DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Scalable and Modular Architecture for
Self-organizing Power Systems on Small
Spacecrafts

Florian Mauracher

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Scalable and Modular Architecture for
Self-organizing Power Systems on Small

Spacecrafts

Skalierbare und modulare Architektur

fiir selbstorganisierende

Stromversorgungssystem auf kleinen

Raumfahrzeugen

Author:
Submission Date:
Supervisor:
Advisors:

Florian Mauracher

15. February 2019

Prof. Dr. Martin Schulz
M.Sc. Dai Yang

M.Sc. Florian Schummer
M.Sc. Sebastian Riickerl

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Garching, 15. February 2019 Florian Mauracher

Abstract

This thesis describes the architecture and coordination algorithms of a modular power
system for small spacecrafts. The system is currently being developed at the Chair of
Astronautics (LRT) of the Technical University of Munich (TUM) in cooperation with the
University of New South Wales (UNSW) Canberra.

Based on the principles of distributed systems the power system consists of multiple
boards. While each board is able to operate independently, multiple boards can be joined
together to extend the capabilities of a single board system in regards to power generation,
power storage and power delivery as well as increasing reliability and fault tolerance.

iii

Contents

1 Introduction

1.1 EPS for CubeSats s
1.2 UNSW MiSSION . . . v v v v v o e e e e e e e s e s e s
1.3 Goals of this Thesis

2 EMPS System

2.1 System Architecture
2.2 Requirements
2.2.1 UNSW M2 Mission v v v vt it e e e
2.22 BasicEPS
2.2.3 Distributed EPS

3 Related Work

3.1 Coordination Algorithms oL
3.1.1 Leader Election
3.1.2 Distributed Shared Memory

3.2 Summaryo e e e e

4 Software System Design

4.1 Algorithm Selection
4.1.1 Shared State
4.2 Imterfaces e
4.2.1 Configuration
4.2.2 Telemetry e
4.3 External Interface
4.4 Coordination
4.4.1 Shared State Update
4.4.2 Switch Selection Algorithm
4.5 FError Case Analysis L

5 Evaluation

5.1 Functional Testing
5.1.1 Single Board Test Cases
5.2 Multi-Board Test Setup
5.2.1 Multi-Board Test Cases
522 Error Cases e
5.3 Spacecraft Integration Testing
5.4 Power Consumption
5.5 SUmMmMAary e

6 Conclusion and Outlook

10
10
10
11
12

13
13
13
13
13
14
15
16
16
17
18

21
21
21
23
23
25
25
27
28

29

iv

Contents

Bibliography

A Appendix
A.1 Data Structures

1 Introduction

A CubeSat is a miniaturized satellite with fairly restricted dimensions and mass that still
provides similar functionalities and capabilities as bigger spacecrafts [1]. The Munich
Orbital Verification Experiment II (MOVE-II) satellite is a CubeSat that was developed
and built by students at the Technical University of Munich (TUM) in a cooperation
between the Chair of Astronautics (LRT) and the Scientific Workgroup for Rocketry and
Spaceflight (WARR) [2]. It was launched on 03.12.2018 on board of a Falcon 9 rocket
from Vandenberg in California and is currently being operated by students. The assembled
engineering model of the satellite is visible in Figure 1.1 while Figure 1.2 shows a top view
of the solar cells.

Enabled by the miniaturization of electronic components these CubeSats reduce the
entry barrier to space for private and public organizations. Nowadays a one Unit (1U)
CubeSat with dimensions of 10 x 10 x 10 cm and a mass of 1.33kg is able to contain a
miniaturized version of all essential systems that are required for its survival and operation
in an orbit around the earth.

Figure 1.1: Assembled engineering model Figure 1.2: Top view of the engineering
of the 1U MOVE-II CubeSat model of the MOVE-II CubeSat

The CubeSat Design Specification [3] standardizes the dimensions, weight and required
tests for a CubeSat to be launched into space. This standardized platform for small
satellites reduces the coordination effort with the launch provider and in turn lowers the
launch costs for these satellites. With lower development and launch costs the number of
small spacecrafts has increased significantly in recent years [4].

One of the main challenges in building these small spacecraft is the high degree of
integration between all systems. In order to increase component reuse in small spacecrafts
the different tasks are often organized in subsystems. Nevertheless to achieve a high
performance density, subsystems are usually specifically adapted to every mission, which
leads to high failure rates [5][6].

One approach to resolve adaptability and reliability issues at the same time is the
use of subsystems that are modular and scalable. A subsystem that is designed as a
modular and scalable system from ground up can be easily adapted to the individual
mission requirements without significant adjustments and thus rely on the flight heritage
of previous missions using the same modular system.

1 Introduction

1.1 EPS for CubeSats

An Electrical Power System (EPS) is an essential component of basically all spacecrafts. It
provides means to harvest energy through solar cells, temporarily store the energy and
provide power to other systems of the spacecraft. Additionally it provides telemetry data
of the current system state and sensor measurements while handling incoming control
commands. These basic EPS inputs and outputs are visible in Figure 1.3.

Power input Power output

Control/
Status

Figure 1.3: EPS basic interfaces

Generally EPS feature several key components internally as visualized in Figure 1.4.
A Battery charge regulator (BCR) controls the incoming energy from the solar cells to
optimizes their efficiency through Maximum power point tracking (MPPT) and handles the
charging of the battery. Several DC-to-DC converters (DCDCs) provide different output
voltages for other subsystems which are connected through multiple switches in order to
individually switch each subsystem. A microcontroller is responsible for controlling the
input and output electronics while several voltage, current and temperature sensors allow
monitoring of the system’s environment. Often the system features mechanisms to react to
changes in the environment. An example for this would be the battery temperature rising
above a defined threshold causing the system to disable non essential subsystems in order
to reduce the load on the battery. An external digital communications interface exposes
the system’s telemetry and accepts commands to configure and change the state of the
system. This interface is commonly connected to the satellite’s On-board Data Handling
(OBDH) system and thus the term OBDH will be used for the rest of this thesis when
referring to the external system controlling the EPS.

Most of the CubeSat EPS in use today use a centralized design with a single board [7][8][9].
While a centralized design decreases complexity it has several downsides. Often systems
need to be adjusted to fit the specific mission requirements decreasing reusability where
each change could potentially introduce new errors in a flight proven system. More critically
a centralized design acts as a single point of failure.

In the MOVE-II mission the EPS is one of two subsystems that were bought from a
commercial CubeSat component supplier. All other subsystems were designed and built by
students of the TUM [2].

From the experience gathered during the MOVE-II project a new project was devised to
develop a scalable and modular EPS. By following the principles of distributed computing,
fault tolerance can be increased and improved flexibility to mission requirements can be
provided.

1 Introduction

\

g) .
—_— BCR Battery DCDC + Switches >
Solar cells L) Subsystems

EPS
)

Microcontroller
_ I J

OBDH

Figure 1.4: EPS internal components

1.2 UNSW Mission

Based on a cooperation between the University of New South Wales (UNSW) Canberra
Space and the LRT at TUM since 2017 a common interest in the development of a EPS
for small spacecrafts was identified.

The UNSW offered to provide a launch opportunity as part of their upcoming UNSW
M2 mission for a EPS developed by TUM in cooperation with the TUM spin-off Orbital
Oracle Technologies GmbH (orora.tech). The UNSW M2 mission consists of two six Unit
(6U) CubeSats Each measuring 30 x 20 x 10 cm joined together on launch and separated
at some later point in the mission as visible in Figure 1.5 and Figure 1.6.

While the M2 satellite relies on a commercial EPS for its primary mission, a single
board of the EPS developed by TUM will be part of the experimental payload on both
spacecrafts.

