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Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images

with micrometer resolution. However, there is a trade-off between the smallest size of the struc-

tures that can be resolved and the measurable sample size. In this letter, we present an imaging

method using a compact laboratory setup that reveals information about micrometer-sized struc-

tures within samples that are several orders of magnitudes larger. We combine the anisotropic

dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction

methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimen-

sions. The scattering tensor, thus obtained, encodes information about the orientation of micron-

sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse

acquisition schemes presented in this letter enable the measurement of the full scattering tensor at

every spatial location and can be easily incorporated in a practical, commercially feasible labora-

tory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.
VC 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4963649]

Conventional X-ray imaging is based on the attenuation

of X-rays when they pass through a material. Recently, grat-

ing interferometer based approaches1–3 are being used to

exploit the scattering and refraction of X-rays by the material

in order to obtain additional contrast modalities, namely,

phase contrast and dark-field contrast. Dark-field contrast

originates from the ultra-small angle scattering of X-rays by

sub-micron and micron sized structures.4–8 Unlike attenua-

tion, the dark-field signal obtained in a grating interferometer

is anisotropic in nature,9–11 which means that the measured

signal depends on the orientation of the scattering structure

with respect to the grating interferometer. Thus, by varying

the relative orientation of a scattering structure within the

interferometer, it is possible to deduce information about its

orientation from the variations in the dark-field signal.

Two dimensional structure orientations can be recovered

from several projections acquired by rotating the sample

around the beam propagation direction.12,13 However, in order

to measure the structure orientations in three dimensions,

Malecki et al.14 introduced several non-standard acquisition

poses in a technique called X-ray Tensor Tomography (XTT).

This was achieved by placing the sample on an Eulerian cra-

dle (Figure 1), which allows rotation of the sample with three

degrees of freedom, and not just around one axis as done in

conventional tomography. The three degrees of freedom are

achieved by rotating the cradle around the y axis (angle w),

rotating the sample stage around the z0 axis by moving it on

the cradle (angle h), and rotating the sample around the y0

axis (angle /); here, the coordinate system (x, y, z) denotes

world coordinates, and ðx0; y0; z0Þ is the sample coordinate

frame (Figure 1). A standard XTT dense sampling scheme S
comprises several acquisition poses si

S ¼ fsi :¼ ðw; h;/Þ; w 2 f0�; 20�; 40�g; h 2 H;/ 2 Ug;

where H ¼ f0�; 30�; 60�; 90�g; U ¼ f0�; 2:01�; …; 360�g.
Such an acquisition geometry enables the measurement of the

anisotropic dark-field signal from several poses spread over

the unit sphere. These dark-field projections are then fed into

an iterative reconstruction algorithm,15 which splits the com-

bined signal measured in all the projections into several auxil-

iary scattering components, each of which determines the

strength of scattering along a unique orientation. The scatter-

ing orientations are then scaled with their respective scattering

strengths, and a Principal Component Analysis is performed

to fit a scattering tensor in each voxel. At last, the structure

orientation is approximated as the smallest half axis of the

FIG. 1. Schematic of the X-ray Tensor Tomography grating interferometer

setup showing a non-standard acquisition pose and the three axes of rotation.
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tensor. An illustration of the XTT acquisition and reconstruc-

tion method is shown in Figure 2.

XTT is a promising technique with a number of applica-

tions such as visualization of the microstructure of fibrous

materials and dentinal tubules of human teeth.14,15 It is, how-

ever, limited by long acquisition times owing to the large

number of measurements and the time required for the move-

ment of several motors. Moreover, the Eulerian cradle is a

bulky component and poses challenges for a compact setup

design. Hence, there is a need to optimize the XTT acquisi-

tion geometry. In order to do so, it is essential to establish a

relationship between the acquisition geometry and the

expected result.

