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Problem description:

Humans and robots will share more and more a common workspace. In the field of household robotics,
the shared workspace is the respective household, in an industrial setting the robot shares the same
workspace with humans in collaborative tasks. The interaction between robots and humans, yet alone
the presence of a robot near a human, leads to safety concerns. In recent years, the safety of physical
human-robot interactions (pHRI) have been studied, however, many scenarios in pHRI still require
more attention.
The biomechanical aspect of the collision between a robot and a human was investigated by [2, 1]. The
results lead to dynamic velocity constraints - depending on the geometry of the end effector (POIs) and
the trajectory dynamics. Together with a collision detection and reaction scheme, the robot trajectory
is non-harmful to humans. However, in highly collaborative scenarios, quasi-static contacts between
robots and humans are often intended. Here, standard collision reactions, such as stopping the robot
or switching into zero-gravity mode, are rather disruptive. Nonetheless, the robots trajectory have to
be safe in these situations, especially when there is the danger of clamping human body parts.
The main aim of this thesis is to identify situations where such clamping injuries can occur and to
develop a method to prevent those injuries. By considering the robots trajectory, its end-effector
(and entire structure), biomechanical injury data and the environment, a control strategy should be
formulated to make the robots movement safe. This control strategy should finally be incorporated in
a complete robot control architecture and validated.

Tasks:

• Literature review on soft-robotics, physical human robot interaction, and robotic control.
• Selection of relevant industrial use-cases to base and evaluate the control scheme on.
• Distance calculations between robot and environment for robots trajectory.
• Formulation, implementation and evaluation of a clamping-conscious control scheme.
• Implementation of trajectory optimization strategies for safe robot movements. (optional)
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Abstract

When human and collaborative robots share their workspace, they manipulate
objects together, exchange forces and they might even be in direct physical con-
tact. In this context, the safety of human coworkers becomes a crucial aspect that
classical collision avoidance cannot guarantee. This thesis introduces new concepts
to minimize the potential physical harm that a cobot can cause in quasi-static ma-
nipulations, especially in clamping situations. Using anthropometric data, as well
as a priori geometric knowledge about the environment, we propose a method to
continuously monitor possible clamping situations, and a control scheme to reduce
their hazards. Therefore, we elaborate several circumstances that must apply in
clamping situations and demonstrate an algorithm that checks their fulfillment in
real-time using a hierarchy of Bounding Volumes. Robot manipulation is rendered
safe by limiting the contact forces adaptively in clamping situations.

Zusammenfassung

Menschen und kollaborative Roboter werden immer öfters gemeinsam Aufgaben
in einem geteilten Arbeitsraum durchführen. Dabei kommt es vor, dass am selben
Werkstück gearbeitet wird, Kräfte ausgetauscht werden und sogar direkter physi-
scher Kontakt zwischen Mensch und Roboter besteht. In diesem Kontext ist die
Sicherheit des Menschen essenziell, sie kann aber durch herkömmliche Methoden
der Kollisionsvermeidung nicht gewährleistet werden. Die vorliegende Masterarbeit
führt neue Konzepte ein, die die mögliche Gefahr von kollaborativen Robotern, be-
sonders in Einklemmsituationen, miniert. Dabei werden anthropometrische Daten
und Wissen über die Struktur der Umgebung genutzt, um in Echtzeit mögliche
Einklemmsituationen zu erkennen und ihnen die Gefahr durch sichere Regelung
zu nehmen. Dazu erläutern wir Gegebenheiten, die in Einklemmsituationen zu-
treffen und entwickeln einen Algorithmus, der diese Gegebenheiten mithilfe von
Bounding Volumes in Echtzeit überprüft. Das sichere Verhalten des Roboters in
Einklemmsituationen wird dadurch gewährleistet, dass die Kontaktkräfte limitiert
werden.
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Chapter 1

Introduction

In recent years, robots entered more and more human environments. Small mo-
bile robots like robotic vacuum cleaners are driving autonomously through house-
holds, robot delivery services are tested, and industrial robotic arms are leaving
their cages. This development is only possible due to active research in robot
safety. Whereas small mobile robots do not pose a great threat to human safety,
industrial robots can. Especially in future conceptions, powerful robots will work
alongside humans. Therefore, it is mandatory to guarantee safety whenever robots
and humans share the same space.

Today’s collaborative robots (cobots) do already profit from the intensive re-
search in physical Human Robot Interaction (pHRI). Here, the greatest threats
to ban are dangerous robot-human collisions. To accomplish this, cobots exhibit
several safety features. Safe mechanical design reduces the danger potential of
collisions [ASEG+08, SK14, SSK08, SSP+10, ZRKS04]. Dynamic velocity scaling
and trajectory optimization lower the danger potential even further [HHK+12].
Finally, collision avoidance algorithms try to avoid any physical contact at all
[DLF12, BK02, Kha86, KZB12, SHL17]. However, in highly collaborative scenar-
ios, quasi-static contacts between robots and humans are often intended. Han-
dovers, guiding, collective object manipulation or signaling intentions do often
need interaction forces between the human and the robot. Standard collision re-
actions, such as stopping the robot, might be rather disruptive. More advanced
collision reactions, like retracting or floating in zero gravity mode reduce the risk
of injuries, but can compromise successful task execution [HASDLH08]. Special
attention has to be given to scenarios where clamping a human is possible. If the
human is not constrained in his motions, he can avoid high forces by yielding and
escaping the contact situation (assuming slow robot motions, which are common
for interaction tasks). When the human is clamped, this reaction is no longer
possible and the contact forces can rise to harmful values.
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The main goal of this thesis is to identify situations where such clamping injuries
can occur and to develop a method to prevent these injuries. Identifying clamping
situations requires knowledge about the robot, its trajectory, the environment and
the human co-workers. Whereas the robot and the environment can be modeled
quite accurately, there is in general a high uncertainty in the representation of
human co-workers. Dealing with these uncertainties, as well as making the entire
identification and control system real-time capable is posing a notable challenge.
Therefore, we propose and evaluate a fast clamping identification method (based
on Bounding Volumes Hierarchies) that accounts for uncertainties by assuming
worst-case conditions. The danger of these identified scenarios is analyzed with
the help of bio-mechanical injury data, which influences the clamping conscious
control strategy. This control strategy limits the force that is exerted on the
clamped body part, leading to safe robot manipulations. To evaluate this control
strategy, it is firstly simulated and then used in an experiment with a 7 DoF
manipulator interacting with human participants.

1.1 Outline

The remainder of this thesis begins with an analysis of related work on safe
pHRI in Sec. 1.2. Chapter 2 first introduces the concepts of the proposed Clamp-
ing Conscious Control scheme and continues with a more detailed description of
its implementation. The various components of the Clamping Conscious Control
are then evaluated in chapter 3 by several simulations and experiments. After
discussing the results and giving a glimpse on future work, the obtained insights
are summarized in chapter 4.

1.2 Related Work

Research on safe physical human-robot interaction (pHRI) is distributed among
different fields. The earliest research focused on the robot’s mechatronic design
and its control. Later, research extended to include also human biomechanical
characteristics. All of those fields are important to prevent human injuries due
to clamping. Safe mechatronic design lowers the potential danger of a robot and
provides accurate and fast measurements of the robot’s exerted force. Safe control
uses the given information to create non-harmful trajectories and safe collision
reactions. And finally, better understanding of biomechanical dynamics during
human-robot collision leads to more realistic risk and harm assessments.

1.2.1 Mechatronic Design

Concerning the mechatronic aspect, the actual design choices are dependent on
the robot’s field of application. In cases where there is no (or very restricted) inter-
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action between human and robots, task execution performance (like high accuracy,
high workload and high speed) governs the design decisions; whereas in the appli-
cation area of this thesis - pHRI - safety concerns have at least as much influence
on the robot design as performance aspects. Most safety concerns arise from colli-
sions between humans and robots in their shared workspace, hence much research
was done to soften the impact of such a collision [AASB+06, HSAS+02, ASEG+08,
BT04, Had13] or to prevent it altogether [FKDLK12, DLF12, BK02, Kha86].

One of the main concepts of softening collision impacts is to reduce the effective
mass and inertia of the robot. This can be achieved by various means. Re-
cent robots are designed using lightweight materials for their links (e.g. Bischoff
et al.’s industrial arm [BKS+10], or the humanoids of Wyrobek et al. and Wil-
low Garage [WBVdLS08, Gar17]). Other approaches reduce the effective mass and
inertia by placing the heavy robot components (primarily motors) near the base.
Consequently, these parts become either stationary (except for the motor rotation
itself) or their velocity is limited. Timing belts, cables and pulleys usually transfer
the motor torque to the links. Although these components are adding weight to the
robot structure, they are normally not as heavy as comparable electrical motors.
This relocation principle is for example used in [LKVS+10, QAN11, SK14].

Another important aspect is ”robot compliance”, which was greatly shaped by
pHRI research. Compliant robots react to unforeseen events and change their
behavior accordingly. A popular example is collision detection and reaction. A
non-compliant robot would not deviate from his programmed trajectory, even in
the case of a collision. On the other hand, a compliant robot would sense the col-
lision, possibly softening the impact by intrinsic (passive) compliant design, and
would finally alter its trajectory according to a collision reaction scheme. Certainly,
a perfect compliant robot would not even enter into an unwanted collision, since
it would change its behavior accordingly beforehand, given that it possesses ade-
quate sensors. Compliance can be separated into active and passive compliance.
Active compliance is realized purely through robot control and needs appropriate
sensors to comply to human contact motions. On the contrary, passive (intrinsic)
compliance is mostly introduced into the robot by adding elastic elements that get
deformed when colliding with objects. Robot researchers have evaluated various
elastic elements and multiple locations where to add these elements in terms of
robot safety and performance. Obviously, the links of the robot can be covered
with soft material. However, this approach can restrict the robot’s operational
range and collision sensing is often aggravated, unless the robot’s elastic cover
possesses distributed contact sensors [AASB+06, SK16]. Adding elasticity into
the robot joints proved to be more efficient. The elasticity in the joint decouples
the motor inertia from the link inertia and reduces therefore the reflected inertia
that is felt in a collision [AASB+06, BT04]. A scheme of the decoupling is shown
in Fig. 1.1. Standard electrical motors need high speed and high gear reduction
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ratios to produce sufficient torque for robot manipulation. With no decoupling,
the reflected inertia, introduced by the motor, often surpasses the reflected inertia
introduced by the robot’s links. This is firstly due to the common lightweight
structure of todays robots and secondly, because the reflected inertia rises with
the square of the gear reduction ratio [ZRKS04]. The authors of [PW95] termed
the elastic transmission in the joints Series Elastic Actuator (SEA) and argue
that in addition to inertia decoupling, SEA also leads to more accurate and sta-
ble force control. Without elastic elements, force or impedance control have to
be implemented purely in software and requires fast and accurate force sensors.
With elasticity, the joint constitutes a passive impedance itself, which can be con-
trolled to achieve a desired impedance (within bounds). To achieve this, the torque
or rotor position before and after the elastic transmission have to be measured.
Concerning robot durability, it is also reasonable to incorporate SEA, since the
elasticity low-pass filters shock-loads. However, the actuator’s output is low-pass
filtered as well, reducing the mechanical bandwidth of the robot.

u Rotor
Inertia

Link
Inertia

Compliant
Covering

Mrotor

Btransm

Ktransm

Mlink

Kcover

Moper

Figure 1.1: Decoupling of motor and link inertia. Ktransm and Btransm represent
the elasticity and the damping in the transmission. Figure copied from [BT04].

Zinn et al. remedy this performance degradation by introducing the Distributed
Macro-Mini (DM2) approach [ZRKS04]. Here, the desired torque signal is di-
vided into a low-frequency (mainly arising from common manipulation task) and
a high-frequency component (predominantly performing disturbance rejection).
DM2 uses a large low-frequency actuator (to supply sufficient power) and a small
high-frequency motor (joint motor) in parallel to cover the entire torque band-
width. The large motor is decoupled from the link with an elastic element (often
cable or belt transmissions) and placed near the base to reduce the effective iner-
tia. Since the large motor is only responsible for the low-frequency torques, the
decoupling does not decrease the performance. The small-inertia motor is coupled
to the link with high stiffness and is placed directly on the joint to perform small
torque adjustments. As a unit, a DM2 actuator is a near-perfect torque source
with near-zero output impedance and high control bandwidth. However, there
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are two major factors that deteriorate the performance. First, the joint motor can
saturate when the disturbances are too big, and second, the high-stiffness coupling
between the link and the joint motor introduces a disturbing oscillatory pole into
the system. The latter is because the inertia of the joint motor is usually an order
of magnitude lower than the inertia of the driven link. Zinn et al. outline possible
approaches to these problems in [ZRKS04].

A different solution for safe and fast robot manipulation is the Variable Stiffness
Transmission (VST) from [BT04] or more generally Variable Impedance Approach
(VIA), as summarized in [VASB+13]. The VST approach aims at solving the safe
brachistochrone problem, which can be phrased as finding the fastest trajectory
between two given configurations while not exceeding safety thresholds. When
no safety aspects are considered, the fastest trajectory would consists of maximal
acceleration at the beginning and maximal deceleration at the end. If the robot
joints are stiff, the high velocity after the acceleration creates high reflected inertia.
On the other hand, if the robot joints are elastic, the link’s acceleration lags behind
the motor’s one, and the link oscillates after being decelerated. To optimize both
safety and performance, the joints stiffness should be high during acceleration and
deceleration, and low during high speed velocities, as shown in Fig. 1.2. Bicchi and
Tonietti report improved performance compared to the DM2 approach, when the
controllable stiffness of the joints can be altered between 0.5σ̄ and 1.5σ̄, where σ̄

is the stiffness center value [BT04].
To adjust the stiffness of a joint dynamically, Vorndamme et al. differentiate
between three major designs: Spring preload, changing transmission between load
and spring, and varying physical properties of the spring [VASB+13]. Numerous
designs exists yet alone for the spring preload category, ranging from using a single
spring, to a setup of antagonistic springs with antagonistic/ independent motors
as in [ASEG+08]. However, all these designs need a second motor to adjust the
stiffness, apart from the primary motor driving the link. For further details on
different VST implementations, refer to [VASB+13].

As with SEA or DM2, force control problems are translated into position control
problems by incorporating the impedance of the joint, but higher bandwidth are
possible with VST. This is because the controlled impedance bandwidth is centered
around the system’s natural impedance, which can be only altered with the VST
approach. Additionally to the stiffness change in a VST system, a VIA system
can also adjust its inertia and damping factors. Inherent damping is important
to suppress the oscillations that arise from the joint elasticity. Multiple variable
damping designs are elaborated in [VASB+13].

Instead of using elastic elements in joints, Shafer and Kermani research the use
of Magneto-Rheological (MR) clutches to transmit the torques from the motor to
the links [SK14]. MR clutches provide fully inertia decoupling, since no elastic or
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Figure 1.2: Optimal joint stiffness and velocity during a rest-to-rest task. Image
taken from [BT04].

viscous forces act in the transmission. However, in their current design, the mass
of the MR clutches is non-negligible, compromising their inertia decoupling effect
on safety.

Additional safety designs become important when the entire robot structure
and its environment are considered. Usually, robots operate under the influence
of gravity. In order to compensate for the gravity load, the robot’s motors have
to produce constantly torque. Wyrobek et al. installed a gravity compensation
system for the arms of a humanoid robot, consisting of springs, steel cables and
small motors [WBVdLS08]. With this system, the arms can passively float through
all arm-configuration, requiring only a small motor to adjust the leverage point of
a spring. Since there are no counterweights introduced here, the reflected inertia
of the robot setup is very low. Additionally, the joint driving motors can be
downsized because they do not have to carry the arms’ weight anymore.

A safe robot structure can further be simplified when high-frequency torque and
accurate impedance control have only be provided at the robot’s end-effector. In
[ZRKS04, QAN11], DM2 is only used for the three to four innermost joints of the
robotic arm, the remaining outermost joints are actuated by small, high frequency
motors. If the design of the last links is compact, the lack of elasticity in the last
links does not diminish the safety nor the performance, but reduces the complexity
and eases the control.
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As shown by this summary, the mechatronic design of a robot manipulator
influences highly its performance and safety. Most robotic structures developed
for pHRI reduce the danger of dynamic human-robot collisions. For quasi-static
scenarios, they allow reliable impedance or force control. Without elastic elements
in the joints, a safe control scheme as presented in this thesis, would not be as
effective.

1.2.2 Biomechanical Safety Aspects

Biomechanical criteria help to evaluate the severity of collisions between robots
and humans. However, up to now, there is no consensus in collaborative robotic
research about which biomechanical criteria to use in a specific collision scenario
and where to set the threshold of tolerated injury or pain. One of the earliest
approaches defined a universal contact force threshold by examining pain tolerance
limits of different body parts ([YHH+97]). The resulting contact force threshold of
50 N is that low, because the authors wanted to have a universal threshold for all
body parts. More differentiated analyses, based on the onset of pain, was done in
[MMG14] whose results are incorporated in the ISO specification for collaborative
robots [ISO16]. There, quasi-static pressure limits were developed for 29 different
body parts.

A different viewpoint of tolerable thresholds for collision impacts is to consider
resulting injuries instead of pain sensation. Here, the question is: what kind of
injury is maximal to tolerate in human robot collisions? First answers to this
question referred to the Head Injury Criterion (HIC36), a well known metric in
automotive crash tests. The HIC36 value is basically the integration of the head
acceleration during 36 ms of the impact and is also referred to as a Severity Index.
Since there are multiple Severity Indexes with different scales, they do not de-
fine a comparable injury measure. Therefore, they have to be mapped to broadly
accepted injury classification metrics like the Abbreviated Injury Scale (AIS), or,
more famous in crash testing, the EuroNCAP1, which is based on the former. The
AIS range is depicted in Tab. 1.1. To analyze injuries in human-robot collisions,
Haddadin et al. performed collisions experiments with robots and crash-test dum-
mies [HASH07]. If not otherwise stated, the crash tests (or simulations thereof)
were coupled with a collision detection mechanism, in order to command the robot
to stop or retract when a collision is detected. The authors discovered that uncon-
strained blunt impacts at robot velocities of 2m

s
pose no risk for humans according

to the HIC criterion, independent of robot mass. Figure 1.3 depicts the HIC to in-
jury level mapping and presents the values obtained for the Light Weight Robot III
(LWRIII) robot. In the same work [HASH07], Haddadin et al. also analyzed the
effect of unconstrained blunt impacts on the neck and chest of crash-test-dummies

1
European National Car Assessment Protocol
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Table 1.1: Abbreviated Injury Scale. Table taken from [HASH07].

AIS SEVERITY TYPE OF INJURY

0 None None
1 Minor Superficial Injury
2 Moderate Recoverable
3 Serious Possibly recoverable
4 Severe Not fully recoverable without care
5 Critical Not fully recoverable with care
6 Fatal Unsurvivable

and showed that these impacts are also sub-critical when crash-test injury metrics
are used.

Figure 1.3: HIC and injury levels - together with EuroNCAP color code - for the
LWRIII. Image taken from [HASH07].

In subsequent work [HASH08], Haddadin et al. argue that non-life threatening
injuries, like fractures of facial bones, should limit collaborative robot operations,
since they can already occur at robot’s speeds and masses whose HIC values are
considered safe. Assuming worst case stiffnesses (which lead to maximal energy
transfer), the authors came to the conclusion that facial bone fractures can already
occur at robot speeds greater than 0.5m

s
. However, with the exception of fragile

bones, low-inertia robots need significantly higher velocities to cause bone frac-
tures. Severe chest injuries are likely prevented when limiting the robot velocity
to 4.5m

s
, even for high-inertia robots (e.g. a 2350 kg robot was simulated). For

low-inertia robots, chest injuries in general can be avoided with a velocity limit of
3m

s
. Safety limits for other body parts can be looked up in the ISO specification for
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collaborative robots [ISO16]. In addition to the previous mentioned - pain onset
related - pressure limits, the ISO specification also includes force limits for several
body parts. These force limits are injury based, in the sense that no injury above
AIS 1 occurs.

Injuries become more severe when body parts are clamped between the robot
structure itself or between the robot and the environment. The ISO specification
for collaborative robots acknowledge this circumstance by setting the limits for free
impacts twice as high as for clamped impacts. Clamped impacts can furthermore
be subdivided into dynamic and quasi-static clamping. Dynamic clamping occurs
when the robot collides with a constrained human body part with non negligible
velocity, in contrast to quasi-static clamping, where the robot’s velocity is negligi-
ble. In [HASFH08], possible injuries through dynamic clamping are examined by
mock-up experiments and simulations. Here, one major factor for the severity of
inflicted injury is the robot braking distance, which increases with higher mass and
robot velocity. Thus, all examined industrial robots 2 (except the LWRIII) would
fracture the facial frontal bone of a human at operational speeds of 2m

s
when the

human head is clamped - even though the robot is commanded to maximally brake
when a collision is sensed. Weaker bones, like the Maxilla, would also be fractured
with the LWRIII. Similar trends are shown for chest injuries. Only the LWRIII
does not pose a thread to human safety in this setup, since its braking distance
is significantly reduced due to collision forces. The time evolution of the impact
forces even indicates that for a LWRIII - chest collision, it does not matter whether
the chest is constraint or not, since the main impact is already over when the chest
is pressed against the constraining element. As a conclusion, this type of impact
cannot be rendered safer by introducing more elasticity in the robots joints. In
subsequent work, Haddadin et al. further points out that this conclusion general
applies to collisions with high stiffness contacts (e.g. head impacts) [HASH09]. A
rather high intrinsic joint stiffness (like in the LWRIII) suffices to decouple the
link inertia from the motor’s in such an impact situation. In addition, no physi-
cal collision detection and reaction mechanism reacts fast enough to alleviate the
force peak in such fast and rigid collisions. This can be seen in Fig. 1.4 where
the collision detection signal (or r4 respectively) triggers after the force peak is
over. Even if the fast acceleration signal (||ẍA1||2) is used to trigger the collision
reaction mechanism, no change in injury characteristics can be found, since the
motor cannot decelerate fast enough. In some scenarios, high joint elasticity even
contributes negatively to the robot’s safe behavior, as described in [HASEH10].
The elastic elements can store non-negligible amounts of energy, which can be re-
leased during robot motion, increasing the robot’s speed to unsafe values. On the
other hand, if using this elastic energy by purpose to create peak velocities, the

2DLR LWRIII (14 kg), KUKA KR3-SI (54 kg), KUKA KR6 (235 kg), and KUKA KR500
(2350 kg)
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robot can probably be designed with smaller motors to achieve comparable speeds
to non-elastic robots.

Figure 1.4: Impact characteristics of a collision between a dummy head and the
LWRIII at 2m

s
. The signals are scaled to fit in a single plot such that their timings

can be compared. An accelerometer on the robot’s impactor was used to record
the acceleration ẍA1 of the impactor. For this experiment setup, τ4 is the crucial
joint torque and r4 the external torque estimation. The collision detection is based
on the generalized momentum. Figure copied from [HASH09].

Quasi-static clamping situations can in general be rendered safe when the colli-
sion is reliably detected and the robot is stopped in such an event. However, if the
collision detection has high torque / force thresholds, even light-weight robots as
the LWRIII can severely injure a human near singular robot configurations. Col-
lision detections thresholds are often implemented as a percentage of the maximal
exertable force, which goes to infinity at singular configurations. As a result, the
collision detection threshold can achieve values which are above maximal tolerated
values, leading to fractures or worse, as stated in [HASH09]. These injuries can
be prevented by either limiting the allowed robot workspace to non-critical con-
figurations, or by setting the collision detection threshold to very low percentages
(2% in the case of the LWRIII).

The above experiments and injury analyzes consider blunt impacts, where major
injury sources are fractures. Robot-Human collision with sharp contours or tools
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however lead predominantly to skin or soft-tissue injuries before fractures occur.
Therefore, Haddadin et al. analyze impacts with sharp tools like screwdrivers,
steak knifes or scalpels in [HASH+11]. The collision scenarios are prevalently
constrained stabbing and cutting, which are carried out with a pig leg cadaver.
The penetration depth is used as severity index and is compared to the depth
of vital organs in humans. The experiments show that with a suitable collision
detection and reaction mechanism (together with a light-weight robot design) the
injuries can often be mitigated or even prevented at all. Soft-tissue stabbing
injuries could be prevented for the scissors or the kitchen knife (for a velocity of
0.16m

s
), whereas the scalpel penetrates the skin to life-threatening depths. For

cutting motions, the severity of the injuries are mostly governed by the cutting
velocity and the blade length. However, even at a cutting velocity of 0.8m

s
, injuries

could be avoided at all with collision detection.

In industrial scenarios, robots’ end-effectors, or the tools they carry, have often
geometries that are between blunt and sharp. For these industrial relevant geome-
tries, Haddadin et al. conducted further impact analyzes in [HHK+12]. Different
impactor geometries were chosen of different sizes and masses (spheres, cuboids,
pyramids and wedges) and they were dropped from different heights (leading to
different impact velocities) on pig abdominal walls, simulating human skin tissue.
The resulting injuries were classified according to the AO classification3 and the
severity IC2 (contusion without skin opening) was chosen as maximally tolerable
injury. With this experiment data, safety curves were created that give a safe
velocity threshold for a given impactor geometry and its mass. By matching a
robot’s end-effector to geometric primitives, the authors were able to scale down
adaptively the velocity of arbitrary robot trajectories to safe values.

To conclude the revision on biomechanical safety aspects, Fig. 1.5 gives an
overview of the classification of physical human robot collisions and provides rel-
evant injury criteria and their most crucial factors. For the main scenario in-
vestigated in this thesis, quasi-static clamping in non-singular configurations, the
contact force fext due to the robot’s torque τ affects the danger of contacts the
most.

1.2.3 Control

Most standard industrial robots are used for simple trajectory orientated tasks,
like spot welding or spray painting. They are normally position controlled, which
suffices, when there are no uncertainties in their working environment [Cra05].
When industrial robots have to exert forces on the environment, as in scraping or
polishing tasks, a hybrid position/force control, as in [FMR97], can also be used.

3Arbeitsgemeinschaft für Osteosynthesefragen
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Figure 1.5: This safety tree shows for different physical contacts possible injuries
(PI ), worst-case factors (WCF ), worst-case range (WCR) - expressed in the Eu-
roNCAP color code (see Fig. 1.3) - and injury measures (IM ). Figure copied from
[HASH09].
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However, the hybrid position/force control becomes unstable when contact to the
environment is lost. In contrast to industrial robots, collaborative robots operate
in unstructured environments and need to ensure the safety of human cowork-
ers. Therefore, a compliant control scheme has to be implemented [TdVS14].
The most famous compliant control scheme is impedance control, introduced by
[Hog84]. Here, the robot’s pose is modeled as spring-mass-damper system and its
equilibrium position is controlled together with the desired impedance dynamics.
In general, impedance is the relation between an emerging force due to a combi-
nation of displacement, velocity and acceleration. So, if the equilibrium position
of the robot’s end-effector is deflected (e.g. in a collision with a human), the robot
tries to get back to the equilibrium position by applying a force depending on its
impedance dynamics. A pure position controller shows infinite impedance, which
means that the robot would exert infinite force to get back to the equilibrium.
The lower the controlled impedance, the less force is applied to objects in the
robot’s trajectory. The imposed impedance can be changed according to different
robots tasks and safety requirements. If high impedance is requested, Calanca et
al. suggest to use admittance control instead, which is closely linked to impedance
control [CMF16]. The difference in these control strategies is that in impedance
control, the environment is modeled as an admittance (displacement/ velocity/
acceleration output in reply to force input), whereas in admittance control, the
environment is modeled as an impedance (force output in reply to displacement/
velocity/ acceleration input). Impedance control was continuously researched for
stiff joints [Hog84], flexible joint robots [ASOFH03, ASOH07], and also for hy-
draulic arms [VSTH16].