The objectives of this cooperation and the resulting Extendable modular power supply
(EMPS) project can be summarized by the following goals derived from the original
collaboration agreement [10]:

e Flight qualify an Electrical Power System, for future CubeSat missions of the TUM
and associated parties (orora.tech, UNSW).

e Build a demonstration board to fly on the two M2 Satellites with all necessary
functionality to qualify the system in space to prove thermal and radiation resistance
of the system over time as well as resilience to the launch environment.

e Qualify the architecture with multiple boards of the system on ground with further
functional and vacuum testing.

e Educate students and build and demonstrate capabilities in spacecraft design at the
Technical University of Munich.

e Foster and deepen the cooperation between the TUM’s Chair of Astronautics and
UNSW Canberra Space, with the goal to exchange expertise, make use of synergies
and enable more demanding missions for both universities.

1 Introduction

Figure 1.5: UNSW M2 satellite with

CubeSat dispenser[10] Figure 1.6: UNSW M2 satellite in deployed

state[10]

The EMPS team consists of 5 people of which one is responsible for the electronics
design and manufacturing [11] while two software engineers develop the software for the
embedded system along with the necessary infrastructure for debugging, testing and
analysis. Development of the software is structured in the following manner: Both software
developers collaborate on the implementation of the hardware abstraction layer for the
embedded system. The single-board interface and coordination of the interface with UNSW
is specifically assigned to one developer [12], while the author of this thesis is responsible
for the high level software algorithms for the distributed system. The original concept for
a distributed EPS integrating electronics, battery and a solar cell in a single component
was developed by another team member in his masters thesis [13].

As common with spaceflight projects Figure 1.7 depicts the mission patch designed for
the EMPS project.

Figure 1.7: Mission patch of the EMPS project

1 Introduction

1.3 Goals of this Thesis

This thesis describes the development of the software system for an EPS, specifically
focusing on the distributed concepts enabling a scalable, modular and robust system.

The background and environment of the surrounding project is described in Chapter 2
along with the requirements imposed on the designed system.

This involves the analysis and selection of a suitable communication protocol and the
design and implementation of a coordination and decision algorithm that fulfills the
requirements for redundant mission operations in Chapter 3 and Chapter 4. An analysis of
possible system states and error cases is performed in Section 4.5 to ensure the system
always behaves in an expected manner.

While the development of the underlying embedded system along with the coordination
and adjustments for incremental hardware revisions are not a focus of this thesis, they
are necessary for the overall EMPS project. Additionally they provide the foundation to
develop the described coordination algorithm and validate its design and implementation
through functional testing.

Chapter 5 describes this functional testing of the requirements and error cases to evaluate
the system along with a description of the test and development environment.

Finally Chapter 6 summarizes the results and provides an outlook on possible future
applications of the system.

2 EMPS System

This chapter describes the hardware architecture and environment of the EMPS system
which serves as a foundation for this thesis.

2.1 System Architecture

In contrast to conventional centralized EPSs the EMPS board features a modular design
with multiple identical boards. While each board operates independently, multiple boards
can be joined together to extend the capabilities of a single board system in regards
to power generation, power storage, power delivery, the number of switches as well as
increasing reliability and fault tolerance.

Each board features a Texas Instruments (TI) MSP430 microcontroller with Ferroelectric
RAM (FRAM) memory as a high reliability embedded processor with low power consump-
tion [14]. In contrast to flash storage common in most microcontrollers the TT MSP430
series with FRAM memory provides improved radiation tolerance and Single event upset
(SEU) tolerance [15][16] and has flight heritage from multiple CubeSat missions [17][4].

The selected MSP430FR5989-EP microcontroller features a 16-Bit Reduced instruction set
computer (RISC) architecture with a 16 MHz frequency, 2kB of main memory and 128 kB
of FRAM for code and data storage. In contrast to increasingly common ARM-based
microcontrollers with >100 MHz and multiple megabytes of flash memory, the resource
limitations of this microcontroller need to be considered at all times during the development
of the base system and the high level logic.

A common Controller Area Network (CAN) bus connects all EMPS boards and is also
accessible for external systems to provide the telemetry, configuration and control interface.

Compared to logical point to point connections between individual boards a shared
CAN bus simplifies the communication architecture as its message based design features
an identifier in all messages that can be leveraged for topic based communication and
multicast messaging. Each message identifier has a fixed priority and serves as a hardware
collision avoidance mechanism ensuring real time delivery of critical messages.

EPS
(0
[EMPSO0 } [EMPSH 1 [EMPS2 } [OBDH ’

SVIVO SVIV1 SVIVZ SVIVO SVIV1 SVIV2 SVIVO SVIV1 SVIV2
Figure 2.1: EMPS multi-board setup with shared CAN bus

Figure 2.1 shows an example of a EMPS multi-board setup with three boards connected

2 EMPS System

through a common CAN bus together with a OBDH. Every EMPS board features multiple
switches to supply subsystems with power. Subsystems can be connected to switches of
different EMPS boards when additional redundancy is desired for critical components.

While every EMPS board in this example features three switches that can be connected
to subsystems the actual EMPS hardware features 6 switches. Two switch provide the
unregulated battery voltage while two other switches provide 3.3V and 5V respectively,
regulated through DCDC converters.

One additional DCDC converter provides a regulated voltage to the integrated digital
circuitry, specifically the MSP430 microcontroller and the temperature, voltage and current
Sensors.

The InterpanelCharge and InterpanelDischarge connections are connected in a multi-
board setup to distribute energy across the batteries of all boards.

Finally an external inhibit pin along with a physical switch electrically disconnects the
battery during launch until deployment as required by the CubeSat Design Specification [3].

The described high level hardware architecture is visualized in Figure 2.1.

InterPanelCharge InterPanelDischarge
——Charge—>» BCR 1 M I M ‘ > SwWo —Discharge—>»
5V o .
——Charge—>» BCR2 > DC/DC > Swi —Discharge—>»
0 Battery
Q
3 —
‘fl:: Inhibit —> Sw2 —Discharge—>»
k=
MSP430 > D:é\//gC > SwW3 —Discharge—>»
-CAN/ UART- Micro- <
controller
— —> Sw4 —Discharge—>»
Sensors <€ 3V86?§(S>IC <«

DC/DC Converter L) Sitein ik Digital Circuitry
current limit

Figure 2.2: EMPS hardware architecture

2.2 Requirements

2.2.1 UNSW M2 Mission

For the UNSW mission an extensive list of formal requirements describing mechanical,
electrical and interface properties was defined at the start of the cooperation with multiple
adjustments during the projects duration, due to changes in the project scope and potential
issues.

The UNSW mission deviates in certain aspects from the original EMPS project as it
only consists of a single board and the external communication interface changed from

2 EMPS System

CAN to Universal Asynchronous Receiver /Transmitter (UART') due to time constraints on
UNSW side.

None of the UNSW requirements are particular relevant for the focus of this thesis and
thus only a basic set of EPS requirements shall be listed in the following section.

2.2.2 Basic EPS

In contrast to conventional space mission small satellites often have lower requirements on
availability and reliability [18]. Nevertheless a certain set of necessary minimal requirements
exists to ensure the utility of the system as a small satellite EPS.

All requirements listed in the following use the requirement levels in accordance with
RFC2119 [19]. The term shall refers to a mandatory requirement, while the term should
refers to a recommended but not mandatory requirement.

R.1 Power input
The EPS shall be able to handle the maximum occurring input power in orbit.
R.2 Power storage
The EPS shall be able to store sufficient electrical power.
R.3 Power supply
The EPS shall be able to provide sufficient electrical power for all supplied subsystems.
R.4 Power channels
The EPS shall support separate power channels for connected subsystems where
each channel can be switched independently.
R.5 Power monitoring
The EPS shall monitor individual power flows to all subsystems.
R.6 Overcurrent detection
The EPS shall keep each subsystem within its respective electrical operational limits.
R.7 Overcurrent shutdown
The EPS shall be able to shut down selective power channels in case of overload.
R.8 Telemetry and control
The EPS shall have a data exchange and command interface with OBDH.
R.9 Power flow telemetry
The EPS shall provide knowledge about the power flows to the OBDH.
R.10 Electrical inhibit
The EPS shall be able to separate power from the system for the time between final
integration and ejection of the satellite from the launcher.