In order to visualize the acquisition geometries, we for-

mulate an example tomographic trajectory rotating about y0

as a function of w and h

Aðw; hÞ :¼ fx :¼ ðw; h;/Þ; / 2 ½0�; 18:95�;…; 360��g:

A common sparse acquisition scheme for conventional com-

puted tomography (CT) using 20 equally spaced projection

angles is then expressed as A(0�, 0�). In other words, the sam-

ple is rotated around the fixed y axis and line integrals

through the sample along z, also known as the optical axis,

are recorded. Let us define t̂ðxÞ as the unit vector along the

optical axis for a given acquisition pose x :¼ ðw; h;/Þ. For

visualization, we plot 6t̂ðxÞ on a unit sphere, assuming that

the sample is fixed at the center of the sphere. The points

6t̂ðxÞ for A(0�, 0�) are shown in blue in Figure 3(a). Another

important variable for XTT is the normalized sensitivity axis

ŝðxÞ. The sensitivity axis of a grating interferometer is the

direction in which the phase shift of X-rays is measured. It

lies in the plane of the gratings, orthogonal to the grating bars

(Figure 1). We have ŝðxÞ ¼ y when the grating bars are hori-

zontal. Assuming again that the sample is fixed at the center

of a sphere, we also plot 6ŝðxÞ on the unit sphere. The points

6ŝðxÞ for A(0�, 0�) are shown in red in Figure 3(a). It can be

seen that only one direction of scattering can be measured

with A(0�, 0�). Therefore, additional tomographic trajectories

for XTT (as shown in Figure 3) are obtained by rotating y0

using w and h.

The visualization of the trajectories of the optical axis

t̂ðxÞ and sensitivity axis ŝðxÞ shown in Figure 3 gives a quali-

tative understanding of the orientations that are measured

with a given acquisition scheme. Below, we present a

method for the quantification of such acquisition schemes.

Let R and T be the two sets of evenly distributed points

chosen from a hemisphere

R ¼ frk; k ¼ 1; 2;…;Ng;
T ¼ fsj; j ¼ 1; 2;…;Ng;

where N¼ 4843. The mean vector of R is given by

mR ¼
1

N

XN

k¼1

rk:

Let X be an acquisition scheme using n different acquisition

poses xi

X :¼ fxi :¼ ðwi; hi;/iÞ; i ¼ 1;…; ng:

The objective is to define a quantity, Coverage(X, k), that

represents how well the orientation rk 2 R is measured by X.

Our proposed procedure for computing Coverage(X, k) is

outlined in the following:

(1) Define Xk � X as the set of poses that measure the orien-

tation rk 2 R

Xk :¼ fx 2 X; wðrk; xÞ > Tcg;

where w(rk, x) is a weight factor that specifies how well

the orientation rk is measured by the acquisition pose x,

and Tc¼ 0.7 is an arbitrarily chosen threshold. w(rk, x) is

given by

wðrk; xÞ ¼ ðjrk � t̂ðxÞj hrk; ŝðxÞiÞ2; (1)

FIG. 2. Demonstration of the X-ray Tensor Tomography acquisition and reconstruction method for a phantom consisting of only two main orientations.

Several dark-field projections of the sample are acquired over the unit sphere, unlike XCT where projections are acquired only on a circular trajectory. The

combined signal acquired in all the projections is reconstructed into several volumes, each representing the strength of scattering along a unique orientation.

The scattering strengths along all orientations are used to fit a tensor for every voxel. The smallest half axis of the tensor represents the structure orientation.
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where j � � � j denotes the magnitude of the cross product

and h�; �i denotes the standard scalar product.

(2) Rk is the mean resulting length of the vectors t̂ðxÞ for all

x 2 Xk

Rk ¼
�����

1

jXkj
X
x2Xk

t̂ xð Þ
�����;

where k � k denotes the Euclidean length of a vector.

(3) T k � T is the set of points that are measured by Xk,

assuming that each vector t̂ðxÞ contributes to the mea-

surement of points lying within a cone of opening angle

5� around it

T k :¼ fs 2 T ; hs; t̂ðxÞi > cosð2:5�Þ 8x 2 Xkg:

(4) The Coverage(X, k) is then defined as

Coverage X; kð Þ :¼ 2� 1� Rkð Þ � jT kj
N

:

The quantity 2� ð1� RkÞ is the spherical variance,16

while jT kj=N is related to the cumulative solid angle

spanned by the t̂ðxÞ; x 2 Xk. Thus, a higher value of

Coverage(X, k) is achieved when the t̂ðxÞ is distributed

widely over the unit sphere.

