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Abstract

Translational medicine describes the path from basic biomedical research to health

improvement for the general public. The focus of this thesis is on bridging the gap

between wet lab-focused views and clinical application across ten studies with three

university hospitals by employing tailored computational tools and statistical methods. In

particular, four topics in translational medicine research were thoroughly investigated.

First, two molecular classifiers as means towards unbiased diagnosis were developed. To

differentiate two inflammatory skin diseases a novel classifier was validated on disease

subtypes. To diagnose asthma a novel molecular classifier was established and validated by

means of an independent patient cohort using penalized regression modeling.

Second, to standardize clinical characterization, serum proteins as easily accessible and

minimally invasive markers were modeled jointly with clinical attributes. For disease

monitoring and patient prognosis, optimized, regularized and consensus regression models

were built.

Third, the application of linear mixed effects models to adjust for inter-individual variability

in human gene expression data was established. This variability masks common, underlying

disease characteristics in complex phenotypes.

Finally, the characterization of human T helper cell subsets was improved by identifying

subset-specific molecular markers. Those markers might advance the insights into the

function of T helper cell subsets within the human immune system.

In summary, the analyses improved diagnosis, monitoring and understanding of human

diseases by means of statistical data integration. The work on the molecular disease

classifier for inflammatory skin diseases is extended for use in local practices so might

impact daily clinical diagnosis in dermatology. To identify possible, further benefits for

the patients the remaining computational results still need to be validated in the labs and

clinics.
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Zusammenfassung

Translationale Medizin beschreibt den Pfad beginnend bei biomedizinischer Grundlagen-

forschung hin zur Verbesserung der allgemeinen Gesundheit der Bevölkerung. In insgesamt

zehn Studien in Kollaboration mit drei Universitätskliniken lag der Fokus dieser Arbeit

darauf, die Lücke zwischen experimentellen Ergebnissen und klinischer Anwendung zu

schließen, indem maßgeschneiderte bioinformatische und statistische Methoden angewendet

wurden. Insbesondere vier Themen der Forschung in der translationalen Medizin wurden

untersucht.

Zunächst wurden zwei molekulare Klassifikatoren entwickelten, um Krankheiten objektiv

zu diagnostizieren. Zur Unterscheidung zweier entzündlicher Hauterkrankungen wurde

ein neuartigen Klassifikator mithilfe von Krankheitssubtypen validiert. Zur Diagnose von

Asthma wurde ein neuer molekularer Klassifikator etabliert und mithilfe einer unabhängigen

Patientenkohorte validiert.

Als Zweites wurden zur Standardisierung der klinischen Charakterisierung von Patienten

Serumproteine als minimalinvasive Marker gemeinsam mit klinischen Attributen modelliert.

Für die Überwachung von Krankheiten und der individuellen Prognose wurden optimierte,

regularisierte und konsensusbasierte Regressionsmodelle entwickelt.

Als Drittes wurde die Anwendung linearer gemischter Modelle zur Korrektur interindivi-

dueller Variabilität in humanen Genexpressionsdaten etabliert. Diese Variabilität überlagert

zugrunde liegende Krankheitsmerkmale in komplexen Phänotypen.

Abschließend wurde die Charakterisierung von Subpopulationen menschlicher T-Helferzellen

verbessert, indem subpopulations-spezifische molekulare Marker identifiziert wurden. Diese

Marker könnten die Erkenntnisse über die Funktion von T-Helferzell-Subpopulatio- nen im

menschlichen Immunsystem vertiefen.

Zusammenfassend verbesserten die auf statischer Datenintegration basierenden, analy-

tischen Ergebnisse die Diagnose, Überwachung und das Verständnis menschlicher Erkran-

kungen. Der molekulare Klassifikator für entzündliche Hautkrankheiten wird momentan

in niedergelassenen Arztpraxen getestet. Dies könnte die tägliche klinische Diagnose in

der Dermatologie grundlegend verändern. Um weitere mögliche Vorteile für Patienten

zu ermitteln, sollten auch die weiteren Forschungsergebnisse experimentell und klinisch

validiert werden.

vii





List of contributed articles

The thesis is mainly based on the results published in the following peer-reviewed publications

or on currently prepared manuscripts. The publications are listed according to the chapters

in which their content is discussed. The specific contributions of the thesis author in each

study is described in detail in section 1.6. (* = equal contribution)

Chapter 3

• N. Garzorz-Stark*, L. Krause*, F. Lauffer, A. Atenhan, J. Thomas, S.P. Stark, R.

Franz, S. Weidinger, A. Balato, N.S. Mueller, F.J. Theis, J. Ring, C.B. Schmidt-Weber,

T. Biedermann, S. Eyerich and K. Eyerich: A novel molecular disease classifier for

psoriasis and eczema. Experimental Dermatology (2016).

• K. Milger, J. Götschke, L. Krause, P. Nathan, F. Alessandrini, A. Tufman, R.

Fischer, S. Bartel, F.J. Theis, J. Behr, S. Dehmel, N.S. Mueller, N. Kneidinger and

S. Krauss-Etschmann: Identification of a plasma miRNA biomarker-signature for

allergic asthma: a translational approach. Allergy (2017).

Chapter 4

• L. Krause, V. Mourantchanian, K. Brockow, F.J. Theis, C.B. Schmidt-Weber, B.

Knapp, N.S. Mueller and S. Eyerich: A computational model to predict severity of

atopic eczema from 30 serum proteins. Journal of Allergy and Clinical Immunology

(2016).

• V. Baghin*, L. Krause*, S. Eyerich, K. Eyerich, F.J. Theis, N.S. Mueller, F. Lauffer

and N. Garzorz-Stark: Predicting persistence of atopic eczema in children using

serum proteins and clinical data. - in preparation -

• K. Dehlke*, L. Krause*, F.J. Theis, U. Klingmüller, N.S. Mueller and K. Hoffmann:

Prediction of individualized liver regeneration capacity after liver resection based on

cytokine and growth factor profiling. - in preparation -

ix



Chapter 5

• F. Lauffer, M. Jargosch, L. Krause, N. Garzorz-Stark, R. Franz, S. Roenneberg, A.
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Chapter 1

Introduction

Inferring knowledge from data is the general aim in computational biology and for many

scientific endeavors. Data is often plentiful available but data alone does not help to

answer the urging questions around human health and disease currently posed in the

field of translational medicine. To transform data to knowledge, computational tools,

statistical methods and custom-tailored data integration concepts are needed. By analyzing

data jointly, in an integrative manner, and not consecutively or in parallel, the gain in

knowledge is increased since a more complete picture is investigated. In this thesis, available

computational tools and statistical methods are tailored to the clinical or biological question

at hand to enable statistical integration of different biomedical data types, from molecular

measurements to clinical attributes. The aim of statistical data integration in the thesis

is to improve diagnosis and characterization of human diseases by inferring robust and

interpretable computational results.

In this thesis, data integration is defined in terms of statistical analysis of paired biological

and clinical data and the subsequent interpretation. If large amounts of heterogeneous data

are collected for the same individual, it was analyzed jointly using statistics to infer interplay

between at least two data types. Data types are clinical attributes or molecular markers

and measurements where understanding their relationships is crucial for translational

medicine research. To perform statistical data integration, first data is cleaned up and

transformed to a usable format for analysis but this is not the main focus like in data

engineering. In contrast to mechanistic models which try to infer how processes are related

and draw causal relationships, the focus of this thesis is in a statistical description of the

interplay of measurements and data types.

In translational medicine the knowledge which should be inferred is usually centered around

a specific clinical or biological question. The questions originate from physicians and

biologists. So, during the whole scientific process, computational biologists, work hand in
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CHAPTER 1 INTRODUCTION

hand with collaboration partners to integrate the available data and interpret the results

in light of the originally asked question. Finally, a way of transporting the insights to

physicians through visualizations and discussions is required so that integrated results can

be interpreted correctly for the benefit of the patients. Pursuing to increase the benefit

for the individual patient and the general public is at the core of translational medicine

research.

1.1 Translational medicine and its data

Translational medicine is a broadly used term in the current literature describing the path

from basic biomedical research to health improvement for the general public. In the year

2000 the term was first used in a publication and steadily increased since then up to over

4,600 papers dealing with this topic in 2013 (Cohrs et al., 2015). What exactly is understood

by translational medicine or translational research is actively discussed. A recent review

summarized 33 different definitions of translational research and the author clustered

them into three categories each having one originating paper which presented the definition

idea first (Fort et al., 2017). The three categories include the “gap” model initiated by

Sung et al. (2003), the “continuum” model from Khoury et al. (2007) and a “mixed” model

by Woolf (2008).

Computational biologists focus on bridging the gap between wet lab-focused views and

clinical application using analyses to improve understanding, diagnosing and monitoring of

human diseases. This is described as the first gap or obstacle of translational medicine

by Sung et al. (2003) who generalized the difficulty to the transfer of new insights gained

in the laboratory to first applications in humans. However, that is not the entire picture

of translational medicine. The second gap manifests in using results of clinical studies in

the daily clinical practice (Sung et al., 2003). To fill the second gap different methods

and approaches are needed. The aim of translational research is to bridge both gaps, also

according to ideas discussed at a meeting at the Institute of Medicine, which is now called

the National Academy of Medicine (The National Academies of Science, Engineering and

Medicine, 2015). These two gaps also describe the different views between basic scientists

and public health agencies on translational research. Basic scientists often focus on the first

gap, from bench to first testing in humans (Hörig et al., 2005). Public health agencies, on

the other hand, believe that translation also includes the next steps, from clinical testing

to health benefit for the whole population (Centers for Disease Control and Prevention,

2007).
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1.1 TRANSLATIONAL MEDICINE AND ITS DATA

The continuum model was developed later and describes a path through the translational

continuum rather than gaps and extends the previous idea. The second gap in the model

by Sung et al. (2003) is split into one part focusing on the development of evidence-based

guidelines and another which describes the step from these guidelines to clinical practice.

Khoury et al. (2007) extended the model by a fourth part dealing with the impact of

changing clinical practice in the real world. The translational medicine model described

by Woolf (2008) is a mix of both definitions. All phases of translational medicine are

important. However, this thesis only shows work on the first step in translational research:

data analysis and statistical modeling in the intersection between laboratory work and

investigations in the clinics.

Translational medicine is a data-rich field (Hey et al., 2009). Data used differs from gene

expression, genomic variants to electronic health records. This thesis focuses on biomedical

data measured in in vitro cell lines or human subjects acquired by the collaborators (Fig.

1.1). In this thesis, access to two broad categories of data was provided, both important

for translational medicine: molecular data and clinical attributes.

data in translational medicine analyzed in this thesis

clinical attributes molecular data

gene expression

in vitro
cell lines

human subjects

anamnesis
physical
examination

histology

blood samples

biopsy

 fo
r i

nf
la

m
m

at
or

y
sk

in
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is
ea

se
s

mRNAmicroRNA

collected by clinicianpatient characteristics

objective
- sex
- height
- BMI
- ...

- family history
- personal disease 
   history
- ...

self-reported

secreted proteins

blood/biopsy
of human subjects

fo
r a

ll 
di

se
as

es

IL-4 cell

IL-22

IFNγ

Fig. 1.1 – Biomedical data analyzed in this thesis. Data in translational medicine
studies investigated in this thesis consist of clinical attributes and molecular data. For human
subjects, clinical attributes are both patient characteristics and attributes collected by the
clinician. Blood is routinely drawn for all investigated diseases and for inflammatory skin
diseases biopsies are taken. Molecular data consist of measurements of gene expression and
secreted proteins performed in blood or biopsies of patients or in in vitro cell lines.
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In routine medical practice, physicians collect a lot of information. This information

consists of medical history and clinical attributes which are noted during anamnesis and

physical examination (Fig. 1.1). The available information also often contains blood

samples which are collected during physical examinations. In the field of dermatology

taking biopsies of the involved skin for histological analysis is also part of the standard

procedure. All of these data types are routinely stored in hospitals. Due to data security

reasons and disjoint systems, the data stored in hospitals is yet not routinely available

for computational analysis but only through close collaboration with clinical partners.

With the help of collaboration partners, the work presented in this thesis always started

working from these routinely stored data but integrated further information gained through

molecular and clinical phenotyping.

Molecular data is either measured in the tissue of interest, e.g. in biopsies of lesional skin

of inflammatory skin diseases or respective tissue from surgical procedures, in blood or in

in vitro cell lines (Fig. 1.1). Even though the involved tissue might bear more information,

the blood is readily accessible, routinely collected and serves as a momentary state of the

patient’s condition. Molecular data is an umbrella term; the studies in this thesis only

contain data on mRNA and micro RNA levels, secreted proteins and blood test results.

Molecular data is assumed to be objective quantifications, with machine limitations, of

true values.

Besides molecular data, clinical attributes fall into the second category of data analyzed

in this thesis. There are at least two kinds of clinical attributes: attributes collected by

clinicians who examine a patient and self-reported patient characteristics often obtained by

questionnaires (Fig. 1.1). Examination results of doctors can depend on their experience

and how they evaluate subjective criteria. However, critical scores like disease severity

scores are assessed following a detailed procedure minimizing inter-doctor variability. For

example, the SCORAD (SCORing Atopic Dermatitis) is a method to determine the severity

of atopic eczema (Schallreuter et al., 1993). After assessing the variability in scoring results

the scheme was further optimized to increase consistency (Kunz et al., 1997). The other

part of clinical attributes, namely patient characteristics, include objective attributes like

height, BMI and sex. Also personal disease and family history are important factors. The

latter ones rely on what the patient reports and remembers correctly.

The depth and completeness of clinical and molecular data depends on the study set up, thus

the kind of cohort. There are different resources for clinical and molecular information:

longitudinal and national cohorts, local biobanks and investigator driven case-control

studies. In longitudinal, population-based studies participants are recruited during a

4



1.2 THE ROLE OF THE IMMUNE SYSTEM IN COMPLEX PHENOTYPES

specific time frame and monitored over years. Local biobanks follow a different recruitment

strategy. They are typically associated to a local hospital and recruit patients as they come

to the clinics. As a consequence they grow permanently. Investigator-driven case-control

studies follow several approaches to find suitable patients. Investigators can check whether

local biobanks contain patients who fulfill the inclusion criteria. Another option is to

actively enroll patients in the study solely based on its specific criteria. Biobank Biederstein

is a local, Munich example situated at the Clinic of Dermatology and Allergology which

stores biological samples left over after routine investigations (Quaranta et al., 2014a).

Regardless of the specific cohort used, both molecular and clinical data is analyzed to

find markers that help diagnose and monitor patients. Choosing the right computational

method to detect important features among all measured ones is a challenge. Moreover,

careful data integration using the right statistical tools can create a deeper comprehension

of the underlying pathogenesis.

1.2 The role of the immune system in complex phenotypes

Why do some people get sick and others not? The immune system plays a crucial role

in answering this question. The immune system helps every day to fight against pathogens

like viruses, bacteria or fungi. One part of the immune system is the innate immune system,

which is already fully established when humans start their lives as newborns and is stable

throughout their lives. This stability is used by pathogens to find ways to overcome it.

Therefore a second line of defense against pathogens has evolved, the adaptive immune

system. In contrast to the innate immune system, the adaptive immune system is trained

throughout life. It is responsible for keeping information of pathogens which were already

encountered in order to react faster when it meets them again.

An important part of the adaptive immune system are T helper cells (Th cells). By

secretion of small proteins which are called cytokines, they organize adaptive immune

responses. The body is not only attacked by one kind of pathogen but by very diverse

pathogens. This is why Th cells have specialized to accomplish various tasks which leads

to efficient defense against those damaging invaders. It was shown that there are at least

seven Th cell subsets in humans with specific functions in the human body: Th1, Th2,

Th9, Th17, Th22, T follicular helper cells (Tfh), regulatory T cells (Tregs) (Eyerich and

Zielinski, 2014).
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CHAPTER 1 INTRODUCTION

Recently, single cell biology has increasing impact in improving the understanding of the

immune system. Wong et al. (2016) analyzed T cell trafficking and important functional

markers in humans. Through mass cytometry analysis they showed that T cell subsets

defined in mouse models cannot directly be associated to human subsets (Wong et al.,

2016). Zielinski et al. (2018) used this exciting data set (Wong et al., 2016) to discuss new

analytical approaches for high dimensional data in single cell immunology. Hoppe et al.

(2016) applied live imaging of single cells to understand haematopoiesis and challenged

previous models of early myeloid lineage choice. Angelidis et al. (2019) investigated

transcriptional and cell type composition changes in lung tissue of young and old mice.

Lung tissue includes many immune cells and they showed that the relative amount of

immune cells was higher in older mice.

Before the immune system has to take action, pathogens have to break through the first

barrier of defense, epithelial surfaces such as skin, lung and gut. The skin, the biggest

organ, is also home to Th cells, hosting almost twice as many Th cells compared to blood

(Clark et al., 2006). These Th cells belong to different subsets. If the balance of Th cells

subsets is distorted, inflammatory skin diseases can arise. In patients suffering from

psoriasis an imbalance towards more Th1, Th17 and Th22 cells compared to Th2 cells

was observed in the lesional skin (Nestle et al., 2009). In contrast, in patients with atopic

eczema more Th2 cells were detected in affected skin in relation to Th1 cells (Bieber, 2008).

Often percentages of specific subsets are compared to gain insight into disease pathogenesis

(Zhan et al., 2018). However, psoriasis and atopic eczema are not only defined by the Th

cell imbalance, but by several more factors, which makes them multifactorial, complex

diseases.

Most human diseases do not have a single cause, but have a complex phenotype and

pathogenesis which is entangled with the immune system’s activity. A better understanding

of underlying molecular mechanisms and immune cell regulations in complex diseases could

lead to development of better treatment or diagnostic strategies. Translational medicine

research helps providing these insights, also by performing biomedical data integration

across all levels of information.

1.3 Challenges in translational medicine

Translational medicine is a promising field which can lead to improvement of diagnosis

and treatment of individual patients. Some challenges of the field were identified. Here,

each challenge is described in detail, solutions introduced by others are presented and
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problems of these solutions, if they exist, are mentioned. The following challenges

are described: challenges in compositions of clinical case-control cohorts, challenges in

clinical characterization and monitoring of patients, challenges when investigating complex

phenotypes and the challenge of finding laboratory equivalents to test hypothesis in

translational medicine research.

1.3.1 Composition of clinical case-control cohorts

One challenge is the composition of clinical case-control cohorts in which translational

medicine discovery studies are performed. Most volunteers taking part in clinical research

studies are recruited for case cohorts in local hospitals or practices which leads to a

regional, environmental bias (Andersen, 1995; Rattay et al., 2013). Especially, recruitment

in hospitals can confound research results since patients are more severely affected or need

special treatment if they are referred to by their local practitioner (Ommen et al., 2007).

Selection of control cohorts should follow several principles according to Wacholder et al.

(1992). One is the “study base principle”. It describes that cases and controls should

have the same context, exposure and risks. Another principle is the “comparable accuracy

principle” which implies that the degree of accuracy of cases and controls should be the

same in measuring the exposure of interest. Recall or information bias distorts the equity

in accuracy between cases and controls. Recall bias might especially be present if the

study assesses the exposures retrospectively due to the possibly different perception of the

importance of exposures by healthy and diseased individuals (Mann, 2003; Song and Chung,

2010). Instead of following the principles by Wacholder et al. (1992), control cohorts are

often biased. They usually include volunteers available for recruitment and are generally

not sampled following the same procedure as the cases were (Mann, 2003). In summary,

small clinical case-control cohorts, are not representative of the population but rather a

sub-selection biased on availability and consent (Mann, 2003). Moreover, researchers may

not have access to an independent validation cohort, so they evaluate trained models again

on the same data set which might lead to non-representative findings (for example Thijs

et al. (2015b)). The number of studied individuals ranges from around ten to hundreds to

almost 500,000 in latest genome wide association studies.

The ideal solution to overcome the problem of biased cohorts are prospective longitudinal

studies. The key idea is to establish an unbiased cohort by including a large study

population in a specific region or multiple regions during a recruitment period and follow

the participants over time. Regular medical examinations and questionnaires are part

of most prospective longitudinal cohorts. German examples are the GINI (von Berg
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et al., 2003) and LISA (Heinrich et al., 2002) cohorts, two prospective, longitudinal birth

cohorts assessing the influence of environmental factors on the immune system and allergies.

GINI included 2,000 infants and for LISA 3,000 newborns were recruited. Prospective,

longitudinal studies give unique possibilities to understand disease environment interactions

and are good for interpretation. Yet, they are time consuming and expensive due to the

need of following the participants over a long period of time (Cotter et al., 2005). There

are also population-based cohorts like KORA (“Kooperative Gesundheitsforschung in

der Region Augsburg”), the UK Biobank or the German national cohort (NAKO) which

provide a large unbiased study population. KORA recruited since 1984 around 18,000

participant living in the Augsburg region (Holle et al., 2005). Since 2004, also biological

samples have been gathered and stored to perform genetic-epidemiological research. UK

Biobank started in 2006 and included 500,000 individuals aged between 40 and 69 and

follows them over 30 years (Sudlow et al., 2015; Bycroft et al., 2018). Biological samples

are linked to electronic health records to investigate the genetic and life-style risks for

human diseases. NAKO started in 2015 and aims to recruit 200,000 participants aged

between 20 and 69 years (NAKO e. V., 2019). In January 2019, 194,426 participants

have already registered (NAKO e. V., 2019). The subjects undergo medical check-ups, fill

questionnaires and donate biological samples upon recruitment and follow-ups are planned.

The aim of NAKO is to understand the development of chronic diseases, determine risk

factors and define prevention strategies (Wichmann et al., 2012).

In population-based cohorts disease tissue samples are non-existent and they only work

for common diseases. To improve statistical power in case-control studies matched study

designs are a possibility. In matched study designs some variables which are decided on

in the beginning of the study, e.g. sex and age, are matched between cases and controls

(Mann, 2003). Methodologically, this implies the usage of paired analysis methods between

matched individuals. Problematic in matching is that unknown influences cannot be

controlled for and matching does not entail that exposure was the same between both

groups. Another problem is over-matching when matched variables are associated to the

outcome of interest (Song and Chung, 2010).

1.3.2 Clinical characterization and monitoring of patients

Another key element is the clinical characterization and monitoring of patients and their

progression. Medical doctors perform the necessary examinations and evaluate diagnoses

and treatment strategies. The results are summarized in clinical attributes, which are

important for defining diseases, interpretation of statistical modeling results and association
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analyses. Variability in patients’ characterization can arise due to individual characteristics

of the doctor, like the experience level, and the patient but also subjective assessments.

Bertakis (2009) showed that gender of both patients and doctors influences their interactions

during medical visits and their overall relationship. The doctor-patient relationship has

an impact on their communication and can even change long-term treatment outcome

(Ong et al., 1995). McKinlay et al. (2006) compared patient management of doctors from

the US and UK in a video-based study (32 patient videos viewed and analyzed by 256

doctors in the US and UK). Doctors’ gender and experience, the national health care

system but also age, gender and overall appearance of the patient influenced the diagnosis

(McKinlay et al., 2006). That experience impacts doctors’ decisions was also shown in

further studies (Ghassemi et al., 2018; Vogel, 2018). Especially, subjective assessments can

vary widely between clinicians (study with 104 clinicians about four clinical estimates had

mean standard deviation of 19.5, Dolan et al. (1986)).

Several clinical scores exist to make clinical characterization of patients more objective.

For example, the “psoriasis area and severity index”, short PASI, is a severeness score for

psoriasis (Fredriksson and Pettersson, 1978) ranging from zero to 72 points. According

to guidelines, a threshold for initiating biological treatment in patients is a PASI of

ten (Smith et al., 2009). It is used as primary endpoint in clinical trials (Langley

et al., 2015). Even though, clinical scores were introduced to improve objectivity in

clinical characterization, variability is still present. Langley and Ellis (2004) showed that

intra-personal variance in PASI score is between 1.2 and 3.2 for nine experienced and

eight inexperienced raters, respectively, when evaluating 35 patients (PASI range 1 - 51,

mean not given) twice. Inter-personal variance is higher between 8.1 and 9.6 PASI points,

again separately calculated for experienced and inexperienced raters. A more recent study

by Fink et al. (2018) where mean PASI was 8.8 (range 0.7 - 34.8) and three physicians

examined 120 patients twice found that the between-rater difference was 3.3 PASI points

and the difference within raters was 2.2 points (always assessed as mean absolute difference).

The difference between intra-rater and inter-rater variability is even more pronounced when

pathologists rate cancer volumes (standard deviation of 10 to 18% between pathologists

and only 5% within one pathologist, Fiorino et al. (1998)). The SCORAD (SCORing

Atopic Dermatitis) measures the severity of atopic eczema based on several criteria and

defines patients’ treatment (Schallreuter et al., 1993). Kunz et al. (1997) showed that

objective SCORAD criteria, for example the extend of the lesion, can still range from 20

to 80 % (mean 40.8 ± 19 %) for one individual examined by 23 physicians. In summary,

physicians are trained during their education to be objective but are still human actors
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who can be influenced by non-medical factors like patient characteristics and their own

nature (McKinlay et al., 1996; Eisenberg, 1979).

Clinical research studies try to tackle this problem by two different approaches. Either

only one medical doctor examines all included patients to avoid inter-personal variability.

Examples are present in a variety of research fields, from studies on atrial fibrillation

(572 patients, Gladstone et al. (2014)), cancer (834 patients, Aghilinejad et al. (2017)), to

nonalcoholic fatty liver disease (66 participants, Yoneda et al. (2010)). Or all examinations

are performed by at least two clinicians to decrease variance and increase consistency. For

this approach examples, where all clinical evaluation was performed by two physicians, can

be found in a wide range of disciplines, from studies in adverse drug events (Morimoto et al.,

2011), treatment of scars (Choi et al., 2014), medication use in elderly people (Sakuma

et al., 2011) to pathology (Alessi et al., 2013). Sometimes authors even stressed that

physicians acted independently and were blinded to the treatment (Le Duff et al., 2010;

Fadel and Tawfik, 2015).

1.3.3 Complex phenotypes

Apart from the fact that available data sets might not be flawless due to biased cohort design

and variability in clinical characterizations, another challenge in translational medicine are

complex phenotypes like inflammatory skin diseases. Inflammatory skin diseases are not

amongst the “top 10 global causes of death in 2016” (World Health Organisation, 2018),

nonetheless, they put a huge burden on the patients. When calculating years people lose

due to disability, skin diseases rank forth worldwide after low back pain, major depressive

disorder and iron-deficiency anemia (Hay et al., 2014). Due to their complex nature,

studying inflammatory skin diseases bears difficulties. One particular challenge are the

inter-individual differences in patients. Every person’s uniqueness with regard to his or her

gene expression may mask the underlying, common disease specific signatures and leads

to inter-individual variable gene expression patterns (Yang et al., 2016; Ho et al., 2008;

Whitney et al., 2003). This is true for complex diseases and particularly for skin diseases

(Cole et al., 2001).

Complex diseases are often based on complex genetic backgrounds and genetic-environment

interactions (Hunter, 2005). Genetic effects can be studied through their molecular effects

e.g. on gene expression. Environment effects are more difficult to study. Especially the

interactions make diagnosis and study of complex diseases challenging (Manolio et al.,

2009).
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An increase in sample size can help to overcome the challenge complex phenotypes pose.

Nishino et al. (2018) estimated that a sample size of 50,000 or more cases and the same

number of controls is required for a successful genome-wide association study investigating

genetic effects of major depressive disorder. There are no sample size estimations for gene

expression analysis in inflammatory skin diseases. Nevertheless, meta-analyses of gene

expression data in psoriasis were performed and showed small overlap in results of different

studies. The meta-analysis of Tian et al. (2012) included five studies on differentially

expressed genes in lesional compared to noninvolved skin in psoriasis patients. Each of the

five studies included between 13 and 81 patients. The intersection of gene lists contained

only 100 genes. The meta-analysis of all microarrays combined, 386 paired samples of

193 patients, revealed 1,120 differentially regulated genes. This shows that an increase in

sample size, here achieved via a meta-analysis, is one way of increasing detection power in

complex phenotypes. The problem with meta-analysis is the harmonization of different

techniques regarding how the gene expression was measured and how the prognosis or

diagnosis of patients was evaluated (Ramasamy et al., 2008).

1.3.4 Laboratory equivalents for hypothesis testing

Computational analyses of translational research studies identify new hypotheses around

human health and disease which need experimental testing. The results of the computational

analyses are hypotheses which describe associations between genes or other molecules and

clinical outcomes (Quaranta et al., 2014b; Garzorz-Stark et al., 2018; Lauffer et al., 2018).

Testing the association is simplified if, for example, an approved drug exists which targets

the gene or molecule of interest. In one study described in this thesis, ustekinumab was

used which is an antibody that is capable of neutralizing the cytokine IL-23, to successfully

test the hypothesis that IL-23 is involved in the occurrence of induced contact dermatitis

upon application of imiquimod (Garzorz-Stark et al., 2018). For other hypotheses the

testing has to be performed in laboratory equivalents of human diseases. A complete

human model system is missing and better ex vivo models or more detailed in vitro models

are needed for improved hypothesis testing.

For several diseases, established mouse models are available and used for hypothesis testing.

Especially, inflammatory skin diseases are tough to study in mouse model systems due

to the differences in skin architecture (Khavari, 2006) and the immune system (Mestas

and Hughes, 2004) which is crucially involved in the pathogenesis. Three dimensional

skin equivalents are getting popular since they were introduced by Poumay et al. (2004)

in studying inflammatory skin diseases. For example, Van Den Bogaard et al. (2014)
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established a three dimensional model including immune and skin cells and proposed to

use it for preclinical drug screening. However, the combination of different cell types is

still challenging in in vitro models due to varying culture conditions of different cell types

(Duque-Fernandez et al., 2016).

Single cell studies are increasingly used to detect disease biomarkers (Zhu et al., 2014)

and to validate them (Niu et al., 2016). Tirosh et al. (2016) used single cell sequencing

of skin cells to understand the complex interplay between cells in melanoma tumors. Der

et al. (2017) determined a biomarker for Lupus nephritis, an autoimmune disease, using

single cell RNA sequencing of renal and skin biopsies. A lot of human single cell studies

are performed in cancer patients (hepatocellular carcinoma, Zheng et al. (2017); ovarian

cancer, Winterhoff et al. (2017); breast cancer, Demeulemeester et al. (2016); colorectal

cancer, Leung et al. (2017)) or stem cells (cardiac stem cells, Liu et al. (2017); chronic

myeloid leukemia stem cells, Giustacchini et al. (2017); bladder cancer stem cell, Yang

et al. (2017); neural stem cells, Dulken et al. (2017)). These studies currently aim at

understanding intratumoral heterogeneity and metastasis or describing cell differentiation

and subpopulations. The Human Cell Atlas will provide a large resource of single cell data

sets which will help to improve understanding of all cells within the human body (Regev

et al., 2017). The focus of the Human Cell Atlas is samples from healthy individuals and

only small cohorts of patients with relevant diseases are included (Regev et al., 2017).

Potentially, single cell studies are useful for testing translational medicine hypotheses.

Skin organoids grown from induced pluripotent stem cells (kidney organoids, Forbes et al.

(2018); neural organoids, Hartley and Brennand (2017)) or biopsies (gut organoids, Sato

et al. (2011); colon cancer organoids, Boehnke et al. (2016)) pose another way to test

drugs and perform validation experiments ex vivo. In summary, a lot of translational

medicine hypotheses including diseases pathogenesis and treatment options can be tested

in cell culture experiments. Fully understanding them is crucial for drawing the correct

conclusions.

12



1.4 RESEARCH QUESTIONS

1.4 Research questions

The overall aim of this thesis is to improve diagnosis and characterization of human diseases

by jointly analyzing clinical and molecular data using statistical data integration methods.

The focus is mainly on the fields of immunology and dermatology. During the statistical

analysis, an emphasis was put on robustness and interpretability of computational results

to increase likelihood of translating wet lab based results into clinical practice.

The aim was approached from different angles depending on available resources and specific

clinical interest of the overall 14 different studies. Of these, eight are already published

papers and for the six remaining studies manuscripts are currently prepared or submitted

(see section about scientific publication on pages (ix-xi) for more details). This thesis

describes a subset of eight studies of which five are among the published ones. The entire

research of these eight studies in this thesis answers four main questions:

• Can robust and interpretable molecular disease classifiers for unbiased patient

diagnosis in inflammatory skin diseases and allergic asthma be found by means

of disease subtypes and independent patient cohorts?

• Can serum proteins as easily accessible and minimally invasive markers for disease

monitoring and prognosis be used to standardize clinical characterization in atopic

eczema and liver resection surgery?

• Can inter-individual variability in patients which masks common, underlying disease

characteristics in complex phenotypes be adjusted using the example of inflammatory

skin diseases?

• Can new marker genes describing T helper cell subsets be obtained to better

characterize their phenotypes and their role in the immune system?
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1.5 Overview of this thesis

The chapters of this thesis are organized according to research questions, each giving one or

more examples of how the challenges were met and overcome. Each subchapter explaining

one example is structured in the same way. The study is first motivated, second methods

specific for this study are explained which also include a description of the patient cohort,

if applicable, third results are presented and finally the results are discussed. Chapter 1

introduces the topics and main concepts used in the thesis. Chapter 2 provides background

information on data types, statistical methods shared among several studies and analyzed

cohorts.

The following chapters are centered around human cells which were assessed for inside-cell

gene expression and secreted proteins. This data is measured in in vivo and in vitro studies

investigating human diseases and the immune system. Clinical features are important

counterparts used for defining diseases, interpreting disease classifiers and calculating

associations to in vivo markers (Fig. 1.2).

Chapter 3 describes an approach on defining and characterizing suitable molecular disease

markers to fulfill the need for unbiased patient diagnosis. Two published disease classifiers

for inflammatory skin diseases and allergic asthma are discussed in detail (Garzorz-Stark

et al., 2016; Milger et al., 2017). After determining disease-specific molecular markers,

they were associated to all available personal, clinical and laboratory attributes for better

interpretability.

Patient serum is easily accessible and only requires a minimally invasive routine intervention

performed by medical doctors. The focus was on finding markers in serum as surrogates for

disease monitoring and prognosis, alongside of three applications explained in chapter 4.

A combination of serum proteins which best predict the severity of atopic eczema in adult

patients was determined (Krause et al., 2016). A common set of variables was defined

which predict whether children loose atopic eczema when they grow up or have a persistent

disease course (publication in preparation). Finally, time series data from patients who

underwent liver resection surgery was analyzed (publication in preparation).

Every patient is unique and so is his or her gene expression profile. Particularly, when

analyzing patients who share the same disease background clinically, inter-individual

variability may mask the underlying, common disease characteristics. In chapter 5, the

application of linear mixed effects models to adjust for patient-bias in microarray gene

expression data was proposed. The approach was applied to interface dermatitis diseases
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Fig. 1.2 – Overview of this thesis. The cell, its gene expression and secreted proteins are
in the center and used in different in vivo and in vitro studies. Clinical features are used to
define diseases, understand molecular classifiers and be associated to serum measurements.
Numbers refer to chapters.

(Lauffer et al., 2018) and imiquimod-induced skin reactions in humans (Garzorz-Stark

et al., 2018).

The last three chapters provide deeper molecular understanding of human diseases which is

necessary and important. Translational medicine research generates hypotheses about how

diseases develop and why people get sick. Testing these hypotheses is a crucial part often

done in model systems like in vitro cell line experiments. Chapter 6 summarizes work on

characterizing the phenotype of T helper cell subsets using two omics levels measured in in

vitro experiments (publication in preparation).

15



CHAPTER 1 INTRODUCTION

1.6 Specific contributions of the thesis author in each study

This section gives an overview of the specific contributions and responsibilities of the thesis

author in the studies which are described in this thesis. Analysis ideas and approaches

were initiated and always performed by the thesis author but discussed with her supervisor

Nikola S. Mueller. Results were first interpreted by the thesis author, then further discussed

with Nikola S. Mueller and respective collaboration partners. The thesis author did not

perform any medical examinations or laboratory experiments in any of the describes studies.

The text passages written here can be found again directly before the “x.y.1 Motivation”

subsection of each subchapter and chapter, respectively.

In the study described in section 3.1 the thesis author was responsible for data management,

data processing and all statistical analyses were performed by her including modeling

and association analyses. All figures presented in this section, except the photographs of

patients’ skin, were created and designed by the thesis author. The paper Garzorz-Stark

et al. (2016) was written jointly together with Natalie Garzorz-Stark. Here, the part on

how the molecular classifier was built is described in more detail than in the published

paper.

In the study described in section 3.2 the thesis author was responsible for the processing

and analysis of all data gathered in humans, starting with data management and quality

control of molecular and clinical data. Part of the analysis was building of the human

miRNA based asthma classifier using regularized regression modeling. Further associations

to clinical attributes were calculated by her. The thesis author was further responsible

for interpreting the computational results and designing and creating all figures presented

here. The mouse data was analyzed by Nikola S. Mueller and results are summarized

here in order to make the study more understandable. All text in the publication Milger

et al. (2017) concerning statistical analysis, interpretation and description of results in

the human data were originally written by the thesis author. The statistical methods are

described here in more detail than in the publication.

In the study described in section 4.1 the thesis author was responsible for and performed all

data processing and all statistical analyses including handling of missing data, correlation

analyses, differential testing and regression modeling. All figures were designed and created

by her. The thesis author wrote all text concerning statistical analyses and interpretations

for the original manuscript Krause et al. (2016), its correction and the reply Krause et al.

(2017).
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In the study described in section 4.2 the thesis author was responsible for data processing

including imputation of missing values and normalization. Further, she came up with

the idea to use several modeling approaches and compare the results. The thesis author

performed all statistical analyses herself, including all modeling. All figures were designed

and created by her. The results were interpreted together with supervisors and collaborators.

In the study described in section 4.3 the thesis author was responsible for all data processing

including data normalization, imputation of missing values and batch correction. All

statistical analyses including time series clustering, pairwise correlation analyses and

regularized regression modeling were designed and performed by the thesis author. Possible

networks visualizations were discussed with Nikola S. Mueller and implemented by the

thesis author. All figures presented here were designed and created by the thesis author.

Results were discussed and interpreted jointly with supervisors and collaborators.

In the study described in section 5.1 the thesis author was responsible for all data analysis

of clinical and whole-genome gene expression data. In detail, she processed clinical data and

performed correlation analysis of histological attributes of mixed data types to determine

objective criteria mostly representing subjective criteria. For the whole-genome gene

expression analysis, she analyzed microarray data by performing the whole workflow: data

processing, differential expression analysis, pathways analysis using model based gene set

analysis and visualization of the results. For differential gene expression analysis the thesis

author came up with the idea of using and implemented the usage of linear mixed effect

models for microarray data. In particular, she designed the analysis so that the specific

medical question could be answered by implementing two models and comparing results.

She further integrated in vitro gene expression measurements. All figures presented here

were designed and created by the thesis author in discussion with her supervisors. The

thesis author wrote the original text about analysis and interpretation of computation

results for the publication Lauffer et al. (2018).

In the study described in section 5.2 the thesis author was responsible for gene expression

analysis. Gene expression was measured with microarrays. Gene expression analysis for

this study contained extensive data preprocessing, dimension reduction in a non-standard

way and differential gene expression analysis using linear mixed effects models. There

are two main differences in the analysis of gene expression data in this study compared

to the study described in section 5.1 about interface dermatitis. First, the microarray

preprocessing was done more stringently and included adjustment for unknown sources

of variability. Second, the linear mixed effects model setup was more complex since more

groups were compared. The thesis author further designed and created all figures shown
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in this section with a special focus on visualizing pathway analysis results comparing

several conditions. The text passages concerning computational methods and results were

originally written by the thesis author for the publication Garzorz-Stark et al. (2018).

In the study described in chapter 6 the thesis author was responsible for all data analyses

including analysis of secretome and whole-genome gene expression data measured by

microarrays. She was also responsible for interpreting the results. Further, she performed

clustering analyses using five different clustering algorithms. After going through the full

microarray preprocessing workflow, the thesis author performed differential gene expression

analysis using six different methods, some of them not commonly used for this task. The

thesis author further came up with an elaborate approach to determine most differentially

regulated genes per method and how to find consensus top hits. She also performed gene

set enrichment analysis and mapping to a protein-protein interaction network. All figures

presented in this section were designed and created by the thesis author. The thesis author

did not perform any of the laboratory experiments. The biological interpretations of the

results were researched and written by the thesis author and approved by her supervisors

and biological collaborators.
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Methods

This chapter gives an overview of the applied statistical methods shared among several

studies, used data types, studied diseases and available cohorts. All analyses were performed

with the software R (R Core Team, 2019). For experimental methods, the laboratory

process is summarized here but the focus lies on the resulting data and how different

aspects of the data influenced further analytical decisions.

2.1 Statistical analysis

Statistical analysis is useful to understand relationships between variables, detect their

dependencies in order to answer biological or clinical questions. It is important to choose

the right analytical method depending on the data’s characteristics regarding type and

implicit biological or clinical background. Here, an overview of statistical analyses, tests

and models used in this thesis is presented. Reference for this whole section is Sachs and

Hedderich (2009) if not stated otherwise. The analyses were performed with default R

packages unless the specific package name is given (R Core Team, 2019). Each chapter

and section points to the specific test or modeling approach used for the respective study

and indicates if other R packages are used than those described here.