2.2.3 Distributed EPS

For distributed operation of the EMPS the following requirements were identified:

RD.1 Transparent external interface
To the OBDH controlling the EMPS the distributed system shall handle access to
the system in a transparent manner. Regardless of the number of interconnected
EMPS boards the external interface should remain consistent and the system can
be address as a whole instead of communicating with each board individually.

2 EMPS System

RD.2

RD.3

RD.4

Single supply

Due to electrical limitations and to enable accurate current measurements only a
single switch should be active during normal operation for subsystems connected
to multiple EMPS boards.

Failover

In case of a failure on one EMPS board subsystems connected to multiple boards
shall be supplied by one of the other connected EMPS boards without external
intervention. A short interruption in the supply during the failover is acceptable
causing all other EMPS boards to act as hot standby systems.

Number of boards

The restrictions in available volume and mass in small spacecrafts result in a
practical upper bound for the number of simultaneously connected boards. Thus
the system shall be able to handle up to 16 boards connected together.

3 Related Work

In order to select appropriate mechanisms for coordination within the system presented
in Chapter 2 and to fulfill the requirements defined in Section 2.2 existing concepts and
solutions in the area of distributed computing were analyzed.

A distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system [20].

With advances in processor technology and improvements in network bandwidth dis-
tributed systems have become increasingly common in recent years and are a common
approach to improve the reliability of critical systems. Nevertheless distributed systems
remain a difficult area of research partly due to the multifaceted nature of these systems.
Many different approaches and algorithms for communication and coordination within
these systems exist each with their own advantages and disadvantages.

3.1 Coordination Algorithms

A critical component for every distributed system is the coordination between the individual
nodes of the system [21]. This coordination is required to maintain the correctness of
applications in distributed environments.

Coordination algorithms address various requirements in distributed systems. One of
these conditions is mutual exclusion. Distributed mutual exclusion means that only one
process accesses a resource at any given time to safeguard multiple processes against
parallel access [22]. This requires creation of a critical section or region represented as a
code where to enforce mutual exclusion. The central assumption in distributed mutual
exclusion is that message delivery occurs reliably and without fail within a single critical
region. In operating systems, mutual exclusion involves semaphores and atomic actions.
In distributed systems, a mutual algorithm must meet three primary requirements or
conditions: safety, liveness, and ordering. Safety means that only one process can execute
in the critical region at any time. Liveness condition means freedom granted for requests
to enter and exit the critical region. Lastly, ordering means systematic access for enhanced
coordination.

3.1.1 Leader Election

One common approach to ensure consistency within a distributed system is the election of
a single leader or coordinator [23]. A leader election algorithm describes the required steps
to ensure that a system of nodes is able to transition from a state where nodes are unaware
of or unable to communicate with a single coordinator to a state where all nodes agree on
a single leader. After a leader election algorithm has been run, each node throughout the
system recognizes a particular, unique node as the leader.

10

3 Related Work

This elected coordinator can then act as central authority and ensures a consistent state
within the system as all changes to the state need to confirmed by this leader. These
algorithms are based on the assumption that each process knows the election values of all
the processes, but without knowledge of the processes being executed.

While many leader election algorithms exist, the Bully and Ring algorithms present two
common solutions to this problem [24].

In the Bully Algorithm a process initiates election of a new coordinator when it notices
no response in the existing coordinator or upon receiving an election message.

The Ring Algorithm views processes as a ring and assumes that processes know their
successors. In the initial step, each process is assigned a non-participant status, and then
the process that assumes the highest identifier in the logical ring becomes the leader.

Additional variations of these algorithms exist to simplifying message passing or reduce
bandwidth consumption by minimizing the number of message passing to the elected
leader [23].

Conclusion

While these algorithms offer solutions to the problem of electing a leader in a distributed
system, they introduce significant complexity and communication overhead. Even after a
central leader is elected every change in the system requires multiple messages between the
nodes and the leader.

3.1.2 Distributed Shared Memory

One approach to enable coordination between multiple processes within a system this is
the use of shared memory for coordination. The shared memory provides a consistent state
across the all nodes which enables decisions based on the memory contents.

Distributed Shared Memory (DSM) applies the shared memory approach for coordination
to distributed systems. An abstraction layer ensures that each node has its own copy of
the shared memory and can act solely based on the state contained in this memory [25].

Figure 3.1 shows a distributed system consisting of three nodes where a Mapping Manager
act as the abstraction layer that synchronizes a portion of the nodes own memory with
the other nodes. The complexity and communication overhead of the synchronization
algorithm increases with the strictness of memory consistency requirements imposed by
the application accessing the memory.

Conclusion

The distributed shared memory approach provides the convenience of shared memory
programming in a distributed architecture [26].

Its primary downside is the significant overhead associated with the synchronization of
shared memory across multiple systems [20]. Every change in the shared memory must be
tracked and all nodes need to be notified.

11

3 Related Work

Node Node Node
Memory Memory Memory
Shared Memory Shared Memory Shared Memory
A
Mapping Manager Mapping Manager Mapping Manager

Shared Memory

Figure 3.1: Distributed shared memory

3.2 Summary

While none of these approaches provides a optimal solution to coordination in distributed
systems, they provide a foundation for a coordination algorithm adapted to the specific
requirements of the project which will be described in the following chapter.

12

4 Software System Design

4.1 Algorithm Selection

As described in Chapter 3, many coordination algorithms in distributed systems rely on
complex and communication intensive message passing techniques to ensure a consistent
System state.

With the relaxed consistency requirements from Section 2.2 in combination with the
properties of the target system a more lightweight solution can be constructed to coordinate
between the EMPS boards.

4.1.1 Shared State

By leveraging the communication properties of the common CAN bus along with additional
information sources, a consistent shared state can be maintained between the boards where
each board holds a copy of this state in its main memory. This shared state contains all
relevant information so every board can act independently solely relying on the information
contained in this data while still fulfilling the requirements from Section 2.2.

This system approximates the DSM model described in Section 3.1.2 but applies a
certain set of restrictions that facilitate the synchronization between nodes.

Most importantly every board only writes to a small section of its shared memory/ state
(the BoardTelemetryShared as described in Section 4.2.2) and treats the rest of its shared
memory as read-only that is only updated by the Mapping Manager when updates from
other boards are received.

Additionally instead of synchronizing every change to the board’s writable section of the
shared state, the boards state is only shared periodically with the other boards.

Finally the CAN bus in combination with an abstraction on top of the CAN bus driver
provides a convenient interface to exchange multicast messages between the boards [12].
This further reduces the number of messages as the boards only need to send a single
message to update their own state in all other boards.

4.2 Interfaces

When initially flashing the firmware every board is assigned a unique identifier (BoardID)
which allows identification of state updates from different boards. After a board receives a
new state update message it saves the state of this BoardID in it’s own shared state data
structure.

4.2.1 Configuration

In addition to a unique identifier and the shared state the boards store a configuration data
structure that contains information on which subsystems are connected to the switches on
all boards (BoardConfig) and the expected properties of each subsystem (SubsystemConfig).

13

4 Software System Design

EPS

([~] =

I I | I I | I I |
SWo SVIV1 SVI\/2 SV'VO SW1 sSW2 SW0 SWi1 SV|V2

BN

Figure 4.1: EMPS multi-board setup with connected subsystems

Figure 4.1 shows a possible setup with three EMPS boards and three subsystems.
Subsystem 1 (SUB1) is only connected to SW0 of EMPS0 and thus relies on EMPS0 for
power supply. In contrast SUB2 and SUBS are connected to switches on two different
EMPS boards each and can thus be supplied from either one of those boards. The resulting
mapping is shown in Table 4.1 and assigns every board and switch to either a subsystem
or as not connected (NC). The configuration additionally contains a bitmask to mark
individual sensors each board as untrusted in case a component should fail.

