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This paper presents numerical and experimental studies on modal behavior of cylindrical,
lightly damped beam structures containing a notch-like crack with variable position and
geometry. The numerical investigation utilizes the Finite-Element-Method (FEM) and a
discretization strategy is developed that enables a crack to be represented in three

flexible supported test specimen was developed. The customized excitation unit was used
in conjunction with a Laser-Scanning-Vibrometer (LDV) to analyze a frequency range up to
40 kHz. The first 15 bending mode shape pairs with their corresponding eigenfrequencies
are numerically and experimentally identified. The model updating is performed for the
elastic parameters and the boundary conditions to minimize the deviation between
experimentally determined and numerically calculated results in terms of eigen-
frequencies. The acquired data are used in a two-stage damage identification procedure, in
which suitable start vectors are found by the evaluation of objective function plots.
Subsequently, geometrical crack parameters are identified. The deviations between real
and determined crack positions range between 0.05 and 0.28 percent for crack depth/
diameter ratios of less than 7 percent.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The engineering field of damage identification based on modal data is well represented in the literature [5–8,20]. Defects
change the geometry and the mechanical properties of structures and cause a measurable modification of their dynamic
behavior in relation to an undamaged system. Damage identification based on modal data has diverse applications in
structural health monitoring (SHM), condition monitoring (CM) and non-destructive testing (NDT).

Focusing on non-destructive testing, classical inspection techniques require the section of interest to be accessible. Due
to their local character, the data extraction is slow in comparison to global techniques. By definition, using non-destructive
methods one is capable of evaluating structural integrity without disturbing the structure's future performance. Common
methods are based on visual observations or the analysis of changes in material properties. The method presented in this
paper uses changes in the global behavior of the observed structure to interpret the structural condition. The modal
parameters of a structure, such as the eigenfrequencies, mode shapes and modal damping, are functions of the structure's
ier Ltd. This is an open access article under the CC BY-NC-ND license
.

e).

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2015.12.013
http://dx.doi.org/10.1016/j.jsv.2015.12.013
http://dx.doi.org/10.1016/j.jsv.2015.12.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2015.12.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2015.12.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2015.12.013&domain=pdf
mailto:martinstache@gmx.de
http://dx.doi.org/10.1016/j.jsv.2015.12.013


M. Stache et al. / Journal of Sound and Vibration 365 (2016) 89–10190
physical properties and type of support. Hence, changes in physical properties such as mass, stiffness and damping will
result in a change in modal properties. For the case of a crack, local lowering of stiffness occurs which causes a change in
modal properties that can be determined experimentally.

In general, vibration based techniques involve the application of an excitation to the observed structure as well as the
interpretation of the structural response at various locations. The process of modal identification can be discussed in terms
of observability and identifiability [22–24].

Inherent features of structures often exhibit unknown parameters. One possibility to estimate these parameters is to
observe the structures’ input–output behavior. A given structure possesses an unknown system state with the controllable
input and the observable output. The physics of the structure are characterized by the system properties. For observability,
the aim is to determine whether mathematical relations exist between the unknown system state and the input/output
quantities [25–27]. Therefore, the information content of the measurement data must be sufficient to conclude the state of
the observed structure. In this context, appropriate test parameters play a central role, such as the frequency range of
interest, sensor positions as well as the number of measurement points. Identifiability represents a special case of the
observability problem, in which system properties can be uniquely described by the input and the output [28,29].

Regarding the numerical analysis, requirements on the structure model like type of elements and mesh refinement have
to be determined, which mainly influence the precision of the computed data.

Testing methods based on the alteration of eigenfrequencies are concerned with global structure behavior and therefore
enjoy faster data extraction than classical local methods such as ultrasonic testing. Disadvantages of these global methods
are often mentioned in terms of the non-uniqueness of the results [1,2]. It is commonly known that especially in axi-
symmetric parts, the results of damage position are generally ambiguous. Thereby, the crack possesses at the minimum two
potential positions, when only eigenfrequency information is used. One approach to overcome this drawback is to connect
global methods with local methods, such as in multi-criterion optimization. Herein, eigenfrequency-based data is combined
with highly resolved local information in the form of eigenvectors.