2.1.1 Statistical terminology

A data set consists of samples for which one or more attributes were measured or collected.

The samples can be anything from individual people to the collection of cells from a cell

line. The attributes are variables which were, throughout this thesis, assessed in the lab,

by a clinician or through questionnaires. All variables, also from possibly several time
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points, taken together for one sample represent one observation. For modeling, the

variables are split into one response variable, which is the variable of interest, and the

remaining variables which are called predictor variables. Depending on the research

question several variables in one data set can be, one by one, the variable of interest which

should be understood further and thus becomes the response in modeling.

Observations consist of p-tuples containing information for the outcome of interest and

predictor variables, (yi, xi1, xi2,, ..., xi(p−1)) for each of n observations i ∈ 1, ..., n. Taking

the observations together, the response variable y ∈ Rn×1 is the outcome of interest which

should be modeled using p − 1 predictor variables xj ∈ Rn×1. The predictor variables

together with the intercept x0 = (1, 1, ..., 1) ∈ {1}n are summarized in a design matrix

X = {x0, x1, x2, ..., xp−1} ∈ Rn×p.

Hypothesis testing

One part of statistical analyses is hypothesis testing. In hypothesis testing, a null

hypothesis H0 and a complementary alternative hypothesis H1 is postulated. The

alternative hypothesis is formulated so that it includes what the research questions tries to

show. For example, in a hypothesis test around the question of height differences between

women and men the H1 is “men are taller than women” and H0 is “women are taller than

men”. Next, data according to the hypothesis is obtained, in this case measurements of

the height of a group of women and men is taken. From the collected data, a test statistic

specific for the hypothesis is calculated which follows known properties and is directly

linked to a p-value. The p-value is the probability of obtaining the measured data or

more extreme results given that the null hypothesis H0 is true, also called the type 1 error

rate. If the p-value is below a predefined significance level α, often chosen to be 5%, the

null hypothesis can be rejected. The result of one hypothesis testing and corresponding

error probabilities can be represented in a matrix, where the rows represent the unknown

truth and the columns the test’s result:

test is declared

non-significant

test is declared

significant

null hypothesis (H0) is true correct inference

prob. = 1− α
type 1 error

prob. = α

alternative hypothesis (H1) is true type 2 error

prob. = β

correct inference

prob. = 1− β
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If the hypothesis test does not lead to a correct inference, either a type 1 or a type 2 error

has manifested. The probability of a type 1 error is equivalent to the p-value. The type 2

error is represented by β and directly related to the power of a statistical test. The power

is defined as 1− β and is the probability of having a significant test result if the alternative

hypothesis is true.

Odds-ratio

Measured variables are numerical or categorical. A categorical variable with only two

categories, or levels, is called a dichotomous variable. Any two dichotomous variables

can be visualized with a contingency table. The table shows an example of one variable

describing disease status of an individual in the columns with D representing diseased

and H representing healthy. The rows of the table show the other variable attributed to

whether the individual was exposed to a specific risk factor where the index E represents

exposed and N not exposed. So DE are some individuals which are diseased and were

exposed.

diseased healthy

exposed DE HE

not exposed DN HN

The odds-ratio (OR) is then defined as the fraction of the odds of being a diseased

individual in the exposed group divided by the odds of being a diseased individual in the

non-exposed group:

OR =
DE/HE

DN/HN
.

The odds-ratio here represents an association between exposure (risk present or not) and

outcome (healthy/disease). An odds-ratio smaller than one is attributed to exposures

which lower the odds for being diseased. Whereas, an odds-ratio larger than one describes

variables whose presence increase the odds for the individual to be diseased. In general, the

odds-ratio describes the relationship of two dichotomous variables. In case-control studies

and retrospective studies the odds-ratio should be calculated since the incidence (fraction

of diseased individuals in the whole population) is not given or known. In prospective

studies, or cohort studies, however, the risk ratio (RR) can be calculated (Andrade, 2015)
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which is a fraction of probabilities. Since studies in this thesis do not include prospective

studies, only the formula for its calculation is given here:

RR =
DE/(HE +DE)

DN/(HN +DN )
.

2.1.2 Adjustment for multiple comparisons

When performing several statistical tests on the same data set the false positive rate is

increased which should be controlled by the type 1 error called α. There are four possible

outcomes in hypothesis testings (see section 2.1.1). If a family of m hypotheses are tested,

which is equivalent to m tested comparisons, they sum up as represented in the following

table (adapted from Benjamini and Hochberg (1995)):

test is declared

non-significant

test is declared

significant

total

null hypothesis (H0) is true U V m0

alternative hypothesis (H1) is true T S m - m0

total m - R R m

In this table m is the known number of tested hypotheses and R is observed after those m

hypotheses were tested. U , V , T and S are random variables which cannot be observed.

The total number true null hypotheses is m0. V is a random variable representing the

number of tested hypotheses where the null hypothesis is true but the test is declared

significant, also called number of false discoveries.

There are four error rates in multiple testing: per-comparison error rate (PCER), family-wise

error rate (FWER), per-family error rate (PFER) and false discovery rate (FDR, Benjamini

and Hochberg (1995)). Per-comparison error rate ignores the increase in type 1 error in

multiple testing and is the standard error rate without any adjustment. If each of the m

hypotheses is tested at levels α then:

PCER = E(V/m) =
E(V )

m
≤ α.

The family-wise error rate is defined as the probability that m tested hypotheses reveal

one or more false discoveries V (Tukey, 1953):
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FWER = P (V ≥ 1).

Bonferroni correction is a method which controls the family-wise error rate by dividing

the significance level α by the number of tested hypotheses m (Dunn, 1961). If each

hypothesis i ∈ 1, 2, ...,m is tested against the level α
m , a strong control at level α of the

overall family-wise error rate is guaranteed:

FWER = P (V ≥ 1) ≤ α.

Per-family error rate corresponds to the expected number of false positive results among

m tested hypothesis (Tukey, 1953) which refers to summing the type 1 error probability

for all m hypotheses.

PFER = E(V ).

It was shown that the control of the per-family error rate also always controls the family-wise

error rate and the per-comparison error rate for a fixed significance level α (Dudoit et al.,

2003). In other words, a control on the level of per-family error rate is more conservative

than on the family-wise error rate which itself is more conservative than the per-comparison

error rate.

PCER ≤ FWER ≤ PFER.

The false discovery rate is defined as the expected proportion of false discoveries V among

all significantly declared tests V + S = R (Benjamini and Hochberg, 1995).

FDR = E(V/(V + S)) = E(V/R).

Benjamini and Hochberg (1995) proposed the following procedure to control the false

discovery rate:

• m hypotheses H1, H2, ..., Hm are tested with resulting p-values p1, p2, ..., pm
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• p-values are ordered to fulfill p(1) ≤ p(2) ≤ ... ≤ p(m), where H(i) is the hypothesis for

p-value p(i)

• let k be the largest i for which p(i) ≤ i
mq
∗, then reject all H(i) for i ∈ {1, 2, ..., k}

They proved that the procedure controls the false discovery rate at level q∗. Comparing

the control of false discovery rate false discovery rate and family-wise error rate, Benjamini

and Hochberg (1995) showed that if all null hypotheses are true (m0 = m), both are

equivalent. In all other cases (m0 < m) the false discovery rate is smaller than or equal to

the family-wise error rate. That implies that any correction which controls the per-family

error rate or the family-wise error rate also controls the false discovery rate (Hofner et al.,

2015).

FDR ≤ FWER ≤ PFER.

The false discovery rate rejects at least as many hypotheses as methods controlling the

family-wise error rate and therefore has greater power. Controlling the per-family error

rate is the most conservative form of multiple testing correction.

All p-values in this thesis were adjusted for multiple testing if required by study designs.

If a more stringent adjustment for multiple testing was necessary, the family-wise error

rate was controlled with Bonferroni correction. Otherwise, the false discovery rate was

controlled due to the increase in power. Unless stated otherwise, all p-values, adjusted

and unadjusted ones, are shown in figures with stars indicating ∗ p<0.05, ∗∗ p<0.01 and

∗ ∗ ∗ p<0.001.

2.1.3 Pairwise analysis – finding associations and differences

To analyze associations and differences among all combination of pairs of variables, there

is a group of statistical tests to choose from depending on the data type. Variables are

broadly differentiated into categorical and numerical variables. For categorical variables, a

further separation into dichotomous variables, which have two levels, and those with more

categories is important. Numerical variables were investigated whether they can be treated

as normally distributed or not and grouped accordingly. Table 2.1 gives an overview of

applied statistical tests.

To test for association between two categorical variables on nominal scale applied Fisher’s

exact test for count data was applied (Fisher, 1935). For two by two tables this test is
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Tab. 2.1 – Applied statistical tests. † followed by Dunn’s test (Dunn, 1964). ‡ followed
by Tukey’s “Honest Significant Difference” method (Tukey, 1949)

scale of
variable 1

scale of
variable 2

test name reference

categorical categorical Fisher’s test Fisher (1935)

categorical
(2 levels)

numerical
(not-normal)

Wilcoxon’s test Wilcoxon (1945)

categorical
(>2 levels)

numerical
(not-normal)

Kruskal Wallis test Kruskal and Wallis (1952) †

categorical
(2 levels)

numerical
(normal)

Welch’s t-test Welch (1947)

categorical
(>2 levels)

numerical
(normal)

analysis of variance
(ANOVA)

Fisher (1925a) ‡

numerical
(not-normal)

numerical
(not-normal)

Spearman’s
correlation coefficient

Spearman (1904)

numerical
(normal)

numerical
(normal)

Pearson’s correlation
coefficient

Pearson (1895)

equivalent to testing the hypothesis that the odds-ratio between both variables is equal

to one and the p-value is directly acquired from the hypergeometric distribution. If one

or both variables have more than two levels, p-values are calculated using internal C

implementations of FORTRAN routines from Mehta and Patel (1983) which are included

in the applied R version.

For testing associations between categorical and numerical variables four different statistical

tests were used. If the numerical variable was not normally distributed or had values above

or below the detection limit, two different tests depending on the categorical variable were

applied. If the categorical variable was dichotomous, Wilcoxon’s rank sum test was used

(Wilcoxon, 1945). Otherwise, Kruskal Wallis rank sum test was applied (Kruskal and Wallis,

1952). A significant association between categorical and numerical variable in the Kruskal

Wallis test only tells, that there are at least two categories between which the location

parameter is different. To determine between which pairs of categories the difference

is hidden, the corresponding post-hoc test was performed, Dunn’s test (Dunn, 1964)

implemented in the R package dunn.test (Dinno, 2017). For numerical variables which are
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normally distributed Welch’s two-sample t-test was applied (Welch, 1947), if the categorical

variable showed two categories, or otherwise analysis of variance (ANOVA, Fisher (1925a)).

Of note, it is no longer recommended to first test for equal variances between two groups

with the Levene test and then decide to chose either Student’s t-test or Welch’s t-test

but instead to directly apply Welch’s t-test (Zimmerman, 2004). Similarly to the case

of Kruskal Wallis test, also the analysis of variance can be followed by an appropriate

post-hoc test to extract between which two groups there is a difference. Tukey’s ‘Honest

Significant Difference’ method (TukeyHSD, Tukey (1949)) was applied which performs

pairwise tests while correcting for the family-wise error rate.

The concept of correlation was first introduced 130 years ago by Sir Francis Galton

(Galton (1889), historic overview in Stigler (1989)) and developed further by Pearson

(1895). In order to compare two approximately normally distributed numerical variables

Pearson’s product moment correlation coefficient was applied. It is calculated by dividing

the covariance between the variables by the product of their standard deviations and is

abbreviated with the letter r. If both variables are numerical, but not normally distributed

or contain values beyond the detection limit, they are compared with Spearman’s rho

statistic which estimates a rank-based measure of association (Spearman, 1904).

Network visualization of pairwise associations

For better interpretability, results of pairwise statistical tests can be visualized in form

of networks After adjusting all comparisons for multiple testing, a network consisting of

nodes and edges is plotted. Nodes represent measured variables in the data set. Edges

connect two nodes if the pairwise statistical test between both variables represented by the

respective nodes revealed a significant association between both. The level of significance is

coded through edge thickness, meaning the stronger the association between two variables,

the thicker the edge between them.

2.1.4 Linear regression

To interrogate the linear interplay of several variables with regard to one numerical outcome

of interest, linear regression analyses were applied. Linear regression was introduced by

Galton (1886) who compared heights between individuals and their parents and first

proposed “regression towards the mean”. In linear regression, the response y ∈ Rn×1 is a

numeric variable. The response y is modeled as a linear combination of predictor variables
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summarized in the design matrix X = x0, x1, x2, ..., xp−1 ∈ Rn×p and coefficients βj for

j ∈ 0, 1, ..., p− 1 and additive noise ε.

For one observation yi the linear model is

yi = β0 · xi0 + β1 · xi1 + β2 · xi2 + ...+ β(p−1) · xi(p−1) + εi

=

p−1∑
j=0

βjxij + εi

= xiβ + εi

for yi, βj , xij , εi ∈ R1×1, xi ∈ R1×p with i ∈ {1, 2, ..., n}, j ∈ {0, 1, ..., (p− 1)}

and β ∈ Rp×1.

Taking n observations together is leads to

y = β0 · x0 + β1 · x1 + β2 · x2 + ...+ β(p−1) · x(p−1) + ε

=

p−1∑
j=0

βjxj + ε

= Xβ + ε

for βj ∈ R1×1 and xj ∈ Rn×1 with j ∈ {0, 1, ..., (p− 1)}, and

y ∈ Rn×1, X ∈ Rn×p, β ∈ Rp×1, ε ∈ Rn×1.

There are four main assumptions in linear regression. First, the relationship between

response and predictors is linear in the parameters β. Second, dispersion of y is independent

of X. Third, the observations (yi, xi1, xi2,..., xi(p−1)) are independent and consequently,

the residuals εi and εj are independent for i 6= j. Fourth, the residuals εi are normally

distributed with mean zero (summarized in Sachs and Hedderich (2009)). Following from

these assumptions and with E being the expected value it holds:

E(y) = Xβ.

The coefficients βi in linear regression are not known but estimated from the observations.

If the predictor variables are independent of each other, ordinary least squares can be

used to estimate the coefficients. For n observations, not more than n variables can be
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independent. So solving linear regression problems with ordinary least squares is only

possible if the number of predictors p is less or equal to the number of observations n.

Ordinary least squares was first published by Legendre (1805), however, Carl Friedrich

Gauss claims to have used it before in his paper in 1799 (Stigler, 1981) and summarized the

mathematical background in Gauss (1809). Ordinary least squares minimize the residual

squared errors εᵀε and gives an unbiased estimator of the true, underlying coefficients.

Regularized regression models

The coefficients β in linear regression are only estimable with ordinary least squares if the

predictor variables are independent. In the case of more predictors p than observations n,

the requirement is not fulfilled. One mathematical approach to overcome this problem are

regularized regression models like ridge regression (Hoerl and Kennard, 1970), the least

absolute shrinkage and selection operator (the “lasso”, Tibshirani (1996)) and combinations

thereof like the elastic net (Zou and Hastie, 2005). All three methods apply a regularization

term on the estimated coefficients β and solve for regularized linear regression the equation

min
β

 n∑
i=1

yi − p−1∑
j=0

βjxij

2 subject to f(β) ≤ t,

where t ≥ 0 is a tuning parameter which controls the amount of shrinkage applied to the

estimated coefficients. For ridge regression the penalty is an L2-norm, for the lasso it is

the L1-norm and elastic net combines both L1- and L2-norm:

for ridge regression: f(β) = ‖β‖22 =
∑
j

β2
j

for the lasso: f(β) = ‖β‖1 =
∑
j

|βj |

for elastic net: f(β) =
1− α

2
‖β‖22 + α‖β‖1

=
1− α

2

∑
j

β2
j + α

∑
j

|βj |.
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The lasso produces coefficients which are exactly zero (Tibshirani, 1996), whereas ridge

regression shrinks all coefficients to a value larger than zero. The elastic net parameter

0 ≤ α ≤ 1 determines the amount of mixing between lasso and ridge regularization.

2.1.5 Linear mixed effects models

Linear models can be extended to linear mixed effects models which include not only fixed

effects β but also random effects b (Fisher, 1919). They are particularly useful in the case

of repeated measurements, so if the observations (yi, xi) are not independent. X and Z

are design matrices relating y to β and b. The model can be represented as:

y = Xβ + Zb+ ε ε ∼ N(0, σ2I) b ∼ N(0, τ2I)

with y ∈ Rn×1, X ∈ Rn×p, β ∈ Rp×1, Z ∈ Rn×s, b ∈ Rs×1, ε ∈ Rn×1.

Since b ∼ N(0, τ2I) the expected value of y is still Xβ.

One application of linear mixed effects models is the analysis of gene expression data

where individuals are measured repeatedly for several conditions. Expression of one gene is

modeled as numeric response y, the conditions shared among individuals are fixed effects

β and random effects b are the individuals. Random effects b, in this case, are random

intercepts which represent the baseline expression of one gene in one particular individual.

The fixed effects β are shared effects among individuals, which are corrected for the baseline

expression of each individual, for each of the p− 1 predictors.

In this thesis, linear mixed effects models were estimated using the lme4 package in R

(Bates et al., 2015). P-values for each coefficient were obtained using “mixed” function

from the afex R-package (Singmann et al., 2018). For the degrees of freedom it applies the

Kenward-Roger approximation (Kenward and Roger, 1997). Individuals were represented

by random effects and shared conditions as fixed effects.

2.1.6 Generalized linear models

The linear regression concept can be generalized to a larger class of models called generalized

linear models (Nelder and Wedderburn, 1972) which can be written in the following form
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g(E(y)) = Xβ.

In the equation g() is the link function which connects the expectation of the response

value E(y) to the linear predictor Xβ. In case of linear regression the link function equals

the identity function.

Logistic regression

If the response variable is not numeric, but dichotomous, it follows a Binomial distribution

with success probability π and the model is called logistic regression (Cox, 1958). The

aim in logistic regression is to estimate the unknown success probability π. The linear

model approach π =
∑

j βjxj is transformed by the logistic transformation to fulfill the

requirement that probabilities are bound by zero and one:

π(X) =
e
∑
j βjxj

1 + e
∑
j βjxj

=
eXβ

1 + eXβ
.

Application of the logistic transformation is justified by its following properties: if βj > 0

the function value increases monotonically with increasing xj ; if βj < 0 the function

value is monotonically decreasing with decreasing xj ; if βj = 0 then xj does not have an

influence on the success probability π. Comparing the logistic transformation to the form

of generalized linear models, the logit transformation is used as the link function since it

connects the success probability of the response y to the linear predictor,

logit(π(X)) = log

(
π(X)

1 + π(X)

)
= log(odds(π)) = Xβ

with odds(x) =
x

1 + x
.

The cumulative normal distribution is another possibility for a link function in case of a

Binomial response (Bliss, 1935). The regression is called “probit” regression. Both differ in

the correct interpretation of the estimated coefficients. In logistic regression the coefficients

can be calculated back to odds-ratios, whereas in probit regression the coefficients are

interpreted as differences in standard normal values.
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In linear regression the optimal coefficients β are directly estimated from the observations.

In logistic regression this is not possible, so coefficients are calculated as maximum likelihood

estimates (Wilks, 1938) using iteratively reweighted least squares, also called Fisher scoring

algorithm (Fisher, 1925b; Green, 1984).

There are more application of generalized linear models, e.g. Poisson regression. This

overview is limited to the applied methods in this thesis

2.1.7 Random forest

One ensemble learning technique with increasing popularity is random forests (Breiman,

2001). Random forests take a different approach to classification, compared to regression

analyses (sections 2.1.4 - 2.1.5). The core idea is to grow many different decision trees and

combine them in a random forest. To obtain different decision trees a random vector is

necessary which brings variability to each tree. Examples are bagging (Breiman, 1996),

where for every tree only a subset of observations are used to grow the tree, and random

split selection (Dietterich, 1998), where on every node in the decision tree the split is

randomly chosen among k best splits. Predictions in random forests are the majority

vote of all trees in the random forest. Besides classification, random forests can also solve

regression tasks with regression forests.

2.1.8 Model evaluations

Once a model is set up, its performance needs to be assessed with quality-based error

estimations. In linear regression the residual sum of squares R2 describes the fraction

of variance in the response explained by the model and is used for model evaluation:

R2 = 1−
∑n

i=1 ε
2
i∑n

i=1(yi − 1
n

∑n
i=1 yi)

2
.

The closer R2 is to one, the more variance is explained by the predictor variables. The

more predictor variables are included in the model, the larger R2 becomes. The adjusted

residual sum of squares R2
adj. corrects for the number of predictors p− 1 in the model

(Theil, 1961):

R2
adj. = 1− n− 1

n− p
· (1−R2),

31



CHAPTER 2 METHODS

where R2
adj. equals R2 if there are no predictors in the model, otherwise it is smaller than

R2. Another criterion for the evaluation of a model is the Akaike information criterion

(AIC, Akaike (1974)):

AIC = −2 log(likelihood) + 2 · p,

where the likelihood is the probability of the data given the estimated coefficients. The aim

is to determine a model with a small value for the AIC. The equation balances between

number of predictors p− 1 and goodness of fit of the model.

In logistic regression and other binary classification tasks the model performance can be

visualized with confusion matrices comparing true and predicted classes.

true class

class 1 class 0

predicted class
class 1 true positive (TP) false positive (FP)

class 0 false negative (FN) true negative (TN)

From the confusion matrix, different diagnostics can be calculated:

sensitivity =
TP

TP + FN
= true positive rate

specificity =
TN

TN + FP
= true negative rate

1− specificity =
FP

FP + TN
= false positive rate.

To determine the predicted class, a threshold has to be applied to the predicted value since

it is numeric not categorical. A way to choose the optimal threshold is the receiver operator

characterics (ROC) curve. For the ROC curve, true positive rate is plotted against false

positive rate for different thresholds (example in Fig. 3.6 A). The optimal threshold is

where the true positive rate is the highest and the false positive rate the smallest. To

assess a model’s performance, the area under the ROC curve (AUC) is calculated. A

binary classification model performs better the closer the AUC is to one. The AUC can be

calculated for any binary classifier.

In the optimal case, the performance of the model is tested in an independent cohort.

AUC values are stated for binary classification and root mean squared prediction errors
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for linear regression are calculated with the model applied on data from the independent

cohort. If there is no access to an independent cohort, cross validation (CV) can be

applied. In k-fold cross validation, the observations are first split into k groups. Then,

for each k the first k − 1 groups are combined into the training set and the k-th group is

left as test set. The model is trained using only the observations in the training set. The

model is evaluated on the left-out test observations. Comparing true and predicted values

in the test sets is used to assess the model performance. If the model is evaluated with

AUC, the result of k-fold cross validation are k AUC values. One particular variant of

cross validation is leave-one-out cross validation (LOO-CV), where only one observation is

left out in every cross validation fold.

2.1.9 Feature selection procedures

In many studies more predictors were measured than those that influence the outcome. To

determine those predictors which are important for the correct prediction of the outcome,

feature selection can be performed. Selected features are always a subset of all available

predictors. There are different approaches to feature selection, those applied in this thesis

are described here, separately per model setup.

In linear regression the model can be optimized by all subset regression. The method

builds separate models for all possible combinations of predictors and calculates the adjusted

residual sum of squares R2
adj.. It is implemented in the leaps package in R (Lumley, 2017).

The optimal combination of predictors is determined by the model with the highest R2
adj..

This approach is only suitable for the case of more observations n than predictors p− 1.

For logistic regression with more observations n than predictors p−1 AIC-based stepwise

optimization is an option (Chambers et al., 1992). In every step, the method chooses

to include or remove the one predictor which results in the largest decrease of AIC. It

is important to note, that in each step only one predictor is included in the model or

removed from the model. The method stops if there is no more decrease in AIC. Stepwise

optimization can either start with an intercept-only model or with the full model containing

all predictors and move from these starting points to an AIC-optimized model. All

predictors remaining in the optimized model are selected features.

For regularized regression models with the lasso or the elastic net penalty, several coefficients

are set to zero due to regularization constraints. So all predictors with non-zero

coefficients represent selected features. Cross-validation is applied to determine the

regularization parameter in lasso and elastic net via glmnet package in R (Friedman
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et al., 2010). This leads to slightly different results in different runs. To obtain a stable

result, stability selection can be employed (Meinshausen and Bühlmann, 2010). It selects

influential variables while controlling the per-family error rate PFER. The R package stabs

was used to perform stability selection (Hofner and Hothorn, 2017).

Random forests were not designed to perform variable selection but to build accurate

classifiers (Breiman, 2001). Nevertheless, Breiman (2001) introduced measures to rank the

predictors by importance. Strobl et al. (2007) showed that these measures are biased

towards predictors with more categories. Altmann et al. (2010) overcame this limitation

by correcting for the bias with a heuristic based on permutation tests called “permutation

importance” and reported a p-value for each predictor. The p-values are calculated by

permuting the response and estimating the variable importance per predictor in a setting

where the predictor is non-informative. Degenhardt et al. (2017) compared feature selection

methods for random forests applied on biomedical data sets. Their recommendations are

Vita (Janitza et al., 2015) for high dimensional data and Boruta (Kursa et al., 2010) for

low dimensional ones. The Boruta approach determines all relevant predictors by adding

“shadow variables”, which are permuted versions of the original predictors, to the set of

predictors. The importance attributed to the shadow variables are used as a reference to

detect relevant predictors. The results showed variability due to fluctuations so results of

three different runs were included.

2.1.10 Clustering methods

Clustering aims at grouping observations together into clusters based on similarities in

the observed values while maximizing dissimilarity to other clusters. It was first applied

by Driver and Kroeber (1932) who worked in the field of anthropology and subsequently

employed in psychology (Zubin, 1938; Tryon, 1939). The principle idea is that within

a cluster observations are more alike to each other than to members of other clusters.

Clusters are useful for the discovery of unknown structures in the data or identification of

subgroups of predictors or observations. Clustering is a broad concept and not defined by

one specific algorithm. The choice of method and parameters depend on the data set and

the designated use of the clustering result.

In clustering analysis three main questions need to be answered. How many clusters are

in the data set? How to define similarity between observations which implies the choice

of distance function? Which clustering algorithm is best suited to answer the biological

question?
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Number of clusters

To determine the number of clusters the silhouette approach introduced by Rousseeuw

(1987) was followed. It is a measure which combines tightness within a cluster and

separation between clusters. This approach should be used if the aim is to find compact

and separated clusters (Rousseeuw, 1987). For any given clustering and distance measure,

one value, the average silhouette coefficient, is obtained by first calculating the silhouette

S of observation o which belongs to cluster A while B and C represent other clusters:

S(o) =

0 if dist(A, o) = 0

dist(B,o)−dist(A,o)
max(dist(A,o), dist(B,o)) else

using

dist(A,o) =
1

nA

∑
a∈A

dist(a,o) and dist(B,o) = min
C 6=A

(
1

nC

∑
c∈C

dist(c,o)

)
.

The silhouette coefficient of cluster A is defined as the mean of all nA silhouettes of cluster

A. Taking the mean of these coefficients for all clusters determines the average silhouette

coefficient. The optimal number of clusters k is the clustering with the highest average

silhouette coefficient.

Distance function

The definition of a silhouette already uses the pairwise distances (dist(a, o)) between

observations a and o. Three different distance functions were applied: Euclidean distance,

a distance measure based on correlation and a distance measure for time-series data. The

Euclidean distance between two observations oi ∈ R1×p and oj ∈ R1×p for i, j ∈ 1, ..., n is

the distance according to the L2-norm:

dEuclidean(oi, oj) = ‖oi − oj‖2 =
√

(oi − oj)2

=
√

(oi1 − oj1)2 + (oi2 − oj2)2 + ...+ (oip − ojp)2 .

The distance measure based on correlation is defined as
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dcor.-based(oi, oj) =
1

2
· (1− cor(oi, oj)) ,

which fulfills the requirement that distances are bound by zero and one. For the value

cor(oi, oj) either Pearson’s or Spearman’s correlation coefficient was used depending on

data types.

Distance function for time series data

For dissimilarities between time series data, there are several distance measures described

in the literature and implemented in R, e.g. in the TSclust R-package (Montero et al.,

2014). Measures like the Minkowski distance are invariant to time permutations since for

every time point t ∈ 1, ..., p the distance between two observations oi ∈ R1×p and oj ∈ R1×p

is evaluated separately and summed up to give overall distance between both observations.

But the Minkowski distance is sensitive to shifting and scaling of data and does not cover

patterns over time. Another measure is dynamic time warping distance (Kruskal, 1983;

Berndt and Clifford, 1994) which aims a finding a mapping between oi and oj so that the

distance between them is minimized. This approach can handle shifting and scaling but it

ignores the temporal ordering of data points.

One measure which covers both distance of absolute values and proximity in temporal

behavior was introduced by Chouakria and Nagabhushan (2007) and called dCORT . In this

thesis, the implementation of dCORT in the TSclust R-package was used (Montero et al.,

2014). To calculate the measure, first the proximity between the time course behavior of

both observations is evaluated by the first order temporal correlation coefficient called

CORT :

CORT (oi, oj) =

∑p−1
t=1 (oi(t+ 1)− oi(t))(oj(t+ 1)− oj(t))√∑p−1

t=1 (oi(t+ 1)− oi(t))2

√∑p−1
t=1 (oj(t+ 1)− oj(t))2

,

where oi(t) denotes the value of observation oi on the time point t. If CORT (oi, oj) is

equal to one, both time series show the same pattern over time which means that the

increases or declines are at all time points the same in direction and rate. The dissimilarity

dCORT introduced by (Chouakria and Nagabhushan, 2007) takes the first order temporal

correlation coefficient CORT and multiplies it with the distance between the raw values of

both observations, e.g. calculated using euclidean distance over all time points:
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dCORT (oi, oj) = φk(CORT (oi, oj)) · d(oi, oj),

where φk(·) is an adaptive tuning function. Chouakria and Nagabhushan (2007) proposed

to apply the exponential adaptive function:

φk(u) =
2

1 + exp(ku)
with k ≥ 0.

Clustering algorithm

Which algorithm to choose for clustering is the third question which needs to be answered.

There are many algorithms for clustering but in this thesis only those popular and widely

used in the field of biomedical data analysis and those applicable for the data sets at

hand were used. The algorithms fall into three categories: distribution-based clustering,

centroid models and hierarchical clustering. In distribution-based clustering, observations

are grouped into clusters if they are more likely to belong to the same distribution. One

distribution-based clustering method is Gaussian mixture models where k Gaussians are

fit to the observations using expectation maximization (Dempster et al., 1977). Expectation

maximization is a generalized maximum likelihood approach for observations with some

unobserved variables. Gaussian mixture models were estimated with mclust package in R

(Scrucca et al., 2017) which optimizes shape, volume and orientation of the Gaussians.

Centroid models are the second group of clustering algorithms which were considered.

Among them is k-means which was developed by Steinhaus (1956) and named by

MacQueen et al. (1967). It is still very popular and widely used (Jain, 2010). The

main idea is to minimize the squared Euclidean distance between all points in that cluster

and the mean of each cluster, the cluster center or centroids. This is equivalent to

minimizing the sum of variances within each cluster. The algorithm iteratively changes the

cluster centers by adjusting the correspondence of each observation to the nearest cluster

center. K-means is a greedy algorithm in the sense that it only finds a local minimum with

each initialization. In this thesis, k-means was executed at least 10,000 times to overcome

this limitation and the run with the smallest error was chosen which is the pre-implemented

result in R’s k-means version.

Another centroid based clustering algorithm is partitioning around medoids (pam,

Kaufman and Rousseeuw (1987)) which represents a robust version of k-means. There are

two main differences between pam and k-means. First, for pam the cluster centers are data
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points and not arbitrary mean values like in k-means. Second, pam does not minimize

the squared Euclidean distances but the sum of dissimilarities between cluster centers and

observations within that cluster. The algorithm converges with any distance function. In

this thesis, it was used with Euclidean distances.

The third group of algorithms are hierarchical clustering algorithms. Here, the aim

is not to group the observations into a fixed number of clusters but rather to detect

a hierarchical structure in the data. There are divisive (top-down) and agglomerative

(bottom-up) hierarchical clustering methods (Friedman et al., 2001). In divisive clustering

all observations are at the beginning in one cluster and successively split into smaller

clusters based on similarity. In this thesis, no divisive clustering methods were applied.

In agglomerative clustering every observation is at the beginning its own cluster and

consecutively the two most similar clusters are merged. To perform the merging step,

a measure for the distance of two clusters is needed. Two different approaches were

applied: complete linkage and Ward’s minimum variance method. In complete linkage

the distance between two clusters A and B is calculated as the maximum distance between

any two observations from the two clusters (Johnson, 1967; Lance and Williams, 1967):

dcomplete linkage(A,B) = max
i∈A
j∈B

dist(oi, oj).

The definition implies that in complete linkage clustering two clusters are only considered

close to each other and thus merged if all observations in both clusters are similar (Friedman

et al., 2001). This leads to the detection of similar clusters. Ward’s method, on the

other hand, finds compact, spherical clusters by merging clusters which lead to the minimal

increase in total within-cluster variance (Joe and Ward, 1963). Different implementation

of Ward’s minimum variance method exist. In the original publication dissimilarities are

squared which is implemented in the method “ward.D2” in R which was applied in this

thesis.

For most projects, the aim of clustering was to visualize the observations or predictors in a

structured manner. To achieve this, hierarchical clustering based on Euclidean distances or

correlations was used. Only if the grouping was of importance for further analytical steps,

different algorithms were considered. When analyzing the results of different algorithms,

consensus clustering was performed to determine a clustering independent of one specific

clustering method but shared among several or all algorithms. Consensus clustering assesses

whether groups of observations are always clustered together by several algorithms.
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2.2 Gene expression measurements and processing

Gene expression describes the amount of mRNA present in a cell or in a collection of

cells. There are three predominant ways to measure gene expression levels: quantitative

polymerase chain reaction (qPCR, Higuchi et al. (1993)), gene expression microarrays

(Schena et al., 1995) and RNA sequencing (Nagalakshmi et al., 2008). In this thesis, only

data obtained from the first two methods was analyzed.

In short, qPCR is used to determine the levels of a small, hand picked number of genes.

Microarrays, in contrast, cover the whole transcriptome according to annotations in

databases. In RNA sequencing the mRNA is converted to coding DNA (cDNA) fragments.

The sequence of those fragments is directly obtained and computational methods are

employed to assess gene expression levels.

2.2.1 Quantitative polymerase chain reaction technology and data processing

Quantitative polymerase chain reaction (qPCR) is a targeted method to determine the

levels of a single specific nucleotide sequence (Higuchi et al., 1993). It is a quantitative

advancement of polymerase chain reaction (PCR, Mullis et al. (1986)). Through cycles

of heating and cooling and the use of sequence specific primers the amount of nucleotide

sequence as input is roughly doubled in every step. A fluorescent molecule which binds

to double stranded nucleotide sequences is added to the mix at the beginning. As soon

as a threshold of fluorescence is reached this specific cycle is termed the Ct-value (cycle

threshold value). The Ct-value can be translated to the true amount of nucleotides at the

beginning using an evenly expressed, house keeping gene as normalization. The process

can be parallelized to determine expression levels of several nucleotide sequences. These

nucleotide sequences can be protein-coding genes but also micro RNAs.

If a gene of interest X is measured in two conditions, e.g. lesional and noninvolved skin,

and in parallel in a house keeping gene like 18S, the expression levels can be quantified

using the ∆∆Ct method:

∆Ct = CtgeneX − Ct18S

∆∆Ct = ∆Ctnoninvolved −∆Ctlesional

expression levelgeneX = 2∆∆Ct.
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The exponentiation in the last step is due to the fact that the amount is doubled in every

cycle. Exponentiation introduces a shift of the values towards a log-normal distribution.

So before analyzing the expression levels, a log10 transformation was performed.

If no house keeping genes is known or measured, a different normalization approach

was performed. To make the levels comparable, all pairwise ratios of n Ct-values were

calculated:

∆Ctij = Ctgene i − Ctgene j for i ∈ {1, 2, ..., (n− 1)}, j ∈ {2, 3, ..., n}.

2.2.2 Microarray technology

If the target is not a specific set of genes a different approach than quantitative polymerase

chain reaction for determining the gene expression levels in a sample is needed. Gene

expression microarrays are a possible tool since they allow to assess the levels of all

transcripts which are annotated in databases (first developed by Schena et al. (1995),

explanation taken from Ewis et al. (2005)). Although, there are different microarray brands,

in this thesis, only microarrays from Agilent Technologies were used due to their broad

coverage. In principle, single stranded 60 nucleotide long probes are attached to a glass

slide in clusters of identical probes. Fluorescently labeled single stranded RNA is added

and binds to the probes if the nucleotides align to form a double strand. As a read-out,

signals are measured with the “iScan microarray scanner” and further processed with

“Agilent Feature Extraction Software” (Agilent Technologies).

A crucial step in measuring gene expression is the RNA isolation and quality control. The

collaboration partners who acquired the data which was analyzed in this thesis followed

the advice and protocols given by Agilent Technologies and the other manufacturers. Total

RNA was isolated with a Qiagen kit. For quality control RNA yield and quality were

determined with a NanoDrop from Thermo Fisher. As a final quality control step, RNA

integrity numbers were assessed. Only samples with RNA integrity numbers larger than

six were labeled with Cy3, amplified with oligo dT-promoter primers and hybridized on

SurePrint G3 Human GE 8x60K BeadChips from Agilent Technologies. In all studies

described in this thesis, the comparison of more than two conditions was the aim, so Cy3

labeling was used and measurements were taking using one-color microarrays, also called

single-channel microarrays. In case of only two conditions of interest, one condition is

labeled with Cy3 and the other one with Cy5. Both are measured together on the same

two-color microarray giving the possibility of direct comparison between both conditions.
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2.2.3 Computational processing of Agilent microarrays

Before microarrays were processed, their quality was evaluated. First, the quality control

output of Agilent’s Feature extraction software was checked for errors in the fluorescent

detection and extraction by the collaboration partners. If mistakes occurred on the

technical level the sample was measured again. Second, the thesis author used the

arrayQualityMetrics package (Kauffmann et al., 2009) in R (R Core Team, 2019) to

calculate several metrics evaluating the quality of each array relative to the others within

one data set. Microarrays were excluded from the analysis if they were strikingly different

in at least three metrics.

After quality control, all microarrays used in one study were processed together and analyzed

in parallel. Processing was performed with several functions from the limma package in

R (Ritchie et al., 2015). Microarray expression intensities were corrected for background

fluorescence with the “backgroundCorrect” function applying the “normexp” method which

is recommended by Ritchie et al. (2007) when local background estimates are available.

After correcting for background intensities, the expression values were normalized. Since

the data consisted of one-color microarrays between-array normalization was performed

and not within-array normalization as would be done for two-color microarrays. Quantile

normalization between arrays was applied which is recommended in Bolstad et al. (2003)

and forces the empirical distribution of each sample to be the same. The function

“normalizeBetweenArrays” performs quantile normalization and further log2-transforms the

expression values.

One possible, further processing step is exclusion of lowly expressed probes after background

correction and normalization. To filter out lowly expressed probes, only probes which were

10% brighter in any of the arrays than the 95% quantile of all negative control probes are

kept.

The Agilent gene expression microarray SurePrint G3 Human GE 8x60K consists of 62,976

probes which are spotted on glass slides. Of these 4,259 are negative and positive control

probes. Within the remaining 58,717 probes, 34,085 have only one measurement on the

microarray, 7,321 are measured twice and 999 are measured ten times. Taken together,

there are 42,405 different probes spotted on the Agilent microarray. Within-array probe

expressions were only averaged for identical probes with the “avereps” function. No average

across probes which refer to the same gene but have different nucleotide sequences was

performed since they possibly have different dynamical ranges or detect different variants

of the same gene.
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Oligonucleotide probes on microarrays are designed to correspond to transcripts. For

the relation between probe identifier and genes, three mappings were investigated: gene

expression omnibus’ version under GPL14550, information from Agilent’s internal website

and ensembl’s mapping accessed via biomaRt R-package (Durinck et al., 2009). Gene

symbols provided by the Human Genome Organisation (HUGO) Gene Nomenclature

Committee (HGNC) were used which are thought to be unique and meaningful. If the

probe-gene symbol assignments did not agree among the first three, the mapping provided

by ensembl was chosen as the most up to date version.

One possible, further processing step is a more stringent mapping of probes to exclude

probes with low confidence. To exclude probes with low confidence, the thesis author

applied “blastn” (Altschul et al., 1990) to map the 60 base pair long nucleotide sequences

spotted on the microarray to the human transcriptome available from USCS via Genbank

(February 2016) and encoded as RefSeq IDs. Out of all 42,405 probes, 13,430 did not

match with total accuracy to one position of the human transcriptome and were removed

prior to analysis. For probes mapping to more than one RefSeq ID, it was checked whether

these IDs corresponded to the same gene (via gene symbol). In this step, 2,229 probes were

excluded since they mapped to several genes. Mapping between RefSeq ID and gene symbol

was performed with org.Hs.eg.db annotation package from Bioconductor’s AnnotationDbi

(Pagès et al., 2018). In total, 26,746 probes mapped with complete accuracy to one unique

gene and were used in further analysis.