The second part of the configuration contains in-
formation about every subsystem. A Boolean for
the initial state determines whether a switch for the
subsystem should be enabled by default and allows
critical subsystems to be enabled without an external
command. A timeout value controls if the system
should be powered constantly when enabled (value 0)
or only for a certain period of time (value in seconds).
If desired a maximum current can be configured that,
when exceeded, sets an error flag in the subsystems
telemetry and disables the switch.

The memory layout of the resulting board and
subsystem configuration data structures is visualized
in Table A.2 and Table A.3.

4.2.2 Telemetry

Board Switch Subsystem

EMPSO SWO SUB1
EMPSO SW1 NC
EMPSO SW2 NC
EMPS1 SWO NC
EMPS1 SW1 SUB2
EMPS1 SW2 SUB3
EMPS2 SWO SUB2
EMPS2 SW1 SUB3
EMPS2 SW2 NC

Table 4.1: Mapping from Board and
switch to subsystem

The telemetry data structure contains all runtime state and sensor data that is collected

by the system.

It is split into two parts, the Board Telemetry (individual per board) and GlobalTelemetry
(shared state). The BoardTelemetry contains the BoardTelemetryShared with the local
system state and in a second part the sensor measurements and relevant debug data.

14

4 Software System Design

The BoardTelemetryShared is shared across boards as described in Section 4.1.1. The
datastructure is visualized in Table A.1 and includes the following elements with relevant
information for the other boards:

Version Protocol and firmware version information

BoardID The unique identifier of the board

Board count Number of active boards

Revision counter Counter to indicate changes in data structure

Uptime Time since the last reset

Board state Bitmask indicating the current board state

Switch Info An array containing the current state of all local switches and their assigned
subsystem. The state contains information whether the switch is enabled or disabled
as well as fault states. These fault states include a previously detected overcurrent
on the switch and the presence of a voltage above a threshold while the switch is
disabled.

Temperature The maximum temperature aggregated from all local temperature sensors

Configuration checksum A checksum of the Configuration structure

Telemetry checksum A checksum of this data structure except the checksum itself

Finally the GlobalTelemetry contains the aggregated shared state in the form of an array
of BoardTelemetryShared structures indexed by the BoardID.

4.3 External Interface

The external interface provides the OBDH with measures to retrieve telemetry from the
system, set configuration values and to enable or disable individual subsystems. The
external interface is accessible through the shared CAN bus causing all EMPS boards to
receive the command from the OBDH. When a command is received the execution of the
EMPS microcontrollers is interrupted and the command is processed. Afterwards a single
board sends back a response over the CAN bus.

It provides the following commands:

GetBoardTelemetry(BoardID, offset)
The board with the matching BoardID responds to the command with the content of
the BoardTelemetry structure at the specified offset.

GetGlobalTelemetry (offset)
The board with the lowest available BoardID responds with the content of the
BoardTelemetry structure at the specified offset.

GetSystemConfig(offset)
The board with the lowest available BoardID responds with the content of the
SystemConfig structure at the specified offset.

SetSystemConfig(offeset, value)
The SetSystemConfig command is processed by all boards and updates the value of
the SystemConfig structure at the specified offset.

15

4 Software System Design

GetBoardConfig(offset)
The board with the lowest available BoardID responds with the content of the
SystemConfig structure at the specified offset.

SetBoardConfig(offeset, value)
The SetBoardConfig command is processed by all boards and updates the value of
the BoardConfig structure at the specified offset.

SwitchSubsystem (SubsystemlID, state)
The SwitchSubsystem command is processed by all boards where every board updates
the requested state for the selected subsystem. Afterwards the switch selection
algorithm as described in Section 4.4.2 is initiated.

4.4 Coordination

While all boards in the EMPS system are connected through the CAN bus the microcon-
troller on all boards run independently.

After startup the hardware and connected sensors are initialized. Afterwards the board
continuously performs the processing loop visible in Figure 4.2 while simultaneously saving
incoming state messages from other boards to the GlobalTelemetry data structure.

Receive state
updates

!

Init hardware —>» Read sensors —>» Update telemetry —> Publish state ——> Check telemetry

T

Suspend uC
Figure 4.2: EMPS processing loop

Fach iteration of the processing loop starts with reading the measurements from all
connected temperature, voltage and current sensors. These measurements are then stored
in the boards local telemetry along with information about the current system state like
uptime and switch state information. Subsequently the current system state is shared with
the other boards over the CAN bus. The contents of this state (the BoardTelemetryShared)
are described in Section 4.2.2.

4.4.1 Shared State Update

In the next step the system iterates over the GlobalTelemetry structure to processes all
received BoardTelemetryShared updates according to the following steps:

e If a board hasn’t updated its state in the last 10 iterations it is ignored.

e Update the number of available boards according to the number of valid entries in
the GlobalTelemetry structure.

e Compute the status (enabled or disabled) of all subsystem from switch information
of all available boards.

16

4 Software System Design

e Compare the requested state with the current state and and increase a subsystem
configuration mismatch counter by 1.

e If the mismatch counter of a subsystem reaches 10 initiate the switch selection
algorithm as described in Section 4.4.2.

Finally the microcontroller is suspended until 200 ms have passed since start of the
processing loop to ensure a consistent processing loop frequency of 5 Hz is reached.

4.4.2 Switch Selection Algorithm

The switch selection algorithm is executed in response to an external SwitchSubsystem
command or when a mismatch between the expected and current state of a subsystem is
detected.

It’s input consists of the SubsystemID, the requested state of the subsystem, the Board-
Configuration structure and the GlobalTelemetry. While the algorithm runs on all boards,
the following set of conditions ensures that only a single board activates a switch for the
subsystem.

The board is selected if,

e it has a matching subsystem switch,
e it has no fault bit set for the board and switch state,
e and has the lowest BoardID among the boards that fulfill the above criteria.

These criteria ensure that all other boards terminate the execution of the algorithm before
changing the state of their local switches.

The algorithm starts by iterating over all boards starting with BoardID zero. It checks
to the BoardConfiguration if the board with the current BoardID provides a switch for
the specified SubsystemID and increments the BoardID if this is not the case. In the next
step the fault bits for the board and the relevant switch are checked and the BoardID is
incremented if either bit is set. If both conditions are fulfilled the board compares the
current BoardID with it’s own BoardID and aborts the algorithm if they don’t match.

The final remaining board then activates its switch for the subsystem, updates its own
state accordingly and publishes its updated BoardTelemetryShared.

For disabling a subsystem the algorithm can be simplified and the steps above are not
required. Every board with a switch associated to the subsystem can simply disable the
switch independent of its previous state.

17

4 Software System Design

4.5 Error Case Analysis

To verify the reliable operation of the system described in this chapter a list of possible
error cases along with their mitigation and outcome shall be checked in the following.

4.5.1 Sensor failure

Description Due to the number of discrete sensors on every board there exists a risk of
failure of individual sensor during the expected mission duration.

Mitigation While the sensors provide additional safety, none of them are critical for the
operation. To selectively disable individual sensors the BoardConfiguration contains
a bitmask where the individual bits map to sensors. Once a bit is set the related
sensors is marked as untrusted and it’s sensor values are no longer used.

Outcome With the failed sensor disabled the system can no longer fulfill R.9 Power flow
telemetry for the channel associated with the sensor. Nevertheless all other sensors
still provide telemetry and the overall system operation and safety is unaffected as
R.6 Overcurrent Detection and R.7 Overcurrent Shutdown can still be handled by
the switch itself.

4.5.2 Subsystem overcurrent

Description Due to transient or persistent electrical issues in a subsystem or the EMPS
board an overcurrent condition might occur where the subsystem consumes more
than its allocated power. This could impact the overall system performance or in the
case of a short circuit potentially damage the subsystem or the EMPS board.

Mitigation On the EMPS board the switch associated with the affected subsystem provides

multiple ways to indicate faults. On one hand sensors are used to monitor the state
of switches, subsystems and the battery. In case a current measurement exceeds the
configured maximum current for this subsystem the switch will be disabled by the
microcontroller.
Additionally the switch itself provides a hardware overcurrent shutdown that disables
the switch above a maximum current that the EMPS is capable to provide. This
hardware shutdown acts as an additional safety with a current limit above the
configurable software limit.