Many collaborative robot tasks can be split into subtasks that require different
impedance dynamics each. This is especially the case when high precision tasks
alternate with tasks that need high compliance. Whenever the robot can stop its
motion between two such subtasks, the controller can switch between stable sets
of impedance parameters without affecting the overall stability. However, some
tasks need to change these parameters during the ongoing robot’s motion, e.g.
when inserting a needle in a multilayer object as in [FSF13]. Imposing a varying
impedance dynamics is the goal of variable impedance control. Here, additional
stability constraints arise, since the change in impedance parameters can inject
additional energy into the system rendering the overall system instable. Kronander
and Billard state stability conditions for time varying stiffness and damping profiles
in [KB16]. When a desired, a priori known, impedance dynamics satisfy these
conditions, it can be implemented by a standard impedance control architecture.
Ferraguti et al. show a tank-based approach to variable stiffness control when
the desired stiffness profile is not known a priori [FSF13]. The controlled system
is extended with a tank that stores the energy that is dissipated by the system.
When a change in stiffness requires additional energy, this energy is taken from
the tank. If there is not enough energy left, the stiffness change cannot take place.
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It is thus guaranteed that a stiffness change adds no additional energy into the
overall system.

The concept of energy tanks is applied to hybrid impedance/ force control by
Schindlbeck and Haddadin in [SH15]. Compared to standard hybrid position/ force
control, this control scheme does not require a separation between position and
force controlled coordinates. It rather adds the force tracking as a supplementary
control input to impedance control. The energy tank is needed to assure passivity,
since the force tracking can potentially inject too much energy into the system.
As accurate force tracking is then only possible with sufficient energy content, the
energy tank is pre-filled with the estimated energy needed for the manipulation
task.

A different approach to force tracking in combination with impedance control
is introduced by Lee and Buss in [LB08]. Here, the stiffness of the impedance
dynamic is adapted based on the force tracking error. Compared to other indirect
force tracking approaches that replan the desired trajectory, this method does not
need estimates of the environment’s stiffness or location.

A control scheme specifically created to guarantee pre-collision safety is de-
scribed in [HZ03]. Pre-collision safety assures that the collision forces at the time
of impact are below a certain threshold. This can only be achieved by either assur-
ing no collision at all, by safe mechanical design, or by limiting the velocity before
the robot collides. Post-collision safety on the other hand deals with the exerted
forces after the impact and can be influenced by safe collision reaction mecha-
nisms. The pre-collision control scheme of [HZ03] introduces the notion of impact
potential, which is the maximal force the robot can exert in its current state when
colliding with a stationary object, indifferent of where on the robot’s structure the
collision occurs. The safety core of the control scheme asserts that this impact
potential stays below a threshold. This is achieved by filtering and potentially
modifying the torque commands that are sent by a regular motion controller (e.g.
position controller). The safety core projects the threshold of the impact poten-
tial into the torque space and checks whether the commanded torque is within
the convex space of safe torques. If yes, the command is passed through to the
motors. If not, the safety core computes the closest safe torque to the commanded
one by projecting the commanded torque onto the convex hull of safe torques. To
improve controller performance, the safety core also returns the distance between
the unsafe and the computed safe torque to the controller. To achieve realtime
performance of the control scheme, there were only two control points picked on
the robot structure in [HZ03]. Hence, it was guaranteed that the impact potential
of these two points were below a certain threshold.
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Concerning post-collision safety, several collision reaction strategies are evalu-
ated in [DLASHH06, HASDLH08]. For various collision setups4, the (estimated)
external torques τext that are caused by the collisions, are analyzed. These torques
are reduced the fastest when using the estimated torques τext to establish an ad-
mittance control, letting the robot retract from the contact. For high velocity
impacts, stopping the robot immediately after sensing the collision reduces the
external torques as fast as the admittance control strategy. However, as the robot
does not retract from the contact, the external torques do not vanish.

To limit external contact forces, Haddadin et al. proposed trajectory scaling for
position controlled robots in [HASDLH08]. In essence, the time as seen by the
trajectory handler can be slowed down, sped up or even reverted, depending on
the external torques or forces. With this indirect force control scheme, the robot’s
end-effector (or in general the controlled point) is constrained to its trajectory
path while simultaneously limiting the forces that it exerts on the environment.

This thesis is mostly concerned about post-collision safety, because the dynamic
effects of collisions play a minor role in quasi-static scenarios. As impedance con-
trol shows good results in unstructured environments, we employ a new variable
impedance control scheme to limit steady-state contact forces in clamping situ-
ations. In contrast to velocity scaling, we allow the robot to deviate from its
trajectory path in order to circumvent clamping situations.

1.2.4 Collision Avoidance

Most robots that are used in the industry, are separated from their human
co-workers by physical barriers. The reason behind this separation is to avoid
human-robot collisions completely. However, in modern collaborative robot (cobot)
setups, physical barriers obstruct the collaboration highly. If collisions are re-
garded as disturbing or even dangerous, it is necessary to implement collision
avoidance strategies without physical barriers for such collaborative setups. The
international standard for collaborative robots [ISO16] gives two specifications
that avoid human-robot collisions: safety-rated monitored stop and speed and sep-
aration monitoring. The safety-rated monitored stop is similar to using physical
barriers, because as soon as a human co-worker enters the workspace of the robot,
the robot motion should stop. It is therefore impossible to approach the moving
robot. Speed and separation monitoring assures that there is always sufficient
space between the robot and the human, the so called protective separation dis-
tance. If the robot is always at least this distance apart from any human in the
workspace, it is guaranteed that the robot can stop its motion before colliding with

4I.e. LWR III colliding with clamped balloon, crash-test dummy, 1 DOF collision test bed or
human subjects.
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them. As a result, the protective separation distance is non-trivial to compute. It
is for example dependent on the velocity of the robot and the human, as well as
on sensors’ reaction times and measurement tolerances. If the distance between
human and robot falls below the protective separation distance, the standard de-
mands the robot to stop immediately. As the name suggests, speed and separation
monitoring is only surveilling the collaborative task, but it does not change the
robot’s motion, except for stopping it in dangerous situations.
More dynamic collision avoidance schemes have been investigated in the past and
are still an ongoing topic of research. The method of Artificial Potential Fields
[Kha86], for example, assigns attracting forces to the robot’s goal position and re-
pulsive forces to obstacles. The result is a potential field, on which the robot moves
following the negative gradient. This potential field can be updated depending on
the movement of the obstacles and thus constituting a dynamic collision avoidance
approach. However, the main drawback of this method is that the robot can get
stuck in a local minimum, although there might be a collision free path to the
goal position. More recent collision avoidance approaches consist often of both
an offline planning phase and an online reactive obstacle avoidance scheme. The
elastic strips method [BK02] allows customizable obstacle avoidance motions by
performing the collision avoidance in the nullspace of the task (if possible). Hence,
the resulting motion can, on top, also avoid singularities or self-collision. Similarly,
collision avoidance methods based on Dynamic Systems, as in [KZB12, SHL17],
also change the globally defined trajectory locally when there is an obstacle.

Clamping situations can be avoided by implementation of collision avoidance
policies. With the clamping identification algorithm presented in this thesis, the
collision avoidance policy can be triggered selectively in these situations. However,
we choose not to avoid collisions, but to render the collision safe by limiting the
contact forces.

1.2.5 Distance Calculation

One requisite for reliable collision avoidance is a fast distance calculation be-
tween robot and obstacles. Since the geometry of the robot and the obstacles can
be of arbitrary complexity, it is common to approximate these geometries with
simpler ones. In [FKDLK12] for example, the robot is replaced by a chain of
spheres. Depending on the application, such an approximation can be adequate
or too coarse. More accurate distance computations, and especially (geometri-
cal) collision detection algorithms, can be found in the field of physics simulation
engines, which can be also transfered to robotic applications. Modern physics en-
gines like Bullet or ODE detect collisions through a collision detection pipeline
that consists basically of two steps [Wel13]. In the broad phase the objects that
can possibly enter into collision are enumerated. The subsequent narrow phase
consist of two more steps: filtering and primitive collision checking. The filter-
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ing operation rejects all collision candidates that are not geometrical close to each
other. The remaining collision candidates are then accurately checked for collisions
in the primitive collision checking step. Thus, this pipeline architecture reduces to
number of expensive primitive collision checks 5. However, it is only efficient if the
objects are represented by adequate data structures which enables fast proximity
checks in the filtering step. Most often, the objects are represented by a Bounding
Volume Hierarchy (BVH). To check whether two objects are in collision to each
other, both their hierarchies are traversed from top to bottom (coarse to fine).
Bounding Volumes (BVs) that are separated are rejected and only the BVs that
are not separated on this level are further traversed. Depending on the type of
bounding volume used, these separation tests are more or less expensive. Common
BVs are spheres, Axis Aligned Bounding Boxes (AABBs), discrete oriented poly-
topes (k-DOP) and Oriented Bounding Boxes (OBBs). Spheres and AABBs allow
for example easy separation tests, but they often do not fit tightly on the object
they approximate. K-DOPs and OBBs on the other hand are more customizable
and approximate the objects better, but separation tests are more complicated.
This trade-off can be quantified by following formula from [He99]:

T = Nv × Cv +Np × Cp +Nu × Cu + C0,

where T is the total cost of a collision check, Nv is the number of BVs that undergo
a separation test, Cv is the cost of this separation test, Np is the number of (fine)
primitive checks that have to be done and Cp are their costs. When the objects
are moving, some of the BVs have to be updated. For example, AABBs have to be
freshly calculated when the object is rotating. The number of BVs that must be
updated is represented by Nu and the update cost is Cu. C0 is a ”one-time” update
cost for each object for applying the movement transformation. Gottschalk et al.
show in [GLM96] that OBBTrees (a tree structure of OBBs) perform better than
AABB- or spheretrees in close proximity situations. The authors also developed
a separation test for OBBs that is based on axial projections of the OBBs and
on the Separation Axis Theorem (SAT). As a result, the algorithm is one order of
magnitude faster than previous separation tests, needing on average only about
100 operations.
Some of the algorithms used for collision detection, also output the minimum
distance between two non-colliding objects, or the penetration depth for collid-
ing obstacles. The penetration depth is often defined as the smallest vector that
separates two overlapping geometries. The Gilbert-Johnson-Keerthi (GJK) algo-
rithm [GJK88] is such an algorithm that works with convex hulls of objects and
is therefore also applicable to most bounding volumes.

Instead of using an approximation that encapsulates the object, the data struc-
ture in [WZ09] approximates the object as close as possible from the inside with

5These checks depend on the representation of the object. If it is a point cloud, the checks
are point to point distances. If it is a triangular mesh, triangles are checked for collisions.
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a hierarchy of non-overlapping spheres. This inner sphere tree enables proxim-
ity and penetration volume queries. The distance returned from the proximity
query constitutes an upper bound on the distance: Since the inner sphere tree is
a non-encapsulating approximation, the real minimal distance can be smaller, but
not bigger than the calculated one. Together with an encapsulating BVH, it is
possible to get both an upper and a lower bound on the minimal distance between
two objects. In [MPT05] the static environment is represented in a voxel map
and the moving objects are represented as point sets. The authors termed the al-
gorithm that leverages this combination of data structures Voxmap PointShellTM

algorithm. It is mainly developed for haptic rendering purposes, since it computes
a short range force field around static objects, giving force feedback to a moving
object (probe). However, an advancement of this method, described in [SSLeS14],
is able to compute distances and contact manifolds, too. In an offline process,
every voxel in the voxel map gets the shortest distance from its center to the static
objects assigned. As a result, the voxel map represent a distance field. The points
in the point shell (surface of the moving object) are packed into a sphere tree.
By traversing the sphere tree, only promising points of the point shell are taken
for collision or distance queries. During such a query, the algorithm determines
in which voxel the examined point of the point shell lies. The returned minimum
distance is composed as d = v(P ) +ne, with v(P ) being the distance value saved
in the respective voxel, n being the point’s normal vector and e being the distance
vector from the point to the center of the voxel. All points with negative distance
are saved as a contact manifold and the reactive forces are a simple multiplication
of the distance value with the point’s normal.

The above geometrical collision detection and distance computation algorithms
assumes known models of the objects in the scene. In many dynamic robot
applications, and especially in collaborative scenarios, the objects in the scene
are not known beforehand, much less their pose. The robot rather has to per-
cept the objects with appropriate sensors. Most recent collision avoidance meth-
ods deploy visual sensors to gather information about the scene. Especially the
present-day availability of affordable RGB-D cameras made them one of the pre-
ferred sensors for collision avoidance. The sensor’s information can then be used
to construct models of the objects and/or to update their pose. The works of
[FKDLK15, SHL17] show that fast and accurate distance computation can also
be done directly on the RGB-D camera’s depth images. Not using any object
models, the approaches employed a worst case treatment for areas that cannot be
seen from the camera, e.g. because these areas are occluded by other objects or
the robot itself. The use of multiple RGB-D cameras, as in [FDL17] remedies this
drawback.

To identify clamping situations, we utilize distance computations between the
robot and the environment. As we do not want to limit this algorithm to static
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environments, we adapt a dynamic collision detection pipeline to our needs instead
of using an implementation of the Voxmap PointShellTM algorithm. Especially
in contact situations, vision based distance computations have the drawback of
occluded structures and do therefore pose additional challenges for identifying
clamping situations.

1.2.6 Collision Detection

If a collaborative robot system does not implement collision avoidance, it is im-
portant that the system can detect collisions reliably.6 Even if a robot system uses
a collision avoidance method, collision detection and reaction methods can still be
used as fall-back safety features. Robot collisions can obviously be detected by
using appropriate additional sensors, like covering the robot structure with a sen-
sitive skin [PCW12]. But it is also possible to detect contacts without additional
sensors. Industrial robots are already using measurements of the actual currents in
the electrical motors to detect unforeseen collisions by searching for sudden vari-
ations. Geravand et al. extend this basic method by using more accurate trajec-
tory based thresholds [GFDL13]. Through filtering the current measurements, the
industrial robot is also capable of distinguishing between intended human-robot
contacts and accidental collisions. Robots that are equipped with joint torque sen-
sors can also compare these measurements with the nominal torque that can be
computed with the robot’s dynamic model. A substantial difference between these
values implies that an external force is influencing the joint torques. The drawback
of this method is that the computation of the nominal torque needs acceleration
data, which is subjected to noise due to numerical differentiation [Luc16].
Recent research has focused on a collision detection method that uses the general-
ized momentum p = M (q)q̇, whereM is the robot’s mass matrix, and q and q̇ are
the joint positions and velocities. The works in [DLM05, DLASHH06, MFDL14]
do all compute a residual vector based on the generalized momentum that can be
seen as a filtered version of the joint torques that are generated by an external
contact force. It is therefore not only possible to detect collisions, but also to
partly identify on which link(s) the contact occurs. Compared to previous meth-
ods, no inversion of the mass matrix M nor acceleration information q̈ is needed.
Additionally, this method is independent on the robot control scheme; a change
in the control strategy does not pose a problem. In [DLM05], the residual vector
is used to create a hybrid force/position controller in joint space, without any
external force sensors. The collision detection based on the generalized momen-
tum is extended to robots with joint elasticity in [DLASHH06]. This work also
presents several collision reaction schemes that take advantage of the directional
information of the residual vector, and evaluates them on the DLRIII manipu-
lator. A virtual force sensor is presented in [MFDL14]. The estimated external

6For safe human robot collaboration, the robot’s motion has to fulfill additional constraints
like low velocity and low exerted forces.
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joint torques / residual vector r are mapped to a general contact point Pc on the
robot’s surface, generating a contact force fc on that point through

fc = (JT
c (q))

#r,

where JT
c is the Jacobian at Pc. Since the contact Jacobian is in general not

invertible, pseudo-inversion (#) is applied. The contact point Pc is estimated
using a RGB-D camera. In an experiment, the human hands were tracked with
such a camera, and the closest point on the robot’s structure to these hands was
considered as the contact point. Whole hand contacts were modeled by using an
average of 10 contact points (fingers). In [MFDL15], this virtual force sensor is
used to implement force and impedance control on arbitrary contact points. For
restricted contact scenarios, the contact point can also be estimated by solving for
the lever length when both a contact force and a contact moment are estimated
[HDLAS17].

Given the good results of collision detection and estimation of contact forces
fc through the generalized momentum, our control architecture detects collisions
with the same method. Additionally, the estimated contact forces are used to
shape the impedance dynamics of the robot manipulator.
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Chapter 2

Clamping Conscious Control

Working in the same workspace as a robot pose multiple threats to human
co-workers. Collision related hazards can be circumvented by exploiting collision
avoidance schemes, safe mechanical design and non-harmful trajectories. However,
in collaborative tasks, contacts and transfer of forces between robots and humans
cannot be avoided. In spacious settings, these contacts and forces do not pose
high risks when the robot moves slowly, since the human co-worker can escape
inconvenient contacts or high contact forces. The risk rises dramatically, if the
human is constrained in his movements and is unable to escape dangerous situa-
tions. Hence, a safe robot control scheme has to be aware of potential clamping
situations and has either to prevent these situations at all times or has to render
such situations non-harmful. Section 2.1 explains the concepts of such a clamping
conscious pipeline. The implementation details are described in Sec. 2.2.

2.1 Concepts

This section begins with describing the circumstances that apply in clamping
situations in Sec.2.1.1. As distances between robot and objects play an important
part therein, a short discussion about distance computation methods follows in
Sec. 2.1.2. Afterwards, we explain our algorithm to identify clamping situations
in Sec.2.1.3. As this algorithm computes box to box distances, we describe how
the Separation Axis Theorem can be extended to approximate these distances
in Sec.2.1.4. Since this thesis is concerned about clamping situations in pHRI,
Sec. 2.1.5 outlines the robot model that we are using. Finally, the concepts of the
proposed Clamping Conscious Impedance Control scheme are delineated.

2.1.1 Identifying Clamping Situations

There are mainly two different cases in which a robot can clamp a human co-
worker: The robot can press a human body part against objects in the workspace,
or it can squeeze the body part in between its own links. When the robot has
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perfect knowledge about its geometry, the environment, and the pose and shape
of the body parts in the workspace, clamping situations can be easily identified. If
a body part is both in contact with a robot link and the environment, or with two
different robot links, there is a clamping situation. However, in real life scenarios,
the poses and shapes of body parts in the workspace are often only known to the
robot up to a certain uncertainty. To protect the human, it is necessary to assume
worst case poses and shapes, bounded by the degree of uncertainty. Identifying
clamping situations is therefore highly dependent on the degree of uncertainty, and
thus, the identification method used varies.

Let us assume that the robot has perfect knowledge about its static environ-
ment, but no means to detect the pose, nor the shape of human body parts in its
workspace. To make valid and meaningful assumptions whether a body part can
be clamped in the current robot configuration, one has to provide the robot with
information about the body parts that can be in its workspace. Our approach
is to define collaborative zones, together with body parts that can be in these
zones. An example placement of collaborative zones can be seen in Fig. 2.1. If one
has absolutely no knowledge about how co-workers interact with the robot, one
can place a collaborative zone over the entire workcell, containing every possible
body part as a worst case assumption. Additionally, we provide the robot with
the extent of these body parts. Since every co-worker might have different body
proportions, only minimal and maximal dimensions of these body parts are given
to the robot (sizemin and sizemax). An illustrative example is given in Fig. 2.2.
When there are more body parts present in one collaborative zone, the most con-
servative dimensions are used for identifying clamping situations. This means that
for each collaborative zone, the smallest dimension sizemin and the biggest dimen-
sion sizemax is used. Section 2.2.1 gives more details about how the body part
dimensions are obtained.

Clamping situations are detected separately for each robot link. For each link, the
minimal and maximal distance to the environment is calculated (dmin and dmax).
If it is geometrically possible that a body part (defined by the collaborative zone)
can be trapped between the link and the environment, the controller is notified.
This clamping case is indicated by:

dmin < sizemax. (2.1)

At the beginning of a clamping situation,

dmax > sizemin (2.2)

holds also. Naturally, a body part can only start to be trapped when the robot
moves towards it. Figure 2.2b illustrates the validity of (2.1) and (2.2).
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Figure 2.1: Placement of collaborative zones (light orange). Every collaborative
zone contains the body parts that might be in the respective zone. Black objects
(wall and table) constitute the static environment.

2.1.2 Distance Calculation

The clamping identification requires two distance measures per link: the mini-
mum distance dmin and the maximum dmax. This bears an extra challenge to the
distance calculation algorithm, since most common distance calculation methods
are specialized to return only the minimum distance dmin. An additional challenge
poses the control rate of modern robots, which is usually around 1kHz. A simple
approximation of the scene and the robot with geometric primitives would not pro-
vide the necessary accuracy. An adaption of the Voxmap PointShellTM algorithm
would probably meet the accuracy requirements, but the voxel discretization of
the robot’s workspace would require much memory. Under normal circumstances,
a robot workspace contains a lot of free space to allow for various robot motions.
Therefore, a simple voxel discretization would be very wasteful. Additionally, the
distance calculation algorithm should be extensible to also compute the distance
(and contact manifold) between the robot and human body parts. Both of them
are dynamic objects in the scene, but the Voxmap PointShellTM algorithm can
handle only computations between a static and a dynamic object.

2.1.3 Identifying Clamping Situations through
OBBTree Traversal

We propose a hierarchical method to identify clamping situations time efficiently.
The core idea is to start the identification process with a coarse approximation and
refine the approximations where it is needed. Whenever a clamping situation at a
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(a) Minimal and maximal di-
mensions

(b) Clamping requisites

Figure 2.2: (a): For each of the considered body parts, a minimal and a maxi-
mal dimension value is assigned. The minimal value (sizemin) expresses that no
dimension of the body part is smaller than sizemin. In the example of the head,
it says that the height, width, and depth of the respective co-workers’ heads are
bigger than sizemin. The biggest dimension of the body part is expressed through
sizemax. Continuing the head example, the co-workers’ heads have smaller height,
width, and depth than sizemax. (b): In a potential clamping situation, the mini-
mal distance (dmin) between the robot and the environment is smaller than sizemax.
Otherwise, the human would not be constrained. Additionally, the maximal dis-
tance between the robot and the environment (dmax) must be greater than sizemin

for a beginning clamping situation. If this is not the case, the human cannot get
constrained. The respective body part would not fit in the space between robot
and environment. See also Fig. 2.7 for these cases. The velocity (red arrow) di-
rection of the robot also plays an important part for predicting future clamping
situations. Body parts only can get clamped, if the robot moves towards them.
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given approximation scale cannot be ruled out, the approximations are refined until
reaching a user-defined accuracy. To rule out clamping situations, we introduce
several Early Out Criteria (EOC) that are dependent on the distance and the
velocity between the respective objects.

OBBTree data structure

The chosen method is an adaption of the Bounding Volume Hierarchy (BVH )
method (see Sec. 1.2.5). The distance calculation is accurate up to a user de-
fined threshold, memory is only used for actual objects in the scene, and the BVH
can be dynamically updated to allow distance computations between moving ob-
jects. As Bounding Volumes (BV ) we use Oriented Bounding Boxes (OBBs), since
they perform better for low-curvature surfaces, compared to sphere- or AABB-
Trees [GLM96]. The reason is that they fit the geometry tighter, which leads to
less traversals in the tree structure. Visual examination showed that more com-
plicated bounding volumes are not necessary for the used robot.

Our OBBTree (tree structure of OBBs) implementation is an extension of the
original one by [GLM96]. Instead of only approximating surface points with an
OBB, we also save the normals of the points within it. This gives us optimized
performance when identifying clamping situations. The normals of the points
also influences the decision to which cluster they belong. Each cluster is later
transformed into an OBB. An intermediate step in clustering and OBB creation
can be seen in Fig. 2.3. The end result for the OBBs directly beneath the root of
the OBBTree of the first robot link is displayed in Fig. 2.4. Further details on the
OBBTree creation are described in Sec. 2.2.3.

OBBTree traversal

To identify a possible clamping situation between a robot link and any object in
the environment, the OBBTree of the link is compared with every OBBTree of the
environment. This comparison is done by traversing the OBBTrees synchronously.
A schematic view of such an BVH is shown in Fig. 2.5. When traversing, the root
nodes of the respective OBBTrees are compared to each other first. If this com-
parison cannot rule out a possible clamping situation, their children are compared
to each other. Then, the same routine unrolls iteratively. This procedure is anal-
ogous to the collision detection pipeline of physics engines. There, a branch of a
BVH (Bounding Volume Hierarchy) is dismissed when the top node of the branch
cannot be in collision with the respective object. See Fig. 2.6 for an illustration. In
this example, not intersecting BVs are used as an EOC. For the clamping identifi-
cation algorithm, multiple EOCs are used. The first EOC rejects all environment
OBBs from which the currently considered robot OBB moves away. These are the
environment OBBs that does not lay in the current direction of movement of the
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Figure 2.3: Snapshot of the OBB creation. The surface points are clustered de-
pending on their locations and normal vectors. Each cluster is bounded by an
OBB, for which also the centerpoint together with the average normal vector (dis-
played as large vector) is saved.
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Figure 2.4: OBB creation result for the first link of the Panda robot. Each cluster is
bounded by one OBB. The shown OBBs constitute the first depth of the OBBTree
that has a total depth of 3.
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root

leaf

depth 1 depth 1

depth 2 depth 2

...

...

...

...

...

Figure 2.5: General layout of a BVH with 4 depth level (including the root) and
a branching factor of 2.

robot OBB. The next EOC checks whether all normal vectors of the robot OBB
are pointing approximately in this OBB’s velocity direction. If they are not, this
OBB represents a surface of the robot that is turned away from a possible contact
that is initiated by the robot. Analogously, the normal vectors of the OBBs repre-
senting the environment have to point in the opposite velocity direction. The last
EOC checks whether the geometric conditions for a clamping situation are fulfilled
((2.1) and (2.2)) and requires a minimum and maximum distance computation.
These EOC are further detailed in Sec.2.2.5.

2.1.4 Separation Axis Theorem (SAT)

Given the fast execution time of the SAT in collision detection, we try to transfer
its speed to approximative distance calculations. The general idea of the SAT is to
check whether there exists a plane that separates two bodies. The normal vector
of this plane is then a separation axis l, as illustrated in Fig. 2.8. To check whether
an axis is a separation axis, one has to project all points of the two bodies on this
axis and check whether these point-sets are overlapping or not. This check can be
simplified and tailored to specific Bounding Volumes. Moreover, the separation
axes can be chosen smartly for different Bounding Volumes to limit the number of
necessary separation checks. For OBBs, 15 axis have to be checked in total and
Gottschalk et al. introduced an efficient way to check whether they are separation
axes or not in [GLM96]. Referring to Fig. 2.9 and [GLM96], axis l is a separating
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(a) BVs in collision. (b) BVs not in collision.

Figure 2.6: A collision between the robot’s end-effector and the environment is
queried. The root nodes of both bounding volume hierarchies are in collision in
(a). Therefore a collision cannot be ruled out on this approximation level. Further
refining the approximation in (b) rules out a collision.