2.2.4 RNA sequencing and comparison to microarray technology

Microarrays were already developed in the 90s (Schena et al., 1995) but still used in daily

research. They have three major limitations Bumgarner (2013). First, arrays only give

an indirect measure of relative mRNA concentrations. Second, it is complicated to design

arrays where each probe is only bound by one specific molecular sequence and not by

several RNA/DNA sequences from the same gene family. Also determining alternative

splicing is difficult if not all exons are uniquely detected with the array (Gardina et al.,

2006). Finally, microarrays can only detect what is annotated in databases, so novel

variants or genes cannot be determined.

Due to the limitations other methods were developed, especially RNA sequencing, first

introduced by Nagalakshmi et al. (2008), is getting more and more popular. When

performing RNA sequencing the mRNA is first converted to coding DNA (cDNA) fragments

and ligated to an adapter sequence. All of those fragments are sequenced and computational

methods are employed to map those fragments to the transcriptome. The sequence
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fragments are typically between 50 and 500 base pairs long. Since every fragment is

sequenced, absolute abundances are obtained and novel transcripts and splice variants

can be detected. RNA-seq also enables the determination of polymorphisms in the RNA

sequences (Mantione et al., 2014).

Even though RNA sequencing has many advantages, currently microarrays are still cheaper

and reliable in model organisms (Mantione et al., 2014). Chen et al. (2017) showed that

for most transcripts (89.8%) results obtained by RNA sequencing or microarrays can be

reproduced in The Cancer Genome Atlas data. Both methods should compliment each

other in scientific endeavors.

2.2.5 Gene set analysis

Analysis of gene sets is a useful tool to put lists of genes into a context and understand

their relationships. For different studies different gene set databases were used depending

on the study, clinical question and suitability. Three gene set and pathway databases

were used: reactome (Fabregat et al., 2017), wikipathways (Slenter et al., 2018) and gene

ontology (Gene Ontology Consortium, 2016).

For cases where the gene set of interest is known because of the clinical question at hand,

the thesis author proposed an intuitive visualization. For comparing expression of genes

within one gene set among two or more conditions, fold changes for all gene within the

gene set were visualized using barplots. For this approach, fold changes should have been

calculated relative to the same baseline for all groups. Fold changes of different conditions

for the same gene were aligned horizontally while the vertical axis showed all genes in the

gene set of interest (examples for two groups in Fig. 5.4 and 5.7, for three groups in Fig.

5.8 and 5.9). To quantify the visual similarity of expression for two conditions within one

gene set correlation coefficients between fold changes were calculated.

If the gene set of interest is not known, enrichment analysis with two methods were

performed: model-based gene set analysis (MGSA, Bauer et al. (2010)) and over-representation

analysis. In over-representation analysis a statistical test is performed. The hull hypothesis

of no enrichment of differentially regulated genes in one pre-defined gene set is tested via

e.g. Fisher’s exact test. One crucial point is to define the background set, where all genes

which were measured by the Agilent microarray which passed quality control were used.

The enrichment test is calculated for all gene sets of interest and associated p-values are

corrected for multiple testing. Another angle on gene set enrichment analysis, is a Bayesian

model-based approach introduced by Bauer et al. (2010) where the hierarchical structure
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of gene sets is taken into account in the model estimation. The results are posterior

probabilities of each gene set being active or not, where a cut-off of posterior probability of

0.5 is recommended.

In cases where several gene lists obtained from different omics levels are jointly tested for

gene set enrichment, the Multi-level ONtology Analysis (MONA) algorithm can be applied.

It is model-based Baysian method which infers probabilities for each GO term in a modular

framework (Sass et al., 2013).

2.2.6 Mapping to protein-protein interaction networks

To gain deeper understanding of interactions between genes, corresponding proteins were

mapped to protein-protein interaction networks. Several interaction network databases are

available with different characteristics. For example, STRING is a large resource of over

5,000 organisms, 24.6 million proteins and more than 2,000 million interactions among them

(Szklarczyk et al., 2016). It includes experimentally validated protein-protein interactions

and also computationally predicted interactions or proteins pairs which are only functionally

related (Snider et al., 2015). BioGRID is another protein-protein interaction database

which provides only curated interactions (Chatr-Aryamontri et al., 2017). Currently, 1.6

million interactions are available in BioGRID in over 80 organisms which also include

viruses.

In this thesis, mapping to protein-protein interaction networks was applied for results

calculated for immune cells. So, proteins were mapped to the database InnateDB provided

by Breuer et al. (2012) because the database is based the IMEx interactome (Orchard

et al., 2012) and specifically curated for immune-related proteins (Snider et al., 2015). All

protein-protein interactions in InnateDB have been experimentally validated.

During mapping of proteins of interest, only first-order interactions were of interest.

First-order interactions include all proteins which are known from the database to directly

interact with the queried protein.

2.2.7 Dimension reduction of gene expression data

In order to visualize high dimensional data, dimension reduction techniques were applied.

Principal component analysis (PCA) is one popular method (Jolliffe, 2011) first introduced

by Pearson (1901) and further developed by Hotelling (1933). It aims to project high
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dimensional data consisting of n observations of p variables to a lower dimensional space

(l dimensions) without losing much information. Data is represented in form of a matrix

X ∈ Rn×p where n is the number of observations and p the number of measured variables,

e.g. genes. X is assumed to be centered by column, meaning the mean value of each

variables is subtracted for all observations. PCA is a linear transformation where the first

principal component gives the direction of highest variance, the second principal component

the direction of second highest variance, and so on. If the data is normally distributed, then

principal components are statistically independent of each other. If not, the components

are decorrelated but statistically dependent. PCA is defined by weights vk ∈ Rp×1 which

project each row i of X, called xi ∈ R1×p, for i ∈ 1, .., n to the principal component scores

ti ∈ R1×l following this equation:

ti(k) = xi · vk for i ∈ 1, ..., n and k ∈ 1, ..., l.

Finding the first principal component in classical PCA solves the following equation for

v1 ∈ Rp×1:

max
v

(vᵀXᵀXv) subject to ‖v‖22 ≤ 1.

Where XᵀX represents to covariance matrix of the data and v1 its eigenvector to the

largest eigenvalue. Following the same principle, the k-th weight vector vk for the k- th

principal component is calculated by subtracting k − 1 components from X to form X̂k:

X̂k = X −
k−1∑
s=1

Xvsv
ᵀ
s .

And then by solving the same equation:

vk solves: max
v

(
vᵀX̂ᵀ

k X̂kv
)

subject to ‖v‖22 ≤ 1.

Lin et al. (2016) extended the principal component framework by adding a regularization

term. Including the regularization allows to adjust for confounding variation during

dimension reduction (short AC-PCA) in the following way: let c be the number of

confounders, then Y ∈ Rn×c represents the confounding matrix, centered by column and

K = Y ᵀY . Y is chosen so that vᵀXᵀKXv describes the confounding variation in the

projection. The PCA can be modified with:
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max
v

(vᵀXᵀXv − λvᵀXᵀKXv) subject to ‖v‖22 ≤ 1,

where λ ≥ 0 gives the strength of regularization. The parameter λ is chosen so that

confounding variation is relatively small in comparison to total variation. For λ = 0 it

corresponds to classical PCA. If λ is large enough the subspace for the optimization problem

is restricted to be orthogonal to the columns of Y Lin et al. (2016). If Z = XᵀX−λXᵀKX,

then the maximization problem of AC-PCA can be solved by finding an eigendecomposition

of Z.

There are many more dimension reduction algorithms with new ones being regularly

introduced, e.g. the Uniform Manifold Approximation and Projection for Dimension

Reduction, short UMAP (McInnes et al., 2018). While PCA or multidimensional scaling

(Kruskal, 1964) preserve distance structure within the data, other algorithms preserve local

distances rather than global distances (McInnes et al., 2018). Algorithms like t-distributed

stochastic neighbor embedding (Maaten and Hinton, 2008), diffusion maps (Coifman and

Lafon, 2006) and also UMAP (McInnes et al., 2018) fall into the latter category and are

getting more and more popular, especially in single cell RNA-seq analysis (Haghverdi et al.,

2015; Becht et al., 2018).

2.2.8 Batch correction methods

Batch effects can arise in measured data due to technically different handling of the

measurements. Examples are different reagents, technicians or varying laboratory conditions

(Leek et al., 2010). Especially, in whole genome gene expression data batch effects are often

present (Johnson et al., 2007). In this thesis, two different approaches for handling batch

effects were applied. One for known batches and one for unknown sources of variability.

If the batch is known for the data, e.g. because data was measured on different days,

ComBat was applied which was particularly introduced for microarray data by Johnson et al.

(2007). ComBat uses an empirical Bayes framework to adjust for batches which is robust

to outliers and applicable for small sample sizes. The core idea is to borrow information

across measured variables, e.g. genes, since it is assumed that a batch effect has similar

influence on several variables (Johnson et al., 2007). In this thesis, the implementation of

ComBat in the R-package sva was used (Leek et al., 2012).

For the other case, if the batch is not known, surrogate variable analysis was applied

(Leek and Storey, 2007, 2008) for cases where unknown sources of variation influencing the
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measurements were suspected, e.g. because of grouping in principal component analysis

which was not associated to any known covariate (see section 2.2.7). Surrogate variable

analysis also borrows information across variables, e.g. genes, to estimate effects of all

unmodeled factors. This estimation of heterogeneity is directly performed on the data in

five steps (Leek and Storey, 2007). First, the signal of the primary outcome of interest, the

effect which is investigated, is removed from the data and a residual matrix is obtained.

Second, the residual matrix is decomposed using an orthogonal basis of singular vectors

which identifies signatures of underlying heterogeneity. Third, each singular vector is tested

for whether it represents more variation than expected by chance. Forth, for each singular

vector, the subset of genes which drive the heterogeneity is identified. Fifth, for those

subsets of genes a surrogate variable is built using the signatures of underlying heterogeneity

on the original data. After the surrogate variables were constructed, they were included as

covariates in the subsequent regression analysis. In this thesis, the iteratively re-weighted

least squares implementation of surrogate variable analysis in the sva R-package was used

Leek et al. (2012).
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2.3 Measurement and processing of secretome expression

Tjalsma et al. (2000) first introduced the idea that all molecules secreted by a cell or

organism are important to study and termed them the secretome. There are several methods

to measure the secretome. In an in vitro design, cells often need an external stimulus

to secrete the proteins into the surrounding media which is extracted and subjected to

measurement. In humans, proteins are secreted by various cells and are also transported via

the blood where they can be measured. In this thesis, two types of secretome measurements

are used: enzyme-linked immunosorbent assays (ELISA) and multiplexed immunoassays.

In short, both methods are targeted, antibody-based and fluorescence is the detected

output which has to be translated to concentration using standard values. With ELISA

only one protein at a time can be measured whereas the multiplexed technology provides a

platform where tens of proteins are determined in parallel.

The collaboration partners who acquired the data analyzed in this thesis chose to apply

targeted methods since cytokines which are known to be important for signaling within the

immune system (Parkin and Cohen, 2001) are lowly expressed in human serum compared

to functional plasma proteins like serum albumin and apolipoproteins (Geyer et al., 2017).

They wanted to detect cytokines in human serum with targeted approaches since there are

more than 100 serum markers which were approved or cleared by the FDA as clinical tests

for various human diseases (Anderson, 2010).

2.3.1 Enzyme-linked immunosorbent assays (ELISA) technology

Enzyme-linked immunosorbent assays (ELISA) were introduced by Engvall and Perlmann

(1971) and Van Weemen and Schuurs (1971) who showed first that enzymes can be used

as reporter labels. There are different kinds of ELISA. The collaboration partners who

acquired the data analyzed in this thesis applied so-called “Sandwich-ELISA” which relies

on two antibodies specific for two different epitopes of the protein of interest (Bidwell

et al., 1977). The first antibody, the capture antibody, is attached to a surface (Fig. 2.1).

When the sample is added, the capture antibody binds to the protein of interest. After

washing, another antibody specific to the protein is added and also binds the protein, thus

forming a “sandwich” of two antibodies binding the same protein. To enable detection, an

enzyme-linked secondary antibody is added that binds the constant region of the second

antibody. When adding the enzyme’s substrate, the substrate is converted and a fluorescent

signal is emitted which is detected.
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Requirements for ELISA are two antibodies binding to different epitopes of the protein of

interest. Only one protein can be determined in one reaction chamber. Standards with

known concentrations are measured in parallel, to translate the emitted fluorescence into

concentration values. If the protein concentration in the sample is far beyond the standard

concentrations, the translation to concentration is not possible and the limit of detection is

reached.

Enzym

primary
antibody

capture
antibody

serum
protein

enzyme-linked
secondary
antibody

substrate
(colorless)

product
(colorful)

Fig. 2.1 – Enzyme-linked immunosorbent assays technology. Capture (light blue) and
primary antibody (light green) are specific for the protein of interest (yellow). A secondary,
enzyme-linked antibody (light red) binds the constant region of the primary antibody. When
adding the enzyme’s substrate (white circle), the substrate is converted (dark blue) and a
fluorescent signal is emitted which is detected. Figure was adapted from wikipedia.de/ELISA
and was licensed under CC BY-SA 4.0.

2.3.2 Processing ELISA measurements

If secreted proteins were measured with ELISA and the aim of the study was to compare

concentration values across proteins, the analysis was performed with translated concentra-

tions. The main reason were the concentrations which lay outside of the detection limits

and thus translation into concentration values was not possible. Since only one or a few

proteins were measured simultaneously, imputation methods like multivariate imputation

by chained equations (MICE, Raghunathan et al. (2001); Van Buuren (2007)) which use

the whole data set for computing imputations were not applicable. Instead, a processing

scheme was introduced which was oriented along the seven standard values measured

in parallel with each protein. The protein concentrations were transformed to classes

one to ten following the concept visualized in Table 2.2. Kotsiantis et al. (2006) advise

to use discretization when performing machine learning tasks like clustering to improve

effectiveness. Choosing the optimal internal border for discretization remains an open

problem (Kotsiantis et al., 2006).
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Tab. 2.2 – Preprocessing scheme for ELISA measurements making use of standard values.

ELISA measurement transformation

below lower limit of detection 1
above lower limit of detection but below 1st standard 2
between i-th and (i+1)-th standard for i ∈ {1, 2, ..., 7} i + 2
below upper limit of detection but above 7th standard 9
above upper limit of detection 10

2.3.3 Multiplex immunoassays

One caveat of ELISA is the constraint of determining only one protein at a time. The

Luminex’s Multi-Analyte Profiling (xMAP) technology enables the measurement of several

proteins at the same time (explanations taken from (Dunbar, 2006)). The key difference to

ELISA is that the capture antibody is not attached to a surface but to a microscopic bead

(Fig. 2.2). The bead itself is internally fluorescently labeled with a unique combination of

two dyes and coated with specific antibodies. Proteins from the sample bind the antibody

and a second fluorescent detection antibody is added. The detection is based on flow

cytometry where two lasers with different wavelengths either excite the dye combination

in the beads or the molecular tag attached to the detection antibody. In parallel, the

dye in the bead tells which antibody is bound to it, so which protein is measured, and

the molecular tags allows to measure the concentration of the protein. For translating

fluorescent information into concentration values standards with known concentrations are

used.

The collaboration partners who acquired the data analyzed in this thesis used the Bio-Plex

ProTM Human Cytokine 27-plex Assay which is build on Luminex xMAP technology.

It uses magnetic beads and assesses the concentration of 27 proteins in human serum.

Magnetic beads are shown to perform better than polystyrene beads since they reduce

non-specific binding, are more robust and reproducible (Moncunill et al., 2013).

2.3.4 Processing of multiplex immunoassays

The output of multiplex immunoassays is fluorescence-intensity based and mostly not

normally distributed. Another problem are out of range values. Concentrations of more

than half of the samples within one study was outside the detection limits for several

proteins. Depending on the clinical question different processing steps were chosen. If the

interest was solely in the comparison of groups within the same protein, rank-based tests
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Fig. 2.2 – Multiplex immunoassay technology. The main difference to ELISA (Fig. 2.1)
is that the primary antibody is not attached to a surface but to a fluorescently labeled bead.
This enables the measurement of several different proteins simultaneously in one reaction
chamber. Figure was adapted from wikipedia.de/ELISA and was licensed under CC BY-SA
4.0.

were applied. In these rank-based tests, the translated concentrations based on standard

values were directly used and for all samples above the detection limit the highest rank

was assigned and for those below the lower detection limit the smallest rank was assigned.

For the other studies, where the interest was in the relationship among the proteins and

statistical models were calculated, a two step processing scheme was applied.

The first step of the processing dealt with those proteins, where more than a specific

percentage of samples in one data set at hand had values outside the detection limits. The

thesis author, together with her supervisors and collaboration partners decided to set this

percentage to 20%. Those proteins were discretized to the values zero and one for both

directions. For proteins where more than 20% of the samples were above the upper limit

of detection, the class zero represents samples where a concentration was measured below

upper limit of detection and class one represents samples above the upper limit of detection.

Vice versa, for proteins where more than 20% of the samples were below the lower limit of

detection, class zero represents those sample below lower limit of detection and class one

those where a concentration above the lower limit of detection was measured.

For all proteins which were not discretized first log10-transformations were applied and

samples beyond detection limits were imputed with GSimp (Wei et al., 2018). GSimp is

an iterative algorithm based on a Gibbs sampler for left and right censored missing value

imputation. The method can be summarized in four steps. First, the missing values are

initialized with a method of choice. For left censored values quantile regression imputation

of left censored data was chosen (Lazar et al., 2016) and for right censored data a method
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which draws samples from the left tail of the distribution and symmetrically transforms

them to the right tail was chosen as recommended by the authors. Second, a prediction

model is build where the variable with missing values is the response and other variables

are covariates. The prediction model is calculated with elastic net. Third, the prediction

model is used to calculate an estimate of the response and an error between initialized

value and predicted value. In a forth step, the model estimate and error is used to sample

the missing element from a truncated normal distribution. Steps two to four are repeated

and the values are updated for a set amount of iterations. The thesis author used default

numbers of iterations.

The thesis author, together with her supervisors and collaboration partners chose to

impute proteins measured with multiplex technologies since tens of proteins were measured

simultaneously. The applied imputation approach borrows information from other proteins

to stabilize the imputation result. When analyzing ELISA measurements (section 2.3.2)

the number of proteins was much lower, so the imputation results were less stable and the

transformation scheme described in Table 2.2 was applied.

As a comparison, Do et al. (2018) chose to not include metabolites in their correlation

analysis if more than to 70% measurements were outside the detection limits. Sterne et al.

(2009) discussed a study where a variable with 70% missingness was imputed and led to

clinically wrong results. The cutoff of 20% is conservative compared to 70% also due to

the fact that not hundreds of variables were measured in parallel like in Do et al. (2018)

but only around 30.

2.3.5 Batch correction

Similarly to batch effects described for gene expression data (see section 2.2.8), these

effects can also manifest in other kinds of measurements like in secretome data. The same

procedure as described in section 2.2.8 was followed. In short, if the batch is known, e.g.

because of different recruitment periods of patients, these known batches were adjusted for

using ComBat (Johnson et al., 2007) which is implemented in the sva package by Leek

et al. (2012). If the batch is not known, the thesis author tested for unknown latent sources

of variation using surrogate variables analysis (Leek and Storey, 2007, 2008) which is also

implemented in the sva package Leek et al. (2012). If the method detect unknown sources

of variation they are represented as covariates which can be included in the regression

modeling.
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2.4 Overview of studied diseases

2.4.1 Atopic Eczema and psoriasis

Psoriasis and atopic eczema are both inflammatory skin diseases. They can arise if the

balance of Th cell subsets is distorted. They are not only defined by the Th cell imbalance,

but by several more factor, which makes them multifactorial, complex diseases. During the

last years, modern technologies and computational analysis of whole genome expression

data have changed insights in the pathogenesis of both diseases (Tsoi et al., 2012; Bieber,

2008; Perera et al., 2012). In parallel, novel therapies which target specific cytokines and

other disease mediators have been developed for both diseases (Langley et al., 2014). These

new therapies increasingly replace therapies which suppress the whole immune system

(Schön, 2014; Beck et al., 2014). So far, the establishment of biomarkers which predict

the success of these therapies is still challenging mainly because of the heterogeneity of

both diseases. The heterogeneity is also the reason for difficulties of differentiating between

psoriasis and eczema during diagnosis (Aydin et al., 2008). Wrong diagnosis of either

disease and subsequently wrong therapy can lead to worsening of both diseases.

Atopic Eczema

Atopic eczema is common, chronic inflammatory skin disease. In patients with atopic

eczema more Th2 cells were detected in affected skin in relation to Th1 cells (Bieber, 2008).

Therapeutic effects in atopic eczema are measured by scores such as the “severity scoring

of atopic dermatitis” (SCORing atopic dermatitis, short: SCORAD). Clinical variants and

subtypes of eczema which were analyzed in this thesis are nummular eczema, palmoplantar

and scalp variants and erythroderma.

Recently, multiple studies tried to identify disease biomarkers for atopic eczema in human

serum (Zhang et al., 2013; Thijs et al., 2015a, 2017a). Atopic eczema is related to systemic

inflammation and increased inflammatory marker proteins are measured in the serum of

patients (Brunner et al., 2017).

Atopic eczema usually starts in infancy with a prevalence of 20% in children which reduces

to 2%-10% in adults (Weidinger and Novak, 2016; Garmhausen et al., 2013). Risk factors

for a persistence disease course have been described in the literature (Von Kobyletzki et al.,

2015; Kiiski et al., 2015) but it is not possible to predict the disease course at an early age.
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Psoriasis

Psoriasis is an inflammatory skin disease which is still underdiagnosed and undertreated

(Lebwohl et al., 2016). One reason is the noteworthy heterogeneity in the clinical

presentation of psoriasis (Boehncke and Schön, 2015). There are several clinical variants

and various subtypes of psoriasis. In this thesis, data from patients with guttate psoriasis

and inverse psoriasis was analyzed. In patients suffering from psoriasis an imbalance

towards more Th1, Th17 and Th22 cells compared to Th2 cells was observed in the lesional

skin (Nestle et al., 2009).

2.4.2 Interface dermatitis

Interface dermatitis is a type of skin inflammation which is present in several inflammatory

and autoimmune skin diseases. It is also called lichenoid tissue reaction. Examples for

diseases with interface dermatitis skin inflammation are lichen planus, lupus erythematosus,

dermatomyositis, fixed drug eruption and many others. It is characterized by immune cell

infiltration, enlarging of cells and death of keratinocytes (Sontheimer, 2009).

2.4.3 Allergic asthma

Asthma is characterized by a chronic inflammation of the airways. It is further associated

with airway hyperresponsiveness and airflow obstruction. Diagnosis can be difficult, in

particular for children in pre-school age and in elderly people. In addition, asthma is a

heterogeneous disease with different phenotypes (Wenzel, 2012).
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2.5 Clinical data and its processing

In this thesis, matched clinical data was utilized to analyze molecular cohort data of patients.

Clinical data comes in a variety of formats, data types and value ranges. Information is

stored in numerical and categorical variables with two or multiple levels. Thus, careful

investigation and adjustment is needed to integrate clinical information with molecular

data.

Other challenges in clinical data analysis are standardization and missing values. Standardi-

zation is of most importance if different cohorts are combined. Missing data, however,

is almost always present in clinical information of cohort data. Here, a differentiation

between random and systemic missingness is necessary. Missing at random means that

the probability for a missing value does not depend on unobserved values but only on

observed ones (Schafer and Graham, 2002). If this is not fulfilled then the data has systemic

missingness and bias.

Processing of clinical data

Collection of clinical data is not standardized but depends on the collaboration partner

and investigated disease. For this thesis, only analyses were performed where all available

data was collected by one experimental group, so standardization across cohorts was not in

issue. Yet, this point should be considered when comparing the results to similar studies.

For the handling of categorical data, the thesis author, together with her supervisors and

collaboration partners chose carefully whether each categorical level should be regarded as

independent or whether the levels have an intrinsic ordering. Categorical variables with more

than two levels often have an intrinsic ordering and can be transformed so that rank-based

methods are applicable. If enough levels were available and those were approximately

equidistant multi-level ordered categorical variables were treated as numerical predictors

in regression analyses. Depending on the variable ranges numerical clinical variables were

either log-transformed or used as is.

Since statistical modeling with missing data is difficult and not possible with many first-line

approaches like principal component analysis and linear regression, the thesis author,

together with her supervisors tried to overcome this challenge by following two ideas. First,

going back to clinicians to determine whether there is a possibility to obtain the missing

data. Second, imputing data with multivariate imputation by chained equations (MICE,

Raghunathan et al. (2001); Van Buuren (2007)). MICE is an iterative algorithm where
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each variable is imputed separately based on a regression model where the variable is the

response and all remaining variables are predictors. The implementation in the R package

mice from van Buuren and Groothuis-Oudshoorn (2011) was applied.

The decision how variables were processed, standardized and imputed was jointly made

together with the respective clinical partners.
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2.6 Overview of studies, cohorts and data sets

To answer the research questions introduced in section 1.4 one or more cohorts or data sets

were analyzed. All measurements were performed in the labs of the respective collaboration

partners.

First research question: disease classifiers

The first research question asked whether robust and interpretable molecular disease

classifiers can be found. Together with Natalie Garzorz-Stark and Kilian Eyerich from

Department of Dermatology and Allergy at the University Clinic of TU Munich (short:

TUM Derma), a molecular disease classifier to differentiate between psoriasis and eczema

was established by means of disease subtypes using 129 patient samples (section 3.1).

In collaboration with Katrin Milger from the Institute of Lung Biology and Disease at

Helmholtz Center Munich (short: Helmholtz Lung) and Susanne Krauss-Etschmann from

Research Center Borstel (short: Borstel), a molecular disease classifier for allergic asthma

was set up using micro RNA measurements in two independent patient cohorts (section

3.2).

affiliation samples molecular data clinical data (# variables)

TUM Derma 129 patients with psoriasis

or atopic eczema

expression of 2

genes

histology, anamnesis (64)

Helmholtz

Lung, Borstel

46 allergic asthma patients,

21 healthy controls

expression of

13 miRNAs

anamnesis (29)

Second research question: serum proteins as surrogates

The second research question asked whether serum proteins can be used for disease

monitoring and prognosis. Together with Stefanie Eyerich from the Center of Allergy

and Environment of the Technical University of Munich and the Helmholtz Zentrum

München (short: ZAUM), 30 serum proteins were associated to disease severity in 52

atopic eczema patients for disease monitoring (section 4.1). In collaboration with Veronika

Baghin and Natalie Garzorz-Stark from TUM Derma, 33 serum proteins and IgE levels

in 124 children were analyzed to determine markers for disease prognosis (section 4.2).

Together with Karolin Dehlke and Katrin Hoffmann from Heidelberg University Hospital
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(short: Heidelberg) and Ursula Klingmüller from the German Cancer Research Center

(short: DKFZ), patient prognosis after liver resection in 30 patients were investigated

using time-course data of eight serum proteins and twelve blood tests (section 4.3). Serum

proteins were measured with the Luminex xMAP technology implemented in the Bio-Plex

ProTM Human Cytokine 27-plex Assay or with single plexes. Single secreted proteins very

measured with ELISA.

affiliation samples molecular data clinical data (# variables)

ZAUM 52 atopic eczema patients,

20 healthy controls

30 serum proteins severity score (1)

TUM

Derma

124 children with

atopic eczema

33 serum proteins,

IgE levels

anamnesis and

questionnaire (59)

Heidelberg,

DKFZ

30 patients after liver

resection surgery

time-course of 8

serum proteins &

12 blood tests

hospital stay information,

surgery course (46)

Third research question: adjusting patient-bias

The third research question asked whether inter-individual variability in patients can be

adjusted for when analyzing whole genome gene expression data measured with microarrays.

All gene expression microarrays were Agilent Technologies SurePrint G3 Human GE 8x60k

BeadChip. Together with Felix Lauffer and Kilian Eyerich from TUM Derma, gene

expression data in 32 patients with interface diseases were investigated and adjusted for

inter-individual variability using linear mixed effects models. Whole biopsy gene expression

data from patients was integrated with gene expression measurements of keratinocytes in

five different stimulation conditions with each three replicates (section 5.1). In collaboration

with Natalie Garzorz-Stark, Felix Lauffer and Kilian Eyerich from TUM Derma and Stefanie

Eyerich from ZAUM, gene expression in imiquimod-induced skin reactions of 18 subjects

was also analyzed using linear mixed effects models (section 5.2). For both projects, results

were compared to gene expression data measured in a cohort of 49 patients with different

inflammatory skin diseases published by the collaborators from TUM Derma and ZAUM

in Quaranta et al. (2014b).
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affiliation samples molecular data clinical data (# variables)

TUM Derma 32 interface dermatitis

patients

gene expression

microarray †
histology (24)

TUM Derma 3 keratinocyte samples

each for 5 conditions

gene expression

microarray †
—

TUM Derma,

ZAUM

18 subjects with

imiquimod-induced skin

reactions

gene expression

microarray †
diagnosis (1)

TUM Derma,

ZAUM

49 inflammatory skin

disease patients

gene expression

microarray †
diagnosis (1)

† gene expression microarrays measured 42,405 probes, see section 2.2

Forth research question: characterizing T cells

The forth research question asked whether new marker genes for T helper cell subsets can

be obtained. Together with Stefanie Eyerich from ZAUM, four secreted proteins of 79 T

helper cell clones were analyzed to group cells into T helper cell subsets. Those results

were integrated with levels of 27 secreted proteins measured by Luminex xMAP technology

for a subset of 75 T helper cell clones. Whole genome gene expression data of 79 clones in

both stimulated and unstimlated condition was analyzed to determine new marker genes

for each of the subsets (section 6).

affiliation samples molecular data

ZAUM 79 T cell clones in stimulated condition levels of 4 secreted proteins

measured by ELISA

ZAUM 75 T cell clones in stimulated condition levels of 27 secreted proteins

measured by Luminex

ZAUM 79 T cell clones in unstimulated and

stimulated condition, together 158 samples

gene expression microarray †

† gene expression microarrays measured 42,405 probes, see section 2.2
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Chapter 3

Building and characterizing disease classifiers

in inflammatory skin diseases and allergic

asthma

Novel technologies and methodologies enabled a more detailed understanding of human

diseases. Among other implications, this led to new, and more specifically targeted

medications. However, the development of specific biomarkers, able to classify patients

correctly or monitor disease progression, is an ongoing process. This chapter describes two

studies where the primary aim was to differentiate between two groups of subjects using

few molecular markers. The secondary aim was to make these markers interpretable by

associating them with clinical features.

In the first study, the thesis author built a disease classifier which differentiates between

psoriasis and atopic eczema, two inflammatory skin diseases, together with her supervisors

and her collaborators at the Department of Dermatology and Allergy at the University

Hospital of Technical University Munich. The classifier is based on gene expression levels

of two genes: NOS2 and CCL27. Those two genes were described in earlier work published

by Quaranta et al. (2014b). Here, the focus is not on the development of the classifier

itself but on its applicability in subtypes of psoriasis and eczema and the association of the

markers with clinical and histological attributes (section 3.1). Results were published in

2016 in the Journal of Experimental Dermatology. Recently, the framework was extended

to paraffin-embedded skin samples opening this diagnostic tool to dermatological practices

with no access to state-of-the-art experimental laboratories. This extension is still in the

developmental stages but ethics is approved and collection of over 700 paraffin-embedded

skin samples starts soon.
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N. Garzorz*, L. Krause*, F. Lauffer, A. Atenhan, J. Thomas, S.P. Stark,

R. Franz, S. Weidinger, A. Balato, N.S. Mueller, F.J. Theis, J. Ring, C.B.

Schmidt-Weber, T. Biedermann, S. Eyerich and K. Eyerich: A novel molecular

disease classifier for psoriasis and eczema. Experimental Dermatology (2016).

* equal contribution

The second study described in this chapter (section 3.2) used a two step approach to

identify a miRNA-based classifier for allergic asthma. First, miRNAs were screened for

differential expression in two mouse models of asthma. The statistical identification of

candidate miRNAs was performed by Nikola S. Müller. In the second step, those candidate

miRNAs were measured in two human cohorts with patients suffering from allergic asthma

and healthy controls. Regularized logistic regression was applied to determine the optimal

combination of miRNAs in a training cohort which was then tested in an independent test

cohort. Resulting miRNAs were associated to clinical attributes to assess whether they

differentiated asthma subphenotypes. The study was conducted with the collaborators

at Research Center Borstel and the Institute of Lung Biology and Disease at Helmholtz

Center Munich.

K. Milger, J. Götschke, L. Krause, P. Nathan, F. Alessandrini, A. Tufman,

R. Fischer, S. Bartel, F.J. Theis, J. Behr, S. Dehmel, N.S. Mueller, N. Kneidinger

and S. Krauss-Etschmann: Identification of a plasma miRNA biomarker-signature

for allergic asthma: a translational approach. Allergy (2017).
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3.1 Molecular classifier for psoriasis and eczema

The study was conducted in collaboration with Natalie Garzorz-Stark and Kilian Eyerich

from the Department of Dermatology and Allergy at the Technical University Munich.

Molecular data consisted of gene expression levels of two previously described genes which

separate psoriasis from eczema patients. The classifier was validated in three cohorts and

the gene expression levels were associated to histologic attributes, anamnestic, clinical and

laboratory markers. Content, text and data of this section are based on Garzorz-Stark

et al. (2016). Copied text passages are indicated as quotations.

In this study the thesis author was responsible for data management, data processing and

all statistical analyses were performed by her including modeling and association analyses.

All figures presented in this section, except the photographs of patients’ skin, were created

and designed by the thesis author. The paper Garzorz-Stark et al. (2016) was written

jointly together with Natalie Garzorz-Stark. Here, the part on how the molecular classifier

was built is described in more detail than in the published paper.

3.1.1 Motivation

Psoriasis and atopic eczema are inflammatory skin diseases which are treated with diverse

specific therapies (section 2.4.1). Predicting clinical response to treatment is still challenging

because both diseases are heterogeneous. Already diagnosing both diseases is difficult

(Aydin et al., 2008). Misdiagnosis of either disease can lead to severe impairment of the

disease.

There has been previous work trying to build molecular classification systems for psoriasis

and eczema. Guttman-Yassky et al. (2009) published a prediction model which uses the

expression 13 different genes. Researchers also tried to build multi-disease classifiers in

the field of inflammatory skin diseases. For example, Inkeles et al. (2015) used microarray

data from more than 300 samples from people suffering from 16 skin disease to establish

such a classifier. But, all these classifiers have a rather large size in terms of needed genetic

markers and reducing them remains a challenge.

“We recently defined characteristic pathways and key players for psoriasis and eczema by

analyzing a unique patient group which - suffering concomitantly from psoriasis and eczema

- represent an excellent model to study inflammatory responses independent of genetic

background and environmental influences prior to tissue sampling (Eyerich et al., 2011;

Quaranta et al., 2014b). Based on these findings, several marker combinations to diagnose
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psoriasis or eczema were proposed, among them the combination of NOS2, the inducible

nitric oxidase synthase which produces NO upon stimulation by proinflammatory cytokines

(Kanwar et al., 2009) and CCL27, the cutaneous T-cell-attracting chemokine eliciting a

crucial role in T-cell-mediated inflammation (Homey et al., 2002). Here, we validated this

molecular classifier [...] for practical clinical use.” (Garzorz-Stark et al., 2016)

The classifier was applied to a large cohort of patients (n = 129) suffering from psoriasis

or eczema or both, and also several clinical subtypes of both diseases and clinically and

histologically unclear patients. Finally, the markers were set in context with known

histological and clinical attributes to characterize them further.

3.1.2 Methods

A detailed description of the patient cohort and laboratory methods can be found in

Garzorz-Stark et al. (2016). In this thesis section, the focus is on the statistical basis for

defining the molecular classifier.

Patients and material sampling

This study presents data of in total 129 patients in three different cohorts. The first cohort

contained patients with plaque psoriasis (n = 45) and eczema (n = 43). The second cohort

contained 31 patients with different variants and subtypes of both diseases. The third

cohort consisted of patients with unclear diagnosis. Some patients have been previously

published in Quaranta et al. (2014b). For all patients anamnestic, clinical, histological and

laboratory variables were gathered. Biopsies were taken from lesional and in 119/129 cases

also in noninvolved skin and divided in half. One part was analyzed using histology and

from the other part RNA was isolated for gene expression analysis.

Molecular classifier

RNA from lesional and noninvolved skin was isolated and transcripts of 18S (house

keeping gene), NOS2 and CCL27 from lesional and noninvolved skin were measured by

quantitative polymerase chain reaction (section 2.2.1). Data were expressed as mRNA fold

change, relative to house keeper and noninvolved skin as calibrator, which will be termed

“normalized” expression (section 2.2.1 for formula). The molecular classifier was built using

a logistic regression (section 2.1.6) with normalized and log10-transformed levels of NOS2
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and CCL27 as covariates xj ∈ Rn×1 for j ∈ 1, 2 and disease state (psoriasis or eczema) as

response variable y ∈ Rn×1. The model was trained on the first cohort, n = 88 patients

with clear diagnosis, and tested on patients from the second and third cohort, suffering

from subphenotypes of psoriasis and eczema or with unclear disease state. To infer the

robustness of the model, a 10-fold cross-validation (section 2.1.8) was performed in the

first cohort.

For patients where there is no information about gene expression in noninvolved skin a

pool of mean expression of CCL27 and NOS2 in noninvolved skin was established and these

values were used as calibrators for normalization of NOS2 and CCL27 transcripts in lesional

skin. A second classifier was trained on the same patients but all values were normalized

to the pooled values. This classifier can be used on patients without information from

noninvolved skin.

Statistical analysis

“To correlate expression of NOS2 and CCL27 with clinical and histological features, data

type appropriate statistical tests were used [(see section 2.1.3)]: statistical significance for

categorical features with two levels was determined using Welch’s t-test, and for those with

more than two levels, analysis of variance was applied. For features on the interval scale,

significance was determined using Pearson’s correlation coefficient. The term association

refers to categorical features; the term correlation refers to features on the interval scale.

Only associations with a controlled false discovery rate of less than 10% were selected. All

listed p-values were adjusted using the Benjamini-Hochberg procedure [(section 2.1.2)]

unless indicated otherwise.” (Garzorz-Stark et al., 2016)

3.1.3 Results

The molecular classifier precisely separates classical cases of eczema and plaque

psoriasis

The first cohort was used to build the classifier consisting of the expression of NOS2 and

CCL27 using a logistic regression (Fig. 3.1). Evaluating the model on the same data leads

to disease probabilities for each patient for both diseases. The cut-off probability for clear

prediction was set to 55%. The classifier predicted correct disease status for 87/89 samples

in the first cohort. Correct disease status was defined with histology as gold standard.

“[...] Test specificity for psoriasis (eczema) was 100% (97.7%), sensitivity was 97.7% (100%)
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and the AUC [...] was 0.9929 [on training data]. We tested the molecular classifier for

robustness using a 10-fold cross-validation yielding a specificity for psoriasis (eczema) of

100% ± 0% (96% ± 8.4%), a sensitivity of 96% ± 8.4% (100% ± 0%) and an AUC of 99%

± 3.2%.” (Garzorz-Stark et al., 2016)

The classifier was extended to a version where autologous healthy skin was not necessary

for predicting disease status. In this version, mean expression values in healthy skin for

all needed genes was calculated and used in modeling. The performance of the extended

classifier was comparable (sensitivity 97.8%, specificity 97.8%).

The molecular classifier correctly identifies subtypes of psoriasis and eczema

Next, the classifier was applied to 31 patients in the second cohort (subtypes of psoriasis

and eczema). Of these, 29 patients were classified correctly (Fig. 3.2).
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Fig. 3.1 – Gene expression of NOS2 and CCL27 in first cohort. Scatterplot showing
the gene expression of NOS2 and CCL27 in all patients from the first cohort (first cohort
= training cohort). Dots represent patients, color coded according to disease state (blue =
eczema, red = psoriasis). Background colors represent the predicted probabilities of the model.
Samples where autologous healthy skin was measured are represented as a circle, while samples
with missing corresponding autologous skin are depicted as triangles. Figure adapted from Fig.
S1 in Garzorz-Stark et al. (2016).
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Fig. 3.2 – Molecular classifier for psoriasis and eczema tested on histologically and
clinically clear cases of psoriasis and eczema as well as on subphenotypes of both
diseases. (A) Classical cases of plaque psoriasis (indicated in red) and eczema (indicated in
blue) were analyzed with the classifier (n=89, testing on training data). (B-G) Classifier was
applied to subtypes of both diseases (n=31), including nummular eczema (B), hand/feet and
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NOS2 and CCL27 correlate with well-established characteristics of psoriasis and

eczema

As the classifier is highly specific and sensitive, both predictors in the model (CCL27

and NOS2) were analyzed for their association with anamnestic, clinical, histological and

laboratory attributes which are known for being specific for either psoriasis or ezcema (Fig.

3.3 A). Of note, NOS2 expression levels were strongly associated to histologic hallmarks of

psoriasis (hypogranulosis, microabscess and dilated dermal capillaries, Fig. 3.3 B). CCL27

showed negative correlation with BMI. Further, CCL27 was associated negatively with

dilated dermal capillaries and positively with allergic rhinoconjunctivitis (Fig. 3.3 C).

