⊃ Ii [ki (t)], yielding s̃i [ki (t)] ≥ si [ki (t)]

and ∆̃i [ki (t)] ≤ ∆i [ki (t)], respectively.
Now assume that RDL ≥ RUL and observe that if πDL(t) satis-

fies (20c), it also satisfies (20b). Consider the case that πUL(t) ,
πDL(t + 1). By replacing it with π̃UL(t) := πDL(t + 1) we achieve
that δi [ki (t)] = 1 ∀i : πDL

i (t + 1) = 1. Hence, again the infor-

mation set
˜Ii [ki (t + 1)] ⊃ Ii [ki (t + 1)], yielding the same result,

respectively. □

The intuitive explanation of the Lemma is the following: Assum-

ing that the uplink resources form a bottleneck, anything that has

been transmitted on the uplink can directly be forwarded on the

downlink. Choosing not to transmit artificially adds an increased

AoI that can be avoided. On the other hand, if the downlink re-

sources form a bottleneck, any transmission on the downlink can

be matched by fetching the corresponding sensor value one step

before. Not doing so again artificially adds an increased AoI. In both

cases, it is sufficient to know the optimal decision for only one of

the hops, which has been proven to be the greedy solution in [6].

3.2 Value-of-Information Scheduler
We propose an application-aware scheduling algorithm that is

jointly allocating resources on both hops. The scheduler obtains the

value of each UL and DL packet as a function of age-of-information

at each hop and aims to minimize the overall quadratic network
induced error norm in expectation:

min

πUL(t ),πDL(t )
lim sup

T→∞

1

T

T−1∑
t=0

N∑
i=1
E
[
∥ei [ki (t)]∥

2
]

subject to

N∑
i=1

πUL

i (t) ≤ RUL,

N∑
i=1

πDL

i (t) ≤ RDL

(21)

The scheduling problem in (21) is a combinatorial optimization

problem and not solvable in polynomial time. By applying dynamic

programming, it can be solved for a given finite horizon. However,

finding the global optimal solution of (21) is computationally very

expensive, and is out of scope for this paper as it is not applicable

for dynamic schedulers. Instead, we accommodate greedy solution
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for both links separately where we maximize the transmitted value-

of-information at single slot on the uplink as:

max

πUL(t )

N∑
i=1

πUL

i (t) · vULi (t)

subject to

N∑
i=1

πUL

i (t) ≤ RUL,

(22)

and on the downlink as:

max

πDL(t )

N∑
i=1

πDL

i (t) · vDLi (t)

subject to

N∑
i=1

πDL

i (t) ≤ RDL.

(23)

Our solution provides an upper bound for the optimal cost function

of the problem (21). In Section 4, we show that even the upper

bound by scheduling based on VoI outperforms the optimal AoI

scheduling.

4 NUMERICAL EVALUATION
In this section, we present a simulative analysis and comparison of

the schedulers defined in Section 3.

4.1 Simulation Setup
We simulate an exemplary set-up with heterogeneous scalar LTI

sub-systems, where cl = 4 classes have different state matricesAi ∈

{0.75, 1, 1.25, 1.5}. The number of sub-systems N (j)
corresponding

to a plant class j is assumed to be equal, as we vary the total number

of sub-systems N ≜
∑
cl

j=1 N
(j)
. The state-feedback gain matrix is

chosen according to deadbeat control strategy Li = Ai [15]. Input
matrix is equal among loops Bi = 1.0, ∀i ∈ {1, . . . , N }. System

noise is given by wi ∼ N(0, 1). For the sake of simplicity, we

assumed all transmissions to require single time-frequency resource,

i.e., rULi = rDLi = 1. We consider equal sampling period for all

control loops, i.e., T si = 10, ∀i ∈ {1, . . . , N }. Number of downlink

resources is chosen as RDL = 3 and number of uplink resources is

varied between RUL ∈ {1, 2, 3, 6, 9}. Simulation run-time Tsim is

20000 transmission slots.

As the performance indicators, we use the average AoI per con-

trol loop, i.e., ∆, to represent information staleness and the Inte-

grated Absolute Error (IAE) per loop, i.e., Σe , to quantify the uncer-

tainty in the controlled process. ∆ and Σe are defined as follows:

∆ =
1

N

1

Tsim

N∑
i=1

Tsim−1∑
t=0

∆i (t) (24)

Σe =
1

N

N∑
i=1

Tsim−1∑
t=0

∥ei [ki (t)]∥ (25)

4.2 Results and Evaluation
First, we investigate the response of the performance metrics to

varying number of sub-systems and resources in the network.

Figure 4 illustrates the average age-of-information per control

loop as N increases for different amounts of available resources
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VOI 3:3
AOI 3:3

Figure 4: Average AoI per sub-system as a function of the
total number of syb-systems N , for two configurations of
UL/DL resources: RUL : RDL = {1 : 1, 3 : 3}.