Despite the well-founded scientific knowledge of vibration based damage identification, concrete information regarding
the results' precision is sparsely published. Neither investigations have been realized that describe the successful identifi-
cation of damage scenarios smaller than 10 percent with respect to the cross-sectional area. The following reasons present
possible explanations:

� eigenfrequencies possess high dependency on geometric part tolerances. It is difficult to differentiate between damage-
induced and tolerance-induced alterations (e.g. changes in diameter, length and circularity),

� small damage levels have less effect on the eigenfrequencies of lower rank,
� due to the high modal density and the resonance overlapping of highly damped materials, it is difficult to perform

measurements at high frequencies,
� nonlinear dynamic behavior must be linearized and
� test conditions such as support, excitation and equipment settings are difficult to reproduce.

In this paper a damage identification technique is presented using numerically calculated and experimentally deter-
mined eigenfrequencies of nine test objects with different crack positions and depths. The first 15 mode shape pairs are
identified in a frequency range up to 40 kHz. First, the Finite-Element (FE) models of cylindrical structures, containing a
crack at different positions and with different depths, are investigated. In a second step, the test objects' specimens with
analogous geometry to the numeric models are analyzed by the use of a Laser-Doppler-Vibrometer (LDV). Wire erosion is
utilized to ensure precise crack geometry. In the last step, the numerical and experimental data is applied to a damage
identification procedure in which crack position and size are determined.

The damage identification procedure developed in this work relies on the minimization of an eigenfrequency-based
objective function. This objective function compares the numerical modal data of a parametric model with corresponding
data from an experimental modal analysis. Geometric crack parameters of the numerical model are modified until the
eigenfrequency-based objective function is converged. Only bending mode shapes are considered. This limitation is made
for reasons of convenient support and excitation conditions. The crack is assumed to be open and therefore the width is set
to a reasonable extent. Bi-linear effects [21] due to closing crack sites are neglected. Moreover the crack width is defined as
constant to avoid mass-induced changes of eigenfrequencies over the identification process. For the experimental inves-
tigation a shaker with a high dynamic range is used to excite the system. The test specimens are elastically supported at
both ends. Numerically an elastic foundation is modeled to consider realistic boundary conditions.

The focus of this paper is on the development of converged numerical models using a mixed element mesh in combi-
nation with highly accurate experimental data, which both directly influence the predictive accuracy of the implemented
damage identification procedure. The achieved precision provides the ability of identifying crack depth/diameter ratios of
less than 7 percent, which is novel among the available literature. For a fast and stable optimization procedure an innovative
precondition routine is introduced, in which suitable start parameters are compiled by using one-time generated objective
function plots.



M. Stache et al. / Journal of Sound and Vibration 365 (2016) 89–101 91
2. The physical problem

A crack in a beam causes a local reduction of area moment of inertia. This reduction is equivalent to a decrease in local
stiffness and results in a change of eigenfrequency values. This change in eigenfrequency-values increases, if the damage is
positioned in cross-sections of high bending moments where mode shape curvature raises or if the damage size increases.
For this reason, a large crack near a vibrational node can influence a single eigenfrequency of the observed mode to the same
extent as a small crack positioned at an antinode [3,4]. To overcome this fact, it is suggested to observe at least two con-
secutive eigenfrequencies in the intended identification procedure. Further, for bending modes of rotationally symmetric
structures, one eigenfrequency of a mode shape pair is less affected by the introduced asymmetric crack than the other.
Consequently one eigenfrequency of the mode shape pair changes less and a splitting of eigenfrequency pairs can be
observed.
3. Damage identification

In a damage identification numerically calculated and experimentally determined modal data are compared to compute
geometrical defect parameters such as position and/or severity. Thereby, the outcome of the damage identification can only
be as precise as the underlying data.