Molecular classifier proves to be a reliable tool for diagnostic purposes

As a final step, the classifier was applied to the third cohort (10 patients with unclear

diagnosis). Here, the ground truth was defined based on positive clinical outcome after

disease-specific medication was administered. Psoriasis or eczema assignment of the

molecular classifier agreed in all ten cases with the corresponding diagnostic response of

the patients.

3.1.4 Discussion

Here, a molecular classifier for diagnosing psoriasis and eczema was established, validated

in different cohorts and revealed high specificity and sensitivity. The classifier is based

on the expression of only two genes and thus small in number of features compared to

similar models. Associating both predictors of the classifier to known hallmarks of both

diseases corroborated their validity. Only few patients suffer from a wrong diagnosis but

both diseases are very prevalent (2%–4% for psoriasis (Parisi et al., 2013), 2%–10% for

eczema in adults (Bieber, 2008)), so the total number of patients this classifier is able to

help might be large.
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3.2 Plasma miRNA classifier for allergic asthma

Similarly to the previous section, this study also aimed to utilize gene expression levels

measured by quantitative polymerase chain reaction to classify patients. However, in this

study expression of micro RNAs was detected and exploratory analysis was first conducted

in mouse models before the classifier was applied to humans. The micro RNAs were

also associated to clinical attributes which comprised of routine clinical measurements

and medication use. The study was conducted in collaboration with Katrin Milger from

the Institute of Lung Biology and Disease at Helmholtz Center Munich and from the

Comprehensive Pneumology Center at Ludwig Maximilian University Munich, and Susanne

Krauss-Etschmann from the Research Center Borstel. Content, text and data of this

section are based on Milger et al. (2017). Copied text passages are indicated as quotations.

In this study, the thesis author was responsible for the processing and analysis of all data

gathered in humans, starting with data management and quality control of molecular

and clinical data. Part of the analysis was building of the human miRNA based asthma

classifier using regularized regression modeling. Further associations to clinical attributes

were calculated by her. The thesis author was further responsible for interpreting the

computational results and designing and creating all figures presented here. The mouse

data was analyzed by Nikola S. Mueller and results are summarized here in order to

make the study more understandable. All text in the publication Milger et al. (2017)

concerning statistical analysis, interpretation and description of results in the human data

were originally written by the thesis author. The statistical methods are described here in

more detail than in the publication.

3.2.1 Motivation

Asthma is characterized by chronic inflammation of the airways (section 2.4). Diagnosis

can be challenging due to its heterogeneity and different phenotypes (Wenzel, 2012). So a

molecular classifier might be beneficial for correct diagnosis and in developing therapies.

“Micro RNAs (miRNAs) are evolutionary conserved, short (20-22 nucleotides long), noncoding

RNAs that regulate gene expression by promoting messenger RNA degradation or inhibiting

protein translation.” (Milger et al., 2017) MiRNAs are present for example in plasma so

they are good candidates for biomarkers. They are stable (Patton et al., 2015) and can be

measured with quantitative polymerase chain reaction (see section 2.2.1). MiRNAs have

already been used as biomarkers in complex chronic diseases like cancer (Mo et al., 2012).
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Also in asthma, deregulated miRNAs have been described in airways in humans (Solberg

et al., 2012) and mouse models (Garbacki et al., 2011).

Changes in miRNA expression levels may be small in asthma compared to diseases like

cancer (Brase et al., 2010). To overcome this limitation, a translational approach to

determine miRNAs which classify between patients with asthma and healthy subjects

was applied. It was shown that miRNA targets are conserved between human and mouse

(Friedman et al., 2009), so the translational approach contained a first screening step

in mouse models of asthma followed by a second step of data collection and analysis in

humans.

3.2.2 Methods

This method section focuses on the statistical analysis in the human part of the project,

for further information please see Milger et al. (2017) and corresponding supplementary

methods.

Mouse study

Two different mouse models of asthma were used: house dust mite (HDM) induced

asthma and ovalbumin (OVA) sensitization. Treatment with phosphate buffered saline

(PBS) was used as control. The OVA-model consists of a sensitization period and a

challenge. Three different approaches were used. First, both sensitization and challenge

was done with ovalbumin (OVA/OVA) leading to asthmatic mice. Second, to gain an

atopic, only sensitized, but not asthmatic phenotype, the mice were sensitized with

ovalbumin but challenged with PBS (OVA/PBS). Third and as a control, mice underwent

the sensitization procedure but were only treated with PBS, later they were challenged

with OVA (PBS/OVA). Blood was collected for six mice per group and 179 miRNAs were

measured with a system based on polymerase chain reactions.

Plasma miRNA expression was compared between asthmatic (OVA/ OVA) and control

mice (PBS/OVA). Further comparison were between asthmatic (OVA/ OVA) and sensitized

mice (OVA/PBS) and between HDM-treated mice and controls in the HDM model.

Student’s t-test was used to identify miRNA ratios that were significantly regulated in both

the OVA and the HDM model. To account for multiple testing, the Benjamini-Hochberg
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critical value was calculated for each sample and compared to the p-value obtained by

t-test.

Patient cohorts

For building and testing the biomarker signature in patients, two independent adult cohorts

of patients with allergic asthma were recruited. The training cohort consisted of 20 patients

from a local respiratory medicine practice. The test cohort consisted of 26 patients from

the asthma clinic at the University Hospital Munich. In both locations also healthy controls

were recruited for both cohorts (9 for training cohort, 12 for test cohort). As important

covariates, age, sex and smoking status were collected. In all subjects plasma was gathered

from peripheral blood. In asthma patients further asthma-specific clinical measurements

were obtained. RNA was extracted and levels of miRNA were assessed via qPCR (section

2.2.1) leading to threshold cycle values (Ct value) per miRNA and patient. Only those

miRNAs were measured in patient cohorts which were deregulated in both mouse models.

RNA was extracted and levels of miRNA were assessed via qPCR (section 2.2.1) leading

to threshold cycle values (Ct value) per miRNA and patient. Only those miRNAs were

measured in patient cohorts which were deregulated in both mouse models.

Statistical analysis of human data

For normalization, pairwise differences between Ct values were calculated to obtain miRNA

ratios (∆Ct = Ct1 - Ct2). In the training cohort, disease status (asthma versus control)

was modeled with a regularized logistic regression (section 2.1.4) using all miRNA ratios as

covariates xj ∈ Rn×1 for j ∈ 1, ..., 13. Variable selection was performed with a generalized

linear model via penalized maximum likelihood with lasso regularization (Friedman et al.,

2010). The optimal lambda value for lasso regression was calculated using leave-one-out

cross validation. The model accuracy was calculated on the test cohort and assessed via

AUC (section 2.1.8).

For the five ratios that were selected in the final model, associations with clinical characteris-

tics were analyzed using the data from both cohorts combined (training and test cohort)

to overcome limitations in numbers of participants per characteristic. Analysis of variables

available in patients with asthma and controls, i.e. age, sex, smoking status, sensitization

and allergic rhinitis were performed using data from both groups; the remaining variables

were tested among patients with asthma only. Categorical variables were tested for
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asthma vs. control
p < 0.05

in both mouse models

asthma vs. atopy
p < 0.05
(in OVA)

atopy vs. control
p > 0.05
(in OVA)

1
152

18 miRNA ratios selected 
for qPCR validation in mice

confirmation of 10 miRNA 
ratios consisting of 13 miRNAs

testing these 13 miRNAs 
in patients

Fig. 3.4 – Selection of candidate miRNA ratios using data from both animal models.
Venn diagram illustrating sets of miRNA ratios. Blue circle represents miRNA ratios which
are differentially regulated (p < 0.05) in both asthma mouse models compared to control.
Orange circle represents miRNA ratios which are differentially regulated (p<0.05) between the
asthma and the atopy ovalbumin mouse model. Red circle indicates miRNA ratios which are
not differentially regulated (p > 0.05) between the atopy mouse model and control. Adapted
from Fig. 2A in Milger et al. (2017).

differences in miRNA ratios using one-way analysis of variance (section 2.1.3). For interval

scale variables, significance was determined using Pearson’s correlation coefficient. All

p-values were adjusted using the Benjamini Hochberg procedure (section 2.1.2). Only

associations with a controlled false discovery rate of less than 10% are shown.

3.2.3 Results

Summary of mouse study

In the ovalbumin mouse model, 32 miRNAs were significantly altered in the asthmatic versus

control mice (OVA/OVA vs PBS/OVA). Of these, three miRNAs were also significantly

different between asthmatic and atopic mice (OVA/OVA vs OVA/PBS). For the house

dust mite model, ten miRNAs were significantly regulated between house dust mite and

PBS treated mice. The expression levels of miRNAs had a high between-animal variability.

To obtain similar distributions and increase sensitivity, miRNA ratios were calculated by

dividing expression levels of each miRNA one-by-one by all the other levels.

Of particular interest were those miRNA ratios which showed significant regulation in the

same direction in both asthmatic mouse models when compared to the respective controls,
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Fig. 3.5 – Heatmap of miRNA ratios in both human cohorts. Clustering was calculated
using “ward.D2” method on Euclidean distances separately for each cohort and thus the plot
is split in two parts (training (upper panel) and test cohort (lower panel). In each plot, rows
represent subjects and columns miRNA ratios. Figure adapted from Fig. S4 A and Fig. S4 B
combined with Fig. 3 A and B in Milger et al. (2017).

but which were not regulated in atopic animals (Fig. 3.4, intersection of blue and red

circle). Sixteen miRNA ratios fulfilled this criterion and were picked as first candidates.

Two further candidates were identified where miRNA ratios were significantly regulated

between asthmatic and atopic mice and between both asthma models and controls (Fig.

3.4, intersection of blue and orange circle). The 18 ratios were validated by quantitative

polymerase chain reaction in an independent set of samples. The validation detected the

regulation of ten miRNA ratios which included 13 miRNAs. These 13 miRNAs were picked

for the next step, further confirmation in human samples.

Building and testing a human miRNA asthma classifier

The 13 miRNAs, identified through the study in mouse models, were measured in both

human cohorts and all possible ratios were calculated. Clustering based on all miRNA

ratios revealed similarities within patients and controls, respectively (Fig. 3.5).
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Next, the question was whether a model comprising a subset of the miRNA ratios

successfully predicts asthma disease status from miRNA ratios. Using all data from the

training cohort, a regularized logistic regression was calculated. The final model contained

five miRNA ratios (Fig. 3.6 B). This model was then tested for its generalizability in the

independent test cohort. The resulting receiver operator characteristics curve had an area

under the curve of 0.9167 3.6 A).

Univariate differences in the identified biomarker miRNA ratios were identified in both

cohorts (Fig. 3.6 C). For all ratios the direction of difference between patients and controls

was the same in both cohorts, except for miR-223/miR-425 which was downregulated in

controls compared to patients in the training cohort but reversely associated in the test

cohort. However, the downregulation of miR-223/miR-42 was not significant in the training

cohort (p = 0.084, Fig. 3.6 D) but the upregulation was significant in the test cohort (p =

7.71 · 10−4).
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Fig. 3.6 – The miRNA asthma classifier separating asthma patients from controls.
(A) Receiver operator characteristics (ROC) curve for the test cohort depicting false positive
rate versus true positive rate as a measure for the accuracy of the model shown in (B). (B)
Effect coefficients of classifier (regularized logistic regression). (C) Boxplots comparing miRNA
ratios between asthma patients (shades of blue, circles) and controls (shades of red, triangles)
in both cohorts (darker color for training and lighter color for test cohort). (D) Adjusted
p-values for tests of asthma patients versus controls in (C) for both cohorts separately. Four
of the five identified ratios are regulated the same in training and test cohort, except for
miR-223/miR-425 which is highlighted in C and D. Figure adapted from Fig. 3 C and D and
Table 2 in Milger et al. (2017).
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Fig. 3.7 – Associations of biomarker miRNA ratios with phenotypical data. (A)
Association of miRNA ratios and current oral corticosteroid therapy in asthma patients of
both cohorts. (B) Association of miRNA ratios and current antileukotriene therapy in asthma
patients of both cohorts. (C) Correlation of miR-15a/miR-342 with forced vital capacity %
predicted in asthma patients of both cohorts. (D) History of allergic rhinitis is not associated
to miRNA biomarker ratios in neither asthma patients nor controls in both cohorts. ∗ p <
0.05, ∗∗ p < 0.01. Figure adapted from Fig. 4 in Milger et al. (2017).
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Associations of biomarker miRNA ratios with phenotypical data

To determine whether the predictors (five miRNA ratios) in the model (Fig. 3.6 B)

associated to known phenotypical data, both training and test cohort were combined

to increase power. “[...] Patients taking oral steroids had significantly lower values for

miR-15a/miR-342 and significantly higher values for miR-21/miR-15a, miR-27a/miR-15a

and miR-29c/miR-15a compared to those not on oral steroids [(Fig. 3.7 A)]. Patients

receiving antileukotriene therapy showed decreased values for miR-223/miR-425 [(Fig. 3.7

B)]. [Furthermore,] miR-15a/ miR-342 was inversely correlated to [...] [predicted forced

vital capacity (Fig. 3.7 C)].” (Milger et al., 2017) For none of the other variables an

association was observed. Since no association was detected for patients with and without

a history of allergic rhinitis, specificity of the classifier for asthma is indicated (Fig. 3.7 D).

3.2.4 Discussion

In this study, first miRNAs that are regulated in two mouse models of experimental asthma

were identified in plasma. Then, these miRNAs were analyzed in human samples and a

regularized regression model was built which differentiates between patients with allergic

asthma and healthy individuals. The model was tested in an independent cohort and

showed a good predictive power with an area under receiver operator characteristics curve

of 0.92. The identified miRNA ratios correlated with clinical characteristics.

A limitation of the presented approach is that miRNAs which are specific for human allergic

asthma and not present in the used mouse models might have been overlooked. However,

the aim of the study was not completeness, but to determine whether the approach leads

to candidate biomarkers linked to human disease.
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Chapter 4

Serum proteins as easily accessible

surrogates for monitoring human diseases

One of the basic clinical examinations is drawing blood and sending it to the laboratory

for analysis of disease-relevant markers. Relevant markers are often proteins in the serum

and represent biomarkers (Zhang et al., 2013). Drawing blood is minimally invasive and

gives the possibility to gain deeper understanding of pathologic processes within the body

(Zhang et al., 2013). Functions of all organs can be traced back to serum which is used in

clinics on a daily basis, especially in diagnosis of cancer (Petricoin et al., 2002).

This chapter describes three studies which try to answer the question whether serum proteins

can be used for disease monitoring and prognosis to standardize clinical characterization.

In all described studies, protein levels in patient serum were measured by collaborators

who also collected clinical attributes of the patients. The data was analyzed and integrated

by the thesis author in close communication with the collaborators to answer the specific

clinical question. Serum proteins were evaluated for their potential use as clinical biomarkers

in three applications: disease severity (section 4.1), disease persistence (section 4.2) and

post-surgery regeneration (section 4.3).

Content of the first study described in this chapter (section 4.1) was published in 2016 in

the Journal of Allergy and Clinical Immunology (Krause et al., 2016).

L. Krause, V. Mourantchanian, K. Brockow, F.J. Theis, C.B. Schmidt-Weber,

B. Knapp, N.S. Mueller and S. Eyerich: A computational model to predict

severity of atopic eczema from 30 serum proteins. Journal of Allergy and

Clinical Immunology (2016).

Together with the collaborators at the Department of Dermatology and Allergy at the

University Hospital of Technical University Munich (TUM) and the Center of Allergy and
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Environment (ZAUM) at TUM and Helmholtz Center Munich, the thesis author together

with her supervisors aimed at determining a computational model to predict severity of

atopic eczema from serum protein levels. Atopic eczema is, among others, characterized by

different levels of severity. Measurements of 30 proteins were taken in the serum of atopic

eczema patients to evaluate their potential as disease severity biomarkers. The publication

led to a response letter from colleagues at the University Medical Center Utrecht where

they indicated inconsistencies with previous studies (Thijs et al., 2017b). In fact, some

misassignments of patients to measurements were identified and corrected. The corrected

analysis was published alongside a reply (Krause et al., 2017). This thesis presents results

of the updated, corrected analysis.

L. Krause, N.S. Mueller and S. Eyerich: Reply to: Multiplex platform technology

and bioinformatics are essential for development of biomarkers in atopic

dermatitis. Journal of Allergy and Clinical Immunology (2017).

The second part of the chapter focuses on another aspect of atopic eczema. Atopic eczema

is also characterized by the age of onset during infancy and a decreases in prevalence

with age. In collaborations with the partners from the Department of Dermatology and

Allergy at the University Hospital of TUM, the thesis author together with her supervisors

investigated the question whether diseases persistence or remission in children can be

explained from protein serum levels and clinical attributes (section 4.2).

V. Baghin*, L. Krause*, S. Eyerich, K. Eyerich, F.J. Theis, N.S. Mueller,

F. Lauffer and N. Garzorz-Stark: Predicting persistence of atopic eczema in

children using serum proteins and clinical data. - in preparation -

In the third study investigating serum proteins as markers for disease monitoring and

prognosis the questions was whether serum proteins can be used to predict the prognosis of

patients who undergo major liver resection. In collaboration with the Heidelberg University

Hospital and the German Cancer Research Center (DKFZ) who collected the data, the

thesis author applied computational methods which were comparable to the first two

studies described in this chapter. Serum of patients who underwent major liver resection at

Heidelberg University Hospital was analyzed for serum proteins before and on three time

points after surgery. Together with clinical attributes and further blood makers, the thesis

author investigated the potential of these markers for prognosis prediction. A validation

cohort is currently measured and a manuscript is prepared.

K. Dehlke*, L. Krause*, F.J. Theis, U. Klingmüller, N.S. Mueller and K.

Hoffmann: Prediction of individualized liver regeneration capacity after liver

resection based on cytokine and growth factor profiling. - in preparation -
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4.1 PREDICTING SEVERITY OF ATOPIC ECZEMA

4.1 Predicting severity of atopic eczema from 30 serum proteins

The study was conducted in collaboration with the Department of Dermatology and Allergy

at the Technical University Munich and the laboratory of Stefanie Eyerich at the Center

of Allergy and Environment (ZAUM) at the Technical University Munich and Helmholtz

Center Munich. The aim of this study was to investigate the potential of serum proteins for

predicting severity of atopic eczema patients. Except for age and gender the collaboration

partners did not collect any further clinical attributes. Content, text and data of this

section are based on Krause et al. (2016) and Krause et al. (2017). Copied text passages

are indicated as quotations. All analyses and figures shown in this section result from

the correct data which was presented in the online correction and the reply Krause et al.

(2017).

In this study, the thesis author was responsible for and performed all data processing and

all statistical analyses including handling of missing data, correlation analyses, differential

testing and regression modeling. All figures were designed and created by her. The thesis

author wrote all text concerning statistical analyses and interpretations for the original

manuscript Krause et al. (2016), its correction and the reply Krause et al. (2017).

4.1.1 Motivation

In atopic eczema (AE) disease severity and thus treatment effects are measured using

scores like SCORAD (SCORing atopic dermatitis, see section 2.4.1). These scores have

subjective components so an objective measure based on a computational model would

be desirable. As predictors for these models, serum proteins seem useful because serum is

easily accessible.

4.1.2 Methods

Patient cohort

This study includes data collected from 52 patients with atopic eczema and 20 healthy

control subjects. In the serum of each subject the concentration levels of 32 serum proteins

were measured. Twenty-seven proteins were measured using a cytokine multiplex assay.

The remaining five, namely CCL17, CCL22, IL-22, lactatedehydrogenase (LDH) and total

IgE, were measured using single plexes and ELISA. The severity of atopic eczema was
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CHAPTER 4 SERUM PROTEINS AS SURROGATES

determined in all patients using SCORAD, which evaluates the intensity, extent and

subjective signs of the disease.

Statistical analysis

Analysis of log10-transformed measurement values and SCORAD prediction was conducted

in R. “Two proteins (IL-2 and IL-15) were not detectable in serum of more than 25% of the

patients and controls and were therefore excluded from subsequent analysis.”(Krause et al.,

2016) For two patients CCL-17 was above the detection limit and set to the doubled highest

standard value. All other measurements were within detection limits. Differences in single

variables were detected with a Welch’s 2-sample t-test. Multiple testing correction was

performed according to the Benjamini Hochberg procedure also known as false-discovery

rate (FDR, see section 2.1.2). Correlation between probands and among serum proteins

were calculated using Pearson’s correlation coefficient r on log10 transformed values in

a pairwise manner. Subsequently, hierarchical clustering was performed based on the

distance measure (1− r)/2 which was introduced in section 2.1.10.

Predictive model for severity of atopic eczema

The predictive model for severity of atopic eczema was learned using a linear regression

model. Model outcome y ∈ R52×1 was SCORAD and log10-transformed protein concentra-

tions were the measured variables xj ∈ R52×1 for j ∈ 1, ..., 32. All (variable) subset

regression analysis was performed with the “regsubsets” function from the leaps package

(Lumley, 2017) in R which optimizes the adjusted residual sum of squares (R2
adj.) to select

important variables. The R2
adj. was used as a first criterion for the quality of the model

(see section 2.1.8). Next to R2
adj., the generalizability of the model was investigated by

leave-one-out cross-validation (see section 2.1.8) and by calculating the mean squared

prediction error.

4.1.3 Results

The concentration distribution of all analyzed proteins is depicted in Fig. 4.1. “Significant

differences between patients and controls were detected for the levels of CCL17, CCL22,

CXCL10, IgE and LDH (FDR < 0.05).” (Krause et al., 2017).

82
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Fig. 4.1 – Boxplots of protein concentrations. Concentrations of 30 serum proteins of
patients with atopic eczema (n = 52) and controls (n = 20) are shown in log scale. Stars
indicate FDR < 0.05. Figure adapted from Fig. 1 A in Krause et al. (2016) but updated with
correct values.

When performing hierarchical clustering using a distance measure based on correlations

between probands, “two clusters were identified with one containing patients and controls

(cluster 1) and one with patients only (cluster 2) [(Fig. 4.2, A)]. Significant differences

between the two clusters were detected for levels of IgE, [...] [CCL17, CCL22 and CCL5,

but not for any of the other serum markers or clinical attributes like disease severity or

age (5% FDR) (Fig. 4.2, B)]. Here, IgE, CCL17 and CCL22 concentrations are higher in

cluster 2.” (Krause et al., 2016)

“To get a first glimpse on potential inter-protein relations, a pairwise correlation analysis and

subsequent hierarchical clustering was performed. We used [...] [Ward’s minimal variance

method] (Joe and Ward, 1963) to identify [compact, spherical] clusters [(Fig. 4.3)]. In

total, [seven clusters] of proteins, containing at least two proteins, were detected in the

patient cohort [via cutting the hierarchical clustering tree (tree not shown)].” (Krause

et al., 2016)

“Significant differences exist between patients and controls for [five] serum proteins (Fig.

4.1) [and thus] single serum proteins might correlate with SCORAD. [...] Based on Pearson

correlation, twelve proteins, namely G-CSF, IL-5, IL-13, IL-22, CCL22, IL-1Ra, CXCL8,

IFN-γ, CCL3, IL-1β, CCL17, and IL-6, significantly correlate with SCORAD (based on

FDR < 5%, r range: 0.3 - 0.45). Interestingly, [the main Th2-associated cytokine IL-4

did not show significant correlation with SCORAD.] [...] A reason for this might be the

biphasic course of atopic eczema, being dominated by Th2 cytokines in the acute phase

and [a combination of Th1 and Th2] cytokines in the chronic phase (Eyerich et al., 2008).

Hence, these cytokines may have functional relevance in disease pathology, but they are

not suitable as biomarkers for atopic eczema.” (Krause et al., 2016)
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Fig. 4.2 – Clustering of all studied subjects. (A) Hierarchical clustering using a distance
measure based on correlation between patients with atopic eczema (red) and healthy controls
(blue) indicating the presence of two main clusters. (B) The clusters substratify patients with
atopic eczema based on four markers. Figure adapted from Fig. 1 B in Krause et al. (2016)
but updated with correct values.

Previously, “CCL17, CCL22 and LDH have been postulated as single protein biomarkers

for atopic eczema severity [but were not tested in independent cohorts] (Thijs et al., 2015a).”

(Krause et al., 2016) In this cohort, only CCL17 and CCL22 significantly correlated with

SCORAD, LDH did not. “CCL17 levels in the healthy control group range from 56 pg/mL

to 979 pg/mL, with an average of 169 ± 202 pg/mL (mean ± SD) in our cohort.” (Krause

et al., 2017) “This is in line with observations from other groups that reported high

inter-individual differences in serum concentrations of these proteins (Thijs et al., 2015a).”

(Krause et al., 2016) “Despite high inter-individual variations in the CCL17 expression

levels in patients with atopic eczema (4629 ± 9559 pg/mL), we confirmed an overall

correlation of CCL17 with SCORAD (Pearson correlation coefficient of log10-transformed

CCL17 is 0.450; adjusted p-value = 0.00084; 95% CI, 0.201-0.643) in our data set. This

correlation was in the lower range when compared with the cross-sectional studies of the

meta-analysis performed by Thijs et al. (2015a) (meta-analysis of four longitudinal studies,

correlation coefficient 0.60; 95% CI, 0.48-0.7).” (Krause et al., 2017).

In order to derive a biomarker signature consisting of more than one serum protein, “a

statistical model was used that selects protein combinations to predict SCORAD. The

SCORAD outcome was learned using a [...] linear regression model [...] [and variables were

selected using] all (parameter) subset regression [which] optimized the adjusted residual
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Fig. 4.3 – Hierarchical clustering of serum proteins in the atopic eczema cohort.
In total, seven protein clusters were defined, indicated on the left. Only correlations with FDR
< 5% are shown as colored circles, non-significant correlations are left blank. Figure adapted
from Fig. 1 C in Krause et al. (2016) but updated with correct values.

sum of squares (R2). We found that the identified optimal model included [ten] serum

proteins [(Tab. 4.1)] [...] [and had an R2
adj. of 0.47].” (Krause et al., 2016) The correlation

between original and predicted SCORAD was high (r2 = 0.759; 95% CI = 0.612-0.855,

Fig. 4.4). “Despite the good overall correlation, the root mean squared prediction error

estimated by leave-one-out cross-validation pinpointed a prediction error of 18.9 SCORAD

points at patient level.” (Krause et al., 2017)

4.1.4 Discussion

The correlation between original and predicted SCORAD was high and in the same range

as in comparable publications (multimarker disease severity model developed by Thijs

et al. (2015b) gives correlation of 0.856 (no 95% CI given)). “However, computing the

correlation coefficient between predicted and true values cannot assess the goodness of fit

of any predictive model. [...] [In this case,] the [...] prediction error was 18.9 SCORAD

points at patient level. Thus, even this optimized best-fit prediction model underestimated

or overestimated the severity of atopic eczema by 20%.” (Krause et al., 2017) With this
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kind of error, the clinical description, even if inter-rater variability is considered, is still

superior to the computational model. One reason for non-optimal modeling results might

be that those serum proteins which predict severity best are still unknown and need to be

determined in further, larger scale studies investigating more than 32 proteins.

covariate coefficient p-value

Intercept 216.86 0.0421 *

FGFbasic -186.25 0.0004 ***

CCL-17 13.11 0.0045 **

CCL-2 -42.96 0.0065 **

IL-6 40.33 0.0070 **

LDH 52.50 0.0324 *

IL-13 32.47 0.0340 *

IL-5 43.41 0.0376 *

IL-4 56.99 0.1123

IL-22 -19.39 0.2070

IL-1β 32.85 0.2397

Tab. 4.1 – Prediction model for
SCORAD. A regression model to predict
SCORAD from serum protein concentrations
was learned using all parameter subset
regression. Optimizing the adjusted residual
sum of squares led to this model. Table
adapted from Fig. 2 B in Krause et al. (2016).

r = 0.76
p < 10−11
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Fig. 4.4 – Comparing predicted and
original SCORAD. Correlation is high in
our cohort (r = 0.76, prediction on training
data) but cross-validation prediction error is
large (18.9 SCORAD points). Figure adapted
from Fig. 2 B in Krause et al. (2016).

86



4.2 PREDICTING PERSISTENCE OF ATOPIC ECZEMA

4.2 Predicting persistence of atopic eczema in children using

serum proteins and clinical attributes

Similar to the study described in the previous section, protein concentrations for this study

were measured in serum of patients diagnosed with atopic eczema. In addition, clinical

attributes about family history, comorbidities and disease course were collected and jointly

analyzed with serum protein concentrations. For this study, the thesis author did not only

apply one modeling approach but compared the results of twelve statistical models. The

study was conducted in collaboration with Veronika Baghin, Felix Lauffer and Natalie

Garzorz-Stark from the Department of Dermatology and Allergy at the University Hospital

of Technical University Munich.

In this study, the thesis author was responsible for data processing including imputation

of missing values and normalization. Further, she came up with the idea to use several

modeling approaches and compare the results. The thesis author performed all statistical

analyses herself, including all modeling. All figures were designed and created by her. The

results were interpreted together with supervisors and collaborators.

4.2.1 Motivation

Atopic eczema (see section 2.4.1) is usually starting in infancy where a prevalence of 20%

in children is described. The prevalence reduces to 2%-10% in adults (Weidinger and

Novak, 2016; Garmhausen et al., 2013) which indicates that only a proportion of children

suffers from a persistent disease course while others go into remission. Known risk factors

for a persistence disease course are high disease score at first appearance, positive family

history and elevated total IgE (Von Kobyletzki et al., 2015; Kiiski et al., 2015). Even

though risk factors are proposed, it is not possible to predict the disease course at an early

age. This prediction would offer patients the possibility to benefit from individualized

therapy concepts and combining close medical supervision with drug treatments and allergy

prevention. The aim of this study was to investigate the reasons for different disease courses

of atopic eczema and to identify predictive markers. The thesis author, together with her

supervisors and collaborators investigated whether serum proteins alone or in combination

with clinical attributes stratify children for their individual risk of disease persistence.
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4.2.2 Methods

Patient cohort

The in-house cohort consisted of 124 children suffering from atopic eczema with age of

diagnosis and blood draw between birth and three years of age. Grouping of children into

persistence and remission group was based on clinical signs for atopic eczema at the age of

seven. If children did not show any signs of atopic eczema for twelve months at the age of

seven, they were classified as the remission group. Otherwise, the children had a persistent

disease course. Seventy-eight of the children had a persistent disease course (63%), 46 went

into remission (37%).

Concentration of total and specific IgE levels and 33 serum proteins were measured with

the Luminex platform. Clinical attributes about children’s family history, comorbidities,

trigger factors for atopic eczema and disease course were collected through questionnaires.

Nineteen numerical and 40 categorical clinical attributes were available, so 59 clinical

attributes altogether.

Data processing

Total IgE concentrations were log10-transformed. Cytokine measurements were discretized

into factors with two levels (cytokine absent or present) if more than 20% were beyond the

detection limits. Altogether concentrations for six serum proteins were discretized. For the

remaining 27 cytokines, values which were beyond the detection range were imputed using

GSimp, a Gibbs sampler based left and right-censored missing value imputation method

(Wei et al., 2018).

Clinical data was processed as described in section 2.5. Clinical attributes were carefully

analyzed for correlation among them and to the outcome of interest. Highly correlated

features were not included in the imputation and modeling procedures. Thus 15 attributes

were omitted. Missing clinical data was assumed to be missing at random and for the

remaining 44 attributes missing data was imputed with MICE (Raghunathan et al., 2001).

Statistical analysis

Differences between dichotomous categorical variables with regard to numerical variables

were tested with Welch’s t-test. Fisher’s test was used to test association between two
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categorical variables. Correlations between two numerical variables were assessed with

Pearson’s correlation coefficient. Correlation between mixed variables was calculated with

polyserial correlation (Drasgow, 2004; Olsson et al., 1982) which assumes that for the

categorical variables there exists an underlying normal variable which was categorized

while being observed. The polyserial correlation is inferred based on maximum likelihood

estimation. P-values were adjusted for multiple testing with the Benjamini-Hochberg

procedure, known as false-discovery rate (FDR).

For visualization purposes and to assess the importance of interconnections between clinical

attributes, the thesis author adjusted one variable for another using linear regression. Only

measured, numerical variables were adjusted by calculating a linear regression and the

adjusted variables were not used for further modeling approaches. The variable which was

supposed to be adjusted was set as the outcome y of the regression model. The variable

for which that variable should be adjusted for was included as a predictor x in the linear

regression. The residuals ε of the linear regression are the corrected, adjusted versions of the

initial measured variable (yadjusted). For example, the concentration of total IgE, which is a

measured, numerical variable, was corrected for age of blood draw, which is also numerical.

Total IgE levels were set as the outcome y while age of blood draw was represented by

xage of blood draw. Calculating βage of blood draw via least squares approach (see section 2.1.4)

allowed to calculate yadjusted by subtracting from the original total IgE levels y the intercept

β0 of the regression model and the product βage of blood draw · xage of blood draw:

y = β0 + β · x+ ε → yadjusted = ε = y − β0 − β · x.

Modeling of disease persistence

Three approaches to model disease persistence were applied. In all approaches, disease

persistence was the response variable and serum proteins as well as clinical information were

the covariates. For the first approach, AIC-based stepwise optimization for logistic regression

was used, starting either from the intercept-only model (called “start null”) or from the

full model including all covariates (called “start full”). The second modeling approach

relied on regularized logistic regression. Lasso and elastic net (α = 0.5) regularization were

applied and deviance as well as AUC were used as loss functions. Third, random forest

was utilized and variables were ranked based on variable importance, permuation p-values

(Altmann et al., 2010) and Boruta approach (Kursa et al., 2010). Boruta approach is based

on permutations and results differed slightly in each run so results of three different runs
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were included in the feature selection results. Models with and without interactions were

assessed.

There was no access to an independent test cohort so 10-fold cross validation was performed

to estimate model performance. The data set was split into ten subsets, each having an

equal number of remitted and persistent atopic eczema cases. Models were trained with

the different approaches on nine of ten subsets (=training data) and evaluated using AUC

on the training data and on the left-out subset (=test data).

4.2.3 Results

Adjusting for age removed association between total IgE and disease persistence

Atopic eczema is known to show both extrinsic and intrinsic phenotypes (Tokura, 2010).

These endotypes are mostly defined on levels of total and specific IgEs where high total IgE

and presence of specific IgEs is associated to an extrinsic phenotype (Tokura, 2010). To test

the hypothesis whether extrinsic and intrinsic endotypes are associated to persistence and

remission of atopic eczema, total IgE levels were measured in serum of the patients. Indeed,

children with a persistent disease course showed a trend towards higher levels of total IgE

(p = 0.09, Fig. 4.5). Notably, total IgE levels are known to increase with age which was

confirmed in this cohort (Ott et al. (2010), Fig. 4.5, r = 0.39, p = 10−5). Moreover, age

was associated to disease persistence (p = 0.00038, Fig. 4.5). Adjusting total IgE for age

abolished the significant association between total IgE and disease persistence (p = 0.4594,

Fig. 4.5).

The applied concept is similar to partial correlations. Partial correlations describe

correlation between two random numerical variables when both are linearly adjusted for all

remaining variables (Krumsiek et al., 2011). Representing all pairwise partial correlations

which are significantly different from zero in an undirected graph gives a Gaussian graphical

model (Schäfer and Strimmer, 2005). Application of partial correlations and Gaussian

graphical models to biological data is used for network inference in biological systems

(Krumsiek et al., 2011; Benedetti et al., 2017). In this study, no partial correlation following

its original definition was calculated since the two variables which were investigated were

not both numerical but disease persistence is categorical. Adjusting for the effect of age for

the variable total IgE abolished significance of association between total IgE and disease

persistence which implies that there exists no partial correlation between total IgE and

disease persistence.
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Fig. 4.5 – Age is a confounder for the association between total IgE and disease
persistence. Children with persistent atopic eczema showed increased total IgE (upper left)
and were older (upper right). Further, total IgE correlated with age of children (lower middle).
Adjusting total IgE concentration for age, removed association between IgE and persistent
atopic eczema (lower left).

Associations with cytokines and clinical data

None of the 33 measured cytokines showed a significant difference between persistence and

remission of atopic eczema, also not after adjusting for age of blood draw. To investigate

the relationship between total IgE, age of blooddraw and atopic eczema disease course,

correlation coefficients between these three variables and all measured cytokines were

calculated (Fig. 4.6 A). No significant polyserial correlation was found between persistent

atopic eczema and any of the cytokines, but with age of blood draw (first row in Fig. 4.6

A). Age of blood draw was associated to total IgE but also negatively correlated with

CCL4, IL-13, CCL2, CCL17, TIMP1 and CCL22 (FDR corrected p-value < 0.1, second

row in Fig. 4.6 A). IgE showed positive correlation to FGF-basic, IL-17, IL-4, G-CSF and

CCL3 (FDR corrected p-value < 0.1, third row in Fig. 4.6 A).

Factor analysis for mixed data (FAMD) of cytokine measurements did not reveal clusters

(Fig. 4.6 B). Within the numerical clinical information only age of asthma start was

significantly associated to remission/persistent status of a child (Fig. 4.6 C). Four
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Fig. 4.6 – Association of disease persistence and remission to serum cytokine levels
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variables) correlation coefficients between disease persistence, age of blood draw, total IgE and
33 serum cytokines. Color and circle diameter indicate strength of correlation. Non significant
correlations are struck through (FDR cut-off 10%). (B) Factor analysis of mixed data on
cytokine data. Colors indicate atopic eczema disease course. (C) Start of asthma was the
only significant numerical clinical variables associated to disease persistence (Welch’s 2-sample
t-test). (D) Significant hits in Fisher’s test. Odds ratio and 90% confidence intervals are given.

categorial clinical variables were significantly associated to atopic eczema persistence:

rhinoconjunctivitis to grass and whether atopic eczema is triggered by a change in climate,

pollen or stress (Fig. 4.6 D, p-value cut-off 0.05).
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Modeling disease persistence

Since single serum proteins did not correlate with disease persistence (Fig. 4.6 A)

a predictive model for disease persistence based on serum proteins as well as clinical

information was built. Three modeling approaches were applied to compare results and

find shared important variables. Random forest and AIC-based method performed almost

perfectly on training data but poorer on test data (Fig. 4.7 A). Regularized-regression

models performed equally well on training and test data (Fig. 4.7 A). On average, test

AUCs show large variability among the 10-folds reflecting the heterogeneity in the patients

(AUC ranges for most methods between 0.5 and 0.8). Regardless of non-perfect model

performance, identification of variables commonly selected among methods might hint at

variables important for prediction. The methods overlapped in four variables, most of them

represent trigger factors for atopic eczema (Fig. 4.7 B).

4.2.4 Discussion

The study aimed at determining predictive markers for persistence of atopic eczema in

children. Age was identified as a confounder for the association between total IgE and

disease persistence in this data set. No strong association between serum proteins, clinical

attributes and disease course was detected in univariate analysis. Since the analysis

should not be biased by model choice, results of twelve predictive modeling approaches

were compared to investigate the variability and determine common selected features.

Combining the commonly selected features, a core set of possibly predictive markers was

identified. These markers were solely clinical attributes and not serum proteins. Especially

individual trigger factors for disease exacerbation were detected as consistent predictive

variables for disease persistence. These findings highlight the importance of environmental

and social factors influencing the natural course of atopic eczema in infancy and warrant

future considerations of individualized disease management concepts.

The natural course of atopic eczema is diverse and so far unpredictable (Von Kobyletzki

et al., 2015). In this study cohort, tendencies for certain attributes were observed, but

it was not possible to establish a robust predictive model. This might be based on the

heterogeneity of atopic eczema on the one hand and the multimodal disease pathogenesis.

Yet, put together in a simple clinical questionnaire, the commonly selected variables present

a possibility for testing the models in clinical practice.
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4.3 PREDICTION OF INDIVIDUALIZED LIVER REGENERATION CAPACITY

4.3 Prediction of individualized liver regeneration capacity after

liver resection based on cytokine and growth factor profiling

Comparable to the two other studies described in this chapter, this study also investigated

serum proteins for their predictive potential. However, proteins were measured at four

time-points over a time span of eight days and not only once. Similar to the study in section

4.2 the collaborators collected clinical attributes and additionally provided the results of

blood tests routinely done in their clinic. The study was performed in collaboration with

Katrin Hoffmann, Karolin Dehlke and Ursula Klingmüller from the Heidelberg University

Hospital and the German Cancer Research Center (DKFZ).

In this study, the thesis author was responsible for all data processing including data

normalization, imputation of missing values and batch correction. All statistical analyses

including time series clustering, pairwise correlation analyses and regularized regression

modeling were designed and performed by the thesis author. Possible networks visualizations

were discussed with Nikola S. Mueller and implemented by the thesis author. All figures

presented here were designed and created by the thesis author. Results were discussed and

interpreted jointly with supervisors and collaborators.

4.3.1 Motivation

If the liver is damaged due to cirrhosis or cancer, up to three-quarters of it can be surgically

resected since the liver regenerates (Delis and Dervenis, 2008). Liver regeneration happens

in three steps: priming, proliferation and termination (Mohammed and Khokha, 2005).