RDL = RUL = 3 and RDL = RUL = 1. The figure presents re-

sults for a neutral DL/UL configuration with equal amounts of

resources, where neither hop is a bottleneck. Given N = 20 and

RUL = RDL = 3, both type of schedulers provide similar perfor-

mance in terms of ∆. As N increases linearly, we observe for the AoI

scheduler that the average age per loop is increasing linearly as well.

This is expected since AoI scheduler treats all type of plants equally

fair and thus information staleness in the network becomes directly

proportional to the total amount of resources available in the net-

work. A linear dynamics is also observed for the RDL = RDL = 1

case but with a higher slope, since less network resources are avail-

able.

On the other hand, the effect of the unfair treatment of sub-

systems by the VoI scheduler becomes evident from the drastic

increase of ∆ after N = 20 and N = 80 for RUL = RDL = 1 and

RUL = RDL = 3 configurations, respectively. This coincides with

the average AoI per loop to exceed one, i.e., ∆ > 1 being consistent

with Figure 3b. From N = 40 on for the RUL = RDL = 1 scenario

and from N = 100 on for the RUL = RDL = 3 scenario, the average

AoI ∆ goes to infinity. This follows from the fact that E
[
∥ei [ki ]∥

2
]

converges for plants with Ai = 0.75. It can easily be shown by

letting ∆i [ki ] → ∞ and applying convergence condition of power

series on д (∆i [ki ]) from Eqn. (14). As a result of the convergence

property, plants i with Ai = 0.75 never get to transmit as they are

dominated by non-converging type of plants with Ai ≥ 1. Now, let

us have a look at how Σe is affected by an increase of N . In Figure 5

we illustrate how both schedulers perform with respect to reducing

the network induced error per loop. From the figure, it is evident

that VoI scheduler outperforms the AoI scheduler in Σe metric

even though the fairness in age-of-information was not delivered.

As we can see, with increasing inadequacy of available resources

the gap between the AoI- and VoI scheduler expands faster. This

is caused by the non-linear dynamics of network induced error

with increasing age-of-information, as visible in Figure 3a. Note

that, having three uplink and three downlink resources provides

triple amount of throughput in average than having one resource

in uplink and downlink each. Therefore, in Figure 5 the resulting ∆

and Σe at N = 120 with RUL = RDL = 3 is very close to the ∆ and
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Figure 5: Integrated Absolute Error per sub-system as a func-
tion of the total number of sub-systems N , for two configu-
rations of UL/DL resources: RUL : RDL = {1 : 1, 3 : 3}.
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Figure 6: Sensitivity analysis of the averageAoI to theUL/DL
configuration, with the ratio RUL

RUL on the x-axis. The number
of DL resources is kept fixed RDL = 3, and the number of
UL resources is varying RUL ∈ {1, . . . , 9}. Left part of the plot
(RUL < 3) represents an UL bottleneck scenario, while the
right part (RUL > 3) represents a DL bottleneck scenario.

Σe values at N = 40 with RUL = RDL = 1. This is also the case for

N = 20 and N = 60 in Figure 4.

We further investigate the sensitivity of the selected perfor-

mance indicators to variations in UL/DL resource configuration, by

increasing the number of uplink resources RUL for fixed RDL. This
illustrates a shift of the resource bottleneck from UL to DL. Figures

6 and 7 show ∆ and Σe for RDL = 3 and RUL ∈ {1, 2, 3, 6, 9}. We

select N = 20 and N = 120 as representation of low and high

resource demand scenarios, respectively.

For the low demand case with N = 20, both schedulers produce

similar results due to resource abundance in the network. As we

cut UL resources down, RUL ∈ {2, 1}, the resulting performance

in terms of both indicators decreases due to lower throughput

provided. Adding more resources on the uplink, i.e., RUL ∈ {3, 6, 9}

does not have any effect since all sub-systems are provided sufficient

transmission opportunities.
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Figure 7: Sensitivity analysis of the average quadratic error
norm to the UL/DL configuration, with the ratio RUL

RUL on the
x-axis. The number of DL resources is kept fixed RDL = 3,
and the number of UL resources is varying RUL ∈ {1, . . . , 9}.
Left part of the plot (RUL < 3) represents an UL bottleneck
scenario, while the right part (RUL > 3) represents a DL bot-
tleneck scenario.

For the high demand scenario with N = 120, we observe that

VoI scheduler succeeds at reducing average error per loop and

fails at ensuring information freshness at the controller. As long

as downlink is the bottleneck, i.e., RUL ≥ RDL, AoI scheduler does
not perceive any performance gain by an increase of RUL. That
follows from the definition of AoI scheduler in Section 3.1. Since

age shows a deterministic behavior, no additional resources are

used on the UL unless the packets are going to be forwarded in the

next transmission opportunity. However, VoI benefits from every

additional UL resource since BS is able to reduce the uncertainty of

a sub-system at the BS. Thus, it gets the chance to prefer somemore
valuable packets over the ones carrying lower valued information

by examining the packet content. As a result, we observe an ongoing

but converging decrease in Σe as we move from RUL = 1 towards

RUL = 9. Similarly, by virtue of additional UL resources, the loops

which never get the opportunity before, find the chance to transmit.