Based on the complexity of the optimization in this study, a numerical consideration is inevitable. The optimizer searches
for the minimum of the objective function in a limited search space. In many applications of damage identification, the
presence of several local minima complicates the identification of the global minimum [19]. Furthermore, modal features
have to be selected carefully. Only modal data that are sensitive to the particular damage pattern can be used to accurately
determine the crack parameters. The success of the damage identification procedure strongly depends on the choice of
appropriate initial values for the searched defect parameters in the optimization process. Trial and error often results in
convergence against the bounds of the search space which is not a useful output or in a high quantity of iterations.

The formulated numerical optimization problem in the present work is nonlinear. An optimization is mathematically
defined as the minimization of an objective function. Mathematically this can be expressed by

min f ð ϑ!Þ
n o

; ϑARn; (1)

in which ϑ
!

describes the vector of the design or search parameters. Explicit restrictions [15] are placed on the design
variables ϑi to bound them between lower ϑLi and upper ϑUi limits, defined as

ϑLi rϑirϑUi ; i¼ 1;n: (2)

3.1. Approximation

In this study, a local approximation method is used to calculate new values for the crack parameters. The results of local
methods are only valid in the vicinity of the actual design point [15]. However, these methods are able to reduce the total
number of FE analyses required during the optimization. A local approximation method reformulates the optimization into
the solution of a sequence of subproblems. The local approximation is achieved using the Method of Moving Asymptotes
(MMA) [16], which has been successfully applied to other structural dynamic problems [17,18,30]. The objective function to
be minimized consists of a quadratic error sum, built between the experimentally determined and numerically calculated
eigenfrequencies, as follows:

f ϑð Þ ¼
X ðf expi

� f numi
Þ2

f 2
expi

: (3)

To avoid adverse value ranges, both the objective function and the design parameters are scaled.

3.2. Identification routine

The suggested identification routine uses a two-stage optimization strategy. This serves for the identification of proper
initial values, introducing the following two consecutive steps:

1. exhaustive search for suitable initial parameters on a course gridded objective function plot and
2. optimization by using the MMA.

A parametric model of the structure was generated that would automatically create the geometry and FE mesh for a
given set of parameters, i.e. crack depth t and crack position y0. Maintaining the physical consistency and avoiding mesh
distortion, the model parameters change within an adequate interval. Crack depth t ranges between 0.2 and 1.75 mm, and
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crack position y0 between 15 and 285 mm. Element specification for the numerical models used in the damage identifi-
cation are presented in Table 3.

In the process of damage identification a two-step procedure similar to the one suggested in [32] is developed. The first
step aims to identify suitable initial values for the crack depth and position parameters by compiling coarse objective
function plots. In the second step, these initial values are used to precondition the identification routine, which results in a
fast and stable convergence.

For the objective function plots the calculation of eigenfrequencies in Abaqus is performed only once for all possible
combinations of parameters (y0 and t). The step size for the crack position and depth are 5 mm and 0.1 mm, respectively.
Subsequently, the user is able to visualize the plots for all feasible eigenfrequency combinations involving the one-time
experimentally determined eigenfrequencies of the real test specimens. In the light of the intended application of non-
destructive testing, the suitability of all potential eigenfrequency combinations can be evaluated in a fast and efficient
manner. Further, the parameter vector with the smallest deviation of objective function is used as the initial parameter
vector for the optimization.

In the optimization process PythonTM is used as the coding language to connect Abaqus with the external MATLAB-based
optimizer. The first step consists in defining the initial values for crack position y0 and depth t as well as the increment size
for these crack parameters. Also the eigenfrequencies to be included in the objective function are selected. In the second
step, Abaqus starts successively one objective function and two gradient analyses. The resulting eigenvectors and eigen-
frequencies are saved to an output file. The third step contains the modal reduction and tracking and aims to compare the
experimentally determined and numerically calculated eigenfrequencies of the same mode shapes. From these eigen-
frequency values, the objective function and its gradients are calculated and provided to the external optimizer. In the fourth
step, the optimization algorithm starts, which results in a new vector of parameters that is used for the next iteration. The
optimization stops once the objective function drops below a predefined convergence criterion, or when a maximum
number of iterations are reached.
4. Numerical investigations

The structures studied in this work are circular cylinders with a length l¼300 mm and a diameter d¼6 mm, as shown in
Fig. 1. y0 represents the position of the crack and t its depth. The crack width w is 0.5 mm and constant over the nine models.
The material is modeled using HOOKE's isotropic elastic material model. Table 1 presents the parameters of HOOKE's
material model.