Next, we scale the unit vectors rk 2 R with the values of

Coverage(X, k) for all values of k resulting in

CðXÞ :¼ fck :¼ rk � CoverageðX; kÞ; k ¼ 1;…;Ng;

and its mean

mC Xð Þ ¼
1

N

XN

k¼1

ck:

The angular deviation of the normalized mean vector m̂CðXÞ
from the normalized mean vector m̂R is a measure of the

non-uniformity of the Coverage Sphere. Finally, we can now

introduce the proposed Coverage Metric CM(X) as

CM Xð Þ :¼ hm̂C Xð Þ; m̂Ri �
1

N

XN

k¼1

Coverage X; kð Þ:

CMðXÞ 2 ½0; 1� is a measure of the efficiency of the acquisi-

tion protocol X. Higher values of CM imply a more compre-

hensive and uniform measurement of all orientations on the

unit sphere.

In order to correlate the concept of coverage with experi-

mental observations and to study the effect of sparse acquisi-

tion schemes, a Short Fiber Reinforced Polymer (SFRP)

sample made of glass fibers (18 lm in diameter) is analyzed.

SFRPs are widely used in the automotive industry for their

improved mechanical properties, which depend heavily on

the orientation and length distribution of the reinforcing car-

bon or glass fibers. A very high resolution X-ray micro com-

puted tomography (XCT) technique combined with fiber

tracking techniques is commonly used to analyze the fiber

orientation distribution of such materials.17 XTT is a very

useful technique for these materials as it directly resolves the

orientations of the fibers within a much larger sample size.

We measure a SFRP sample (dimensions 10� 10� 2 mm)

with the scheme S employing 3 axes of rotation, 7 phase

steps, and 3 s exposure per phase step resulting in a total

acquisition time of approximately 12.6 h. The setup7 used for

the XTT measurement comprises of a micro-focus X-ray tube

(operated at voltage 45 kVp and power 25 W) and a Varian

PaxScan 2520DX detector (pixel size 127 lm). The three gra-

tings with periods of 10 lm, 5 lm, and 10 lm, respectively,

were arranged in the first fractional Talbot configuration.

Scattering tensors TSðriÞ 2 R3�3
þ for voxels ri, i¼ 1,…,

I, discretizing the volume of interest (isotropic voxel size

64 lm3), are calculated using the method proposed by Vogel

et al.15 and demonstrated in Figure 2; the subscript (here S)

indicates the acquisition protocol used to compute the scatter-

ing tensors. Figure 4(a) shows the scattering tensors TS(ri)

along with the corresponding structure orientation overlaid

on the XCT volume of the sample described above. The ten-

sors are color coded with their orientation. It is evident from

Figure 4(a) that XTT reveals the three dimensional orienta-

tions of the fibers in this sample. The resulting fiber orienta-

tions are comparable qualitatively to the fiber tracking results

presented by Hannesschl€ager et al.18 using a voxel size of

6.5 lm3.

In the following, we will study sparse sampling schemes

for XTT. S represents a densely sampled standard scheme

within the practical limits of the hardware (jwj > 40� is not

achievable since the cradle would block the X-ray beam). XTT

reconstructions of the SFRP sample are obtained using differ-

ent acquisition schemes X and the resulting tensors TX(ri) are

compared to the base TS(ri). For comparison, we compute a

distance metric between corresponding tensors in each voxel.

We use the Riemannian manifold Symþ3 , i.e., the manifold

of positive-definite symmetric matrices, equipped with a

Riemannian metric.20 The distance d : Symþ3 � Symþ3 ! Rþ
between two tensors T1; T2 2 Symþ3 on this manifold is then

computed as

dðT1; T2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1

log ðriÞ2
vuut ;

where ri denotes the i-th eigenvalue of the matrix T
�1

2

1 T2T
�1

2

1 .