(a) EOC because of dmin (b) EOC because of dmax

Figure 2.7: Body part related early out criteria. In (a) the link is too far away
from the environment, such that even the largest dimension of an head will fit in
between with enough clearance: dmin > sizemax. In (b) the link is already so close
to the environment, such that even the smallest dimension of an head will not fit
in between: dmax < sizemin. This EOC is only valid if there was no actual clamping
before.
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axis if and only if

|t · l| >
∑

j

|αjaj · l|+
∑

j

|βjbj · l|

> rA + rB,

(2.3)

where t is the translation between the OBBs’ center points, aj (bj) are unit vectors
of OBB A’s (OBB B’s) face normals expressed in the world coordinate system and
αj (βj) are the lengths in these directions from the box’s center to the respective
face. The dimensions of the OBBs are projected onto the axis l as rA and rB, with

rA =
∑

j

|αjaj · l|

rB =
∑

j

|βjbj · l|
(2.4)

The distance di between the two OBBs along axis li is

di = |t · li| − rAi − rBi , (2.5)

when li is a unit vector. It is possible that there exists multiple separation axes
for two OBBs. If the separation axes are perpendicular to each other, the OBBs
are separated along perpendicular directions. In this case, the distances di along
direction i can be added together to approximate the minimum distance dmin. As
depicted in Fig. 2.10a, this approximative distance d̃min is composed as

d̃min =

√

∑

i

σid
2
i , (2.6)

where

σi =

{

1, for di > 0

0, otherwise

allows only positive distances di to be part of the distance approximation. Since
the approximative distance d̃min is always equal or smaller than the real minimum
distance dmin, its usage in the EOC determination is not leading to false positives.
Further details follow in Sec. 2.2.5.

To approximate the maximum distance dmax, several values from the minimum
distance approximation are reused.
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Figure 2.8: Two Bounding Volumes, in this case OBBs, are separated from each
other if there exist a plane that separates them. The normal l of this plane is
called a separation vector.

Figure 2.9: Separation axis test in 2-D. The OBBs A and B are projected on the
separation axis l. Here, the two projected point-sets are separated by distance d.
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(a) Minimum distance approximation. (b) Maximum distance approximation.

Figure 2.10: Approximations of the minimum and maximum distance between two
OBBs. The approximative minimum distance d̃min is calculated with the projected
distances d1 and d2 according to (2.6). Note that d̃min is always equal or smaller
than the actual minimum distance dmin. The real maximum distance dmax is taken
to be the biggest distance between any point of the one shape (body) and the other.
Its approximation d̃max visually represents the diagonal of the rectangle (in 2-D)
or the cuboid (in 3-D) that is spanned by the projected maximum distances d+i .
Concerning clamping situations, both dmax and d̃max are bigger than the distance
d̆max that defines the maximum distance between points that face each other.

The projected maximum distance d+i along separation axis li is obtained through

d+i = |t · li|+ rAi + rBi , (2.7)

for li being of unit length. For a system of perpendicular separation axes, we
approximate dmax with

d̃max =

√

∑

i

(d+i )
2. (2.8)

Figure 2.10b visualizes the approximative maximum distance d̃max as well as the
maximum distance dmax between each point pair. Both distance metrics form an
upper bound on the maximum distance d̆max that is crucial for clamping situations,
defining the maximum distance between planes that face each other. The rectangle
(or cuboid in 3-D) spanned by d+i does not always contain all points from both
OBBs as can be seen in Fig. 2.11. However, its diagonal is still longer than any
distance between the two OBBs. Further details on the efficient computation of
the approximations d̃min and d̃max are stated in Sec. 2.2.6.
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Figure 2.11: The yellow rectangle (cuboid) that is spanned by the projected maxi-
mum distances d+i can be smaller than the rectangle (cuboid) containing all points
of the two OBBs (yellow and turquoise rectangles combined).

2.1.5 Robot Model

A common approach to model serial robot manipulators is to view them as
a composition of rigid links and joints. For purely rotational manipulators, the
joints rotate their neighboring links relative to each other by the joint angles q.
The dynamic model of such a rigid joint robot with n joints can be expressed
analogously to [SS12] as

M (q)q̈ +C(q, q̇)q̇ + g(q) = τ + τext, (2.9)

where q, q̇ and q̈ ∈ R
n are the joint positions, velocities and accelerations.

M (q) ∈ R
n×n is the symmetric, positive definite inertia matrix. The Coriolis

and centrifugal forces are composed of the Matrix C(q̇, q) ∈ R
n×n, containing the

Christoffel symbols, and q̇. Gravity forces are modeled through g(q) ∈ R
n. The

torques on the right-hand side are τ ∈ R
n, being the commanded torques, and

τext ∈ R
n being the external torques acting on the robot’s joints. Equation (2.9)

is also known as a robot’s state-space equation with the two state vectors q and q̇.

Modern Light Weight Robot (LWR) arms, as the KUKA-DLR LWR arm [HSAS+02]
or the Panda [EMI17] contain elastic elements between the joint actuators and the
links. These elements can make the robot’s motion more compliant (see Sec. 1.2.1)
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and can be used to estimate external forces acting on the robot [DLASHH06]. For
robots with elastic joints, the motor positions and velocities θ and θ̇ generally
differ from the joint positions and velocities q and q̇. The relationship between
the motor-side state variables and the link-side ones are described by [ASOFH03]:

M (q)q̈ +C(q, q̇)q̇ + g(q) = K(θ − q) + τext, (2.10)

Bθ̈ +K(θ − q) = τm. (2.11)

Here, the left-hand side of the first equation is the same as for the rigid joint case.
The second equation models the motor dynamics with B and K ∈ R

n×n being
both diagonal matrices describing the inertias of the individual motors and the
joint stiffnesses. The control input is τm ∈ R

n, specifying the motor torque. The
two equations are coupled through K(θ − q), representing the torques acting on
the joints due to motor commands. Given the complexity of this flexible joint
model, it is often difficult to design controllers using the flexible joint assumption.
One solution is to use the singular perturbation approach to transfer the flexible
joint dynamics into a structure equal to the rigid joint case (2.9). As described
in [ASOFH03], this can be done by adding a fast subsystem that commands the
motor torques τm as

τm = τd −KT (τ − τd)−KSτ̇ , (2.12)

when given a desired joint torque vector τd. With KT and KS being positive
definite controller matrices, the actual joint torque is controlled to be τ = τd.
This leads in total to the following link dynamics:

M̄ (q)q̈ +C(q, q̇)q̇ + g(q) = τd + τext, (2.13)

with

M̄ (q) = (M (q) + (I +KT )
−1B). (2.14)

Comparing (2.13) with (2.9), one sees that these equations are identical with the
exception of a different inertia matrix M . It is therefore possible to control elastic
joint robots as if their joints are rigid by replacing their inertia matrix M with M̄ .

2.1.6 Clamping Conscious Impedance Control

Impedance control is commonly used in human-robot interaction tasks, since
it can be configured to provide high compliance. Moreover, compared to hybrid
force/position control, the transition between contact and non-contact states does
in general not lead to instabilities. This advantage makes impedance control prefer-
able in unstructured environments. One major distinction in impedance control
is whether the impedance dynamics (i.e. the relation between forces and displace-
ments/ velocities/ accelerations) are established in the joint space or in another
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operational space. In operational space control [Kha87], the robot’s motion is ex-
pressed in task related coordinate systems. In many use-cases the respective task
is expressed in Cartesian coordinates, leading to a Cartesian impedance controller.
The ideal closed loop dynamics of a standard Cartesian impedance controlled robot
can be described as

Λdë+Dė+Ke = fext. (2.15)

Here, e, ė, and ë ∈ R
s are the pose, velocity and acceleration errors of the end-

effector in the Cartesian space with dimension s. The pose error e is defined as
x−xd, with x being the end-effector pose. The subscript ·d denotes desired values,
which are often assumed to be constant. The end-effector terms x, ẋ, and ẍ, as
well as the corresponding error terms e, ė and ë are in general time dependent.
However, for the sake of readability, these time dependencies are dropped unless
they require emphases.
Depending on whether the orientation of the end-effector should be controlled,
the Cartesian dimension s is often chosen to be 3 (to control the x−, y− and
z− directions), or 6 (to control additionally roll, pitch and yaw). External forces
acting on the end-effector are described by fext. K, D, and Λd ∈ R

s×s are the
stiffness, damping, and desired inertia matrices of the impedance dynamic. This
dynamic is stable in a passive environment if K, D, and Λd are positive definite
and constant [KB16]. Usually, the matrices are chosen to be diagonal such that
the dynamics in each coordinate direction is decoupled from each other.

In the following, some ideas and equations refer only to certain parts of ma-
trices and vectors, or need them to be expressed in different coordinate systems.
Therefore, we introduce here the respective notation for them.

Notation 1. Given the partitioning of the Cartesian pose vector x = [p,φ]
into position and orientation related coordinates, the subscripts ·p and ·φ will
be used to specify position and orientation elements of other matrices and
vectors, too. For a matrix A ∈ R

6×6, Ap ∈ R
3×3 specifies the upper left block,

Aφ ∈ R
3×3 the bottom right one. A vector a ∈ R

6 is also separated into ap ∈
R

3 and aφ ∈ R
3 being the first three and the last three vector entries. As an

example, ep ∈ R
3 is the position error and Kφ ∈ R

3×3 contains the rotational
stiffnesses. Individual entries of matrices and vectors are referred to by row and
if necessary column indices starting from 1. Note that K[4,4] and Kφ,[1,1] denote
the same element. For vectors, the indices can be stated without brackets if
the indices cannot be confused with other subscripts. Consequently, a1 is the
first entry of vector a. To specify a subvector, indices can be stated as a
range, e.g. a[2−4]. For submatrices, the range applies to rows and columns
likewise. We can for example write Ap as A[1−3]. When unrolling matrix
vector multiplications, we make use of the notation ~ai to refer to the vector
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that is constructed by setting all elements of vector a to 0 except element ai. If
it is important in which coordinate frame a vector is expressed, the coordinate
frame is specified as a leading superscript. For instance ba is the vector a

expressed in coordinate frame bχ.

Notation 2. Special matrices:

• In ∈ R
n×n is the identity matrix.

• 0n ∈ R
n×n is a matrix full of zeros.

The robot dynamics in (2.15) allow the tracking of time varying end-effector
pose xd. The control schemes developed in this thesis track piecewise constant
poses, meaning that the desired poses remain constant until they are reached.
Hence, the derivatives of the pose error are simply

ė = ẋ and ë = ẍ.

Consequently, (2.15) reduces in this case to

Λdẍ+Dẋ+Ke = fext. (2.16)

To elaborate several concepts of the Clamping Conscious Impedance Control (CCIC),
we first look at a one-dimensional model of the controlled system and the environ-
ment before applying these concepts to the more general multi-dimensional case.
In one dimension, (2.16) gets simplified to

mẍm + dẋm + ke = fext

⇔ mẍm + dẋm + k(xm − xd) = fext
(2.17)

withm being the controlled point mass at position xm, k being the scalar impedance
stiffness, and d being the scalar damping coefficient. A schematic representation of
this model is shown in Fig. 2.12. If the controlled mass m is in free motion (i.e. it
is not in contact with the environment), then fext = 0. We model the environment
as a simple spring with equilibrium position xe and spring stiffness ke. Hence,
when the point mass m is in contact with the environment, (2.17) becomes

mẍm + dẋm + k(xm − xd) = ke(xe − xm). (2.18)

Steady state analysis

The main goal of the CCIC is to render potential clamping situations safe.
One critical aspect is to limit the exerted force on the clamped body part to safe
values fmax. Regarding the one-dimensional model (2.18) in steady state,

k(xm − xd) = ke(xe − xm),
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(a) Free motion (b) In contact with environ-
ment

Figure 2.12: One-dimensional impedance model of Eq. (2.17). The controlled
mass is shown as red circle and is at xm. Its velocity ẋ is damped by d. The
spring k pulls the mass to reach xd. In (a), the mass is in free motion and the
external force fext is 0. In (b), the mass is in contact with the environment and
has crossed the equilibrium position xe of the environment. The resulting external
force fext = ke(xe − xm) is counteracting the pulling force of spring k.
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we see that the external force is equal to the spring force k(xm − xd) that drags
the mass m to its goal position xd. Consequently, a minimum requirement for the
CCIC is that the external steady state force is below fmax:

‖k(xm − xd)‖ = ‖ke(xe − xm)‖ < fmax. (2.19)

We meet this requirement by incorporating a velocity saturation policy adapted
from [Kha86, Sen07]. First, we rewrite (2.17) to be a velocity tracking control:

mẍm + d(ẋm − νẋd) = fext (2.20)

ẋd =
k

d
(xd − xm)

ν = min

(

1,
vmax

‖ẋd‖

)

vmax =
fmax

d

Here, ẋd is the target velocity to track, but this velocity is saturated by vmax > 0.
This saturation becomes clearer when we look at two distinct cases separately.

• Case 1: ‖ẋd‖ < vmax

When the norm of the desired velocity ‖ẋd‖ is smaller than the velocity
limit vmax, the impedance dynamic (2.20) equals the original dynamic (2.17):

‖ẋd‖ < vmax ⇒
vmax

‖ẋd‖
> 1⇒ ν = 1

mẍm + d(ẋm − νẋd) = fext

⇔mẍm + d(ẋm − ẋd) = fext

⇔mẍm + dẋm + k(xm − xd) = fext. (2.21)

Additionally,

‖ẋd‖ < vmax ⇔
∥

∥

∥

∥

k(xd − xm)

d

∥

∥

∥

∥

<
fmax

d
⇒ ‖k(xd − xm)‖ < fmax,

which means that the steady state force is below fmax.
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• Case 2: ‖ẋd‖ > vmax

When the norm of the desired velocity ‖ẋd‖ is bigger than the velocity
limit vmax, the steady state force is also bounded by fmax:

‖ẋd‖ > vmax ⇒
vmax

‖ẋd‖
< 1⇒ ν =

vmax

‖ẋd‖
mẍm + d(ẋm − νẋd) = fext

⇔mẍm + d(ẋm − vmax
ẋd

‖ẋd‖
) = fext

⇔mẍm + dẋm − fmax
ẋd

‖ẋd‖
= fext

⇔mẍm + dẋm − fmax
xd − xm

‖xd − xm‖
= fext

⇔mẍm + dẋm + fmax
xm − xd

‖xm − xd‖
= fext. (2.22)

With above velocity saturation, the steady state force can be limited. However,
since (2.21) and (2.22) are second order differential equations, they can exhibit
non-negligible transient behaviors. These transients can lead to force overshoots -
which might be non-tolerable in robot-human collisions - and need to be further
investigated.

Transient analysis

Comparing the dynamics of (2.21) and (2.22), the latter poses the more danger-
ous case because fmax ≥ ‖k(xm − xd)‖. Hence, our transient analysis will focus
on (2.22). We can reformulate (2.22) such that the right-hand side is only com-
posed of (piece-wise) constant terms, simplifying the analysis:

mẍm + dẋm + fmax
xm − xd

‖xm − xd‖
= fext

⇔ mẍm + dẋm + fmax
xm − xd

‖xm − xd‖
= ke(xe − xm)

⇔ mẍm + dẋm + kexm = kexe − fmax sgn(xm − xd), (2.23)

where sgn(·) specifies the signum function

sgn(x) :=











−1 if x < 0,

0 if x = 0,

1 if x > 0.

If we further assume that the controlled mass does not reach its goal position
(otherwise, the dynamics would change to (2.21)), we can reduce (2.23) to

mẍm + dẋm + kexm = kexe + fmax

⇔ mẍm + dẋm + kexm = f0. (2.24)
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Here, we set xm < xd w.l.o.g. and combined the constant right-hand side forces to
f0. Before solving this non-homogeneous second order linear differential equation,
it is brought to the more common form:

ẍm + 2ζωnẋm + ω2
nxm =

f0

m
, (2.25)

with ωn =
√

ke
m

being the natural frequency of the system, and ζ = d

2
√
kem

being the

damping coefficient. Depending on the damping coefficient ζ, the solution of (2.25)
takes a different shape. When the system is underdamped (i.e. ζ < 1), it oscillates.
If it is critically (ζ = 1) or overdamped (i.e. ζ > 1), it approaches exponentially
the steady state. Since a critically damped system approaches the steady state
the fastest, it is preferred for our use case. However, it is non trivial to damp the
dynamics critically because one has to know the stiffness of the environment ke
for this. In practice, the system is either underdamped or overdamped, depending
on ke. Below we state the solutions of the differential equation (2.25) for the
different damping cases, the solving steps are elaborated in the appendix B.1.
With ωd = ωn

√

1− ζ2 being the damped natural frequency, and v0 being the
initial velocity we obtain

• Underdamped:

xm(t) = e−ζωntA sin(ωdt+ φ) +
f0

ke

A =
√

C1 + C2

C1 =
fmax

ke

C2 =
v0 + ζωn

fmax

ke

ωd

φ = atan2(
C1

C2

)

(2.26)
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• Critically damped:

xm(t) = e−ζωnt (C1 + tC2) +
f0

ke

C1 =
fmax

ke

C2 = v0 + ωnC1

(2.27)

• Overdamped:

xm(t) = C1e
z1t + C2e

z2t +
f0

ke

z1 = −ζωn + ωn

√

ζ2 − 1

z2 = −ζωn − ωn

√

ζ2 − 1

C1 =
fmax

ke
− C2

C2 =
−v0 + z1

fmax

ke

z1 − z2

(2.28)

The above dynamics assume a contact with the environment at t = 0, i.e. xm(0) =
xe, and that the contact is maintained thereafter. Figure 2.13 and Fig. 2.14 illus-
trate the transient trajectories of the control point for the different damping cases.
All trajectories reach the respective steady state equilibrium point

xss = xe −
fmax

ke
,

however there are differences in the settling time and in the position overshoot

∆xm = max
t

(xss − xm).

Here, we suppose that the control point hits the environment from above (posi-
tive x-direction). If the control point collide with the environment from the oppo-
site direction,

∆xm = |min
t
(xss − xm)|

should be chosen as position overshoot. The position overshoot ∆xm leads direct
to the transient force overshoot

∆f = ke ∗∆xm.

As can be seen in Fig. 2.13, the critical damped dynamics reaches the steady
state xss the fastest without any position overshoot. However, if one increases the
environment stiffness ke, but leaves the initial velocity v0 the same, even the critical
damped dynamics shows a position overshoot ∆xm as illustrated in Fig. 2.14. This
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Figure 2.13: Control point trajectory with ke = 103. In all three damping cases,
the parameters except the damping coefficients di are kept identical and can be
seen in Tab. 2.1.

Table 2.1: Parameters for Fig. 2.13 and Fig. 2.14. The damping coefficient for
the underdamped case is calculated as du = 2

√
mk, for the critically damped case

as dc = 2
√
mke, and for the overdamped case as do = 3

√
mke. The initial velocity

v0 is taken to be v0 =
fmax

du
.

Figure m k fmax v0 xe du dc do ke
[kg]

[

kg
s2

]

[N]
[

m
s

]

[m]
[

kg
s

] [

kg
s

] [

kg
s

] [

kg
s2

]

Fig. 2.13 10 200 100 −1.12 0.6 89.44 200 300 103

Fig. 2.14 10 200 100 −1.12 0.6 89.44 632.46 948.68 104

is because the steady state xss is close to the environment resting position xe and
the damping element cannot decelerate the mass fast enough. In this case, the
overdamped system cause the least overshoot. The high initial velocity v0 even
causes the underdamped system to oscillate as much as that it looses contact with
the environment again. The force overshoots for the trajectories in Fig. 2.13 and
Fig. 2.14 are reported in Tab. 2.2.

Multi-dimensional scenario

In the one-dimensional contact scenario we are able to limit the steady state exter-
nal force, as well as preventing transient force overshoots by choosing appropriate
damping and initial velocity. Figure 2.15 illustrates a two-dimensional contact
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underdamped

critical damped
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Figure 2.14: Control point trajectory with ke = 104. The impedance parameters
are listed in Tab. 2.1. In the underdamped case, there are two graphs shown
because the control point oscillates such that it looses touch with the environment
again. The line in orange shows the dynamics in (2.28), not considering the lost
in contact, whereas the green line is the result of a simulation that does consider
the lost in contact.



48 CHAPTER 2. CLAMPING CONSCIOUS CONTROL

Table 2.2: Maximal transient force overshoots. Since the maximal force is fmax =
100N, the values can be either interpreted as force values in Newton, or as the
percentages of fmax.

Figure Force overshoots in [N] and [%]
underdamped critical damped overdamped

Fig. 2.13 40.6 0 0

Fig. 2.14 278.1 63.5 20.9

scenario. The environment is still modeled as a spring that exert forces only in the
direction normal to its surface. In the general two dimensional case (Fig. 2.15a)
the resulting spring force

fk = Ke = K[1,1] ~e1 +K[2,2] ~e2 = f1 + f2

is not aligned with the surface normal of the environment. This leads to a division
of fk into a force f‖ parallel to the surface normal, and a force f⊥ perpendicular to
the surface normal. Due to the perpendicular force f⊥, the control point xm gets
accelerated perpendicular to the environment’s surface. When the system reaches
its steady state (Fig. 2.15b), the spring force fk is aligned and exactly opposed to
the external force fext:

Ke = −fext

⇔ K[1,1] ~e1 +K[2,2] ~e2 = −fext

⇒
∥

∥K[1,1] ~e1 +K[2,2] ~e2

∥

∥ = ‖fext‖
⇒ ‖f1 + f2‖ = ‖fext‖ .

(2.29)

The sign of (2.29) is flipped compared to (2.16), because we also flipped the sign
of the error e = xd − xm such that the force illustrations in Fig. 2.15 are more
intuitive.
To limit the norm of the external force ‖fext‖ to fmax, we must limit f1 and f2:

‖f1‖ < sin(β)fmax

‖f2‖ < cos(β)fmax,
(2.30)

where β is the angle between the negative x1-axis and the outward pointing sur-
face normal of the environment. This can be achieved by setting up a velocity
saturation policy like (2.20) for every coordinate direction with force limits as
in (2.30). Since these limits depend on the environment geometry through an-
gle β, the velocity limits of the different coordinate directions will change when
the environment changes. Additionally, the effects of the stiffness matrix K are
no longer transparent because the resulting spring forces are saturated for each en-
vironment differently. Therefore, we propose a special variable impedance control
scheme to have more transparent control over the interaction forces.
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(a) Transient state (b) Steady State

Figure 2.15: Control and external forces in multi-dimensional contact situation.
The control point xm has deflected the object’s equilibrium position (black bar on
top left). The environment exerts thus a reactive force fext parallel to the objects
surface normal. The position errors are defined as e = xd − xm. Given that K
is diagonal, the spring forces ~fi are aligned with the position errors ~ei. In the
transient state (a), the resulting force fk is split up into a force f‖ parallel to the
environment’s surface normal, and f⊥ perpendicular to it. In the steady state (b),
fk is aligned with the surface normal direction. Angle β represents the slope of
the environment with respect to x1-coordinate.
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Rotation of impedance dynamics

The dynamics of a standard Cartesian impedance controller (2.15) with diagonal
matrices Λd, D, and K are decoupled from each other in the different Cartesian
coordinate directions. Hence, in every Cartesian direction a different impedance
dynamics can be pursued. Our variable impedance control enables this direction
uncoupling for arbitrary directions by simply rotating the coordinate system of the
impedance dynamics. Considering an impedance controller that controls the pose
of a control point in a three-dimensional operational space1, the rotated dynamics
are

ΛdRë+DRė+KRe = Rfext, (2.31)

with R being an arbitrary rotation matrix and e = x − xd. When the desired
pose xd remains constant, (2.32) reduces to

ΛdRẍ+DRẋ+KRe = Rfext. (2.32)

With Λd, D, and K being diagonal, the dynamics in (2.31) and (2.32) are de-
coupled in the rotated coordinate system Rχ = R Cχ with Cχ being the standard
Cartesian coordinate frame. Depending on the application, the choice of the ro-
tation matrix R provides a transparent configuration of the impedance dynamics.
Let us consider a general setup where a robot is commanded by placing desired
poses xd in its workspace. After the robot has reached one desired pose, the next
desired pose is targeted. When specifying the rotation matrix such that it rotates
the first coordinate axis of Rχ to the pose error e (see appendix B.2), the dynamics
are separated into the pose error direction and the directions perpendicular to it.
This enables e.g. a stiff impedance perpendicular to the velocity direction such
that the robot won’t deflect from its trajectory. At the same time, the impedance
in velocity direction can be less stiff such that the robot can be stopped with low
contact forces. In this thesis, the first coordinate axis of Rχ has special significance
and is named principal impedance direction p.

Applying the rotational dynamics (2.32) to the multidimensional contact sce-
nario also benefits the transparency. In fact, when choosing the principal impedance
direction to be aligned with the external force fext, the force limitation problem
resembles the one-dimensional case. As illustrated in Fig. 2.16, only the force Rf1

in principal impedance direction affects the external force fext (when neglecting
damping and inertia effects). The force Rf2 does accelerate the control point per-
pendicular to the external force and vanishes in steady state conditions. This can
also be seen when inspecting the rotated dynamics of (2.32) withRmaking the ex-

1I.e. controlling only positions and not orientations.
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(a) Transient state (b) Steady State

Figure 2.16: The multi-dimensional contact scenario is presented in the rotated
coordinate frame Rχ. With K being diagonal, the spring forces Rfi are naturally
partitioned to point parallel and perpendicular to the external force Rfext. For
more intuitive visual representation, the pose error e in this figure is defined as
e = xd − xm.

ternal force direction to the principal impedance direction, i.e. Rfext = [fext, 0, 0]
T

ΛdRẍ+DRẋ+KRe = Rfext

⇔





Λd,[1,1]
Rẍ1 +D[1,1]

Rẋ1 +K[1,1]
Re1

Λd,[2,2]
Rẍ2 +D[2,2]

Rẋ2 +K[2,2]
Re2

Λd,[3,3]
Rẍ3 +D[3,3]

Rẋ3 +K[3,3]
Re3



 =





Rfext
0
0





(2.33)

The above equations are decoupled from each other and the first equation is exactly
as in (2.17). Therefore, we can apply the one-dimensional force analysis that have
been already done above.

Changing environments

In real human-robot contacts, the environment (in this case the human) behaves
differently than the model proposed in Fig. 2.12. Especially, the human does not
maintain its posture throughout the contact phase. Hence, the direction of the
external force that acts on the robot changes frequently. The rotational dynamics
in (2.31) are thus not constant, but are changing due to different force directions.
Rewriting (2.31) as

Λd,R(fext)ë+DR(fext)ė+KR(fext)e = fext,R (2.34)
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highlights the dependencies of the impedance matrices

Λd,R(fext) = ΛdR

DR(fext) = DR

KR(fext) = KR

on the external force direction. Equation (2.34) can be seen as a variant of vari-
able impedance control with variable impedance matrices. Unrestricted vari-
able impedance control is in general not stable because a change in the impedance
matrices can inject additional energy into the system. A stability analysis and an
adaption of the stiffness and damping profiles as in [KB16] is in our case not pos-
sible because firstly, the inertia matrix is not constant, and secondly, the stiffness
and damping profiles are not known a priori. A modified version of the energy
tank approach in [FSF13] could be implemented to assure stability, however in
the case of an empty tank, the principal impedance direction won’t align with the
external force. Therefore, we propose a stability observer and controller suited for
our application scenarios of clamping prevention.