The numerical analyses are conducted using the commercial software Abaqus. On the one hand the presented dis-
cretization strategy considers that large stress gradients due to the crack geometry must be dissolved. On the other hand the
ability to parameterize the structural model enables an automated optimization procedure, which will be discussed later.

Table 2 presents the geometrical crack parameters of the crack models analyzed. Crack depth/diameter ratios of 25.00
percent, 12.50 percent and 6.25 percent which correspond to cross section ratios (damaged/undamaged) of 19.55 percent,
7.22 percent and 2.60 percent are investigated.

Fig. 2 shows the numerical model used for the cylinders. The model is divided into three partitions: two ‘crack-free’
partitions at either end of the cylinder and a ‘crack’ partition which includes the region around the crack.

The crack-free partitions are discretized with second-order 20-node brick elements with reduced integration [9]. To
avoid mesh distortion, the crack partition is additionally modeled with second-order 15-node wedge elements. In com-
parison to the undamaged partitions, the cracked partition is meshed with a mesh density twice as large as in the unda-
maged region, in order to resolve the stress gradients caused by the crack geometry. The connections between the partitions
of different mesh densities and different element types are realized using tie-constraints, which couple the nodal degrees of
freedom of adjacent nodes in the interface area [9,14].
Fig. 1. Parametric model for damage identification.



Table 1
Parameters of HOOKE's material model.

Density Young's modulus Poisson ratio

14;450 kg=m2 566.5 GPa 0.19

Table 2
Geometrical parameters of the crack models.

Model 1 2 3 4 5 6 7 8 9

w ðmmÞ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
y0 ðmmÞ 150.0 150.0 150.0 75.0 75.0 75.0 37.5 37.5 37.5
t ðmmÞ 0.375 0.750 1.500 0.375 0.750 1.500 0.375 0.750 1.500

Fig. 2. Mesh description.

Table 3
Mesh parameters of numerical models.

Type of elements C3D15/C3D20R

Number of elements 54,724–61,398
Hexahedral 35,532–40,532
Wedge 18,168–21,458

Number of nodes 998,520–1,084,720
Hexahedral 710,640–810,640
Wedge 272,520–321,870

Degrees of freedom 2,995,560–3,254,160
Hexahedral 2,131,920–2,431,920
Wedge 817,560–965,610

Max. element edge length 0.862 mm
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Fig. 3. Selected bending mode shapes (modes 1, 3, 5, 15, 21 and 29) of the numerical modal analysis; in the undamaged case the modes appear in pairs,
with the same eigenfrequency applying to two modes with identical shape except one is rotated 90° around the axis of the cylinder relative to the other.

Table 4
Numerically calculated eigenfrequency of all 30 identified bending mode shapes for the undamaged model.

Mode number 1/2 3/4 5/6 7/8 9/10
Frequency (Hz) 371.21 1021.37 1996.92 3289.32 4892.20

Mode number 11/12 13/14 15/16 17/18 19/20
Frequency (Hz) 6797.6 8996.43 11,478.54 14,233.08 17,248.57

Mode number 21/22 23/24 25/26 27/28 29/30
Frequency (Hz) 20,513.13 24,014.64 27,740.91 31,679.78 35,819.28

Fig. 4. Magnitude of the shift in the numerically determined eigenfrequencies for the first 15 bending mode shape pairs (models 1–3, 4–6 and 7–9).