Hence, the average age ∆ gets a finite value again for N = 120 and

RUL ∈ {6, 9}.

5 RELATEDWORK
Cross-layer network design [1, 11, 12, 18] has attracted researchers

by virtue of providing higher quality-of-control to networked con-

trol applications. Control-aware MAC strategies have been pro-

posed for contention-based access in [4, 26], and for contention

free-access in [14, 24, 25, 27]. In [27], authors study the central-

ized scheduling problem with multiple control loops closed over

a shared communication channel. They assume the injection of

error reports into control traffic in wired industrial networks. Each

sensor reports the estimation error to the scheduler. Free network

resources are distributed among sub-systems starting from the ones

with the maximum error. In [25] authors compare control-aware

scheduling to control-unaware schedulers in a single-hop cellular

networked control systems with varying channel qualities among
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loops. They show that, the proposed control-aware scheduler out-

performs the control-unaware schedulers such as proportional fair

and maximum-throughput with respect to quality-of-control. [24]

studies one-shot joint scheduling and estimation problem under

resource constraints. In their work, they consider a network shared

by multiple sensor and estimator pairs. Given the probabilistic

distributions of individual states, centralized scheduler chooses a

single sensor-estimator pair to transmit. They show that it is glob-

ally optimal to choose the maximum quadratic norm as scheduling

and mean-value estimation as the estimation strategy. As the name

one-shot suggests, the work focuses only on a single transmission

decision and does not consider application-dependent propaga-

tion of estimation error over multiple time-steps. [14] considers

a two-level scheduling problem, i.e., sensors drop their packet lo-

cally based on a predefined error threshold value and a centralized

scheduler allocates resources probabilistically among the content-

ing control loops. The scheduler collects local error information

from each control loop as in [27] and calculates channel access

grant probabilities based on the reported value.

The cross-layer design problem has been generalized by the

introduction of the concept of the AoI [7]. AoI has defined the notion

of information freshness, uniform for all applications. Many recent

works have taken on the problem of scheduling with AoI-based

utility [3, 5, 8, 23]. Most relevant for cross-layer design, Kosta et
al. [10] introduce the term value-of-information (VoI), and study

the case with its non-linear behavior. In this work, we go one

step further and define the VoI as a functional of age and system

dynamics of individual control applications. For the joint DL/UL

scheduling, typical for cellular network scenarios, we compare VoI

and AoI scheduling approaches with respect to the resulting NCS

performance.

6 CONCLUSIONS
Age-of-Information is a newly introduced measure to capture infor-

mation freshness from the application layer perspective. It has been

used for data scheduling in multi-user scenarios. In the context of

two-hop networked control systems, we were able to show that

evolution of uncertainty in the system over time is highly depen-

dent of AoI and system parameters that are application specific. We

were able to show that using the VoI as scheduling metric leads to

reduced estimation error in the stochastic process than providing

regular updates to each sub-system.
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A PROOF OF LEMMA 1
Proof of Lemma 1. Given ∆i [ki ] > 0 as in (11), it holds that:

x̂i [ki ] = E [xi [k] | Ii [ki ]]

= E [Aixi [ki − 1] + Biui [ki − 1] +wi [ki − 1] | Ii [ki ]]

= E
[
Ai (Aixi [ki − 2] + Biui [ki − 2] +wi [ki − 2])

+ Biui [ki − 1] +wi [ki − 1] | Ii [ki ]
]

= E

[
A
∆i [ki ]
i zi [si ] +

∆i [ki ]∑
q=1

A
q−1
i wi [ki − q]

+

∆i [ki ]∑
q=1

A
q−1
i Biui [ki − q]

�� Ii [ki ]]
= A

∆i [ki ]
i zi [si ] +

∆i [ki ]∑
q=1

A
q−1
i Biui [k − q]

□

B PROOF OF LEMMA 2
Proof of Lemma (2). Given ∆i [ki ] > 0:

E
[
∥ei [ki ]∥

2
]
= E

[
(ei [ki ])

T ei [ki ]
]

= E

©­«
∆i [ki ]∑
r=1

Ar−1i wi [ki − r ]
ª®¬
T ∆i [ki ]∑

r=1
Ar−1i wi [ki − r ]


= E


∆i [ki ]∑
r=1

(wi [ki − r ])T
(
Ar−1i

)T ∆i [ki ]∑
r=1

Ar−1i wi [ki − r ]


(1)

= E
[ ∆i [ki ]∑

r=1
(wi [ki − r ])T (Ar−1i )TAr−1i wi [ki − r ]

]
(2)

=

∆i [ki ]∑
r=1

tr((Ar−1i )TAr−1i Wi )

=

∆i [ki ]−1∑
r=0

tr((Ari )
TAriWi ),

□

whereWi = E
[
wi [ki − r ](wi [ki − r ])T

]
is the noise covariance

matrix. In step (1) it was used that noise vectors are i.i.d. and hence

uncorrelated and step (2) holds because expectation of a quadratic

norm of a random vector x with covariance matrixC is E
[
xTAx

]
=

(E[x])T A E[x] + tr(AC).
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