During priming, the liver injury triggers an inflammatory response including the release

of cytokines like IL-6 and growth factors (Tao et al., 2017). In proliferation, hepatocytes

are induced to divide by mitogens, like the hepatocyte growth factor (HGF) (Furchtgott

et al., 2009). The process is stopped by anti-proliferative factors like transforming growth

factor beta (TGF-β) to guarantee normal liver function (Tao et al., 2017). Even though

the whole liver regeneration process is well studied, the precise timing is not known in

humans (Mangnall et al., 2003).

Posthepatectomy liver failure occurs in 15% of patients after a major liver resection

and is associated to an increased mortality risk (Rahbari et al., 2011). It is defined on

day five post surgery by a functional deterioration which is accompanied by an increase

in international normalized ratio and hyperbilirubinemia (Rahbari et al., 2011). The

international normalized ratio is calculated by standardizing the prothrombin time which
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CHAPTER 4 SERUM PROTEINS AS SURROGATES

describes the clotting tendency of blood. Hyperbilirubinemia describes the presence of too

much bilirubin in the blood. Bilirubin is a metabolite in the catabolic pathway, formed in

liver and spleen during the degradation of red blood cells and is excreted in bile.

The aim of the study way to use serum samples of patients before and shortly after surgery

to predict the risk for liver failure and the regenerative capacity of the remaining liver

tissue. Apart from variables measured in serum also clinical attributes were taken into

account.

4.3.2 Methods

Patient cohort

Serum from several time points (day -1, day 1, day 3 and day 7 relative to liver resection)

for 30 patients who underwent major liver resection were analyzed using Luminex assays.

Individual profiles of hepatocyte growth factor (HGF), Interleukin 6 (IL-6), Interleukin 8

(CXCL8), vascular endothelial growth factor (VEGF), transforming growth factor beta

(TGF-β), Angiopoietin-2 (APO2), placental growth factor (PLGF) and epidermal growth

factor (EGF) were measured (Fig. 4.8). Further, clinical information, blood test results and

surgery outcome of patients is available. Clinical information contains data about patients’

characteristics like sex, age, BMI and ASA categories which describe the general physical

status of patients according to the American Society of Anesthesiologists (ASA). Blood test

results were measured during routine hospital examinations in preparation and after liver

surgery. They include blood components (e.g. hemoglobin, thrombocytes) and proteins

and metabolites known to be associated to processes in kidney (e.g. creatinine), bile (e.g.

bilirubin) or liver (e.g. albumin). Bilirubin is a metabolite in the catabolic pathway, formed

in liver and spleen during the degradation of red blood cells and excreted in bile. Aspartate

transaminase (AST) and alanine transaminase (ALT) are enzymes important in amino acid

synthesis and increased in patients with liver disease (Desmet et al., 1994). Quick describes

the clotting tendency of blood in the prothrombin time. Standardized prothrombin time is

called international normalized ratio (INR). Alpha-fetoprotein (AFP) is a transport protein

in fetuses and can be elevated in people with liver cancer.

Outcomes of interest for the analysis are individual surgery outcomes, in particular

posthepatectomy liver failure, exitus and Clavien Dindo. Liver failure is once binary coded

containing only the information whether liver failure occured or not (called “categorical”).

Once it is coded with a finer grained linear scale describing the necessary interventions once
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the liver has failed (0-3, called “numeric”). Exitus is the information whether the patient

died during the hospital stay. Clavien Dindo is a classification system for complications

after surgery.
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Fig. 4.8 – Time course of cytokine concentrations in serum of patients before and
after liver resection. Lines connect measurements of a single patient. OOR< represents
values below the detection limit.

Data processing

Patients were collected in three batches and serum protein data included values beyond

the detection limit. Serum proteins with more than 20% of values beyond detection limit

were binarized as described in section 2.3.4 for modeling approaches (IL-6 and VEGF). For

the remaining proteins, first missing serum protein values were imputed with GSimp (Wei

et al., 2018) and then log10-transformed. Next, the three batches, which corresponded to

rounds of patient recruitment, were corrected for in serum protein data using ComBat

(details in section 2.2.8 and 2.3.5, (Johnson et al., 2007; Leek et al., 2012)). The batch

corrected and imputed data was inspected with factor analysis for mixed data. All clinical

attributes were complete for all patients.
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Statistical analysis

Dissimilarities between time-series were calculated using the TSclust R-package (Montero

et al., 2014) with “CORT” method (Chouakria and Nagabhushan, 2007). The “CORT”

method combines pairwise temporal correlation between two observations and raw value

behaviors through overall proximity of observations (details in section 2.1.10). Complete

hierarchical clustering was performed on these dissimilarities (see also section 2.1.10) and

grouping in two to six clusters was assessed for the association to clinical outcome of

patients. Associations to clinical outcome were tested with Kruskal Wallis test and χ2-test.

Pairwise analysis between all gathered variables was performed(see section 2.1.3). Variables

which were assessed at particular time points relative to liver resection were only compared

to variables from the same time point. Numerical variables were compared with Spearman’s

rank correlation (rs), numerical and factor variables were compared with Kruskal Wallis

test and two factor variables with Fisher’s test. All comparisons were commonly adjusted

for multiple comparisons using the Benjamini-Hochberg procedure. An association network

(see also section 2.1.3) was drawn for measured variables where nodes represent variables

which are connected by an edge if the pairwise association is significant.

Outcomes of interests were modeled using a generalized linear model via penalized maximum

likelihood with the lasso penalty and leave-one-out cross-validation for the hyperparameter

λ (Friedman et al., 2010). The response family is binomial for categorical liver failure

and exitus and Gaussian for Clavien Dindo and degree of liver failure. Calculations were

performed in R with the glmnet package.

4.3.3 Results

Time-series clustering

To find subpopulations with similar temporal behavior in the data set, dissimilarities

between time-series were computed and cluster analysis was performed. A significant

association between EGF time series clustering into six clusters and exitus outcome was

detected (χ2-test, p = 0.027, Fig. 4.9). Cluster four is particularly overrepresented and

shows a characteristic time course of EGF with a substantial drop on day one after surgery,

an increase on day three and the lowest values of EGF on day seven. Only one of four

patients clustered into that group did survive the liver resection in the long term. Further

significant associations are listed in Table 4.2.
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Fig. 4.9 – Time course of EGF grouped into six clusters and association to exitus.
Lines connect measurements of a single patient. Red lines highlight patients who did not
survive the liver resection in the long term.

Tab. 4.2 – Significant hits in time series clustering. Clusters were associated to clinical
outcomes of interest (liver failure and its degree, exitus, Clavien Dindo).

cytokine # of clusters clinical outcome p-value test

HGF 3, 5, 6 exitus 0.031, 0.029, 0.002 χ2-test
HGF 6 degree of liver failure 0.023 Kruskal Wallis test
PLGF 5, 6 exitus 0.011, 0.012 χ2-test
PLGF 5 degree of liver failure 0.038 Kruskal Wallis test
PLGF 6 Clavien Dindo 0.045 Kruskal Wallis test
EGF 6 exitus 0.027 χ2-test

Association between all variables revealed connection between all levels

To further understand the interconnection between measurements, pairwise analysis between

all gathered variables was performed. All associations with FDR < 10% were visualized as a

network (Fig. 4.10). Major clinical outcomes like liver failure, exitus, stay in intensive plus

intermediate care and Clavien Dindo are tightly connected. They are linked to different

cytokines and blood test results: IL-6 (day +7) is associated to both duration of intensive

plus intermediate care and values of the complication classification system Clavien Dindo.

IL-6 itself is strongly connected with CXCL8 and HGF on several time points. Total

bilirubin is a major hub in the network, connecting blood test results like creatinine, AFP

and Quick with clinical outcomes (exitus, liver failure and intensive plus intermediate care).
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Clinical outcomes can be predicted

Some variables already showed univariate association to clinical outcomes of interest. Next,

a combination of variables measured before or shortly after surgery was investigated for

whether it was able to successfully model clinical outcome. First, only individual profiles

of HGF, IGF, VEGF, TGFβ1, IL-6, and CXCL8 were used to predict clinical outcomes.

Only measurements of day seven post liver resection predicted clinical outcomes degree of

liver failure and Clavien Dindo (Fig. 4.11 A, B). In both models, APO2 was positively

associated with the outcome whereas PLGF was negatively associated. Meaning higher

APO2 values lead to higher degrees of liver failure and more complications for the patient.

However, higher PLGF lead to lower values meaning less complications for the patient.
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Since the aim was to predict clinical outcome before or shortly after surgery next all

available clinical information and blood test results were included as covariates in the

model. For degree of liver failure, measurements on day three post surgery of total bilirubin

and INR together (Fig. 4.11 C, rs = 0.526) model degree of liver failure equally well as

four cytokines measured on day seven (Fig. 4.11 A, rs = 0.522). Surprisingly, for Clavien

Dindo being modeled by just ASA (Fig. 4.11 D), which is a physical status classification

system before surgery, a similar association between original and predicted values was

observed (rs = 0.526) than a model including two cytokine concentrations on day seven

(Fig. 4.11 B, rs = 0.697).
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Fig. 4.11 – Regularized regression models predicting clinical outcomes. (A) Degree
of liver failure was modeled with concentrations of CXCL8, APO2, PLGF and EGF from day
seven post liver resection. (B) Clavien Dindo was modeled with APO2 and PLGF also from
day seven. Including also clinical variables led to new models for degree of liver failure (C) and
Clavien Dindo (D). Original and predicted values were compared and Spearman’s correlation
coefficients rs with associated p-values are given.
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4.3.4 Discussion

Time course analysis showed an increase in inflammatory cytokine IL-6 on day one after

surgery (Fig. 4.8) as was expected during priming phase after liver resection (Tao et al.,

2017). Also the level of hepatocyte growth factor (HGF) in the serum increased post

surgery. It stayed constant until day seven, probably inducing hepatocytes to proliferate

(Furchtgott et al., 2009) and thus regenerate the liver. Patterns in cytokine and growth

factor profiles were detected which were associated to clinical outcomes after surgery (Fig.

4.9). Especially, one time course pattern of epidermal growth factor (EGF) was associated

to in-hospital death of the patient.

Pairwise associations between cytokines, growth factors, clinical attributes and blood test

results revealed a strong interconnection within and between these layers of information

(Fig. 4.10). The level of bilirubin in the blood was strongly associated to degree of liver

failure. This association was mainly due to the definition of posthepatectomy liver failure

which is based on factors including bilirubin measured on day five post surgery (Rahbari

et al., 2011).

Modeling clinical outcomes using cytokines and growth factors did not reveal a strong

predictive power of markers measured before or shortly after surgery but only of markers

measured on day seven post surgery. Combining cytokine and growth factor profiles with

blood test results and clinical information with regularized models did not lead to combined

models but revealed different angles on predictive models for individual regeneration

capacity of the liver tissue.

Potentially novel connections between clinical attributes and blood markers detected in

the network (Fig. 4.10) are currently tested in an independent cohort. Models predicting

clinical outcomes are also currently tested and evaluated for their clinical potential.
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Chapter 5

Adjusting patient-bias in microarray data

using linear mixed effects models

Full skin biopsies are a perfect tool to study the current disease state in inflammatory

skin diseases. Routinely, they are taken from patients to fully characterize their disease

by histological analysis. Skin biopsies consist of several cell types, mainly skin epithelial

cells, the so-called keratinocytes, and immune cells. When performing whole genome

gene expression analysis of full skin biopsies, total mRNA of all cell types is combined

and measured. The study of Quaranta et al. (2014b), which laid the foundation for the

psoriasis/eczema classifier from section 3.1, already showed that gene expression rather

clusters by patient than by disease in principal component analysis. In this thesis this

effect, which is based on inter-individual variability due to everybody’s uniqueness with

regard to his or her gene expression patters, is called patient-bias.

Patient-bias is related to batch effects because both cloud the underlying, biological effect

and potentially lead to incorrect conclusions drawn from data if not treated appropriately

in the analysis. Batch effects arise due to technically different handling of measurements,

e.g. through varying laboratory conditions, different reagents or technicians (Leek et al.,

2010). In statistical analyses known batch effects can be corrected for and also unknown

sources of variation can be identified and corrected using approaches like those described

in Leek et al. (2012).

To overcome the problem of patient-bias in the initial study, lesional and healthy expression

values were subtracted per individual and gene to form log2 fold changes (Quaranta et al.,

2014b). Here, a different approach to handling patient-bias in microarray data of skin

biopsies is presented: linear mixed effects models. This method was already successfully

applied in two studies which were both published in 2018 and are described in this chapter.

Both studies were in collaboration with the Department of Dermatology and Allergy at
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the University Hospital of Technical University Munich. This chapter focuses on the gene

expression analysis in both studies and briefly summarizes the remaining results which are

discussed in detail in the published papers (Lauffer et al., 2018; Garzorz-Stark et al., 2018).

In the first study (section 5.1) gene expression data from patients suffering from either

lichen planus or lupus erythematosus, two interface dermatitis diseases, was analyzed.

Using the mixed effects modeling a shared type I immune response signature in both

diseases was detected which was validated experimentally (Lauffer et al., 2018).

F. Lauffer, M. Jargosch, L. Krause, N. Garzorz-Stark, R. Franz, S. Roenneberg,

A. Böhner, N.S. Mueller, F.J. Theis, C.B. Schmidt-Weber, T. Biedermann,

S. Eyerich and K. Eyerich: Type I immune response induces keratinocyte

necroptosis and is associated with interface dermatitis. The Journal of Investigative

Dermatology (2018).

In the second study (section 5.2) the participants were subjected to topical application

of a toll-like receptor 7/8 agonist, called imiquimod, and histologically monitored. Two

to five whole genome gene expression microarrays per study participant were available.

The thesis author was able to show that the transcriptional profile was closest to the one

of acute contact dermatitis compared to other inflammatory skin diseases. Further, the

collaborators showed that plasmacytoid dendritic cells act as primary sensors and IL-23

plays a major role in imiquimod-induced inflammation (Garzorz-Stark et al., 2018).

N. Garzorz-Stark*, F. Lauffer*, L. Krause, J. Thomas, A. Atenhan, R. Franz,

S. Roenneberg, A. Böhner, M. Jargosch, R. Batra, N.S. Mueller, S. Haak,

C. Groß, O. Groß, C. Traidl-Hoffmann, F.J. Theis, C.B. Schmidt-Weber, T.

Biedermann, S. Eyerich and K. Eyerich: Toll-like receptor 7/8 agonists stimulate

plasmacytoid dendritic cells to initiate TH17- deviated acute contact dermatitis

in human subjects. Journal of Allergy and Clinical Immunology (2018).
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5.1 Application in interface dermatitis

First, linear mixed effects models were applied to two interface dermatitis diseases to

adjust for patient-bias in the microarray data. The thesis author calculated a shared

interface dermatitis gene expression signature from patient data which she compared to in

vitro stimulated cell line gene expression. The study was conducted in collaboration with

Felix Lauffer and Kilian Eyerich from the Department of Dermatology and Allergy at the

University Hospital of Technical University Munich who acquired all data analyzed for this

section. Content, text and data of this section are based on Lauffer et al. (2018). Copied

text passages are indicated as quotations.

In this study the thesis author was responsible for all data analysis of clinical and

whole-genome gene expression data. In detail, she processed clinical data and performed

correlation analysis of histological attributes of mixed data types to determine objective

criteria mostly representing subjective criteria. For the whole-genome gene expression

analysis, she analyzed microarray data by performing the whole workflow: data processing,

differential expression analysis, pathways analysis using model based gene set analysis

and visualization of the results. For differential gene expression analysis the thesis author

came up with the idea of using and implemented the usage of linear mixed effect models

for microarray data. In particular, she designed the analysis so that the specific medical

question could be answered by implementing two models and comparing results. She

further integrated in vitro gene expression measurements. All figures presented here were

designed and created by the thesis author in discussion with her supervisors. The thesis

author wrote the original text about analysis and interpretation of computation results for

the publication Lauffer et al. (2018).

5.1.1 Motivation

“An increased understanding of the underlying immune mechanisms in inflammatory skin

diseases led to the development of specific therapeutic compounds [over the last years]

(Noda et al., 2015).” (Lauffer et al., 2018) Interestingly, most of the compounds can

be effectively used in several skin diseases that share a similar pathogenesis. Interface

dermatitis is a type of skin inflammation present in several inflammatory and autoimmune

skin diseases, for example in lichen planus and lupus erythematosus (see also overview

of studied diseases in section 2.4). The underlying mechanism of interface dermatitis is

insufficiently understood and there is a clinical need for new therapies to treat these kinds
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of skin diseases. Deeper understanding of the pathogenesis could open all interface diseases

to treatment with new specific therapeutic compounds.

“Aim of this study was to investigate the underlying molecular mechanism of interface

dermatitis in a disease independent manner focusing on the overlap of lichen planus and

lupus erythematosus in terms of histological architecture, genetic regulations and cellular

immune response.” (Lauffer et al., 2018)

5.1.2 Methods

Patient cohort and in vitro experiments

For this study, 25 patients suffering from an interface disease were recruited (lichen planus n

= 14, lupus erythematosus n = 11). Skin biopsies were taken and analyzed using histology.

In histology 24 criteria, subjective and objective ones, were assessed to clarify the diagnosis

of interface dermatitis. Computational clustering of all histological criteria identified

the objective criteria “number of dyskeratotic epidermal cells” to best correlate with the

subjective criteria “rating of interface dermatitis” (Fig. 5.1). As a conclusion, in the further

analysis only those patients were analyzed which had a least one dyskeratotic epidermal cell

in the histological analysis (true for n = 11 lichen planus and n = 5 lupus erythematosus

samples). For comparisons, gene expression of psoriasis patients was included (n = 16)

which were already published in (Quaranta et al., 2014b). Gene expression of two skin

samples per patient were measured, namely lesional and autologous noninvolved skin.

For further understanding genetic regulation in keratinocytes, primary human keratinocytes

were stimulated in vitro with different cytokines, mimicking different types of immune

responses and gene expression was measured (five conditions each n = 3).

For all samples, whole-genome gene expression was determined with Agilent microarrays.

Modeling of gene expression to determine differently regulated genes

Gene expression microarrays of human skin biopsies and keratinocytes were preprocessed

together and analyzed in parallel following the procedure explained in detail in section

2.2.3. In short, after quality control microarrays were background corrected and normalized.

108 probes were removed because the detected fluorescence was not 10% brighter that the

95% quantile of negative control probes. Within-array replicated probes were averaged.
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Fig. 5.1 – Computational correlation plot of histological attributes. The objective
criteria “number of dyskeratotic cells” is the one which correlates highest with subjective
interface dermatitis attributes. Pearson correlation coefficient were calculated and rows and
columns are ordered using hierarchical clustering. Figure adapted from Fig. S1 in Lauffer et al.
(2018).

Quality controlled number of probes that went into the analysis was 42,297. No averaging

over probes which were specific for the same gene was performed because they potentially

measure different splice variants or have different dynamic ranges. Issues with microarray

measurements, also in comparison with RNA sequencing techniques, are discussed in section

2.2.4.

The aim of the study was to account for inter-individual variability and find shared

molecular signatures for interface dermatitis. Therefore, linear mixed effects models were

applied to adjust for patient-bias (details see section 2.1.5) and two model designs were

used to analyze the gene expression data. First, gene expression of lichen planus, lupus

erythematosus and psoriasis skin biopsies was analyzed regarding all three diseases as

separate predictor variables in comparison to the autologous healthy measurement (=

model 1). Second, both interface diseases were combined in one predictor and compared

to autologous healthy skin and psoriasis gene expression (= model 2). The results of

model 2 are referred to as the shared interface dermatitis signature. In both models a linear
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mixed effects model was fitted using the restricted maximum likelihood criterion where

individual patients were included as random effects in the model (= random intercepts).

“This results in an intercept calculated for each individual patient (= random effect) and

an overall adjusted fold change (= fixed effect) for each predictor (lichen planus, lupus

erythematosus, psoriasis) compared to healthy.” (Lauffer et al., 2018) Each gene was

modeled separately and with both model designs. Corresponding p-values were calculated

using the Kenward-Roger approximation for the denominator degrees of freedom (Kenward

and Roger, 1997) and adjusted for multiple testing using Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995).

Expression of a particular gene y was modeled by fixed effects β and random effects b. X

and Z are design matrices relating y to β and b. The model can be represented as:

y = Xβ + Zb+ ε ε ∼ N(0, σ2I) b ∼ N(0, τ2I)

with y ∈ Rn×1, X ∈ Rn×p, β ∈ Rp×1, Z ∈ Rn×s, b ∈ Rs×1, ε ∈ Rn×1,

with s being the number of random effects (= number of patients), n being the number

of measurements taken (n > s since at least two measurements per patient) and p being

the number of fixed effects. The described modeling designs differ in the number of fixed

effects:

model 1: p = 4 (non-lesional, lichen planus, lupus erythematosus, psoriasis)

model 2: p = 3 (non-lesional, interface diseases combined, psoriasis).

As described in section 2.1.5 linear mixed effects models were estimated with the Ime4

package (Bates et al., 2015) in R (R Core Team, 2019). P-values for each coefficient were

obtained using “mixed” function from the afex R-package (Singmann et al., 2018) which

applies the Kenward-Roger approximation for the degrees of freedom (Kenward and Roger,

1997).

Gene expression of in vitro stimulated keratinocytes was modeled using linear regression

(see section 2.1.4). To reveal differences and similarities between keratinocyte and interface

dermatitis gene expression a correlation analysis between the fold changes of the genes of

interest was performed using Pearson correlation. Top hits were defined as p-value < 0.05

and then sorted by absolute fold change.
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5.1 APPLICATION IN INTERFACE DERMATITIS

Gene set analysis

Gene set analysis was applied to understand the context of differentially regulated genes

(details see section 2.2.5). Gene sets were investigated using model-based gene set analysis

(MGSA) which takes the hierarchical structure of gene sets into account (Bauer et al.,

2010). Active gene sets are those whose posterior probability for being active, also called

MGSA estimates, is larger than 0.5 (Bauer et al., 2010). Wikipathways were used as a

database for known gene sets (Slenter et al., 2018).

5.1.3 Results

Interface dermatitis is dominated by a type I immune response

Evaluation of model 1 on whole-genome expression data revealed “5,675 genes [which]

were regulated exclusively in lichen planus; 4,354 genes were regulated exclusively in lupus

erythematosus. 3,888 genes showed differential regulation in both [interface diseases]

[...] when compared to healthy skin [(Fig. 5.2 A)]. Only these genes were regarded as

independent of the specific diseases [...] but shared among interface dermatitis diseases

and were included in [...] [pathway] analysis. Pathway [...] [analysis using model based

gene set enrichment analysis (Bauer et al., 2010) of shared genes (model 1, n = 3,888)]

showed an activation of interferon, chemokine and T cell related pathways [(Fig. 5.2 B)].”

(Lauffer et al., 2018) Interferon signaling pathways indicative of a type I immune response

are overrepresented (indicated in red, Fig. 5.2 B).

The computational result was validated in vitro: T cells isolated from lesional skin of

interface dermatitis patients showed high frequencies of IFN-γ and TNF-α positive cells

in intracellular cytokine staining. Further, immunohistological stainings for TBX21, the

major transcription factor for type I immunity, revealed higher number of TBX21 positive

cells in interface dermatitis compared to psoriasis tissue (see Fig. 2D in Lauffer et al.

(2018)).

Molecular signature of interface dermatitis resembles keratinocytes stimulated with

IFN-γ and TNF-α

The next question was which T cell stimulus was able to change the gene expression in

keratinocytes so that it is similar to the expression patterns in interface dermatitis. To

answer the question, primary human keratinocytes were stimulated in vitro with cytokines
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Interleukin−3, 5 and GM−CSF signaling
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Fig. 5.2 – The molecular signature of interface dermatitis. (A) Transcriptome analysis
of lichen planus (n=11) and lupus erythematosus (n=5). Depicted is the number of regulated
genes shared and specific for the diseases. Only the shared genes were taken into account for
pathway analysis. (B) Active pathways (estimate larger than 0.5) of shared interface dermatitis
genes. Pathways related to type I immune responses are marked in red. Wikipathways were
used as a pathway database (Slenter et al., 2018). Figure adapted from Fig. 1 B and C in
Lauffer et al. (2018).

specific for certain T helper (Th) cell subsets: with IFN-γ and TNF-α for Th1 subset,

with IL-4 and IL-13) for Th2 subset, with IL-17 and IL-22 for Th17 subset and with

IL-22 for Th22 subset. The shared expression pattern of interface dermatitis, which was

calculated using model 2, was compared to the top 100 most differentially regulated genes

of keratinocytes stimulated with above mentioned cytokines. The highest correlation was

detected for keratinocytes stimulated with Th1 cytokines IFN-γ and TNF-α (Fig. 5.3

for Th1 and Th2, not shown: Th17 condition with r = 0.53, and Th22 condition with

r = 0.31). “ [This indicates] that keratinocytes in interface dermatitis are exposed to a

type I immune response microenvironment.” (Lauffer et al., 2018)

In an additional experiment using three-dimensional skin models, it was shown that

keratinocytes which are stimulated with Th1 cyotkines IFN-γ and TNF-α show signs of

cell death.

Necroptosis and apoptosis pathways are activated in interface dermatitis

To understand the underlying mechanism of the observed gene expression patterns, pathways

were analyzed. The apoptosis and the necroptosis pathways were regulated in the interface

dermatitis specific gene expression (Fig. 5.4).
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Fig. 5.3 – The gene expression pattern of interface dermatitis is similar to the
expression pattern of keratinocytes stimulated with IFN-γ and TNF-α. Top 100
differentially regulated genes in stimulated keratinocytes were compared to the shared gene
expression signature of interface dermatitis (model 2) based on fold changes. Shown are results
for keratinocytes stimulated with cytokine milieu produced by Th1 (A) and Th2 (B) cells.
Figure adapted from Fig. 3 B in Lauffer et al. (2018).

For further support this finding, markers for apoptosis (cleaved caspase 3) and necroptosis

(receptor-interacting- protein-kinase 3 (RIP3)) were tested using immunohistochemistry.

For RIP3 an enhanced expression in the epidermis was measured but not for cleaved

caspase3. Further, depending on IFN-γ or TNF-α presence, phosphorylation of RIP3

was induced in keratinocytes when they were stimulated with supernatent of lesional T

cells. After knock-down of RIP3, keratinocytes did not show any more cell death after

stimulation with IFN-γ and TNF-α.

5.1.4 Discussion

Applying linear mixed models for determining differentially expressed genes while adjusting

for inter-individual variability proved to be a useful method for this data set since the

results were experimentally validated. “So far, it has been assumed that apoptosis

was the mechanism leading to characteristic epidermal changes of interface dermatitis

(Bascones-Ilundain et al., 2006; Skiljevic et al., 2017; Yoneda et al., 2008). [...] Beyond

apoptosis, we here define two additional mechanisms associated to interface dermatitis:

a type I dominant cellular immune response with the key cytokine IFN-γ based on

gene expression analysis and an activation of the necroptosis pathway mediated by the

phosphorylation of RIP3 in keratinocytes [using immunohistochemistry and small hairpin

RNA knock-down].” (Lauffer et al., 2018) Recently, necroptosis inhibitors have been
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Fig. 5.4 – Regulation of genes belonging to necroptosis (A) and apoptosis (B)
pathways in interface dermatitis compared to psoriasis. All genes which are annotated
to the respective pathway are ordered by fold change in interface dermatitis. Both fold changes
were obtained from results of model 2. Significantly regulated genes are highlighted in colors
(red for upregulation, blue for downregulation). Figure adapted from Fig. S2 in Lauffer et al.
(2018).

reported (Fauster et al., 2015; Yan et al., 2017) and together with the findings described

here, these present assuring therapeutic approaches for interface dermatitis positive skin

reactions.
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5.2 Application in imiquimod-induced skin reactions

Linear mixed effects models were also applied to gene expression microarray measurements

in a second study. In that study, the effect of topical application of a toll-like receptor

7/8 agonist, called imiquimod (brand name “Aldara”), to human skin was investigated.

The study was conducted in collaboration with Natalie Garzorz-Stark, Felix Lauffer and

Kilian Eyerich from the Department of Dermatology and Allergy at the University Hospital

of Technical University Munich. Content, text and data of this section are based on

Garzorz-Stark et al. (2018). Copied text passages are indicated as quotations.

In this study, the thesis author was responsible for gene expression analysis. Gene expression

was measured with microarrays. Gene expression analysis for this study contained extensive

data preprocessing, dimension reduction in a non-standard way and differential gene

expression analysis using linear mixed effects models. There are two main differences in

the analysis of gene expression data in this study compared to the study described in

section 5.1 about interface dermatitis. First, the microarray preprocessing was done more

stringently and included adjustment for unknown sources of variability. Second, the linear

mixed effects model setup was more complex since more groups were compared. The thesis

author further designed and created all figures shown in this section with a special focus

on visualizing pathway analysis results comparing several conditions. The text passages

concerning computational methods and results were originally written by the thesis author

for the publication Garzorz-Stark et al. (2018).

5.2.1 Motivation

Psoriasis is an inflammatory skin disease (details section 2.4.1) where identification of early

triggers remains difficult (Tian et al., 2012). Mouse models can only reflect human psoriasis

to some degree (Swindell et al., 2011). So a human model to perform standardized analyses

would be beneficial. The most often used mouse model of psoriasis is topical application

of imiquimod which is a toll-like receptor 7/8 (TLR7/8) activator (Hawkes et al., 2017).

This mouse model can reflect histologic hallmarks of psoriasis on mice skin (van der Fits

et al., 2009) and it can also reflect molecular pathways (van der Fits et al., 2009; Grine

et al., 2015). So far, it is not clear what the driver for the psoriasis-like skin inflammation

induced by imiquimod in mice is but both dendritic cells and γδ T cells are important for

the process (Singh et al., 2016; Yoshiki et al., 2014).
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“The aim of this study was to comprehensively characterize imiquimod-induced inflammation

in human subjects and to evaluate its potential use as a standardized human psoriasis

model.” (Garzorz-Stark et al., 2018)

5.2.2 Methods

Only study design and methods applied on gene expression data are given here. For further

clinical and laboratory methods please see Garzorz-Stark et al. (2018).

Patient cohort

“Eighteen patients with or without a known history of psoriasis, atopic eczema or both

were included in the study. [...] Imiquimod (Aldara 5% cream), [a TLR7/8 agonist,] [...]

was applied at days zero, two, and four and subsequently twice per week for four weeks

in an occlusive manner on the backs of the patients. [...] Development of skin lesions was

monitored over a period of four weeks.” (Garzorz-Stark et al., 2018) Six-millimeter punch

biopsies were obtained from lesional and noninvolved skin and cut into three pieces: one

part for histologic assessment, one for gene expression analysis and primary cells were

obtained from the last piece.

Preprocessing of whole-genome expression data

Total RNA was isolated from skin punch biopsy specimens and measured with SurePrint

G3 Human GE 8x60K BeadChips (Agilent Technologies). Basic preprocessing and quality

control was performed as for the other microarray studies described in section 2.2. For this

study some additional steps were performed to exclude probes with low expression and

low confidence. First, only probes were kept which were 10% brighter in any of the arrays

than the 95% quantile of all negative control probes which filtered out 82 low expressed

probes. Within-array replicated probes were averaged, different probes for the same gene

were not averaged. Second, the algorithm blastn (Altschul et al., 1990) was used to map

the 60-bp nucleotide sequences spotted on the array (probes) to the human transcriptome

available from UCSC via Genbank (February 2016) and encoded as RefSeq IDs. Of all

probes, 13,430 did not match with 100% accuracy to a position of the human transcriptome

and were removed prior to analysis. For probes mapping to more than one RefSeq ID it

was checked if these IDs corresponded to the same gene (via gene symbol). 2,229 probes

mapped to several genes and were excluded from the analysis. Mapping between RefSeq ID
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and gene symbol was performed with org.Hs.eg.db annotation package from Bioconductor’s

AnnotationDbi (Pagès et al., 2018). In total, 26,664 probes mapped with 100% accuracy

to a unique gene and were used in further analysis.

Dimension reduction of gene expression data

To visualize whole-genome gene expression data, dimension reduction was employed (details

in section 2.2.7). Since, the data set contained repeated measurements of individuals, no

standard principal component analysis (PCA) was used but a new method introduced by

Lin et al. (2016) called AC-PCA (adjustment for confounding principal component analysis).

The method in parallel performs dimension reduction and adjusts for confounding factors

(Lin et al., 2016). Patient heterogeneity was adjusted for by using patient identifier as

confounding factors. The method was applied on all patient samples which each contained

26,664 normalized probes per sample. For better between-group comparison, 95% confidence

intervals were calculated and added in two dimensional space.

Analysis of gene expression data

To estimate unknown sources of variability in the data set, surrogate variable analysis was

performed (Leek and Storey, 2007) which is related to batch correction. One surrogate

variable was calculated (Leek et al., 2012) and included as a covariate in the regression

model. The surrogate variable was associated to chip IDs. Chip ID was not explicitly used

as a confounder or for direct batch correction since the chips, which contain up to eight

microarray measurements, also included measurements from other studies.

For each of the 26,664 probes one linear mixed effects model was fitted following the general

description in section 2.1.5. The analysis was comparable to section 5.1.2 with the difference

that five fixed effects were used in this model design: one surrogate variable, psoriasis,

eczema, acute contact dermatitis (ACD) and imiquimod-induced contact dermatitis (ICD).

Model estimation and p-value calculation was performed as described in section 5.1.2.

P-values were adjusted for multiple testing by the Bonferroni correction (Dunn, 1961).

Genes were defined as significantly differentially regulated when the adjusted p-value was

less than 0.05 and top hits were defined when the absolute fold change was greater than

2.5.
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Fig. 5.5 – Principal component (PC) analysis which simultaneously adjusts for
confounding variation on whole-genome expression data. Patients were taken as
confounding variables. 95% confidence intervals are drawn per group of patients with ICD
(n = 15), patients with ACD (n = 10), patients with psoriasis (n = 24) and compared to
noninvolved skin (n = 26). Figure adapted from Fig. 2 A in Garzorz-Stark et al. (2018).

5.2.3 Results

“Imiquimod [induced] a monomorphic and self-limited inflammatory response in healthy

subjects, as well as patients with psoriasis or eczema.”(Garzorz-Stark et al., 2018) The

reaction was heterogeneous, looked contact dermatitis-like in histology and missed hallmarks

of psoriasis. Also, the clinical phenotype of imiquimod-induced inflammation (ICD) in

human skin resembled acute contact dermatitis (ACD) rather than psoriasis (see Fig. 1 in

Garzorz-Stark et al. (2018)).

Transcriptome of human imiquimod-induced dermatitis closely overlaps with contact

dermatitis

“Whole-genome expression analysis of [imiquimod-induced] lesional skin (ICD, n = 16)

was compared with skin of patients with psoriasis (n = 24), patients with acute contact

dermatitis to nickel (ACD, n = 10), patients with eczema (n = 15) and noninvolved skin

(n = 26) to investigate ICD in a heuristic global approach. As a first step, dimension

reduction simultaneously adjusting for the confounding variation from patient heterogeneity

was performed (Lin et al. (2016)). A close overlap of ICD reactions with both ACD and

psoriasis reactions compared with noninvolved skin was observed when examining the 95%

confidence intervals per group [(Fig 5.5)].” (Garzorz-Stark et al., 2018)
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Fig. 5.6 – ICD transcriptome closely overlapped with ACD and, to a lesser extend,
with psoriasis. (A, B) Correlation of fold changes of all genes of ICD and ACD (A) and of
ICD and psoriasis (B), respectively, compared to intrinsic noninvolved skin. Colors indicate
genes which are uniquely significantly regulated in one of the groups (ICD in blue, ACD in
green and psoriasis in red), grey genes are shared between two groups and black ones are not
significantly regulated. (C, D) Overlap of significantly regulated genes shown by Venn plots.
Percentages indicate relative number of genes regulated significantly in either patients with
ACD (C) or those with psoriasis (D) that are also regulated significantly in patients with ICD.
Smaller Venn plots indicate overlap of top hit genes with an absolute log fold change of greater
than 2.5. Pearson’s correlation coefficient r is given for comparison of fold changes in (A) and
(B). Figure adapted from Fig. 2 B and C in Garzorz-Stark et al. (2018).

“For a more detailed insight into the similarity of ICD [compared to] ACD, eczema and

psoriasis, significantly regulated genes were compared. The ICD and ACD transcriptomes

showed a strong correlation of all significantly regulated genes ([Pearson’s correlation

coefficient] r = 0.78, [Fig. 5.6 A]). In comparison, ICD and psoriasis (r = 0.57, [Fig. 5.6

B]), as well as ICD and eczema (r = 0.56, see supplementary Fig. E2 A in Garzorz-Stark

et al. (2018)), correlated less. Furthermore, 65% of all significantly regulated genes in

patients with ACD were also regulated in patients with ICD [(Fig. 5.6 C)], whereas 31.2%

of the psoriasis [(Fig. 5.6 D)] and 37.1% of the eczema genes were also regulated in patients

with ICD [(see supplementary Fig. E2 B in Garzorz-Stark et al. (2018))]. Among the top
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hit genes with a log2 fold induction of greater than 2.5, the overlap was higher, with 80.2%,

41.8% and 64.3% for the ACD, psoriasis and eczema transcriptomes, respectively [(Fig. 5.6

C, D)].” (Garzorz-Stark et al., 2018)

Apoptosis pathway is shared among ICD and ACD

One of the major pathogenic hallmarks of acute contact dermatitis (ACD) is apoptosis

(Traidl et al., 2000). To assess whether ICD resembles ACD in this regard, gene expression

fold changes of apoptosis-associated genes were directly compared (Fig. 5.7 A). ICD and

ACD showed a strong correlation (r = 0.89, Fig. 5.7 B), whereas the correlation of ICD

and psoriasis was less pronounced but still present (r = 0.61, Fig. 5.7 B).

To get a further understanding of immune cells involved in the process, immunohistological

staining was performed which showed that ICD is infiltrated by more CD8+ T cells (89.3

± 12.58) compared to psoriasis (42.3 ± 7.97, p = 0.0008). However, the number of CD8+

T cell infiltrating ACD (64.8 ± 12.05) was similar to ICD. Differences between ICD and

ACD were found for the levels of CD4/CD8 T cell ratio with more CD8+ cells in ICD

compared to ACD and psoriasis. Both CD4+ and CD8+ T cells secreted IFN-γ in ICD

and upon T cell receptor stimulation more IFN-γ was secreted by T cells isolated from

ICD patients compared to ACD and psoriasis patients.

Regulation of Interferon-α/β signaling pathway is ICD-specific and induced by

plasmacytoid dendritic cells

Analysis of gene expression data showed a specific, exclusive upregulation of the Interferon-α/

β signaling pathway in ICD. The pathway consists of 73 genes and 53 are significantly

upregulated in ICD, whereas only 14 and 13 are upregulated in patients with psoriasis and

ACD, respectively (Fig. 5.8). ICD was induced by imiquimod which is a TLR7/8 agonist.

Since TLR7/8 is highly expressed on plasmacytoid dendritic cells (pDCs) and they are the

main producers of IFN-α, they were further investigated in patients with ICD reactions.

The number of pDCs correlated with severity of clinical reaction as well as with TLR7

density, indicating a functional role for pCDs in patients with ICD. This is particularly

interesting, since the underlying metabolic reprogramming induced by imiquimod was

observed in both human (see Fig. 4 D in Garzorz-Stark et al. (2018)) and mouse (see Fig.

E8 in Garzorz-Stark et al. (2018)) pDCs, hinting at a “shared cellular mechanism between

mouse imiquimod-induced psoriasis-like reactions and ICD. [...] [This mechanism is also]

in contrast to classical contact dermatitis, in which myeloid dendritic cells sense [small
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Fig. 5.7 – Differentially regulated genes within the pathway “apoptosis”. (A)
Absolute fold change of each gene within the pathway “apoptosis” (Reactome database)
in patients with ICD (left, blue) and those with ACD (right, green). Significantly up- and
downregulated genes are highlighted in lighter and darker colors, respectively. (B) Correlation
analysis of genes related to apoptosis. Shown are fold changes of genes in ICD lesions (x-axis)
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and line). Lines represent linear fits through the respective points and gray backgrounds are
95% confidence intervals. Pearson correlation coefficient is given by r.Figure adapted from Fig.
E4 in Garzorz-Stark et al. (2018).

chemicals and not pDCs act as] [...] primary sensors (Kaplan et al., 2012).” (Garzorz-Stark

et al., 2018)

“IL-23 mediated signaling events” is a key pathway upregulated in both psoriasis and

ICD

“Because plasmacytoid dendritic cells are involved in the early pathogenesis of psoriasis,

we next investigated the molecular overlap of ICD and psoriasis [...]: “IL-23 mediated

signaling events” was identified as a key pathway upregulated in both psoriasis and ICD

[(Fig. 5.9 A)].” (Garzorz-Stark et al., 2018) The pathway consists of 42 genes and 21

of these were significantly regulated in ICD. The overlap of significantly regulated genes

between ICD and psoriasis consists of five genes (Fig. 5.9 B), nevertheless the pathway

is also activated in psoriasis, just with different genes, 15 altogether. Especially, “IL-23A
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was significantly upregulated in both patients with ICD and psoriasis but not in patients

with ACD [(Fig. 5.9 A, highlighted)]. IL-23 is a key driver of Th17-immunity. Accordingly,

[immunohistological stainings showed that] IL-17+ cells were more frequent in patients

with ICD (10.3 ± 1.78) than in ACD (4.0 ± 0.83) and comparable [...] to psoriasis (9.2 ±
1.88) in situ.” (Garzorz-Stark et al., 2018) These findings were confirmed in T cells isolated

from lesional skin of the respective diseases. ICD and psoriasis further show similarities

in immune cell profiles: T cells derived from lesions secreted similar amounts of CXCL8

and the number of neutrophil granulocytes in lesions was comparable between ICD and

psoriasis.