M. Stache et al. / Journal of Sound and Vibration 365 (2016) 89–10194
Table 3 presents the mesh specifications of the numerical models including type of elements, number of elements and
nodes, degrees of freedom and maximum element edge length. The range of values presented account for slight variations in
the final mesh of the nine finite element models. The variation is less than 10 percent across all models.
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Fig. 3 shows the mode shapes 1, 3, 5, 15, 21 and 29. The corresponding eigenfrequencies of all modes for the undamaged
model are presented in Table 4.

Fig. 4 displays the magnitude of the shift in eigenfrequencies over the 15 mode shape pairs found in the FEM for the nine
damaged models compared to the undamaged model in Table 4.

When comparing damage-induced eigenfrequency changes with tolerance-induced eigenfrequency changes, it can be
noticed that possible deviations in form, material or geometry influence all eigenfrequencies equally. Whereas cracks
change, depending on size and position, the eigenfrequencies of the observed modes differently.
5. Experiments

The main challenges of the experiments were to create a short intense impulse to excite the specimen in the intended
bandwidth and the preparation of supporting conditions for repeatable measurements. Fig. 5 presents the experimental
setup. The sample holder is placed on a vibration isolated table in order to exclude structural vibration induced by the
foundation. The three main components of the setup are:

� the excitation unit that contains an electrodynamical shaker. After a transient signal the vibration of the test specimens
decays freely,

� a signal transfer system that captures excitation force and duration. At the output side a Laser-Scanning-Vibrometer
measures normal surface velocities on the test specimens and

� an analyzer unit digitizes the time signal, processes and visualizes the captured data.

As shown in Fig. 5(b) the ends of the test specimens are placed on a foam padding to approximate free–free boundary
conditions.
Fig. 5. Left: general measurement setup and right: support conditions and excitation unit.
The Laser-Scanning-Vibrometer PSV400 is employed to measure surface velocities at 39 points of each mass centroid
axes and a shaker with a high dynamic range is used for a broadband excitation. ME'Scope V5 is used as a post-processing
software to extract the eigenvectors and eigenfrequencies from the measured data.

Table 5 illustrates the parameters for the experiments.
Table 5
Experiment parameters.

Parameter Bandwidth Sampling rate FFT-lines
Quantity f max ¼ 40 kHz f s ¼ 102:4 kHz nFFT ¼ 819;200

Parameter Resolution Block size Averaging
Quantity Δf ¼ 0:125 Hz Ts ¼ 8 s nA¼3

Parameter Pretrigger Window source Window LDV
Quantity 10% � Ts Force [33] Exponential [33]
6. Model validation

From a mechanical point of view, real structures possess an infinite number of degrees of freedom (DOF). Due to practical
reasons the response to an excitation is only measurable at a finite number of locations. Usually, the number of
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measurement points, m, is much smaller than the number of numerically modeled DOFs, n. Advances in computational
power allow numerical models with millions of DOFs to be solved within an acceptable time frame. However, engineers are
faced with the choice of adjusting the numerical model to the experiment (modal reduction) or vice versa (modal
expansion) [10]. In this study, a modal reduction strategy is utilized, in which the numerical model is adapted to the
experiment where 39 measurement points are used. The calculated results of the numerical model are transferred to
master-nodes with the same geometric position and DOFs as measured in the experiment. Furthermore, a mode-tracking
procedure [11] is implemented to consider possible mode shifts due to the varying crack parameters.

After ensuring the availability of numerically calculated and experimentally determined eigenvectors of coincident
position, modal validation is performed. In this work, the Modal Assurance Criterion (MAC) [12,13] is used to verify cor-
relation between numerically calculated and experimentally determined eigenvectors. The MAC is given by

MAC¼ ðϕT
mϕnÞ2

ðϕT
mϕmÞðϕT

nϕnÞ
; (4)

where ϕm and ϕn are two vectors to compare. The MAC can attain values between 0 (the two vectors are uncorrelated) and 1
(the two vectors are linear dependent). In this study, the MAC-values of the main diagonal in the MAC-matrix are between
0.78 and 0.98. Side entries account for values between 0.01 and 0.08, when comparing experimental and numerical results.