Stability observer and controller

In our tasks, we control the position p and the orientation φ of the robot’s
end-effector. Whereas we rotate the coordinate system for the position control
according to our needs, we leave the coordinate system for the orientation control
constant. To exert only low forces in potential clamping scenarios, we set a low
stiffness and a proportional damping value in principal impedance direction. The
principal impedance direction is chosen to be the velocity direction in free motion
and the external force direction in contact situations. In optimal conditions, the
position error ep is purely in principal impedance direction. Due to perturbations
or environment contacts, the parts of the position error ep perpendicular to the
principal impedance direction rise. Since the stiffness in these perpendiculars di-
rections is substantially higher than in principal impedance direction, this injects
much energy into the system. Especially if the perpendicular parts of the position
error are oscillating and growing, it is an indicator that the system has become
unstable.

Whenever an instable system is observed, the stability controller brings the sys-
tem back to a stable state by extracting energy from the system. The energy
extraction is easily incorporated into the impedance direction rotation policy by
rotating the principal impedance direction onto the position error direction. Con-
sequently, the error in perpendicular direction diminishes and the error in the prin-
cipal impedance direction increases. Since the stiffness in the principal impedance
direction is lower than in its perpendicular directions, the overall energy of the sys-
tem decreases. Let Rp (ep) ∈ R

3×3 be the rotation matrix that aligns the x-axis
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of the robot base frame Cχ to the position error ep 6= 0. Then, the matrix

R (ep) =

[

Rp (ep) 03

03 I3

]

∈ R
6×6 (2.35)

rotates only the position p and not the orientation φ when applied on a pose
vector x = [p,φ]. The desired dynamics of the stability controller are chosen as

ΛdR (ep) ë+DR (ep) ė+KR (ep) e = R (ep)fext (2.36)

for ep 6= 0. When the position error ep is zero, the rotation matrix R(ep) from
the last non-zero ep is taken instead.

Stability analysis

Consider the desired closed loop dynamics of (2.36) without external forces:

ΛdR (ep) ë+DR (ep) ė+KR (ep) e = 0. (2.37)

Since the rotation matrix R (ep) only affects the positional dynamics, the orien-
tational dynamics remain constant. Thus, the closed loop dynamics can be split
into

Λd,pRp (ep) ëp +DpRp (ep) ėp +KpRp (ep) ep = 0 (2.38)

and
Λd,φëφ +Dφėφ +Kφeφ = 0 (2.39)

The dynamics of (2.38) and (2.39) are decoupled since there is no coupling between
the state variables (ep, ėp) and (eφ, ėφ). As (2.39) constitutes a constant mass-
damper-spring system, the equilibrium point

(ėφ , eφ) = (0 ,0)

of this subsystem is globally asymptotically stable if Λd,φ, Dφ, and Kφ are sym-
metric and positive definite [KB16]. In the following we will derive constraints for
the stability of the variable impedance dynamics in (2.38).
Let us take

V (ėp, ep, t) =
1

2
(Rpėp)

T Λd,pRpėp +
1

2
(Rpep)

T
KpRpep (2.40)

as a Lyapunov candidate function. Since Λd,p and Kp are chosen as constant,
diagonal, and positive definite matrices, V (ėp, ep, t) is also positive definite (see
appendix B.3). Taking the derivative of V (ėp, ep, t) along the system trajectories
leads to

V̇ (ėp, ep, t) = (Rpėp)
T Λd,p(Ṙpėp +Rpëp) + (Rpep)

T
Kp(Ṙpep +Rpėp)

= (Rpėp)
T Λd,pṘpėp + (Rpėp)

T Λd,pRpëp

+ (Rpep)
T
KpṘpep + (Rpep)

T
KpRpėp.

(2.41)
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Substituting

Λd,pRpëp = −DpRpėp −KpRpep

from (2.38) into (2.41) result in

V̇ (ėp, ep, t) = (Rpėp)
T Λd,pṘpėp − (Rpėp)

T
DpRpėp + (Rpep)

T
KpṘpep.

(2.42)
The derivative of a rotation matrix R can in general be written as the product
of the rotation matrix itself with a skew symmetric matrix S [Zha16]. Remember
that the rotation matrix Rp rotates the robot base frame Cχ into the frame eχ

whose x-axis is aligned with the error direction ep. The time derivative of Rp can
then be expressed as

Ṙp = [eω]× Rp, (2.43)

where eω is the angular velocity of frame eχ expressed in frame eχ and the operator
[·]× transforms its operand into a skew symmetric matrix:

[ω]× ,





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 .

Substituting (2.43) in (2.42) yields

V̇ (ėp, ep, t)

= − (Rpėp)
T (Dp −Λd,p [

eω]×)Rpėp + (Rpep)
T
Kp [

eω]× Rpep. (2.44)

= − (Rpėp)
T (Dp −Λd,p [

eω]×)Rpėp (2.45)

= − (Rpėp)
T
ADΛRpėp, (2.46)

with

ADΛ = (Dp −Λd,p [
eω]×). (2.47)

The last summand vanished from (2.44) to (2.45) because the rotation of ep with
Rp produces

Rpep = [‖ep‖ , 0, 0]T

and the first (actually all) diagonal element of
(

Kp [
eω]×

)

is 0. Since V̇ (ėp, ep, t)

does not depend on ep anymore, V̇ (ėp, ep, t) is not negative definite. We can-
not conclude asymptotic stability using Lyapunov direct method. However, when
ADΛ = (Dp−Λd,p [

eω]×) is positive definite (pdf), we can show global asymptotic
stability of the equilibrium point (ėp, ep) = (0,0) with the Barbashin-Krasovskii
theorem [Lav05]. For that we need to show additionally that

(1) (ėp, ep) = (0,0) is the only solution of V̇ (ėp, ep, t) = 0 that can stay in
the set Q = {(ėp, ep) ∈ Ω : V̇ (ėp, ep, t) = 0}, where Ω is the domain of
V (ėp, ep, t) i.e. V : Ω→ R.



2.1. CONCEPTS 55

(2) V is radially unbounded.

For the first condition, referring to (2.46), we see that

V̇ (ėp, ep, t) = 0⇒ ėp = 0,

when ADΛ is pdf. Consequently,

ėp = 0⇒ ëp = 0.

Substituting ëp = ėp = 0 into the position dynamics (2.38) reveals that ep = 0 as
well. Hence, (ėp, ep) = (0,0) is the only solution of V̇ (ėp, ep, t) = 0 that can stay
in Q. Before we show the second condition, we will shortly repeat the definition
of a radially unbounded function, as stated in [Lav05].

Definition 1. Radially unbounded function

A function V : Rn → R is radially unbounded if and only if

lim
‖x‖→∞

V (x) =∞.

Looking at (2.40), we see that V is the sum of quadratic forms of each state
variable. The matrices of the quadratic forms (RT

pΛd,pRp , RT
pKpRp) are both

symmetric and positive definite (see appendix B.3). Their minimal gain is greater
than zero, since all of their eigenvalues are greater than zero. Hence,

∥

∥

∥

∥

[

ep

ėp

]∥

∥

∥

∥

→∞⇒ V →∞.

To summarize, the equilibrium point (ėp, ep) = (0,0) of the dynamics in (2.38) is
globally asymptotically stable if ADΛ = (Dp −Λd,p [

eω]×) is positive definite.
When the desired mass of the robot is uniformly in all coordinate directions, i.e.
Λd,p = λI3, with λ being a positive scalar, then ADΛ is pdf regardless of the
angular velocity eω, because

ADΛ = Dp −Λd,p [
eω]× = Dp − λI3 [

eω]× = Dp − λ [eω]× .

The symmetric part of ADΛ is Dp since the matrix λ [eω]× is skew-symmetric. As
Dp is chosen positive definite, ADΛ is positive definite as well [Joh70].
When the robot’s desired mass is different in the coordinate directions, we must cal-
culate eω to obtain stability constraints. At any time t, the coordinate frame eχ =
{eX,e Y ,e Z} is aligned with the position error ep. Figure 2.17 gives a sketch of
the involved frames and vectors and Fig. 2.18 illustrates an example. The coor-
dinate frame eχ rotates with angular velocity eω due to the error derivative ėp.
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Figure 2.17: Sketch of coordinate frame eχ = {eX,e Y ,e Z} and its rotation. The
frame eχ is obtained by continuously aligning the eX-axis to the position error ep

direction. ep and ėp are in the drawing plane. Since eω is perpendicular to both
ep and ėp, it points out of the drawing plane.

The rotation axis
eω

‖eω‖ is perpendicular to both ep and ėp. The angular velocity ω

itself can be calculated with

ω =
ep × ėp

‖ep‖2
. (2.48)

Expressing all vectors in the coordinate frame eχ results in

eω =





ep,[1]
0
0



×





ėp,[1]
ėp,[2]
ėp,[3]





(ep,[1])2
=

1

(ep,[1])2





0
−ep,[1]ėp,[3]
ep,[1]ėp,[2]



 =
1

ep,[1]





0
−ėp,[3]
ėp,[2]





=
1

‖ep‖





0
−ėp,[3]
ėp,[2]





(2.49)

where the superscript e· has been omitted on the error terms. Note that (2.48)
and (2.49) are only valid for ep 6= 0. Since we do not rotate the coordinate
frame eχ when ep = 0, the angular velocity eω is naturally also zero. In this case,
the dynamics in (2.38) constitutes a constant mass-spring-damper system and is
asymptotically stable [KB16].

Writing the matrix ADΛ from (2.47) in an component-wise structure results in

ADΛ = (Dp −Λd,p [
eω]×)

=





Dp,[1,1] Λd,p,[1,1]
eω3 −Λd,p,[1,1]

eω2

−Λd,p,[2,2]
eω3 Dp,[2,2] Λd,p,[2,2]

eω1

Λd,p,[3,3]
eω2 −Λd,p,[3,3]

eω1 Dp,[3,3]



 . (2.50)
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(a) General view (b) View aligned with rotation axis

Figure 2.18: Example of a coordinate frame rotation. The coordinate frame eχ is
changed from an initial state (bold, solid red, green, and blue arrows) to a final
state (dotted arrows) with intermediate steps (thin and solid arrows). The rotation
axis (

eω
‖eω‖) is shown in magenta. When the view is aligned with the rotation axis,

the rotation of the coordinate system is clearly visible as a single rotation around
this axis.
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Positive definiteness is derived from the symmetric part of ADΛ [Joh70]. As a
multiplication of a matrix with a scalar λ > 0 does not affect its definiteness we
will use

AS
DΛ = λ

1

2
(ADΛ +AT

DΛ) (2.51)

to evaluate the positive definiteness of ADΛ. With λ = 2, (2.51) becomes

AS
DΛ =





2Dp,[1,1]
eω3∆Λ1Λ2

eω2∆Λ1Λ3
eω3∆Λ1Λ2 2Dp,[2,2]

eω1∆Λ2Λ3
eω2∆Λ1Λ3

eω1∆Λ2Λ3 2Dp,[3,3]



 , (2.52)

with ∆ΛiΛj
= Λd,p,[i,i] − Λd,p,[j,j]. Since the first entry of the angular velocity eω1 is

zero, (2.52) simplifies to

AS
DΛ =





2Dp,[1,1]
eω3∆Λ1Λ2

eω2∆Λ1Λ3
eω3∆Λ1Λ2 2Dp,[2,2] 0
eω2∆Λ1Λ3 0 2Dp,[3,3]



 . (2.53)

Sylvester’s criterion [Gil91] can be used to determine whether AS
DΛ (and conse-

quently ADΛ) is positive definite. For that, we look at the leading principal minors
of AS

DΛ and arrive at the following conditions for AS
DΛ being positive definite:

2Dp,[1,1] > 0 (2.54)

4Dp,[1,1]Dp,[2,2] > ( eω3∆Λ1Λ2)
2 (2.55)

4Dp,[1,1]Dp,[2,2]Dp,[3,3] > Dp,[2,2](
eω2∆Λ1Λ3)

2 +Dp,[3,3](
eω3∆Λ1Λ2)

2 (2.56)

Condition (2.54) is trivially satisfied when Dp is positive definite and diagonal.
Conditions (2.55) and (2.56) are dependent on the angular velocity eω. Whereas
condition (2.55) gives a direct upper bound on eω3:

eω3 <
2
√

Dp,[1,1]Dp,[2,2]

∆Λ1Λ2

,

condition (2.56) only states mixed conditions of eω3 and eω2. As can be derived
from (2.55) and (2.56), following circumstances benefits the system’s stability:

• small desired inertia differences ∆Λ1Λ2 and ∆Λ1Λ3

• high damping in principal impedance direction Dp,[1,1]

• slow angular velocity eω.

The dependency of the stability on Dp,[2,2] and Dp,[3,3] is coupled to the inertia
differences ∆Λ1Λ3 and ∆Λ1Λ2 , as well as on the angular velocity eω. To state this
dependency more clearly, we rewrite condition (2.56) with Di as a shorter form of
Dp,[1,1] as

f(Di,∆ΛiΛj
,e ωi) = 4D1D2D3 −D2(

eω2∆Λ1Λ3)
2 −D3(

eω3∆Λ1Λ2)
2 > 0.
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Deriving f(Di,∆ΛiΛj
,e ωi) partially with respect to D2 and D3 gives us

∂f

∂D2

= 4D1D3 − (eω2∆Λ1Λ3)
2 (2.57)

∂f

∂D3

= 4D1D2 − (eω3∆Λ1Λ2)
2 (2.58)

(2.59)

Hence, when ∂f

∂D2
and ∂f

∂D3
are positive, a high value of D2 and D3 benefits the

stability.

Expressing the angular velocity eω as in (2.49) changes (2.54)-(2.56) to

2Dp,[1,1] > 0 (2.60)

4Dp,[1,1]Dp,[2,2] >
1

‖ep‖2
( eėp,[2]∆Λ1Λ2)

2 (2.61)

4Dp,[1,1]Dp,[2,2]Dp,[3,3] >
1

‖ep‖2
(

Dp,[2,2](
eėp,[3]∆Λ1Λ3)

2 +Dp,[3,3](
eėp,[2]∆Λ1Λ2)

2
)

,

(2.62)

which shows the dependence of the position error ep and its derivative ėp on the
stability.

To summarize the discussion on the stability of the proposed controller, the con-
straints (2.54)-(2.56) or (2.60)-(2.62) have to be satisfied during all times to guar-
antee stability. This is trivially the case when the desired inertia is the same in
all directions (i.e. Λd,p = λI3). If the desired inertia is not isotropic, then the
damping parameters must be chosen such that the conditions are satisfied for an
upper bound of eω and the desired trajectory xd has to be adaptively adjusted
such that eω does not surpass this upper bound (see Sec. B.4 for an example).

Control law

The control law architecture is based on the Cartesian impedance controller from
[ASOFH03]. We want to design a control torque τd such that the robot dynamics
in (2.13) are changed to our rotational impedance dynamics (2.32). The relation
between link velocities q̇ ∈ R

7 and Cartesian velocities ẋ ∈ R
6 is given by the

Jacobian matrix J ∈ R
6×7:

ẋ = Jq̇. (2.63)

Taking the derivative of (2.63) and substituting q̈ from the robot model (2.13)
produces

ẍ = J̇ q̇ + Jq̈

= J̇ q̇ + JM̄−1 (τd + τext −Cq̇ − g) , (2.64)
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where the dependencies on the joint vector q have been omitted. With fτ being
the new control input, we can choose the control torque τd as

τd = JTfτ +Cq̇ + g − τext (2.65)

to eliminate the effects of the Coriolis, gravity, and external forces on the Cartesian
dynamics (2.64):

ẍ = J̇ q̇ + JM̄−1JTfτ (2.66)

⇒ ẍ = J̇ q̇ +Λ−1Fτ . (2.67)

The matrix

Λ(x) =
(

JM̄−1JT
)−1

(2.68)

is also known as the inertia matrix of the operational space [Kha87]. Note that Λ−1

is only invertible if J has full-rank [SS12]. We obtain the desired dynamics in (2.32)
by setting fτ to

fτ = Λ
(

RTΛ−1
d (−KRe−DRẋ+Rfext)− J̇ q̇

)

(2.69)

as shown below:

ẍ = J̇ q̇ +Λ−1fτ

= J̇ q̇ +Λ−1Λ
(

RTΛ−1
d (−KRe−DRẋ+Rfext)− J̇ q̇

)

= J̇ q̇ − J̇ q̇ +RTΛ−1
d (−KRe−DRẋ+Rfext)

⇔ ΛdRẍ = −KRe−DRẋ+Rfext

⇔ ΛdRẍ+KRe+DRẋ = Rfext.

(2.70)

When R aligns the principal impedance direction p to fext, we can easily limit
the external forces to fmax by implementing the velocity saturation law (2.20) in
p direction2. To this end, we set the control force fτ to

fτ = Λ
(

RTΛ−1
d (−fs +Rfext)− J̇ q̇

)

, (2.71)

where fs represents the combination of the spring and damping forces, but is
saturated. Referring to (2.33), only the first element f[s,1] needs to be saturated
to limit the external forces in steady-state conditions. Hence, we choose fs as

fs =

[

D[1,1](
Rẋ1 − ν Rẋ[d,1])

K[2−6]
Re[2−6] +D[2−6]

Rẋ[2−6]

]

, (2.72)

2Assuming steady-state conditions.
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with

Rẋ[d,1] = −
K[1,1]

D[1,1]

Re1

ν = min

(

1,
vmax
∥

∥ẋ[d,1]

∥

∥

)

vmax =
fmax

D[1,1]

.

(2.73)

For the experiments in this thesis, a slightly different control law is used. To be
exact, we discard the term J̇ q̇ in (2.71), as it is zero in quasi steady-state conditions
and as it would contain noise due to numerical differentiation. Additionally, we
add a null space control torque f∅∅∅ such that the control torque τd becomes:

τd = JTfτ +Cq̇ + g − τext + f∅∅∅, (2.74)

with
fτ = Λ

(

RTΛ−1
d (−fs +Rfext)

)

, (2.75)

and
f∅∅∅ =

(

I7 − J#J
)

(K∅e∅∅∅ −D∅q̇) . (2.76)

Here, the operator (·)# refers to the pseudo-inverse, and the null space error e∅∅∅

is defined as q∅∅∅ − q, with q∅∅∅ being a taught joint configuration resulting in the
desired Cartesian pose xd

3. Whereas the addition of f∅∅∅ to τd does not change the
impedance dynamics of the end-effector4, the elimination of J̇ q̇ does. As a result,
the dynamics are altered to

ΛdRẍ+ fs = Rfext +ΛdRJ̇q̇, (2.77)

but the effects of J̇ q̇ are negligible in quasi steady-state conditions, since both J̇

and q̇ are near zero.

Contact Force Estimation

When a robot enters a contact situation, the contact force normally affects the
torques present in the robot’s joints. As mentioned in Sec. 1.2.6, much research has
been done to identify the torques τext that arise from external contact forces fext.
For the experiments carried out in this thesis, we use the generalized momentum
method to estimate these torques [DLM05, DLASHH06]. In clamping scenarios,
the external torques τext arise from contact forces between the robot and the
clamped body part, which restricts the robot’s motion. As these contact forces

3With this null space control torque, the robot stays further away from joint limits.
4The dynamics are unchanged when using the inertia-weighted pseudo-inverse as described

in [Kha87]



62 CHAPTER 2. CLAMPING CONSCIOUS CONTROL

perform active work, the respective external torques τext can be identified with
the generalized momentum method. To infer the contact forces fc on the contact
point pc, we make the same assumptions on contact situations as in [MFDL14],
i.e. that only contact forces and no contact torques are transferred during contact.
According to the authors of [MFDL14], this leads to more robust estimation results.
As a first step, we calculate the contact Jacobian Jc(q) ∈ R

3×n that relates the
contact point’s linear velocity ṗc to the joint velocities q̇ as per

ṗc = Jc(q)q̇.

The estimated contact forces fc are then obtained via pseudo-inversion of the
contact Jacobian:

fc = (JT
c (q))

#τext. (2.78)

For the sake of simplicity, the notions of the (estimated) contact force fc on the (es-
timated) contact point and the (estimated) external force fext on the end-effector
has been used interchangeably for the derivation of the clamping conscious con-
trol scheme. However, when imposing the desired impedance dynamics (2.77) or
(2.32) on the contact point pc, the contact force fc must be used, together with
the contact Jacobian Jc. Furthermore, the Cartesian velocity ẋ and error terms e
must be mapped to the contact point.

Practical considerations

We partition the workspace of the robot dynamically in two main areas: Areas
where human co-workers can be clamped and areas where they cannot. These areas
are identified and separated according to Sec. 2.1.1. As explained in Sec. 1.2.2,
there have to be made safety precautions even in the non-clamping areas. The
danger of human-robot collisions predominantly rise with higher robot speeds and
inertias. Hence, the most simple option to reduce the risk of injury is to set a
universal speed limit for the robot’s end-effector, and ideally for all moving robot
parts. More complicated methods also consider the geometry of the end-effector
for velocity limits [HHK+12]. For the sake of simplicity, we stay with the former
method to reduce the danger in non-clamping areas. As stated above, we employ
a velocity saturation policy in the CCIC that is used in potential clamping areas.
Depending on the respective body parts, this velocity limit can be substantial
lower than in non-clamping areas. Note that in non-clamping areas, it is best to
use a different velocity saturation method than the one used in the CCIC. Since the
latter also limits the spring force of the impedance to a specific value, it is possible
that the resulting actuation force of the robot is not enough to stay precisely on a
trajectory in the presence of disturbances.

Force measurement noise

Changes in the principal impedance directions can bring the controlled system
to an unstable state, and the stability controller has to bring the system back
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to stability. Since the stability controller does not align the principal impedance
direction onto the external force direction fext, the external force does not develop
according to the one-dimensional dynamics in (2.33). As a result, the maximal
force value fmax can be surpassed temporarily. To reduce the time that the stability
controller has to step in, we restrict the changes in the principal impedance direc-
tion in the first place. Especially since the external force measurements contain
noise, we apply a low-pass filter on these measurements and adapt the principal
impedance direction to the filtered signals. This generally introduces a time lag
between the external force measurements and the filtered version, also making the
principal impedance direction lagging behind. The effects of the signal filtering
can be further seen in Sect. 3.1.4.

Obstacle circumvention

Aligning the principal impedance direction p to the contact force direction fc can
lead to active obstacle circumvention, as illustrated in Fig. 2.19. When the control
point x is in contact with an obstacle, the dynamics get partitioned into directions
parallel and perpendicular to fc (Fig. 2.19 (c)-(e)). The error e⊥ perpendicular to
p leads to an acceleration of the controlled point x into this direction, since there
is no counteracting force (see also (2.33)). The control point thus slides along the
contact surface until it either circumvents the obstacle or until fc lines up with
the position error ep.

2.2 Implementation

This section further describes the implementation details of the clamping con-
scious control pipeline. We begin by reporting how the critical body part dimen-
sions for the clamping identification are obtained in Sec. 2.2.1. Sec. 2.2.2 gives
suggestions on how these body part dimensions can be incorporated in collabo-
rative zones. The next sections focus on the clamping identification algorithm.
Section 2.2.3 explains the creation of the OBBTree data structure. Further details
on how this data structure is traversed in the clamping identification algorithm is
outlined in Sec. 2.2.4. The implementation of Early Out Criteria for this traversal
is separately described in Sec. 2.2.5. Likewise, an efficient method for implement-
ing the OBB to OBB distance approximation is reported separately in Sec. 2.2.6.
Finally, a summary of the entire Clamping Conscious Control pipeline is given in
Sec. 2.2.7.

2.2.1 Human Body Part Dimensions

Human body dimensions are varying from person to person. An attempt to
analyze various body part dimensions is done in [Til02]. This book lists the re-
spective body part dimensions with respect to percentile values. A percentile is a
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a) b) c)

d) e)

Figure 2.19: Five time instances of an obstacle circumvention scene. The robot’s
end-effector is shown in blue, an obstacle is sketched in black. The red arrow
points to the goal position xd, the orange arrow depicts the current impedance
direction p, the green arrow shows the contact force fc and the dotted black arrow
demonstrates e⊥, the part of the position error ep perpendicular to p. The dashed
green line is a static line to highlight the robot’s movement. When in contact with
the obstacle, the principal impedance direction gets aligned step by step to the
contact force fc. a): Just before the robot senses the contact situation. The
impedance direction is in velocity (ep) direction. b): The principal impedance
direction is rotated towards the external force direction. As a result, the error e⊥

increases leading to an acceleration in e⊥ direction. c): The robot’s end-effector
has slided along the contact surface, changing the direction of the positional error.
Additionally, the principal impedance direction is further rotated towards the force
direction. These two direction almost line up, leading to a good control over the
external force. d): As the end-effector slides along the contact surface, e⊥ is
reduced leading to less acceleration in this direction. e): The foremost part of the
end-effector has already circumvented the obstacle. The same process is repeated
with the new contact point of the end-effector.
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Figure 2.20: Standard human proportions depending on body height H. Figure
copied from [MT15].

measure in statistics that describes the value for that a specific percentage of the
study participants has a lower or identical measured value. E.g. the 99 percentile
of male body height5 is 1.92 meters, meaning that 99 percent of the male subjects
have a body height equal or smaller than 1.92 meters. The book especially states
various body part dimensions of the 1, 50, and 99 percentile of the US population5,
covering 98 percent of the total US population and thus leaving out the smallest
and biggest 1 percent.

Another point of reference for body part dimensions is shown in Fig. 2.20, where
certain body part dimensions are stated, relative to the body height. However,
the shown body part dimensions describe only a fraction of the available data in
[Til02]. Therefore, the measurements in [Til02] are taken for this thesis.

2.2.2 Collaborative Zones

Each collaborative zone contains the minimal and maximal dimensions (sizemin

and sizemax) of the body parts that can be in this zone. These values are sup-

5Age 20-65 years, United States population
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Figure 2.21: For the collaborative zones, body part dimensions (in light brown)
are clustered, as well as force limits (turquoise). The body part dimensions are
obtained from [Til02], the force limits from [ISO16]. They are connected with
each other to form configuration items (purple) for the collaborative zones. The
arrows have different colors to better identify parent-child relationships from the
clustering. The body part dimensions are split into data from men and women,
whereas the force data is regardless of gender. This figure shows only a subset of
the male configuration items (prefixed with ”m ”).

plemented with a maximal force value fmax that is maximally permitted for these
body parts ( taken from [ISO16]). To allow easy configuration of the collaborative
zones, the body part dimensions and the force values are clustered and then con-
nected to each other. Figure 2.21 gives an excerpt of these combined configuration
items. To configure a collaborative zone, we must specify the geometric extent
and pose of the zone in the robot’s workspace and add one or more configuration
items to it. Depending on the intended customization of the collaborative setup,
several approaches are proposed for this configuration.

No customization: If the collaborative setup should work for any co-worker
and for any task, the configuration item entire body can be placed over the entire
robot’s workspace. Additionally, a safety margin can be added to the body part
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dimensions (the original data leaves out the smallest and biggest 1 percent of the
US population, see Sec. 2.2.1).