Outcome Once a overcurrent condition occurs the switch is disabled and the switch state
indicates a fault.

4.5.3 Switch for a subsystem indicates a fault

Description Once a fault on a switch occurs the switch is disabled and the switch state
indicates a fault. One example for this is a subsystem overcurrent condition as
described in Section 4.5.2. The information about this switch fault is then propagated
to the other subsystems as part of the shared state.

Mitigation The resulting mismatch in expected subsystem state and actual subsystem
state causes the switch selection algorithm to run as described in Section 4.4.

18

4 Software System Design

Outcome If the subsystem is connected to multiple switches on different EMPS boards
another board will enable the switch corresponding to the subsystem. If the subsystem
is only connected to a single EMPS board the subsystem will stay disabled.

4.5.4 All Switches for a subsystem indicate a fault

Description When a switch for a subsystem indicates a fault the switch is disabled on the
EMPS board and the switch selection is run as described in Section 4.5.2. When
the corresponding switch on the next board also indicates a fault the process is
repeated until all switches for that subsystem indicate a fault and the subsystem
stays disabled.

Mitigation The subsystem can be enabled again by the SwitchSubsystem command from
the OBDH which in turn clears the fault state of all switches of that subsystem.
To prevent critical systems from being permanently disabled, subsystems can have
their initial state set to enabled as described in Section 4.2.1. This causes the EMPS
boards to automatically clear the switch fault once all boards indicate an error and
restart the whole switch selection process from the beginning.

Outcome Repeated attempts to enable the subsystem ensure the system can recover from
transient electrical issues.

If the electrical issue on the subsystem is persistent the subsystem will repeatedly
enter the fault state. While this outcome is not optimal, it is preferred to stopping
all attempts to power a subsystem critical for operation of the satellite.

4.5.5 Board failure

Description In case of a complete board failure the board will no longer provide state
updates to other boards.

Mitigation An internal timeout on the EMPS board keeps track of the time of the last
state update reception from every other EMPS board. If a board fails to provide
periodic state updates and the time since the last update exceeds a threshold its
board state is ignored by all other boards as described in Section 4.4.

This results in a mismatch of the state of subsystems that were previously powered
by the failed board. Consequently the switch selection algorithm from Section 4.4.2
runs.

Outcome All subsystems that are connected to multiple boards and were previously
powered by the failed board will be now be powered by another board. Subsystems
that are only connected to the failed board can no longer be powered.

4.5.6 Transmission error in state update

Description The state update from another board is received with transmission errors.

Mitigation While individual messages on the CAN bus already contain a checksum ensuring
the integrity of those messages, each CAN message is limited to 8 bytes of payload
data. To ensure the integrity of the 40 bytes of shared state update an additional
checksum over the complete state update (excluding the checksum) is calculated

19

4 Software System Design

before transmission and verified after reception. Packets with invalid checksum are
discarded on reception and treated if no update was received.

Outcome Transmission errors are detected and all decision based on the shared state are
performed with a sufficient delay that the next state updates are received in time.
Thus occasional transmission errors in state updates have no negative effect on the
system.

4.5.7 Split system

Description In a split system communication is no longer possible between a subsection of
all nodes/ EMPS boards. An example for this would be a three board configuration
where two boards are still able to communicate with each other and the OBDH while
the third board is unable to receive/ send messages over the CAN bus.

Mitigation With the boards unable to share their state updates with each other a consistent
shared state across boards is no longer possible.

Nevertheless no subsystems will be powered by multiple boards at the same time
as the presence of voltage on a disabled switch is indicated in the switch state as
described in Section 4.2.2.

Outcome Subsystems connected to switches of the boards separated from the OBDH can

no longer be enabled or disabled. Subsystems with an enabled initial state will stay
enabled and subsystems only connected to the boards with a disabled initial state
can no longer enabled.
Again while this is not a perfect outcome the overall system is not severely impacted
as the enabled initial state is mainly intended for critical subsystems that should
be permanently enabled and subsystems with a disabled initial state can still be
controlled as long as they are connected to an additional EMPS board.

4.5.8 CAN bus failure

Description In case of a complete failure of the CAN bus no internal communication
between the boards as well as external communication with the OBDH is possible.

Mitigation While no communication between the boards is possible the boards still act
independently an enable all subsystems with an enabled initial state.

Outcome Without the CAN bus the OBDH can no longer control the state of the subsys-
tems. A failure of the CAN bus results in the worst possible outcome and currently
presents a single point of failure. Nevertheless critical subsystems with an enabled
initial state will still be supplied with power by the EMPS boards and for these
subsystems the EMPS essentially behaves like a power supply that can’t be controlled.

20

5 Evaluation

The following chapter details the steps that were performed in order to evaluate the
functionality and performance of the system described in the previous chapters. While the
fulfillment of the basic EPS requirements Section 2.2.2 is verified the main focus lies on the
distributed operation of the system and the associated requirements from Section 2.2.3.

5.1 Functional Testing

To validate the nominal operation of the system all requirements and error cases, a set of
functional tests was performed. Fach test case starts with a brief test description followed
by the outcome of the test and a reference to the requirements or error cases this test case
verifies. While some requirements where not specifically covered in this thesis they are
essential parts of the EMPS software and hardware and test cases for these requirements
are thus included.

5.1.1 Single Board Test Cases

T.1 Power input
Test description
To test if the system is capable of charging the batteries an external power source
was connected to the BCR input pins. The battery voltage and input current were
measured before and some time after connecting the external power source.
Outcome
The input current was measured at the expected level after connecting the external
power source and the battery voltage increased between the measurements.
Reference
R.1 Power input

T.2 Power storage and supply
Test description
To test if the system is capable of storing and supplying a sufficient amount of
electrical power the batteries were fully charged. Subsequently the battery was
discharged over a load resistance connected to a regulated voltage switch until a
minimum battery voltage level was reached.
Outcome
Integrating the measured constant discharge current over the duration of the discharge
cycle and multiplying it with the voltage resulted in a sufficient battery capacity in
line with the specified capacity of the battery when factoring in DCDC conversion
inefficiencies.
Reference
R.2 Power storage and R.3 Power supply

21

5 Evaluation

T.3

T.4

T.5

T.6

Telemetry and control

Test description

To test if the communication interface an external OBDH was connected to the CAN
bus. Afterwards the commands specified in Section 4.3 were sent from the OBDH
over the CAN bus.

Outcome

Commands to receive telemetry resulted in the expected telemetry data being sent by
the EMPS board over the CAN bus. Commands to control the state of a subsystem
resulted in a change of the subsystems state as confirmed by a voltage measurement
on the associated switch as well as a change in the subsystems telemetry.
Reference

R.8 Telemetry and control

Power channels

Test description

To test if the system is capable of providing power over all available switches a load
resistance is connected to all switches sequentially. After enabling the subsystem
associated with the connected switch the voltage and current for this switch was
retrieved over the telemetry interface.

Outcome

The system was able to supply all switches with power and provided voltage and
current telemetry for every switch.

Reference

R.4 Power channels, R.5 Power monitoring and R.9 Power flow telemetry

Overcurrent detection and shutdown

Test description

To test if the system is capable of detecting an overcurrent condition and subsequently
disables the associated switch, a variable load resistance was connected to all switches
sequentially. For every switch the value of the variable resistance was gradually
reduced until the output current exceeded the maximum output current. This test
was repeated twice, once with a maximum output current configured in software and
a second time with no maximum output current configured in software to test the
hardware current limit.

Outcome

For all performed tests the switch was disabled automatically once the maximum
output current was exceeded. Additionally the subsystem telemetry associated with
the switch indicated an overcurrent condition as expected.

Reference

R.6 Owercurrent detection and R.7 Overcurrent shutdown

Electrical inhibit

Test description

To test if the system can be completely disabled in spite of the built in batteries,
the mechanical inhibit switches were activated.

Outcome

22

5 Evaluation

As soon as the mechanical inhibit switches were activated the voltage supplied to
the microcontroller dropped and the microcontroller stopped running.