NOS2 is part of a new molecular classifier for psoriasis (see section 3.1 and Garzorz-Stark

et al. (2016)). Gene expression analysis showed upregulation of NOS2 in psoriasis compared

to intrinsic noninvolved skin (Fig. 5.9 A, highlighted), but no regulation in ICD and ACD.
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However, using immunofluorescence staining the induction of NOS2 in lesional skin of both

ICD and psoriasis was shown. In contrast, NOS2 was essentially missing in patients with

ACD (Fig. 5, part I in Garzorz-Stark et al. (2018)).

In a one-patient trial the influence of IL-23 on ICD was examined in a prospective manner.

The results showed that neutralizing the effect of IL-23 reduced the clinical ICD reaction

which supports the hypothesis that IL-23 is important for imiquimod-induced inflammation.

5.2.4 Discussion

“A standardized human model of psoriasis is missing. In this study we evaluated a commonly

used mouse model of psoriasis for its possible value in the human setting.” (Garzorz-Stark

et al., 2018) The key challenge of the analysis was comparing several gene expression

measurements in different conditions from the same person. It was solved with a linear

mixed effects model which adjusted for inter-individual variability and revealed condition

specific gene signatures which were experimentally validated. Visualizing pathways and
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contrasting expression levels within these pathways between different diseases allowed to

detect shared and specific genes involved in underlying mechanisms.

After application of imiquimod, human skin showed more signs of acute contact dermatitis

than of psoriasis. The same observation can be made on transcriptome level. Nevertheless,

this study shows that the human imiquimod model still allows insights into the pathogenesis

of psoriasis. A trait which is shared with human psoriasis is the trait that plasmacytoid

dendritic cells act as primary sensors.
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Chapter 6

Molecular characterization of human T

helper cell subsets using multiple omics

levels

T helper cells are part of the adaptive immune system and if their regulation is out of

balance, it leads to complex diseases like psoriasis, an inflammatory skin disease. This

chapter describes the comprehensive approach taken by the thesis author, her supervisors

and her collaborator Stefanie Eyerich to provide a deeper molecular characterization of T

helper cell phenotypes. Seventy-nine human T helper cell clones were established in the

laboratory of Stefanie Eyerich. T helper cell clones consist of several hundred thousand

cells which all descent from one parent cell and share the same phenotype. The clones

were either stimulated with a generic T cell stimulant or left without stimulation, before

secreted proteins and mRNA expression were measured. The aim was to understand what

molecular markers are specific for each clone or groups of clones to potentially improve

patient treatment.

The study has been performed with T cell clones and not single cells since the parallel

measurement of secreted proteins and gene expression from single cells is still challenging,

especially after stimulation of cells (Macaulay et al., 2017). The Human Cell Atlas (HCA)

is an initiative which aims to measure all cells of the human body at single cell resolution

(Regev et al., 2017). This resource will provide single cell data sets mainly from healthy

individuals and only small cohorts of patients with relevant diseases are included (Regev

et al., 2017). Activated T helper cells are mostly found during an active immune response,

so those small cohorts of diseased patients are of particular interest for future analysis and

characterization of human T helper cell subsets once the Human Cell Atlas data is fully

measured and available.
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Two methods, both first described in 2017, enable scientists to measure gene and protein

expression of single cells. Both cellular indexing of transcriptomes and epitopes by

sequencing (CITE-seq, Stoeckius et al. (2017)) and RNA expression and protein sequencing

assay (REAP-seq, Peterson et al. (2017)) use similar approaches. They use antibodies

specific for the proteins of interest which are linked to a tripartite DNA sequence (Todorovic,

2017). The DNA sequence allows to measure the protein expression in parallel to the

transcriptome. Applying these methods to T helper cells in human disease will improve

their characterization substantially. The methods focused on surface protein expression. T

helper cells interact with the environment through the release of proteins. Measuring those

secreted proteins is still not be possible with these novel techniques on single cell level.

Here, the focus is on the analysis of T helper cell clones. The thesis author in discussion

with her supervisors proposed an approach to perform unbiased clustering of T helper cells

into groups based on their measured cytokine secretion profile. Analyzing the relationship

of computationally defined T helper cell groups to known T helper cell subsets revealed the

presence of known subsets in the data set but also of mixed T helper cell subsets. Next,

the thesis author used whole genome gene expression data to characterize all T helper cell

subsets on a molecular level by applying six different statistical modeling approaches and

identifying a small set of subset specific marker genes. Gene expression results showed

consistence with expectations in skin diseases driven by specific T helper cell subsets.

Mapping candidate genes to a protein-protein interaction network revealed possible target

proteins important for several T cell subsets. Further experimental validation is currently

ongoing before proposing the identified genes as new markers for T cell subsets.

In this study, the thesis author was responsible for all data analyses including analysis of

secretome and whole-genome gene expression data measured by microarrays. She was also

responsible for interpreting the results. Further, she performed clustering analyses using

five different clustering algorithms. After going through the full microarray preprocessing

workflow, the thesis author performed differential gene expression analysis using six different

methods, some of them not commonly used for this task. The thesis author further came

up with an elaborate approach to determine most differentially regulated genes per method

and how to find consensus top hits. She also performed gene set enrichment analysis and

mapping to a protein-protein interaction network. All figures presented in this section were

designed and created by the thesis author. The thesis author did not perform any of the

laboratory experiments. The biological interpretations of the results were researched and

written by the thesis author and approved by her supervisors and biological collaborators.
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6.1 Motivation

On a daily basis, the immune system and especially T helper cells (Th cells which are

positive for the CD4 surface molecule, referred to as CD4+ T cells) help in fighting

pathogens. Th cells coordinate the adaptive immune response by secreting key cytokines,

small proteins for inter-cellular communication. Seven Th cell subsets are described in the

literature with specialized roles in the human defense system.

In 1986 Th1 and Th2 were described by Mosmann et al. (1986) in mice as cells secreting

IFN-γ and IL-4, respectively. Th1 cells are specialized to fight against intracellular

pathogens, e.g. bacteria and viruses which reside inside cells (Fietta and Delsante, 2009).

Interestingly, an overshooting Th1 response can lead to a lethal immune response by the

induction of liver pathology and intense necrosis (Gazzinelli et al., 1996). Pathogens do not

only attack cells but they can be extracellular parasites like worms. In the defense against

these pathogens Th2 cells are involved. This beneficial activity itself can turn pathogenic

since Th2 cells are implicated in allergic diseases like asthma (Romagnani, 1994).

For 20 years it was thought that only Th1 and Th2 subsets of T helper cells exist. Until

2006, Bettelli and colleagues have described the Th17 cell, a T helper cell, which secrets

IL-17 (Bettelli et al., 2006). In the following years, the group of Th cell subsets was

expanded and now also includes Th9 (Veldhoen et al., 2008) and Th22 (Eyerich et al.,

2009; Duhen et al., 2009; Trifari et al., 2009) cells, which secrete their signature cytokines

IL-9 and IL-22, respectively. Th9 cells promote inflammation in several models but in

particular they are important for allergic inflammation (Chang et al., 2010). Th17 cells

promote the immune responses against fungi and extracellular bacteria and are thought to

be involved in chronic inflammation in autoimmune diseases (Korn et al., 2007). Th22 cells

can be found in the human skin and are implicated in epidermal reactions in inflammatory

skin diseases (Eyerich et al., 2009).

T helper cells further include T follicular helper cells and regulatory T cells. T follicular

helper cells (Tfh) were first described in 2000 as CD4+ cells in tonsils which express high

levels of CXCR5 (Breitfeld et al., 2000). Tfh provide B cells help by supporting their

survival and differentiation into plasma and memory cells (Crotty, 2014). They secrete

IL-21 (Bentebibel et al., 2011), CD40L and IL-4 (Crotty, 2011) upon stimulation. Opposing

these Th subsets which mainly induce inflammation, regulatory T cells (Tregs) prevent

unwanted immune reactions, like in autoimmune diseases, and maintain tolerance to self

(Geginat et al., 2013; Sakaguchi et al., 2008). Tregs are specialized for immune suppression

and secrete TGF-β and IL-10.
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respective transcription factor (name is visible along the arrow) and perform their function
by secreting their signature cytokines. Transcription factors followed by a question mark are
proposed but not yet accepted.

Figure 6.1 gives an overview of the yet known human Th subsets, their signature cytokines,

transcription factors and function. Transcription factors for Th1, Th2, Th9, Th17, Th22,

Treg and Tfh were already described as TBX21 (Szabo et al., 2000), GATA3 (Zheng and

Flavell, 1997), PU.1 (Chang et al., 2010), RORC (Ivanov et al., 2006), AHR (Ramirez

et al., 2010), FOXP3 (Fontenot et al., 2003) and BCL6 (Johnston et al., 2009; Nurieva

et al., 2009; Yu et al., 2009), respectively. Where both AHR as a transcription factor for

Th22 and PU.1 for Th9 have not been indisputably proven yet (Eyerich and Zielinski,

2014).

Specific T helper cell subsets are differentiated from naive CD4+ T cells in vitro in distinct

cytokine milieus. Th1 cells are in vitro differentiated by IL-12 (Hsieh et al., 1993) and

IFN-γ (Lighvani et al., 2001). Th2 need IL-2 and IL-4 (Le Gros et al., 1990) to differentiate

from naive T cells. Th9 cells are in vitro differentiated by TGF-β and IL-4 (Veldhoen et al.,

2008). For Th17 TGF-β (Veldhoen et al., 2006), IL-1β and IL-6 (Bettelli et al., 2006) have

to be in the cytokine milieu. Th22 are in vitro differentiated by TNF-α and IL-6 (Duhen

et al., 2009). Treg need TGF-β and IL-2 (Zhu et al., 2009) for in vitro differentiation. Tfh

cells are in vitro differentiated by TGF-β, IL-12 and IL-23 (Schmitt et al., 2014).
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Most of the experimental research on human T cells is performed in blood which only

contains 2% of human T cells (Farber et al., 2014). Still, using state-of-the-art experimental

techniques, new immune cell subsets are described regularly. Kunicki et al. (2018) identified

new immune cell subsets using single-cell mass cytometry. Also single-cell RNA sequencing

plays an increasing role in identifying new signaling molecules for known Th subsets and

aiding in further understanding their phenotypes (Mahata et al., 2014). Villani et al. (2017)

determined several new subtypes of human monocytes and dendritic cells from human

blood using single-cell RNA sequencing. Since most of the T cells reside in peripheral

tissue, the majority of human T cells are still unexplored and provide an interesting field

of study (Zielinski, 2017).

State-of-the-art to distinguish Th subsets consists of three parts. First and most important

for classification is the measurement of the secreted cytokines (Fig. 6.1 protein names

next to differentiated T cells). Second, major transcription factors are taken into

account (Fig. 6.1 protein names along arrows). Third, specific surface molecules are

assessed. For example, Th1 cells are characterized by secreting IFN-γ (Mosmann et al.,

1986), expressing the transcription factor TBX21 (Szabo et al., 2000) and the surface

markers CXCR3 and CCR1 (Eyerich and Zielinski, 2014).

There are some problems with these three lines of classification. First, there are no clearly

defined thresholds for the amount of a specific signature cytokine cells have to secrete in

order to be assigned to a certain subset. Second, for some subsets the major transcription

factor is not known. For TBX21, GATA3 and RORC it was shown that they are essential

for the differentiation of naive cells into Th1, Th2 and Th17 cells, respectively. In contrast,

for Th9 and Th22 cells there is no major transcriptional regulator known so far. Third,

not for all Th subsets the surface molecules are clearly defined. For Tregs Bruder et al.

(2004) described Neuropilin-1 as a specific surface marker which was later shown not to be

specific in humans (Milpied et al., 2009).
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6.2 Methods

Establishment of stable T helper cell clones

Skin biopsies were taken from the lesional skin of 13 patients suffering from inflammatory

skin diseases and cultured in T cell medium plus IL-2 until T cells migrated out of the

tissue. To perform T cell cloning, the obtained T cell suspension was diluted and dispersed

to 96 well plates with one T cell per well on a feeder layer of irradiated peripheral blood

mononuclear cells in the presences of a mitogen (phythemagglutinin) and IL-2. This one T

cell was then expanded into a T cell clone with a medium change every second day and

IL-2 supplementation. All cells within this clone originated from the same single cell and

thus show an identical phenotype. T cells were derived from several donors suffering from

different diseases which are specific for different T cell imbalances and consequently not

the whole spectrum of T cell subsets was obtained from one donor.

To check the phenotype stability of each clone, 106 cells were stimulated with anti-CD3 and

anti-CD28 antibodies for six hours to analyze mRNA and for 48 hours to obtain culture

supernatants for protein analysis by ELISA or Luminex (see methods section 2.3). Cells

were then cultured for two weeks without further stimulus, but a medium change including

IL-2 every second day. This procedure was repeated additional two times and finally 79

clones were included into the study since they showed identical results in all stimulations

and therefore a stable phenotype.

Measurements of stable T helper cell clones and data processing

One million cells of each stable T cell clone were stimulated with anti-CD3 and anti-CD28

or remained unstimulated for six hours for whole genome expression analysis using Agilent

SurePrint G3 Human Gene Expression 8x60K microarrays or for 48 hours to obtain culture

supernatants for protein analysis by ELISA or Luminex. Microarray technology is explain

in section 2.2.2. All processing steps applied for the microarray data are given in section

2.2.3. ELISA and Luminex data are analyzed as described in section 2.3.

Clustering

Principles of clustering and applied algorithms are described in detail in section 2.1.10.

79 T cell clones were clustered based on their cytokine secretion of IFN-γ, IL-4, IL-17
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and IL-22 measured by ELISA (ELISA methodology explained in section 2.3.1). ELISA

concentration were transformed according to procedure given in Table 2.2 which handles

out of range values by transforming all measurements according to the standard values

with known concentrations to arbitrary units of 1 - 10.

Five different clustering algorithms were applied on ELISA data (more details in section

2.1.10). First, k-means was applied which minimizes squared Euclidean distances between

all data point within a cluster to the cluster center (Steinhaus, 1956; MacQueen et al.,

1967). The cluster center are means within each cluster and are iteratively updated. Since

k-means only finds a local optimum, the algorithm was executed 10,000 times with different

staring positions and the result with the smallest error was used. Second, partitioning

around medoids (pam, Kaufman and Rousseeuw (1987)) was used which employs a similar

approach to k-means but cluster centers are data points, so it is more robust. Several

distance measures for pam exist, here Euclidean distances were used. The third and forth

clustering algorithms are agglomerative (bottom-up) hierarchical clustering algorithms

where at the beginning every observation is its own cluster and consecutively clusters are

merged to larger clusters based on their similarity. The third clustering algorithm which

was applied, uses complete linkage between two clusters which is the maximum distance

between any two observations from the two clusters (formula in section 2.1.10, Johnson

(1967); Lance and Williams (1967)). So the algorithm merges clusters if all observations in

both clusters are similar. The forth algorithm applies Ward’s method (Joe and Ward, 1963)

which minimizes increase in total within-cluster variance and leads to compact, spherical

clusters. The last algorithm which was used was Gaussian mixture models which perform

distribution-based clustering by fitting k Gaussians to the observations using expectation

maximization (Dempster et al., 1977). Shape, volume and orientation of Gaussians were

optimized using mclust package in R (Scrucca et al., 2017). For all k diagonal, equal

volume and shape multivariate mixtures were used which corresponds to parameter “EEI”

in mclust.

Number of clusters k was chosen by comparing average silhouette coefficients (formulas in

section 2.1.10) between two and twenty clusters for all five methods. Here, k was chosen by

balancing maximizing both agreement of all methods and average silhouette coefficient. To

obtain clustering independent of chosen algorithm strict consensus clustering was performed.

Samples were grouped into consensus clusters if all applied clustering algorithms grouped

these samples together.
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Differential gene expression analysis of Th cell clones

In gene expression analysis of Th cell clones the aim was identification of unique markers

for each group of Th cells. So, not simply one tool for differential expression analysis was

applied but six different ones. Those methods comprise standard tools for differential gene

expression analysis like limma (Ritchie et al., 2015) and also newly introduced methods

like the quantile approach proposed recently by Aran et al. (2017). Further, regularized

regression models were applied to determine differentially expressed genes. They are not

commonly used for differential gene expression analysis, but there are some examples:

Wu (2005) proposed to detect differentially expressed genes by penalized linear regression

models for classification tasks in microarray data. Ma et al. (2007) suggested to use

supervised group lasso for predictive modeling of gene expression to account for clusters

in gene expression data. Omranian et al. (2016) applied a fused lasso formulation to

reconstruct gene regulatory networks from time-resolved microarray data. Also Zuo et al.

(2017) used a special formulation of lasso, differentially weighted graphical LASSO, to

incorporate prior knowledge network-based differential gene expression analysis.

Differential gene expression analysis for the Th cell clones posed two main challenges. First,

none of the Th cell subsets was suited for being a reference or baseline so the definition of

the baseline (= intercept) in the differential expression modeling approaches was not clear.

Second, the collaborators were interested in a small but specific set of subset marker genes

for each of the observed subsets. The thesis author applied six different methods to find

these subset specific genes in a consensus approach (overview in Tab. 6.1).

T cell receptor genes were removed before differential gene expression analysis since it is

known that particular T cell receptor genes are specific for some diseases (Attaf et al.,

2015). Since disease specific genes were not of interest but subset specific ones, they were

removed prior to analysis. The thesis author calculated differentially expressed genes for

seven subsets, two stimulation conditions and both up-and downregulation, so altogether

28 sets of differentially regulated genes were determined.

Broadly, the applied methods represent two categories: methods which calculated a result

separately per gene and those which investigated all measured genes in one model. The

first category included linear models calculated with the limma package (Ritchie et al.,

2015) but also quantile based approaches. Since the thesis author after discussions with

her supervisors and collaborators did not want to set one Th subset as reference category,

limma was used to calculate one linear model per subset per gene where the response was

gene expression of all subsets for one of the genes. The method estimated two coefficients:
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one for the intercept containing all subsets except for one and a second which described the

difference in gene expression of the subset of interest compared to the remaining subsets.

Since the size of some Th subsets was rather small two approaches to define what was

represented by the intercept were applied. The first approach (called “limma 1 vs. all”)

put all measured Th cell clones, except for the subset of interest, in the intercept. In the

second approach (called “limma 1 vs. sampled intercept”) an intercept was sampled

using a subgroup of Th cell clones of the same set size as the subset of interest. Sampling

was performed 10,000 times and in two steps: first one of the six remaining subsets was

sampled with equal probability, then within this subset one clone was sampled without

replacement. Genes were considered significantly upregulated if the coefficient’s 0.05%

quantile was above zero and downregulated if the coefficient’s 99.95% quantile was below

zero.

The first category of methods generating a result for every gene separately also comprised

the “quantile approach” which was used by Aran et al. (2017). The first step was to

calculate for every Th subset the quantiles of its gene expression levels. 13 quantiles were

calculated: 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85% and 90%. In

the second step, for every gene it was checked whether the lower quantile in the subset of

interest is higher than the maximum value of all higher quantiles of the remaining subsets.

Here, both the lower and the higher quantile can be any one of the 13 quantiles, but

the lower quantile should be smaller or equal to the higher quantile. E.g. if the lower

quantile was chosen to be 10% and the higher quantile was chosen to be 90%, the 10%

quantile of gene expression in the subset of interest was compared to the 90% quantile in

the remaining subsets. If the maximum of all remaining 90% quantiles was lower than the

10% quantile of the subset of interest, this gene was called upregulated in the subset of

interest, otherwise it was called not regulated. To determine downregulated genes, the

minimum of 10% quantiles of the remaining subsets was compared to whether it was higher

than the 90% quantile of the subset of interest. With this approach one subset was tested

against all other subsets. The quantile approach required one parameter to be adjusted

manually, namely the quantile where the above described comparison is performed. It was

adjusted so that at least 20 genes fulfilled the criteria. For these 28 sets, seven times 15%

(and 85%) were the quantiles chosen for defining most differentially expressed genes. Nine

times it was 20% (and 80%), seven times 25% (and 75%) and five times 30% (and 70%).

The second category of methods, which estimated one model with all measured genes,

included penalized regression methods to perform feature selection (see section 2.1.4). One

binomial logistic regression with elastic-net penalty (α = 0.5) was applied where one subset

was tested versus all remaining ones and two multinomial logistic models were applied.
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Binomial logistic regression with elastic-net penalty can give different results for different

runs since the method performs internal cross-validation to define the regularization

parameter λ. To overcome this problem Meinshausen and Bühlmann (2010) described

“stability selection” which is implemented in R’s stabs package. It provides an upper

bound to the per-family error rate, i.e., the expected number of false positives (see section

2.1.2 about multiple testing and 2.1.9 about feature selection with stability selection). The

sampling scheme of Shah and Samworth (2013) with 50 complementary pairs leading to

100 subsamples was used. The result was a list of genes which fulfilled the criteria but

without coefficients and thus no information about direction of regulation.

Also part of the second category of methods are multinomial logistic regression models.

Applying penalized maximum likelihood in this setting allowed for two different kinds of

lasso penalty. The first penalty tolerated for every group in the multinomial regression

setting to select different variables (called “elastic net multinomial ungrouped”). The

second is called grouped lasso penalty and ensures that for all groups which were commonly

modeled the same variables were selected (called “elastic net multinomial grouped”).

Both methods provided estimated coefficients for each variable but due to the internal

cross-validation of the regularization parameter λ different results were calculated in each

run. There is no stability selection procedure described for multinomial logistic regression.

Each estimation was performed 1,000 times. How often each predictor was selected as well

as range, mean, median, and confidence interval of the coefficients were evaluated.

Finding most differentially regulated genes for each applied differential gene

expression method

For each of the six applied methods for differential gene expression analysis, most differentially

regulated genes were determined differently depending on the method’s result structure.

Forty most differentially regulated genes (20 up- and 20 downregulated) per stimulation

condition were identified. For both limma-based methods, most differentially regulated was

defined as having a significant regulation (FDR < 0.05 for “limma 1 vs. all”; 0.05% and

99.95% quantile of coefficient above or below zero for “limma 1 vs. sampled intercept”) and

having the highest and lowest fold changes for up- and downregulated genes, respectively.

In the sampling approach the median fold change was used.

To find most differentially regulated genes for the methods that calculated 1,000 elastic net

runs (“elastic net multinomial grouped” and “elastic net multinomial ungrouped”) genes

were chosen, which were selected in more than 50% of the runs and they were sorted by

highest first quartile (upregulated genes) and lowest third quartile (downregulated genes)
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Tab. 6.1 – Overview of applied differential gene expression analysis methods. The
first column describes the name of the method in this thesis, the second gives more details
about the method and the third depict the literature reference.

Method Information Reference

limma 1 vs. all fits a linear model for each gene;
tests one subset against all remaining

Ritchie et al. (2015)

limma 1 vs.
sampled
intercept

fits a linear model for each gene;
tests one subset against a sampled subgroup of the
same size equally distributed among the remaining
subsets (10,000 runs)

Ritchie et al. (2015)

elastic net
multinomial
grouped

multinomial logistic model via penalized maximum
likelihood (α = 0.5); all genes as covariates; grouped
lasso penalty ensuring that all variables are in or
out together (1,000 runs)

Zou and Hastie
(2005)

elastic net
multinomial
ungrouped

multinomial logistic model via penalized maximum
likelihood (α = 0.5); all genes as covariates; for each
Th subset a different set of variables was selected
(1,000 runs)

Zou and Hastie
(2005)

stability
selection

fits a binomial logistic regression per subset with all
genes as covariates and selects influential variables
with error control

Meinshausen and
Bühlmann (2010)

quantile
approach

finds genes where lowest quantile in one subset is
higher than highest quantile in all other groups for
13 different quantiles

Aran et al. (2017)

of estimated coefficients. From both sorted lists the top 20 genes were defined as most

differentially regulated. Since “stability selection” only selected less than 20 genes for all

comparisons no further selection was necessary.

To determine most differentially regulated genes in the “quantile approach”, first the

combination of quantiles with at least 20 genes was identified. Then, mean expression in

all Th clones was calculated and genes with top 20 mean expression were selected.

Finding consensus top hits

The aim was finding differentially regulated genes independent of the applied statistical

method by defining consensus top hits. So intersections, on microarray probe ID level,
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of 20 most differentially regulated genes from each of the six methods were determined

(example in Fig. 6.11). Top hits are those probes which are detected as most differentially

regulated by at least three methods.

Pathway analysis

Gene set enrichment analysis of top hits for each subset and all top hits together

was performed using clusterProfiler R-package and the “enrichGO” function on gene

subontologies biological processes and molecular functions (Yu et al., 2012). Subset specific

genes were tested against the universe of all genes which were measured on the microarray.

Each tested Ontology term included at least a minimal size of five annotated genes. The

cutoff for FDR-adjusted p-values was set at 10%. Up to six pathways per tested gene set

and only pathways where at least two genes are in the pathway and in tested gene sets

were displayed. If the same combination of genes was significantly enriched (FDR < 10%)

in several pathways, the pathway with the lowest adjusted p-value was displayed.

Mapping to protein-protein interaction network

To visualize and understand the interaction between top hits a protein interaction network

analysis using the tool NetworkAnalyst was performed (Xia et al., 2015). The input were

all top hits for each of the seven Th subsets. Protein-protein interactions were looked for

based on the IMEx Interactome (Literature-curated comprehensive data from Breuer et al.

(2012)) where no threshold has to be applied. Only first-order networks were investigated,

which included the queried genes and their direct interaction partners in the network.

For clarity only proteins linking queried genes were depicted not those which interacted with

the genes of interest but no further protein. So, all not queried proteins with degree one

were removed for better visibility which decreased the network from 706 nodes connected by

842 edges to 162 nodes and 267 edges. Further, the protein Polyubiquitin-C was removed

in the visualization (40 connections to the remaining 162 nodes) for a more comprehensive

view.
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6.3 Results

6.3.1 Computational identification of seven T helper cell subsets from major

cytokine secretion

The aim was to identify T helper (Th) cell subsets in an objective manner. Traditionally, Th

cell subsets were defined based on cytokine secretion profiles of four key signature cytokines:

IFN-γ, IL-4, IL-17 and IL-22. Further information about each Th subset, like transcription

factors and surface markers, were investigated and described after more detailed studies.

To be in line with standard laboratory procedures of Th subset identification, protein

secretion data was analyzed for the four key signature cytokines IFN-γ, IL-4, IL-17 and

IL-22 to determine subsets which are present in Th cell clones. Cytokines were measured

with ELISA in 79 stable Th cell clones following stimulation with anti-CD3/anti-CD28.

Identifying Th subsets from major cytokine secretion was regarded as a clustering task.

To maximize objectivity, the aim was to find clusters that are independent to choice of

clustering algorithm. Five clustering algorithms were applied to standardized protein

secretion measurements of the Th cell clones not to bias the analysis on one method.
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Fig. 6.2 – Determining number of clusters with average silhouette coefficients.
Average silhouette coefficient for five clustering methods applied on ELISA concentrations
of IFN-γ, IL-4, IL-17 and IL-22 of all Th cell clones and varying number of clusters. The
best balance between minimal number of clusters, maximal agreement of the methods and
maximizing the silhouette coefficients is reached for k = 8 clusters (dashed vertical line).

In every clustering approach the number of clusters has to be defined. Here, the average

silhouette coefficient for two up to 20 clusters was calculated as a measure to determine

135



CHAPTER 6 CHARACTERIZING T CELLS

k-means
pam
hierarchical (complete)
hierarchical (ward.D2)
gmm

79 Th cell clones

no consensusconsensus clusters 1-7

cluster 1

cluster ID 1-8 for each
clustering method

cluster 4cluster 3cluster 2 cluster 6 cluster 7cluster 5 no consensus
result of consensus
clustering

Fig. 6.3 – Clustering ELISA concentrations using k = 8 for five methods yielded
slightly different results. Differences in clustering are visible by the cluster IDs indicated
in colors. Cluster ID colors were manually matched for better visibility. Consensus clusters are
those groups which were clustered together by all methods.

the optimal number of clusters. Balancing between maximal agreement of methods and

maximizing average silhouette coefficient, resulted in eight as the optimal number of clusters

for this data set of ELISA measurements (Fig. 6.2).

Since the clusters should not depend on the chosen clustering method, a consensus

clustering result of five above mentioned methods and eight clusters was established (Fig.

6.3). Each clustering method yielded slightly different results, visible by the cluster IDs

for each method indicated in colors. The cluster IDs were manually matched among the

methods to make common clusters better visible. The interest lay in clear clusters so in

the further steps only those consensus clusters were analyzed where all methods agree.

Thereby clones were excluded where no consensus clustering was achieved. In total, seven

consensus clusters were identified and for 13 clones no consensus was found. Note, that

the approach was a strict consensus clustering as the interest was in very clear consensus

clusters for further analysis.

So far secretion of IFN-γ, IL-4, IL-17 and IL-22 was used to group Th cell clones into seven

consensus clusters. To assign clusters to already known Th cell subsets a closer look was

taken at their individual cytokine secretion profiles (Fig. 6.4). Four consensus clusters

could be assigned to known Th subset (for definition see section 6.1): cluster 1 only showed

secretion of IFN-γ, representing Th1 cells. In contrast, cells in cluster 2 secreted IL-4 but

no IFN-γ, so they corresponded to Th2 cells. Th17 cells, secreting neither IFN-γ nor

IL-4, but both IL-17 and IL-22, were cluster 3. Cluster 4 included cells which only secreted

IL-22, so these cells were Th22 cells.

Apart from the known Th subsets, three mixed subsets were found in the data set: cluster

5 comprised cells which secreted IFN-γ, IL-4 and IL-22, thus they were both or neither

136



6.3 RESULTS

Th1 Th2 Th17 Th1/Th17 Th1/Th22Th0Th22

2

4

6

8

10

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

no consensuscluster 4

only IL-22
IL-17
and

IL-22

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

cluster 3

IL-4 and
no IFN-γ

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

cluster 2 cluster 6

IFN-γ and
IL-17 and

IL-22

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

IFN-γ
and

IL-22

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

cluster 7cluster 1

IFN-γ and
no IL-4

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

cluster 5

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

IFN-γ and
IL-4 and

IL-22

am
ou

nt
 o

f s
ec

re
te

d
cy

to
ki

ne
s 

[a
.u

.]

IF
N

-γ
IL

-4
IL

-1
7

IL
-2

2

common Th subsets mixed Th subsets

Fig. 6.4 – ELISA concentrations of IFN-γ, IL-4, IL-17 and IL-22. Concentration for
all Th cell clones within each of the seven consensus clusters and remaining clones are given
in scaled units transformed according to standard values. According to the definition of Th
subsets based on secreted cytokines, the clusters were assigned to common Th subset and
mixed subsets.

Th1, Th2 or Th22 and may reflect Th0 cells. Cluster 6 contained cells which secreted the

signature cytokine of Th1, IFN-γ, but also IL-17 and IL-22, so they were called Th1/Th17

cells. Also cluster 7 combined signature cytokines of two major subsets: IFN-γ and IL-22.

These cells were called Th1/Th22 cells.

All three mixed subsets were already described in the literature. Th0 cells were characterized

by the secretion of IL-4 and IFN-γ by Bendelac and Schwartz (1991). Miner and Croft

(1998) showed that Th0 cells represent their own stable T cell subpopulation and can be

derived from naive T cells. Th17 cells that also express IFN-γ were described as Th1/Th17

cells but their role and molecular phenotype is not yet fully understood (reviewed in Leung

et al. (2010)). Tsanaktsi et al. (2018) detected an increase of Th1/Th17 cells in patients

with active systemic lupus erythematosus. Th1/Th22 cells were described in peripheral

blood of immune thrombocytopenic purpura patients (Zhan et al., 2018) and in peritumoral

liver and hepatocellular carcinoma tissue (Kuang et al., 2014). In T cells isolated from

pancreatic ductal adenocarcinoma patients 44 % of IL-22 producing T cell clones also

secreted IFN-γ (Niccolai et al., 2016).
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6.3.2 Relationship of identified Th cell subsets to known subsets and further

secreted cytokines

T helper cell subsets are not only defined by their cytokine secretion profile, which were

used in the previous section to define subsets, but also by transcription factors and surface

molecules. Apart from the ELISA data, giving information about protein levels of signature

cytokines IFN-γ, IL-4, IL-17 and IL-22, 24 additional secreted proteins were measured for

a subset of 75 Th cell clones. Those were measured with the Luminex technology while

three proteins were measured with both ELISA and Luminex technology (IFN-γ, IL-4 and

IL-22). For all 79 Th cell clones whole-genome gene expression was measured. Since there

was no access to protein measurements of transcription factors and surface markers, they

were only investigated on transcriptional level.

Known transcription factors are not exclusive at transcriptional level

To confirm the identity and transcriptionally validate the common T cell subsets, the

mRNA levels of previously described, subset-specific transcription factors were checked

(see section 6.1). To test for differences among the Th subsets analysis of variance was

performed followed by Tukey’s Honest Significant Differences, which adjusted for multiple

comparisons in the pairwise post-hoc comparisons (Fig. 6.5, summary in Tab. 6.2). Under

the assumption that Th cells keep their specific subset identity, also when they are not

stimulated, by expressing subset-specific transcription factors and surface molecules, both

stimulated and unstimulated cells were analyzed for known transcription factors and surface

molecules.

Th1 cells secrete IFN-γ which is regulated by the transcription factor TBX21 (Szabo

et al. (2000), Fig. 6.5 A, p-values for significant comparisons in Tab. 6.3). Expectedly,

TBX21 was significantly upregulated in Th1 compared to Th2 and Th22 in stimulated cells.

Th1/Th22 cells also showed a high expression of TBX21 in stimulated cells, significantly

higher than Th0, Th2, Th17 and Th22 cells. As expected, Th2 showed the lowest expression

of TBX21 in both stimulated and unstimulated cells, significantly lower than the remaining

six subsets. Conversely, Th1 unstimulated cells were only significantly higher compared to

Th2 and Th22, not for the remaining subsets. In this data set, Th1 transcription factor

TBX21 was specifically downregulated in Th2 cells with all comparisons being significant

and upregulated in Th1. On the basis of mean gene expression, TBX21 was similarly

expressed in Th1 and Th1/Th22 cells.
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Fig. 6.5 – Gene expression levels of known transcription factors in the Th cell
groups. TBX21 (A), GATA3 (B), RORC (C) and AHR (D) are thought to be the transcription
factor of Th1, Th2, Th17 and Th22 cells, respectively (highlighted with grey box, high expression
in expected for this subset). One representative of the two AHR probes is shown. The colors
show stimulated and unstimulated cells.

IL-4 is the signature cytokine of Th2 cells and regulated by GATA3 (Zheng and Flavell

(1997), Fig. 6.5 B, p-values for significant comparisons in Tab. 6.4). Expectedly, GATA3

in stimulated cells was significantly higher expressed in Th2 cells compared to all subsets

but Th0. In the unstimulated cells, GATA3 was significantly higher in Th2 than in all

other subsets. Interestingly, in stimulated cells Th0 shows significantly higher expression

of GATA3 compared to Th17, Th22 and Th1/Th17. In unstimulated cells this effect only

remains for the comparison of Th0 and Th1/Th17. Since Th0 cells also secreted IL-4 (Fig.

6.4), it is not unexpected to see expression of Th2-specific transcription factor GATA3

known for inducing expression of IL-4.
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Tab. 6.2 – Summary of transcriptional regulation of known transcription factors.
Gene expression of transcription factors was compared among all identified Th subsets.
Conditions were unstimulated and stimulated. Expression in Th subset named in first column
is expected to be high compared to the remaining subsets for transcription factor named in
second column.

Th subset transcription factor
(gene symbol)

transcriptional regulation

Th1 T-box transcription
factor TBX21 (TBX21)

similar high expression levels in stimulated Th1 and
Th1/Th22; lowest expression in Th2 compared to
all subsets in both conditions

Th2 GATA-binding factor 3
(GATA3)

specific upregulation in Th2 in both conditions

Th17 Nuclear receptor
ROR-gamma (RORC)

upregulated in Th17, Th22 and Th1/Th17
compared to other subsets in both conditions

Th22 Aryl hydrocarbon
receptor (AHR)

higher expressed in unstimulated Th17 and
stimulated Th22

Th17 cells are defined by secreting IL-17 which is regulated by RORC (Ivanov et al. (2006),

Fig. 6.5 C, p-values for significant comparisons in Tab. 6.5). Expectedly, RORC was

significantly higher expressed in stimulated Th17 cells compared to subsets not secreting

IL-17, namely Th0, Th1, Th2 and Th1/Th22 cells. Also in the unstimulated condition

Th17 expressed higher levels of RORC compared to the same subsets, Th0, Th1, Th2 and

Th1/Th22. Since, Th1/Th17 cells also secreted IL-17 in the ELISA experiment, RORC was

expectedly upregulated in Th1/Th17 compared to subsets not secreting IL-17 which were

especially, both for stimulated and unstimulated gene expression, Th0. Interestingly, Th22

cells also showed higher expression of RORC in stimulated and unstimulated condition

compared to Th0 even though Th22 cells did not secrete IL-17 in the ELISA experiment.

Expectedly, stimulated Th1/Th22 cells expressed RORC significantly lower than Th17,

Th1/Th17 and Th22 cells, but higher than Th0 cells.

IL-22 secretion is regulated by AHR and the cytokine is mainly secreted by Th17 and

Th22 cells (Ramirez et al. (2010), 6.5 D, p-values for significant comparisons in Tab. 6.6).

AHR is measured on the Agilent array with two different probes which showed similar

behavior, for simplicity only one probe is shown and was analyzed (ID A 23 P215566).

Expectedly, Th17 cells showed higher expression of AHR in stimulated cells compared to

Th1 and Th2 cells. Conversely, Th17 cells also showed higher expression in stimulated

cells compared to Th1/Th17 and Th1/Th22 cells which also secreted IL-22 in the ELISA.

Surprisingly, Th22 cells only showed upregulation of AHR in stimulated cells compared to
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Th1/Th22 cells. Whereas, for unstimulated Th22 cells AHR was upregulated compared to

Th0, Th2 and Th1/Th22. Despite the significant upregulation of AHR in stimulated Th17

cells, there was no regulation of AHR in unstimulated Th17 cells. However, Th1/Th17

cells showed significant upregulation of AHR in unstimulated cells compared to Th0 and

Th1/Th22 cells.

Tab. 6.3 – Results of statistical comparison for Th1 specific transcription factor
TBX21. Difference among Th subsets were tested with analysis of variance followed by
Tukey’s Honest Significant Differences. Comparisons Tukey’s Honest Significant Differences
p-value < 0.1 are shown since it adjusts for multiple testing.

Th subset pair stimulation
condition

p-value expected?

Th1 > Th2 stimulated p = 1.1 · 10−5 yes
Th1 > Th22 stimulated p = 0.030 yes
Th1/Th22 > Th0 stimulated p = 0.045 unknown
Th1/Th22 > Th2 stimulated p = 2.1 · 10−7 unknown
Th1/Th22 > Th17 stimulated p = 0.071 unknown
Th1/Th22 > Th22 stimulated p = 0.0035 unknown
Th2 < Th0 stimulated p = 0.0027 yes
Th2 < Th17 stimulated p = 0.015 yes
Th2 < Th22 stimulated p = 0.046 yes
Th2 < Th1/17 stimulated p = 0.087 yes

Th1 > Th0 unstimulated p = 0.016 yes
Th1 > Th2 unstimulated p = 7.0 · 10−11 yes
Th1 > Th17 unstimulated p = 0.087 yes
Th1 > Th22 unstimulated p = 0.030 yes
Th1/Th22 > Th2 unstimulated p = 4.0 · 10−11 unknown
Th2 < Th0 unstimulated p = 1.3 · 10−7 yes
Th2 < Th17 unstimulated p = 3.6 · 10−7 yes
Th2 < Th22 unstimulated p = 1.6 · 10−7 yes
Th2 < Th1/17 unstimulated p = 1.2 · 10−7 yes
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Tab. 6.4 – Results of statistical comparison for Th2 specific transcription factor
GATA3. Difference among Th subsets were tested with analysis of variance followed by
Tukey’s Honest Significant Differences. Comparisons Tukey’s Honest Significant Differences
p-value < 0.1 are shown since it adjusts for multiple testing.

Th subset pair stimulation
condition

p-value expected?