Co-worker customization: If the group of co-workers is known, each co-worker
could create a configuration file with his body dimensions. The co-worker could
change the respective dimensions manually to more accurate ones. If only one
co-worker collaborates with the robot during a task, the robot can use solely the
configuration file of this co-worker. But, if multiple co-workers are in the robot’s
workspace at the same time, the robot should use the most conservative dimensions
of their configuration files.

Camera guided: Depending on the abilities of the camera and processing sys-
tem, several ideas could be implemented. First, the camera could detect which
co-worker is in which collaboration zone, and load the appropriate configuration
file for each collaboration zone. Furthermore, the visual system itself could create
dynamic collaboration zones, as regions where the co-workers - or their body parts
- currently are. In addition, the configuration files could also be created by the
visual system, analyzing for each coworker the minimal and maximal dimension of
each body part.

2.2.3 OBBTree Creation

We approximate each robot link with a separate OBBTree, thus, for every robot
link, one OBBTree is created. The creation process is a bottom up procedure and
was inspired by the point-sphere tree creation of [SSLeS14]. An overview can be
seen in Fig. 2.23. The geometries that are approximated can be represented in
multiple formats, the only condition is that it must be possible to sample surface
points on them. For our simulations and experiments, we use generated surface
meshes. The first step in the OBBTree creation process is to sample points from
these surface meshes with poisson-disc sampling ([CCS12]) to obtain uniformly
distributed points. The sampling process is done twice, once with a minimal point
to point distance of 2 mm, and once with 8 mm. Consequently, we have a maxi-
mum resolution of 2 mm for the geometries, which is a sufficient value for natural
shapes and our use case of human-robot contacts. The points of the 2 mm sam-
pling operation are clustered with k-means, where the points of the 8 mm sampling
operation serve as initial cluster centers. For the EOC, it is beneficial that points
are grouped that are close together and that have similar normals. Therefore, the
k-means algorithm also considers the normals of the points. To adjust the impor-
tance ratio of close points to similar normals, either the location vectors, or the
normal vectors can be scaled before clustering. Figure 2.24 presents schematically
how the lowest cluster can look like when normals have higher importance than the
points’ location (Fig. 2.24a), and the other way round (Fig. 2.24b). After cluster-
ing, an OBB is created for each cluster that comprises every point in this cluster.
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To fit the OBB tightly on the cluster points, we use an algorithm working with
the convex hull of the point set [Kor15]. To speed up the fitting process for large
point sets, we use instead a more approximative method that samples several OBB
rotations and keeps the smallest resulting OBB. Afterwards, each OBB is assigned
a list of its cluster points, as well as the cluster’s center point. The normals of
the cluster points are quantized before they are saved in form of a histogram in
the OBB node. This is more memory efficient, but predominantly, the OBBTree
traversal works faster when there is only a discrete set of normal vectors.

The next steps consists of iteratively clustering the just created OBB nodes.
Each of these nodes is represented with their cluster’s center point that has been
assigned to them. The number of new center points is dependent on the desired
branching factor or the depth of the final OBBTree. Since we want the OBBTrees
to have equal depth across all links and environments, we choose the number of
these new center points adaptively. After the OBB nodes have been clustered, a
bigger OBB is created that comprises all assigned points of the clustered OBBs.
Analogously to the previous clustering step, this newly created OBB is assigned
a list of its OBB child nodes, a concatenated list of their sample points and a
histogram of these sample points’ normals. This clustering scheme is repeated until
the root node of the OBBTree is created. Such a root node is shown exemplarily
in Figure 2.22. Traversing it to its leaf nodes also shows the contained clusters of
the sample points.

In each cluster iteration, the importance of the point locations with respect
to their normals is adjusted. This is needed, because the distances between the
clustered points increase with each iteration, whereas the lengths of their normals
stay the same, since they are normalized after each iteration. To counteract this
change in cluster point distances, the normals are multiplied by a constant greater
than one before clustering, and are normalized again after clustering.

For large environments, their sampled points are more numerous than the sam-
pled points for each link. To keep equal depth and branching factors across all
OBBTrees, we can increase the sampling radius for the environment. This in turn
decreases the resolution for the environment, making the results of the OBBTree
traversals less accurate. Instead, we choose to pre-partition the sampled points into
multiple sets, for which a OBBTree is created each, following the above procedure.

2.2.4 OBBTree Traversal

As pointed out in Sec. 2.1.3, the identification of potential clamping situations
is done by traversing the OBBTrees representing the robot and the environment.
This section explains the OBBTree traversal in more detail. The algorithm re-
quires an OBBTree TreeA for each robot link and at least one OBBTree TreeB for
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Figure 2.22: OBB hierarchy and clustering results for link 2 and a total tree depth
of 3. Starting from the root node (a), each figure displays the points contained
in the node of the respective depth, as well as how these points are clustered for
the next depth level. In every figure, the pink cluster is chosen to be visualized in
the next depth level. One can also see their respective OBBs in red, as well as the
normals of the sampled points in (c) and (d).



70 CHAPTER 2. CLAMPING CONSCIOUS CONTROL

Start

Robot Mesh

Sample 
Points

Sample 
Centerpoints

Environment
Mesh

Sample 
Points

Sample 
Centerpoints

Cluster Cluster

Clustered Points 
with Location & 

Normal Information

Clustered Points 
with Location & 

Normal Information

Create Oriented 
Bounding Boxes

(OBB)

Create Oriented 
Bounding Boxes

(OBB)

Successive
Clustering &
OBB creation

Successive
Clustering &
OBB creation

Write
OBB Hierarchy &

Vector Quantization 
to File

Quantize 
normal vectors

OBB Hierarchy(s) with
-OBB Geometry

-Normal Histogram
-Successor OBBs

OBB Hierarchy(s) with
-OBB Geometry

-Normal Histogram
-Successor OBBs

End

Figure 2.23: Overview of the OBBTree creation process.
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(a) Importance on normals (b) Importance on location

Figure 2.24: Different importance of locations and normals in the clustering op-
eration. The example scene consists of the environment in black and the robot
end-effector in blue. The arrows represent the normals of the sample points that
are clustered. They are displayed with the same color when they belong to the
same cluster. In (a), the normals of the sampled points are given a higher impor-
tance than the locations in the clustering operation. In (b), the locations are more
important than the normals, forming different clusters than in (a).
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the environment. All OBBTrees must have the same depth. The traversal algo-
rithm is summarized in algorithm 1. Since the algorithm should identify possible
clamping situations per robot link, we start an OBBTree traversal for each robot
link TreeA with each environment TreeB . In OBBTreeTrav the root nodes of
TreeA and TreeB are checked for EOC. If an EOC is found, the same TreeA root
node has to be checked with the next OBBTree TreeB of the environment. Only
if all checks with every TreeB results in an EOC, clamping can be ruled out on
this link (line 15). If during such a check no EOC is found, the traversal contin-
ues with the child nodes of TreeA and TreeB (line 12). The traversal of the child
nodes is recursive. As long as no EOC is found between the child nodes, their
child nodes are processed. This depth-first traversal ends when the leaf nodes of
the OBBTrees are reached and still no EOC has been found along the traversal
path (line 23). This means that the currently examined leaf nodes can establish a
clamping situation, they constitute a dangerous leaf node pair. This information
is passed to the recursion layers above and is finally setting the danger flag of the
respective link (lines 13, 14 and 4). Consequently, if there is a potential clamping
situation on a link, the minimal amount of necessary EOC checks is equal to the
depth of the OBBTrees. If there is no clamping situation, this minimal amount is
equal to the number of environment OBBTrees. In general, more EOC checks are
necessary because often clamping cannot be ruled out by processing only the root
nodes, and because there might be an EOC along the traversal path. The latter
makes it necessary to check at least one other sibling node. The maximal amount
of EOC checks is the same for whether there is a potential clamping situations
or not. In both cases all nodes of TreeA have to be compared with each node of
all environment OBBTrees ({TreeB }) when all but the last processed leaf node
rules out a clamping situation, but their parent nodes don’t. Hence, the maximal
amount nmax of EOC checks is

nmax = nenv

d
∑

i=0

b2i,

assuming equal depths d and branching factors b across all OBBTrees, with nenv

being the amount of environment OBBTrees.

Sorting and caching of nodes

To identify a potential clamping situation, a single dangerous OBB leaf node pair
suffices. The computation time required to confirm a potential clamping situation
is thus dependent on when such a leaf node pair is found during the OBBTree
traversal. To speed up the traversal routine, we incorporated a sorting and caching
scheme in our clamping identification algorithm. The extended algorithm is shown
in algorithm 2. The arrays cLeafA and cLeafB cache the last dangerous OBB leaf
node pair for each link (line 34f.). When a link is checked for clamping situations,
this cached OBB leaf pair is processed first (line 8). In usual cobot applications,
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Algorithm 1 Clamping identification. Evaluates if there is a possible clamping
situation between a set of OBBTrees {TreeA }, each approximating a robot link,
and another set of OBBTrees {TreeB }, representing the OBBTrees of the envi-
ronment. The trees are transformed relative to the world coordinate system by
{TA} and {TB} respectively. For the sake of conciseness, the selection of the
correct transformation for each OBB node is not portrayed. The function identi-

fyClamping returns a boolean for each link, expressing if clamping is possible.
It uses the functions OBBTreeTrav and OBBNodeTrav that traverse OBB-
Trees and OBB nodes. The former returns false if clamping is impossible. The
latter returns the EOC that has been found, or none.

1: function identifyClamping({TreeA}, {TA}, {TreeB}, {TB})
2: for TreeA in {TreeA} do ⊲ iterate over all robot links
3: linkID ← TreeA.linkID
4: danger[linkID] ← OBBTreeTrav(TreeA,TA,{TreeB},{TB})
5: return danger ⊲ true if clamping is possible

6:

7: function OBBTreeTrav(TreeA,TA,{TreeB},{TB})
8: for TreeB in {TreeB } do ⊲ iterate over all environment OBBTrees
9: if earlyOut(TreeA , TA, TreeB , TB) is none then
10: for NodeA in TreeA .childs do ⊲ Go one depth down
11: for NodeB in TreeB .childs do
12: eo← OBBNodeTrav(NodeA , TA, NodeB , TB)
13: if eo is none then ⊲ No EOC has been found
14: return true
15: return false
16:

17: function OBBNodeTrav(NodeA , TA, NodeB , TB)
18: eo← earlyOut(NodeA , TA, NodeB , TB) ⊲ Sec. 2.2.5
19: if eo is none and ¬NodeA .isLeaf() then
20: for NodeA in NodeA .childs do
21: for NodeB in NodeB .childs do
22: eo← OBBNodeTrav(NodeA , TA, NodeB , TB) ⊲ recursive

23: return eo
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the robot does not move fast. If the clamping identification algorithm runs with a
high rate, it is reasonable to assume that the respective links or OBBs do not move
far from their previous pose within one cycle. Consequently, dangerous OBB leaf
pairs tend to stay dangerous. The minimum amount of EOC checks is thus reduced
to only one for each robot link in ideal potential clamping scenarios. The same
paradigm - what is dangerous is likely to stay dangerous - also motivates to sort
the remaining OBB nodes. An OBB node whose successors delivered a dangerous
OBB leaf in the last iteration is likely to deliver a dangerous OBB leaf in the next
iteration, too. Even if the last cached OBB leaf node cLeafA or cLeafB is not
dangerous anymore, its siblings might be. Therefore, traversing a queue of OBB
nodes that has been sorted according to their last clamping evaluations, reduces the
amount of necessary EOC checks in potential clamping situations. Unfortunately,
the caching and sorting does not improve the algorithm’s performance when there
is no potential clamping situation since in this case all nodes of the respective
depths have to be processed.

2.2.5 Early Out Criteria

During the OBBTree traversal, the children of a node are only traversed if there
is no EOC applicable to this node. If there is an EOC for a node, or a node pair,
it means that this node (or pair) does not lead to a clamping situation. As stated
in Sec. 2.1.3, there are distance and velocity based EOC.

Distance Early Out Criteria

Given the two distance dependent prerequisites (2.1) and (2.2) for a clamping
situation, a clamping situation can be ruled out if one of these prerequisites is not
met. Therefore, the current branch of the OBBTree traversal is dismissed if either

dmin > sizemax (2.79)

or
dmax < sizemin. (2.80)

These conditions still stay valid when a distance approximation d̃min < dmin is used
instead of dmin, or d̃max > dmax instead of dmax. An efficient implementation on
how to calculate d̃min and d̃max is further described in Section 2.2.6.

Velocity Early Out Criteria

There are several EOC that are dependent on the relative velocity ẋAB between
the two OBBs A and B. Since in our case, the EOC checks are always between a
potential moving OBB A from the robot and a static OBB B from the environment,
this relative velocity ẋAB is equal to the velocity ẋ of the moving OBB A. The first
velocity dependent EOC checks whether OBB A moves towards OBB B. Referring
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Algorithm 2 Clamping identification with sorting and caching. The environment
OBBTrees are given in a queue {TB}S instead of a set. Additionally, the children
nodes within the OBBTree structures are also stored as a queue. The function
putF irst(e, q) puts the element e first in queue q, such that it gets retrieved first
when traversing the queue.

1: cLeafA, cLeafB ← ∅
2: danger ←zeros(#links)
3: linkID
4: procedure identifyClampingSort({TreeA}, {TA}, {TreeB}S, {TB}S)
5: for TreeA in {TreeA} do ⊲ iterate over all robot links
6: linkID ← TreeA.linkID
7: if danger[linkID] then
8: danger[linkID] ← OBBNodeTravSort(

cLeafsA[linkID], TA, cLeafsB[linkID], TB)
⊲ fast eval.

9: else
10: danger[linkID]← OBBTreeTravSort(TreeA,TA,{TreeB}S,{TB}S)
11:

12: function OBBTreeTravSort(TreeA,TA,{TreeB}S,{TB}S)
13: for TreeB in {TreeB }S do ⊲ queue traversal
14: if earlyOut(TreeA , TA, TreeB , TB) is none then
15: for NodeA in TreeA .childs do ⊲ queue traversal
16: for NodeB in TreeB .childs do
17: eo← OBBNodeTravSort(NodeA , TA, NodeB , TB)
18: if eo is none then
19: putF irst(NodeB , TreeB .childs) ⊲ sort
20: putF irst(NodeA , TreeA .childs)
21: putF irst(TreeB , {TreeB }S)
22: return true
23: return false
24:

25: function OBBNodeTravSort(NodeA , TA, NodeB , TB)
26: eo← earlyOut(NodeA , TA, NodeB , TB) ⊲ Sec. 2.2.5
27: if eo is none and ¬NodeA .isLeaf() then
28: for cNodeA in NodeA .childs do ⊲ queue traversal
29: for cNodeB in NodeB .childs do
30: eo← OBBNodeTravSort(cNodeA , TA, cNodeB , TB)

31: else if eo is none then
32: putF irst(cNodeB , NodeB .childs) ⊲ sort
33: putF irst(cNodeA , NodeA .childs)
34: cLeafA[linkID] ← cNodeA ⊲ cache last dangerous leaf pair
35: cLeafB[linkID] ← cNodeB

36: return eo
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to Fig. 2.25, OBB A and OBB B are heading for a collision if the conservative
displacement vector pAB has a positive projection on ẋ, i.e.:

pAB · ẋ > 0. (2.81)

It is essential that the vector pAB is used in (2.81) instead of the vector cAB =
xB − xA, expressing the displacement between the center points of the OBBs.
Otherwise, the OBB constellation in e.g. Fig. 2.25a would not be classified as a
potential colliding case. The conservative displacement vector pAB is created by
projecting the OBBs onto the normed velocity ẋN = ẋ

‖ẋ‖ and by adding these
projections to cAB:

pAB = xB +
∑

i

|βibi · ẋN |ẋN −
(

xA −
∑

i

|αiai · ẋN |ẋN

)

= cAB + ẋN

∑

i

|βibi · ẋN |+ |αiai · ẋN |.
(2.82)

Reversing (2.81), we get the first velocity EOC, termed colliding direction EOC:

pAB · ẋ < 0. (2.83)

The next two EOC depend on the normed velocity ẋN as well as on the normals
of the points that are represented by the OBBs. Given the OBB constellation in
Fig. 2.26a, only specific sides of the OBBs A and B can enter into collisions.
Concerning the moving OBB A, these sides are those with the normals nA

1 and
nA

2 . The other sides cannot collide with anything static because their normals are
opposed to the velocity direction. Therefore, a moving OBB node does not need
to be further traversed when all its points’ normals nA

i are opposed to the velocity
direction such that for all i

∀i(nA
i · ẋ < 0). (2.84)

A similar EOC can be stated for the static OBB B. Here, only the points can
enter into collisions that have normals opposed to the velocity direction (nB

3 and
nB

4 ). Hence, a static OBB node can be dismissed if

∀i(nB
i · ẋ > 0). (2.85)

To refer to these two EOC, (2.84) is termed link normal EOC and (2.85) is termed
environment normal EOC.

Applying the link and environment normal EOC without any modifications dur-
ing the OBBTree traversal leads to high computational effort. First, the velocity
of the link, represented by the OBBTree, needs to be expressed in the same co-
ordinate system as the sample points. Then, the dot product in (2.84) or (2.85)
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(a) OBBs in colliding direction (b) OBBs not in colliding direction

Figure 2.25: Illustration of the colliding direction EOC. In (a), the EOC (2.83) is
not satisfied because the OBBs can potentially collide. In (b), OBB A moves away
from OBB B, making a collision impossible.
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has to be calculated for each sample point’s normal. With the OBBTrees that we
are using, having often more than 104 sample points, this is an expensive check.
Therefore, we quantize the normal vectors of the sample points during the creation
of the OBBTrees and save in each node a histogram h of the contained normals.
Then, after the OBBTree creation process, we determine for each code vector6 vi

the indices j and k that satisfy following conditions:

vi · vj > 0

vi · vk < 0.
(2.86)

This allows us to query for each code vector the other code vectors that are in
the same or the opposite half-sphere as the query vector. Figure 2.26b illustrates
such a query operation. This data structure of quantized normals accelerates the
check of the link and environment normal EOC. In the beginning of the OBBTree
traversal, the velocity of the respective link ẋ is transformed into the coordinate
system of the OBBTree. Then, the nearest code vector vi to the transformed
velocity is searched. Using the indices j and k from (2.86), the EOC checks (2.84)
and (2.85) can be simplified to:

∀q : h(q) > 0(q ∈ {k}) (2.87)

and
∀q : h(q) > 0(q ∈ {j}). (2.88)

Instead of calculating several dot products, this version of the link and environment
EOC only needs to check whether all indices q that have a non-zero entry in
the histogram h, are also contained in the set of indices {k} (or {j}). Since we
approximate the velocities of each point within the OBBTrees (robot links) with
the linear velocity ẋ of the respective link, this method is only accurate when
the angular velocities of the links are small. Otherwise, points apart from the
axis of rotation have a non-negligible different linear velocity than ẋ. At the
expense of higher computational loads, multiple linear velocities can be computed
for distributed points on the respective robot link, though.

2.2.6 Efficient OBB Distance Approximation

As stated in [GLM96] and elaborated in [Huy08], the collision test between two
OBBs is simplified when calculating the OBB projections in the coordinate system
of one of the boxes. Let A be the base OBB, then B is translated relative to A

by t and rotated by B
AR. The unit vectors aj from (2.4) have consequently the

simple form

a1 =





1
0
0



 , a2 =





0
1
0



 , a3 =





0
0
1



 . (2.89)

6I.e. for each vector in the codebook that was used for the quantization
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(a) Normal vectors of OBBs
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(b) Vector quantization

Figure 2.26: In (a), an OBB pair constellation is shown where each OBB consists
of four leaf nodes whose sample points are displayed. All sample points within
one leaf node have the same normal, which is drawn in the same color as the
points. In (b), a codebook of 100 unit vectors is illustrated. During the creation
of the OBBTree, every sample point’s normal gets assigned to one of these code
vectors. For the EOC checks, one can retrieve the vectors vj (blue) and vk (green)
according to (2.86), given the query vector vi (red).
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With A
BR expressing the rotation from B to A, the unit vectors bj expressed in

frame Aχ are the columns of A
BR:

b1 =





A
BR[1,1]
A
BR[2,1]
A
BR[3,1]



 , b2 =





A
BR[1,2]
A
BR[2,2]
A
BR[3,2]



 , b3 =





A
BR[1,3]
A
BR[2,3]
A
BR[3,3]



 . (2.90)

The 15 separation axes that have to be checked for OBB↔ OBB collisions are the
6 face normals of OBB A and B, as well as any combination of aj × bk [GLM96].
Since the distance calculations in (2.5)- (2.8) use the same projections than the
collision queries, the same axes have to be checked. To calculate the distances
efficiently, we exploit the structure of the OBBs’ representations as in [GML00],
which lead to different implementations for different axes. In the following, the
summands of the projected distances di (2.5) and d+i (2.7) are simplified depending
on the projection axis.

Face normals of A

When the projection axis l is a face normal of A

l = ai,

then the OBB A itself is projected on this axis (cf. (2.4)) as

rA =
∑

j

|αjaj · ai| = αi, (2.91)

because the face normals aj and ai are perpendicular to each other for i 6= j.
With R̄ being the matrix that contains the absolute values of A

BR, the projection
of OBB B onto l simplifies to

rB =
∑

j

|βjbj · ai| = β1R̄[i,1] + β2R̄[i,2] + β3R̄[i,3]. (2.92)

The projection of the OBBs’ translation |t · li| is simply

|t · ai| = ti. (2.93)

Face normals of B

Similar simplifications can be done when l = bi :

rA =
∑

j

|αjaj · bi| = α1R̄[1,i] + α2R̄[2,i] + α3R̄[3,i] (2.94)

rB =
∑

j

|βjbj · bi| = βi (2.95)

|t · l| = |t · bi| (2.96)

Equation (2.96) cannot be further simplified, since no a priori assumptions can be
made about the translation vector t or the relative rotation A

BR.
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Cross products of edges

The equations for the projected distances (2.5) and (2.7) are only valid for projec-
tion axes of unit length. Since the cross product ai × bj is in general not of unit
length, the projection axes must be normalized:

l =
1

‖ai × bj‖
ai × bj .

As (2.5) and (2.7) are linear combinations of l, the normalizing factor

λ =
1

‖ai × bj‖
(2.97)

can be factorized:

d = λ
(

|t · l| − rA − rB
)

(2.98)

d+ = λ
(

|t · l|+ rA + rB
)

(2.99)

To shorten the notation of the following simplifications, we introduce shifted in-
dices:

[i≫ 1] = [(i%3) + 1] and

[i≫ 2] = [((i+ 1)%3) + 1],
(2.100)

where % is the modulo operator and i can be replaced by any index. The simplified
summands in (2.98) and (2.99) are then

rA =
∑

k

|αkak · (ai × bj)| = α[i≫1]R̄[i≫2,j] + α[i≫2]R̄[i≫1,j] (2.101)

rB =
∑

k

|βkbk · (ai × bj)| = β[j≫1]R̄[i,j≫2] + β[j≫2]R̄[i,j≫1] (2.102)

|t · (ai × bj)| = |t[i≫2]
A
BR[i≫1,j] − t[i≫1]

A
BR[i≫2,j]|. (2.103)

Derivations of (2.101)-(2.103) can be found in [GML00] and [Huy08].

To approximate the minimum distance d̃min (2.6) and the maximum distance d̃max

(2.8), a system of perpendicular separation axes li is required. Any system of per-
pendicular separation axes will produce an approximated minimum distance d̃min

less or equal to the real minimum distance dmin. Since we want to approximate the
minimum distance as close as possible, we choose the biggest projected distance
di as the first separation axis l1. If this separation axis is a face normal of OBB A

or B, the remaining separation axes l2 and l3 are simply the other face normals of
OBB A or B, because they are naturally perpendicular to each other. In the case
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of l1 being a cross product ai×bj , the second perpendicular axis l2 can be chosen
to be either ai or bj . However, the third axis l3 has to be calculated under the
constraints of being perpendicular to both l1 and l2. Without loss of generality
we take l2 = ai as second separation axis. Then, l3 can be obtained with

l3 = l1 × l2 = (ai × bj)× ai. (2.104)

Since this axis is generally not contained in the previous 15 separation axes, the
projected distances di and d+i for this axis must be calculated additionally. As
with the other separation axes, an efficient implementation is possible through

rA =
∑

k

|αkak · ((ai × bj)× ai)| = α[i≫1]R̄[i≫1,j] + α[i≫2]R̄[i≫2,j] (2.105)

rB =
∑

k

|βkbk · ((ai × bj)| =
1

λ2
βj + R̄[i,j]

(

β[j≫1]R̄[i,j≫1] + β[j≫2]R̄[i,j≫2]

)

,

(2.106)

with λ from (2.97). The projection of the translation can be simplified to

|t · ((ai × bj)× ai)| = |t[i≫1]
A
BR[i≫1,j] + t[i≫2]

A
BR[i≫2,j]|. (2.107)

For derivations of (2.105)-(2.107) see Sec. A.2 in the appendix. Having calculated
the projected distances di and d+i , the approximations for the minimal and maximal
distance d̃min and d̃max are obtained with (2.6) and (2.8). As summary, the general
layout of the distance approximation algorithm is displayed in algorithm 3.

2.2.7 Summary of the Clamping Conscious Control Pipeline

Having now described all individual parts of the Clamping Conscious Control
pipeline, we highlight their interdependencies in this section. The following is
best understand when looking at the schemata in Fig. 2.27. The starting point of
the pipeline is the identification of possible clamping situations. This is done by
traversing the OBBTrees of the robot, wich are updated according to the robot
configuration q, and of the environment as explained in Sec. 2.1.3 and Sec. 2.2.4.
The outcome of this process depends, among others, on the dimensions sizemin and
sizemax of the body parts that are in the robot’s workspace. These are provided by
pre-configured collaborative zones (Sec. 2.1.1/ Sec. 2.2.2). The CCIC (Sec. 2.1.6)
is influenced by the outcome of this evaluation in multiple ways. If clamping is not
possible, the end-effector of the robot can be controlled according to the current
task specifications. To avoid high dynamic contact forces, it is advisable to limit
the velocity though (Sec. 1.2.2). If clamping is possible, regardless of whether a
contact has been sensed yet, the velocity is saturated according to (2.72) incor-
porating the maximal admissible force fmax provided by the collaborative zone.
Additionally, the gain matrices of the desired impedance dynamics (2.32)/ (2.77)
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Algorithm 3 Distance approximation. Calculates the minimum distance and
maximum distance approximations d̃min and d̃max, given the dimensions of two
OBBs ({αi}, {βi}), and their relative transformation (t,AB R).