If the experimental data serve as reference, one strives for the validation of modal assumptions and boundary conditions.
Possible deviations between numerical and experimental results can be explained due to the uncertainties of elastic
material parameters or the elastic support. To reduce these deviations, an elastic support is included in the numerical model
and Young's modulus of the simulated material is updated manually. These steps consequently increase the predictive
precision in the process of damage identification. Fig. 6 shows the boundary conditions in the simulation and the
experiment.

Fig. 7 depicts the maximum and mean deviation between experimentally determined and numerically calculated
eigenfrequencies for all nine test objects over the mode number including an elastic support and updating Young's modulus.
The lower eigenfrequencies are more affected by the support conditions than the higher eigenfrequencies. Therefore, the
maximum and mean deviation decreases with increasing mode rank.
Fig. 6. Left: section of modeled elastic foundation and right: foam padding as flexible support.

Fig. 7. Maximum and mean deviation between numerically calculated and experimentally determined eigenfrequencies for the nine test objects over the
mode number.
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7. Results of damage identification

In Figs. 8–11 the objective function values are plotted. The visualization helps us to understand the shape of search space
in which appropriate initial vectors for the identification routine can be found quickly.

The compiled objective function plots visualize the complete search space for crack position y0 and crack depth t. The
graph depicts the values of objective function cf. Eq. (3) for the specific eigenfrequency combination which is chosen. Green
denotes a small, yellow a mid-level and red a high objective function value on a normalized scale. To connect the results of
damage identification with the objective function plots, the outcome of the particular damage identification and the real
crack position and depth are shown. Therein crosses denote the position of the real crack parameters and circles the results
of damage identification.

The objective function involving the first four eigenfrequencies takes the form

f ϑð Þ ¼
X4

i ¼ 1

ðf expi
� f numi

Þ2

f 2
expi

: (5)

Table 6 contains the damage identification results for the first three test objects with eigenfrequencies 1–4 used to define
the objective function. The numerically predicted crack depth t was between 10.08 and 13.43 percent of the actual crack
depth of the test specimens. The predicted crack position y0 was between 0.58 and1.90 percent of the actual crack position.
The crack of test object 1 is not identified. Convergence is achieved after 9–12 iterations.

An objective function that involves global modal data, i.e. eigenfrequencies of lower modes yields results of damage
identification which are not very precise. It is assumed that this is related to the higher deviations of eigenfrequencies, cf.
Fig. 7, compared to the eigenfrequencies of higher mode rank which contain more local information. Additionally if utilizing
eigenfrequencies of lower rank, one fails to identify small damage levels cf. test object 1. Whereas by involving global modal
data the computational time decreases due to the more homogeneous search space in comparison to eigenfrequencies of
local modes.
Fig. 8. Objective function plots for test objects 1–3 involving the eigenfrequencies 1–4 (crosses denote the real parameter vectors and circles computed
parameter vectors). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)



Fig. 9. Objective function plots for test objects 1–3 involving the eigenfrequencies 27–30 (crosses denote the real parameter vectors and circles computed
parameter vectors). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 6
Results of damage identification (test objects 1–3 involving eigenfrequencies 1–4).

Test object 1 2 3

treal ðmmÞ 0.38 0.75 1.50
topt ðmmÞ – 0.54 1.34
%-dev. – 13.43 10.08

y0real ðmmÞ 150.00 150.00 150.00
y0opt ðmmÞ – 144.88 148.44
%-dev. – 1.90 0.58

Table 7
Results of damage identification (test objects 1–9 involving eigenfrequencies 27–30).