Th0 > Th17 stimulated p = 0.029 unknown
Th0 > Th22 stimulated p = 0.034 unknown
Th0 > Th1/Th17 stimulated p = 0.020 unknown
Th2 > Th1 stimulated p = 8.4 · 10−4 yes
Th2 > Th17 stimulated p = 1.0 · 10−4 yes
Th2 > Th22 stimulated p = 9.1 · 10−5 yes
Th2 > Th1/Th17 stimulated p = 1.2 · 10−4 yes
Th2 > Th1/Th22 stimulated p = 0.0015 yes

Th0 > Th1/Th17 unstimulated p = 0.069 unknown
Th2 > Th0 unstimulated p = 0.031 unknown
Th2 > Th1 unstimulated p = 7.3 · 10−4 yes
Th2 > Th17 unstimulated p = 1.1 · 10−4 yes
Th2 > Th22 unstimulated p = 1.9 · 10−4 yes
Th2 > Th1/Th17 unstimulated p = 5.0 · 10−5 yes
Th2 > Th1/Th22 unstimulated p = 3.3 · 10−4 yes
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Tab. 6.5 – Results of statistical comparison for Th17 specific transcription factor
RORC. Difference among Th subsets were tested with analysis of variance followed by Tukey’s
Honest Significant Differences. Comparisons Tukey’s Honest Significant Differences p-value <
0.1 are shown since it adjusts for multiple testing.

Th subset pair stimulation
condition

p-value expected?

Th17 > Th0 stimulated p = 1.1 · 10−11 yes
Th17 > Th1 stimulated p = 3.3 · 10−10 yes
Th17 > Th2 stimulated p = 2.3 · 10−11 yes
Th17 > Th1/Th22 stimulated p = 7.3 · 10−10 yes
Th1/Th17 > Th0 stimulated p = 2.1 · 10−11 yes
Th1/Th17 > Th1 stimulated p =8.2 · 10−8 yes
Th1/Th17 > Th2 stimulated p = 6.0 · 10−9 yes
Th1/Th17 > Th1/Th22 stimulated p = 8.6 · 10−7 yes
Th1/Th22 > Th0 stimulated p = 2.0 · 10−3 unknown
Th22 > Th0 stimulated p = 1.4 · 10−11 unknown
Th22 > Th1 stimulated p = 6.1 · 10−7 unknown
Th22 > Th2 stimulated p = 2.3 · 10−8 unknown
Th22 > Th1/Th22 stimulated p = 5.6 · 10−6 unknown

Th17 > Th0 unstimulated p = 1.8 · 10−11 yes
Th17 > Th1 unstimulated p = 1.5 · 10−10 yes
Th17 > Th2 unstimulated p = 5.2 · 10−11 yes
Th17 > Th1/Th22 unstimulated p = 3.4 · 10−11 yes
Th1/Th17 > Th0 unstimulated p = 3.8 · 10−9 yes
Th1/Th17 > Th1 unstimulated p = 1.3 · 10−8 yes
Th1/Th17 > Th2 unstimulated p = 5.8 · 10−9 yes
Th1/Th17 > Th1/Th22 unstimulated p = 1.2 · 10−8 yes
Th22 > Th0 unstimulated p = 8.8 · 10−9 unknown
Th22 > Th1 unstimulated p = 9.9 · 10−8 unknown
Th22 > Th2 unstimulated p = 3.2 · 10−8 unknown
Th22 > Th1/Th22 unstimulated p = 3.7 · 10−8 unknown

Tab. 6.6 – Results of statistical comparison for IL-22 associated transcription factor
AHR. Difference among Th subsets were tested with analysis of variance followed by Tukey’s
Honest Significant Differences. Comparisons Tukey’s Honest Significant Differences p-value <
0.1 are shown since it adjusts for multiple testing.

Th subset pair stimulation
condition

p-value expected?

Th17 > Th1 stimulated p = 0.036 yes
Th17 > Th2 stimulated p = 0.056 yes
Th17 > Th1/Th17 stimulated p = 0.056 unknown
Th17 > Th1/Th22 stimulated p = 0.0060 unknown
Th22 > Th1/Th22 stimulated p = 0.030 unknown

Th22 > Th0 unstimulated p = 5.4 · 10−4 yes
Th1/Th17 > Th0 unstimulated p = 0.059 yes
Th22 > Th2 unstimulated p =0.088 yes
Th22 > Th1/Th22 unstimulated p = 3.3 · 10−4 unknown
Th1/Th17 > Th1/Th22 unstimulated p = 0.048 unknown
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A subset of known surface markers showed expected transcriptional regulation

Surface markers are commonly investigated using fluorescence-activated cell sorting (FACS)

and specific combinations of markers are described for certain Th subsets (Eyerich and

Zielinski, 2014). Since cell sorting data was not available, the transcriptional level was

investigated. Even though surface markers are not exclusively regulated on transcriptional

level and in addition downregulated when cells are taken out of the chemokine environment

that specifically binds to chemokine receptors, the expression levels of known surface

markers was checked in the Th cell subsets. Some show clear, anticipated patterns, others,

however, do not (Fig. 6.6, summary Tab. 6.7). First an analysis of variance comparing

all Th groups was performed per surface marker. If this showed a significant p-value, the

appropriate post-hoc test, Tukey’s Honest Significance Differences, was applied. Results

are summarized in the text and not all p-values are explicitly given.
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Fig. 6.6 – Transcriptional regulation of surface markers in Th cell groups. For Th1
(A), Th2 (B), Th17 (C) and Th22 (D) surface markers are described in the literature and their
gene expression is visualized using boxplots (corresponding Th subset indicated in grey, high
expression expected). One representative of two CXCR3 and two CCR2 probes is shown.

Two surface markers of Th1 cells were investigated, CXCR3 and CCR1 (Fig. 6.6 A).

Th1 and Th1/Th22 cells showed a similar pattern for both surface markers in comparison
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Tab. 6.7 – Overview of transcriptional regulation of surface molecules. Gene
expression of surface molecules in all Th cell subsets were compared and results are summarized.
Expression in Th subset named in first column is expected to be high compared to the remaining
subsets for surface molecule named in second column.

Th subset surface molecule
(gene symbol)

transcriptional regulation

Th1 CXCR3 low in Th2

CCR1 specifically high for Th1 and Th1/Th22

Th2 CCR3 low in Th1/Th17, Th17 and Th22;
similar high levels in Th0, Th1, Th2 and Th1/Th22

CCR8 low in Th17 and Th1/Th17;
similar high levels in Th0, Th1, Th2 and Th1/Th22

CCR4 higher in Th2 compared to Th1

Th17 CCR2 low in Th2, not Th17 specific

CCR6, NK1.1
(=KLRB1)

low in Th0, Th1, Th2 and Th1/Th22;
similar high levels in Th17, Th22 and Th1/Th17

CCR4 higher in Th17 compared to Th1

Th22 CCR10 no differences detected

CCR4 higher in Th22 compared to Th1

to the remaining subsets. While CXCR3 was specifically downregulated in Th2 cells,

CCR1 clearly distinguished Th1 and Th1/Th22 cells from the remaining subsets on a

transcriptional level.

For Th2 cells three surface markers were looked at: CCR3, CCR8 and CCR4 (Fig. 6.6 B).

CCR3 splits the Th cell clones in two groups: Th0, Th1, Th2 and Th1/Th22 showed a

high expression compared to Th17, Th22 and Th1/Th17. CCR4 separated Th2 from Th1

cells. CCR8 differentiated cells which secreted IL-17 (Th17 and Th1/Th17) from those

who did not, except for Th22 which showed a large spread.

Four surface markers for Th17 cells were explored: CCR2, KLRB1 (= NK1.1), CCR6

and CCR4 (Fig. 6.6 C). CCR2 was not a specific marker for Th17 but only showed

downregulation in Th2 cells. KLRB1 and CCR6 separated Th17, Th22 and Th1/Th17

cells from Th0, Th1, Th2 and Th1/Th22. CCR4 separated Th17 from Th1 cells.
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For Th22 cells two surface markers are described: CCR10 and CCR4 (Fig. 6.6 D). CCR10

is not differentially regulated on a transcriptional level in the Th subsets. For stimulated

cells CCR4 separated Th22 from Th1 cells.

CCR4 is listed as a surface molecule for Th2, Th17 and Th22 cells to separate them from

Th1 cells (Eyerich and Zielinski, 2014). Expectedly, CCR4 was significantly downregulated

in stimulated Th1 cells compared to Th0 (p = 0.025), Th2 (p = 0.032), Th17 (p = 2.1 ·10−4)

and Th22 (p = 0.0058). Similarly for stimulated Th1/Th22, CCR4 was significantly lower

expressed in comparison to Th0 (p = 0.034), Th17 (p = 1.3 · 10−4) and Th22 (p = 0.0062)

cells. CCR4 in unstimulated cells only showed a significant decrease for Th1 compared to

Th0 (p = 0.018) and Th17 (p = 0.021). So CCR4 differentiated not only Th1 from Th2,

Th17 and Th22 cells but also from Th0 cells.

Combining transcription factor and surface marker gene expression revealed similarity

between Th1 and Th1/Th22 and between Th17 and Th1/Th17

In order to get an overall understanding of where the intermediate subtypes Th1/Th17 and

Th1/Th22 were positioned among the four main subsets Th1, Th2, Th17 and Th22 when

looking only at transcription factor (TF) and surface marker gene expression principal

component analysis (PCA) was performed. Giving the gene expression of four subset-specific

transcription factors (see Fig. 6.5) and nine surface markers (see Fig. 6.6) as input, PCA

assigned in total 70% of the variance to the first three principal components (PC). PC1

(28.4% variance explained) and PC2 (25.4% variance explained) separated the Th cell

clones into groups of subsets (Fig. 6.7 A). In the space spanned by PC1 and PC2 Th2

cells were separated from the remaining cells, whereas Th17 and Th1/Th17 cells were

closely together. Th22 cells showed a broader spread but were in the vicinity of Th17 and

Th1/Th17 cells. Th1 cells and Th1/Th22 cells clustered together. Th0 were positioned

between Th1 and Th2 cells.

Variable loadings from principal component analyses explain which factors are responsible

for observed patterns. Loadings of subset-specific transcription factors (TF) explained

observed grouping in two dimensional space (square shapes in Fig. 6.7 C). Expression of

GATA3 (Th2-specific TF) separated Th2 cells from the rest, whereas RORC (Th17-specific

TF) and AHR (Th22-specific TF) grouped Th17, Th22 and Th1/Th17 cells together.

TBX21 (Th1-specific TF) was located where more Th1 cells were found.

Since surface markers act in combination and not alone like transcription factors, their

patterns were not as clear (oval shapes in Fig. 6.7 C). Th2-specific surface molecules CCR3
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and CCR8 had positive PC2 components, like all Th2 cells, but negative PC1 components.

CCR2, CCR6 and KLRB1 which are Th17-specific surface molecules all had negative

loadings in PC2 which explained the position of Th17 cells. However, the PC1 component

varied between positive and negative values. Th22 cells all had a positive PC1 which was

in line with positive PC1 loading of CCR10. CCR4, as a marker for Th2, Th17 and Th22,

had a high positive PC1 loading and almost no PC2 component, which agrees perfectly

with Th1 being on the negative side of PC1 and Th2, Th17 and Th22 all being on the

positive side.

The third principal component (15.9% variance explained) does not reveal information

about the subsets but the stimulation condition (Fig. 6.7 B). For unstimulated cells PC3

was high and for stimulated it was low. Variable loadings explained why this separation

occured (Fig. 6.7 D). AHR and TBX21 were upregulated in stimulated cells whereas

CCR3, CCR2 and CCR4 were upregulated in unstimulated cells, an observation already

observable in figure 6.6.

Summarizing the observations of the principal component analysis on expression levels of

subset-specific transcription factors and surface molecules, similarities of mixed subsets

were assigned. Th1/Th22 cells were more similar to Th1 cells than to Th22 cells on the

level of transcription factor activity and surface molecule gene expression. Th0 cells lay

right in between Th1 and Th2 cells. Th1/Th17 cells were more similar to Th17 cells than

to Th1 cells. Th22 cells showed a broader distribution but aligned more with Th17 and

Th1/Th17 than with the other subsets.

147



CHAPTER 6 CHARACTERIZING T CELLS

CCR2

CXCR3

AHR

KLRB1

CCR1

CCR6

GATA3

RORC

CCR3

CCR8

TBX21

CCR10

AHR

CXCR3

CCR2

−0.4

−0.2

0.0

0.2

va
ria

bl
e 

lo
ad

in
gs

 P
C

 3
 (1

5.
9 

%
)

CCR2

CXCR3

AHR

KLRB1

CCR1

CCR6

GATA3

RORC

CCR3
CCR8

TBX21

CCR10

AHR

CXCR3

CCR4

CCR2

−0.4

−0.2

0.0

0.2

0.4

−0.4 −0.2 0.0 0.2
variable loadings PC 1 (28.4 %)

va
ria

bl
e 

lo
ad

in
gs

 P
C

 2
 (2

5.
4 

%
)

−5.0

−2.5

0.0

2.5

−5.0 −2.5 0.0 2.5 5.0
PC 1 (28.4 %)

PC
 2

 (2
5.

4 
%

)

Th0

Th1 Th1/Th17

Th1/Th22Th17

Th2

Th22

outlier

unstimulated

stimulated

−4

−2

0

2

unstimulated stimulated

PC
 3

 (1
5.

9 
%

)

gene symbol

stimulatedunstimulated

hi
gh

er
 in

 u
ns

tim
ul

at
ed

hi
gh

er
 in

 s
tim

ul
at

ed

Th2 cells

Th17, Th22 and
Th1/Th17 cells

Th1 and
Th1/Th22 cells

Th0 cells

A B

C D

transcription factor

surface molecule

Th1-specific

Th2-specific

Th17-specific

Th22-specific

CCR4
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Protein secretion analysis validated and expanded using Luminex platform

Grouping of T cell clones into subsets was performed solely based on four cytokines whose

expression was measured with ELISA like it is routinely done in laboratories. The next

question was whether secretion of proteins used for clustering (IFN-γ, IL-4, IL-17 and

IL-22) were validated on Luminex platform (IL-22 not available, complete Luminex not

available for four out of 79 T cell clones). In general, absolute concentration values were

not always comparable between both ELISA and Luminex quantification (data not shown),

consequently Kruskal Wallis test followed by Dunn’s post hoc test was used to test for

pairwise differences of two Th subsets within each measurement technique and resulting

p-values were compared.

Statistical analysis of IFN-γ, IL-4 and IL-17 measured with ELISA data showed expected

results (three columns in right part of Fig. 6.8), exactly as defined by the assignment of

the clusters to known Th subsets (Fig. 6.4). For example, the comparison Th17 - Th22

was highly significant with a positive difference (dark red) for IL-17, since IL-17 secretion

in Th17 was significantly higher than in Th22 which follows the definition of Th22 cells

that secrete IL-22 but not IL-17. For IL-22, which is only measured in ELISA, the overall

picture for all pairwise comparisons was not as clear due to the fact that some Th2 cells

and all Th0 cells in the data set also secreted IL-22 to some degree. For example, the

comparison Th2 - Th22 showed no significant difference in IL-22. From concentration

values in figure 6.4 finding a difference was not expected.

Performing the same analysis on protein secretion data measured with Luminex technology

47 of 63 (75%) pairwise comparisons within IFN-γ, IL-4 and IL-17 were in concordance

with ELISA data results (Fig. 6.8). Th0 - Th22 in the Luminex data showed significant

upregulation of IFN-γ, IL-4 and IL-17 in Th0 compared to Th22. Th0 was defined as

secreting IFN-γ, IL-4 and IL-22 but no IL-17. Whereas, Th22 cells secreted only IL-22.

Luminex and ELISA results agreed for IFN-γ and IL-4. IL-17 measured by ELISA in Th0

cells did not show a difference to Th22 cells. However, Luminex measurements of IL-17

did show a significantly higher secretion of IL-17 in Th0 than Th22 cells.

The remaining 24 proteins measured in Luminex all showed a significantly different pattern

across seven Th cell groups (Kruskal Wallis test, FDR-corrected p-value < 0.05). The

post-hoc pairwise comparison revealed stronger similarities between some groups but also

groups with opposing protein secretion pattern. Th17 and Th22 only showed differentially

secretion of IL-17 (as expected) and IL-6. Whereas, Th0 and Th22 differed in all of the
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27 measured proteins. Where more IL-2 is secreted in Th22 cells compared to Th0, the

remaining 26 cytokines have higher secretion in Th0 compared to Th22.
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Fig. 6.8 – Difference in secreted cytokines among all pairs of the seven Th cell
subsets. The ELISA measurements on the right side were used for clustering in section 6.3.1.
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6.3.3 New transcriptional markers in Th subsets

In the previous section (6.3.2) the Th cell subsets in the data set were compared to known

markers of Th cell subsets on the levels of protein secretion, transcription factor and surface

molecule expression. Th cell subsets were assigned to the Th1, Th2, Th17 and Th22

phenotype and further combinations of these. In this section, the aim was to understand

the phenotype of Th cell subsets further by analyzing whole genome gene expression data.

PCA showed no clear clustering of Th subsets in gene expression

To get on overview of the expression patterns principal component analysis (PCA) of

whole genome expression data of all Th cell clones was performed. It showed a clear

separation along the first principal component (PC), which explained 13.9% of variance,

into unstimula- ted (lower PC1) and stimulated (higher PC1) cells (Fig. 6.9 A). A further

principal component analysis separately for both conditions did not reveal clusters, also

highlighting the Th subsets did not lead to visible clusters (Fig. 6.9 B for unstimulated and

Fig. 6.9 C for stimulated cells). Looking further into more principal components, which

explained lower variances, did not reveal a visible clustering either (data not shown).

Since most of the variance within the whole genome gene expression lay between stimulated

and unstimulated cells (PCA in Fig. 6.9 A), differentially gene expression analysis was

performed separately for each condition.
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Application of six differential gene expression methods led to different numbers of

regulated genes

In order to find differentially expressed genes for each Th subset in a robust manner,

six differential gene expression methods were applied to whole genome gene expression

measurements from Agilent microarrays. The methods are described in detail in section

6.2 and an overview is given in table 6.1. The applied methods led to varying numbers

of differentially regulated genes (Fig. 6.10). Most methods define up- and downregulated

genes, except for stability selection. Stability selection was the method which determined

least genes, on average around six genes per subset and condition. Multinomial grouped

elastic net led to almost the same number of genes, around 170, for every subset and

condition since the model searched for the same set of genes to model all seven subsets

in one penalized multinomial regression model. The number still varied slightly, since

the procedure was performed 1,000 times and only genes were termed “hits” if they were

selected in 90% of the runs with the first quantile of all coefficients for this subset being

larger than zero (upregulated genes) or the third quantile lower than zero (downregulated

genes). Multinomial elastic net without grouping allows different gene sets to be selected for

each subset and resulted in nine to 34 genes. Notably, for Th2 in the stimulated condition

no downregulated genes were found.

The “quantile approach” follows an idea by Aran et al. (2017) and parameters had to be

adjusted for the analysis of each subset separately. In short, genes were identified where

the lower quantile of expression (e.g. 10% quantile) of the subset of interest was higher

than the maximum equivalent higher quantile of expression (e.g. 90% quantile) of all other

subsets. For every subset, condition and direction, the quantile combination (e.g. 10%

and 90%) was determined where at least 20 genes satisfied the condition which lead to 28

combinations (seven subsets times two conditions times two directions). For Th0 in the

stimulated, downregulated condition, 353 hits were found since loose quantiles had to be

chosen, 30% as the lower quantile and 70% as the upper quantile of expression. The same

quantiles led to 20 upregulated hits for Th0 in the stimulated condition.

Both approaches based on the limma package showed a different number of hits for the

subsets. The difference in number of hits was largest for the “limma 1 vs. all” procedure

with only 14 hits for Th1 but 6,392 hits for Th1/Th22. Here, one subset was compared

to all other subsets as the intercept. There were 14 Th1/Th22 clones in the data set but

only six Th1 clones. Which could be one reason for the differences in hits. Another could

be that Th1/Th22 are more homogeneous than for example Th22 cells (n = 11 clones,

606 hits). To overcome the limit of differing number of clones and the implicit bias which
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follows from that in differential gene expression analysis a “limma 1 vs. sampled intercept”

approach was performed. In short, an intercept was sampled for every subset and condition

which had the same sample size and was equally distributed among the remaining subsets.

This procedure led to an increase in hits for all subsets, 1,862 hits for Th1 and 3,235 for

Th22 in the stimulated condition.

Since every method used different aspects of the data to determine differentially regulated

genes, leading to a varying number of hits, next the results of the methods were compared.
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Fig. 6.10 – Results from six differential gene expression analysis methods. Methods
are given in columns and stimulation conditions in rows. Most methods determine up- (red)
and downregulated (blue) genes, except for stability selection (grey for undefined direction).
Notably, the y-axes show number of hits but their limits vary between eight and 8,000 hits.
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Top hit approach defined new subset-specific genes

The aim was to determine a small set of specific marker genes for each Th subset. Since

the interest was in specific genes with the strongest signal independent of differential gene

expression method choice, first the results of the six methods were made more comparable

by defining 40 most differentially regulated genes (20 up- and 20 downregulated genes)

per stimulation condition and subset. Then the intersection of these genes were inspected

via overlap plots. Twenty-eight overlap plots were generated, for every subset, condition

and direction of regulation one and here only one example is shown (Th1 unstimulated

downregulated genes, Fig. 6.11).

Differentially regulated genes were defined as a top hit when they were detected by at least

three of the six applied methods. In overlap plots, these are the genes with at least three
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Fig. 6.11 – Overlap of six differential gene expression analysis methods results for
downregulated genes in unstimulated Th1 cells. Methods are listed on the left. Single
red dots and the corresponding grey bar on the top indicate how many genes were selected
by just this method. Connected red dots show through the grey bar on top how many genes
were commonly detected by all the connected methods. Top hits are those detected by three
or more methods, in this case three genes fulfill this condition: NUAK2, KLF2 and RASA3.
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Fig. 6.12 – Gene expression comparison of Th1 specific downregulated top hits
in unstimulated condition. Gene expression in all Th subsets of the three differentially
downregulated genes for unstimulated Th1 cells which were detected by at least three of the
applied methods, called top hits for this condition.

vertically connected dots. This revealed three top hits for Th1 unstimulated downregulated

genes (Fig. 6.11), namely Kruppel Like Factor 2 (KLF2), NUAK Family Kinase 2 (NUAK2)

and RAS P21 Protein Activator 3 (RASA3). These top hits can further be assessed in more

depth by inspecting the general gene expression patterns in all subsets via boxplots (Fig.

6.12). For all three top hits, the expression level in Th1 cells was, as expected, significantly

downregulated compared to the remaining six subsets and no other comparison showed a

significant difference.

Following the example of defining top hits for Th1 downregulated genes in the unstimulated

condition (Fig. 6.11) using overlap plots, top hits were defined for all seven subsets, both

regulation directions and stimulations by finding genes which were detected as differentially

regulated by at least three of the six applied methods, resulting in 28 top hit lists.

An overview of all top hits showed different number of top hits per subset but a clear,

anticipated pattern (Fig. 6.13). Downregulated top hits showed low expression (blue)

for the respective subset whereas for the other subsets the gene was either not regulated

(white) or upregulated (red) in scaled visualization. In contrast, upregulated top hits had

high expression in the specific subset and lower expression in the other subsets. Some genes

appear more than once in the plot either due to the fact that there were several probes on

the microarray detecting expression of this specific gene and differential expression analysis

was performed on probe-level. Another reason was that the gene was detected as a top
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hit in unstimulated and stimulated cells giving even more support for the importance of

this particular gene for the subset (e.g. SAMD3 in downregulated Th22 cells, two probes

detected as top hit in unstimulated condition and one probe also detected in stimulated

cells).

This definition of top hits was chosen since a small set of key genes important for each subset

independent of the applied differential gene expression method was of interest. Starting to

define top hits with more than 40 most differentially regulated genes per method, would

not remove a gene from the current list but only expand it. So the identified genes (Fig.

6.13) would always be a strict subset even if the selection criteria were changed. The

approach determined a list of subset-specific genes independent of statistical method and

separately per direction of regulation and stimulation condition.

Even though each top hit search started per subset, stimulation condition and direction of

regulation with 20 genes per method, Fig. 6.13 showed varying numbers of selected top

hits. A different number of top hits was selected since at least three methods had to agree

on the same gene. For example, no top hit for the Th1 specific downregulated stimulated

condition was determined. Whereas, for Th2 specific upregulated and stimulated condition

twelve top hits were identified. Overall, 64% of top hits were upregulated in the respective

subset and 56% were identified in stimulated condition.
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Fig. 6.13 – Heatmap of all top hits. Heatmap is split into up- (right, n = 87) and
downregulated (left, n = 48) genes. Top hits are ordered by subset which they were specific
for (top to bottom: Th0, Th1, Th2, Th17, Th22, Th1/Th17, Th1/Th22) first naming hits
detected in unstimulated (dark blue) cells followed by stimulated (light blue) condition. Gene
expression in rows are visualized as median calculated per subset and then scaled per gene
(z-score). Red is high expression and blue low expression, scale is the same in both figures.
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Importance of each differential expression method for top hit identification

To understand inter-relations of the six differential expression methods and to determine

which one was most important for top hit identification, the results were compared from

three different angles. A top hit was defined by being selected as most differentially

regulated by at least three methods. Selected by exactly three methods were 64% (n = 87

of 135 total) of all top hits (Fig. 6.14 A), by four methods 26% (n = 35), by five methods

7% (n = 9) and only 3% (n = 4) of top hits were selected by all six methods. So for most

of the top hits only three methods agreed.

For each method, it was analyzed separately how often that method was among the at

least three methods defining a top hit. “Elastic net multinomial ungrouped” was the

method which was involved most often, on average 77% of the top hits were among most

differentially regulated genes for this method (Fig. 6.14 B). The “quantile approach”,

however, was only important for identifying on average 43% of top hits. Interestingly,

“elastic net multinomial ungrouped” was the method with second fewest hits in total

compared to the remaining five methods. Only stability selection identified fewer hits

overall (Fig. 6.10).

To assess the importance of each of the applied methods and their inter-relations it was

compared which of the in total 135 top hits were identified by which methods. There are

20 possible combinations of choosing three methods out of six. Yet, only nine combinations

were present in the 87 top hits which were identified by exactly three methods (Fig. 6.14

C). Comparing the number of genes which would have not been selected, if one method

was left out in the top hit approach, revealed that “elastic net multinomial ungrouped”

was the most important method, followed by “limma 1 vs. all” and “limma 1 vs. sampled

intercept”. The number of genes not being selected would be 62, 58 and 46, respectively.

But even leaving out the least important methods, which was either “stability selection”

or the “quantile approach” with both leading to a reduction of 33 top hits, would reduce

the top hit list substantially. Though, the criteria for top hits could be reduced if only

five methods were to be compared. Among 48 genes which were selected by more than

three methods, there were only three top hits which were selected by other methods than

“elastic net multinomial ungrouped” (Fig. 6.14 C). In contrast, 26 of these 48 top hits

were identified without “quantile approach”. In summary, each of the methods was almost

equally important for top hit identification.

Pairwise comparison of methods identified both limma methods as most similar in their

definition of most differentially regulated, since 81 top hits were identified based on the
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overlap of both limma methods plus at least one additional method. Whereas only 19 top

hits were selected by overlap of “quantile approach” and “elastic net multinomial grouped”

hinting at them being substantially different approaches for detecting differently regulated

genes.
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Fig. 6.14 – Comparison of importance of differential expression methods for top
hit selection. At least three methods had to determine a gene as most differentially regulated,
so that it was called a top hit (total n = 135). (A) Frequency of agreement of three or more
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red dots show through the grey bar on top how many top hits were detected by a combination
of the connected methods.

161



CHAPTER 6 CHARACTERIZING T CELLS

Top hits implicated in angiogenesis and cytokine activity

To understand the molecular context of T cell subset specific top hits, pathway analysis

was performed. The top hits per subset were either specifically up- or downregulated in

the respective subset compared to the remaining subsets. First, top hits of each Th subset

were investigated separately to determine, whether pathways were enriched (for n = 7

subsets each different number of genes). Next, the top hits for all subsets taken together

were tested for enrichment for specific pathways (n = 98). Pathways in Gene Ontologies

“molecular function” (Tab. 6.8) and “biological processes” were analyzed (Tab. 6.9, Gene

Ontology Consortium (2016)).

Enriched molecular functions were especially processes associated to cytokine activity (p

= 0.025) and phospholipidase activity (p = 0.083). Evidence was found in all top hits

together, but also in Th1 (cytokine activity, p = 0.093) and Th17 (cytokine activity, p =

0.043; phospholipidase activity, p = 0.0036) top hits only (Tab. 6.8). Top hits for Th17,

Th0 and Th1-Th22 were enriched for genes important for binding cytokines (Th17, p =

0.043), peptide binding (Th0, p = 0.032) and beta-amyloid binding (Th1-Th22, p = 0.024).

For the subontology “biological process” many enriched terms were detected, so only the

five terms with smallest p-values are given and only one pathway for one specific set of

enriched genes. For example the combination of Th1 specific genes CCL4, TNFSF15 and

KLF2 is enriched in pathway “cellular response to tumor necrosis factor” (p = 0.098) but

also in the pathway “response to tumor necrosis factor” (p = 0.098). Only the pathway

with the smallest p-value is presented.

Angiogenesis (p = 0.0015) and cell migration (p = 0.0024) and their regulation (p = 0.0033

and p = 0.014, respectively) were enriched biological processes for all Th subset specific

genes taken together (Tab. 6.9). Th1 specific genes were enriched for response to tumor

necrosis factor (p = 0.098). Th2 specific genes were enriched for, among others, regulation

of response to IFN-γ (p = 0.059). Even though IFN-γ is a Th1-specific secreted cytokine,

it was detected as specific for Th2 cells by the analysis since Th2 cells were exclusively

showing downregulation of IFN-γ compared to the remaining subsets (see Fig. 6.13).

Top hits for the Th17 subset were enriched for regulation of inflammatory response (p =

0.082) but also regulation of leukocyte migration (p = 0.082). Top hits for Th22 were

enriched in lamellipodium assembly (p = 0.073) and also in Ras protein signal transduction

(p = 0.073). Th0 top hits were specific for positive regulation of cell migration (p = 0.075)

and response to abiotic or antibiotic stimulus (p = 0.075 and p = 0.086, respectively). The

terms enriched in Th1/Th22 specific top hits were ameboidal-type cell migration (p =
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0.015) which describes migration using extension and retraction of a pseudopodium and

angiogenesis (p = 0.020).

Tab. 6.8 – Overview of pathway enrichment for gene ontology molecular function.
P-values are corrected for multiple testing following the Benjamini-Hochberg procedure (false
discovery rate is given).

tested gene set enriched pathway p-value genes in pathway

Th1 top hits cytokine activity 0.093 CCL4, TNFSF15

Th17 top hits phospholipidase activity 0.0036 ADORA1, PLA2G16, CCL5
phospholipidase C activity 0.0055 ADORA1, CCL5
cytokine binding 0.040 IL17F, IL1R1
serine-type peptidase activity 0.043 CELA1, GZMB
cytokine activity 0.043 IL17F, CCL5
transcription factor activity 0.060 MEOX1, RORC

Th22 top hits solute:cation symporter activity 0.052 SCL12A7, SLC2A6
phosphoric ester hydrolase activity 0.064 IMPA2, HMOX1

Th0 top hits calmodulin binding 0.032 MYLK, ADCY1
peptide binding 0.032 HLA-F, CRIP1

Th1-Th22 top
hits

beta-amyloid binding 0.024 EPHB2, ITGB2

all top hits
together

cytokine activity 0.025 CCL4, TNFSF15, IFNG, LIF,
IL17F, CCL5, NODAL

CCR1 chemokine receptor binding 0.035 CCL4, CCL5
phospholipidase activity 0.083 ADORA1, PLA2G16, CCL5,

HMOX1
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Tab. 6.9 – Overview of pathway enrichment for gene ontology biological processes.
P-values are corrected for multiple testing following the Benjamini-Hochberg procedure (false
discovery rate is given).

tested gene set enriched pathway p-value genes in pathway

Th1 top hits cellular response to tumor necrosis
factor

0.098 CCL4, TNFSF15, KLF2

Th2 top hits regulation of calcium-transporting
ATPase activity

0.043 THADA, RYR2

positive regulation of peptidyl-serine
phosphorylation of STAT protein

0.059 IFNG, LIF

negative regulation of cell adhesion 0.059 SEMA5A, TBX21, SPINT2,
LRRC32

regulation of response to
interferon-gamma

0.059 IFNGR2, IFNG

cell differentiation involved in
embryonic placenta development

0.061 LIF, SPINT2

leukocyte cell-cell adhesion 0.0025 SELL, IFNG, TBX21,
LRRC32

Th17 top hits regulation of inflammatory response 0.082 ADORA1, IL17F, IL1R1,
RORC, CCL5

regulation of leukocyte migration 0.082 ADORA1, IL1R1, CCL5
adipose tissue development 0.082 RORC, PLA2G16
positive regulation of protein
tyrosine kinase activity

0.082 ADORA1, CCL5

exocrine system development 0.082 NTN4, CELA1
connective tissue development 0.082 IL17F, RORC, PLA2G16

Th22 top hits lamellipodium assembly 0.073 AUTS2, VAV2
Ras protein signal transduction 0.073 SAMD3, AUTS2, VAV2
regulation of anatomical structure
size

0.073 HMOX1, SLC12A7, VAV2

regulation of cell size 0.073 SLC12A7, VAV2
cellular response to steroid hormone
stimulus

0.080 PMEPA1, FOXO3

signal transduction by p53 class
mediator

0.082 FOXO3, ZMAT1

Th0 top hits renal system process 0.075 ADCY1, MCAM
positive regulation of cell migration 0.075 MYLK, FAM110C, MCAM
cellular response to antibiotic 0.075 ADCY1, CRIP1
cellular response to abiotic stimulus 0.086 MYLK, CRIP1
response to antibiotic 0.087 ADCY1, CRIP1
cellular response to drug 0.087 ADCY1, RGS10
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Tab. 6.9 – Overview of pathway enrichment for gene ontology biological processes - continued.

tested gene set enriched pathway p-value genes in pathway

Th1-Th22 top
hits

ameboidal-type cell migration 0.015 BCAR1, ACR1, NODAL,
ITGB2

angiogenesis 0.020 NODAL, EPHB2, PROK2,
ITGB2

positive regulation of smooth muscle
contraction

0.020 TACR1, PROK2

learning or memory 0.020 TACR1, EPHB2, SLC11A2
endodermal cell differentiation 0.020 NODAL, ITGB2
epithelial cell migration 0.020 BCAR1, TACR1, ITGB2

all top hits
together

angiogenesis 0.0015 KLF2, SEMA5A, CELA1,
IL17F, HMOX1, VAV2,
MCAM, SASH1, PKNOX1,
NODAL, EPHB2, PROK2,
ITGB2

positive regulation of cell migration 0.0024 CCL4, SEMA5A, IFNG,
IL1R1, CCL5, HMOX1,
MYLK, FAM110C, MCAM,
SASH1, BCAR1, TACR1

regulation of angiogenesis 0.0033 KLF2, SEMA5A, CELA1,
IL17F, HMOX1, SASH1,
NODAL, PROK2, ITGB2

positive regulation of epithelial cell
migration

0.014 SEMA5A, IFNG, HMOX1,
SASH1, BCAR1, TACR1

positive regulation of reactive oxygen
species biosynthetic process

0.022 KLF2, IFNG, FOXO3,
ITGB2

positive regulation of angiogenesis 0.032 SEMA5A, CELA1, HMOX1,
SASH1, NODAL, ITGB2
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Comparison to skin disease gene expression showed correct pattern for the majority

of top hits

It is known that psoriasis is driven by an imbalance of more Th1 and Th17 cells and less Th2 cells

(Guttman-Yassky et al., 2011). Whereas atopic eczema shows a higher Th2 response compared to

Th1 (Guttman-Yassky et al., 2011). This set the ground truth for the comparison of Th subset

top hits with gene expression patterns in skin diseases. All 48 down- and 87 upregulated top hits

were tested for differences in the expression in biopsies derived from healthy, psoriasis and atopic

eczema skin (ANOVA followed by post-hoc TukeyHSD) on the Agilent microarray probe-level.

For 25 (18.5%) significant differences were detected among the three groups and in the post-hoc

test between psoriasis and eczema (FDR < 0.1). For five of these, a difference was found but the

gene is specific for Th0 or Th1/Th22 where the expected direction of regulation is not known. Of

the remaining 20 comparisons, 14 (70%) show the right direction in the skin lesions, meaning a

gene which is upregulated in Th1 subset should also be higher in psoriasis compared to atopic

eczema (e.g. true for CCL4). Looking back to the genes of the example (top hits for unstimulated,

downregulated Th1 cells, Fig. 6.12), KLF2, NUAK2 and RASA3, for all three genes a trend towards

lower expression in psoriasis skin compared to healthy and atopic eczema can be observed (Fig.

6.15), as expected since the gene is specifically downregulated in Th1 cells. KLF2 and RASA3 are

significantly downregulated in psoriasis compared to atopic eczema and healthy (FDR < 0.1 in the

post-hoc TukeyHSD).
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Fig. 6.15 – Gene expression in biopsies of healthy, atopic eczema and psoriasis
skin of three top hits for downregulated genes for unstimulated Th1 cells. Since
the genes were specifically downregulated in Th1, psoriasis skin is expected to have lower
expression compared to atopic eczema and healthy (indicated by arrow).
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Strong interaction of top hits in protein-protein-interaction network

To understand interconnections between subset specific top hits and identify possible transcriptional

regulatory hubs, which are not regulated themselves but tightly linked, mapping of top hits to a

protein-protein interaction network was performed. Protein-protein interactions between the top

hits calculated using NetworkAnalyst (Xia et al., 2015) detected nine first-order subnetworks, one

subnetwork where 67 of the top hits were included and eight further subnetworks with each only

one of the top hits included (not shown). The subnetwork where 67 of the top hits were included

is shown in figure 6.16. Stimulation condition is not coded but direction of regulation is coded

through the shape (round for upregulation, square for downregulation, see Fig. 6.16). Where the

terms “upregulated” and “downregulated” always refer to one subset compared to the remaining

six subsets since top hits were defined as genes uniquely regulated in either direction in one of the

seven Th subset compared to all others.

Only two top hits for the same subset were directly connected in the protein-protein interaction

network: Interferon-γ (IFN-γ) and Interferon-γ receptor 2 (IFNGR2). Both were specific for Th2

cells but IFN-γ was downregulated in both stimulated and unstimulated cells (square shape in

Fig. 6.16) and IFNGR2 was specifically upregulated in Th2 unstimulated cells compared to the

remaining six subsets (round shape in Fig. 6.16).

One more direct interaction between top hits was observed but the interaction was between top

hits for different subsets: intracellular protease inhibitor Serpin family B member 9 (SERPINB9,

Th1/Th17 specific downregulated in both stimulated and unstimulated cells) and the cytotoxic

lymphocyte protease granzyme B (GZMB, Th17 specific downregulated in unstimulated cells).

GZMB is indirectly connected via four different proteins to granzyme H (GZMH, Th1 specific

upregulated gene in unstimulated cells).

All other subset specific genes were always separated by at least one protein which interacts with

both partners thus connects them. The network did not show clustering of top hit genes into

subclusters. Still, some interesting interactions and accumulations could be observed which were

investigated in more detail and discussed in section 6.4.

Early growth response 1 (EGR1) is a transcription factor which connects five subset specific top

hits in the network. Arora et al. (2008) identified interaction partners of EGR1 using a chip-on-chip

protocol. Three of them were identified as subset specific top hits, namely SLAM family member

7 (SLAMF7, upregulated in Th1, stimulated cells), Proliferation-inducing protein 13 (PIG13,

upregulated in unstimulated Th0) and Collagen beta(1-O)galactosyltransferase 2 (COLGALT2,

upregulated in unstimulated Th0). EGR1 is also connected to the transcription factor Krüppel-like

factor 2 (KLF2, Th1 downregulated gene, unstimulated cells) in the network since EGR1 is known

to bind the promoter region of KLF2 (Tang et al., 2010). EGR1 induction itself is also mediated

by the Interleukin-1 receptor 1 (IL1R1, Th17 upregulated top hit in stimulated cells, Sells et al.

(1995)).
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Forkhead box O3 (FOXO3, Th22 specific upregulated in stimulated condition) induces serine-threonine

protein kinase (AKT1) activity (Zhou et al., 2012). AKT1 was suggested to directly influence the

localization of Family with sequence similarity 110 member C (FAM110C, Th0 specific upregulated

in unstimulated condition, Hauge et al. (2009)).

Signal transducer and activator of transcription 1 (STAT1) connects three top hits for different

subsets. It interacts with Th22 upregulated FOXO3 (Wu et al., 2007) and is known to regulate

IFN-γ (Th2 specific downregulated in both conditions) expression via binding regulatory sites

(Strengell et al., 2003). Whereas, STAT1 itself is regulated by T-box 21 (TBX21, Th2 specific

downregulated in stimulated and unstimulated condition).

Cyclic AMP-responsive element-binding protein 1 (CREB1) is a transcription factor known to

interact with one top hit for Th1 and one for Th2. CREB1 activates the promoter of C-C motif

chemokine ligand 4 (CCL4, Th1 upregulated top hit in unstimulated cells, Mayer et al. (2013)). It

is also known to bind the promoter sequence of IFN-γ (Th2 specific downregulated in stimulated

and unstimulated condition, Liu et al. (2010)) and to upregulate expression of IFN-γ (Samten et al.,

2005).