1: function distanceApprox({αi}, {βi}, t,AB R)
2: {ai} ← baseCoordinateSystem() ⊲ Eq. (2.89)
3: {bi} ← cols(ABR) ⊲ Eq. (2.90)
4: {li} ← separationAxes({ai}, {bi}) ⊲ 15 separation axes
5: R̄← |ABR| ⊲ Absolute value of each entry
6: for i = 1 : 15 do
7: [rAi , r

B
i , tli, λ]← project(li, {αi}, {βi}, t, A

BR, R̄)
8: di ← λ(tli − rAi − rBi ) ⊲ Eq. (2.5) / (2.98)

9: imin ← indexMin({di})
10: if imin > 6 then
11: l16 ← separationAxis16(imin) ⊲ e.g. Eq. (2.104)
12: [rA16, r

B
16, tl16, λ]← project(l16, {αi}, {βi}, t, A

BR, R̄)
13: d16 ← λ(tl16 − rA16 − rB16) ⊲ Eq. (2.6)

14: v ← imin

15: [j, k]← perpendicularIndices(v) ⊲ ⇒ lv ⊥ lj ⊥ lk ⊥ lv
16: d̃min ← minDistApprox(dv, dj, dk) ⊲ Eq. (2.6)
17: for i = [v, j, k] do
18: d+i ← λ(tli + rAi + rBi ) ⊲ Eq. (2.7)/ (2.99)

19: d̃max ← maxDistApprox(d+v , d
+
j , d

+
k ) ⊲ Eq. (2.8)

20: return [d̃min, d̃max]

21: function project(li, {αi}, {βi}, t, A
BR, R̄)

22: λ← ‖li‖
23: switch li do
24: case Face normal of A
25: [rAi , r

B
i , tli]← [Eq.(2.91), Eq.(2.92), Eq.(2.93)]

26: case Face normal of B
27: [rAi , r

B
i , tli]← [Eq.(2.94), Eq.(2.95), Eq.(2.96)]

28: case Axes cross product
29: [rAi , r

B
i , tli]← [Eq.(2.101), Eq.(2.102), Eq.(2.103)]

30: case l16
31: [rAi , r

B
i , tli]← [Eq.(2.105), Eq.(2.106), Eq.(2.107)]

32: return [rAi , r
B
i , tli, λ]
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can be adapted to e.g. make it easier to push the robot back. If there is a po-
tential clamping situation and a contact is sensed (thresholding τext), the contact
point pc is estimated7. Until contact is lost, the contact point is controlled and
not the end-effector, as otherwise one cannot control the contact forces directly.
Having estimated the contact point pc and the contact Jacobian Jc, the contact
force fc can be calculated with (2.78). To simplify the steady-state force limiting,
the coordinate system is rotated such that the force only acts in the principal
impedance direction p. The steady-state contact force is then limited by saturat-
ing the actuation force fs through the velocity saturation law (2.72). However,
imposing this desired behavior requires multiple feed-forward terms, including the
Cartesian mass matrix Λ of the robot, external torques τext and contact forces
fc and some more. The exact control law is given in (2.65) and (2.69) for the
idealized case and in (2.74)-(2.76) for the control law used in the experiments.

7As we are not monitoring the scene or tracking the human coworkers, we infer the contact
point from the static geometry of the scene and the trajectory of the robot. See e.g. Fig. 3.30.
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Figure 2.27: Overview of the Clamping Conscious Control pipeline. For the sake
of clarity, only the most important entities are displayed.
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Chapter 3

Evaluation

This chapter analyses the concepts and implementation of the proposed clamp-
ing conscious control pipeline through simulations and experiments. The results
are discussed and the shortcomings are reported. To most of them, suitable reme-
dies are proposed as topics of future work.

3.1 Simulations

The following simulations were performed on a desktop computer, equipped with
an Intel Core i7-2600 processor (4× 3.4GHz), 8 GB of RAM, and running Ubuntu
16.04 LTS. The simulations are either written in C++ or in MATLAB.

3.1.1 OBB to OBB Distance Approximation

To evaluate the accuracy and the computational efficiency of our SAT based
approximation approach, we compare it to the collision library flexible collision
library (fcl) [PCM12]. To this end we generate random OBB pairs, whose mini-
mum and maximum distance is calculated or approximated. Each side length of
each OBB is an independent and identically distributed (i.i.d.) variable on the
interval [0, 50]1. Analogously, each OBB is translated from the origin by another
i.i.d. variable with range [0, 100]. Finally, each OBB is rotated randomly around
a random axis. This procedure produces generally both intersecting and non-
intersecting OBB pairs. The minimum and maximum distance of each OBB pair
(OBB A and B)is then approximated with our SAT approach as explained in
Sec. 2.1.4 and Sec. 2.2.6. As comparison, we calculate the minimum distance dmin

of the same OBB pair with fcl. The distance query in fcl is computed with the
GJK algorithm, together with an iterative procedure to find the minimum dis-
tance of the resulting Minkowski sum to the origin. Since this algorithm returns
the exact minimum distance, it is used as ground truth. Although it is possible

1The unit is dropped, since it can be any unit of length.
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(a) Constellation 1 (b) Constellation 2

Figure 3.1: Comparison of our maximum distance approximation d̃max and dmax as
in (3.1). In the OBB constellation (a), dmax is far bigger than d̃max. In constella-
tions where dmin is a corner to corner distance, dmax can be a better approximation
than d̃max. In both shown constellations, d̃max is calculated by taking the edges of
OBB B as projection axes.

to extend the GJK algorithm to return the maximum distance dmax
2, we simply

calculate the distances from every corner of OBB A to every corner of OBB B.
Since the maximum distance thereof is also the maximum distance between the
OBBs, we take this maximum distance as ground truth (see Sec. A.1 for an ex-
planation). Additionally, we compare our maximum distance approximation d̃max

with a coarse, but fast approximation dmax that is easily obtained when already
having calculated the minimum distance dmin:

dmax = dmin +∅
A +∅

B, (3.1)

with ∅
A (∅B) being the edge to edge diagonal of OBB A (OBB B). A visual

comparison of dmax and d̃max is shown in Fig. 3.1.

Results

To compare the accuracy of the distance approximations, we calculate how much
the approximated quantity x differs from the ground truth xgt with

e =

∣

∣

∣

∣

x− xgt

xgt

∣

∣

∣

∣

.

2The maximum distance is the point of the Minkowski sum farthest away from the origin.
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x emax emean estd

d̃min 0.235 0.0193 0.0424

d̃max 0.321 0.0652 0.0463

dmax 1.203 0.305 0.120

Figure 3.2 & Table 3.1: Accuracy of distance approximations for 10000 samples.

Multiple (n) error evaluations ei are then aggregated and expressed with

emax = max
i

ei (3.2)

emean =
1

n

∑

i

ei (3.3)

estd =

√

1

n− 1

∑

i

(ei − emean)2, (3.4)

representing the maximum and mean error, as well as the standard deviation
thereof. Figure 3.2 and Tab. 3.1 reports the accuracy evaluation of the approx-
imations d̃min, d̃max and dmax. Colliding OBB constellations have been excluded
for this analysis. Our minimum distance approximation algorithm reliably detects
these cases and returns the correct value of d̃min = 0. The computation times that
are needed on average for a single OBB to OBB distance evaluation are shown
in Fig. 3.3 and Tab. 3.2. Our SAT based approximation approach is more than
4 times faster than the GJK implementation in fcl. Even the ground truth com-
putation for the maximum distance dmax exceeds the time needed for calculating
both d̃min and d̃max with our SAT approach. The average error of d̃min is less than
2 percent on minimum distance calculations. For maximum distance calculations,
the average error of our SAT based approach is almost 5 times less than the ad
hoc implementation 3.1 based on the minimum distance.

3.1.2 Clamping Identification

To evaluate various parameters of our clamping identification algorithm, de-
scribed in Sec. 2.2.4, we recorded a trajectory of the Panda robot [EMI17] for
10 seconds. Approximately every 1 ms, the current joint angles and the elapsed
time is saved, leading to a total of 9328 entries3. The recorded trajectory is vi-
sualized in Fig. 3.4. The green environment is composed of different shapes and

3After recording the data, the respective thread sleeps for 1 ms. Hence, the effective record
rate is less than 1 kHz.
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fcl ours dmax

time [µs] 1.84 0.41 0.57

Figure 3.3 & Table 3.2: Mean computation time of distance approximations aver-
aged on 10000 samples. The computation time includes the computation of d̃min

and d̃max for our method; for fcl it includes the computation of dmin and dmax.
The computation time for the ground truth maximum distance is labeled as dmax.

placed such that the robot does not collide with it. For every parameter set of our
clamping identification algorithm, we replay the robot’s trajectory and measure
the time needed to determine whether there is a potential clamping situation or
not. We also compare the results with a state of the art minimum distance compu-
tation from fcl [PCM12]. This implementation constructs a hierarchy of OBBs and
Rectangular Swept Spheres (RSSs) [LGLM00] for a given mesh. Distance queries
are then solved by traversing this hierarchy, and by application of the GJK and
Expanding Polytope Algorithm (EPA) [VDB01]. Since its computation time is de-
pendent on the complexity of the mesh, we use simplified meshes of 1000 faces per
robot link and environment. An analysis of the accuracy of this approximation is
given in Sec. 3.1.3.

Firstly, we only consider the distance EOC in our algorithm. We simulate two
similar scenarios, both with the same environment and robot trajectory as in
Fig. 3.4, but with different body parts in the collaborative zones. Both collabora-
tive zones extend over the entire robot workspace, the first contains the element
m head, the other contains the element m abdominal region. Their force limits, as
well as their minimum and maximum dimensions sizemin and sizemax are listed in
Tab. 3.3. For both scenarios, we evaluate different parameters for the OBBTree
creation, namely the depth d♣ of the OBBTree, and the influence of the normals
during clustering. Concerning the OBBTree traversal, we analyze the effects of
using the caching and sorting scheme, as introduced in Sec. 2.2.4. The necessary
OBB to OBB distance calculations are once performed by our SAT based approx-
imation approach, and once with the GJK algorithm as described in Sec. 3.1.1. In
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(a) Front view (b) Side view (c) Top view

Figure 3.4: Robot trajectory used for the clamping identification algorithm. There
is no collision with the environment, however, especially the end-effector comes
close to the environment. In (a), the trace of the trajectory is shown in red. The
robot starts near the bottom left vertex of the trajectory and finishes at the line-
strip’s end. For the sake of clarity, only the last two links are shown in this view.
The remaining views display all robot links.

the following, the reported computation times refer to the time needed to evaluate
the clamping situation for a single robot configuration. This evaluation is com-
posed of an evaluation for every link, such that the reported computation times
are the sums of the computation times of the individual links.

Results

Figure 3.5 and Fig. 3.6 show that for both collaborative zones, the caching and
sorting scheme leads to a significant drop in average computation time across all
tested OBBTrees. When approximating the robot and the environment with OBB-
Trees of depth 9, the average computation time for the m head scenario drops from
0.9 ms to 0.2 ms, and from 4.4 ms to 0.9 ms in the m abdominal region scenario.
This drop is due to the reduced number of necessary EOC checks. As can be
seen in Fig. 3.7b, the number of total EOC checks drops approximately by the
same factor as the computation time. The fastest mean computation time is ob-
tained with an OBBTree of depth 6 in the m head scenario, but with depth of
9 in the m abdominal region scenario. However, for m head, the OBBTree with
depth 9 is almost as fast as the depth 6 tree. The exact mean computation times
of fast parameter combinations is shown in Tab. 3.4, together with the average
amount of EOC checks per clamping evaluation. It can be seen that when us-
ing our SAT approach, more EOC checks are necessary, compared to the GJK
implementation. Since the minimum distance approximation d̃min from the SAT
approach is always equal or smaller than the real minimum distance dmin, less
OBBTree branches can be potentially dismissed according to the minimum dis-
tance EOC. The faster computation time of the minimum distance approximation
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Table 3.3: Excerpt of body limits for the configuration of collaborative zones. The
values are obtained according to Sec. 2.2.1 and Sec. 2.2.2.

body part sizemin sizemax fmax

[m] [m] [N]

m head 0.142 0.251 65
m abdominal region 0.201 0.429 110
m hand 0.013 0.117 140
m above legs 0.013 0.523 65
m legs 0.076 0.197 130

Table 3.4: Selection of fastest mean computation times tavg and the respective
average amount of EOC checks per robot configuration. The label identifies a
unique set of the configuration parameters {d♣ , sort , OBB to OBB }.

body part label d♣ sort OBB to OBB tavg [ms] navg

m head 1 6 yes GJK 0.21 64
m head 2 6 yes SAT 0.22 82
m head 3 9 yes GJK 0.23 69
m head 4 6l yes GJK 0.26 77

m abdominal region 3 9 yes GJK 0.9 251
m abdominal region 5 9 yes SAT 1.2 393
m abdominal region 4 6l yes GJK 2.1 538

with SAT does not compensate for the higher amount of necessary EOC checks in
our simulations, especially since the OBBTree traversal involves additional com-
putational overhead. Although our SAT based approach calculates on average
a better maximum distance approximation d̃max than the ad-hoc approximation
dmax in (3.1), this advantage is not of high importance in the simulated scenarios.
For the m abdominal region scenario for example, no early-out check lead to the
dismissal of a branch due to the maximum distance when using the OBBTree with
depth 9 that has the best performance.

Taking both simulation scenarios into account, an OBBTree depth d♣ of 9 is
the most performant one. In our setup, the OBBTrees with d♣ = 9 have on
average a branching factor b of 2.07, compared to 2.99 for d♣ = 6 and 8.96 for
d♣ = 3. There is no clear trend whether the integration of the sample point normals
during the clustering processes is beneficial to the computation time. However, for
d♣ = 9, using the OBBTree with normal information is slightly faster than using
its counterpart for both examined collaborative zones.
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t [s]

SAT

GJK

(a) No sorting or caching, see algorithm 1

t [s]

SAT

GJK

(b) Sorting and caching, see algorithm 2

Figure 3.5: Computation time analysis with m head as critical body limit. The
blue and yellow bars represent the average time needed for the clamping identi-
fication of a single robot configuration. The black bars on top of them show the
standard deviation of the averaged time samples. For the blue bars, the distance
between two OBBs is approximated using our SAT approach (algorithm 3), the
GJK algorithm is used for the yellow bars. The values on the abscissa define the
depth d♣ of the OBBTree, where the subscript ·l denotes that only the point loca-
tions are used for clustering. The reference method of fcl is displayed at the entry
mesh.

t [s]

SAT

GJK

(a) No sorting or caching, see algorithm 1

t [s]

SAT

GJK

(b) Sorting and caching, see algorithm 2

Figure 3.6: Computation time analysis with m abdominal region as critical body
limit. Bars and abscissa analogously to Fig. 3.5.
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t [s]

(a) Maximum computation time (b) Number of early-out checks

Figure 3.7: In (a), the maximum computation times to evaluate the clamping
situation is displayed. All timings refer to the algorithm that incorporates the
sorting and caching scheme (except for the fcl implementation ”mesh”). In (b), the
number of EOC checks is itemized for depth d♣ = 9 using the GJK algorithm. The
color of the bars represent the outcome of the EOC checks. For dmax, condition 2.80
is true, for dmin condition 2.79. Only in the case of m head with the sorting and
caching extension, there are 84 dmax EOC, which is too little to be seen on the
graph.

Since the amount of necessary EOC checks is highly dependent on the robot-
environment configuration, the computation time of the clamping identification
algorithm varies much during the trajectory. This can be seen by inspecting the
standard deviations of the time measurements in Fig. 3.5 and Fig. 3.6. Since the
sorting and caching scheme only accelerates the computation in potential clamp-
ing situations, the maximum time to rule out possible clamping can still be high.
Figure 3.7a reports the maximum computation time for the simulated scenarios.
The fastest of our tested methods needs maximally almost 10 ms to evaluate the
clamping situation in the m abdominal region scenario. Figure 3.8 and Fig. 3.9
visualize the outcome of the clamping identification for each of the collaborative
zone setups for the entire trajectory. In both figures, the outcome of the compar-
ative method from fcl is displayed on top. On the bottom, the results are shown
for parameter set 3 (see Tab. 3.4) of our algorithm. Here, most clamping iden-
tifications are due to the fast evaluation of the cached dangerous leaf node pairs.
In Fig. 3.8, the danger evaluation of ours and the comparative method matches
well. However, our method evaluates the possible clamping scenarios more conser-
vatively, as shown representatively in Fig. 3.10. The possible clamping situations
begin maximally 51 time steps earlier or end maximally 51 time steps later than for
the comparative method. In the scenario illustrated in Fig. 3.9, the more conser-
vative evaluation of clamping situations is well-marked for the second robot link.
Between time steps 5690 and 9261, our method identifies a clamping situation,
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Figure 3.8: Clamping evaluation results of the scenario with m head in the collab-
orative zone. Each horizontal bar represents the clamping evaluation for a single
robot link. The 7 bars on top display the result for the comparative fcl method,
the 7 bars below display the results of our algorithm with parameter set 3. Red
and brown color indicate that a clamping situation is possible. The difference is
that brown is used when the evaluation of the cached dangerous leaf node pair
results in a possible clamping identification. The brown bars of links l5 -l7 are
interrupted with red stripes that are best visible electronically and zoomed in.

whereas the comparative method does not. In this case, our OBB approximations
of the involved geometries lead to a smaller minimum distance calculation that do
not trigger the distance based EOC. A comparison of the accuracy between our
OBB approximations and the simplified mesh, used for the fcl implementation, is
given in Sec. 3.1.3.

Different parameter sets of our algorithm also lead to slightly different clamping
identification results. For some parameter sets, a potential clamping situation be-
gins earlier or ends later, compared to other parameter sets. Figure 3.11 illustrates
the clamping identification results for a selection of parameter sets in the ending
of a clamping situation. The times between the endings of the potential clamping
situations differ no more than 15 time steps across the parameter sets. When
two parameter sets use different depths d♣ (e.g. set 3 and 4), these differences are
bigger than when using the same depth d♣ but different OBB to OBB distance cal-
culations (e.g. set 3 and 5). The reason is that OBBTrees with different depths d♣
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Figure 3.9: Clamping evaluation results of the scenario with m abdominal region
in the collaborative zone. See Fig. 3.8 for further explanations.

Figure 3.10: Clamping evaluation for the m head scenario. Zoomed in extract of
Fig. 3.8.
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Figure 3.11: Clamping identification results for different parameter sets in the
m head scenario. For each parameter set, only the links 5 to 7 are displayed
because the remaining links show identical results. The parameter set that is used
is written to the left of the respective link name in parentheses. See Tab. 3.4 for
their parameters.

are composed of completely different OBBs. Especially when regarding only the
cached leaf node pairs, differences in the OBBs of these leaf nodes lead to different
distance computations. As can be seen in Fig. 3.12, the OBB of a child node is
not always contained in the OBB of the parent. If the clamping identification
algorithm considers all OBBs along the path from the root node to the leaf, it is
more likely that somewhere along the path the branch is correctly dismissed for a
non-clamping situation.

Velocity Early Out Criteria

After having evaluated the parameters of the distance based EOC, we include
the velocity based EOC to analyze the same trajectory of the robot again. They
are checked in following order: First comes the colliding direction (2.83) EOC, then
the link normal (2.84) and environment normal 2.85 EOC. Finally, the distance
EOC, as detailed above, is inspected. Figure 3.13 gives an impression how the
colliding direction EOC (2.83) affects the traversal of the OBBTrees’ root nodes.
The gray arrows represent the conservative displacement vectors pAB from the
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Figure 3.12: An artifact of our clustering method is that child OBBs (in red) are
not always fully contained in their parent’s OBB (in blue). This is because we
fit the parent’s OBB to the sample points (magenta and green) and not to the
children’s OBBs.
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Figure 3.13: Illustration of the colliding direction EOC as per (2.83). The conser-
vative displacement vectors pAB from link 7 to the OBBTrees of the environment
are shown in gray. When they form a negative dot product with the velocity of
the respective link (pink arrows), the OBBTrees are not traversed any further (red
boxes). Blue boxes are in potential clamping / colliding direction. The orange and
turquoise boxes are actually red and blue respectively. The change in color is due
to rendering them transparently on the green environment.

currently considered link (link 7) to the OBBs of the environment. If they project
negatively on the linear velocity ẋ (pink arrows) of the link’s center, the respective
OBBTrees (red boxes) are dismissed in the further traversal.

Figure 3.14 displays the effects of the velocity based EOC on the clamping
identification results for the m head scenario. The bottom graph shows the results
when no velocity based EOC is used. Adding the colliding direction EOC (middle
graph) and additionally the link and environment normal EOC (top graph) leads
to less potential clamping cases. Whereas the identification of the beginning of
potential clamping situations is governed by the distance EOC, the endings of
these situations are earlier identified by including the velocity based EOC. The
first potential clamping situation for the 5th link finishes for example 1193 time
steps earlier when considering the velocity EOC.

The clustering approach of the OBBTrees also influences the link and environ-
ment normal EOC. When sample points with similar normals are grouped together
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Figure 3.14: Clamping identification outcome for the m head scenario. For the
bottom graph, only distance EOC are used (see Fig. 3.8). The colliding direction
EOC is added for the middle graph, as well as on the top graph together with
the link and environment normal EOC. Only links 5 − 7 are displayed since the
outcome for the remaining links is identical. Best viewed electronically and zoomed
in.
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Figure 3.15: Clamping identification outcome for the m abdominal region scenario
(zoomed in). For the bottom graph, only the distance EOC are considered. For
both the middle and the top graph, the collision direction and link and environ-
ment normal EOC is considered as well. The middle graph shows the clamping
identification result when normal information is used during the clustering process
at the OBBTree creationa. For the top graph, on the contrary, only localization
information was used during clustering. Best viewed electronically and zoomed in.

aTo be exact, parameter set 3 from Tab. 3.4 is used.

in one OBB, they can be easier dismissed compared to OBBs containing points with
different normals. This is representatively illustrated for the m abdominal region
scenario in Fig. 3.15. The dangerous clamping situations are sooner over for OBB-
Trees with d♣ = 9 (middle graph), than for OBBTrees that do not consider normal
information during clustering (d♣ = 9l, top graph).

One artifact of employing the velocity based EOC is the induced jitter in the
clamping identification signals, as can be seen in Fig. 3.14 and Fig. 3.15. This is
mainly caused by the fluctuations in the links’ velocities, which are calculated by
numerical derivation.

More EOC checks lead in general to more branch dismissals. However, one
cannot determine a priori whether the increased dismissal rate results in faster or
slower execution times. On the one hand, more EOC checks can dismiss a branch
earlier than it would has been with fewer checks. On the other hand, when a
dangerous leaf node pair is found with few EOC checks, more checks can possibly
identify such a leaf node pair as safe, making further OBBTree traversal necessary.
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Figure 3.16: Comparison between using only distance EOC and using also ve-
locity EOC. In (a), the mean computation times and standard deviations for the
clamping identification algorithm are compared. (b) lists the outcomes of the EOC
checks. The bars with ”no vel.” use only distance EOC.

Especially with the sorting and caching scheme, the more EOC, the likelier the
cached dangerous leaf node pair will get dismissed. As portrayed in Fig. 3.16a, in-
cluding the velocity EOC checks slows down the clamping identification algorithm
for the tested trajectory. For both the m head and m abdominal region scenario,
more branches have to be traversed. This can be seen in Fig. 3.16b, as there are
more EOC checks that result in EOC ”none” when considering the velocity EOC.
However, rates near to 500 Hz can still be obtained. The time needed on average
for a single EOC check affects the total execution time of the clamping identifica-
tion algorithm. With 5.5µs on average, the colliding direction EOC is the most
expensive to analyze, followed by the distance EOC with 4.2µs (GJK) and 2.8µs
(SAT)4. The link and environment normal EOC is the fastest with 0.28µs.

3.1.3 Accuracy Comparison of OBBTree vs. FCL’s Mesh-
Based Method

As stated in Sec. 3.1.2, we use simplified meshes for the comparative distance
evaluation, since otherwise the needed computation time would make the algo-
rithm unfeasible. We measure the quality of the simplified mesh by taking the
Hausdorff Distance between the simplified and the original mesh. To see where
the simplified mesh differs much from the original one, we compute the Haus-

4The reported computation times are higher than in Tab. 3.2 because there is additional
overhead like function calling. Also note that the computation times for the velocity based EOC
are trajectory and scenario dependent. Values are reported for the m head scenario.
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dorff Distance separately for a selection of sampled points. These distances are
visualized in Fig. 3.17b for the first link. Red areas indicate that the Hausdorff
Distance in these areas is low, signifying a good mesh approximation. Blue areas
on the other side indicate a poor mesh approximation. Comparing this error map
with the simplified mesh in Fig. 3.17a, one sees that the approximation error is
especially high on areas where the simplified mesh exhibit strong discontinuities.
To compare this approximation error quantitatively with our OBBTree approx-
imations, we calculate a similar error measure for the OBBTrees by taking the
minimum distance from each sample point to the enclosing OBB of the respective
leaf node. The mean value of these distances is reported separately for each robot
link in Fig. 3.18. Since the leaf node OBBs differs depending on the clustering al-
gorithm, the errors are separately displayed for the clustering method integrating
the normals of the sample points, and for the method only considering the points’
locations. Across all links and environment OBBs, the clustering method with
normals has lower approximation errors than its counterpart. Especially for the
environment OBBTrees, the normals of the sample points seems to help finding
clusters that can better be approximated with OBBs. The mean errors from these
approximations are also 3.8 to 24.9 times less than the mean approximation errors
from the mesh simplification concerning the robot links. For the environment,
the approximation errors of the OBBTrees fluctuate more. A box shaped object
(env1 ) can be better approximated with OBBs than a sphere shaped one (env7 ).
Consequently, some of the OBBTrees of the environment are better approximated
with OBBs than with a simplified mesh.

Although, on average, the OBBTree approximations for the robot links are
more accurate than the mesh simplifications, this is not true for the maximum
approximation errors. As shown in Fig. 3.19, it varies from link to link which
approximation strategy is more accurate. However, the environment mesh is best
approximated by the simplified mesh. The good approximation performance of
the mesh simplification for the environment is because the original mesh contains
only 14 percent more faces than the simplified one. Therefore, the simplified mesh
resembles strongly the original one.
The maximum approximation errors for the OBBTrees are close to the sampling
radius used for the OBBTree creation (see Sec. 2.2.3). Thus, the accuracy of the
OBB approximation and the accuracy of the initial sampling are compatible with
each other.

3.1.4 Clamping Conscious Impedance Control

In this section we describe several simulations that analyze the impedance dy-
namics in (2.31) for different environment setups and different parameters. The
differential equations in the simulations are simply integrated by using the forward
Euler method. The simulation parameters that are constant across the different
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(a) Simplified mesh of link 1 (b) Error map of simplification

Figure 3.17: Example of the mesh simplification for link 1. The mesh in (a) is
reduced to 1000 faces. The Hausdorff distance between the simplified and the
original map is projected onto the original mesh in (b). Blue areas indicate high
distances, expressing large approximation errors. Red areas indicate a small Haus-
dorff Distance.

simulations are summarized in Tab. 3.5. To keep the illustrations simple, the
simulations are in 2-D.