Test object 1 2 3 4 5 6 7 8 9

treal ðmmÞ 0.38 0.75 1.50 0.38 0.75 1.50 0.38 0.75 1.50
topt ðmmÞ 0.31 0.70 1.55 0.43 0.73 1.49 0.32 0.63 1.61
%-dev. 4.26 3.29 3.29 3.48 1.23 0.97 3.81 7.61 7.10
y0real ðmmÞ 150.00 150.00 150.00 75.00 75.00 75.00 37.50 37.50 37.50
y0opt ðmmÞ 150.76 149.42 149.46 75.45 74.88 75.29 37.96 38.23 37.86
%-dev. 0.28 0.22 0.20 0.17 0.05 0.11 0.17 0.27 0.13

M. Stache et al. / Journal of Sound and Vibration 365 (2016) 89–10198



Fig. 10. Objective function plots for test objects 4–6 involving the eigenfrequencies 27–30 (crosses denote the real parameter vectors and circles computed
parameter vectors). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Due to the larger characteristic mode shape length, global modes are less sensitive to small defects compared to local
modes. Hence, the eigenfrequencies of local modes are used in the optimization procedure. The four highest eigen-
frequencies are chosen in the objective function to detect the smallest damage levels ðt ¼ 0:375 mmÞ:

f ϑð Þ ¼
X30

i ¼ 27

ðf expi
� f numi

Þ2

f 2
expi

(6)

follows from Eq. (3). Table 7 contains the damage identification results for the nine test objects with eigenfrequencies 27–30
used to define the objective function.

The numerically predicted crack depth t was between 0.97 and 7.61 percent of the actual crack depth of the test spe-
cimens. The predicted crack position y0 was between 0.05 and 0.28 percent of the actual crack position. The test objects five
and six show the most precise results in damage identification due to the smallest deviations of eigenfrequencies. Con-
vergence is achieved after 12–20 iterations.

Utilizing eigenfrequencies of higher mode rank has the advantage of more precise results in damage identification due to
the lower deviations of eigenfrequencies, cf. Fig. 7 compared to the eigenfrequencies of global modes. Additionally if
involving eigenfrequencies of higher mode rank, one is able to identify small damage levels. Whereas by involving local
modal data the computational time increases due to the less homogeneous search space in comparison to global modes.

Without the exhaustive search on the course gridded plots, the optimization fails or requires a higher number of
iterations (20–30) compared to the suggested procedure (9–20). This fact has to be taken into account, if one considers that
an iteration takes 40 min on a PC with the specifications of a 64-bit Windows machine with 16 cores at 2.53 GHz and
24 GByte RAM.



Fig. 11. Objective function plots for test objects 7–9 involving the eigenfrequencies 27–30 (crosses denote the real parameter vectors and circles computed
parameter vectors). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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8. Final remarks

In the presented study a damage identification technique based on modal data of long and slender structures is pre-
sented. Numerically calculated and experimentally determined eigenvectors and eigenfrequencies are used to compute
geometrical crack parameters.

It is demonstrated that for detecting small damage levels, such as crack depth/diameter ratios less than 10 percent, it is
essential to involve modal data of local modes with adequate measurement precision. As expected, the precision of the
damage identification procedure increases when the deviation between numerically computed and experimentally deter-
mined eigenfrequencies are small.

The lowering of computational time, but maintaining the attained precision, presents the main goal of future work. This
can be achieved by using fewer elements, substituting the utilized meshes with elements of lower node quantity or
increasing the computational power.

Suitable initial values for the crack parameters are important for the success of the presented method. As there is no a
priori knowledge of crack position in real testing scenarios, further investigation is required to determine a generally valid
approach for initial parameter selection.

One drawback related to damage identification based on eigenfrequencies is when symmetrical structures are investi-
gated. The crack has two potential positions with the same distance to the central axis. Therefore it is suggested to connect
global methods with high resolution local methods such as ultrasonic testing or eigenvector extraction with a sufficient
spatial resolution. Considering ultrasonic techniques, difficulties can arise from small object diameters and the consequent
short sound paths, which makes reliable assessment of structural integrity difficult. High resolution measurements of
eigenvector data represents an alternate approach to overcome the non-uniqueness. The main disadvantages of this
approach are the slower data extraction compared to global methods and the insensitivity to small damage levels [31].

In light of the increasing usage of composites in all technical sectors, engineers are faced with the challenge to apply
vibration based damage identification methods to parts with high structural damping. This is accompanied by difficulties in
the modal analysis of highly damped materials, which in turn prevents the identification of small damage levels.
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