Reference

R.10 Electrical inhibit

5.2 Multi-Board Test Setup

The basic multi-board test setup consists of two EMPS boards and is visible in Figure 5.1.
On every EMPS board two subsystems are connected to the output switches. Subsystem
2 is connected to Switch 2 of every board while Subsystem 4 is connected to Switch 4.
While the mapping between switch and subsystem can be configured in the BoardConfig
as described in Section 4.2.1 the default configuration maps every switch to the subsystem
with the same number and thus no configuration is required for this setup.

All EMPS boards are connected to the shared CAN bus along with a Raspberry Pi
acting as OBDH to send commands over the external command interface.

For tests with more than two EMPS boards this test setup can easily extended by
connecting an additional board to the shared CAN bus while additionally connecting the
two present subsystems with the corresponding switches of the new board.

EPS

e | [

T T T T T T T T T T T T
SVIVO SVIV1 SW2 SVIV3 SWw4 S\IIVS SVIVO SVIV1 SW2 SVIV3 SW4 SVIVS

Figure 5.1: Test configuration with two EMPS boards

5.2.1 Multi-Board Test Cases

TD.1 Transparent external interface
Test description
To test the external interface in the presence of multiple boards, the system was
configured as described in Section 5.2.
Afterwards the commands specified in 4.3 were sent from the OBDH over the CAN
bus as previously tested for a single board in T.3.

23

5 Evaluation

TD.2

TD.3

TD.4

TD.5

Outcome

Commands that specifically addressed a single board by its BoardID resulted in a
response from that board as described in Section 4.3. All other commands resulted
in a response from the board with the lowest available BoardID. For the OBDH
controlling the EMPS system with multiple boards the external interface behaves
identical to a single board system.

Reference

RD.1 Transparent external interface

Enable subsystem

Test description

To test if subsystems can be enabled in a multi-board setup, the command to
enable Subsystem 2 was sent from the OBDH. Afterwards the telemetry of all
boards was retrieved to ensure only a single switch for the subsystem was activated
across all boards.

Outcome

As expected this resulted in Switch 2 on the board with the lowest BoardID being
enabled as indicated by the telemetry.

Reference

RD.2 Single supply

Disable subsystem

Test description

Following the activation of Subsystem 2 in TD.2, the command to disable Subsystem
2 was sent from the OBDH. Afterwards the telemetry of all boards was retrieved
to ensure the subsystem was disabled across all boards.

Outcome

As expected Subsystem 2 was no longer supplied by any board after being disabled
and all associated switches were disabled as indicated by the telemetry.
Reference

RD.2 Single supply

Failover

Test description

This test checks if a subsystem continues to be supplied by the EMPS after the
board originally supplying the subsystem fails. After enabling Subsystem 2 as
described in Item TD.2 the board with the lowest BoardID was disconnected from
the CAN bus as well as from the subsystems.

Outcome

After disconnecting the board Subsystem 2 was without power for a few seconds
until Switch 2 on the remaining board was activated.

Reference

RD.3 Fuailover

Number of boards
Test description

24

5 Evaluation

A test with the maximum number of theoretically supported boards was not
possible due to limited amount of available EMPS boards. During testing up to
six EMPS boards were connected to a shared CAN bus for extended periods of
time as visible in Figure 5.2.

To test the behavior of the system with more than six boards additional six
microcontrollers with CAN capability were connected. These microcontroller
continuously updated and shared their own shared state but did not respond to
commands over the external command interface.

Outcome

The system performed as expected in the configuration with six EMPS boards as
well as in the configuration with six EMPS boards and six additional microcon-
trollers.

Reference

RD.4 Number of boards

Figure 5.2: Test setup with siz EMPS boards connected to a shared CAN bus

5.2.2 Error Cases

Test for the error cases described in Section 4.5 were performed according the error case
description and the outcome matched the expected outcome.

5.3 Spacecraft Integration Testing

To facilitate the development and testing of the EMPS system an extensive support
infrastructure was created during the project.

Every EMPS board is continuously connected to a dedicated Raspberry Pi and a MSP430
programmer as visible in Figure 5.3. This Raspberry Pi is connected to the external interface
of the EMPS board and is thus able to act as OBDH sending commands to the EMPS

25

5 Evaluation

board and retrieve its telemetry. Additionally the Raspberry Pi can control the BCR input
of the EMPS board to enable or disable charging. A MSP430 programmer attached to the
Raspberry Pi allows flashing new firmware on the microcontroller. A connection to the
system can be established remotely though the Ethernet connection of the Raspberry Pi.

Figure 5.3: Picture of the development environment with two EMPS boards

A Continuous Integration and Continuous Delivery (CI/CD) pipeline on the Gitlab
server hosting the source code repository is initiated every time a new commit is pushed
and is visible in Figure 5.4.

In the first phase of the build process the firmware is compiled by a docker container
running on a Gitlab-runner. The resulting firmware images are saved and archived as build
artifacts on the Gitlab server. In the next phase of the CI/CD pipeline the Gitlab-runner
connects to the Raspberry Pi in order to flash the new firmware on the EMPS board.
Finally in the test phase of the CI/CD pipeline a test suite is executed on the Raspberry Pi.
This test suite communicates with the EMPS board though the external command interface,
temporarily enables subsystems and checks telemetry values to ensure the new firmware
behaves as expected. A similar pipeline is used to run unit test on the microcontroller.

To keep track of the state of all boards a web based visualization based on Grafana
provides access to the current and historic telemetry of all EMPS boards. In this setup
a Python script running on the Raspberry Pi continuously retrieves the telemetry of a
single EMPS board over the external command interface. The script then parses the data
and puplishes the parsed telemetry over MQTT. Telegraf subscribes to MQTT topic of
the parsed telemetry and stores the data in the time series database InfluxDB. Finally the
Grafana frontend is used to visualize the data stored in the database.

26

5 Evaluation

Developer Gitlab Gitlab-runner RPi DUT

?

%

Run CI/CD Pipeline
Cl/CD: Build %‘ Build Artifacts

Save Artifacts

Cl/CD: Deploy Deploy Artifacts ———=>| Flash uC

v

CI/CD: Test %%9 Respond to requests

Geceives Feedbacaé—GI/CD: Pass/Fa% Verify results L’\

Figure 5.4: CI/CD hardware integration

The whole setup provides a convenient way to develop for an embedded target platform,
as no physical hardware access is required to test new software revisions. Unit and
Integration tests enable a stable and consistent system behavior across firmware revisions
while the data visualization is essential for keeping track of the system performance over
time.

5.4 Power Consumption

By measuring the power consumption of a single EMPS board with a variable number of
other EMPS boards connected to the system, the impact of the number of boards on the
overall power consumption can be estimated.

Figure 5.5 shows two graphs with the number of connected EMPS boards in the upper
graph and the power consumption of a single board in the lower graph. No significant
correlation between the number of connected EMPS boards and the power consumption is
visible.

Sending messages over the CAN bus consumes energy from the board sending the message,

27

5 Evaluation

but due to the design of the coordination algorithm the number of state updates a single
boards sends is unaffected by the number of boards. Although the board’s microcontroller
needs to process more status updates from other boards and thus spends less time in a low
power sleep mode this additional processing proves to be insignificant compared to the
overall power consumption of the system.

In conclusion the power consumption of the EMPS system scales linearly with the number
of boards as a single board’s current consumption remains constant independent of the
number of connected boards.

Board count

14:58:10 14:58:20 14:58:30 14:58:40 14:58:50 14:59:00 14:59:10 14:59:20 14:59:30 14:59:40 14:59:50 15:00:00 15:00:10 15:00:20

Board count

Power consumption
0.06 W

0.05W
0.04 W
0.03W
0.02W
0.01W

ow

14:58:10 14:58:20 14:58:30 14:58:40 14:58:50 14:59:00 14:59:10 14:59:20 14:59:30 14:59:40 14:59:50 15:00:00 15:00:10 15:00:20

Battery output Avg: 0.049 W Microcontroller Avg: 0.031 W

Figure 5.5: Power consumption measurements

5.5 Summary

Functional testing of the EMPS system shows that all requirements are fulfilled and the
system behaves as expected in an extensive set of defined error cases.