Simulation 1: single line obstacle

First, we consider a scenario where a control point p is prevented from reaching
its goal position xg by a line obstacle. The resulting trajectories of the control
point for different control methods is illustrated in Fig. 3.20. At t = t0, the control
point p with mass m starts at position x0 with velocity ẋ0. It follows the dynamics
of (2.31) with the principal impedance direction p aligned with its velocity. The
velocity of the control point is saturated by the velocity saturation law (2.20).
When point p is in contact with the environment, the environment exerts a force
fext on the control point p normal to its surface5. This force is dependent on the
stiffness of the environment ke, as well as on the penetration distance d⊥ of p into
the environment, perpendicular to the environment’s surface:

fext = ke ∗ d⊥. (3.5)

From the first contact onwards, the different control methods lead to different
trajectories of the control point. The parameters of the implemented controllers

5As there is only a single control point, we use here fext instead of fc.
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Figure 3.18: The minimal distances between sample points and their enclosing
OBBs are averaged for every link and every part of the environment. The brown
bars represent these distances when the OBBs were created by including the points’
normals in the clustering step. The green bars show the distances when these
normals were not considered during clustering. The gray bars report the Hausdorff
Distance between points of the simplified mesh and the original one. There are
seven green and brown bars shown for the environment since the environment
mesh is split up into seven parts for which an OBBTree is created each. As a
reference, the sampling radius is also shown that is used to sample the points from
the original mesh to create the leaf nodes of the OBBTrees.
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Figure 3.19: Maximum approximation errors. See Fig. 3.18 for a detailed descrip-
tion.

are summarized in Tab. 3.6. All but the ”vel. dir.” controller change the principal
impedance direction p according to the external force fext. This update of the
principal impedance direction p can either be instantaneous, or gradually with the
update law:

pi+1 =
(1− gu)pi + gupd

‖(1− gu)pi + gupd‖
, (3.6)

where gu is a non-negative gain and pd is the desired principal impedance direction.
The update gain gu of the exponential moving average in (3.6) is controlled via

gu(t) = gmin + σ(t− tc)(gmax − gmin), (3.7)

with σ(t) being a sigmoid function that goes from 0.007 to 0.99 within 1 second,
starting from the time of collision tc. The update gain gu is thus bounded by gmin

and gmax and smooths high changes of p due to collisions.

In the simulated scenario, the control point collides with the environment at
t = 0.47 s. The norm of the external force fext that is experienced by the control
point is reported in Fig. 3.21 for different controllers. All force trajectories surpass
the maximal force fmax shortly after the collision. The force tracking impedance
controller ”force track” from [LB08] exhibit the least amount of force overshoot.
Consequently, when controlled with this controller, the point p penetrates the
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Figure 3.20: Simulation trajectories with one obstacle. The square represents
the controlled point p that wants to reach the goal position xg illustrated as
red cross. An obstacle, which is shown as blue line, obstructs the control point
from reaching its goal. The obstacle is modeled as a solid plate connected with a
spring to its equilibrium position as in Fig. 2.12. In (a), the principal impedance
direction is left at the pre-collision velocity direction. In (b) and (c), the principal
impedance direction aligns to the external force direction. In (c), the controller
tries additionally to track the maximum force value fmax, as in [LB08].

Table 3.5: Common parameters of the CCIC simulations. The mass, stiffness and
damping matrices of the control point is denoted as M , K and D. The simulation
rate is equal to the control rate, with time steps ts.

ts fmax ke M K D x0 ẋ0 xg
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Table 3.6: Control parameters of the CCIC simulation.

label pd gradually gmin gmax kf kv

vel. dir. ẋ0 - - - - -

force dir. fext no - - - -

c.1 force dir. fext yes 0.001 0.005 - -
c.2 force dir. fext yes 0.001 0.01 - -
c.3 force dir. fext yes 0.001 0.025 - -

force track a fext yes 0.001 0.005 0.1 1
N

1× 10−5 s
N

force track 2 b fext yes 0.001 0.005 0.01 1
N

5× 10−6 s
N

aImplements force tracking according to [LB08] in the principal impedance direction. The
constant stiffness k0 is taken to be K[1,1]. For details, see [LB08].

bSee footnote a. This controller is only used for the multiple-line obstacle simulation

environment the least, as visible in Fig. 3.20c. However, this controller lead to
a steady-state force error of 4.8 N. The remaining controllers that also change
the principal impedance direction p to the external force fext on the other hand,
reach a steady-state force equal to fmax = 100 N, as set by the velocity saturation
law (2.20). The development of their principal impedance directions p is displayed
in Fig. 3.22. The higher the update gain limit gmax of the respective controllers,
the faster p reaches the direction of the environment’s normal vector.

Simulation 2: single and multiple line obstacle with friction and noise

To adapt the ideal simulation above more to the real world case, we introduce
friction and force measurement noise. The friction is modeled by Coulomb friction
of the form

fµ = µ
fext

‖fext‖
sgn(ẋ)n‖, (3.8)

with fµ being the force due to friction, µ being the friction coefficient and n‖ is
a unit vector representing the tangent of the line surface. This friction force fµ

is added to the spring force fext of the environment (3.5) and is then subject to
measurement noise:

f̂ext = (fext + fµ)(1 + ε). (3.9)

Here, ε is an i.i.d. variable taken from a normal distribution N with mean 0 and
standard deviation σ2, imitating Gaussian white noise. In the following simula-
tions, the environment exerts the force (fext + fµ) on the control point when they

are colliding. However, the control point senses this force as f̂ext with µ = 0.1
and σ2 = 0.2 due to simulated force measurement noise. Figure 3.23 reports the
forces that are exchanged between p and the environment in normal direction.
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Figure 3.21: Norm of external forces fext due to contact with the single line envi-
ronment.
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T .
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Figure 3.23: Norms of external forces ‖fext‖ caused by contact with the single line
environment with friction and Gaussian white noise in the force measurements.
Note that the graph shows ‖fext‖, not ‖f̂ext‖.

These forces are comparable to those of the simulation without friction and noise
(Fig. 3.21) up to approximately t = 0.8 s. Afterwards, they do not reach a steady
state, but are oscillating around their former steady state value. The controllers
that gradually update the principal impedance direction p lead to more irregular
oscillations, but with smaller amplitude. As shown in Fig. 3.24a, the ”c.1 force
dir” controller induces the least amount of force oscillations between t = 2 s and
t = 3 s.

Apart from friction and force measurement noise, the above simulations deal
only with interaction forces in a constant direction. In human-robot collabora-
tion scenarios however, interaction forces do often change their directions. When
clamping a human body part, the irregular shape and flexibility of the body part
may lead to changing contact force directions. To better model situations where
the contact force changes its direction, a second line object is appended to the first
line object in a different angle. It is placed such that the control point p is trapped
at the transition between these two obstacles (see Fig. 3.25). Consequently, the
contact force acting on point p changes frequently its direction from nb =

1√
2
[1, 1]T

to nr = [0, 1]T and vice versa. As a result, the controllers that align the principal
impedance direction p to the measured contact force f̂ext, change p accordingly.
Compared to the case with the single line obstacle, the norm of the external forces
‖fext‖ oscillate more, as can be seen in Fig. 3.26. Only the ”vel. dir.” controller
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Figure 3.24: The colored bars report the mean force value for each controller
between t = 2 s and t = 3 s. The thin black bars indicate the interval of the
force values in the same time period. The bigger these bars, the bigger are the
amplitudes of the force oscillations for the respective controllers.

has the same force trajectory as in Fig. 3.23, because the control point does not
reach the transition point to the second line obstacle under this control. To reduce
the oscillations, we pair the ”c.1. force dir.” and the ”force track (2)” controllers
with the stability observe and control scheme as explained in Sec. 2.1.6: When
the part of the position error ep = x − xg perpendicular to p reaches a thresh-
old, pd is set to ep. As illustrated in Fig. 3.27, this control modification indeed
reduces the oscillations in the resulting contact force fext. However, the biggest
force overshoots coming from the dynamic collisions with the line obstacles, are
not lowered by this modification. In the top graph of Fig. 3.27 for example, the
peak at t = 0.5 s represents the collision with the first line obstacle and the one at
t = 1.3 s with the second. Figure 3.24b compares the mean force values, as well
as the minimum and maximum force values of the different controllers after the
dynamic impacts (from t = 2 s to t = 3 s). Whereas the force track controllers
with the stability observe and control scheme possess the least amount of force
overshoot, their mean value is far below fmax = 100 N, which should be tracked.
This comes mainly from the still considerable amount of force oscillations, leading
even to complete contact losses. Among the tested controllers, ”c.1 force w. stab”
tracks fmax the best with a mean force value of 109 N and ranging from 83 N to
132 N between t = 2 s and t = 3 s.

A similar performance to the ”c.1 force w. stab” control scheme can be obtained
by reducing the update gain gu when the error ep perpendicular to p reaches
a threshold. When gu is small, the entire control scheme resembles impedance
control with constant mass, damping and stiffness matrices. Figure 3.28 compares
the external forces fext and the update gains gu of this control scheme (”c.1 force
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Figure 3.25: This simulation scene consists of two line obstacles. The blue line
obstacle has a surface normal of nb =
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[1, 1]T , the normal of the red obstacle is

nr = [0, 1]T . When the blue square p is left (right) to x1 = 0.5 m, it is subject to
the external force caused by the blue (red) obstacle.
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Figure 3.27: Effect of the stability control scheme on ‖fext‖. The force trajectories
without the stability control scheme are the same as in Fig. 3.26 and serve as
comparison.

w. gain c.”) and of the ”c.1 force w. stab” controller. Both controllers trigger their
change in comportment at the same time (t = 1.34 s), using identical instability
detection thresholds. Whereas the ”c.1 force w. stab” controller changes the
principal impedance direction p to the position error ep during this phase, the ”c.1
force w. gain c.” controller leaves p quasi-constant. After the oscillations in the
position error ep perpendicular to p have fallen below a threshold, both control

schemes update p again to follow the sensed external force f̂ext with increasing
update gains gu. The time of changing back to this initial comportment is different
for both controllers, since the evolution of ep differs.

3.2 Experiments

The experiments are performed with the robotic platform Panda [EMI17] from
Franka Emika. It is a 7 DoF lightweight robot arm with a payload of 3 kg,
designed for human-robot collaboration. The links are elastically coupled with
the motors, enabling high compliance and torque sensing. To control the robot,
we use the Franka Control Interface (FCI) [EMI18a] and the respective Robotic
Operation System (ROS) integration. Through the ROS Control interface, we
can send torque commands to the robot at a rate of 1 kHz. The code (C++) is
executed on the same machine as the simulations (see Sec. 3.1).
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Figure 3.28: The top graph compares the norms of the external forces ‖fext‖ of
the controllers. The middle graph shows, besides gu, the phase (high) when the
stability control (e.g. pd = ep) is active for the ”c.1 force w. stab” controller.
Analogously, the bottom graph shows the update gain gu and the phase (high)
when ”c.1 force w. gain c.” resembles quasi-constant impedance control (i.e. gu =
gmin).
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3.2.1 Clamping Identification

The first experiment demonstrates the performance of our clamping identifica-
tion algorithm. To better analyze the accuracy of the algorithm, we use a foam
block of known dimensions as a substitute of a human body part. This foam block
is attached to a wall-like environment whose pose is known to the robot. The
wall is modeled as a single cuboid, from which 60893 points are sampled for the
OBBTree creation. Figure 3.38 illustrate this cuboid and the sample points. Ob-
viously, a simple body like a cuboid can be represented much easier than with our
OBBTree structures. However, to be able to transfer the results of the experiments
to more complicated environment geometries, the simple cuboid body is treated
identically as more complex bodies. Concerning the foam block, the robot does
not know its pose, only its minimal and maximal dimensions sizemin and sizemax.
The setup is shown in Fig. 3.29. To guarantee a control rate of 1 kHz, we execute
robot control and clamping identification on two separate threads. For this experi-
ment, the robot is commanded a trajectory such that its end-effector6 crashes into
the foam block from the side (negative x-direction of the world coordinate system
as displayed in Fig. 3.38a). The clamping identification algorithm (d♣ = 9, using
SAT) surveils the robot’s motion simultaneously, however, as detailed in Sec. 3.1.2,
with a potentially slower rate. The results of the clamping identification algorithm
is displayed in Fig. 3.30. At t = 7.4 s, a potential clamping situation is identified
for the end-effector. As a result, the velocity of the end-effector is reduced such
that potential collisions are less harmful. At t = 7.56 s, the collision with the foam
block is sensed, triggered by ‖fc‖ passing a threshold. Inferring from the course of
‖fc‖, the actual collision begins approximately at t = 7.54 s. In the time between
having identified a potential clamping situation (t = 7.4 s) and the collision itself,
the end-effector traveled 4.4 cm further, demonstrating the conservative nature of
the clamping identification algorithm. As the algorithm is unaware of the foam
block’s pose, it uses worst-case assumptions.
As soon as a collision is detected, the robot is put into zero gravity mode and is
thus retracting from the collision due to the contact force fc. This is the reason
why the clamping identification signal falls off again at t = 7.66 s: The velocity
based EOC are activated. Slight movements and noise in the velocity signal ẋ
of the contact point lead to chattering of the clamping identification signal at
t = 8.22 s. Especially since ẋ is near zero, the velocity direction changes strongly
with changing ẋ. This chattering can be reduced by labeling situations with
velocities below a certain threshold as not dangerous.

In a second experiment, we place the foam block orthogonally to the wall envi-
ronment (see Fig. 3.31a). The robot’s end-effector is commanded to hit the foam
block in a straight line (Fig. 3.31b). For this experiment, the clamping identifi-
cation algorithm uses identical OBBTrees as in the previous experiment, but the

6As no gripper is mounted in this setup, link 7 is the end-effector.
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(a) No clamping situation (b) Clamping situation

Figure 3.29: A white block of foam (14.1×11.3×4.8 cm) is attached to a wall-like
obstacle (red circle). It is placed such that one of its sides touches the edge of the
wall-like obstacle, resulting in a slight diagonal pose of the foam block (relative
to the world coordinate system as shown Fig. 3.38a). The minimal and maximal
dimensions sizemin and sizemax of the foam block are registered in a collaborative
zone, covering the entire robot’s workspace.

GJK method instead of SAT. Since the collision scenario is created such that the
worst case pose of the foam block is its actual pose7, we expect the clamping
identification signal to trigger more closely to the actual time of contact than in
the previous experiment. Figure 3.32 shows the respective signals for this setup.
A possible clamping situation is indicated at t = 2.59 s, whereas the actual con-
tact occurs 40 ms later at t = 2.63 s. During this time, the end-effector traveled
5 mm further, revealing that in this case our clamping identification algorithm is
accurate to 5 mm8.

3.2.2 Contact Force in Quasi Steady-State Conditions

As the main goal of the CCIC (Sec. 2.1.6) is to limit the contact forces in
clamping situations, we evaluate in the next experiment if the CCIC reaches this
goal in real life conditions. Being mostly interested in the quasi steady-state
contact forces, we use the modified control law (2.74)-(2.76). The values of the

7For this experiment we only consider poses of the foam block where an entire side is in
contact with the wall environment. Thus, the largest relevant dimension of the foam block is the
length of its biggest side.

8This accuracy evaluation is also affected by the time delay of the τext estimation. As τext is
filtered by the robot control system, it is slightly delayed. On top of that, the end-effector has
to penetrate the foam block to generate τext.
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Figure 3.30: Timing of clamping identification signals. Possible clamping situa-
tions on the end-effector are indicated by high phases of danger l7. The contact
signal is triggered by the contact force fc reaching a threshold of 6 N. As fc is
dependent on the contact point pc, the OBBTree of the end-effector is traversed
to find the closest OBB’s center point to the wall obstacle. For simple colliding
geometries, this gives accurate enough results. For the sake of clarity, we only show
one component of the contact point’s velocity. However, since Rẋ1 is expressed in
the frame aligned with the initial position error, it contains the most important
information (see also Fig. 3.31b). The scale for the velocity Rẋ1 is on the right,
for the force fc on the left.

(a) Initial end-effector pose (b) End-effector colliding with foam block

Figure 3.31: The end-effector starts from its initial pose in (a) to collide with the
foam block in (b). The velocity of this straight movement is Rẋ1.
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Figure 3.32: Clamping identification signals of 2nd foam block experiment. For a
description of the signals, see Fig. 3.30. In contrast to the first experiment, the
robot is not put into zero gravity mode, leading to higher contact forces fc.

Table 3.7: Parameters of the CCIC control law.

Λd K D K∅ D∅

[kg]
[

N
m

] [

Ns
m

] [

N
rad

] [

Ns
m

]

diag

(

10, 10, 10
10, 10, 10

)

diag

(

600, 1500, 1500
2000, 2000, 2000

)

diag

(

155, 245, 245
198, 198, 198

)

5 4.47

matrices in (2.75)/(2.71) and scalars in (2.76) that are used in this experiment are
summarized in Tab. 3.7.

The general setup of the experiment is as follows. The end-effector of the robot
is commanded to alternate between two desired poses xd. Before the second pose is
reached, a human subject positions itself in the end-effector’s trajectory as shown
in Fig. 3.33. The contact forces are then measured and analyzed.

During non-contact phases, the rotation matrix R in the control law (2.75) is
chosen such that the principal impedance direction p is pointing in initial error
direction ep = xp − x[d,p]. As reported in Tab. 3.7, the compliance in p direction
is higher than in its perpendicular directions. Since there is no contact point, the
pose of the end-effector is controlled and the contact Jacobian is taken to be the
Jacobian of the end-effector JEE. In contact phases, p is updated to follow a low
pass filtered version of fc as per (3.6) with gu = 0.001. To limit the velocity and
more importantly the contact forces, we apply the velocity saturation law (2.72)
in principal impedance direction with fmax = 50 N.
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(a) Chest impact (b) Thumb impact

Figure 3.33: Setup for contact force experiment. In (a), the robot’s end-effector
collides with the human chest. In (b), the human stops the robot by pressing
against the end-effector with his thumb. The contact point pc for the contact
force estimation (2.78) is taken to be the point laying furthest to the front in
velocity directiona.

aAs the movement of the end-effector is predominantly in negative y-direction (of the world
coordinate system), the OBBTree of the end-effector is traversed to find the OBBNode center
with the smallest y-coordinate.

As shown in Fig. 3.34, the contact force fc stays far below the limit of 50 N.
For the chest impact, the peak contact force due to transient oscillations is 17.8 N.
After 0.6 s, fc stays in the range between 7.9 and 9.6 N until the end of the
contact phase. The middle plot of Fig. 3.34 illustrates the principal impedance
direction p during the contact. The contact force fc is mostly acting in negative y-
direction of the world coordinate system, expressed by the low-passed filtered force
component f̄c,2. Consequently, p points mainly in the same direction (p2 ≈ −1).
As the contact force aligns well with the initial position error ep direction, p

changes only slightly during the contact.
Similar results are obtained for the thumb contact case. Here, the transient force
oscillations at the beginning of the contact are weaker since the arm of the human
subject dampens the collision more compared to the chest impact. When the
human subject presses against the end-effector such that the robot is pushed back,
the contact force fc surpasses its former steady-state value. In this phase, peak
contact force values of 27 N are obtained. This increased contact force is mainly
caused by the damping term DRẋ of the dynamics (2.32)/(2.77).

The discrepancy of more than 80 % between the desired steady state force
and the one obtained in the experiment shows a bad performance of our control
law (2.74)-(2.76). There are multiple possible reasons why our control law does
not impose the desired dynamics in (2.77). Firstly, there are inaccuracies in the
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Figure 3.34: Results of the contact force experiment using CCIC. The top graph
displays the components of the low-pass filtered version of fc, as well as the norm
of fc itself. The middle graph shows the components of the principal impedance
direction p that follow f̄c when there is a contact. The bottom graph shows the
positional error expressed in the rotated coordinate frame (the x-axis is aligned
with p). The scale for the first component Re1 is shown in blue on the left, for
the second and third component in red on the right. Combining Re1 with K[1,1]

from Tab. 3.7, we see that the spring force K[1,1]
Re1 is thresholded in all contact

scenarios by the desired force limit of 50 N. The positional errors perpendicular to p
are rising when there is a change in the contact situation, leading to perpendicular
motions.
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modeled robot dynamics, e.g. we do not model joint friction. Secondly, our con-
trol law requires exact measurements of the contact force fc and external torque
τext. The estimation of τext with the generalized momentum method might not be
accurate enough for our control law. Additionally, as the contact point pc is also
only estimated, the contact force fc is subject to further inaccuracies.

For comparison, we implement another adaption of the Cartesian Impedance
Controller described in [ASOFH03] that does not decouple the impedance dynam-
ics. With

τd = JT
c fτ +Cq̇ + g + f∅∅∅,

fτ = −RTKRe−RTDRẋ
(3.10)

the following closed loop dynamics are obtained in quasi stead-state conditions9:

RΛ(q)ẍ+DRẋ+KRe = Rfc (3.11)

⇔ Λ(q)ẍ+RTDRẋ+RTKRe = fc. (3.12)

⇔ Λ(q)ẍ+DRẋ+KRe = fc. (3.13)

Note that, compared to (2.32), the rotation matrix R is not applied directly to the
acceleration ẍ, but to the product Λ(q)ẍ. It is consequently not possible to re-
gard (3.11) as a standard impedance dynamics, expressed in a different coordinate
system. However, referring to (3.12) and (3.13), it is still possible to shape the
damping and stiffness matrices DR = RTDR and KR = RTKR such that they
appear diagonal in a desired coordinate system10. However, with this control law,
it is not possible to shape the desired inertia of the closed loop dynamics. Hence,
to distinguish the control law (3.10) from (2.74)-(2.76), we refer to the former as
comparative control law and to the latter as inertia shaping control law.
As for the inertia shaping control law, the contact forces fc must be limited in
static clamping conditions for the comparative control law, too. Therefore, we
have to ensure that

‖KRe‖ ≤ fmax. (3.14)

This can be done by using (2.29) and (2.30) in the 2-dimensional case. For the
contact cases considered in this thesis (fc = [fc,[1], fc,[2], fc,[3], 0, 0, 0]

T ), this can be
achieved with

|fi| ≤
|fc,[i]|
‖fc‖

fmax , for 1 ≤ i ≤ 3 (3.15)

where
fi = (KRe)i , for 1 ≤ i ≤ 3. (3.16)

Here,
|fc,[i]|
‖fc‖ represents the fraction of fc that fi is responsible for.

9
Λ̇(q) and J̇cq̇ are assumed to be zero.

10The error e is rotated with R into the desired coordinate system. Then, the diagonal
matrix K is applied and the result is transformed back to the original coordinate system by RT .
This is analogously valid for RTDRẋ.
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Table 3.8: Parameters of the control law (3.10).

K D K∅ D∅
[

N
m

] [

Ns
m

] [

N
rad

] [

Ns
m

]

diag

(

400, 1000, 1000
75, 75, 75

)

diag

(

40, 63, 63
12, 12, 12

)

5 4.47

We incorporate the requirement (3.14) by setting up a velocity saturation law
comparable to (2.72) for every coordinate direction:

fτ,[i] = DR,[i,i](ẋi − νiẋd,[i]) , for 1 ≤ i ≤ 3

ẋd = D−1
R,pKR,p(−ep)

νi = min

(

1,
vmax,[i]

‖ẋd‖

)

, for 1 ≤ i ≤ 3

vmax = D−1
R flim

flim =
fmax

‖fc‖
[

|fc,[1]|, |fc,[2]|, |fc,[3]|
]T

(3.17)

The control forces fτ,[4] − fτ,[6] for the orientation are not affected by this velocity
saturation.

Employing the comparative control law (3.10) with the velocity saturation (3.17),
we repeat the above experiment with the parameters listed in Tab. 3.8. In contrast
to the previous experiment, the rotation matrix R stays constant for each target
pose xd and is chosen such that KR and DR appear diagonal in the coordinate
system aligned to the initial position error direction. As can be seen in Fig. 3.35,
the desired force of 50 N is better tracked for both the chest and the thumb con-
tact. Between t = 15 s and t = 18 s for example, the mean estimated contact
force is ‖fc‖ = 46.8 N. Although this force error of approximately 6% is much in
terms of force tracking control, it is acceptable in our case where we are mostly
interested in limiting the external force. Especially since the force limit of 50 N
is only exceeded when pushing the robot back, which violates the steady-state
assumptions.

3.2.3 Hand and Chest Clamping Experiment

The next two experiments compare the two control laws (2.74)-(2.76) and (3.10)
in real clamping scenarios. In the first experiment, the hand of a human subject
is clamped by the robot (Fig. 3.36a). To this end, the robot is commanded a
trajectory moving directly towards the wall environment. Depending on where on
this trajectory the contact happens, it is either a clamping situation (Fig. 3.36a),
or a non clamping contact (Fig. 3.36b). To differentiate between these scenarios,
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Figure 3.35: Results of the contact force experiment using the control law (3.10).
In non-contact phases, flim of the velocity saturation law (3.17) is set to fmax√

3
in all

directions as there is no contact force direction. Since the direction of the estimated
contact force fluctuates much when contact is released, flim also fluctuates shortly
after the contact loss. When the desired force limit fmax is set to a high value, the
maximal velocity vmax of the velocity saturation law (3.17) can be too fast for safe
human-robot collaboration. Hence, vmax is upper bounded in dynamic situations.
Only in quasi steady-state conditions, this upper bound is preempted to achieve
the desired steady-state contact force. The effect of this upper bound on vmax

can be seen on the contact force decrease while pushing the robot back. As soon
as the quasi steady-state is reached again, the contact force rises also. The first
force peak while back-pushing the robot is due to additional damping forces of the
control law. In the bottom graph the scale for Re1 is on the left, for Re2 and Re3
on the right.
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(a) Hand clamping situation (b) Non-clamping hand contact

Figure 3.36: Hand clamping experiment. The robot is commanded with the same
trajectory as in the second foam block experiment (Fig. 3.31). The contact point
is obtained as described in Fig. 3.30.

we use our clamping identification algorithm (d♣ = 9, GJK) with a collaborative
zone composed of the m hand entry (see Tab. 3.3). As the force limits for the
clamped body parts in Tab. 3.3 are based on preventing injuries above or equal
to AIS 1, we use a lower force threshold for our experiments as we don’t want to
inflict pain on the human subject. Hence, whenever a possible clamping situation
is signaled, we set the maximal force fmax to 50 N, otherwise it is set to 100 N.
The parameters of the control laws are listed in Tab. 3.7 for the inertia shaping
CCIC, and in Tab. 3.8 for the comparative control law (3.10)11.

As illustrated in Fig. 3.37 the clamping identification algorithm signals a possible
clamping situation before the actual clamping contact occurs. For both control
laws, there is a contact force peak at the beginning of the collision. The force
peak for the inertia shaping CCIC (top graph) is smaller since the impact velocity
is also smaller due to a higher damping coefficient. As explained in Sec. 2.1.6,
this transient force peak can be attenuated by damping the closed loop dynamics
critically. However, critical damping is dependent on the stiffness ke of the envi-
ronment which is in general unknown or highly varying for human-robot contacts.
Even if ke is known, a critical damped system would lead to low velocities due to
the velocity saturation law for high stiffness environments, making such a damping
design unproductive.

As the end-effector has almost reached its target pose xd in the clamping situ-
ation, the position error in initial error direction Re1 is so small that the velocity

11For both controllers, we set the first entry of K and D equal to the second and third entry
in non-clamping cases. This makes it harder to push back the robot.
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saturation law does not affect the steady-state force. This is the reason why the
contact force for the comparative control law stays at roughly 23.4 N for the initial
contact phase. When increasing Re1 by pushing the robot back, the steady-state
contact force range from 44.4 N to 52.7 N during the second steady-state phase. Al-
though clamping the hand is not possible anymore during this second steady-state,
we treat this situation as a clamping scenario as the contact has not been inter-
rupted since the initial clamped contact. Otherwise, increasing the force limit fmax

in this case would make it difficult to free oneself from being clamped.

When the initial contact occurs further away from the wall environment (big-
ger Re1), the contact is labeled as non-clamping12. Here, fmax is set to fmax =
100 N. However, the velocity saturation of the comparative control law is im-
plemented such that it treats non-clamping contacts like no contact at all, i.e.
flim = fmax√

3
[1, 1, 1]T . As the contact force fc acts mainly in ep direction, it is

consequently limited by ∼ 100 N√
3

= 57.7 N. In the steady-state of the non-clamping
contact, the contact force adheres to this limit when the robot is controlled with
the comparative control law. Due to the inaccuracies of the modeled dynamics, as
described in the previous experiment (Sec. 3.2.2), the inertia shaping CCIC stays
far away from the force limit.