Vav 2 guanine nucleotide exchange factor (VAV2, Th22 specific upregulated in stimulated condition)

was shown to interact with SMAD family member 3 (SMAD3, Brown et al. (2008)). SMAD3 also

interacts with FOXO3 (Th22 specific upregulated in stimulated condition, Seoane et al. (2004)).

Hepatocyte nuclear factor 4-alpha (HNF4A) connects eight subset specific top hits. The transcription

factor is known to regulate three of the Th1/Th17 specific upregulated top hits by binding their

promoter regions (Odom et al., 2004): Syntaxin-18 (STX18, Th1/Th17 specific upregulated

in unstimulated cells), Myelin protein zero like 2 (MPZL2, Th1/Th17 specific upregulated in

unstimulated and stimulated cells) and 1-aminocyclopropane-1-carboxylate synthase homolog

(ACCS, Th1/Th17 specific upregulated in stimulated cells). Nuclear receptor interacting protein 1

(NRIP1, Th1/Th17 specific upregulated in unstimulated cells) is a nuclear protein also interacting

with HNF4A (Albers et al., 2005). HNF4A is further known to regulate the transcription of four

additional T cell subset specific top hits (Odom et al., 2004), namely Major histocompatibility

complex, class I, F (HLA-F, upregulated in Th0 unstimulated cells), Breast cancer anti-estrogen

resistance protein 1 (BCAR1, upregulated in stimulated and unstimulated Th1/Th22 cells), NUAK

family kinase 2 (NUAK2, Th1 downregulated in unstimulated cells) and Ribosomal protein S6

kinase C1 (RPS6KC1, T0 upregulated in stimulated cells).
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6.4 Discussion

T helper cells are important parts of the adaptive immune system. There are several different T

helper cell subsets described in the literature (Eyerich and Zielinski (2014), Fig. 6.1). The list of

known subsets was proposed as not being exhaustive (Zielinski, 2017) and not all subsets have

yet been extensively studied. The analyzed data set consisting of 79 T cell clones had the unique

property of including a large variety of T cell subsets simultaneously which were all handled and

measured using the same protocols. The aim was to identify a unique set of marker genes for each

T helper cell subset in a robust and unbiased way.

Instead of using conventional procedures to distinguish among T helper cell subsets a computational

approach based on major cytokine secretion was proposed. The key idea was to perform consensus

clustering of five clustering algorithms on ELISA measured cytokine secretion levels which revealed

seven clusters in the data set (Fig. 6.3). The clusters were related to four known Th subsets and

three mixed types based on major cytokine secretion patterns (Fig. 6.4). No previously unknown

Th subsets were identified in this data set. Wong et al. (2016) described the same seven subsets,

and additional ones, in a single cell experiment using mass cytometry.

To further identify and transcriptionally validate T cell subsets in the data set mRNA expression

levels of known transcription factors and surface molecules were analyzed. Transcriptional regulation

of Th1-specific transcription factor TBX21 showed similar expression in Th1 cells and the mixed

type Th1/Th22 (Fig. 6.5 A). Th2-specific transcription factor GATA3 was distinctly upregulated in

the cluster associated to Th2 cells (Fig. 6.5 B). RORC is described as Th17 specific transcriptional

regulator (Ivanov et al., 2006). In the data set, RORC gene expression was comparable among Th17,

Th22 and Th1/Th17 cells, hinting at the importance of RORC for IL-17 secretion (Fig. 6.5 C).

Interestingly, Th22 upregulated RORC but only expresses IL-22 and not IL-17. The transcriptional

regulation of known surface markers was less distinctive compared to transcription factors (Fig.

6.6), likely due to post-translational regulatory mechanisms. Combining mRNA information of

transcription factors and surface molecules revealed clear patterns in principal component analysis

which indicated that Th1/Th22 cells were more similar to Th1 than to Th22 cells and that Th1/Th17

cells were more similar to Th17 cells than to Th1 cells (Fig. 6.7 A). Distinct protein secretion

patterns measured with ELISA and used for clustering were validated with the Luminex platform.

Luminex measurements provided protein secretion levels of 24 additional proteins which showed

interesting patterns and association between subsets (Fig. 6.8). For example, Th22 cells only

differed from Th17 cells in the secretion of IL-17 and IL-6. Whereas, Th22 cells and Th0 cells

differed in the secretion of every protein except for IL-22.

After validation of computationally defined T cell subsets, the aim was to identify new transcriptional

markers for each subset. Th subsets have been analyzed for their transcriptional profiles before.

Most studies only compared two subsets (Horiuchi et al., 2011; Boniface et al., 2010; Plank et al.,

2017) and not a wide variety like the seven subsets in this study. Further, differentiated T cells

were not directly isolated from involved tissues but in vitro differentiated from naive cells which

might induce biases (Horiuchi et al., 2011; Plank et al., 2017). The holistic approach of analyzing
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seven subsets for two stimulation conditions in parallel provides a unique potential for detecting

novel marker genes.

Principal component analysis of whole-transcriptome data did not reveal clusters for subsets but

only for stimulated and unstimulated condition (Fig. 6.9 A). So new transcriptional markers were

searched for separately for unstimulated and stimulated cells. To determine subset specific marker

genes six different methods for differential gene expression analysis were applied separately per

subset, stimulation condition and direction of regulation since both specific up- and downregulated

genes were of interest. Methods showed very different numbers of differentially expressed genes

(Fig. 6.10). Since the aim was to find a small set of specific markers robust to the choice of

differential analysis method, a consensus approach to define common top hits was performed.

Twenty most differentially regulated genes per method, subset, direction and stimulation condition

were intersected and those genes which were selected by at least three of the six applied methods

were termed top hits (Fig. 6.11).

Different numbers of top hits per Th subset, stimulation condition and direction of regulation were

identified(Fig. 6.13). Almost two-third of the top hits (64%) were upregulated in the respective

subset and condition. Whereas similar numbers of top hits were determined for stimulated (56%)

and unstimulated (46%) condition. For one combination, no top hit was identified: Th1 specific

downregulated genes in the stimulated condition. Whereas, for Th2 specific upregulated and

stimulated condition twelve top hits were found. The varying amount of top hits was not dependent

on sample size (n = 6 for Th1 and n = 7 for Th2 , see Fig. 6.4) but might rather reflect the intrinsic

heterogeneity within each computationally defined subset.

A subset of the identified marker genes have been previously described for their relevance in T

cell proliferation or the immune system and human diseases in general. Most research has been

performed in comparing Th1 and Th2 phenotypes. There were 42,087 and 37,415 hits on PubMed

for Th1 and Th2, respectively, and 23,885 for the combined search of Th1 and Th2 in February

2019 (National Institutes of Health, 2019). Th17 had 14,386 PubMed hits but in combination with

Th1 only 6,524 research items were found (National Institutes of Health, 2019). Especially Th22

and the mixed Th subsets are less described in the literature (e.g. 486 hits in PubMed for Th22,

824 for Th0) so it was more challenging to associate identified genes for Th22 and mixed subsets to

the literature.

Krüppel like factor 2 (KLF2) was identified as Th1 specific downregulated top hit in unstimulated

cells and was previously shown to be important for coordination of CD4+ T cell differentiation

through promoting the expression of trafficking receptors and lineage defining transcription factors

(Lee et al., 2015). Granzyme H (GZMH) was previously suggested as a novel marker for Th1 genes

(Ono et al., 2014), backing the finding of GZMH being specifically upregulated in Th1 cells.

For Th2 cells IFN-γ and T-box 21 (TBX21), among others, were identified as specifically downregulated

and IFN-γ receptor 2 (IFNGR2) was identified as upregulated in Th2. IFN-γ is known to inhibit the

proliferation of Th2 cells through binding the IFN-γ receptor (Gajewski and Fitch, 1988; Gajewski

et al., 1989). The IFN-γ receptor itself consists of two chains, the alpha (IFNGR1) and the beta
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(IFNGR2) chain (Hemmi et al., 1994; Soh et al., 1994). The beta chain (IFNGR2) was previously

described to be upregulated in Th2 cells, which was also shown in this analysis, and absent in Th1

cells (Pernis et al., 1995) which explains why IFN-γ inhibits Th2 but not Th1 proliferation.

In Th17 cells, four downregulated and eleven upregulated top hits were detected. Cytotoxic

lymphocyte protease granzyme B (GZMB) was specifically downregulated in Th17. Supporting this

finding, GZBM was previously described as being downregulated in human Th17 cells compared

to Th1 and Th1/Th17 cells (Hu et al., 2017). Interleukin 1 receptor 1 (IL-1R1) was identified as

an upregulated top hit for Th17 which is supported by the finding of Engelbertsen et al. (2017)

that IL-1R1 promotes Th17 immunity in CD4+ T cells in atherosclerosis. Further, Interleukin 17

(IL-17) and RAR related orphan receptor C (RORC) were identified as Th17-specific upregulated

genes which are the known signature cytokine (Bettelli et al., 2006) and transcription factor (Ivanov

et al., 2006) of Th17.

For Th1/Th17 cells Serpin family B member 9 (SERPINB9), among others, was identified as

downregulated. SERPINB9 is known to inhibit the activity of GZMB (Sun et al., 1996). With

SERPINB9 being downregulated in Th1/Th17 cells, the inhibition of GZMB is reduced and thus

more GZMB can be expressed in Th1/Th17 as was described in Hu et al. (2017).

Two of the Th22 specific upregulated top hits were described for their effect in T cells. VAV

proteins are important in T-cell differentiation and activation (Tybulewicz, 2005). FOXO3 is known

to inhibit inflammatory cytokines from being produced by dendritic cells and to influence T cell

survival (Dejean et al., 2009).

Subset specific top hits were determined using a consensus approach of six methods for differential

analysis where at least three had to agree. Comparing the results in light of similarity between

methods, revealed that both limma based approaches are expectedly most similar and the quantile

approach was least similar to the remaining five methods (Fig. 6.14). The quantile approach

adapted from (Aran et al., 2017) is purely based on distribution of values and cut-offs that have to

be set manually which explains the difference to the other applied methods.

In order to set subset specific top hits into a biological context, pathway analysis was performed

and top hits were compared to skin disease gene expressions. Several of the enriched molecular

functions and biological processes were involved in cytokine activity and angiogenesis (Tab. 6.8

and 6.9). T cells are regulated by cytokines and secrete them, so the context given by the pathway

analysis results agreed with prior expectations. Importance of T cells for angiogenesis, especially in

the tumor context, was described by Freeman et al. (1995). Th1 specific genes were enriched for

response to tumor necrosis factor which is an important cytokine for Th cell subset differentiation

and especially promotes expression of IL-22 (Schmitt and Ueno, 2015). Genes specific for Th22

were enriched in lamellipodium assembly which are important for T cell signaling (Dustin, 2009)

and also in Ras protein signal transduction which induces cell differentiation, growth and survival

(Halfar et al., 2001). Comparison to gene expression skin diseases showed correct, expected patterns

for 70% of the top hits (Fig. 6.15).
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To understand the interconnections between T cell subset specific top hits and indicate possible

validation targets, top hits were mapped to a protein-protein interaction network with particular

focus on immune system relevant interactions (Breuer et al., 2012). The network revealed several

interesting relationships among the identified T cell subset specific genes (Fig. 6.16). Early

growth response 1 (EGR1) connects five subset specific top hits in the network. It is a zinc finger

transcription factor that is upregulated in T cells after stimulation of the T cell receptor (Shao

et al., 1997). Additionally, EGR1 was shown to be an upstream regulator of TBX21 expression

by binding the promoter region of TBX21 (Shin et al., 2009) which is the transcription factor

for Th1 cells (Szabo et al., 2000). Serine-threonine protein kinase (AKT1) activity is induced by

Th22-specific Forkhead box O3 (FOXO3, Zhou et al. (2012)) and was suggested to directly influence

the localization of the Th0-specific gene Family with sequence similarity 110 member C (FAM110C,

Hauge et al. (2007)). AKT1 regulates important biological processes including angiogenesis (Chen

et al., 2005), proliferation (Héron-Milhavet et al., 2006) and cell survival (Koseoglu et al., 2007).

AKT is further involved in IL-1 signal transduction (Teshima et al., 2004). They also described an

interesting connection to inducible nitric oxide synthase (iNOS), namely that IL-1R1 was required

for iNOS transcription and AKT increased the transcriptional activity of iNOS gene promoter

(Teshima et al., 2004). Section 3.1 showed that iNOS together with CCL27 is able to classify

psoriasis from atopic eczema patients. Notably, iNOS was higher expressed in psoriasis patients.

Psoriasis skin was shown to be enriched for Th17 cells (Lowes et al., 2008), thus the finding that

IL-1R1 is upregulated in Th17 cells is supported by the connection of IL-1R1 to iNOS transcription

via AKT activity.

The association of signal transducer and activator of transcription 1 (STAT1) with Th22-specific

FOXO3 was shown to increase in IFN-γ treated cells (Wu et al., 2007). STAT1 is known to regulate

IFN-γ expression (Strengell et al., 2003). Whereas, STAT1 itself is regulated by TBX21 and also

GATA Binding Protein 3 (GATA3) which both bind its promoter region (Kanhere et al., 2012) and

which are transcription factors for Th1 and Th2 cells, respectively (Szabo et al., 2000; Zheng and

Flavell, 1997). Taken together, STAT1 is possibly in the center of Th1/Th2/Th22 phenotypes.

Cyclic AMP-responsive element-binding protein 1 (CREB1) is a transcription factor associated

to both Th1 upregulated C-C motif chemokine ligand 4 (CCL4, Mayer et al. (2013)) and Th2

downregulated IFN-γ (Liu et al., 2010). It was shown that methylation in the promoter region

of IFN-γ in Th2 cells inhibits binding of CREB1 to that promoters and leads to downregulation

of IFN-γ specifically in Th2 cells (Williams et al., 2013). Thus giving an epigenetic explanation

for IFN-γ being specifically downregulated in Th2 cells. Whereas in Th1 cells CREB1 can bind

the promoter region and activate expression of IFN-γ (Samten et al., 2005; Williams et al., 2013).

CREB1 was shown to regulate Th1/Th2 response in leprosy patients (Upadhyay et al., 2019). Thus,

being both important for specific downregulation in Th2 cells and upregulation in Th1 cells it

possibly presents an interesting candidate for further study.

SMAD family member 3 (SMAD3) was shown to interact with two Th22 upregulated genes Vav 2

guanine nucleotide exchange factor (VAV2, Brown et al. (2008)) and FOXO3 (Seoane et al., 2004).

SMAD3 was described to be involved in differentiation of regulatory and inflammatory T cells,
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e.g. Th17 cells (Martinez et al., 2009). In particular, SMAD3 was shown to interact with and

decrease the transcriptional activity of RAR related orphan receptor C (RORC, Martinez et al.

(2009)), which is the transcription factor of Th17 cells (Ivanov et al., 2006). The interaction of

SMAD3 to two Th22 upregulated genes possibly indicates its importance in separating Th17 from

Th22 phenotypes. RORC is also associated to the Th1/Th17 upregulated gene Nuclear receptor

interacting protein 1 (NRIP1) since RORC interacts with RAR-related orphan receptor B (RORB,

Wallach et al. (2013)) which is described to interact with NRIP1 (Albers et al., 2005).

Hepatocyte nuclear factor 4-alpha (HNF4A) was connected to eight T cell subset specific top hits.

HNF4A was proposed as a regulatory hub in CD4+ T cells in patients suffering from systemic

lupus erythematosus via genome-wide DNA methylation pattern analysis (Jeffries et al., 2011). In

systemic lupus erythematosus an imbalance of T cell cytokines was previously described (Talaat

et al., 2015). Especially, serum IL-17 levels are increased in these patients. Mouse studies about

lupus show that inhibiting Th1 and Th17 responses in lupus-prone mice has therapeutic effects

(Hou et al., 2011). These studies also show that in mice with an established lupus-like disease

treated with Apigenin, that inhibits autoantigen presentation for expansion of autoreactive Th1

and Th17 cells, the disease was suppressed (Kang et al., 2009).

In summary, the analysis revealed previously described but also putative novel markers for T helper

cell subsets but experimental validation is still missing. Computational consensus clustering of cells

based on protein secretion measured by ELISA and not based on manual cut-offs led to robust,

uniform T cell groups which were associated to known T helper cell subsets. Combining results

of six differential gene expression methods uncovered a core set of T cell subset specific genes

which were compared to skin disease gene expression, analyzed using pathways and protein-protein

interactions to identify possible targets for experimental validation.
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Chapter 7

Discussion and outlook

7.1 Discussion

Applying computational methods to answer clinical questions and gain knowledge about human

health and disease was at the core of all described studies. The thesis author integrated data from

different molecular omics levels with clinical data. Available tools and methods were tailored to

the precise clinical question to find correct answers. Compared to the whole process involved in

translational medicine, the thesis author, together with her supervisors and collaboration partners

only worked on the first step: bridging the gap from laboratory work to first tests in the clinics.

The range of clinical applications was broad, from describing the molecular phenotype of T helper

cells as a basic unit in the immune system to finding disease classifiers and calculating signatures

for inflammatory skin diseases.

The overall aim of this thesis was to improve translational medicine research and understanding of

human diseases by applying statistical and bioinformatic tools to perform statistical integration

of biomedical data. General challenges were identified in translational medicine research (section

1.3) and four specific research questions around these challenges were formulated (section 1.4).

The thesis author together with her supervisors pursued the aim and dealt with the challenges on

different levels and from different angles depending on available data and specific clinical interest

of the collaborators in overall 14 studies of which eight are already published papers (see pages

xi-xiii). Another subset of eight studies (five of them published) were discussed in this thesis since

they jointly answer the research questions.

The first research question asked whether robust and interpretable molecular disease classifiers for

unbiased patient diagnosis can be found by means of disease subtypes and independent patient

cohorts. Molecular markers for differentiating psoriasis and atopic eczema (section 3.1, published

in Garzorz-Stark et al. (2016)) and for diagnosing allergic asthma patients (section 3.2, published

in Milger et al. (2017)) were found. The skin disease classifier’s robustness was assessed using

six disease subtypes and 29 of 31 patients who suffered from subtypes of psoriasis and atopic

eczema were classified correctly. Further, the classifier was tested on ten clinically unclear cases and

all patients were assigned to the correct diagnosis which was validated by a positive response to
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disease-specific drug applications. For the asthma classifier study, an independent test cohort was

measured which consisted of patients recruited at a different location. The classifier’s robustness

was evaluated by applying the trained model to the test cohort which yielded an AUC of 0.92. In

addition to measuring the robustness, the aim was to find interpretable molecular markers which

are understandable for clinicians and relate to their prior knowledge of the diseases. To this end,

the thesis author integrated the molecular markers with patient’s clinical records. For example for

the skin classifier, NOS2 expression in lesional skin was shown to correlate positively with patients’

BMI which is in line with the findings that NOS2 is upregulated in psoriatic lesional skin and

psoriasis patients having an increased BMI (Jensen and Skov, 2016). In the asthma classifier study,

an association of the molecular marker to oral corticosteroid treatment was identified. The same

association was previously described in healthy patients under steroid treatment (Igaz et al., 2015).

The answer to the first research question showed one possible solution to the translational medicine

challenge of basing discoveries on well designed cohorts. Since, there was no access to prospective

longitudinal studies or population based cohorts, the models were tested in independent cohorts.

In one study, two cohorts were available: one cohort including clinically clear cases and a cohort

of special sub-diagnosis and unclear patients. Both groups were recruited at the same clinic and

measured in the same laboratory (section 3.1). In another study, there were three different cohorts:

exploratory measurements in mice, one cohort of patients from medicine practices and one patient

cohort collected at the University Hospital Munich (section 3.2). In both studies, the established

models were trained in one cohort and applied in the other to assess their performance. Apart from

testing models in independent cohorts, directly visualizing selected variables and their distribution

within clinical classes helped to promote comprehensibility and approval of statistical results by the

collaborators. Further, associating these variables with known disease-specific factors shed light

into why the molecular markers differentiated the patient groups.

The second research question asked whether serum proteins can be used as markers for disease

monitoring and prognosis. The aim was to determine factors which are obtained in a minimally

invasive way and which improve and standardize clinical characterization. In three studies the

thesis author used statistical methods to associate serum protein measurements to clinically relevant

patient outcomes. Since severity of atopic eczema is needed to monitor the disease, it was predicted

from 33 serum proteins (section 4.1, published in Krause et al. (2016)). The computational model

reached a leave-one-out cross validation error of 20%. The model error is too large to be clinically

applicable but the model gives hints for possible markers for future research. To assess the possibility

of using serum markers for prognosis, 33 serum proteins and total and specific IgE levels were

analyzed to predict the persistence of atopic eczema in children (section 4.2, paper in preparation)

which only gave results close to random guessing. After combining this data with clinical attributes,

a test AUC of 0.68 was achieved in 10-fold cross validation averaged over twelve models. Even

though no perfect predictive model was identified, a handful of factors were still determined which

are currently tested for their applicability in clinics. Also serum proteins were analyzed to predict

the prognosis of patients who undergo major liver resection (section 4.3, paper in preparation).

Time series patterns in serum proteins were identified which were associated to clinical outcomes.

Statistical models combining serum measurements and clinical attributes were calculated which
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were predictive of outcome. An independent test cohort is currently measured by the collaborators

and will help to evaluate the quality of the models with regard to their clinical relevance.

Even if retrospective studies, like those described in this thesis, do not fulfill the perfect requirements

to answer research questions unbiasedly, they hint in the direction of what questions to ask and

what samples to collect in future longitudinal cohorts. Especially, for studies in the medical field,

where medical students have one or two years to collect patients and measure data for their doctoral

thesis, retrospective studies are ideal if access to e.g. biobanks is given. Both retrospective and

longitudinal, prospective studies together help to identify risks and intervention targets to improve

human health and fight diseases. Studies described in this thesis either used snapshot data or

retrospectively collected information.

The answer to the first two research questions shed light on another challenge in translational

medicine research which is the characterization and monitoring of patients. Patient characterization

may vary due to subjective evaluation criteria. In two studies, molecular markers for patient

classification were identified (chapter 3). In three other studies, approaches to overcome subjective

patient evaluation criteria by using objective markers in human serum to monitor human diseases

and prognosis were proposed (chapter 4). Variability due to subjectivity during data collection

was minimized through having all patients characterized by the same doctor. Whereas, histological

analyses for the studies were always assessed by two independent scientists.

In contrast to clinical patient characterizations, measured molecular data is not systematically biased

but only subject to controllable variability introduced by limitations of detection or natural, random

fluctuations. The variability in molecular data was handled by carefully evaluating imputation

methods, like GSimp (Wei et al. (2018), sections 4.2 and 4.3) and MICE (Raghunathan et al.

(2001), section 4.2). Imputation methods had to be applied in order to include patients in the

models who had values outside the detection limits or missing data. The evaluation was based

on direct inspection and dimension reduction methods, e.g. factor analysis for mixed data. To

overcome batch effects in the data, the thesis author and her supervisors assisted their collaborators

in designing experiments, e.g. optimizing plate design in microarray studies, or applied batch

correction methods for known batches (section 4.3) and surrogate variable analysis (section 5.2) in

case of unknown batches.

The third research question asked whether inter-individual variability in patients could be adjusted

for. The inter-individual variability masks common, underlying disease characteristics in complex

phenotypes which is another challenge in translational medicine research of complex diseases. For

the analysis of gene expression in human skin tissue described in this thesis, the thesis author

adjusted for this variability using linear mixed effects models. The approach was published in two

papers which involved gene expression in lesional and authologous non involved skin (section 5.1,

published in Lauffer et al. (2018) and section 5.2, published in Garzorz-Stark et al. (2018)). The key

benefit provided by linear mixed effects models is that every subject included in the data is modeled

as a random intercept but all subjects together are used to obtain the effect sizes of the fixed effects.

The random intercept adjusts for individual variability while the fixed effect is what is ultimately
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of interest. Both publications included experimental validation of the computational results which

underpinned the approach’s validity. In Lauffer et al. (2018) the linear mixed effects model identified

a shared type I immune response in interface diseases which was validated in vitro in T cells isolated

from lesional skin. The other application (Garzorz-Stark et al., 2018) resulted in a proof-of-concept

study where the finding that IL-23, a gene detected through computational analysis, influenced

imiquimod-induced inflammation was supported in one patient using a neutralizing antibody.

The fourth research question asked whether new marker genes describing T helper cell subsets

can be described to better understand their phenotypes and their function in the immune system.

Phenotypes of immune cells, in particular T helper cells, are poorly understood on a deep molecular

level. The aim was to describe these cells using protein secretion and gene expression data. T

helper cell subsets were distinguished by applying a computational approach based on major

cytokine secretion. Seven computationally defined subsets were associated to known, biological T

helper cell subsets or combinations thereof. To improve the molecular understanding of different T

helper cell subsets, gene expression levels were investigated. Building a consensus of six differential

gene expression methods revealed a core set of specific genes for each of the subsets. Some genes

were previously described, e.g. Granzyme H was previously suggested as a novel marker for Th1

genes (Ono et al., 2014) and the analysis described in this thesis also identified Granzyme H as a

Th1-specific gene. Others represent novel candidates possibly useful for experimental validations

like Cyclic AMP-responsive element-binding protein 1 (CREB1) which might regulate the Th1/Th2

axis. Novel marker genes for T helper cell subsets were described but their implications for immune

system functions still have to be experimentally tested.

Research leads to new hypotheses, which need testing and validation. In the field of translational

medicine, often ideal models of human disease are non-existent. Section 5.2 describes the approach

taken by the thesis author, her supervisors and her collaborations partners on finding a human

model system to study early pathogenesis of psoriasis using imiquimod. For the study described

in section 5.1 no human model was available, three dimensional skin equivalents were used for

validating the hypotheses. Immune cells play an important role in human health and disease. The

work on improving the understanding of T helper cell subsets (chapter 6) might have implications

for optimizing experimental validations and facilitating laboratory models where different cell types

are combined, like in the experiments of Van Den Bogaard et al. (2014) where the crosstalk of T

cells and keratinocytes in 3D skin microenvironments was described.
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7.2 Outlook

Many translational medicine studies are not completed after publication but further steps are taken.

The molecular classifier to differentiate between psoriasis and atopic eczema patients (section 3.1)

was already proposed in an earlier study by Quaranta et al. (2014b). For the study described in

(Garzorz-Stark et al., 2016), the analysis was extended, the classifier was applied to disease subtypes

and the associations of molecular markers to clinical attributes were investigated. The classifier is

currently tested in a large cohort of around 700 paraffin-embedded skin samples which are collected

from local dermatology practices. This potentially opens the diagnostic tool to practices with no

access to state-of-the-art experimental laboratories. The results gained in the study on persistence

of atopic eczema in children (section 4.2) are planned to be tested in the university clinic of the

collaborators. The idea is to have clinicians fill short questionnaires with parents of affected children

targeting the variables identified through the performed analysis. Over the next years, the disease

courses of these children will be monitored and it will be possible to evaluate the predictive power

of the selected variables.

To gain deeper understanding of the interplay of different cells types within tissues, like in lesional

skin of inflammatory skin disease, RNA sequencing of single cells in these tissues presents an exciting

opportunity (Ramsköld et al., 2012; Shalek et al., 2013; Patel et al., 2014). Besides understanding

interplay of cells, single cell RNA sequencing is also used for disease biomarkers discovery (Zhu et al.,

2014) and validation (Niu et al., 2016). Tirosh et al. (2016) applied single cell RNA sequencing in

skin cells of melanoma tumors to investigate the complex cellular heterogeneity in this skin disease.

Der et al. (2017) also applied single cell RNA sequencing in skin cells, and in parallel renal cells,

to obtain a biomarker for Lupus nephritis. Both examples prove the ability of interrogating skin

diseases with single cell RNA sequencing. It thus provides a next step to improve the understanding

of skin diseases.

Using serum proteins as biomarkers to diagnose and monitor human diseases is currently extensively

studied but mostly in rather small local cohorts (n = 193 in Thijs et al. (2017a) and n = 72 in Krause

et al. (2016)). For gene expression measurements performed with microarrays or RNA-sequencing,

journals require authors to publish the raw data on databases like Gene Expression Omnibus

maintained by the National Center for Biotechnology Information (NCBI’s GEO, Barrett et al.

(2012)). Releasing raw data enables other researchers to reproduce results or integrate the data

with their own measurements. In contrast, protein secretion data is usually not published. The

thesis author got into contact with Thijs et al. (2017a) right after they published their paper about

severity prediction of atopic eczema. The thesis author in discussion with her supervisors wrote a

proposal on how sharing their data with them would be useful to improve biomarker discovery and

validation. Nevertheless, after over eighteen months, there is still no access to the data mostly due

to legal issues and reasons of data security and protection. Promoting open science and encouraging

scientists to share their data could substantially improve reproducibility and statistical power in

finding disease biomarkers. The field of psychology has already advanced in this topic and journals
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like “Judgment and Decision Making” require authors to publish all raw data (Society for Judgment

and Decision Making, 2019).

A lot of studies in the field of translational medicine or personalized medicine use statistical methods

to build disease classifiers or find biomarkers (Thijs et al., 2015b; Inkeles et al., 2015; Zissler et al.,

2018). Strikingly, results of these model are commonly presented without proper assessment or

validation. Thijs et al. (2015b) claimed they found a multivariate signature which “robustly predicts

the [severity] score” without applying the model to a test cohort or estimating an error, e.g. through

cross-validation. Only the correlation coefficient between original and predicted values was given

where the same cohort was used for training and testing. So the generalizability of the proposed

signature cannot be assessed. Even if researchers are unable to recruit an independent test cohort

themselves, education about error estimations, generalizability and quality assessments of statistical

results, would improve the objective presentation of results in translational medicine.

Apart from not presenting proper testing or validation of disease classifiers or biomarkers which

are based on statistical methods, the choice of method is rarely discussed. Often, one particular

mathematical method is chosen to perform the analysis without mentioning advantages or caveats.

Mostly, not even reasons were given why this particular method was chosen and whether others

were also tested. For example, Inkeles et al. (2015) built a multi-disease classifier for 16 different

skin conditions based on publicly available microarray data. They only applied random forest as

a classification method and did not give reasons for their choice. Discussing the reasoning and

openly stating if different methods were checked first, would enable readers to form a scientifically

sound opinion and use other researchers’ experience for their own analysis. A positive example

is given by the paper Redmon and Farhadi (2018) about real-time object detection. The paper

has a section called “Things We Tried That Didn’t Work” where the authors explicitly discussed

several approaches which did not lead to the expected success and were discarded. Even though the

paper is rather colloquially written and specifically mentions failed attempts to solve the problem,

it has already been cited 242 times (according to google scholar in February 2019) indicating its

acceptance by the scientific community. One idea to improve the situation is to encourage authors

to explain their method choice and to elaborate on attempts which did not succeed but without

forcing them to find an explanation why one method worked better than the other since that is not

always easy to pinpoint.

Instead of mentioning methods which were applied but did not reveal satisfactory outcomes, in

two studies results of different statistical methods were compared to obtain a core finding which

is independent to method choice. In section 4.2 a core subset of commonly selected features was

extracted. For section 6 a consensus clustering was performed where all applied method had to agree

and an approach for combining differential gene expression methods was proposed where only a

subset of methods had to be consistent. The comparisons sometimes revealed substantial differences

due to method choice even if the application was to the exact same data set. The thesis author

definitely did not compare among all applicable methods but even the small subset highlighted the

spectrum of possible results obtained from the same data. Evaluating the differences in more detail

and in a more structured way could shine light on reasons for the variability in results.
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Analyzing data with several methods is not a new idea. Simonsohn et al. (2015) proposed a

procedure called “specification curve analysis” aiming for application, visualization and comparison

of all reasonable model specifications. They defined reasonable specifications as those which

are “theoretically justified, statistically valid, and non-redundant” (Simonsohn et al., 2015). To

determine all reasonable specifications, all analytical steps are considered, from exclusion of outliers,

categorizing of variables, inclusion of covariates to types of regression model, which can lead

to a large number of specifications and thus models to estimate (e.g. 1,728 in the example in

Simonsohn et al. (2015)). The proposal to calculate specification curves instead of presenting only

the result of one particular specification is discussed by the scientific community (LeBel et al.,

2018; George et al., 2016) and recommended by guideline authors (Christensen and Miguel, 2018;

Forstmeier et al., 2017). However, only one publication citing Simonsohn et al. (2015) actually

performed a specification curve analysis: Rohrer et al. (2017) estimated between 720 and 2,160

model specifications to answer the question whether birth-order in siblings influences personality

traits. The number of specifications varied since the authors investigated different outcomes. If the

number of specifications is impracticably large, Simonsohn et al. (2015) proposed to use a random

subset of them to generate specification curves. Currently, specification curves are mostly discussed

in the psychology field (Rohrer et al., 2017; Carter et al., 2017; Milfont and Klein, 2018), probably

due to the fact that the “inventors” are psychologists themselves, e.g. Uri Simonsohn is a Professor

of Behavioral Science and both co-authors have a PhD in psychology. Transferring their idea to

biomedical research could positively impact its reproducibility and reliability. But it should be

kept in mind, to present the analysis in a way that the readers, e.g. medical doctors, are able to

comprehend the analysis and the final result.

Apart from the importance of making raw data publicly available and discussing statistical method

choices, sharing the underlying code of the analysis is also crucial for reproducible research. Several

options for code sharing already exist, e.g. uploading the scripts to GitHub or creating executable

Jupyter Notebooks. Both options require some computational expertise from the user who would

like to understand or reproduce the analysis. Another way is programming a web service which

creates easy access for users but computational details are often hidden and the web service itself is

a work overhead which might not be justified by the actual benefit. Using R markdown (Allaire

et al., 2018) and the corresponding output files in html or pdf format allows to save both source

code and resulting figures but is not interactive if the users do not want to use R. An easy to use

combination of making all methodological details available and reproducibility of results and figures

which is open, interactive and easily usable for both computational biologists and wet lab scientists

is still missing.

In the experience of the thesis author, her supervisors and collaborators, during the review process

of clinical journals the choice of modeling or statistical evaluation is rarely questioned by editors or

reviewers. Making everyone more aware of how choice of statistical method influences results, how

biomarker signature models can be assessed and how important publishing raw data and the code

used for analysis is, would improve the reproducibility in translational medicine research and thus

ultimately bring benefit to the patients. The awareness could be raised by identifying a way to

bring across the pitfalls of misusing statistics in a clear and concise way to the collaborators by

181



CHAPTER 7 DISCUSSION AND OUTLOOK

e.g. simulations or explicit, relatable examples. Only if everyone involved in the process trusts the

procedure used to infer knowledge from data, the gained knowledge will be trusted and used to

everyone’s benefit.
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Douglas Bates, Martin Mächler, Ben Bolker, and Steve Walker. Fitting Linear Mixed-Effects Models

Using lme4. Journal of Statistical Software, Articles, 67(1):1–48, 2015. ISSN 1548-7660. doi:

10.18637/jss.v067.i01. URL https://www.jstatsoft.org/v067/i01.

Sebastian Bauer, Julien Gagneur, and Peter N Robinson. GOing Bayesian: model-based gene set

analysis of genome-scale data. Nucleic acids research, 38(11):3523–3532, 2010.

Etienne Becht, Charles-Antoine Dutertre, Immanuel WH Kwok, Lai Guan Ng, Florent Ginhoux,

and Evan W Newell. Evaluation of umap as an alternative to t-sne for single-cell data. bioRxiv,

page 298430, 2018.
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Jean-Marie Ramirez, Nicolò C Brembilla, Olivier Sorg, Rachel Chicheportiche, Thomas Matthes,

Jean-Michel Dayer, Jean-Hilaire Saurat, Eddy Roosnek, and Carlo Chizzolini. Activation of

the aryl hydrocarbon receptor reveals distinct requirements for IL-22 and IL-17 production by

human T helper cells. European journal of immunology, 40(9):2450–2459, 2010.
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and Mayte Suárez-Fariñas. Meta-analysis derived (MAD) transcriptome of psoriasis defines the

“core” pathogenesis of disease. PloS one, 7(9):e44274, 2012.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological), pages 267–288, 1996.

Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J

Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy, et al. Dissecting

the multicellular ecosystem of metastatic melanoma by single-cell rna-seq. Science, 352(6282):

189–196, 2016.

Harold Tjalsma, Albert Bolhuis, Jan DH Jongbloed, Sierd Bron, and Jan Maarten van Dijl. Signal

peptide-dependent protein transport inbacillus subtilis: a genome-based survey of the secretome.

Microbiology and Molecular Biology Reviews, 64(3):515–547, 2000.

Vesna Todorovic. Gene expression: Single-cell rna-seq—now with protein. Nature Methods, 14(11):

1028, 2017.

Yoshiki Tokura. Extrinsic and intrinsic types of atopic dermatitis. Journal of dermatological science,

58(1):1–7, 2010.

Claudia Traidl, Silvia Sebastiani, Cristina Albanesi, Hans F Merk, Pietro Puddu, Giampiero

Girolomoni, and Andrea Cavani. Disparate cytotoxic activity of nickel-specific CD8+ and CD4+

T cell subsets against keratinocytes. The Journal of Immunology, 165(6):3058–3064, 2000.

214



BIBLIOGRAPHY

Sara Trifari, Charles D Kaplan, Elise H Tran, Natasha K Crellin, and Hergen Spits. Identification of

a human helper T cell population that has abundant production of interleukin 22 and is distinct

from T H-17, T H 1 and T H 2 cells. Nature immunology, 10(8):864, 2009.

Robert Choate Tryon. Cluster analysis: Correlation profile and orthometric (factor) analysis for

the isolation of unities in mind and personality. Edwards brother, Incorporated, lithoprinters

and publishers, 1939.

Anastasia Tsanaktsi, Elena E Solomou, and Stamatis-Nick C Liossis. Th1/17 cells, a subset of Th17

cells, are expanded in patients with active systemic lupus erythematosus. Clinical Immunology,

195:101–106, 2018.

Lam C Tsoi, Sarah L Spain, Jo Knight, Eva Ellinghaus, Philip E Stuart, Francesca Capon, Jun

Ding, Yanming Li, Trilokraj Tejasvi, Johann E Gudjonsson, et al. Identification of 15 new

psoriasis susceptibility loci highlights the role of innate immunity. Nature genetics, 44(12):1341,

2012.

John W Tukey. Comparing individual means in the analysis of variance. Biometrics, pages 99–114,

1949.

John Wilder Tukey. The problem of multiple comparisons. Multiple Comparisons, 1953.

Victor LJ Tybulewicz. Vav-family proteins in T-cell signalling. Current opinion in immunology, 17

(3):267–274, 2005.

Rajni Upadhyay, Bhavyata Dua, Bhawna Sharma, Mohan Natrajan, Ajai Kumar Jain,

Balaji Kithiganahalli Narayanaswamy, and Beenu Joshi. Transcription factors STAT-4, STAT-6

and CREB regulate Th1/Th2 response in leprosy patients: effect of M. leprae antigens. BMC

infectious diseases, 19(1):52, 2019.

Deepali V Sawant, Weiguo Yao, Zachary Wright, Cindy Sawyers, Robert S Tepper, Sandeep

K Gupta, Mark H Kaplan, and Alexander L Dent. Serum microRNA-21 as a biomarker for

allergic inflammatory disease in children. Microrna, 4(1):36–40, 2015.

Stef Van Buuren. Multiple imputation of discrete and continuous data by fully conditional

specification. Statistical methods in medical research, 16(3):219–242, 2007.

Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate Imputation by Chained

Equations in R. Journal of Statistical Software, 45(3):1–67, 2011. URL https://www.jstatsoft.

org/v45/i03/.

Ellen H Van Den Bogaard, Geuranne S Tjabringa, Irma Joosten, Mieke Vonk-Bergers, Esther

Van Rijssen, Henk J Tijssen, Mirthe Erkens, Joost Schalkwijk, and Hans JPM Koenen. Crosstalk

between keratinocytes and T cells in a 3D microenvironment: a model to study inflammatory

skin diseases. Journal of Investigative Dermatology, 134(3):719–727, 2014.

215

https://www.jstatsoft.org/v45/i03/
https://www.jstatsoft.org/v45/i03/


BIBLIOGRAPHY

Leslie van der Fits, Sabine Mourits, Jane SA Voerman, Marius Kant, Louis Boon, Jon D Laman,

Ferry Cornelissen, Anne-Marie Mus, Edwin Florencia, Errol P Prens, et al. Imiquimod-induced

psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. The Journal of

Immunology, 182(9):5836–5845, 2009.

BK Van Weemen and AHWM Schuurs. Immunoassay using antigen—enzyme conjugates. FEBS

letters, 15(3):232–236, 1971.

Marc Veldhoen, Richard J Hocking, Christopher J Atkins, Richard M Locksley, and Brigitta

Stockinger. TGFβ in the context of an inflammatory cytokine milieu supports de novo

differentiation of IL-17-producing T cells. Immunity, 24(2):179–189, 2006.

Marc Veldhoen, Catherine Uyttenhove, Jacques Van Snick, Helena Helmby, Astrid Westendorf,

Jan Buer, Bruno Martin, Christoph Wilhelm, and Brigitta Stockinger. Transforming growth

factor-β’reprograms’ the differentiation of T helper 2 cells and promotes an interleukin

9–producing subset. Nature immunology, 9(12):1341, 2008.
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