During development a set of unit and integration tests as described in Section 5.3 ensure
that every feature is continuously tested.

Finally a suite of environmental test were performed in the Thermal Vacuum Chamber
(TVAC) of the LRT to test the system closer to its expected operation environment in the
vacuum of space.

28

6 Conclusion and Outlook

At the time of writing this thesis the next and final hardware revision for the UNSW
mission is currently in production. After assembly and testing this hardware will be shipped
to Australia at the end of February. Finally the UNSW M2 mission is scheduled to launch
in August 2019 and will verify the EMPS hardware as well as software.

The full multi-board version of the EMPS project is currently planned to be used in the
EVE-1 mission, the first satellite developed by orora.tech. The project timeline schedules
the completion of the first satellite at the end of 2019. The hardware design will be
adjusted, integrating the solar panels in the smartpanel architecture and most UNSW
mission specific test circuits will be removed.

The software and communication protocols developed in this thesis serve as a solid
foundation for all future satellite missions and applications of the EMPS.

29

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2

3.1

4.1
4.2

5.1
5.2
5.3
5.4
9.5

Assembled engineering model of the 1U MOVE-IT CubeSat 1
Top view of the engineering model of the MOVE-II CubeSat 1
EPS basic interfaces 2
EPS internal components 3
UNSW M2 satellite with CubeSat dispenser[10] 4
UNSW M2 satellite in deployed state[10] 4
Mission patch of the EMPS project 4
EMPS multi-board setup with shared CAN bus. 6
EMPS hardware architecture, 7
Distributed shared memory oL 12
EMPS multi-board setup with connected subsystems 14
EMPS processing loop 16
Test configuration with two EMPS boards 23
Test setup with six EMPS boards connected to a shared CAN bus 25
Picture of the development environment with two EMPS boards 26
CI/CD hardware integration 27
Power consumption measurements 28

List of Tables

4.1

Al
A2
A3

Mapping from Board and switch to subsystem 14
Shared state of a single board 0oL, 35
Board configuration data structure for 3 boards L. 36
Subsystem configuration data structure for 3 boards 36

30

Acronyms

1U one Unit

6U six Unit

BCR Battery charge regulator

CAN Controller Area Network

Cl/CD Continuous Integration and Continuous Delivery
DCDC DC-to-DC converter

DSM Distributed Shared Memory

EMPS Extendable modular power supply

EPS Electrical Power System

FRAM Ferroelectric RAM

LRT Chair of Astronautics

MOVE-II Munich Orbital Verification Experiment IT
MPPT Maximum power point tracking

OBDH On-board Data Handling

orora.tech Orbital Oracle Technologies GmbH

RISC Reduced instruction set computer

SEU Single event upset

Tl Texas Instruments

TUM Technical University of Munich

TVAC Thermal Vacuum Chamber

UART Universal Asynchronous Receiver/Transmitter
UNSW University of New South Wales

WARR Scientific Workgroup for Rocketry and Spaceflight

31

Bibliography

J. Straub, “CubeSats: A Low-Cost, Very High-Return Space Technology”, en, Pro-
ceedings of the AIAA Reinventing Space Conference, p. 6, 2012.

M. Langer, F. Schummer, N. Appel, T. Gruebler, K. Janzer, J. Kiesbye, L. Krempel,

A. Lill, S. Rueckerl, and M. Weisgerber, “MOVE-II THE MUNICH ORBITAL
VERIFICATION EXPERIMENT II”, en, p. 19, 2017.

M. Arash, “CubeSat Design Specification”, en, CalPoly SLO, p. 42, 2014.

R. Shimmin, “Small Spacecraft Technology State of the Art”, en, NASA Ames
Research Center, Mission Design Division, p. 173, 2015.

M. Langer and J. Bouwmeester, “Reliability of CubeSats - Statistical Data, Developers’
Beliefs and the Way Forward”, en, p. 12, 2016.

M. Swartwout, “The First One Hundred CubeSats: A Statistical Look”, en, p. 21,
2013.

C. Clark, “Huge Power Demand...Itsy-Bitsy Satellite: Solving the CubeSat Power
Paradox”, en, p. 8, 2010.

M. Pajusalu, E. Ilbis, T. Ilves, M. Veske, J. Kalde, H. Lillmaa, R. Rantsus, M.
Pelakauskas, A. Leitu, K. Voormansik, V. Allik, S. Latt, J. Envall, and M. Noorma,
“Design and pre-flight testing of the electrical power system for the ESTCube-1
nanosatellite”, en, Proceedings of the Estonian Academy of Sciences, vol. 63, no. 2S,
p- 232, 2014, 18SN: 1736-6046. DOI: 10.3176/proc.2014.2S.04.

T. Aburouk, S. Kim, H. Masui, and M. Cho, “Design, Fabrication, and Testing of an
Electrical Double-Layer Capacitor-Based 1U CubeSat Electrical Power System”, en,
p. 17, 2018.

Cooperation agreement between UNSW and TUM, 2018.

R. Amann, “Development and Test of a Controllable Battery Charge Regulator for
CubeSat Applications”, unpublished, Master’s thesis, TUM.

F. Schottl, “Software development for a modular power supply for cubesats”, unpub-
lished, IDP Report, TUM.

T. Griibler, “Highly Integrated Smart Satellite Panels for Commercial Space Appli-
cations”, en, p. 63, 2017.

T. Instruments, “Msp430{r5989-ep mixed-signal microcontroller datasheet”, 2017.

R. Netzer, K. Avery, W. Kemp, A. Vera, B. Zufelt, and D. Alexander, “Total Ionizing
Dose Effects on Commercial Electronics for Cube Sats in Low Earth Orbits”, en, in
2014 IEEE Radiation Effects Data Workshop (REDW), Paris, France: IEEE, Jul.
2014, pp. 1-7. DOI: 10.1109/REDW.2014.7004607.

32

https://doi.org/10.3176/proc.2014.2S.04
https://doi.org/10.1109/REDW.2014.7004607

Bibliography

[16]

S. M. Guertin, M. Amrbar, and S. Vartanian, “Radiation Test Results for Common
CubeSat Microcontrollers and Microprocessors”, en, in 2015 IEEE Radiation Effects
Data Workshop (REDW), Boston, MA, USA: IEEE, Jul. 2015, pp. 1-9. poI: 10.
1109/REDW.2015.7336730.

I. Kronhaus, “Design of the UWE-4 Picosatellite Orbit Control System using Vacuum-
Arc-Thrusters”, in International Electric Propulsion Conference, 2013.

L. J. Paxton, “‘“Faster, better, and cheaper” at NASA: Lessons learned in managing
and accepting risk”, en, Acta Astronautica, vol. 61, no. 10, pp. 954-963, Nov. 2007.
DOIL: 10.1016/j.actaastro.2006.10.014.

S. O. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,
1997. por1: 10.17487/RFC2119.

M. van Steen and A. S. Tanenbaum, Distributed systems, en, Third edition (Ver-
sion 3.01 (2017). The Netherlands: Published by Maarten van Steen, 2017, OCLC:
1006750554, 1SBN: 978-1-5430-5738-6.

M. Raynal, “A Look at Basics of Distributed Computing”, en, in 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), Nara, Japan:
IEEE, Jun. 2016, pp. 1-11, 1sBN: 978-1-5090-1483-5. DOI: 10.1109/ICDCS.2016.109.

R. Singh, J. Malviya, and K. Jha, “A Survey of Mutual Exclusion Algorithms in
Distributed Computing”, en, p. 4, 2013.

M. EffatParvar, N. Yazdani, M. EffatParvar, A. Dadlani, and A. Khonsari, “Improved
algorithms for leader election in distributed systems”, en, in 2010 2nd International
Conference on Computer Engineering and Technology, Chengdu, China: IEEE, 2010,
ISBN: 978-1-4244-6347-3. DOI: 10.1109/ICCET.2010.5485357.