In the second experiment, the chest of the human subject is clamped by the
robot, shown in Fig. 3.39a. The parameters for the controllers and for the veloc-
ity saturation are the same as in the previous experiment. However, the robot’s
workspace is now partitioned into multiple collaborative zones. The respective
cuboid-shaped zones are stacked on top of each other, parallel to the floor. They
are illustrated in Fig. 3.38a. Since this collaborative zone setup conveys a high
amount of uncertainty (especially because the minimal and maximal dimensions of
the m above legs entry are far apart from each other), possible clamping situations
are identified much more conservatively. As reported in the top graph of Fig. 3.40,
this even leads to wrong clamping contact identifications at t = 4.7 s, triggered
by noisy contact force estimations. When using the inertia shaping CCIC law, the
contact point pc slides along the contact surface to reach its target pose xd, as ex-
plained in the Obstacle circumvention part of Sec. 2.1.6. This process is indicated
in Fig. 3.40 (top) by a continuous decrease in the position error e1 in x-direction
and an adaption of the error e2 in y-direction (the respective world coordinate
frame is displayed in Fig. 3.38a.). As the target pose xd is placed further in nega-
tive x-direction than the human subject is standing, the end-effector resolves the
clamping situation autonomously by loosing contact with the human’s chest after
having slided all across it. In contrast, the comparative control law (3.10) does not
change the principal impedance direction p. Therefore, the contact point does not
slide across the chest, when being controlled with this control law. Consequently,

12As long as the clamping identification algorithm does not signal a potential clamping situa-
tion.
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Figure 3.37: Results of the hand clamping experiment. For the top graph, the iner-
tia shaping CCIC is used, for the bottom graph the comparative control law. Same
phases are highlighted with identical colors, the legend applies to both graphs. In
the top graph, there is a second clamping contact. After pushing the robot back,
the hand was put back to the wall. As the robot follows immediately this mo-
tion to reach its target pose, there is an additional short contact before the actual
second clamping contact. Since this contact already extracts some kinetic energy
from the end-effector, the contact force peak for the second clamping contact is
reduced. High phases of danger l7 indicates that the clamping identification algo-
rithm signals a potential clamping situation. When additionally the contact force
pass a threshold, the clamp contact signal is triggered.
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(a) Collaborative zones (b) Sample points of wall environment

Figure 3.38: The collaborative zone setup for the chest clamping experiment is
shown in (a). The cuboid shaped zones are stacked on top of each other. The
border between the m above legs and m legs zone is the height of the mounting
point of the robot. The zones’ borders are better understandable in combination
with Fig. 3.39. The minimal and maximal dimensions, as well as the force limit
for these zones are listed in Tab. 3.3. For visualization, the wall is modeled as
a simple cuboid. For the clamping identification however, the wall is represented
as 4 OBBTrees, as illustrated in (b). In total, there are 60893 sample points
and 3736 leaf nodes. With the collaborative zone setup as in (a), the displayed
robot configuration leads to possible clamping situations for links 7, 6, 5 and 4, as
indicated by the red color of their OBB roots.



128 CHAPTER 3. EVALUATION

(a) Initial chest contact (b) Contact point slides along chest

Figure 3.39: Setup for the chest clamping experiment. When the robot is controlled
with the inertia shaping CCIC (b), the contact point slides along the chest until
the contact is lost.

the position errors e1 and e2 stay constant after reaching a steady-state in the bot-
tom graph of Fig 3.40. Although sliding along a human body part can resolve the
clamping situation, it was perceived as rather inconvenient and painful for higher
contact forces.

During the sliding action of the inertia shaping controlled robot, the effects
of the stability controller (see Sec. 2.1.6 or Sec. 3.1.4) are clearly visible. Due
to the sliding motion, the contact situation is constantly changing, affecting the
contact force direction. This in turn leads to oscillations in the principal impedance
direction p, and finally to oscillations in the position error Rep expressed in the

coordinate frame aligned with p. When ‖e⊥‖ =
∥

∥

∥

[

Re2,
R e3

]T
∥

∥

∥
reaches a threshold,

the stability controller is triggered. This correlation is illustrated in Fig. 3.41. As
can be seen in both Fig. 3.40 and Fig. 3.41, the oscillations in the contact force fc

diminish while the stability controller is active.

3.3 Discussion

The results of the simulations and experiments demonstrate the capabilities of
the proposed clamping conscious control pipeline as well as the effects of several
design parameters. Concerning the clamping identification algorithm, using the
SAT based distance approximations does not result in the expected boost in com-
putation time. Its fast execution time is thwarted by the overhead of the OBBTree
traversal. On the contrary, the small approximation errors lead in general to an
inferior performance, compared to the GJK algorithm. A substantial decrease in
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Figure 3.40: Results for the chest clamping experiment using the inertia shaping
CCIC (top) and the comparative control law (bottom). The errors e1 and e2,
expressed in the world coordinate frame, refer to the scale on the right. The
remaining signals are as in Fig. 3.37. In the top graph, the phases are highlighted
where the stability controller is active. As the comparative control law does not
resolve the clamping situation autonomously, the end-effector has to be pushed
away to free oneself from being clamped. This phase is indicated by the increase
in the contact force in the bottom graph.
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Figure 3.41: Correlation between the errors Re1 and Re2 perpendicular to p, the
contact force ‖fc‖ and the stability controller. The phases where the stability
controller is active are highlighted in yellow.

computation time is achieved by incorporating the caching and sorting scheme as
explained in Sec. 2.2.4. For the considered scenarios, this leads on average to a
better performance than using a state of the art minimum distance implementa-
tion from fcl. However, in some cases, the maximum computation time and the
maximum approximation error are higher for our algorithm. An additional fea-
ture of the proposed clamping identification algorithm that is not contained in the
comparative fcl implementation, is the inclusion of velocity based EOC. On the
one hand, these EOC slow down the clamping identification algorithm, but on the
other hand, they lead to less false positive evaluations.

As confirmed by the experiments, clamping situations are reliably detected for
all tested scenarios. Depending on the uncertainties of the body parts’ extents
that are present in the scene, the clamping situation is signaled within a long
or short time period before the actual contact happens. Multiple reaction to
clamping situations are possible. The robot can e.g. be put into zero gravity
mode, exerting no steady state contact forces at all, or these contact forces can be
limited to safe values. The inertia shaping control law that should do the latter,
shows good performance in simulations, but fails to do so in the experiments. The
accuracy of the modeled robot dynamics, as well as the accuracy of the contact
force estimation are not sufficient to obtain the desired closed loop behavior. The
comparative control law tracks the force limit better. However, as it does not
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change the principal impedance direction, the contact point does not slide along
the body part to resolve the clamping situation.

3.4 Future Work

For this thesis, the clamping identification algorithm is used in rather simple
environments (a collection of geometric primitives for the simulations and a wall
obstacle for the experiments). To better reason about its validity in real scenarios,
more complex environments have to be tested. For example, complex environments
might be scanned and transformed into point clouds. Furthermore, in its current
state, the algorithm regards the entire environment as static. However, in most
scenarios, the robot manipulates movable objects that should be considered in the
clamping evaluation as well. This makes it necessary to monitor the scene, as
otherwise their poses are unknown.

Monitoring the scene benefits the entire clamping conscious pipeline in multiple
ways. Firstly, as described in Sec. 2.2.2, collaborative zones can be created dynam-
ically, depending on the location of the respective body parts. To this end, skeleton
tracking can be used as e.g. provided by the Microsoft Kinect [LSAD12, BFC14].
Bounding boxes around the tracked body parts can than serve as collaborative
zones. Furthermore, even without skeleton tracking, contact points in clamping
situations can be better estimated using real-time minimum distance information
between the robot and the human as e.g. in [Hir15, SHL17]. Points of minimum
distance between the robot and the human prior to the contact are likely to be
close to the actual contact point. As the contact manifold is often occluded and
cannot be captured directly with RGB-D cameras, the contact point (or even man-
ifold) detection can be improved by building geometric models of the human body
parts. This is e.g. done in real time (∼ 2 s for all body parts) with errors close to
the RGB-D sensor resolution in [Bar13]. After having build the model, the body
part poses can be updated with even faster rates e.g. using skeleton tracking.
Having models of the environment, the robot and the human body parts enables
calculating the contact manifolds that are of interest in clamping situations: the
contact manifolds between the body parts and the environment as well as the con-
tact manifolds between the body parts and the robot. Those manifolds can be
used to not only estimate the contact force on the manifolds, but to also estimate
the contact pressure. As tolerable pressure limits (see [ISO16]) are exceeded faster
than force limits for small contact manifolds, estimating the contact pressure is
imperative when clamping occurs with pointy geometries.

Another limitation of the clamping identification algorithm is the fact that dur-
ing the OBBTree traversal, the velocities of the OBBs are approximated with
the linear velocity of the respective robot link (see Sec. 2.2.5). Consequently, the



132 CHAPTER 3. EVALUATION

clamping identification is only accurate for OBBs whose velocity does not differ
much from the link’s linear velocity. To remedy this limitation, the velocity of each
OBB can be calculated and used, leading to more computational effort, though.
A method that finds a suitable compromise between accuracy and computational
effort regarding the velocity based EOC still needs to be found.
Further investigations should also be done regarding the obstacle circumvention
feature of the proposed control scheme. Although clamping situations can be
resolved this way, the sliding motion can be too painful due to shearing forces.
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Chapter 4

Conclusion

When humans and collaborative robots work together, situations may arise
where the robot clamps a human coworker. If these situations are not noticed or
dealt with in a safe manner, the robot can inflict serious injuries on the coworker.
This thesis presents methods to both identify robot-human clamping situations
and to render these situations safe. Starting from distance and velocity based
conditions that apply to clamping situations, we create an identification algorithm
that checks in real-time whether these conditions are fulfilled. To this end, we
approximate the robot and the environment with hierarchies of Bounding Vol-
umes, representing a coarse to fine approximation scheme. As we do not track the
coworkers in the workspace, the system possesses only vague information about
their poses and extents through the configuration of so called collaborative zones.
These zones are placed throughout the workspace and each one contains infor-
mation which body parts could be present in the respective zone. The extents
of the body parts are then queried from a database that contains the minimal
and maximal dimension of the respective body parts1. As those extents go along
with certain uncertainties, the clamping identification algorithm uses worst-case
assumptions to deliver safe results. The accuracy of the algorithm is thus bounded
by these uncertainties.

Checking the clamping conditions is done by iteratively refining the approxi-
mations of the robot and the environment. If the clamping conditions do not
apply for a coarse approximation, a clamping situation can be ruled out early.
Several parameters of this hierarchy of approximations are evaluated in terms of
computation speed and accuracy. As the distance calculation between two Ori-
ented Bounding Boxes plays a major role therein, we introduce an efficient way
to approximate both the minimum and maximum distance between two Oriented
Bounding Boxes based on the Separation of Axes Theorem. However, simulations
have shown that the identification algorithm possesses too much computational
overhead in order for this approximative method to be useful. Nonetheless, the

1Obtained from anthropometric data representing 98 % of the US population.
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proposed clamping identification algorithm outperforms state of the art distance
calculation implementations that we adapted to our use-case. For the simulated
scenarios, an average rate of 500 Hz is obtained.

To limit the contact forces in clamping situations, a variable impedance control
scheme is presented that modifies the imposed dynamics according to the contact
force. In theory, the imposed dynamics are decoupled in the direction of the con-
tact force, making it only necessary to limit the contact force in one coordinate
direction. Being potentially unstable, we pair this control scheme with a stabil-
ity controller that brings back the system to a stable state. Stability constraints
for the stability controller are obtained with Lyapunov theory. In practice, the
control scheme performs poorly with regard to reaching a desired force in steady-
state conditions. Therefore, another Cartesian impedance controller is proposed
that performs better under real conditions. Both controllers are evaluated and
compared in experiments where body parts of a human subject are clamped. In
all experiments, the clamping situations are identified successfully, and the steady
state contact force is limited to a safe value. Future work will mainly focus on
tracking human coworkers in the workspace as this reduces dramatically the un-
certainties present in the clamping identification algorithm. Additionally, when
fitting a geometric model to the tracked coworkers, contacts can be rendered safe
not only regarding contact forces, but also regarding contact pressures.
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Appendix A

Distance Calculation

A.1 Maximum Distance and Minkowski Sum

The Minkowski sum of two sets of points ΩA and ΩB is the addition of every point
in ΩA to every point in ΩB:

ΩA + ΩB = {a+ b|a ∈ ΩA, b ∈ ΩB}.

Calculating all point to point distances between ΩA and ΩB can be expressed by
‖ΩA − ΩB‖. The maximum distance between ΩA and ΩB is therefore the farthest
point of ΩA−ΩB from the origin. When ΩA and ΩB represents polygons (in 2-D)
or polyhedra (in 3-D), their Minkowski sum is again a polygon or polyhedron.
In this case, the farthest point from the origin is coincident with a vertex of the
polygon (polyhedron). This is visualized for the 2-D case in Fig. A.1. If a point x
is the farthest point from the origin, all points of the Minkowski sum are contained
in the circle around the origin with radius r, where r is the distance of x from the
origin. The direct neighboring points of x must consequently also be within this
circle. This can only be the case when x lays on a vertex (as point q). Otherwise,
the neighboring points to one side (as for point g), or the neighboring points on
both sides (as for point p) are outside the circle. The same concept applies for the
3-D case.

A.2 Distance Projection on Additional Separa-

tion Axis

Given the projection axis

l = (ai × bj)× ai, (A.1)
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Figure A.1: The black polygon is the Minkowski sum of two polygons. Every
point within this polygon (including the polygon) is element of the Minkowski
sum. A point x belonging to the Minkowski sum that is farthest away from the
origin (black circle) must be coincident with a vertex of the polygon. Even if the
polygon’s edge touches the circle of equidistance tangentially in p, the neighboring
points of p are outside this circle.

we derive here the simplifications of the projected distance approximations (2.105)-
(2.107). Projecting OBB A as per (2.4) on l yields

rA =
∑

k

|αkak · ((ai × bj)× ai)| (A.2)

=
∑

k

| − αkak · (ai × (ai × bj))| (A.3)

=
∑

k

| − αk(ai × bj) · (ak × ai)|. (A.4)

The transition from (A.2) to (A.3) follows from the cross product’s anticommuta-
tivity, (A.4) from the circular shift property of the scalar triple product [Wei02]:

a · (b× c) = c · (a× b).

For k = i, the cross product ak × ai evaluates to zero. Hence,

rA =
∑

k,k 6=i

| − αk(ai × bj) · (ak × ai)| (A.5)

=
∑

k,k 6=i

|αk(ai × bj) · am|, (A.6)

with
am ⊥ ak ∧ am ⊥ ai.



A.2. DISTANCE PROJECTION ON ADDITIONAL SEPARATION AXIS 137

Applying the circular shift property of the scalar triple product again on (A.6)
gives

rA =
∑

k,k 6=i

|αkbj · (am × ai)| (A.7)

=
∑

k,k 6=i

|αkbj · ak| (A.8)

=
∑

k,k 6=i

αkR̄[k,j] (A.9)

= α[i≫1]R̄[i≫1,j] + α[i≫2]R̄[i≫2,j]. (A.10)

Equation (A.8) follows from the perpendicular properties of am, equation (A.9)
from (2.90), and equation (A.10) is just a different notation of (A.10).

The projection of OBB B on l, as per (2.4), is

rB =
∑

k

|βkbk · ((ai × bj)× ai)| (A.11)

=
∑

k

| − βkbk · (ai × (ai × bj))| (A.12)

=
∑

k

| − βk(ai × bj) · (bk × ai)| (A.13)

=
∑

k

|βk(bj × ai) · (bk × ai)|, (A.14)

(A.15)

where the steps (A.11)-(A.13) are analogously to (A.2)-(A.4). Next, we split the
sum into the case k = j and k 6= j:

rB =
∑

k,k=j

|βk(bj × ai) · (bk × ai)|+
∑

k,k 6=j

|βk(bj × ai) · (bk × ai)| (A.16)

= βj ‖bj × ai‖2 +
∑

k,k 6=j

|βk(bj × ai) · (bk × ai)| (A.17)

= βj

1

λ2
+
∑

k,k 6=j

|βk(bj × ai) · (bk × ai)|, (A.18)

with

λ =
1

‖ai × bj‖
as in (2.97). The second summand of (A.18) can be simplified by using the three-
dimensional Binet-Cauchy Identity [Wei02], which states that

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
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Consequently, (A.18) becomes

rB = βj

1

λ2
+
∑

k,k 6=j

|βk ((bj · bk)(ai · ai)− (bj · ai)(ai · bk)) | (A.19)

= βj

1

λ2
+
∑

k,k 6=j

|βk(bj · ai)(ai · bk)| (A.20)

= βj

1

λ2
+
∑

k,k 6=j

βkR̄[i,j]R̄[i,k] (A.21)

= βj

1

λ2
+ R̄[i,j]

∑

k,k 6=j

βkR̄[i,k] (A.22)

= βj

1

λ2
+ R̄[i,j]

(

βj≫1R̄[i,j≫1] + βj≫2R̄[i,j≫2]

)

. (A.23)

To simplify the projection of the translation t·l, we utilize the vector triple product
identity [Wei02]:

a× (b× c) = b(a · c)− c(a · b).

Thus, the projection axis l in (A.1) can be reformulated as

l = bj(ai · ai)− ai(ai · bj) (A.24)

= bj − ai
A
BR[i,j] (A.25)

=





A
BR[1,j]
A
BR[2,j]
A
BR[3,j]



− ai
A
BR[i,j], (A.26)

where the representations of axes bj as in (2.90) are used. With

σ̂(i, j) =

{

1, for i = j

0, otherwise
(A.27)

we can write ai as

ai =





σ̂(i, 1)
σ̂(i, 2)
σ̂(i, 3)



 . (A.28)
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When substituting (A.28) into (A.26), we can write (A.26) row-wise:





l1
l2
l3



 =





A
BR[1,j] − σ̂(i, 1) A

BR[i,j]
A
BR[2,j] − σ̂(i, 2) A

BR[i,j]
A
BR[3,j] − σ̂(i, 3) A

BR[i,j]



 (A.29)

=





A
BR[1,j] − σ̂(i, 1) A

BR[1,j]
A
BR[2,j] − σ̂(i, 2) A

BR[2,j]
A
BR[3,j] − σ̂(i, 3) A

BR[3,j]



 (A.30)

=





A
BR[1,j](1− σ̂(i, 1))
A
BR[2,j](1− σ̂(i, 2))
A
BR[3,j](1− σ̂(i, 3))



 (A.31)

The step from (A.29) to (A.30) is possible since σ̂(i, j) functions as a selective
variable that allows only equal values for i and j. From (A.31) we see that li = 0.
Projecting the translation t onto l, we obtain

|t · l| = |
∑

k,k 6=i

tk
A
BR[k,j]| (A.32)

= |t[i≫1]
A
BR[i≫1,j] + t[i≫2]

A
BR[i≫2,j]| (A.33)

The simplifications (A.10), (A.23) and (A.33) are the ones that are used in (2.105)-
(2.107).
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Appendix B

Clamping Conscious Control

B.1 Solution of the One-Dimensional System Dy-

namics

To solve the non-homogeneous second order linear differential equation

ẍ+ 2ζωnẋ+ ω2
nx =

f0

m
, (B.1)

we first have to solve the homogeneous equation

ẍ+ 2ζωnẋ+ ω2
nx = 0. (B.2)

Assuming x(t) = ezt as a candidate solution to (B.2), the homogeneous equation
becomes

ezt
(

z2 + 2ζωnz + ω2
n

)

= 0, (B.3)

with the roots
z1,2 = −ζωn ± ωn

√

ζ2 − 1. (B.4)

Depending on the value of ζ, the roots are either imaginary (underdamped), real
and identical (critically damped), or real and not identical (overdamped).

Underdamped

With ζ < 1, the roots (B.4) are

z1 = −ζωn + iωn

√

1− ζ2

z2 = −ζωn − iωn

√

1− ζ2,
(B.5)

with i being the imaginary unit. The general solution of (B.2) is a linear combi-
nation of both modal solutions

xh(t) = A1e
z1t + A2e

z2t. (B.6)



142 APPENDIX B. CLAMPING CONSCIOUS CONTROL

Substituting (B.5) into (B.6), we arrive at

xh(t) = e−ζωnt (C1 cos(ωdt) + C2 sin(ωdt)) , (B.7)

with

C1 = A1 + A2

C2 = A1 − A2

ωd = ωn

√

1− ζ2.

To solve the non-homogeneous equation (B.1), we take the solution xh(t) and add
a particular solution xp(t) to it that solves (B.1):

x(t) = xh(t) + xp(t). (B.8)

The right-hand side of (B.1) can be reformulated as

f0

m
=

f0

ke
ω2
n

by using ωn =
√

ke
m
. Hence, a particular solution of (B.1) is

xp(t) =
f0

ke
. (B.9)

Using (B.8), the general solution to (B.1) becomes

x(t) = e−ζωnt (C1 cos(ωdt) + C2 sin(ωdt)) +
f0

ke
. (B.10)

The constants C1 and C2 can be determined with the initial conditions

x(0) = xe

ẋ(0) = v0.
(B.11)

It follows that

x(0) = C1 +
f0

ke

!
= xe ⇒ C1 = xe −

f0

ke
= xe −

kexe − fmax

ke
=

fmax

ke

ẋ(0) = −ζωnC1 + C2ωd
!
= v0 ⇒ C2 =

v0 + ζωnC1

ωd

=
v0 + ζωn

fmax

ke

ωd

.

(B.12)

When writing the linear combination of sine and cosine in (B.10) as a single sine
[Caz07] and substituting (B.12), we obtain the solution (2.26).
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Critically damped

With ζ = 1, the roots in (B.4) become identical

z1,2 = −ζωn. (B.13)

The general solution of (B.2) in this case is [MMOL11]

xh(t) = e−ζωnt (C1 + C2t) . (B.14)

Adding the same particular solution xp(t) (B.9) to (B.14), we arrive at

x(t) = e−ζωnt (C1 + C2t) +
f0

ke
. (B.15)

The constants C1 and C2 are derived from the initial conditions (B.11):

x(0) = C1 +
f0

ke

!
= xe ⇒ C1 = xe −

f0

ke
= xe −

kexe − fmax

ke
=

fmax

ke

ẋ(0) = −ωnC1 + C2
!
= v0 ⇒ C2 = v0 + ωnC1 = v0 + ωn

fmax

ke
.

(B.16)

Overdamped

The roots (B.4) for ζ > 1 take the form

z1 = −ζωn + ωn

√

ζ2 − 1

z2 = −ζωn − ωn

√

ζ2 − 1,
(B.17)

leading to the homogeneous solution

xh(t) = C1e
z1t + C2e

z2t, (B.18)

and to the general solution of (B.1)

x(t) = C1e
z1t + C2e

z2t +
f0

ke
. (B.19)

Plugging in the initial conditions (B.11) leads to a system of linear equations for
the constants C1 and C2

C1 + C2 = fmax

ke

z1C1 + z2C2 = v0

Solving this system of linear equations produces (2.28).
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B.2 Vector Alignment

The method for finding the rotation matrix that aligns an unit vector onto another
is taken from [vdB16] and is added here for completeness. In our case, we have the
positional error ep at two consecutive time instances ep(t0) = ep0 and ep(t1) =
ep1. At time t0, frame eχ was aligned with ep0 ( frame e0χ), at time t1 with ep1

( frame e1χ). The rotation matrix that rotates frame e0χ to e1χ is
ep1
ep0R. The

rotation of the robot’s base frame Cχ to e1χ is expressed by the rotation matrix
Rp(ep1):

Rp(ep1) =
ep1
ep0

RRp(ep0).

With ω = ep0
‖ep0‖ ×

ep1
‖ep1‖ and cos(α) = ep0

‖ep0‖ ·
ep1

‖ep1‖ ,
ep1
ep0R can be calculated with

ep1
ep0

R = I3 + [ω]× + [ω]2×
1

1 + cos(α)
.

Here, I3 is the identity matrix and the operator [·]× transforms its operand into a
skew symmetric matrix:

[ω]× ,





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 .

B.3 Positive Definiteness of Lyapunov Function

We will show that

V (ėp, ep, t) =
1

2
(Rpėp)

T Λd,pRpėp +
1

2
(Rpep)

T
KpRpep (B.20)

is positive definite when Λd,p and Kp are positive definite and diagonal. Consider
a diagonal, positive definite matrix A

A =











a1 0 0 . . .

0 a2 0 . . .

0 0 a3 . . .
...

...
...

. . .











=











√

(a1)
√

(a1) 0 0 . . .

0
√

(a2)
√

(a2) 0 . . .

0 0
√

(a3)
√

(a3) . . .
...

...
...

. . .











=











√

(a1) 0 0 . . .

0
√

(a2) 0 . . .

0 0
√

(a3) . . .
...

...
...

. . .





















√

(a1) 0 0 . . .

0
√

(a2) 0 . . .

0 0
√

(a3) . . .
...

...
...

. . .











= ĂĂ,

with ai positive, scalar values. When A is multiplied from the left and from the
right with a rotation matrix - vector product as in (B.20):

(Re)T ARe = (Re)T ĂĂRe = eTRT ĂT ĂRe =
(

ĂRe
)T

ĂRe. (B.21)



B.4. STABLE TRAJECTORY ADAPTION 145

the entire product will be positive since
(

ĂRe
)T

ĂRe is a dot product with

identical vectors. Our Lyapunov function is a sum of two such products, which
has to be positive as a consequence. Additionally, it follows that

(

RTAR
)T

= RTAR = RT ĂĂR =
(

ĂR
)T

ĂR

is symmetric and positive definite.

B.4 Stable Trajectory Adaption

Here we will give an example on how to adapt a desired trajectory xd such that its
dynamics will be stable when controlled with the stability controller of Sec. 2.1.6.
The necessary conditions to fulfill are described in (2.60)-(2.62). For the sake of
simplicity, we consider the special case

∆Λ1Λ2 = ∆Λ1Λ3

Dp,[2,2] = Dp,[3,3].

Thus, condition (2.62) simplifies to

4Dp,[1,1]Dp,[3,3] >
(∆Λ1Λ3)

2

‖ep‖2
(

( eėp,[3])
2 + ( eėp,[2])

2
)

. (B.22)

Dropping the e· superscript and introducing the short notations Dp,[i,i] = Di and
eėp,[i] = ėi, (B.22) can be rearranged to

(ė3)
2 + (ė2)

2 <
‖ep‖2 4D1D3

(∆Λ1Λ3)
2

(ẋ3 − ẋd,[3])
2 + (ẋ2 − ẋd,[2])

2 <
‖ep‖2 4D1D3

(∆Λ1Λ3)
2

. (B.23)

The change in the desired position xd,[i] can then be chosen such to satisfy (B.23).
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Nomenclature

0n Matrix of zeros ∈ R
n×n .

C(q̇, q) Coriolis and centrifugal matrix containing the Christoffel symbols.

d♣ Depth of OBBTree.
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x Cartesian pose.

xd Desired Cartesian pose.
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