Two corresponding tensors TX(ri) and TS(ri) are considered

to be correlated if dðTXðriÞ; TSðriÞÞ is less than a certain

threshold Tp. Based on this, we introduce a Performance

Metric PM(X), which determines how well the acquisition

scheme X performs with respect to S

FIG. 3. Spherical representation of acquisition scheme A(w, h) for different

combinations of w and h. On each sphere, blue points represent the trajecto-

ries of the optical axis 6t̂ðxÞ; and red points represent the trajectories of the

sensitivity axis 6ŝðxÞ assuming that the sample is fixed at the center of the

sphere.
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PM Xð Þ ¼
jfri; d TX rið Þ; TS rið Þ

� �
< Tp; i ¼ 1;…; Igj

I
;

where Tp¼ 0.4 and j � j is the number of elements in a set.

We now use the presented numerical (CM) and experi-

mental (PM) approach for the relative quantification of

acquisition schemes for two studies:

(a) Effect of Acquisition Time: Seven acquisition schemes

B(t) are defined by downsampling S to reduce the

acquisition time to t hours while using all three axes of

rotation

B tð Þ ¼ s k�1ð Þ�T
t
; k ¼ 1; 2;…; 2160� t=T

n o
;

where T¼ 12.6 h is the acquisition time for scheme S.

CM and PM for B(t) are plotted against t in Figure 4(c).

We pick two points B(4.2) and B(1.6) from Figure 4(c)

and show the reconstructed result in the top row of

Figure 4(a) and corresponding Coverage Spheres in the

top row of Figure 4(b). It can be seen that B(4.2) pro-

vides a uniform Coverage Sphere comprised of high

values, thus leading to a good quality of the result.

(b) Effect of Hardware Complexity: Hardware complexity

is induced by the Eulerian cradle, which is required to

provide the two additional axes of rotation (w and h).

Therefore, in this study, we begin with the acquisition

scheme B(4.2) as representative of a complex setup

employing 3 rotation axes and rename it S3, the sub-

script here indicating the number of rotation axes.

Next, we remove rotation axes in steps to obtain the

schemes S2 and S1. Scheme S2 represents a medium

complexity setup employing two rotation axes with

fixed w (optimally chosen using CM), while scheme S1

represents a simple setup employing only one rotation

axis (fixed w and h)

S2 ¼ fðw; h;/Þ; w ¼ 40�; h 2 H; / 2 Ug;
S1 ¼ fðw; h;/Þ; w ¼ 40�; h ¼ 30�; / 2 Ug:

The Coverage Spheres for S2 and S1 are shown in Figure

4(b), and the reconstructed tensors are shown in Figure 4(a).

The plot of CM and PM versus the number of rotation axes is

shown in Figure 4(d). It can be seen that the quality of the

reconstruction deteriorates slightly but not enough to affect

their interpretation in an application when only a single value

FIG. 4. Quantitative and qualitative comparison of four different acquisition protocols: B(4.2) (also called S3) employs 3 rotation axes and requires 4.2 h to

measure; B(1.6) employs 3 rotation axes and requires 1.6 h to measure; and S2 requires only 2 rotation axes and 4.2 h measurement time while S1 uses only 1

rotation axis with 1 hour acquisition time. (a) Reconstructed scattering tensors of the SFRP sample overlaid on the 3D image obtained using XCT (left); tensors

in the region of interest for the four acquisition schemes (right). The visualizations are produced using CAMPVis.19 (b) Corresponding Coverage Spheres for

each scheme. (c) The effect of reducing the time of acquisition while employing all three rotation axes. (d) The effect of reducing the number of rotation axes.
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of w is used (i.e., a medium complexity setup using two rota-

tion axes). However, using a simple setup with just one rota-

tion axis and fixed w, h (scheme S1) markedly deteriorates the

quality of the reconstructions. This indicates that a compact

setup of medium complexity, employing only two rotation

axes, can be sufficient for XTT. The CM calculation can be

extended in future work to incorporate prior information about

the sample and to determine the exact value(s) of h required to

measure all the structure orientations within the sample.

We conclude that it is possible to perform a full six-

dimensional X-ray Tensor Tomography technique with at most

two axes of sample rotation. Therefore, by adding only one

additional rotation axis to a conventional X-ray Computed

Tomography device, it is possible to obtain compact XTT set-

ups for industrial and potential medical applications.
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