S. Balhara and K. Khanna, “Leader Election Algorithms in Distributed Systems”,
en, International Journal of Computer Science and Mobile Computing, p. 6, 2014.

C. Amza, A. Cox, S. Dwarkadas, P. Keleher, Honghui Lu, R. Rajamony, Weimin
Yu, and W. Zwaenepoel, “TreadMarks: Shared memory computing on networks of
workstations”, en, Computer, vol. 29, no. 2, pp. 18-28, 1996, 1ssN: 00189162. DOI:
10.1109/2.485843.

B. Nitzberg and V. Lo, “Distributed shared memory: A survey of issues and algo-
rithms”, en, Computer, vol. 24, no. 8, pp. 52-60, Aug. 1991, 1sSN: 0018-9162. DOI:
10.1109/2.84877.

33

https://doi.org/10.1109/REDW.2015.7336730
https://doi.org/10.1109/REDW.2015.7336730
https://doi.org/10.1016/j.actaastro.2006.10.014
https://doi.org/10.17487/RFC2119
https://doi.org/10.1109/ICDCS.2016.109
https://doi.org/10.1109/ICCET.2010.5485357
https://doi.org/10.1109/2.485843
https://doi.org/10.1109/2.84877

A Appendix

A.1 Data Structures

34

A Appendix

pAp0q 2)bULs D [0 2108 PoUDYS TV OIqeL

[T]umsypoyo A1jouoe) [o]umsypoyp A1jewoe) | [T]wnsyooyn 3yuoo [o]Jumsypeyp Syuoo | Hgx(
- - [T]omyeroduay [0]omyerodwey | (gx(

918") SOUDIIMS | PI WOISASqNS’) SOUIIIMS 91R1S'g SOUDIIMS | PI WOISASUNS'Q SOUIHMS | DTX()
91RIS'G SOUD)IMS | PI WISASQNS'G SOUIIIMS 91RIS' P SOUDIIMS | PI WOISASUNS' SOUIHMS | KTX()
910)S'¢T SOUDIIMS | PI WOISASqNS'¢ SOUIIIMS 91e1S 7 SOUDIMS | PI WISASqNS'g SOUDIIMS | FTIX()
91RIS' T SOUD)IMS | PI WOISASqNS' T SOUIIIMS 91R1S’() SOUDIIMS | PI WOISASUNS'() SOUIHMS | (TX()
sGeyj-oe)s s3eyj-orels JIOI1I9°9%R)S opour-aje)s | NHOX(
[¢]owrydn [g]owmydn [T]owurydn [o]Jowmdn | g0x(
[T]109unoo™ uorsiaax [0]109unoo™ uoISIASI unod pIeoq Pr pieoq | $0X(
IOUTUI OICMULIT Iofewl oremuLIy Iourwr [0o0301d Iolewr [ooojoad | (0X()

¢ + Ippy ¢ + 1ppy I + 1ppy 0 + IPPY | IPPY

35

A Appendix

SPADOQ & AOf 2UNJONUAIS DIDP UOLVINOYU0D WaPslisqng 1€V S[qQel,

- | 9yeIS [RIYIUI'g SWOISAsSqns | (IX()
[T]pueimo™ wnwrxew ' [SWo)sASqns | [0]1UIeImo WNWIXeUW' [SWe)SASqNS | [T]inosutr) [swe)sAsqns [0]amoamury 1™ swasAsqns | HOX()
- - - | 9gels [eIUT'T swe)sAsqns | OX()
[T]aue1mo™ wnwrxew () SWoSASqNSs | [0]IUeImd WNUIIXRW'() SUOISASqNS | [T]noswry’() suelsAsqns [0]amostury ' swgsAsqns | FOX(
- - - | 93RS [RIYIUL'() SwWeISAsSqns | ()0X()
€ + Ippy ¢ + IPPV I + PPV 0 + IPPV | IPPV

§PADOQ & 4Of 2UNJINUIS DIDP UOUDUNDYU0D pavOg TV O[qelL
- - [T]s10suas™ pajqesip'g spieoq [0]s1osuas™ pa[qesip'g spIeoq | (ZX0
Pr wosASqns’) SOUDIIMS'E SPIRO(Q | PI WOISASUNS Q™ SOUDIIMS'Z SPIRO(Q | PI WOISASONS G SOUDIIMS'E SPIRO(Q | PI WOISASONS'§ SOUDIUMS'Z SpIROQ | DTX(
Pl wWRISASqNS'E SOUDIMS'E SPIRO(Q | PI WRISASqNS'g SOUDIIMS'E SPIRO(Q | PI WOISASqNS T SOUDIMS'E SPIRO(Q | PI WISASUNS'() SOUDIMS'E SpIeOq | QIX(
- - [1]s10suas™ pafqesip'] spieoq [0]s10suas™ pafqesip'] spIeoq | FIX()
Pr wRSASqNS’) SOUDIMS' T SPIRO(Q | PI WRISASqNS Q™ SOUDIMS T SPIRO(Q | PI WISASqNS’ G SOUDIMS] SPIRO(Q | Pl WISASqNS' SOUDIUMS [SpIeoq | (OTX(
Pr woSASqNs’¢™ SOUDIMS'] SpIRO(Q | PI WOISASUNS'Z SOUDIMMS' [SPIRO(Q | PI WOISASONS T SOUDMMS' [SPIRO(Q | PI WOISASONS'() SOUIUMS' [SpIROq | DOX(
- - [T]s10suas™ pajqesip'()” spIeoq [0]s1osues™ pajqesip’()” spIeoq | {0X(
Pr woSASqns’) SOUDIMS'() SPIRO(Q | PI WRISASUNS g SOUDIMS'() SPIRO(Q | PI WOISASUNS G SOUDIMS'() SPIRO(Q | PI WOISASqNS'§ SOUYDHMS'() SPIRO(Q | F(0X(
Pl wRISASqNS'¢ SOUDIIMS'() SPIRO(Q | PI WISASqNS'g SOUDIMS'() SPIRO(Q | PI WOISASqNS T SOUDIMS'() SPIRO(Q | PI WAISASUNS'()” SOUDHMS'() SpIeOq | (0X0
€ + IPPY ¢ + IPPY T + PPV 0 + IPPV | IPPV

36

	Abstract
	Contents
	1 Introduction
	1.1 EPS for CubeSats
	1.2 UNSW Mission
	1.3 Goals of this Thesis

	2 EMPS System
	2.1 System Architecture
	2.2 Requirements
	2.2.1 UNSW M2 Mission
	2.2.2 Basic EPS
	2.2.3 Distributed EPS

	3 Related Work
	3.1 Coordination Algorithms
	3.1.1 Leader Election
	3.1.2 Distributed Shared Memory

	3.2 Summary

	4 Software System Design
	4.1 Algorithm Selection
	4.1.1 Shared State

	4.2 Interfaces
	4.2.1 Configuration
	4.2.2 Telemetry

	4.3 External Interface
	4.4 Coordination
	4.4.1 Shared State Update
	4.4.2 Switch Selection Algorithm

	4.5 Error Case Analysis
	4.5.1 Sensor failure
	4.5.2 Subsystem overcurrent
	4.5.3 Switch for a subsystem indicates a fault
	4.5.4 All Switches for a subsystem indicate a fault
	4.5.5 Board failure
	4.5.6 Transmission error in state update
	4.5.7 Split system
	4.5.8 CAN bus failure

	5 Evaluation
	5.1 Functional Testing
	5.1.1 Single Board Test Cases

	5.2 Multi-Board Test Setup
	5.2.1 Multi-Board Test Cases
	5.2.2 Error Cases

	5.3 Spacecraft Integration Testing
	5.4 Power Consumption
	5.5 Summary

	6 Conclusion and Outlook
	List of Figures
	List of Tables
	List of acronyms
	Bibliography
	A Appendix
	A.1 Data Structures

